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On the /»-converse of the Kolyvagin-Gross-Zagier theorem
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Abstract. Let A/Q be an elliptic curve having split multiplicative reduction at an odd prime p.
Under some mild technical assumptions, we prove the statement:!

rankzA(Q) 1 and #(UI(/4/Q)poo) < oo => ord/=iL(/4/Q,s) 1,

thus providing a '/»-converse' to a celebrated theorem of Kolyvagin-Gross-Zagier.
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1. Introduction

Let A be an elliptic curve defined over Q, let L(A/Q, s) be its Hasse-Weil L-function,
and let III (A/Q) be its Tate-Shafarevich group. The (weak form of the) conjecture
of Birch and Swinnerton-Dyer predicts that III (A/Q) is finite, and that the order of
vanishing ordi=iL(A/Q, s) of L(A/Q, s) at s 1 equals the rank of the Mordell-
Weil group A(Q). The main result to date in support of this conjecture comes

combining the fundamental work of Kolyvagin [17] and Gross-Zagier [13] (KGZ
theorem for short):

ran := ordi=iL(A/Q,s) < 1 => rankzA(Q) ran and #(III(A/Q)) < oo.

Let p be a rational prime, let ra]g e {0, 1}, and let III(A/Q)/,oo be the p-primary
part of IH(A/Q). By the p-converse of the KGZ theorem in rank ra ig we mean the

conjectural statement

rankzA(Q) raig and #(III(A/Q)/,oo) < oo =4 ords=iL(A/Q,i) raig.

Thanks to the fundamental work of Bertolini-Darmon, Skinner-Urban and their
schools, we have now (at least conceptually) all the necessary tools to attack the

p-converse of the KGZ theorem. Notably, assume that p is a prime of good ordinary
reduction for A/Q. In this case the p-converse of the KGZ theorem in rank 0

follows by [31]. In the preprint [30], Skinner combines Wan's Ph.D. Thesis [38] —
which proves, following the ideas and the strategy used in [31], one divisibility in the

Iwasawa main conjecture for Rankin-Selberg p-adic L-functions — with the main
results of [6] and Brooks's Ph.D. Thesis [9] — extending the results of [6] — to prove
many cases of the p-converse of the KGZ theorem in rank 1. In the preprint [39],
W. Zhang also proves (among other things) many cases of the p-converse of the

KGZ theorem in rank 1 for good ordinary primes, combining the results of [31 ] with
the results and ideas presented in Bertolini-Darmon's proof of (one divisibility in)
the anticyclotomic main conjecture [4], The same strategy also appears in Berti's
forthcoming Ph.D. Thesis [1] (see also [2]).

The aim of this note is to prove the p-converse of the KGZ theorem in rank 1 for
a prime p of split multiplicative reduction for A/Q. Our strategy is different from
both the one of [30] and the one of [39], and is based on the (two-variable) Iwasawa

theory for the Hida deformation of the p-adic Tate module of A/Q. Together with
the results of the author's Ph.D. Thesis [35], and then Nekovär's theory of Selmer



Vol.91 (2016) On the /»-converse of the Kolyvagin-Gross-Zagier theorem 399

Complexes [20] (on which the results of [35] rely), the key ingredients in our approach
are represented by the main results of [5] and [31 ] (see the outline of the proof given
below for more details).1

The main result. Let A/Q be an elliptic curve having split multiplicative reduction
at an odd rational prime p. Let Na be the conductor of d/Q, let ja e Q be

its y-invariant, and let ~pA,p ' Gq —>• GL2(F/)) be (the isomorphism class of) the

representation of Gq on the /»-torsion submodule A[p] of A(Q).

Theorem A. Let A/Q and p ^ 2 be as above. Assume in addition that the following
properties hold:

1. Pa,p is irreducible;

2. there exists a prime q\\ Na, q P such that p \ ov<Aq( ja );

3. rankzA(Q) 1 and YiA(A/Q) poo is finite.

Then the Hasse-Weil L-function L(A/Q, s) of A/Q has a simple zero at s 1.

Combined with the KGZ theorem recalled above, this implies:

Theorem B. Let AjQ be an elliptic curve having split multiplicative reduction at
an odd rational prime p. Assume that Pa,p is irreducible, and that there exists a

prime q\\ Na, q P such that p \ ord^y^). Then

ordi=] L(A/Q, s) 1 <(=> rankzA(Q) 1 and #(III(/l/Q)/,oo) < 00.

If this is the case, the whole Tate-Shafarevich group III(A/Q) is finite.

Outline of the proof. Let A/Q be an elliptic curve having split multiplicative
reduction at a prime p 7^ 2, and let / an<ln £ S2(To(Na), Z)new be the

weight-two newform attached to A by the modularity theorem of Wiles, Taylor-
Wiles et. al. Then Na Np, with p \ N and ap ap{A) +1. Assume that ~f>A,p

is irreducible.
Let f nnqn e I[g] be the Hida family passing through /. Here I

is a normal local domain, finite and flat over Hida's weight algebra A := öz,[r]
with Ol -coefficients, where T := 1 + pXp and Öl is the ring of integers of
a (sufficiently large) finite extension L/Qp (cf. Section 2.1). There is a natural

injective morphism (Mellin transform) ((/), where U c Zp is a suitable

'After this note was written, C. Skinner communicated to the author that, together with W. Zhang,
he extended the methods of [391 to obtain (among other results) the /»-converse of the KGZ theorem in
cases where p is a prime of multiplicative reduction [32], While there is an overlap between the main
result of this note and the result of Skinner-Zhang, neither subsumes the other (cf. the end of this section).
Moreover, as remarked above, the methods of proof are substantially different.
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p-adic neighbourhood of 2, and si(U) C L\k — 2] denotes the sub-ring of formal

power series in k — 2 which converge in U (see Section 4.1). Write

oo

foo '= £>„(*)?" £^(u)hl
n 1

with an(k) e si(U) defined as the image of a„ £ I under M. For every classical

point k e Ud := U HZ-2, the weight-K-specialization fK := X!n=i an(K)qn is

the g-expansion of a normalised Hecke eigenform of weight k and level Fi(Np);
moreover fi f For every quadratic character / of conductor coprime
with Np, a construction of Mazur-Kitagawa and Greenberg-Stevens [5, Section 1]

attaches to and / a two-variable p-adic analytic L-function Lpifoo, k, ,v) on
U x Zp, interpolating the special complex L-values L(fK,x,j), where k e Uci,
1 < j < k — 1 and L(fK, x, s) is the Hecke L-function of fK twisted by / (Here 5

is the cyclotomic variable, and k is the weight-variable.) Define the central critical
p-adic L-function of( f00, /):

LCp(foo, X<k) := Lpifoo, x,k, k/2) e si(U)

as the restriction of the Mazur-Kitagawa p-adic L-function to the central critical
line s k/2 in the (k, s)-plane.

On the algebraic side, Hida theory attaches to f a central critical deformation Tf
of the p-adic Tate module of A/Q. Tf is a free rank-two I-module, equipped
with a continuous, H-linear action of Gq, satisfying the following interpolation
property: let k e IJC] be a classical point such that k 2 (mod 2(p — 1)), and let

evK : I c->- si{U) —> L be the morphism induced by evaluation at k on si(U). Then
the base change Tf ®i,evK L is isomorphic to the central critical twist VfK (1 — k/2) of
the contragredient VfK of the p-adic Deligne representation of fK. Moreover, Tf is

nearly-ordinary at p. More precisely, let v be a prime of Q dividing p, associated

with an embedding iv : Q Q^, and denote by i* : Gqp Gv C Gq the

corresponding decomposition group at v. Then there is a short exact sequence of
IfGuJ-modules

0 ^ T+ ^ Tf ^ Tf^ ^ 0,

with T^ free of rank one over I. For every number field F/Q, define the (strict)
Greenberg Selmer group

SelcGcr(f/F) := ker I Hl{GFtS, Tf <8>i I*) — f[ H'^r) J •

V v\p

Here S is a finite set of primes of F containing every prime divisor of A^/fdisc(L),
G f,s is the Galois group of the maximal algebraic extension of F which is unramified
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outside S U{oo}, I* := Homcont(I, Qp/Zp) is the Pontrjagin dual of I, and the product

runs over all the primes v of F which divide p 2. Write

X£(f/F) := HomZp(sd%r(f/F),Qp/Zp)

for the Pontrjagin dual of Sel£f(f/F). It is a finitely generated I-module. We now

explain the main steps entering in the proof of Theorem A.

Step I: Skinner-Urban's divisibility. Let K/Q be an imaginary quadratic field in
which p splits. Assume that the discriminant of K/Q is coprime to N,4, and write
NA N + N~, where N+ (resp., N~) is divided precisely by the prime divisors
of Na which are split (resp., inert) in K. Assume the following generalised Heegner
hypothesis and ramification hypothesis:

• N~ is a square-free product of an odd number of primes.

• Pa,pramified at all prime divisors of N~.

Under some additional technical hypotheses on the data (A,K,p,...) (cf.

Hypotheses 1, 2 and 3 below), the main result of [31], together with some auxiliary
computations, allows us to deduce the following inequality:

ord£=2L^c(/oo/K, k) < length,,, (*g(f/tf)) + 2. (1)

Here Lc£(foo/K,k) := L£(/oo, *triv, k) • L(foo, eK, k), where *triv is the trivial
character and ejc is the quadratic character attached to K. p/ := ker (ev2 : I ^
s/(U) —* L) is the kernel of the morphism induced by evaluation at k 2 on £/(U);
it is a height-one prime ideal of I, so that the localisation Ip f is a discrete valuation

ring. Finally, lengthp/ (M) denotes the length over Hp f of the localisation MP/, for

every finite I-module M.

Remark. The main result of Skinner and Urban [31 ] mentioned above, which proves
one divisibility in a three variable main conjecture for GL2, is a result over K, for

K/Q as above, and not over Q. This is why we need to consider a base-change to
such a K/Q in our approach to Theorem A.

Remark. By assumption, A/Q has split multiplicative reduction at p, and as well-
known this implies that Lp{foo, Xtx\\> k, 5) has a trivial zero at (k,s) (2, 1) in
the sense of [19]. Moreover, the hypothesis k(p) +1 (he. p splits in K)
implies that Lp(/oo. e/c. k, s) also has such an exceptional zero at (k,s) (2,1)
(see, e.g. [5, Section 1 ] or [25, Section 5]). This is the reason behind the appearance
of the addend 2 in the R.H.S. of (1).

2Sel(jr(f/F) depends on the choice of the set S, even if this dependence is irrelevant for the purposes
of this introduction.
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Remark. The generalised Heegner hypothesis gives k(—Na) —k(N~) +1.
This implies that the Hecke L-series L(f,s) L(A/Q,s) and L(/,k,s)
L(Ak/Q, s) (where AK/Q is the quadratic twist of A by K) have the same sign
in their functional equations at 5 1. The Birch and Swinnerton-Dyer conjecture
then predicts that the ranks of 4(Q) and A^(Q) s A(K)~ have the same parity. In
particular rankz4(AT), and then ord/t=2^pC(/oo/K, k) should be even.

Step II: Bertolini-Darmon's exceptional-zero formula. Let K/Q be as in Step I.

Assume moreover

• sign(A/Q) -1

where sign(A/Q) e {±1} denotes the sign in the functional equation satisfied

by the Hasse-Weil L-function L(A/Q, s). As remarked above, this implies that

sign^^/Q) —1 too. The analysis carried out in [5,12,26] tells us that, for both

X Xiriv and x ^K-
ord^=2L^c(/oo, x,k) > 2; (2)

this is once again a manifestation of the presence of an exceptional zero at (k, s)

(2,1) for the Mazur-Kitagawa p-adic L-function Lp(f00,x,k,s). Much more
deeper, Bertolini and Darmon proved in [5] the formula

^LL^(f00,x,k)k=2 log^P*),

where denotes equality up to a non-zero factor, log^ : A(QP) -> Qp is the formal

group logarithm, and Px e A(K)X is a Heegner point. This formula implies that

ordk=2Lcp(foo,X>k) 2 «=> ordi=1L(4x/Q,^) 1, (3)

i.e. if and only if the Hasse-Weil L-function of the y-twist Ax/Q has a simple zero
at s 1. (Here of course Ax A is x Zu-iv and Ax AK if x £k- Recall that

by assumption L(AX/Q, s) vanishes at s 1.)

Step III: bounding the characteristic ideal. Let / denote either the trivial
character or a quadratic character of conductor coprime with Np, and write
Kx := Q or Kx/Q for the quadratic field attached to / accordingly. Making
use of Nekovär's theory of Selmer Complexes (especially of Nekovär's generalised
Cassels-Tate pairings) [20], we are able to relate the structure of the IP/ -module

XQr(f/Kx)$ f X£(f/Kx)x (8>i IP/ to the properties of a suitable Nekovär's half-
twisted weight pairing (see Section 6.2)

: A^Kx)x x A^iKx)X Qp.

playing here the role of the canonical cyclotomic p-adic height pairing of Schneider,
Mazur-Tate et. al. in cyclotomic Iwasawa theory. Here, for every Z[Gal( A'^/Q)]-
module M, we write Mx for the submodule of M on which G&\{Kx/(f) acts via/, and
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A^(KX) is the extendedMordell-Weil group of A/ Kx introduced in [19]. (—, — )^k'^
is a bilinear and skew-symmetric form on A^(KX)X (see Section 6). Assume that the

following conditions are satisfied:

• X(p) 1' i-e- P splits in Kx;

• rankzA(KX)X — 1 and IH(A/Kx)xp00 is finite.

Then AHKx)x ® Qp Qp qx ® Qp Px is a 2-dimensional Q^-vector space
generated by a non-zero point Px e A(KX)X <g) Q and a certain Tate's period
qx Af(Kx)x (which does not come from a /^-rational point of A). In the author's
Ph.D. Thesis [35] we proved that

[lx^xf^ ^gA(Px) (4)

(where denotes again equality up to a non-zero multiplicative factor), which implies
that (—, —)^ek'* is non-degenerate on A^{KX)X. Together with the results ofNekovär
mentioned above, this allows us to deduce that

X%WKx)*f SIP//P/IP/. (5)

Remark. Let Vf := TaP(A) Qp be the p-adic Tate module of A/Q, and

let Hj-(KX, Vf) be the Bloch-Kato Selmer group of Vf over Kx. The pairing

(—, —)^k'* is naturally defined on Nekovär's extended Selmer group H j (Kx, Vf)x,
which is an extension of Hj-(KX, Vf)x by the Qp-module generated by qx. Indeed

it is the non-degeneracy of (—,— )^ek'^ on H^(KX, Vf)x to be directly related to

the structure of the IP/ -module XQT(f/Kx)p f. On the other hand, Hj (Kx, Vj )x

contains A^(KX)X <SiQp, and equals it precisely if the ^-primary part of JA1(A/Kx)x
is finite. This explains why we need the finiteness of III(A/Kx)xp00 in order to
deduce (5).

Remark. The length of A£Lr(f/Kx)xf over lPf can be interpreted as the order of
vanishing at k 2 of an algebraic /?-adic L-functionL^e(/oo, x,k) e <s/(U), defined

as the Mellin transform of the characteristic ideal of XQr(f/Kx)x (at least assuming
that I is regular). The results of Nekovär briefly mentioned above can be used

to prove an analogue in our setting of the algebraic p-adic Birch and Swinnerton-

Dyer formulae of Schneider [23] and Perrin-Riou [22], which relates the leading
coefficient of L^c(/oo, /, k) at k =2 to the determinant of (—, — computed on

/4^(/V()x/torsion.

Remark. Formula (4) is crucial here. Indeed, as remarked above, it allows us to
deduce the non-degeneracy of the weight-pairing (—, — )^e/k'^. The analogue of this
result in cyclotomic Iwasawa theory (i.e. Schneider conjecture in rank-one) seems

out of reach at present.
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Remark. The preceding results, and (4) in particular, should be considered as an

algebraic counterpart of Bertolini-Darmon's exceptional zero formula (cf. Step II).
This point of view is developed in [36] (see also Part I of the author's Ph.D.
thesis [35]), and leads to the formulation of two-variable analogues of the Birch and

Swinnerton-Dyer conjecture for the Mazur-Kitagawa /»-adic L-function L^, (/<*), /,
k, s). Formula (4) — to be considered part of Nekovär's theory — and Bertolini-
Darmon's exceptional zero formula, also represent crucial ingredients in the proof,
given in [37], of the Mazur-Tate-Teitelbaum exceptional zero conjecture in rank one.

Step IV: conclusion of the proof. Assume that the hypotheses of Theorem A are

satisfied. Thanks to Nekovär's proof of the parity conjecture [20], sign(4 /Q) — 1.

By the main result of [7] and hypothesis 2 in Theorem A, we are then able to find
a quadratic imaginary field K/Q which satisfies the hypotheses needed in Steps I
and II, with N~ q, and such that L(AK/Q, s) has a simple zero at s — 1, i.e.

ordi=iL(4A'/Q, s) 1. (6)

An application of the KGZ theorem gives

rankzA*(Q) 1; #(111(4*70)/»°°) < oo.

Together with hypothesis 3 in Theorem A, this implies that the hypotheses needed in
Step III are satisfied by both the trivial character x Xtnv and x k- Then

4 < ordk=2L^(foo/K,k) < lengthp / (x%«/K)) + 2 (=} 4,

i.e. ordic=2LCp(f00/K, k) 4. Applying now Bertolini-Darmon's result (3) yields

ords=lL(A/K,s) 2,

where L(A/K,s) L(A/Q, s)-L(AK/Q, s) is the Hasse-Weil L-function of A /K.
Together with (6), this implies that L(4/Q, s) has a simple zero at s 1, as was to
be shown.

Recent related results. In the recent preprint [32], Skinner and Zhang prove (among
other results) a theorem similar to our Theorem A. More precisely, Theorem 1.1 of
loc. cit. proves instances of the p-converse of the KGZ theorem in rank one, for an

elliptic curve with multiplicative reduction at a prime p > 5. On the one hand,
their result does not require the ^-primary part of the Tate-Shafarevich group to be

finite, but only that the /»-primary Selmer group of the elliptic curve has Z^-corank
one. On the other hand, together with the assumptions 1 and 2 of Theorem A, the

authors assume extra hypotheses in their statement. For example, they assume that the

mod-/» Galois representation ~pA p
is not finite at p, that the Mazur-Tate-Teitelbaum
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L-invariant J£P(A/Q) := has p-adic valuation 1 (where qA 6 pZp is

the Tate period of A/Qp), and require additional '/»-indivisibility conditions' for the

Tamagawa factors of A/Q. (We refer to loc. cit. for a precise list of the assumptions.)

Finally, it is worth noting that our approach here (cf. preceding Section) is essentially
different from that of [32], where the authors extend the results and methods of [39]
to the multiplicative setting.

Acknowledgements. We sincerely thank Massimo Bertolini for many inspiring and

interesting conversations, and for his encouragement during the preparation of this
note. We thank Henri Darmon for his interest in this work.

2. Hida Theory

Fix for the rest of this note an elliptic curve A/Q having split multiplicative reduction
at an odd rational prime p. Let Na be the conductor of A/Q, so that Na Np,
with p \ TV, and let

OO

/ Y,a»1n eS2(r0(V/>),Z)new
«=i

be the weight-two newform attached to A/Q by modularity. Fix a finite
extension L/Qp, with ring of integers Öl and maximal ideal uil, and an embedding
ip '• Q ^ Qp, under which we identify Q with a subfield of Q^,. This also fixes

a decomposition group i* : Gqp <-» Gq at p (where Gf '= Gal(F/F) for every
field F).

2.1. The Hida family I. Let T := 1 + pZp, let Z^, p := T x (Z/pNZ)x, and let

0LlZxNJ[Tn:neK\^h°(N,0L)
be Hida's universal /»-ordinary Hecke algebra with Ö/,-coefficients. Writing
A := ÖlJT], h°(N,ÖL) is a finite, flat A-algebra [14]. Letting «5? := Frac(A),
there is a decomposition/;0 (N, Fly as a finite product of finite field
extensions /2zf. Let JfT .yF]o be the primitive component of h°(N, Öl) <8>a ^
to which the /»-ordinary newform f belongs [14, Section 1], and let I be the integral
closure of A in the finite extension .'Xf/.if. For every n e N, write a„ e I for the

image in I of the nth Hecke operator T„. By [ 14, Corollary 1.5], there exists a unique
morphism of Öl-algebras

cj>f : I —» ÖL,

such that 4>f(a„) an for every iigN; moreover, <f>/ maps the image of Z^ in I
to 1 (as / has weight two and trivial neben type). I is a normal local domain, finite
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and flat over Hida's weight algebra A. The domain I is called the (branch of the)
Hida family passing through f. This terminology is justified as follows.

An arithmetic point on I is a continuous morphism of (9a-algebras f : I —> Qp,
whose restriction to T (with respect to the structural morphism A —> E) is of the form

Ykxt,~2' Xt (f)> f°r an integer >2 and a finite order character Xty on T.
We call kf and // the weight and (wild) character of xp respectively. Write <Tanth(I)

for the set of arithmetic points on I. Note that (pf e A'ar,th(I) is an arithmetic point
of weight 2 and trivial character. Let

00

f "l" e M-
n 1

Then for every f e Tfarith(II), the specialisation oft at f:
OO

U := £>(an)-qn e Sk^(Y0(Npc*+l)^)
n 1

is a p-stabilised ordinary newform of tame level N, weight kf and character :=

Xf cu2-^. Herec^ > 0 is the smallest positive integer such that TpCyU C ker(/^),
and co : Z/(p — 1)Z s F* —> Z* is the Teichmüller character. Moreover, we

recover / as the ^/-specialisation off, i.e.

00

hi '= f-
n 1

Let f G A'anth(I) be an arithmetic point. Denote by := Frac(i//(I)) c Qp
the fraction field of f(I), by its maximal ideal, and by f(I)/m^, its
residue field. Let p/ : Gq —> GLjiKf) be the contragredient of the Deligne
representation associated with fy, and denote by p^ : Gq —> Gal(F^) the semi-

simplification of the reduction of p/ modulo m/. Then pp is unramified at every
prime I \ Np, and Trace(p^(Frob^)) fi&i) (mod m,/,) for every prime I \ Np,
where Frob^ G Gq is an arithmetic Frobenius at I. Enlarging L if necessary, one can

assume F^ F := Ol/xtil- Then the representation p^ does not depend, up to

isomorphism, on the arithmetic point f. Denote by pf this isomorphism class, and

assume throughout this note the following.

Hypothesis 1 (irr). pf is (absolutely) irreducible.

Under this assumption, it is known that Hf := (h°(N, Öl) <8>a l) Fi (Jf x 0) is

a free I-module of rank one (where we use the decomposition h°(N, Öl) <8>a

x ^ mentioned above).

Remark 2.1. Taking \p (pf in the discussion above, we deduce that pf is

isomorphic to the F-base change of the mod-p Galois representation pA attached
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to the p-torsion submodule A[p] of ^l(Q). (Indeed, Hypothesis 1 is equivalent to

require that ~pA p is absolutely irreducible.) Since A has split multiplicative reduction
at p, Tate's theory gives us an isomorphism (see [34] or Chapter V of [29])

;)•
where Pc|gQp is the restriction of pf to Gqp anda>cy : Gqp-» Gal(Qp(p,p) /Qp) s F*
is the mod-p cyclotomic character. As p ^ 2, this implies that pf is p-distinguished,
i.e. that condition (dist)f in [31] is satisfied.

2.2. Hida's representations Tf and Tf. Let Tf (7f, Tt+) be Hida's p-ordinary
I-adic representation attached to f (see, e.g. [14], [31]). Thanks to our Hypothesis 1,

Tf is a free I-module of rank two, equipped with a continuous action of Gq which is

unramified at every prime I \ Np, and such that

det (1 - Frofy X\Tt) 1 — ae X + l[l\ X2 (7)

for every I \ Np. Here Frofy frob^T1 is an arithmetic Frobenius at i and [•] :

p C Oi [Zx —> I is the structural morphism. Write

Xcy,N Gq -» Gal(Q(p.ATpOo)/Q) s Zx p r x (Z/Npzr Xcy ' Gq ^ Zp

for the p-adic cyclotomic character (i.e. the composition of Xcy,N with projection to
Z* Tx (Z/pZ)x) and/fcy : Gqp —> T for the composition of ycy with projection
to principal units. Then [/cy] [/rey] [/Cy,tv] as Ix-valued characters on Gq
(since / has trivial neben type). In particular the determinant representation of Tf is

given by
det 7} s l(/cy • [*rcy]). (8)

Tf+ is an I-direct summand of Tf of rank one, which is invariant under the action of
the decomposition group Gqp Gq determined by ip. Moreover, T(~ := Tf/Tt+
is an unramified Gqp -module, and the Frobenius Frobp G Gqp / Iqp acts on it via

multiplication by the p-th Fourier coefficient ap G Ix of f. In other words

Tt+ s l(a*_1 /cy • [Kcy]); Tf ^ l(a;) (9)

as I[GQj-modules, where a* : Gqp -» Gqp/Iqp -> Ix is the unramified character

sending Frobp to a^, and we write again /ccy ; Gqp—^Gal(Q^(/x^oo )/Qf) z;-r
for the p-adic cyclotomic character on Gqp

Given an arithmetic point xfr e T'arith(ll), let Vir be the contragredient of the p-adic
Deligne representation attached to the eigenform : it is a two-dimensional vector

space over K^ Frac(I/ker(i//)), equipped with a continuous -linear action
of Gq which is unramified at every prime I \ Np, and such that the trace of Froty
acting on Vf equals the fth Fourier coefficient t/r(afi — of ff, for every
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1 { Np. As proved by Ribet, is an absolutely irreducible GQ-representation, so
that the Chebotarev density theorem, together with the Eichler-Shimura relations (7)
tell us that there exists an isomorphism of AT^[Gq]-modules

7f Kf Vy/r. (10)

In other words, 7f interpolates the contragredients of the Deligne representations of
the classical specialisations of the Hida family f. (Note: 7f is the contragredient of
the representation denoted by the same symbol in [31].)

Together with the representations 7f, we are particularly interested in a certain
self-dual twist Tf of it, defined as follows. Define the critical character

[pfcy]1/2 [Key]1/2 : Gq -» Gal(Q(/rp~)/Q) -» T T Ix,

where the isomorphism is given by the p-adic cyclotomic character ycy. (As p ^ 2

by assumption, T 1 + pZp is uniquely 2-divisible, e.g. by Hensel's Lemma, so

that : T s T is defined.) Let

Tf := Tt <8>i [Xcy]-1/2 e i[GQ]Mod; T* := [/Cy]-1/2 e i[GQ/,]Mod,

where we write for simplicity [fcy]-1^2 for the inverse of [^Cy] By (8), Tf satisfies
the crucial property:

detTf 1(1),
i

i.e. the determinant representation of Tf is given by the p-adic cyclotomic character.

As explained in [21], this implies that there exists a skew-symmetric morphism of
I[GQ]-modules

7T : Tf (g>i Tf — 1(1),

inducing by adjunction isomorphisms of I[Gq]- and IfGQ^J-modules respectively:

adj(7r) : Tf Homi(Tf, 1(1)); adj(jr) : T^ Horn] (TJ?\ 1(1)).

Let pt"anth (H)' be the set of arithmetic points \js with trivial character and weight
2 (mod 2(p — 1)). Given ifr <Yanth(lI)', we have i/^ ° [;fcy]_1^2(Frob^)
for every I \ Np. Equation (10) then gives: for every arithmetic point V e Aanth(!)',
there exists an isomorphism of ^[Ggj-modules

Tf Kty L^-(l — ki/,/2).

In particular, Tf interpolates the family of self-dual, critical twists 1^(1 —k^/2), for
xfr e A,arith(I)'.

_ _ _Let v be a prime of Q dividing p, associated with an embedding /„ : Q <—>• Qp.
Write i* GQP ^ gQ for the embedding determined by iv, and Gv := i*((jQp)
for the corresponding decomposition group at v. Let Mf denote either 7f or Tf. Set
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M^v := e i[cQ;)]Mod, which we consider as I[G„]-modules via i*. Then there

is a short exact sequence of I[G„]-modules

0 M(+ 'S Mt P-l Mf~v -> 0, (11)

where i + and p~ are defined as follows. Fix av e Gqp and ßv e Gq such that

iv av o ip o ßv. Then one sets i+ := ß~l o /+ o and p~ := otv o p~ o ßv,
where ;+ : Mf+ C Mf and p~ : Mf -» Mf denote the inclusion and projection
respectively.

3. The theorem of Skinner-Urban

The aim of this section is to state the main result of [31] in our setting. In order to do

that, we recall Skinner-Urban's construction of a three-variable p-adic L-function
attached to f and a suitable quadratic imaginary field, and we introduce the Greenberg-
style Selmer groups attached to the Hida family f.

3.1. Cyclotomic p-adic L-functions. For every f e (Tanth(ll), write := f(I).
Let Qoo/Q be the Zp-extension of Q, let Goo := Gal(Qoo/Q), and write ACJ :=
CV [Goo] for the cyclotomic Iwasawa algebra over O^. Let f e A(arith(I), let e be a

quadratic Dirichlet character ofconductor C coprime with Np, and let S be a finite set

of rational primes. We say that an Iwasawa function e is an S-primitive
(cyclotomic) p-adic L-function of fj, £§> e if it satisfies the following interpolation

property. For every finite order character x e G^ —> Q* of conductor pC/ and

every integer 1 < j < — 1:

„ (Pc*cey u -w-l^Hu^x-1*,]) ^X
_

£ (lZ)
(—2ni)J lG (o)J lx sgn(<F)-(-ip

U

where the notations are as follows. L{ff, p, 5) L0(/^, pi, s) denotes the analytic
continuation of the complex Hecke L-series L(f^,p,s) := /x(n)
Ui Etift ® M' £~s)~l of ff twisted by /x; for every finite set L of rational primes,
Ls(/^, /x, s) := Utex Ei{f^®p, l~s)- L(fy, p, 5). G(p) denotes the Gauss sum
of the character p. Finally, are canonical periods of ff, as defined, e.g. in [31].

We recall that is an element of Cx, defined only up to multiplication by a

p-adic unit in Öand such that the quotient appearing in the second line of the

equation above lies in the number field Q (fs(an) : n e N) generated by the Fourier



410 R. Venerucci CMH

coefficients of Together with the Weierstraß preparation theorem, this implies
that £f (/,/r), if it exists, is unique up to multiplication a unit in ö£. For a proof of
the existence, see [19, Chapter I].

3.2. Skinner-Urban three variable p-adic L-functions. Let K/Q be a quadratic

imaginary field of (absolute) discriminant Dk, let qtc \ 6p be a rational prime which

splits in K, and let S be a finite set of finite primes of K. We assume that the

following hypothesis is satisfied.

Hypothesis 2. The data (K, p, L,qx, S) satisfy the following assumptions:

• Df[ is coprime with 6Np.

• p splits in K.

• L/Qp contains the finite extension Qp ^D1^2, (— 1 )'^2, 11 / W» j /Qp.

• S consists ofall the primes of K which divide q^D^Np.

Let IC/K be the Z^-extension of K. Then JC K^, where (resp., K/^)
is the cyclotomic (resp., anticyclotomic) Zp-extension of K. Denote by G^ :=
G&KKqo/K) ^ Gal(Qoo/Q) and D«, := Gal( /K) the Galois groups of K^/K
and K^/K respectively, so that Gal(IC/K) ^ Goo x A>oo> and let Iqo := I[Goo]-
Section 12 of [31] constructs an element

£*(f) e I[Goo x Dool loo Poo],

satisfying the following property: given f e T'arith(II), write fcy : I[Goo x Goo] ->
(I) [Goo]] for the morphismof Öl [Goo]-algebras whose restriction to I is fi,

and s.t. x(rcy(D0c) 1. Moreover, fix canonical periods := for £/,. Then,

for every e T'anth(I), there exists £ ö£ such that

ry [csK{n) ^ csiu) csK(U), (i3)

where Cs(f^) := Cf(f^) (resp., is an S-primitive cyclotomic p-adic
L-functionof (resp., of /^(8>ejf), computed with respect to the periods Here

ck ' (Z/DkZ)x —> Qp is the primitive quadratic character attached to K/Q, and

we write for simplicity £f (/^) := £f°(/^), where S0 := {I prime : l\qnDfcNp}
is the set of rational primes lying below the primes in S. More precisely, such

a p-adic L-function GsK(f) £|-(f; If) is attached to every generator If of the

free rank-one I-module Hf (mentioned at the end of Section 2.1), and it is a well
defined element of loo [A»] only UP to multiplication by a unit in I. We refer to

[31, Theorems 12.6 and 12.7 and Proposition 12.8] for the proofs of these facts, and

for the interpolation property characterizing £|-(f).
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Remark 3.1. Recall that Hypothesis 1 (denoted (irred)f in [31]) is in order, i.e. that
the residual representation pf is assumed to be (absolutely) irreducible. As explained
in Remark 2.1, we also know that pf is p-distinguished, i.e. that condition (dist)f
in [31] is satisfied. These two hypotheses are used by Skinner and Urban in their
construction of £f-(f) (cf. Section 3.4.5 and Theorems 12.6 and 12.7 of [31]).

3.3. Greenberg Selmer groups. Let F/Q be a number field, and let J~ / F be

a -power extension of F, i.e. Gal(T/F) Zrp for some r > 0. Write

Ijr := I[Gal(J"/Ä")] and

7} (J7) := 7f (8)! I^e^1) e ^[c^Mod,

where eF : Gp -» Gal (J7/ F) c IJ- is the tautological representation. Let v be

a prime of F dividing p, associated with an embedding iv : Q Qp, and let
i* : Gpv <->• Gf denote the corresponding decomposition group at v. Define

Tf(D± := Ttfv g i^e^jMod,

where eFjV ' £p ° ' * : GFv I£. The exact sequence (11) then induces a short

exact sequence of -modules

0 -* 7f(.F)+ ^ Tt(T> % Tt(F)~ -* 0. (14)

Let S be a finite set of primes of F, containing all the prime divisors of NpDp
(where Dp := disc(F/Q) is the discriminant of F/Q), and let Gp,s '= Gal(Fs/F)
be the Galois group of the maximal algebraic extension Fs/F which is unramified at

every finite prime v / S of F. As T/F (being a Zp-power extension) is unramified
outside p, 7f(J7) is unramified at every finite prime v £ S of F, i.e. 7}(J7) is a

Ijr[Gf,.s]-module. Let a e Spec(Ij-), and write IJ- := Homcont(IIjr, QP/ZP) for
the Pontrjagin dual of Ip, so that IJ-[a] is the Pontrjagin dual of Ijr/n. Define the

(discrete) non-strict Greenberg Selmer group:

Sel£(f, a)

:= ker I Hl(GF,s, Tt(T) ^ l£[a]) -* f] Hl{Iv, UT)~ I>[a])
V v\p

(15)

where Iv Ipv C GFv is the inertia subgroup and the arrow is defined by

Uv\p Pv* ° resi" Pv* being the morphism induced in cohomology by

p- : T((F> -»
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It is a cofinitely generated I^/a-module, i.e. its Pontrjagin dual

2f|(f, a) := HomIjr (Sel£(f, a), I* [a]) ss HomZp (sel£(f, a), Qp/Z

is a finitely-generated I;r/a-module. If n 0, write more simply

Sel£(f) := Sel£(f,0); *|(f) := *|(f,0).

By construction there are natural morphisms of Ijr/a-modules

Sel£(f, a) Sel£(f)[a]; 3f|(f) ®Ijr I^/a *|(f, a). (16)

Since I is a normal domain, so is ^ Ipfi,..., Xr\ (with Ga\(F/ F) s Zrp).

Write ChJ(f) c It for the characteristic ideal of the Ijr-module 2f^(f) (cf. Section 3

of [31]):

Ch£(f) := {x e Ijr : ord0(.r) > lengtha (3f|(f)),
for every a e Spec(Ijr) s.t. height(a) 1}.

Here orda : Frac(Ijr) —> Q U {oo} is the (normalised) discrete valuation attached to
the height-one prime a, and lengthQ : (i_FMod)ft —> Z U {oo} is defined by sending a

finite Ijr-module M to the length over (Ij-)n of the localization Ma of M at a.

Remark 3.2. Assume that J7/F contains the cyclotomic Z^-extension F00 C F(ppoo)
of F. Thanks to the work of Kato [15], we know that 3f£(f) is a torsion I^-module
(see also Section 3 of [31]), so that Ch^-(f) is a non-zero divisorial ideal (which is

principal if I is a unique factorization domain).

3.4. The main result of [31]. Let (K, p, L, qK, S) be as in Section 3.2, and assume

(as in loc. cit.) that this data satisfies Hypothesis 2. In particular, K/Q is an imaginary
quadratic field in which p splits. Let /C be the Z^-extension of K, and let

£|-(f) e I/e I[Gal(/C/A')] be Skinner-Urban's three variable p-adic L-function.
Together with Hypotheses 1 and 2, we have to consider:

Hypothesis3 (ram). Decompose N N + N~, where N+ (resp., N~ Nf)
is divided precisely by the prime divisors ofN — Na/P which are split (resp., inert)
in K. Then:

• N~ is square-free, and has an odd number ofprime divisors.

• The residual representation p{ is ramified at every prime 11| N~.

The following fundamental and deep result is Theorem 3.26 of [31].

Theorem 3.3 (Skinner-Urban [31]). Assume that Hypotheses 1, 2 and 3 hold. Then

Ch£(f) c (CSK(f)).
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4. Restricting to the central critical line

The aim of this section is to specialise Skinner-Urban's result to the (cyclotomic)
central critical line in the weight-cyclotomic space. More precisely, we use

Theorem 3.3 to compare the order of vanishing of a certain central-critical p-adic
L-function of the weight variable with the structure of a certain central-critical
Selmer group attached to Hida's half-twisted representation Tf.

In this section, the notations and hypotheses of Section 3.4 are in force. In
particular, we assume that Hypotheses 1, 2 and 3 are satisfied.

4.1. The (localised) Hida family. Let (pf e Varith(I) be the arithmetic point of
weight 2 and trivial character introduced in Section 2.1, with associated /»-stabilised
weight-two newform / e Sj^oiNp), Z)new. Write p/ := ker ((pf) e Spec(I).
By [14, Corollary 1.4], the localisation IP/ is a discrete valuation ring, unramified
over the localisation of A Öl [T] at the prime p' p/ fl A. Fix a topological
generator ywt e T 1 + pZp, and write Tzrwt := ywt ~ 1- Then mwl is a generator
of the prime p) so that

p/ -Ip/ mwt-IP/., (17)

i.e. rtJwt A is a uniformiser of the discrete valuation ring IP/-.
Let W c Zp be a non-empty open neighbourhood of 2. Denote by x/(W) c

Qp \k — 2] the subring of formal power series in k — 2 which converge for every
k W. As explained in [12] (see also [21]), there exist an open neighbourhood
U Uf C Zp of 2, and a natural morphism (the Mellin transform centred at (pf)

M : I —sf((/),

characterised by the following properties: for every x I write Mx(k) := M(v)(/c) e

sflfj). Then: (i) for every r el, Mx(2) (p/{x) and (ii) for every y e T C Ix,
%#) Yk~2 := expp((k-2)- log^y)) e Zp) ([•] : A -» I being the

structural morphism). For every positive integer n, write an{k) := M(an) e sf (U)
for the image of the n-th Hecke operator a„ e I under M, and consider the formal
^-expansion with coefficients in sf (U):

00

foo ^an{k)qn e
n 1

This is the 'portion' of the Hida family f we are mostly interested in. More precisely,
let

Uci := {k e U n Z : k > 2; k 2 (mod 2(p - 1))}

be the subset ofclassicalpoints, which is a dense subset of U. For every classical point

k e Uc\ the composition <pK : I ——> sf (U) —> Qp (where evK is evaluation at k)
is an arithmetic point of weight k and trivial character, and the weight-K specialisation
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fK := X!^i an(K)qn e SK(ro(Np)) is a p-ordinary normalised eigenform
of weight k and level To(Np). By construction: / fa. Moreover, N divides
the conductor of fK for every k e Ucl (and fK is old at p for k > 2, i.e. fK is the

^-stabilisation of a newform of level Tq(N) when k > 2 [14]).

4.2. The central critical p-adic L-function. Let

be the subring of formal power series converging for every (k,s,r) e U x Zp x Zp.
Let Xcy Goo 1 + pZp be the p-adic cyclotomic character, and fix an isomorphism
Xacy ' Doo 1 + pZp. We can uniquely extend the Mellin transform M to a morphism
of rings

W: IfGoo X Doo] —> si{JJ x Zp x Zp),

by mapping every a e (resp., a e Goo) to the analytic function on Zp represented

by the power series M(er) := Xacyi^Y'1 expp ((r - 1) • \ogp (x^o))) (resp.,
M(ct) := /Cy(c)s_I )• We then define the S-primitive analytic three-variable p-adic
L-function of foo/K:

will play a key role. Let 1 be a prime of K contained in S, which does not divide p.
Let I Y P be the rational prime lying below it: 1 fl Z IZ. Define the central
critical l-Eulerfactor of foo/K as

where (I) := a>(t) ll e 1 + pZp is the projection of I to principal units and \m
denotes the trivial Dirichlet character modulo M, for every Me N. Then

for every classical point k e Uc\ where £^(*, X) is the f-th Euler factor of the

eigenform *, so that the Hecke L-series of * is given by the product L(*,s)

si(U xZpXZp)cQp[& — 2,s — l,r — 1]

if (foo/K, k,s,r) := M(£|(f)) e si (U x ZpxZp).

In the rest of this note, the (cyclotomic) central critical line

fec := {(k,s,r) e U x Zp x Zp : r \; s k/2)

Et(foo/K,K) Ee(fK,rK/2) Et(fK ® eK,rK/2)
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n, pnme Eq(*, q s)
1 (cf. Section 3.1). Define the central critical S-Euler factors

of foo/E by

Es(foo/K,k) := Y\ Edfoo/K,k),
e\gKNDK

where the product runs over the rational primes lying below a prime 1 \ p
of S (cf. Hypothesis 2). One has E^(foo/K, 2) ^ 0 for every l\NDfcqK,
so that, up to shrinking the p-adic disc U if necessary, one can assume that

Es(foo/K, k) e (U)x. Define finally the central critical p-adic L-function of
foo/K:

L~(/oo/A-,fc) := Es{foo/K,k)-' Lsp(foo/K,k,k/2,1) e (18)

Note that, while the definition of Lp(foo/K,k,s,r) depends on the choice of
the isomorphism yacy ' Doc 1 + pZp, the analytic function LCp(f0O/K,k) is

independent of this choice.

4.3. The central critical Selmer group: a control theorem. Fix topological
generators y+ e Goo, Y- £ Doo and ywt e T, and write nr? := y? — 1. We

can (and will) assume that ycy(y+) ywt, where we write again ycy : Goo
1 + pZp T c Ix for the isomorphism induced by the /»-adic cyclotomic character.

Let

0+ : Gal (K/K) G» x D«,G«, t T ^ T Ä f
be the cyclotomic central critical Greenberg character. We can extend uniquely 0J
to a morphism of I-algebras, denoted again by the same symbol, ©£ : —> I. As

easily seen, its kernel fpcc is given by

q3cc := ker (0+ : lK -» I) (njcc, mJ) mcc := [ywt] - y+ e Ik,

i.e. (pcc is generated by nr_ and mcc. In analogy with the definitions above, we define
the (cyclotomic) S -primitive central critical (non-strict) Greenberg Selmer group of
f/A" by

Selj£(f/tf) ^ker^T/^Gjf.s.TfOir)—> J~[ Hl(Iv,T^v <8>i I*)^j

Here Tf (Tf, Tjf) is Hida's half-twisted representation defined in Section (2.2)
and S is as in Section 3.2. Moreover, the arrow refers again to I~Iu|p Pv* 0 resv>

where p~ : Tf -» is the projection introduced in equation (11) 3. Denote by

3We should keep in mind that the cyclotomic variable plays a non trivial role in the definition of
Hida's half-twisted representation Tf This explains the appearance of the subscript Qoo in the notation

Sel^(f/tf)
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X^(f/K) the Pontrjagin dual of SelQ^(f/A^):

X^d/K) := Homz„ (Sc\s£({/K),QP/Zp)

With these notations, and the ones introduced in Section 3.3, we have the following
perfect control theorem.

Proposition 4.1. There exists a canonical isomorphism ofl-modules

X*(f) <8>Ik Ik/<Pcc XS^{i/K).

Proof. Letai (ct_) e Spec(IK) and a2 := (rtrcc) 6 Spec(I^00). (We remind that
fc Koo is the Z^-extension of K and K0c/K is the cyclotomic Z^-extension.)
Asljc/fl! s lKoo and 7>(/C)/ai ss 7K*«,):

7>(/C) ®I)C I* [oi] =s Tt(K)/ai ®lK/01 I*Koo ss TK^oo) ®iKoo I*Koo,

and similarly Tt{K)~ (8>ik I£[ai] S 7f (/£<»)" <g>E/Coo for every v\p. In

particular Sel^-(f, aO is canonically isomorphic to Sel^.^ (f)- Moreover, by
[31, Proposition 3.9], the maps (16) induce isomorphisms

Sel|oo(f) ss Sel^(f)[a1]; X*{f) ®iK Ic/0l ss X^T). (19)

Similarly, ©£ induces an isomorphism: I, an isomorphism of
I[G*:,s]-modules: Tf(Ka0)/a2 If and isomorphisms of I[G/rJ-modules:
T((Koo)v /&2 for every v\p. (Indeed, write ®k loo I*-«, I for

the 'restriction' of ©J to loo- Then 0^ o [^cy]-1^2 on Gk,s, so that

T{(Koo)/a2 7f(A^oo) ®Ioo,©A: I 7f I

T{ ®n [/cy] —1/2 Tf.

The same argument justifies the statement for the ±-parts at a prime v\p.) As above

(i.e. retracing the definitions), this gives a canonical isomorphism of Selmer groups

Sel^f/ZOsSel^f,^). (20)

Let us consider the following commutative diagram with (tautological) exact rows:

0 Seljjf. a2) - H\Gk.s. T,(Kx) ®,Koo rKJa2]) n„|, "'(/»• ®,Koo IJ-Jad)

"I 4 "I

0 (Sel^(f)) [a2] (h1(Gk.s. T,{Kx) ®l/Coo ^j)[a2] (n„|„ H'(h. T,(KX)~ ®,Koo l'Kj) [a2],

where the vertical maps are the natural ones induced by the inclusion [a2] C 1]^

(cf. (16)). We claim that a is an isomorphism ofl-modules:

a:Sel^oo(f.a2)sSelJoo(f)[a2]. (21)
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mcc
The map ß sits into a short exact sequence (arising from 0 —> [02] —> 1^ —>•

0 —> H°(GK,s,Tt(K00)<g>iKool*Koo)/mcc H1(Gk,s,

-A Hl(GK,s, TtiKoo) ®iKoo rKJ[a2] 0.

Hypotheses 1 and 2 imply that the restriction of pf to Gk is irreducible. Then the

first H° vanishes, and ß is an isomorphism. By the Snake Lemma, the morphism a
is injective, and its cockerel is a sub-module of ker(y). To prove the claim (21) it is

then sufficient to show that

ker(y) 0. (22)

Looking again at the exact /„-cohomology sequence arising from 0 -> [a2] —

It- It- —> 0, we have
^OO Äoo

ker(y) ^ n H°(IV, Tf(Koo)v <8>iKoo I^J Ikoo/^cc- (23)

v\p

Note that rf(A'00)- 1^ S ^(a* • (cf. Section 2.2). Since

I/Coo /(y+ - 1)1*«, one finds

H°(IV, TtiKoo)- ®lKoo - 1] I*(a*)

(recall that a* is the unramified character on Gqp sending an arithmetic Frobenius

to ap). Finally, note that mcc := [ywt] — y+ acts as CTwt — [ywt] — 1 on I*
[y+ — 1], so that I* is rtrcc-divisible, and hence

H (/u, Tf(K00)v ®iKoo ^Ixtoo ^Koo/^cc 0

for every prime v\p of K. Together with (23), this implies that (22) holds true, and

then proves the claim (21). When combined with the isomorphism (20), this gives
canonical isomorphisms of E-modules

Sel^c(f/K) - Seli^(f)[a2]; X^(f/K) - XsKJt)/a2.

Since <}3CC (01,02) • lie. combined with the second isomorphism in (19), this
concludes the proof.

4.4. Specialising Skinner-Urban to the central critical line. We can finally state

the following corollary of the theorem of Skinner-Urban. For every f(k) e stf (U),
write ordk=2f(k) e N U {00} to denote the order of vanishing of f(k) at k 2.

Given a finite I-module M, write as usual lengthp/(M) for the length of the

localisation Mp f over the discrete valuation ring Ip f.



418 R. Venerucci CMH

Corollary 4.2. Assume that Hypotheses 1, 2 and 3 are satisfied. Then

ordk=2Lp(/oo/K, k) < lengthp/ {X^(f/K)).
Proof. Combining Skinner-Urban's Theorem 3.3 with Proposition 4.1, we easily
deduce that the characteristic ideal of XQ^(f/K) is contained in the principal ideal

generated by the projection £j^(f) mod <j3cc (cf. the proof of [31, Corollary 3.8]). In
other words

jcharacteristic ideal of Xq'^({/ A") j c ^£|-(f) mod ipcc j.
In particular, writing ordp f

: Frac(I) —> Z U {oo} for the valuation attached to p/,

ordp f (£|(f) mod^c) < lengthp/ (x^c(f/K))

Write for simplicity £Q^(f/AT) := £f-(f) mod i}3cc. To conclude the proof it remains

to verify that

ordp f £Q^(f/K) OT&k=2LSp(foo/K, k, k/2,1). (24)

Note that, by the definition of the Mellin transform M (and the normalisation

Xcy(y+) Ywt) we have

M(mcc)(k, s, r) y*~2 - y^s~1} y^"0 (vl\k/2~s) ~ l)
(25)

0 mod (5 — k/2) • sffU xZp x Zp),

and then M(Trrcc)(A, k/2,1) 0. Similarly, writing fwt := log/,(ywt) and I- \—

1°g/,(2,acy(y-)), we have

M(uTwt)(k) fwt • (k - 2) mod (k - 2)2;

Y[(m-)(k, s,r) I- • (r — 1) mod (r — l)2.

Assume now that £Q^(f/A") e pyip f — p+1Ip /, for some integer m > 0, so that

ordP/£Q^(f/A^) m. Since pyTp f is a principal ideal generated by nrwt (17),
equation (26) gives

ordfc=2M (£^e(f//f)) (k) ordP/£^c(f/70.

On the other hand, we have by construction £j^(f) £Q^(f) mod *pcc, so that

equations (25) and (26) give

LspUoo/K,k,k/2, 1) := M(£|(f)) (k,k/2,1) M (k).

Combining the preceding two equations, we deduce that (24) holds in this case.

Assume finally that £^(f) i$cc, i.e. £Q^(f/A") 0. (This is the case'm 00'.)
Then Lp(foo/K, k,k/2,1) 0 by (25) and (26), so that (24) holds also in this case

(giving 00 00).
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5. Bertolini-Darmon's exceptional zero formula

Throughout this section, the notations and assumptions are as in Section 4. In

particular, we assume that Hypotheses 1-3 are satisfied.

Let k Ua be a classical point in U, let 4>k e <Tanth(I) be the associated

arithmetic point (of weight k and trivial character), and let fK e SK{Vq{Npj) be the
t k!2—1

corresponding /»-stabilised newform (cf. Section 4.1). Write <pi (pK x xCy x 1 :

I[Goo x A»J Qp for the morphism of Öl-algebras such that <pl(a x h)

Zcy(o)*^2-1 for every a x h e Goo x Dqo, and such that <pl(x) <pK(x) for every

tel. Since k 2 mod 2 (p — 1), p ^ 2, and p splits in K (i.e. ex(p) 1),

equations (12) and (13) yield

(K/2-\)\-Ls\^(fK,K/2)4(cKm) x,DK j
G(eK)(K/2-\)\-Ls^(fK,eK,K/2)

(-2w/)«/2-iJ2-

By the very definition of the central critical p-adic L-function L^c(f^/K,k) we
then deduce: for every k e Uc[

LPUK.*)-KDK

G(k)(k/2 — l)\L(fK,K, k/2)

(-2nir/^Q-K

Since t/cl is a dense subset of U, if we compare this formula with [5, Theorem 1.12],

we obtain a factorisation

LCp(foo/K, k) Lp(f00,k,k/2)Lp(f00,K,k,k/2). (27)

Here, for every quadratic Dirichlet character x of conductor coprime with Np,
Lp(foo, X' k,s) e J2/(U x Zp) is a Mazur-Kitagawa two-variable p-adic L-function
attached to /oo and x in [5, Section 1] (see also [12,16,25]), and we write simply

Lp(foo,k,s) := Lpifoo, Xuiv, k,s) when x Xmv is the trivial character. Like

Lcp(foo/K,s) (once the periods £2^ are fixed for k e t/cl), Lp(/00, k, s)
is characterised by its interpolation property (namely [5, Theorem 1.12]) up to

multiplication by a nowhere-vanishing analytic function on U, so the preceding

equality has to be interpreted up to multiplication by such a unit in sZ{U).
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The following exceptional-zero formula is the main result (Theorem 5.4) of [5],
where it is proved under a technical assumption (namely the existence of a prime q || N)
subsequently removed by Mok in [18]. Write sign(A/Q) 6 {±1} for the sign in the

functional equation satisfied by the Hecke L-series L(A/Q, 5) L(f 5).

Theorem 5.1 (Bertolini-Darmon [5]). Let x be a quadratic Dirichlet character of
conductor coprime with N,4 — Np, such that

X(-N) —sign(d/Q); x(p) aP(A) +1.

If X is non-trivial (resp., y U, let Kx/Q be the quadratic extension attached to y
(resp., let Kx := Q). Then

1. Lp(foo,x,k,k/2) vanishes to order at least 2 at k 2.

2. There exists a global point A(KX)X 4 such that

-jpL'pifoo, X'k,k/2)k=2 log^(Px),

where log^ : A(Qp) —> Qp is the formal group logarithm5, and denotes equality
up to multiplication by a non-zero (explicit) factor in Q*.

3. P^ has infinite order ifand only if the Heche L-series L(f y, s) has a simple
zero at s 1.

In the preceding result, yds'allowed to be a generic Dirichelt character ofconductor

coprime with Np. Applying .the theorem to both y ytriv and y k, we obtain
the following corollary.

Corollary 5.2. Assume that sign(A/Q) —1, and that Hypotheses 1, 2 and 3 are
satisfied. Denote by L(A/K,s) := L(fis) • L(f,K,s) the complex Hasse-Weil

L-function ofA/ K. Then L^c(/O0/AT, k) vanishes to order at least 4 at k 2, and

ordk=2LCp(foo/K,k) 4 <=> ords=1L(A/K, s) 2.

Proof. Since sign(/l /Q) — 1, the hypotheses of the preceding theorem are satisfied

by y ytriv- Moreover, since p splits in K by Hypothesis 2, k(p) +U and

k(—N) —e(N~) +1 by Hypothesis 3. Then y k also satisfies the

hypotheses of the theorem. The corollary then follows by applying the theorem to
both y ytriv and y c/f, and using the factorisation (27).

4By A(KX)X we mean the subgroup of A(Kx) on which Gal(Äd/Q) acts via x
5Writing <f>Tate i Qplfifi d(Q^) for the Tate p-adic uniformization of A/Qp (see Section 6.3

below), one can define log^ := log^ °: d(Qp) —v Qp, where log^^ is the branch of the p-adic
logarithm vanishing at the Tate period qA pZp of A/Qp.
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6. Bounding the characteristic ideal via Nekovär's duality

Recall the arithmetic prime fif e A'arith(ll) defined in Section 4.1, and write as above

pf := ker(</>/), which is a height-one prime ideal of I. Let x be a quadratic Dirichlet
character of conductor coprime with Np. If / is non-trivial (resp., / 1), let Kx/Q
be the corresponding quadratic extension (resp., let Kx := Q), and let Dx be the

discriminant of Kx. Fix a finite set S ofprimes of Kx containing all the prime divisors
of NpDx, and decomposition groups Gkx w '= Gal(Qi/KXtW) Gkx at w, for

every w e S dividing the rational prime I (where KXtU, denotes the completion of Kx
at w). Define the strict Greenberg Selmer group of Tf/Kx (cf. Section 2.2):

Selor(f/Kx) ker H\GKx,s, Tr ^ F) — f] H1(KXtV,T^v ®i F) I

V v\p

where Gkx,s denotes as usual the Galois group of the maximal algebraic extension

of Kx which is unramified outside S U {oo}. Let

*Gr(f/^x) := HomZp(s^r({/Kx),Qp/Zp) *.

For every Z[Gal(^/Q)]-module M, write Mx for the submodule of M on which

Gal(A^/Q) acts via x (so that Mx M is x is trivial, and Mx is the submodule

of M on which the nontrivial automorphism of Gal(A^/Q) acts as —1 if / is

nontrivial). The aim of this section is to prove the following theorem.

Theorem 6.1. Let x be a quadratic Dirichlet character of conductor coprime
with Np. Assume that:

(i) X(P) 1» be. p splits in Kx;

(ii) rankz^^x)* 1;

(iii) the p-primary subgroup \ii(A / Kx)yp00 of\H(A/Kx)x is finite.

Then the localisation at pf of / Kx)x is isomorphic to the residue field of the

discrete valuation ring Ip f:

X£(f/Kx)x ®nIp,sIp,/P/IP/.

6.1. Nekovär's theory. In this section we recall the needed results from Nekovär's

theory of Selmer complexes [20]. Unless explicitly specified, all notations and

conventions are as in loc. cit.

6The Selmer groups already defined depend in general on the choice of the set S. On the other hand,

we are interested here only in the structure of the localisation of Vg(f/Kx) at p / and such a localisation
does not depend, up to canonical isomorphism, on the choice of S.
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6.1.1. Nekovär's Selmer complexes. Given a ring R, write D(R) := D(«Mod)
for the derived category of complexes of ^-modules, and Dft(/?) c D(R)
(resp., D^f( R) c D(A)) for the subcategory of cohomologically bounded complexes,
with cohomology of finite (resp., cofinite) type over R.

Recall the self-dual, ordinary I-adic representation Tf (Tf, T^), defined in
Section 2.2. Denote by

Af Homcont(Tf, (Xpoo), Af .— IIornconj(l). ,ppoo}

the Kummer dual p-ordinary representation. Set T/ := Tf/p/Tf and :=
Tj^/p /TjK Then one has

Af := Homcont(7y,/xpoo) sAf[p/]; := Hommnt(Tj, p„oo) s A^fp/].

Given a multiplicative subset y of a ring R, and an R-module M, write as usual

y~x M for the localisation of M at y. Fix a multiplicative subset y of I or Ol, let

X {y-lTf,y-lTf,Af,Af}
and let Rx e {y-1!, y~*Ül,I, Ol} be the corresponding 'coefficient ring'.
For every prime v\p of Kx, set X^~ := y~1 Tjf (resp., y~1A^) if
X y~lTt (resp., y~x Tf, Af, A/), and X~ := X/X+. The exact sequence (11)
then induces short exact sequences of R^G/r^^-modules

0 x+ 'i X X- ^ 0.

(Recall that := T* for every prime w\p of Q, cf. equation (11).)
As in [20, Section 6], define local conditions A$(X) {Al,(Ar)}l)6iS for X/Kx

as follows7. For a prime v S dividing p, let A„(Ar) be the morphism

/ + (*) : UV+(X) := C-ml(Kx,v, X+) — C'ont(KXtV, A),

i.e. AV(X) is the Greenberg local condition attached to the Rx[Gkx J-submodule
ip : X+ C X. For every S 3 w \ p, we define Aw (X) to be the full local
condition: i^(X) : U+(X) 0 -> C'ont(KXtW, X) (resp., the empty local

7Let R be a local complete Noetherian ring with finite residue field of characteristic p, and let T be an
/?-module of finite or cofinite type, equipped withacontinuous.linearactionofG^.s. For every u> £ S,
fix a decomposition group Gw at w, i.e. Gw := Gkx,w ^ GKx -» Gkx,s According to Nekovär's
theory of Selmer complexes, a local condition at ui £ S for T is the choice AW(T) of a complex of
R-modules Uw (T), together with a morphism of complexes i + CT) : U+(T) -> CZJK T).
For G Gxx,s or Gw (w £ 5), C'ml(G, T) (also denoted C'om(KXtW, T) when G Gw) is the

complex of continuous (non-homogeneous) T-valued cochains on G. If 8% is a localisation of R, and

& := T ®r Si, set Cc*nl(*, S) := Cc*nt(*, T) 31. Then a local condition for at w £ 5 is a

morphism (T) ® .'if : (T) <8»/? Sf —* C'om(Kx%w, S), obtained as the base change of a local

condition iw (T) for T at w.
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condition: i + (X) id : U + (X) := Cf0JKx,w,X) -* C'JKX,W, X)) incase
X 6 {S? 1Tf,Se [Tf) (resp., X e {Af, Ay}). The associated Nekovär's Selmer

complex [20] is defined as the complex of A^-modules

C}(KX, X) C'f(GKx,s, X; AS(AQ)

:= Cone (c'JG^s, A) © ® C/+(A) ® C^K^, X) J [-1],
V veS veS /

where ress ©uesresu and (Bvesiy (X). It follows by standard results

on continuous Galois cohomology groups [20, Section 4] (essentially due to
Tate [33]) that Cy(Kx, X) is cohomologically bounded, with cohomology of finite
(resp., cofinite) type over Rx if X is of finite (resp., cofinite) type over Rx- Let

BTf(Kx,X)e *^ft,(resp., cf) (Rx)-.

X) := H'{W,(KX,X)) («,Mod)„(rap ^
be the image of Cy(Kx, X) in the derived category and its cohomology respectively.
If X e {Tf, Tf} and Rx {I, Ol} is the corresponding coefficient ring, then

RTf(Kx,X)9£Krf(Kx,X) ®Rx RX\

Hy(Kx,X)szH}(Kx,X) ®Rx Rx,

which we consider as equalities in what follows.
Let X e {^_1Tf, y~lTf} (resp., X e {Af, Af}), and let S 3 w \ p. Define

the A.y[Gje/iU,]-module A~ := X (resp., X~ := 0). By the definition of Nekovär's
Selmer complexes, there is a long exact cohomology sequence of A^-modules
[20, Section 6]:

0 Hq-\Kx,w,X-)->Hqf(Kx,X)
weS

H«(GKx,s,X) -* ® HHKXtW,X~) -> •••
wgS

In particular this gives an exact sequence of Rx-modules

XGkx.S 0 H°(Kx<w,X~) -> H}(KX, X) -* &{KX, X) -* 0. (28)
weS

Here &(Kx,X) <5(Gkx,s, A) is the (S -primitive, strict) Greenberg Selmer group
of X/Kx, defined by

®(AZ, X) := ker (h1(GKx,s,X) —>• f] H1 (Kx,w, A"))
V UXES
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6.1.2. A control theorem. We know that Ip f is a discrete valuation ring, and that
its maximal ideal p/IP/ is generated by nrwt := ywt — 1 e A (see (17)). Write

Vf := T'f ®oL L and Tf;P/ := Tf <8>i IP/.. By [20, Propositions 3.4.2 and 3.5.10],
the arithmetic point 4>f 7Panth(I) induces an exact triangle in Dp(Ip ):

Rf/(Ax,Tf,PA)-^ KTf(Kx,TttPf)*-^ RTf(K,Vf),

and then an isomorphism in DPl(L):

cf :L<P}(kTf(Kx,T(,P/.)) ^KTf(Kx,Vf), (29)

where L(pj- : D~(IP f) -» D(L) is the left derived functor of the base-change functor

4>j-(-) := <8>i,<j>f L. (Note that, since / fi has integral Fourier coefficients, the
residue field IP//P /IPf of Ip f equals L.) This induces in cohomology short exact

sequences of L-modules

0 -> Hqf(Kx, Tt,Pf)/7um -> Hqf(Kx, Vf) ^ Hqf+\Kx,Tt,Pf)[mVil] -> 0.

(30)

6.1.3. Nekovär's duality I: global cup-products. Let X e {Tf, Tf}, and

let 1Z 6 {I, Öl} be the corresponding coefficient ring. For XV {I — p/, Ol — utl}
(where is the maximal ideal of Ol), write X := .XV~1X e {Tf>P/., Vf } and

Rx := y~ln e {IPa,L}. Let

nx ' A ®rx X /?at(1)

be the localization at SV of the perfect duality n : Tf <8>i Tf —> 1(1) if X Tf, or
the localisation at XV of its </>/-base change n/ := (j>*f{n) : T/ ®oL Tf -h> Ol( 1)

if X Tf (see Section 2.2). As a manifestation of Nekovär's wide generalization
of Poitou-Tate duality, Section 6 of [20] attaches to nx a morphism in DPt (/?*):

u£* :Rff(Kx,X) Rff(Kx,X) — r>3Rrc,cont(^, R*(l)) ^ Rx[-3],

where RrC;COnt(ATz, —) denotes the complex of cochains with compact support
[20, Section 5], and the isomorphism comes (essentially) by the sum of the invariant

maps of local class field theory for v 6 S. The pairings U^ek on RT /(/fx, TfiP f)
and LI"* on RTf(Kx,Vf) are compatible with respect to the isomorphism

cf : L(P*f(RTf(Kx,TfPr)) sRT/(/fx, Vf) in D(L) described in (29).

The global cup-product pairing gives in cohomology pairings

9U^k ; Hqf(Kx, X) ®Rx H3f~q(Kx, X) —> Rx (31)

(for every q e Z).
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Writing f%x '= Frac(7?;y), they induce by adjunction isomorphisms

adj (9U^k) : Hqf(Kx, X) ®Rx Mx s Horn«, (H3f~q(Kx, X) ®Rx ®x,&x)
(32)

as follows from [20, Proposition 6.7.7], since Rrcont(/sTZ)lu, X) 0 is acyclic for

every prime w \ p of Kx. (See also [20, Propositions 12.7.13.3 and 12.7.13.4].)

6.1.4. Nekovär's duality II: generalised Pontrjagin duality. Let X denote either

Tf or Tf, let Rx be either I or Ol (accordingly), and let Ax := Homcont(X, ptp°°)
be the (discrete) Kummer dual of X. Appealing again to Nekovär's generalised
Poitou-Tate duality, we have Pontrjagin dualities

H3~q(Kx,Ax) ss Homcont (Hqf(Kx,X), Qp/Zp) =: Hqf(Kx,X)*. (33)

We refer the reader to [20, Section 6] for the details.

6.1.5. Nekovär's duality III: generalised Cassels-Tate pairings. Section 10

of [20] — which provides a generalisation of a construction of Flach [10] — attaches

to 7T : Tf Tf ->1(1) a skew-symmetric pairing

u£T ; H2(KX, Tf)tors (gii H2f(Kx,Tf)UtK —> Frac(I)/I,

where Mtors ker -4 M <g>i Frac(I)^ denotes the I-torsion submodule of M.

Denote by

U^:H2(Kx,Tt ,p f )tors &Ep f H2f(Kx, Tf)P/.)tors — Frac(IP/)/IP/ (34)

its localization at p/, At0rs := V[(U^] denoting now the Ip,-torsion submodule

of N (see (17)). As proved in [20, Proposition 12.7.13.4], is a perfect pairing,
i.e. its adjoint

adj (U^T) : H2J-(KX,T{ ,pf )tors ^ Homip/ ^H2j-(Kx,Tf^pyjtors,Frac(Ip/)/IP/^
(35)

is an isomorphism. We call U^T Nekovär (localized) Cassels-Tate pairing on Tf>P/..
This is the pairing denoted U^(P/.)!0i2,2 in loc. cit. We refer to Sections 2.10.14, 10.2

and 10.4 of [20] for the definition of u£T.

6.1.6. Comparison with Bloch-Kato Selmer groups. Recall that Vf := T/ <S>oLA,

and V"jv := T^v ®oL A for v\p. Then Vf Tf;P/. <8>iA is isomorphic to

the 4>f-base change of the localisation Tf,P/, and similarly V^v is isomorphic to

the (p/-base change of the localisation of Tj^ at p/. By (7), combined with the
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Chebotarev density theorem and [28, Chapters V and VII], there is an isomorphism
of L[Gkx,s]-modules (cf. Section 2.2)

Vf s VP(A) ®Qp L, (36)

where VP(A) := Tap{A) ®ip Qp is the p-adic Tate module of A/Q with
-coefficients. We fix from now on such an isomorphism, and we will use it

to identify Vf with VP(A) <S>qp L.
Consider the classical (or Bloch-Kato [8]) Selmer group attached to VP{A)/Kx

via Kummer theory:

SeiP(A/KX) := ker VP(A)) f] "'iK*'v\^A))\

(it is easily verified using Tate local duality and [28, Chapter VII] that Hl(Kx>w,
VP{A)) 0 for u) \ p), sitting in a short exact sequence

0 -> A(KX)®Qp -* Selp(A/Kx) -* Vp (U1(A/KX)) -* 0, (37)

where 111(4/Kx) is the Tate-Shafarevich group of A/Kx and

fp(') -= hm/i>i(')p" ®xp Qp

is the p-adic Tate module of the abelian group (•) with Qp-coefficients. R. Green-

berg [ 11 ] has proved that

SeiP(A/KX) ®QpL 6(Kx,Vf).

Since ap ap(A) +1 (as A/Qp has split multiplicative reduction), the Gqp-
representation Vf Vp{A)®q L is a Kummer extension ofthe trivial representation

We. V}, SL( 1) and V^v L for every v\p (where L is the trivial representation

of Gkx,v and L(l) := L <&qp Qp(1) is its Tate twist). As H°(Gkx,s, Vf) C

H°(Gkx,w> V/) 0 for every w \ p (by [28, Chapter VII] and local Tate duality),
(28) gives rise to an exact sequence

0 -» 0L Hlf(Kx, Vf) SeiP(A/KX) ®Qp L -> 0. (38)
v\p

(See Section 6.3 below for more details.)

6.1.7. Galois conjugation. Let X be as in Section 6.1.1. Section 8 of [20] defines a

natural action of Gal(Kz/Q) on Hq^{Kx, X), making it a Rx [GaKA^/QlJ-module.
If t is a nontrivial automorphism on Kx, we will write r(x) or xT for its action on

x e Hqy(Kx, X). To be short, all the relevant constructions we discussed above
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commute with the action of Gal(A^/Q). In particular, we mention the following
properties.

Nekovär's global cup products (defined in (31)) are Gal( /Cx/Q)-equivariant

[20, Section 8].
Nekovär's Pontrjagin duality isomorphisms (33) are Gal( /fx/Q)-equivariant [20,

Prop. 8.8.9],
The abstract Cassels-Tate pairing U^T is Gal( /fx/Q)-equivariant [20, Section

10.3.2].
The exact sequences (28), (30) and (38) are Gal(A'^/Q)-equivariant. (In case

Kx/Q is quadratic and p splits in Kx, the action of the non-trivial element x 6

Ga\(Kx/K) on the first term L L © L in (38) is given by permutation of
the factors: (q, q')T {q', q) for every q, q' £ L.)

6.2. The half-twisted weight pairing. Define Nekovär's half-twisted weightpairing
by the composition

(-, : Hlf(Kx, Vf) Hlf(Kx, Vf)

^ 7/}(^,Tf.p/ )[njwt] ®,p/ H2f(Kx,T{,p,)[mm]
U(7 / \ 0W, <Pf x£wt
—x ^Frac(IP/-)/IP/J[nrwt] S lPf/pflPf L S L,

where the notations are as follows. The morphism iwt : Hj-(KX, Vf) -*
H2j-(KX, Tf>P/ )[nrwt] is the one appearing in the exact sequence (30) (taking q 1).

U£T is Nekovär's Cassels-Tate pairing attached to 7r : Tf <g>i Tf 1(1), and

defined in Section 6.1.5. 0W, : (Frac(IP/.)/IPA)[tErwt] s lPf/pfIPf is defined

by 0Wt(^wt mod IP/) := a mod p/, for every a £ IP/.. (We remind that mwl £ A
is a uniformiser of IP/ by (17)). Finally, fwt := log^ywt) (where tt7wt := ywt — 1).

Note that both the morphisms iwt and 6wl depend on the choice of the uniformiser mwt.

Multiplication by Iwt serves the purposes of removing the dependence on this choice.

Since U^T is a skew-symmetric, Gal(Ax/Q)-equivariant pairing, and since /wt

is a Gal(A(x/Q)-equivariant morphism (cf. Section 6.1.7), (—,— )yek>3r is a skew-

symmetric, Gai(Kx/Q)-equivariant pairing. (Of course, here we consider on L the

trivial Gal(A^/Q)-action.)
The aim of this section is to prove the following key proposition, whose proof

uses all the power of Nekovär's results mentioned above. Let / be (as above) a

quadratic Dirichlet character of conductor coprime with Np. Write (—, —)^'* for

the restriction of (—, — )^k>7r to Hj(Kx, Vf)x Hlj(Kx, Vf)x. (Of course, if x
is the trivial character, i.e. if Kx Q, we are defining nothing new.) Given an

I-module M, we say that M is semi-simple at pf if MPf is a semi-simple Ip f -

module, and we write lengthp (M) to denote the length of MPf over Ip f.
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Proposition 6.2. Let / be a quadratic Dirichlet character of conductor coprime
with Np, and assume that p splits in Kx. Then the following conditions are
equivalent:

1. (—, —)pyis a non-degenerate L-bilinear form on HXj (Kx, V/)x.
2.

_ _
lengthp/. (^H2y(Kx, Tf)x) dimL (H}(KX, Vf)x).

3. H2j-(Kx, Tf)x is a torsion I-module, which is semi-simple at p/.

If these properties are satisfied, then Xffl/Kx)x is a torsion I-module, which is

semi-simple at p/, and

lengthp/(*£(f/Kx)x) dimQp (Sz\p(A/Kx)x).

The proposition will be an immediate consequence of the following three lemmas

(in which we will prove separately the equivalences 1 3, 3 <=>• 2 and the

last statement, respectively).

Lemma 6.3. (—, —}^'* is non-degenerate if and only if H2j {Kx, Tf]P/.)* is a

torsion, semi-simple Ip f -module.

Proof Taking the /-component of the exact sequence (30), we see that the

restrictions

& ill* H9f(Kx, Vf)x — Hqf+l(Kx,Tf,Pf)x[mm]

of the morphisms iwl if defined in (30) are surjective. Since H°j(Kx, Vf) C

H°(GkxS, V/) 0, this implies in particular that H {^(Kx,T^Pf)x is torsion free,

and iff is injective if and only if Hlj-{KX, Tf,P/)x 0. Moreover, since / is

quadratic and ?U^ek is Gal (/fx/Q)-equivariant, the duality isomorphism (32) shows

that the latter condition is equivalent to the fact that H2^(KX, Tf,P/)x is a torsion

IP/-module.
Write for simplicity N := H2^(KX, Tf;P/.)tors for the IP/.-torsion submodule of

H2j(Kx, Tf)P/.). Since U^T is Gal(A^/Qj-equivariant, p f 2 and / is quadratic,
the isomorphism (35) restricts to an isomorphism

adj (u£T) : Nx ^ Homip f{Nx, Frac(Ip f)/lPf).

Let : A,x[njwt] <g) /Vx[njwt] —> (Frac(IP/.)/IP/) [njwt] denote the restriction
of U£T to the mwt-torsion of Nx. It follows by the preceding isomorphism that the

right (or left) radical of U^^wt equals Afx := mwtNx n A^[njwt]. In other words,
U^wt is non-degenerate if and only if J\fx 0. On the other hand, as nrwt is a
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uniformiser for Ip f, the structure theorem for finite modules over discrete valuation

rings gives an isomorphism of IP/. -modules Nx s ©yt=o (^p / /(mwlV) J

for positive integers e7 such that ej 0 for j 0. Then J\fx 0 if and

only if ej 0 for every j > 1, i.e. if and only if Nx is semi-simple.
Since il'tx is surjective, it follows by the definitions that (—)y '* is

non-degenerate (i.e. has trivial right=left radical) if and only if is injective and
CT y

Ujr,73Twt has trivial radical. Together with the preceding discussion, this concludes the

proof of the lemma.

Lemma 6.4. lengthp/{^H2^{KX, Tf)*^ > dim/, ^H^(KX, V/)*), and equality

holds ifand only if H^-(KX,T{^ f)x is a torsion, semi-simple IP/ -module.

Proof. Write for simplicity m := urwt, M* := H*j-(KX,TftP f)x, and :=

H*f(Kx, V/)x, so that there are short exact sequences of L-modules (30):

0 -> Mg/m -> -* Mq+i[m\ -> 0.

We can assume that M2 is a torsion IPf-module, hence M\ — 0 by the duality
isomorphism (32) (cf. the preceding proof). Then M2[tu] and

dim/, dim/. M2[zu]. (39)

The structure theorem for finite, torsion modules over principal ideal domains yields
an isomorphism

OO

M2 ©(lP//nr7')m0),
3 1

where m : N —> N is a function such that m(j) 0 for j 0. Since

(IPf/mJ) [zu] ^ lVf/zu for; > 1:

OO OO OO

lengthp/ M2 m(j) j m(j) + ^ m(j) • (j - 1)

;=o 7=1 7=2
OO

dimL M2[zu] + ^ m(j) (;' - 1).

j=2

Together with (39), this gives lcngthp/ M2 > dim^ jM\, with equality if and only if
m(j) 0 for every j > 2, i.e. if and only if M2 is a semi-simple Ip f -module.

Lemma 6.5. Assume that H^(KX, TfjP/-)x is a torsion, semi-simple Ip f -module.
Then Xffii/ Kx)x <g>n \f is a torsion, semi-simple Ip f -module, and

length,, (*£(f/^)*) diniQ, (sel^/K,)*).
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Proof. Since adj(7r) : Tf Homi(Tf, 1(1)) and Tf is a free I-module, there is a

canonical isomorphism of ItG/^sj-modules

Tf ®i I* ^ Homi(Tf, 1(1)) (gi! Homcont(I, Qp/Zp) s Homcont(Tf, np00) =: Af,

the second isomorphism being defined by composition: if <g) fi i-> p o if.
Similarly, the isomorphism of I[GQp]-modules adj(7r) : TjT ^ Homi(T^\ 1(1))
gives an isomorphism of I[GQp]-modules Tjr <g>! I* Af. (Recall here that

Af and Af are the Kummer duals of Tf and T^~ respectively.) This implies that

SelQr(f/Ax) & (Kx, Af). (Note that Afw := 0 for every S 3 w { p, so that we

impose no condition at tu \ p in both the definitions of Sel^f/Ä^) and &(KX, Af).)
By (28) one then obtains an exact sequence

H°(GKxtS, Af) -+ ® H°(KXtV, Afv) -* Hlf(Kx,At) Sel£(f/Kx) -> 0.

v\p
(40)

We claim that the localisation at p/ of the Pontrjagin dual of H°(Gkx,s, Af) vanishes,
i.e.

H°(GKx,s,At);f := HomZp(^H0(GKx,s,At),Qp/Zp) ®ilp, 0. (41)

Indeed, let tu be a prime of Kx. By Tate local duality, H°(KXtW, Af) is

the Pontrjagin dual of H2(KXtW, Tf), so that the inclusion H°(Gkx,s, Af) C

H°(KX,W, Af) induces a surjection H2(KXtW, Tf.,P/) -» H°(GKxtS, Af)*7 on

(localised) Pontrjagin duals. As Rrcont(A^iU),TfiP/) 0 e D(IP/) is acyclic
for every prime w \ p (as easily proved, cf. [20, Proposition 12.7.13.3(i)]), the

claim (41) follows. Since Hlj-(KX, Af) is the Pontrjagin dual of H2j-(Kx,T{) by
Nekovär's duality isomorphism (33), applying first Homzp(—, Qp/Zp) and then

— <g>i IP/ to (40), and using (41), yield a short exact sequence of Ip f -modules

0^X£(f/Kx) ®iIP/. -* H2(Kx, TfiP/r) © H (Kx,v, T^ g>i Ip/-) —> 0,

v\P
(42)

where we used once again local Tate duality to rewrite the Pontrjagin dual of
H°(Kx,v,Afv) as H2(Kx,v, Tf~v). Lemma 6.6 below gives an isomorphism of
IP/.-modules

H2(KXtV, Tj^v <gj Ip f) H (Qp, T^~ <gi IPy) Ip f /p/Ip x,

for every v\p. Since p splits in (the at most quadratic field) Kx, taking the

^-component of (42) gives a short exact sequence of Ip f -modules

0^ *£(f/tfz)*®,Ip, -+H2(Kx,Tt,Pfy^IPf/pflPf ->0.
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(Note that, if / is nontrivial, the nontrivial automorphism of GafiA^/Q) acts by

permuting the factors in the sum

H2(KXjVi <8>i Ipy) © H (KX!v2, <8>i Ipy) =• V © V,

where {u|/?} {Vi, u2}- Then the e-component of V © V is equal to either the

subspace {(v,d) : r e K) f if f 1 or to {(u, — v) : u 6 F} f if
e x-) In particular, Ayfr(f/Kx)x is a torsion module, which is semi-simple at p/
if H2j(Kx, Tf,P/)* is. Moreover, if H2^(KX, Tf>p f)x is indeed semi-simple, the

preceding equation and Lemma 6.4 give

lengthp f (z-(f/Kx)x) lengthp/ {h2{Kx,T{)x) - 1

dimL(Hlf(Kx,Vf)x)-\.

Since dim/, H^(KX, V/)x diniQp Selp^/ZCy)* + 1 by (38), this concludes the

proof of the lemma.

Lemma 6.6. H2(QP, Tf (g>i IP/) S IP//p/IP/.

Proof. Write m := rrrwt. Since Vj L(l) as Gqp-modules (see

Section 6.1.6), there are short exact sequences of L-modules

0^ HJ(QP,T+ ®ilp,)/nr -> HJ(Qp,Qp(l)) L

-* //^ + 1(Qp,Tf+(8)iIp^)[nT] -+0. (43)

Taking/' 0 one finds Hl(Qp, Tf <8>i IpA)[nr] 0, i.e. H1(QP, ®iIP/)is
a free Ip t -module. It is immediately seen by the explicit description of given
in (9) that H°(QP,T+) 0 and H°(Qp,Tf) 0. Since Tf~ ^ Homi(Tf+, 1(1))
(under the duality n from Section 2.2), Tate local duality tells us that H2{Qp, Tj^)
is a torsion I-module. Since Tf+ is free of rank one over I, Tate's formula for the local

Euler characteristic now gives Ylk=o(~l^ranki//7 (Qp, Tf+) —1. Together with
what already proved, this allows us to conclude H1 (Qp, Tf" ®iIP/) IP/. Taking
now j 1 and j 2 in (43) we find exact sequences

0 Ip/ /m -» //1(Qp,Qp(l)) L -* H2(Qp,J+ <8>i IPf)[m] -* 0;

H2(QP,T+ ss H2(Qp,Qp(\)) <8Qp L.

Since dimQ/,//1(Qp,Qp(l)) 2 and diniQp H2(QP, Qp(l)) 1, and since

lPf/m S L, it follows that both the w-torsion H2(Qp,Tf <g>i IP/.)[w] and the

nr-cotorsion H2(Qp,Tf <8>i IPf)/nr have dimension 1 over L IPf/m. The
structure theorem for finite torsion modules over principal ideal domains then gives
H2(Qp, Tf1" <8)i Upp) IP//mn for some n > 1. To conclude the proof, it remains
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to show that« 1, i.e. that H2(QP, Tj1" <g>i Ip f) is semi-simple, or equivalently that
the composition

n : Hl(Qp,L(l)) -» H2(Qp,T+ ®ilp/)[nr] H2(QP, T+

-» H2(Qp,Tf+®iIP/.)/m ss H2(Qp,L(l))%P L

is non-zero. To do this, identify Hl(Qp, L(l)) S Qp®L via Kummer theory, and

let Q*. We want to compute the image Ti(q) %{q®\) e L. Identify with

I(a*_1/cy[xcy]1''2) (cf. Section 2.2), and write cq : Gqp —> L(l) for a 1-cocycle

representing g<g)l. Since IP/ is a L-algebra and <pf : IP/ -» L is a morphism of
L-algebras, one can consider cq : Gqp —> T* (gii IP/ as 1-cochain which lifts cq

under </>/. The differential (in C'om(Qp, <g>j Ip f)) of cq is then given by

dcq(g,h) a*(g)-1 • ycy(g) • [xcy(g)]l/2 cq(h) - cq(gh) + cq(g)

Xcy(g) (a£(g)-1 [Xcy(g)]1/2 - l) • Cq(h),

where we used the cocyle relation (in Cc*ont(Q^, L(l))) for the second equality.
Retracing the definitions given above, the class *H(q) is then the image under invp of
the class represented by the 2-cocycle

a, ^ ^ " [Zcy]1/2(^) — 1 ^
d{g,h) \= Xcy(g) cq(h) <pf I — I L(l). (44)

Consider the Tate local cup-product pairing

(-, -)^ : H\QP, L) x Hl(Qp, L( 1)) -* L.

Noting that

/a*-1 [y I1/2 - l\
$f := (pf / ^ j e Homcont(G$p,L) H\QP,L),

the equality (44) can be rewritten as

7i(q) inv^class of tf) (Of, q)e L. (45)

Let go IQp be such that /cy(go)1/2 ywt (where m [ywt] - 1), and let g e IQp.
Then Kcy{g)l/2 Yl, for some z e Zp, satisfying \ log^ (xcy(g)) z • logp(ywt)-
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(Recall that Kcy : Gqp —>* i + P^p is trie composition 01 tue p-auic cycioiomic
character /cy : Gqp -» Z* with projection to principal units.) Since a*(g) 1 this

implies

a1(g)
1

• [/cy]1/2(g)
» / \ j I «.Acy
^f(^) <!>/

TU I7 (46)
bwJ-iA 1 lQgp (Xcyte))

2 logn(Kwt)

Let now Frobp e Gal(Q^"/Qp) =: Gq1^ be an arithmetic Frobenius, where Q/Qp
is the maximal unramified extension of Qp, and Gq1^ is viewed as a subgroup

of the abelianisation Gq^ of Gqp under the canonical decomposition Gq^
Gal(Qp(pLpoo)/Qp) x G Using the Mellin transform introduced in Section 4.1,

and the well-known formula of Greenberg-Stevens [ 12]: -j^ap(k)ic=2 — — \^JP (A),

where Jfp(A) := for the Tate period qA e pZp of A/Qp (see the following
section), one easily computes

/ a* (Frob")_1 — 1 \ 1 n
<bf(Frobp <pf ^ -Sep{A) —(47)p \ m J 2 log^Awt)

Let recp : Q* —> G^p be the reciprocity map of local class field theory [24],
By combining the explicit formula for recp given by Lubin-Tate theory with
formulae (46) and (47) above yields

rf, / w i
/a*(recp(^))-'• [/cy]1/2(recp(^)) - l\

®t(recp(g)) </>f I -* — I

^gQA(q)
2 log„(ywt)

for every q e Q*, where log9/) : Q* —* Qp is the branch of the /i-adic logarithm
vanishing at the Tate period qA- Equation (45) and another application of local class

field theory then give (cf. [24])

U{q) (4>f, qjq,lp $f(recp(<?)) logqA(q),

where denotes equality up to a non-zero factor. This clearly proves that TL is

non-zero, hence (as explained above) that H2(Qp, <g>i IP/.) is a semi-simple
Ip f -module. This concludes the proof of the lemma.

6.3. Algebraic exceptional zero formulae. Since A/Qp has split multiplicative
reduction, it is a Tate curve [34], [29, Chapter V], i.e. isomorphic (as a rigid analytic
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variety) to a Tate curve Gm/q\ over Qp, where qA e pZp is the so called Tate

period of A/Qp. In particular, there exists a GQp-equivariant isomorphism

<FTate : QXp/qzA s A(Qp). (48)

Write KXtP := Kx ®q Qp s Kx,v, and write lv : Kx ^ Kx>v C Qp for the

resulting embedding of Kx in its completion at v. Following [19] and [3], define the

extended Mordell-Weil group of A/Kx\

A^(Kx) '= {(p' 0©»l/>) e A(Kx) x Kx,p ^TateO© h(P), for every u|/>}

In concrete terms, an element of A^(KX) is a /^-rational point on A, together with
a distinguished lift under <J>xate for every prime v\p. Then A^(KX) is an extension of
the usual Mordell-Weil group A(KX) by a free Z-module of rank #{v\p}. In other
words there is a short exact sequence

0 —»• A\KX) -> A(KX) -¥ 0,

v\p

where the first map sends the canonical v-generator to

qv := {0,qvA) ^(1^),

(49)

(50)

qvA e Kyp being the element having qA as r-component and 1 elsewhere. When

Kx/Q is quadratic, Af(Kx) has a natural Gal(AT^/Q)-action, coming from the

diagonal action on A{KX) x K* p (with Gal(^/Q) acting on Kxp := Kx ®q Qp
via its action on the first component). Recall the Kummer map A(KX)®QP
Seip(A/Kx) [28, Chapter X], The following lemma is proved in [35, Section 4]
(see in particular Lemma 4.1 and Lemma 4.3). For every abelian group A, write for

simplicity A <S> L := (A®ZP) ®Zp L.

Lemma 6.7. There exists a unique injective and Ga\(Kx/Q)-equivariant morphism
of L-modules

i\ : A\KX)

satisfying the following properties:

L^Hlf(Kx,Vf),

(i) ta gives rise to an injective morphism ofshort exact sequences ofL[GA(KX/Q)\-
modules:

0 ©uln L >- A^(KX) (8) L MKX) 0

Kummer

©„,. L H\{KX, Vf) Se\p(A/Kx) ®Qp L 0,

the bottom row being (38).
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(ii) Let P (P, Ä^(KX) be such that yv ö\ v for every

v\p. Then the image of i\{P) under the natural map Hlj(Kx, Vf) —>

®u]/, Hl(Kx>v, V+v) lies in the finite subspace ®u!;, Hxf(KXPJ, Vfv)8.

In particular, iA : A^(KX) 0 L H^(KX, Vf) is an isomorphism provided that

III (4 / Kx)poa is finite.
We will consider from now on A\KX) (or precisely 4+(A'/)/torsion) as a

submodule of Hy(Kx,Vf) via the injection iA. In particular (P,Q}^>n :=
for every P,Q& A^(KX).

For every a e Zp, let a (a'^.Q!1^2,...) be a (fixed) compatible system
of p"-th roots of a in Qp. Using the Tate parametrisation (and recalling that

qA e pZp has positive p-adic valuation), we can identify VP(A) with the -module

generated by 1 e Zp(\) and qA- Thanks to our fixed isomorphism (36), the duality

jtf := it 0ip f,<t>f L induces a duality jif : VP(A) ®qp Vp{A) —> Qp(l). Denote

by Tt/A : Vp(A) <S>qp Vp(A) —> Qp the composition of rtf with the isomorphism

Q^(l) Qp ; 1 i-> 1. We can then state the main result of this section.

Theorem 6.8. Let (P, P) e A^(KX), with P (Pv)v\p £ Kx,p~ Then

(NK,.M„(A)).

where log?x : Q* —>• is the branch of the p-adic logarithm vanishing at qA,

NKy v/qp : K* v —> Qp is the norm, and the non-zero constant c(jt) 6 Q*
(depending on n, but not on (P, P)) is given by c(n) fn(1 0 qA)-

Proof This is Corollary 4.6 of [35]. (In loc. cit. it : Tf 0i Tf —» 1(1) is normalised
in such a way that k/a takes the value 1 on 1 0 qA, so that the constant c(7r)
becomes 1/2.) For a more general statement, see also [36].

6.4. Proof of Theorem 6.1. Assume that x(P) U i-e- that P splits in Kx.
Moreover, assume that

rankzA(KX)X 1; #{ui(A/Kx)xp00) < oo, (51)

and let Px e A(KX)X be a generator of A(KX)X modulo torsion. Fix a lift P\
(Px, (Px,v)v\p) £ A^(Kx)x of Px under (49), and define a X'Period

qx e AHKXV

8More precisely, by the definition of Nekovär's Selmer complexes, we have a natural surjective

morphism of complexes />/ : Rr f(Kx,Vf) -» 0„|p Rrcont(^,u> k//,). The map referred to

in the lemma is the morphism induced in cohomology by p+f. Moreover, we recall that the finite (of
Bloch-Kato) subspace H )(Kxv, —) is defined to be the subspace of H1 (Kxv, —) made of crystalline

classes, i.e. classes with trivial image in Hl(KXtV, — ® SCris) [8].
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as follows. If % is the trivial character, i.e. Kx Q, then let

qx := (0,^)6 4t(Q)C4(Q)xQ;.
Similarly, if Kx/Q is quadratic, let

qx := (0, (qA,q-A1)) A\KX)X C A(Kx) x *>p x K^,
where pOicx P • P- By the exact sequence of Z[Gal(A'x/Q)]-modules (49), our
assumptions, and Lemma 6.7 one has

~ i +

H1f(Kx, Vf)x 4 (A(KX) ®L)x L-qx®L P*. (52)

Since (—, — )^e/k^ is a skew-symmetric bilinear form, (qx,qx)^x 0 and

.\Nek
px' px 0. Moreover, in case Kx — Q, Theorem 6.8 gives

IVf,n
I +\Nek __

V*' P*)vf
n

l°glA(PX,p) logAPX)>

where log^ := log^ : A(QP) Qp is the formal group logarithm on A/Qp,
and denotes equality up to multiplication by a non-zero element of Lx. In case

Kx/Q is quadratic, write as above (p) p • p, and ip : Kx c KXtP Qp and

tp : Kx c Kx p Qp for the completions of K at p and p respectively. Then

ip= lp o r, where r is the non-trivial element of Gal(A^/Q). Since Px e A^(KX)X,
we have P* —Px and P x,p Pxlp- As qx := qp — qp (by the definitions),
another application of Theorem 6.8 allows us to compute

i t \1p1Z I i MPIZ t i WPL

iqX' Px)vf,x Px)vf,n ~ iqp' Px)vf,n ^^^ ^X'p)

log^(tp(^)) - log^tp (/>*)) log^ (tp (Px - PTX)

2-logA(Px),
where we write again (with a slight abuse of notation)

logA : A(KX) ^ A(QP) ^ Qp.

The preceding discussion can be summarised by the following formulae (valid
for x trivial or quadratic):

det<-,~)^:=det
KCl«*)* (plpDJ

0 logA(PX)\
— det I =log^(^)

V-log^(^) 0 J
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(where we used again the fact that (—, —)yyj3r is skew-symmetric to compute
i "}* i / "k \ Nek *

[Px,qxjv^ n — —\Qx' Px)v, 7T'
an^ we wrote as above to denote equality up

to multiplication by a non-zero element in Lx). Since Px e A(KX) is a point
of infinite order, and log^ gives an isomorphism between A(QP) <S> Qp and Qp,
\ogA(Px) + 0, so that

det(-

Recalling that qx and Px generate H^(KX, Vf )x as an L-vector space by (52), this

implies that (—, — is non-degenerate, and the last statement of Proposition 6.2

finally gives

lengthy (*g(f/tf*)*) dimQp (sel^A/F,)*) (37)a^d(51) i.

This means that XQT(f/Kx)x <g>i IP/. s lPf/pflPf as Ip ^-modules, as was to be

shown.

7. Proof of the main result

This section is entirely devoted to the proof of Theorem A stated in the introduction.

7.1. An auxiliary imaginary quadratic field. We will need the following crucial
lemma, which follows combining the main result of [7], Nekovär's proof of the parity
conjecture [20], and the KGZ Theorem.

Lemma 7.1. Let Na Np be the conductor of A /Q (with p \ N). Assume that the

following properties hold:

(a) there exists a prime q p such that q || Na;

(b) rankzA(Q) 1 andUl(A/Q)poo is finite.

Then there exists an imaginary quadratic field F/Q, ofdiscriminant Dp, satisfying
the following properties:

1. Dp is coprime to 6Na;

2. q (resp., every prime divisor of NA/q) is inert (resp., splits) in F;
3. ordi=iL(AF/Q,5) 1;

4. rankzA(F) 2andUl(A/F)poo is finite.

(In 3: AF /Q is the cp-twist of A/Q, cp being the quadratic character of F.)

Proof. By condition (b) and Nekovär's proof of the parity conjecture [20, Section 12]

sign(4/Q) -1
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(where sign (4/Q) denotes the sign in the functional equation satisfied by the Hasse-
Weil L-series L(A/Q, 5)). Let / be a quadratic Dirichlet character of conductor cx
coprime with 6NA such that:

(ax) X(q) ~ 1 and X(£) +1 for every prime divisor I of NA/q\

(ßx) X(-l) +1.
and let Ax/Q be the /-twist of A/Q. As q\\NA, we deduce by [27, Theorem 3.66]
and the preceding properties

sign(A*/Q) X(~Na) • sign(A/Q) ~x(NA) +1.

The main result of [7] then guarantees the existence of a quadratic Dirichlet
character 1jr, of conductor coprime with 6cxNA, such that

(a*) (I) +1 for every prime divisor I of 6cxNA\

03*) f(-\) -1;
(y*) ord,=1L(A**/Q,.s) 1.

Define F Fx^ as the quadratic field attached to yi/r, so xi* fF and

L(AX^/Q,s) L(AF/Q,s) is the Hasse-Weil L-series of the F-twist of A/Q. In
particular, property 3 in the statement is satisfied. By the KGZ theorem, it follows
by (y*) that A(F)F has rank one and HI(A/F)6F is finite. Together with (b), this

gives

rankzA(F) 2; #(lII(A/F) < 00,

i.e. property 4 in the statement. Property 1 is clear by construction. Moreover, by

(ax), (ßx), (a*) and (ß^) we deduce -1 ,*F(q) -1 and f(£) +1
for every prime divisor of NA/q. This means precisely that F/Q is an imaginary
quadratic field satisfying property 2 in the statement, thus concluding the proof.

7,2. Proof of Theorem A. Assume that A/Q and p > 2 satisfy the hypotheses
listed in Theorem A, i.e.

(a) ßA p is an irreducible GQ-representation;

(ß) there exists a prime q pat which A has multiplicative reduction (i.e. gllA^);

(y) p \ oxdq{jA)\

(5) rankzA(Q) 1 and ni(A/Q)poo is finite.

Let F/Q be a quadratic imaginary field such that

(e) Dk is coprime with 6NA;

(£) q is inert in K;

(q) every prime divisor of NA/q splits in K;

(0) rankzA(F) 2 and \H(A/K)poo is finite;
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(t) ordi=iL04*/Q,.s) 1.

The existence of such a AT/Q has been proved in Lemma 7.1 above. Finally, let

L/Qp be a finite extension containing Qp {^DXj[2, (—l)1''2, 1 l!Np^ /Qp, let qx \ 6p
be a rational prime which splits in K, and let S be the set of primes of K consisting
of all the prime divisors of qkNa Dk- Then:

Lemma 7.2. The data (f, K, p, L,qx, S) satisfy Hypotheses 1, 2 and 3.

Proof. By construction and properties (e) and (q), Hypothesis 2 is satisfied. Since pf
is isomorphic (by definition) to the semi-simplification of ~f> a,p-> assumption (a) is

nothing but a reformulation of Hypothesis 1. To prove that Hypothesis 3 holds

true, note that (with the notations of loc. cit.) N+ NA/pq and N~ q
by (£) and (q) above. Then N~ is a square-free product of an odd number of
primes. It thus remains to prove that pf is ramified at q. By Tate's theory,

we know that A/Qq is isomorphic to the Tate curve Gm/t% over the quadratic
unramified extension of Qp, where tq e qZg is the Tate period of A/Qq, satisfying
ord9 (tq) —Qtdq(Ja) [34], [29, Chapter V]. Then

A[p\ := A(Q)[p] </,; < pj

as I(±q -modules, where txqp e Qq and t,p e Qq are fixed primitive pth roots of tq
and 1 respectively. As Qq(^p)/Qq is unramified, ~Pa.p is ramified at q precisely if
Qq(tq^P)/Qq >s ramified. Recalling that tq e qZq and ordq(tq) —ordq(Ja), this
is the case if and only if p \ ordq(jA)- Then Hypothesis 3 follows from (y).

In order to prove Theorem A, we need one more simple lemma. Omitting S

from the notations, recall the dual Selmer groups A^lf/K) := X^^(f/K) and

A(£(f/K) introduced in Sections 4.3 and 6 respectively.

Lemma 7.3. lengthp/ (x^t/K)) < lengthy (*g(f/tf)) + 2.

Proof. As remarked in the proof of Lemma 6.5, the perfect, skew-symmetric duality
jt : Tf®iTf -» 1(1) induces a natural isomorphism of I[GQp]-modules: T^<8>il* s
Homcont(Tf+, pLpoo) =: Äf~. By construction and the inflation-restriction sequence,
there is then an exact sequence

0 Se\fr(f/K) ^ Sely^lf/ K) -* ® H1 (Froh«, (Af)Iv)
v\p

where Iv := Ikv is the inertia subgroup of Gkv, Frob„ G Gkv/1Kv is the arithmetic
Frobenius at v, and we write for simplicity //*(Frob„,—) := H*(Gkv/Ikv, —)
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(Here the reference to the fixed set S is again omitted, so that Seljppf/ K) :=
Selg^pf/K).) Taking Pontrjagin duals and then localising at p/ gives an exact

sequence of Ip / -modules:

® Hl (Frobb„ (Af-)/y)*/ - X%Jf/K)Pf - X£(t/K)Pf -+ 0,

v\p

where (—)* is an abbreviation for ((—)*)P/ (—)* <8>i IP/. As p splits in K, one
deduces

(*£.('/*))
< length,, (A'geif/A"i) + 2- length,, (//' (hrnb,, (A,")'*)* (53)

where Ip := 7qp C Gqp is the inertia subgroup and Frobp e Gqp/Iqp is the

arithmetic Frobenius at p.

By equation (9), Tp s l((a*)
1

• Xcy • Dfcy]1^2) as GQ^-modules. Then its

Kummer dual A^~ is isomorphic to I* (a* • [fcy]-1^2)- Let y 1 + pZp be a

topological generator, let [y] I be its image under the structural morphism [•] :

A —> I, and let w [y] — 1 e A. Since a* is an unramified character and

[p] 1 mod tjj for every p e 1 + pZp, one has isomorphisms of Frob^-modules

H°(IP, Af) Af"[m] ss (1/mlY (ap. (54)

Applying H1 (Frob^, —) to (54) then yields

tf'(Frob,.(At-)'') (dL) /(„„_,)(_!_)
Taking the Pontrjagin duals and then localising at p/ one deduces

//qFrob,,(Af-)'»);/3((JL)"[a,-.])

I \ <55)

m _ j j [<Pf(ap) — 1]

Indeed, as remarked in (17), w is a uniformiser of Hp f. Moreover, p/ := ker(0/)
and (pf(ap) ap(2) +1 (as A/Qp is split multiplicative), so that ap — 1 acts

trivially on lPf/p/IP/ and (55) follows. In particular, (55) yields

lengthp f ^H1 ^Frobp, (Ap/p) 1.

Together with equation (53), this concludes the proof of the lemma.
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We can finally conclude the proof of Theorem A. To be short, we have

4C°<5'2ordk^iU/K^) C°<4'2
lengthp (X'q (f/K)\

(56)
Lemma 7.3 / \ Th 1

< lengthy / (^^(f/A^)J + 2 4.

Indeed, hypothesis (5) gives dimQ^Sel^A/Q) 1, and then (as in the

proof of Lemma 7.1) Nekovär's proof of the parity conjecture guarantees that

sign(A/Q) — 1. Together with Lemma 7.2, this implies that the hypotheses of
Corollary 5.2 are satisfied, and then that the first inequality in (56) holds true.
Lemma 7.2 also allows us to apply Skinner-Urban's Corollary 4.2, which gives the

second inequality in (56). The third inequality in (56) is the content of the preceding
lemma. Finally, let x denote either the trivial character or the quadratic character hk
of K, and let Kx := Q or Kx := K accordingly. Then (5) and (9) imply that (with
the notations of Section 6)

rankzA(KX)X 1; #(111(4/^)^) < 00.

Moreover, we know that p splits in Kx (i.e. in K, by hypothesis (77)). Then the

hypotheses (i), (ii) and (iii) of Theorem 6.1 are satisfied by both our y's, and by

applying the theorem twice yields

X%(t/K)p, ss*«(f/Q)p/ ©*£(f/tf)ep* *lPf/pfIPf(BlPf/PflPf9,
justifying the last equality in (56).

Equation (56) proves that ordfc=2Lp(/00/A^,k) 4. It then follows by
Bertolini-Darmon's Corollary 5.2 that the Hasse-Weil L-function of A/K has a

double zero at 5 1:

ordi=i L(A/K,s) 2.

Since L(A/K,s) L(4/Q,^) • L(AK/Q,s) is the product of the Hasse-Weil
L-functions of 4/Q and its AVtwist AK/Q, and since L(4^/Q, s) has a simple zero
at s 1 by (t) above, we finally deduce

ordi=i L(4/Q, 5) 1.
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