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On the p-converse of the Kolyvagin—Gross—Zagier theorem

Rodolfo Venerucci

Abstract. Let A/Q be an elliptic curve having split multiplicative reduction at an odd prime p.
Under some mild technical assumptions, we prove the statement::

rankzA(Q) = 1 and #(III(4/Q)pee) <00 = ordy—1L(A/Q,s) =1,
thus providing a ‘ p-converse’ to a celebrated theorem of Kolyvagin—Gross—Zagier.
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1. Introduction

Let A be an elliptic curve defined over Q, let L(A/Q, s) be its Hasse—Weil L-function,
and let III(A/Q) be its Tate—Shafarevich group. The (weak form of the) conjecture
of Birch and Swinnerton-Dyer predicts that [11(A/Q) is finite, and that the order of
vanishing ordg=1 L(A4/Q,s) of L(A/Q,s) ats = 1 equals the rank of the Mordell-
Weil group A(Q). The main result to date in support of this conjecture comes
combining the fundamental work of Kolyvagin [17] and Gross—Zagier [13] (KGZ
theorem for short):

Fan := ordg=1 L(A/Q,5) <1 = rankzA(Q) = ry and #(III(4/Q)) < oc.

Let p be a rational prime, let r,, € {0, 1}, and let I1I(A/Q) po be the p-primary
part of II1(A/Q). By the p-converse of the KGZ theorem in rank ry, we mean the
conjectural statement

rankz A(Q) = ry, and #(H_I(A/Q)poo) < 6 =9> ords=1 L(A/Q,s) = ryq.

Thanks to the fundamental work of Bertolini-Darmon, Skinner—Urban and their
schools, we have now (at least conceptually) all the necessary tools to attack the
p-converse of the KGZ theorem. Notably, assume that p is a prime of good ordinary
reduction for A/Q. In this case the p-converse of the KGZ theorem in rank 0
follows by [31]. In the preprint [30], Skinner combines Wan’s Ph.D. Thesis [38] —
which proves, following the ideas and the strategy used in [31], one divisibility in the
Iwasawa main conjecture for Rankin—Selberg p-adic L-functions — with the main
results of [6] and Brooks’s Ph.D. Thesis [9] — extending the results of [6] — to prove
many cases of the p-converse of the KGZ theorem in rank 1. In the preprint [39],
W. Zhang also proves (among other things) many cases of the p-converse of the
KGZ theorem in rank 1 for good ordinary primes, combining the results of [31] with
the results and ideas presented in Bertolini—-Darmon’s proof of (one divisibility in)
the anticyclotomic main conjecture [4]. The same strategy also appears in Berti’s
forthcoming Ph.D. Thesis [1] (see also [2]).

The aim of this note is to prove the p-converse of the KGZ theorem in rank 1 for
a prime p of split multiplicative reduction for A/Q. Our strategy is different from
both the one of [30] and the one of [39], and is based on the (two-variable) Iwasawa
theory for the Hida deformation of the p-adic Tate module of 4/Q. Together with
the results of the author’s Ph.D. Thesis [35], and then Nekovif’s theory of Selmer
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Complexes [20] (on which the results of [35] rely), the key ingredients in our approach
are represented by the main results of [5] and [31] (see the outline of the proof given
below for more details).!

The main result. Let A/Q be an elliptic curve having split multiplicative reduction
at an odd rational prime p. Let N4 be the conductor of A/Q, let j4 € Q be
its j-invariant, and let p4 , : Gg — GL2(Fp) be (the isomorphism class of) the
representation of G on the p-torsion submodule A[p] of A(Q).

Theorem A. Let A/Q and p # 2 be as above. Assume in addition that the following
properties hold:

1. Py, p isirreducible;
2. there exists a prime q||Na, q # p such that p { ordg(ja);
3. rankzA(Q) = 1 and II1(A/Q) pe< is finite.
Then the Hasse—Weil L-function L(A/Q,s) of A/Q has a simple zero at s = 1.
Combined with the KGZ theorem recalled above, this implies:

Theorem B. Let A/Q be an elliptic curve having split multiplicative reduction at
an odd rational prime p. Assume that p4 , is irreducible, and that there exists a
prime q||N4, g # p such that p t ordg(ja). Then

ordg=1L(4/Q.s) =1 <= rankzA(Q) = 1 and #(111(A4/Q) peo) < 00.

If this is the case, the whole Tate—-Shafarevich group 111(A/Q) is finite.

Outline of the proof. Let A/Q be an elliptic curve having split multiplicative
reduction at a prime p # 2, and let f = Y o2, anq™ € S2(T'o(N4), Z)™ be the
weight-two newform attached to A by the modularity theorem of Wiles, Taylor—
Wiles et. al. Then Ny = Np, with p{ N andap = ap(A) = +1. Assume thatp, ,
is irreducible.

Let f = Y 2, a,q" € I[gq] be the Hida family passing through f. Here T
is a normal local domain, finite and flat over Hida’s weight algebra A := O[]
with Op-coefficients, where I' := 1 + pZ, and Op is the ring of integers of
a (sufficiently large) finite extension L/Q, (cf. Section 2.1). There is a natural
injective morphism (Mellin transform) M : [ < &/ (U), where U C Z,, is a suitable

! After this note was written, C. Skinner communicated to the author that, together with W. Zhang,
he extended the methods of [39] to obtain (among other results) the p-converse of the KGZ theorem in
cases where p is a prime of multiplicative reduction [32]. While there is an overlap between the main
result of this note and the result of Skinner—Zhang, neither subsumes the other (cf. the end of this section).
Moreover, as remarked above, the methods of proof are substantially different.
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p-adic neighbourhood of 2, and ./ (U) C L[k — 2] denotes the sub-ring of formal
power series in k — 2 which converge in U (see Section 4.1). Write

foo := Y anlk)-q" € &/ (U)[4].

n=1

with a, (k) € o/ (U) defined as the image of a, € I under M. For every classical
point k € U := U N Z=2, the weight-k-specialization f := Y oo an(k)q" is
the g-expansion of a normalised Hecke eigenform of weight k¥ and level I'; (Np);
moreover f, = f. For every quadratic character y of conductor coprime
with Np, a construction of Mazur-Kitagawa and Greenberg—Stevens [5, Section 1]
attaches to fo and y a two-variable p-adic analytic L-function L ,( foo. x.k,s) On
U x Z,, interpolating the special complex L-values L( fy, x,j), where k € U,
|1 <j <k—1and L(f, x.s) is the Hecke L-function of f, twisted by y. (Here s
is the cyclotomic variable, and k is the weight-variable.) Define the central critical

p-adic L-function of ( feo, X):
LE (foor 1K) = L foon 1,k k/2) € /(U)

as the restriction of the Mazur—Kitagawa p-adic L-function to the central critical
line s = k /2 in the (k, s)-plane.

On the algebraic side, Hida theory attaches to f a central critical deformation Ty
of the p-adic Tate module of A/Q. Ty is a free rank-two I[-module, equipped
with a continuous, I-linear action of Ggq, satisfying the following interpolation
property: let k € U® be a classical point such that « = 2 (mod 2(p — 1)), and let
eve : [ < &/(U) — L be the morphism induced by evaluation at ¥ on .7 (U). Then
the base change Ty ®j ey, L is isomorphic to the central critical twist V(1 —«/2) of
the contragredient V, of the p-adic Deligne representation of f,. Moreover, T is
nearly-ordinary at p. More precisely, let v be a prime of Q dividing p, associated
with an embedding i, : Q — ﬁp, and denote by iy : Gq, = Gy C Ggq the
corresponding decomposition group at v. Then there is a short exact sequence of
[[G,]-modules

0— T, - Tr > Tg, — 0,

with T;'fv free of rank one over I. For every number field F/Q, define the (strict)
Greenberg Selmer group

Selgs.(f/F) :=ker | H'(GF,5. Ty ®1I*) — [ [ H'(F,. Ty, &1 %)
v|p

Here S is a finite set of primes of F containing every prime divisor of N 4disc(F),
G F,s is the Galois group of the maximal algebraic extension of F which is unramified
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outside SU{oo}, I* := Homey (I, Q,/Z ) is the Pontrjagin dual of I, and the product
runs over all the primes v of F which divide p 2. Write

XE(®/F) := Homy,, (Selés (t/ F), Qp/Z )

for the Pontrjagin dual of Selg (f/F). It is a finitely generated I-module. We now
explain the main steps entering in the proof of Theorem A.

Step I: Skinner-Urban’s divisibility. Let K/Q be an imaginary quadratic field in
which p splits. Assume that the discriminant of K /Q is coprime to N4, and write
N4y = NTN~, where N* (resp., N7) is divided precisely by the prime divisors
of N4 which are split (resp., inert) in K. Assume the following generalised Heegner
hypothesis and ramification hypothesis:

e N is a square-free product of an odd number of primes.
® 04 p is ramified at all prime divisors of N

Under some additional technical hypotheses on the data (A,K,p,...) (cf.
Hypotheses 1, 2 and 3 below), the main result of [31], together with some auxiliary
computations, allows us to deduce the following inequality:

ordi=2 L5 (foo/ K. K) < length,  (XE(E/K)) +2. (1)

Here LCPC(fOO/K,k) = Lif(foo, Kieivs K) - Lc;(foo, €k, k), where yuiy is the trivial
character and ek is the quadratic character attached to K. ps := ker (evz e
/' (U) — L) is the kernel of the morphism induced by evaluation atk = 2 on &/ (U);
it is a height-one prime ideal of [, so that the localisation I, . is a discrete valuation
ring. Finally, lengthp_ 5 (M) denotes the length over I, . of the localisation M, ., for
every finite [-module M.

Remark. The main result of Skinner and Urban [31] mentioned above, which proves
one divisibility in a three variable main conjecture for GL,, is a result over K, for
K /Q as above, and not over Q. This is why we need to consider a base-change to
such a K/Q in our approach to Theorem A.

Remark. By assumption, A/Q has split multiplicative reduction at p, and as well-
known this implies that L ,( foo, Xwiv, k. §) has a trivial zero at (k,s) = (2,1) in
the sense of [19]. Moreover, the hypothesis ex(p) = +1 (i.e. p splits in K)
implies that L ,( fx. €k .k, s) also has such an exceptional zero at (k,s) = (2, 1)
(see, e.g. [5, Section 1] or [25, Section 5]). This is the reason behind the appearance
of the addend 2 in the R.H.S. of (1).

2Sel (f/ F') depends on the choice of the set .S, even if this dependence is irrelevant for the purposes
of this introduction.
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Remark. The generalised Heegner hypothesis gives ex (—N4) = —exg(N7) = +1.
This implies that the Hecke L-series L(f.s) = L(A/Q,s) and L(f, eg,s) =
L(AX/Q,s) (where AX/Q is the quadratic twist of A by K) have the same sign
in their functional equations at s = 1. The Birch and Swinnerton-Dyer conjecture
then predicts that the ranks of A(Q) and AX(Q) =~ A(K)™ have the same parity. In
particular rankz A(K), and then ordy—> L ( foo/ K, k) should be even.

Step II: Bertolini-Darmon’s exceptional-zero formula. Let K/Q be as in Step L.
Assume moreover

e sign(A/Q) = —1

where sign(4/Q) € {£1} denotes the sign in the functional equation satisfied
by the Hasse—Weil L-function L(A/Q,s). As remarked above, this implies that
sign(AK /Q) = —1 too. The analysis carried out in [5, 12,26] tells us that, for both
X = Xwivand y = ek

ordg=2L5 (foo, X, k) = 2; ()
this is once again a manifestation of the presence of an exceptional zero at (k,s) =
(2,1) for the Mazur—Kitagawa p-adic L-function L,(fx, x,k,s). Much more
deeper, Bertolini and Darmon proved in [5] the formula

2

d .
T3 L5 (foon 1K= = log} (Py).

where = denotes equality up to a non-zero factor, log 4 : A(Q,) — Q p is the formal
group logarithm, and P, € A(K)* is a Heegner point. This formula implies that

ordg=2 L, (foos X, k) =2 = ords=; L(4%/Q,s) = 1, 3)

i.e. if and only if the Hasse—Weil L-function of the y-twist A% /Q has a simple zero
at s = 1. (Here of course AX = Ais y = yuiv and AX = AK if y = eg. Recall that
by assumption L(A%/Q, s) vanishes at s = 1.)

Step III: bounding the characteristic ideal. Let y denote either the trivial
character or a quadratic character of conductor coprime with Np, and write
Ky = Q or K,/Q for the quadratic field attached to y accordingly. Making
use of Nekovai’s theory of Selmer Complexes (especially of Nekovaf’s generalised
Cassels—Tate pairings) [20], we are able to relate the structure of the I, .-module
X&(E/K X)f,‘. ;= XG(f/Ky)* @11, , to the properties of a suitable Nekovar’s half-
twisted weight pairing (see Section 6.2)
(= =lvrx AT(KY x AT (KX — Qp,

playing here the réle of the canonical cyclotomic p-adic height pairing of Schneider,
Mazur-Tate et. al. in cyclotomic Iwasawa theory. Here, for every Z[Gal(K,/Q)]-
module M, we write M X for the submodule of M on which Gal(K, /Q) acts via y, and
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AT(K ) is the extended Mordell-Weil group of A/ K, introduced in [19]. (—, —)ﬁk,{

is a bilinear and skew-symmetric form on AT(K x)* (see Section 6). Assume that the
following conditions are satisfied:

e y(p) =1,ie. psplitsin Ky;
o rankz A(Ky)X = 1 and ITI(4/ K)o is finite.

Then AT(KX)X ®Qp = Qp- gy ®Qp - Py is a2-dimensional Qp-vector space
generated by a non-zero point P, € A(K,)* ® Q and a certain Tate’s period
qy € AT(K,)* (which does not come from a K ,-rational point of A). In the author’s
Ph.D. Thesis [35] we proved that

Nek, .
(@2 Prly, x = 10g4(Py) (4)

(where = denotes again equality up to a non-zero multiplicative factor), which implies
that (—, —)I;}ik;( is non-degenerate on AT(K,)*. Together with the results of Nekovaf
mentioned above, this allows us to deduce that

XG®/Ky)a, =T, /o 1Ty, ®)

Remark. Let Vy := Ta,(A) ®z, Q, be the p-adic Tate module of 4/Q, and
let H(Ky,Vy) be the Bloch-Kato Selmer group of Vs over K. The pairing

(—, —)Il\iik]f is naturally defined on Nekovéi’s extended Selmer group H } (Ky, Vi)X,

which is an extension of H ¢ (Ky, V) by the Q,-module generated by ¢. Indeed
it is the non-degeneracy of (—, —)?,ikﬁ on H'(Ky,Vr)* to be directly related to
the structure of the I, ,-module X&(f/Ky)%,. On the other hand, H (K Vi)
contains AT(K )X ®Q,, and equals it precisely if the p-primary part of III(A/ K, )*

is finite. This explains why we need the finiteness of I1I(A/ Kx);oo in order to
deduce (5).

Remark. The length of X& (f/K X),’fl , over [, . can be interpreted as the order of
vanishingatk = 2 of an algebraic p-adic L-function LG ( foo, x, k) € &/ (U), defined
as the Mellin transform of the characteristic ideal of X&(f/K,)¥ (at least assuming
that T is regular). The results of Nekovar briefly mentioned above can be used
to prove an analogue in our setting of the algebraic p-adic Birch and Swinnerton-
Dyer formulae of Schneider [23] and Perrin-Riou [22], which relates the leading
coefficient of LG (foo, X, k) at k = 2 to the determinant of (—, —)NEk’X computed on

Vf ,JT°
AT(KX)X/torsion.

Remark. Formula (4) is crucial here. Indeed, as remarked above, it allows us to
deduce the non-degeneracy of the weight-pairing (—, —)lf,ikjf The analogue of this
result in cyclotomic Iwasawa theory (i.e. Schneider conjecture in rank-one) seems
out of reach at present.
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Remark. The preceding results, and (4) in particular, should be considered as an
algebraic counterpart of Bertolini—-Darmon’s exceptional zero formula (cf. Step II).
This point of view is developed in [36] (see also Part I of the author’s Ph.D.
thesis [35]), and leads to the formulation of two-variable analogues of the Birch and
Swinnerton-Dyer conjecture for the Mazur—Kitagawa p-adic L-function L ,( feo, X,
k,s). Formula (4) — to be considered part of Nekovéi’s theory — and Bertolini—
Darmon’s exceptional zero formula, also represent crucial ingredients in the proof,
given in [37], of the Mazur—Tate—Teitelbaum exceptional zero conjecture in rank one.

Step IV: conclusion of the proof. Assume that the hypotheses of Theorem A are
satisfied. Thanks to Nekovai’s proof of the parity conjecture [20], sign(A4/Q) = —1.
By the main result of [7] and hypothesis 2 in Theorem A, we are then able to find
a quadratic imaginary field K/Q which satisfies the hypotheses needed in Steps I
and II, with N~ = g, and such that L(AX /Q, s5) has a simple zero at s = 1, i.e.

ordy—1 L(A%/Q,s) = 1. (6)

An application of the KGZ theorem gives
rankz AX(Q) = 1 #(m(AK/Q)poo) < o0.

Together with hypothesis 3 in Theorem A, this implies that the hypotheses needed in
Step III are satisfied by both the trivial character y = yiv and y = €gx. Then

@ e @ cc ©)
4 2 ordg—nLS(foo/ K k) < length,, (XGr(f/K)) PR AN

i.e. ordg=2 L5 (foo/ K, k) = 4. Applying now Bertolini—-Darmon’s result (3) yields
ords=1 L(A/K,s) = 2,

where L(A/K,s) = L(A/Q,s)-L(AX/Q, s) is the Hasse-Weil L-functionof A/ K.
Together with (6), this implies that L(A/Q, s) has a simple zero at s = 1, as was to
be shown.

Recent related results. In the recent preprint [32], Skinner and Zhang prove (among
other results) a theorem similar to our Theorem A. More precisely, Theorem 1.1 of
loc. cit. proves instances of the p-converse of the KGZ theorem in rank one, for an
elliptic curve with multiplicative reduction at a prime p > 5. On the one hand,
their result does not require the p-primary part of the Tate—Shafarevich group to be
finite, but only that the p-primary Selmer group of the elliptic curve has Z ,-corank
one. On the other hand, together with the assumptions 1 and 2 of Theorem A, the
authors assume extra hypotheses in their statement. For example, they assume that the
mod-p Galois representation p 4 , is not finite at p, that the Mazur-Tate-Teitelbaum
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L-invariant ., (A/Q) = :)Ori” Egj ; has p-adic valuation 1 (where g4 € pZ, is
the Tate period of A/Qp), and require additional * p-indivisibility conditions’ for the
Tamagawa factors of A/Q. (We refer to loc. cit. for a precise list of the assumptions.)
Finally, it is worth noting that our approach here (cf. preceding Section) is essentially
different from that of [32], where the authors extend the results and methods of [39]

to the multiplicative setting.

Acknowledgements. We sincerely thank Massimo Bertolini for many inspiring and
interesting conversations, and for his encouragement during the preparation of this
note. We thank Henri Darmon for his interest in this work.

2. Hida Theory

Fix for the rest of this note an elliptic curve A/Q having split multiplicative reduction
at an odd rational prime p. Let N4 be the conductor of 4/Q, so that Ny = Np,
with p t N, and let

f = ang" € S2(To(Np), Z)""

n=1

be the weight-two newform attached to A/Q by modularity. Fix a finite
extensmn L/Qp, with ring of integers (7, and maximal ideal m,, and an embedding

' Q—=Q p» under which we identify Q with a subfield of Q p- This also fixes
a decomposxtlon group i, : Gg, — Gq at p (where GF := Gal(F / F) for every
field F).

p

2.1. The Hida family I. LetI" := 1+ pZ,, let Z;‘V,p =T x (Z/pNZ)”, and let
OL[[Z}(V,p]][Tn ‘nc N] —» ho(N, OL)

be Hida’s universal p-ordinary Hecke algebra with Op-coefficients. Writing
A := Or[T], h°(N,Op) is a finite, flat A-algebra [14]. Letting . := Frac(A),
there is a decomposition h?(N, OL)®a-Z = []; - as afinite product of finite field
extensions % /. L. Let % = ¥, be the primitive component of h°(N,Or) @ L
to which the p-ordinary newform f belongs [14, Section 1], and let [ be the integral
closure of A in the finite extension % /.Z. For every n € N, write a, € [ for the
image in [ of the nth Hecke operator 7},. By [14, Corollary 1.5], there exists a unique
morphism of (O -algebras
dr: I — Oy,

such that ¢ r(a,) = a, for every n € N; moreover, ¢ r maps the image of Zi,, pinl
to 1 (as f has weight two and trivial neben type). I is a normal local domain, finite



406 R. Venerucci CMH

and flat over Hida’s weight algebra A. The domain I is called the (branch of the)
Hida family passing through f. This terminology is justified as follows.

An arithmetic point on I is a continuous morphism of Oy -algebras ¥ : I — Q -
whose restriction to I" (with respect to the structural morphism A — 1) is of the form
Vir(y) = ykv—2. X (y), for aninteger ky, > 2 and a finite order character y on I'.
We call ky, and yy the weight and (wild) character of Y respectively. Write X1 ()
for the set of arithmetic points on I. Note that ¢ € X arith(T) is an arithmetic point
of weight 2 and trivial character. Let

o0
F= Zan -q" € 1[q].
n=1

Then for every ¢ € X*N(I), the specialisation of £ at -

fo = V(@) -q" € Sk, To(Np™ ™). &)

n=1

is a p-stabilised ordinary newform of tame level N, weight ky and character &y :=
Xv -w? kv Here ¢y = 0is the smallest positive integer such that P c ker(xy ),
and w : Z/(p — 1)Z = Fj, — Z7 is the Teichmiiller character. Moreover, we
recover f as the ¢ r-specialisation of f, i.e.

f¢f = Z¢f(an)qn = /.
n=1

Let ¥ € X*%(]) be an arithmetic point. Denote by Ky = Frac(y(I)) C Gp
the fraction field of v (I), by my its maximal ideal, and by Fy = vy (I)/my, its
residue field. Let py : Go — GL2(Ky ) be the contragredient of the Deligne
representation associated with fy, and denote by p,, : Go — Gal(Fy) the semi-
simplification of the reduction of py modulo my. Then p,, is unramified at every
prime £ { Np, and Trace(p,, (Frobg)) = vr(a;) (mod my,) for every prime £ { Np,
where Froby € G is an arithmetic Frobenius at £. Enlarging L if necessary, one can
assume Fy = F := Op/my. Then the representation p,, does not depend, up to
isomorphism, on the arithmetic point . Denote by p; this isomorphism class, and
assume throughout this note the following.

Hypothesis 1 (irr). p; is (absolutely) irreducible.

Under this assumption, it is known that Hy := (h°(N, Or) ®4 I) N (£ x 0) is
a free I-module of rank one (where we use the decomposition #°(N, Op) @a £ =
A x |1}, ~; mentioned above).

Remark 2.1. Taking v = ¢, in the discussion above, we deduce that p; is
isomorphic to the F-base change of the mod-p Galois representation p 4 , attached
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to the p-torsion submodule A[p] of A(Q). (Indeed, Hypothesis 1 is equivalent to
require that p 4 ,, is absolutely irreducible.) Since A has split multiplicative reduction
at p, Tate’s theory gives us an isomorphism (see [34] or Chapter V of [29])

— , *
pflGQp = ( 6}’ 1) ’

where p¢| G, , is the restriction of oy to Gq,, and wey : G, Gal(Qp(1p)/Qp) = F,
is the mod- p cyclotomic character. As p # 2, this implies that p; is p-distinguished,
i.e. that condition (dist)g in [31] is satisfied.

2.2. Hida’s representations 7y and Ty. Let 7¢ = (7§, Tf+) be Hida’s p-ordinary
[-adic representation attached to f (see, e.g. [14], [31]). Thanks to our Hypothesis 1,
Tt is a free [-module of rank two, equipped with a continuous action of Gg which is
unramified at every prime £ 1 Np, and such that

det (1 — Frobg - X|Ty) = 1 —a; - X + £[{] - X2 (7)

for every £ { Np. Here Froby, = frob[l is an arithmetic Frobenius at £ and [-] :
Zy , C OL[Z} ] — Lis the structural morphism. Write

Xey,N - GQ i Ga](Q(FLNpoo)/Q) = Z;(V,p =TI x (Z/NPZ)X » Xey - GQ i Z;

for the p-adic cyclotomic character (i.e. the composition of y.,,x with projection to
Z,=Tx(Z/ pZ)")and key : Gg, — T for the composition of y., with projection
to principal units. Then [y¢,] = [key] = [Xey.n] as I*-valued characters on Gq
(since f has trivial neben type). In particular the determinant representation of 7§ is
given by

d%t Tr 2 I(xey - [Key])- (8)

TfJr is an [-direct summand of 7} of rank one, which is invariant under the action of
the decomposition group Gq, <> Gq determined by i,,. Moreover, Ty := Tt/ TfJr
is an unramified G¢,-module, and the Frobenius Frob, € Gq,/Iq, acts on it via
multiplication by the p-th Fourier coefficient a, € I* of f. In other words

Tt = 0(ay ™ ey leol); T = I(a}) )

as [[Gq,]-modules, where a3, : Gq, — Gq,/lq, — 1™ is the unramified character
sending Frob, to a, and we write again ky : Go,~ Gal(Qp(up>)/Qp) = Z;, - T
for the p-adic cyclotomic character on Gg,, .

Given an arithmetic point y € X*™(I), let Vy, be the contragredient of the p-adic
Deligne representation attached to the eigenform f: it is a two-dimensional vector
space over Ky = Frac(ll/ker(y)), equipped with a continuous Ky -linear action
of G which is unramified at every prime £ { Np, and such that the trace of Froby
acting on Vy, equals the £th Fourier coefficient ¥ (ay) = a¢(fy) of fy, for every
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£ 1 Np. As proved by Ribet, Vy, is an absolutely irreducible G¢-representation, so
that the Chebotarev density theorem, together with the Eichler—Shimura relations (7)
tell us that there exists an isomorphism of Ky [Gg]-modules

Ty @y Ky = Vy. (10)

In other words, Tt interpolates the contragredients of the Deligne representations of
the classical specialisations of the Hida family f. (Note: 7§ is the contragredient of
the representation denoted by the same symbol in [31].)
Together with the representations 7¢, we are particularly interested in a certain
self-dual twist T¢ of it, defined as follows. Define the critical character
1/2 _ 1/2 . e V' [, %
eyl ” = [key] 77 1 G — Gal(Q(pp=)/Q) = Z,»>TI' -T—1I",
where the isomorphism is given by the p-adic cyclotomic character y.,. (As p # 2
by assumption, I' = 1 + pZ, is uniquely 2-divisible, e.g. by Hensel’s Lemma, so
that ./-: I' = T is defined.) Let

Tr := Tt ®1 [xey] /% € 11Go1Mod; Ty = T7" ®1lxe] ™% € 1{Go,1Mod,

where we write for simplicity [y.y]~!/? for the inverse of [xcy]'/2. By (8), Ty satisfies
the crucial property:
det Ty = 1(1),

i.e. the determinant representation of Ty is given by the p-adic cyclotomic character.
As explained in [21], this implies that there exists a skew-symmetric morphism of
[[Gq]-modules

m: Te ®1 Tr — I(1),

inducing by adjunction isomorphisms of I[Gg]- and [[G¢,|-modules respectively:
adj(rr) : Ty = Homy(Tg, I(1)); adj(x) : TE = Homy(T;, I(1)).

Let X" (T)" be the set of arithmetic points ¥ with trivial character and weight k,, =
2 (mod 2(p — 1)). Given ¢ € X (), we have ¥ o [yey,]~'/2(Froby) = ¢!7kv/2
for every £ f Np. Equation (10) then gives: for every arithmetic point ¢ € X*h(T)y’,
there exists an isomorphism of Ky, [Gg]-modules

Te Ry K,/, = V,‘{,(l wkvf,/Z).

In particular, Ty interpolates the family of self-dual, critical twists Vy, (1 — k&, /2), for
w & Xari[h(]l)’, B B
Let v be a prime of Q dividing p, associated with an embedding i, : Q < Q p-
Write i : Gq, <> Gq for the embedding determined by iy, and G, = i;(Gq,)
for the corresponding decomposition group at v. Let My denote either 7y or T¢. Set
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Mtfﬁ) = MF € 1[Gq,)Mod, which we consider as [[Gy]-modules via i ;. Then there
is a short exact sequence of [[G,]-modules

.+ —
0> M 5 My 3 My, — 0, (11)

where i, and p; are defined as follows. Fix o, € Gq, and B, € Gq such that
iy = ayoipofBy. Thenonesetsit := B loitoa;and p; :=a, 0 p~ o By,
where it : Mf+ C My and p~ : My — M, denote the inclusion and projection
respectively.

3. The theorem of Skinner-Urban

The aim of this section is to state the main result of [31] in our setting. In order to do
that, we recall Skinner-Urban’s construction of a three-variable p-adic L-function
attached to f and a suitable quadratic imaginary field, and we introduce the Greenberg-
style Selmer groups attached to the Hida family f.

3.1. Cyclotomic p-adic L-functions. For every ¥ € X*™(I), write Oy := ¢ (I).
Let Qo /Q be the Z ,-extension of Q, let G := Gal(Qo/Q), and write Ai,,y =
Oy [Goo] for the cyclotomic Iwasawa algebra over Oy, Let ¥ € X*N(T), let € be a
quadratic Dirichlet character of conductor C, coprime with Np, and let S be a finite set
of rational primes. We say that an Iwasawa function £5 ( f,,) € Afg is an S-primitive
(cyclotomic) p-adic L-function of fy & € if it satisfies the following interpolation
property. For every finite order character y € Gy — 6; of conductor p¢x and
every integer 1 < j < ky — 1:

i1 { pS B e, o' Tex(p)- p’!
A 1(£5 ) = weapyer - (1 L)

(P CY (G = DLy ol e )

Y — T sen(e)-(—1)/—1
(—2mi)! lG(a)J Ly 16)'QE(6)( )

€Oy, (12)

where the notations are as follows. L( fy, it,s) = L?(fy. i, s) denotes the analytic
continuation of the complex Hecke L-series L(fy,1,s) = Y oo, u(n)%”—) =
[T E¢(fy ® p, £75)"1 of fy twisted by u; for every finite set ¥ of rational primes,
LE(fy.10,8) = [Tpex Ee(fy @, €75)-L(fy, 1, 5). G(11) denotes the Gauss sum
of the character p. Finally, SZR are canonical periods of fy, as defined, e.g. in [31].
We recall that Q?w is an element of C*, defined only up to multiplication by a

p-adic unit in Oy, and such that the quotient appearing in the second line of the
equation above lies in the number field Q (¥ (a,) : n € N) generated by the Fourier
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coefficients of f,. Together with the Weierstra} preparation theorem, this implies
that £3 (fy), if it exists, is unique up to multiplication a unit in O,";. For a proof of
the existence, see [19, Chapter IJ.

3.2. Skinner-Urban three variable p-adic L-functions. Let K/Q be a quadratic
imaginary field of (absolute) discriminant D, let gk 1 6 p be a rational prime which
splits in K, and let S be a finite set of finite primes of K. We assume that the
following hypothesis is satisfied.

Hypothesis 2. The data (K, p, L, qx, S) satisfy the following assumptions:
e Dk is coprime with 6Np.
o psplitsin K.
e L/Qp contains the finite extension Qp (D}gz, (—1)42, ll/Np) /Qp.
e S consists of all the primes of K which divide qg Dk Np.

Let /K be the Z%-extension of K. Then K = K- K, where K (resp., K_)
is the cyclotomic (resp., anticyclotomic) Z ,-extension of K. Denote by G, =
Gal(Koo/K) = Gal(Qw/Q) and D, := Gal(K/K) the Galois groups of Ko,/ K
and K /K respectively, so that Gal(K/K) = Geo X Do, and let I 1= [[Go].
Section 12 of [31] constructs an element

L3 () € [[Goo X Do = Ioo[Doo].

satisfying the following property: given ¥ € X*N(I), write ¥ : [[Goo X Doo] —
Afg = ¥ (I)[G o] for the morphism of Of, |G« | -algebras whose restriction to L'is v,
and s.t. (Do) = 1. Moreover, fix canonical periods 2 := Q?w for fy. Then,

for every ¥ € XN (I), there exists Ay € Oy, such that

Y (LR ®) = Ay - L5(fy) - LE (fy). (13)

where £5(fy) := L (fy) (resp., L2  (fy)) is an S-primitive cyclotomic p-adic
L-function of fy (resp., of fy ®ek), computed with respect to the periods Qi Here
ex . (Z/DgZ)”" — G; is the primitive quadratic character attached to K /Q, and
we write for simplicity £5 (fy) := Ef"(fw), where S, := {{ prime : {|gg Dxg Np}
is the set of rational primes lying below the primes in §. More precisely, such
a p-adic L-function L3 r () = E*f((f; I¢) is attached to every generator lg of the
free rank-one ]I-module H¢ (mentioned at the end of Section 2.1), and it is a well
defined element of [ [Duo] only up to multiplication by a unit in I. We refer to
[31, Theorems 12.6 and 12.7 and Proposition 12.8] for the proofs of these facts, and
for the interpolation property characterizing £ x (D).
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Remark 3.1. Recall that Hypothesis 1 (denoted (irred)s in [31]) is in order, i.e. that
the residual representation p; is assumed to be (absolutely) irreducible. As explained
in Remark 2.1, we also know that p; is p-distinguished, i.e. that condition (dist)¢
in [31] is satisfied. These two hypotheses are used by Skinner and Urban in their
construction of Ei(f) (cf. Section 3.4.5 and Theorems 12.6 and 12.7 of [31]).

3.3. Greenberg Selmer groups. Let F/Q be a number field, and let F/F be
a Zp-power extension of F, ie. Gal(F/F) = Z, for some r > 0. Write
I :=I[Gal(F/K)] and

Ti(F) := Tt @1 17(s7') € 15(6,1Mod,

where e : Gr — Gal(F/F) C I} is the tautological representation. Let v be
a prime of F dividing p, associated with an embedding i, : Q — Q,, and let
i+ GF, — GF denote the corresponding decomposition group at v. Define

Tr(F)y = Tty ®117(e55) € 17(6,,]Mod,

where ex, 1= e 0i, : GF, — I%. The exact sequence (11) then induces a short
exact sequence of [z[G f, |-modules

it m
0= TH(F)T S Ti(F) B Tr(F); — 0. (14)

Let S be a finite set of primes of F, containing all the prime divisors of NpD
(where D f := disc(F/Q) is the discriminant of F/Q), andlet Gr 5 := Gal(Fs/F)
be the Galois group of the maximal algebraic extension Fs/ F which is unramified at
every finite prime v ¢ S of F. As F/F (being a Z ,-power extension) is unramified
outside p, T¢(F) is unramified at every finite prime v ¢ S of F, i.e. T¢(F) is a
[#[GF,s]-module. Let a € Spec(lx), and write [ := Homeon(Ir. Qp/Zp) for
the Pontrjagin dual of I, so that I-[a] is the Pontrjagin dual of Ir/a. Define the
(discrete) non-strict Greenberg Selmer group:

Sel3-(f, a)

:=ker | H'(Gr,s. Te(F) @1, Ila]) — [ [ H' (Iv. Te(F); &1 Ii[al)
v|p

(15)

where I, = If, C GgF, is the inertia subgroup and the arrow is defined by
]_[v| p Pux ©T€Sy, Py, being the morphism induced in cohomology by

Py - Ty (F) = Te(F), .
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It is a cofinitely generated [ /a-module, i.e. its Pontrjagin dual
X3 (f, a) := Homy, (Sel3-(f, a), I*-[a]) = Homg,, (Seli(f, a), Qp/Zp)
is a finitely-generated [ /a-module. If a = 0, write more simply
SelS(f) := SelS.(f,0); X3(f) := X5(£,0).
By construction there are natural morphisms of I ~/a-modules
Sel(f, a) — SelS(F)[a]; X3(f) ®1, Ir/a — X3(f,a). (16)

Since I is a normal domain, so is I» = I[Xy, ..., X, ] (with Gal(F/F) = Z")).
Write Chfr(f ) C I £ for the characteristic ideal of the [ z-module X J*E (F) (cf. Section 3
of [31]):

Ch3(f) := {x € I : orda(x) > length, (X2(f)),
for every a € Spec(I#) s.t. height(a) = 1}.

Here ord, : Frac(Iz) — Q U {oc} is the (normalised) discrete valuation attached to
the height-one prime a, and length,, : (1-Mod); — Z U {00} is defined by sending a
finite [ -module M to the length over (I£), of the localization M, of M at a.

Remark 3.2. Assume that F/ F contains the cyclotomic Z ,-extension Foo C F (1L poc)
of F. Thanks to the work of Kato [15], we know that X JS_‘: (f) is a rorsion [ r-module
(see also Section 3 of [31]), so that Chf,(f) is a non-zero divisorial ideal (which is
principal if [ is a unique factorization domain).

3.4. The main result of [31]. Let (K, p, L, gk, S) be as in Section 3.2, and assume
(asin loc. cit.) that this data satisfies Hypothesis 2. In particular, K /Q is an imaginary
quadratic field in which p splits. Let K = K- K, be the Zf,-extension of K, and let

[3“}; (f) € Ix = [[Gal(K/K)] be Skinner—Urban’s three variable p-adic L-function.
Together with Hypotheses 1 and 2, we have to consider:

Hypothesis 3 (ram). Decompose N = NTN~, where NT = N I-(F (resp., N~ = Ng)
is divided precisely by the prime divisors of N = N 4/ p which are split (resp., inert)
in K. Then:

e N7 is square-free, and has an odd number of prime divisors.
o The residual representation py is ramified at every prime {||N~.
The following fundamental and deep result is Theorem 3.26 of [31].
Theorem 3.3 (Skinner—Urban [31]). Assume that Hypotheses 1, 2 and 3 hold. Then

Chi(f) € (Lx (D).
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4. Restricting to the central critical line

The aim of this section is to specialise Skinner—Urban’s result to the (cyclotomic)
central critical line in the weight-cyclotomic space. More precisely, we use
Theorem 3.3 to compare the order of vanishing of a certain central-critical p-adic
L-function of the weight variable with the structure of a certain central-critical
Selmer group attached to Hida’s half-twisted representation Tf.

In this section, the notations and hypotheses of Section 3.4 are in force. In
particular, we assume that Hypotheses 1, 2 and 3 are satisfied.

4.1. The (localised) Hida family. Let ¢, € X*"(I) be the arithmetic point of
weight 2 and trivial character introduced in Section 2.1, with associated p-stabilised
weight-two newform f € S»(I'o(Np),Z)™¥. Write ps := ker (qbf) € Spec(D).
By [14, Corollary 1.4], the localisation ]Ipf is a discrete valuation ring, unramified
over the localisation of A = O [I'] at the prime p = ps N A. Fix a topological
generator yy € I' = 1 + pZ,, and write wy, := yw — 1. Then wy, is a generator
of the prime P, so that

pf'pr = wwl'prs (17)

i.e. wy € A is a uniformiser of the discrete valuation ring ]Ipf.

Let W C Z, be a non-empty open neighbourhood of 2. Denote by o/ (W) C
Q, [k — 2] the subring of formal power series in k — 2 which converge for every
k € W. As explained in [12] (see also [21]), there exist an open neighbourhood
U = Uy CZp of 2, and a natural morphism (the Mellin transform centred at ¢ y)

M:T— &/ (U),

characterised by the following properties: for every x € I write My (k) := M(x)(k) €
&/ (U). Then: (i) for every x € I, Mx(2) = ¢ r(x) and (ii) for every y € I" C I*,
Mpy(k) = y*2 := exp, ((k —2) - log,(y)) € #(Zp) ([] : A — I being the
structural morphism). For every positive integer n, write a, (k) := M(a,) € &/ (U)
for the image of the n-th Hecke operator a, € I under M, and consider the formal
g-expansion with coefficients in .o/ (U):

foo := ) an(k)g" € & (U)[4].

n=1

This is the ‘portion’ of the Hida family f we are mostly interested in. More precisely,
let
U :={keUNZ:k>2k=2(mod2(p—1))}

be the subset of classical points, which is a dense subset of U. For every classical point

M ev —
ik € U, the composition ¢ : I — &7 (U) -5 0Q p (Where ev, is evaluation at k)
is an arithmetic point of weight « and trivial character, and the weight-k specialisation
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Je = Jfoo = Yoo an(k)g™ € Se(To(Np)) is a p-ordinary normalised eigenform
of weight « and level I'g(Np). By construction: f = f,. Moreover, N divides
the conductor of f, for every x € U (and f, is old at p for k > 2, i.e. f, is the
p-stabilisation of a newform of level I'g(N) when « > 2 [14]).

4.2. The central critical p-adic L-function. Let
FU xZLyxZp) CQplk—2,5—1,r—1]

be the subring of formal power series converging for every (k,s,r) € U X Z, X Z,,.
Let xey : Goo = 14 pZ, be the p-adic cyclotomic character, and fix an isomorphism
Xacy « Doo = 1+ pZ,. We can uniquely extend the Mellin transform M to a morphism
of rings

N : I[Goo X Doo] —> & (U x Zp, x ),

by mappingevery o € Dy (resp.,0 € G) to the analytic function on Z , represented
by the power series M(0) := Yaey(0)"™' = exp, ((r — 1) - log,, (Xacy(0))) (resp.,

N(o) := Xey(0)*~1). We then define the S-primitive analytic three-variable p-adic
L-function of feo/K:

L3(foo/ K. k,5,7) :=W(L%(B) € & (U XZp xZLp).
In the rest of this note, the (cyclotomic) central critical line

£ :={(k,s,r) eUxZy,xZp:r=1;s=k/2}

will play a key role. Let [ be a prime of K contained in .S, which does not divide p.
Let £ # p be the rational prime lying below it: [ N Z = {Z. Define the central
critical £-Euler factor of f/K as

Ei{ foo/ K, k) 1= (1 _ k) + 1N(£))

O 2wy L

N . ex(£)ag(k) 4 InDpg (€)
()% w(0) ¢

) v

where (£) := w(£)"'€ € 1 + pZ, is the projection of £ to principal units and 1
denotes the trivial Dirichlet character modulo M, for every M € N. Then

E¢(foo/ K. 6) = E¢(fe, /) - E¢(fie ® €, £7/?)

for every classical point k € U®!, where E;(*, X) is the {-th Euler factor of the
eigenform *, so that the Hecke L-series of * is given by the product L(*,s) =
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I, prime £q(*, 4" )~ ! (cf. Section 3.1). Define the central critical S-Euler factors
of foo/K by
Es(foo/ K. K) := [ | Ee(foo/ K. K),

llgg ND g

where the product runs over the rational primes lying below a prime [ { p
of S (cf. Hypothesis 2). One has E¢(fe/K,2) # 0 for every {|NDgkqk,
so that, up to shrinking the p-adic disc U if necessary, one can assume that
Es(foo/K, k) € &/ (U)*. Define finally the central critical p-adic L-function of
Joo/ K:

LS (foo/ K k) 1= Es(foo/ K. k)™ - L5 (foo/ K.k, k/2,1) € & (U).  (18)

Note that, while the definition of Lﬁ( foo/K,k,s,r) depends on the choice of
the isomorphism Y.y : Do = 1 + pZp, the analytic function L7 (foo/ K, k) is
independent of this choice.

4.3. The central critical Selmer group: a control theorem. Fix topological
generators Y+ € G, Y- € Do and yyy € T', and write @y 1= y9 — 1. We
can (and will) assume that xcy(y+) = yw, Where we write again Yoy : Goo =
14+ pZ, = I" C I for the isomorphism induced by the p-adic cyclotomic character.
Let

Xc
OF : Gal(K/K) = Goo X Doo — Goo = T Lo 7 L ¥

be the cyclotomic central critical Greenberg character. We can extend uniquely @}
to a morphism of [-algebras, denoted again by the same symbol, @; I — 1 As
easily seen, its kernel B is given by

P = ker (OF : Ix + 1) = (Bee, w-) - Ix; Bee := [yw] — 7 € Ik,

i.e. P is generated by w_ and w.. In analogy with the definitions above, we define
the (cyclotomic) S -primitive central critical (non-strict) Greenberg Selmer group of

f/K by

Sely(f/K) == ker | H'(Gk,s. Te @1 1*) — [[H'(1,. Tg, ®11%)
vlp

Here Ty = (Ty, T;") is Hida’s half-twisted representation defined in Section (2.2)
and S is as in Section 3.2. Moreover, the arrow refers again to ]_[v| p Dux O T€Sy,
where p, : Ty — Ty, is the projection introduced in equation (11) 3. Denote by

3We should keep in mind that the cyclotomic variable plays a non trivial role in the definition of
H1da s half-twisted representation Ty. This explains the appearance of the subscript Qo in the notation
e]Q “(f/K).
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X 8(f/K) the Pontrjagin dual of Selg,**(f/K):

X8/ K) = Homyg,, (Sel§™(£/K),Qp/Zp).

With these notations, and the ones introduced in Section 3.3, we have the following
perfect control theorem.

Proposition 4.1. There exists a canonical isomorphism of I-modules
X3 () @1 I /P 2= X5 (1/K).

Proof. Leta; = (w-) € Spec(lx) and a; := (w,.) € Spec(lk, ). (We remind that
K = KooK, is the Zi-extensmn of K and K/ K is the cyclotomic Z ,-extension.)
As H;C/Cll o ]IKoo and Tf(IC)/al = Tf(Koo)i

Ty (K) ®1,c Tclo] = Tr(K) /a1 ®rc /oy Ix, = Tt(Koo) g,

and similarly 7¢(K), ®ic Ig[m] = Ti(Koeo), ®ig,, Ik for every v|p. In
particular Sel? ¢(f,a;) is canonically isomorphic to Sel (f). Moreover, by
[31, Proposition 3.9], the maps (16) induce isomorphisms

Selg__(f) = Selg (O)[a1]; X (F) ®1, Ic/ay = X5_(F). (19)

Kw’

Similarly, @} induces an isomorphism: Ig._/a; = [, an isomorphism of
[[Gk s]-modules: T;(Ks)/az = Ty and isomorphisms of I[G g, ]-modules:
Tf(Koo);‘:/az o ']I'fi,v for every v|p. (Indeed, write Ok : I = Ix,, — I for
the ‘restriction’ of @} to [oo. Then O o 8;(‘1)0 — [ch]_llz on Gg,s, so that
Tf(Koo)/ag - Tf(Koo) ®]I00a@K I=T:®; HOO(EELO) Rloo,O® g I
= Ty Qg [ch]‘l/z = T¢.

The same argument justifies the statement for the £-parts at a prime v|p.) As above
(i.e. retracing the definitions), this gives a canonical isomorphism of Selmer groups

el (f/K) = Sel§__(f, az). (20)
Let us consider the following commutative diagram with (tautological) exact rows:

0 —— Sel§_(f.az) H' (G5, Tr(Koo) ®1yey, Ty [02]) —— Ty H' U, Te(Koo)y ®ryey, T [02])

" | |

0— (et} _(0) [a2] — (H' (G5, Te(Kow) @1, T ) o2l — (ITuip H' (T Te(Koo); @14, Tk ) 2]

where the vertical maps are the natural ones induced by the inclusion ]I*Koo [az] C ]I}oo
(cf. (16)). We claim that « is an isomorphism of I-modules:

o : Sely_(f. a2) = Sely__()[az]. (21)
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W
The map B sits into a short exact sequence (arising from 0 — ]I*Koo [ap] — ]I"I‘cco—iC

]I*Koo—> 0):

0— H°(Gk,s. Tt(Koo)®1x I%..) ) Wee > H' (Gk.s. Tt(Koo) Q1 Ik [02])
B *
— H'(Gg,s.Ti(Koo) Q1 Ik )laz] — 0.

Hypotheses 1 and 2 imply that the restriction of py to Gk is irreducible. Then the
first H? vanishes, and B is an isomorphism. By the Snake Lemma, the morphism o
is injective, and its cockerel is a sub-module of ker(y). To prove the claim (21) it is
then sufficient to show that

ker(y) = 0. (22)
Looking again at the exact /,-cohomology sequence arising from 0 — I} [az] —
I[’;(oo = ]I"‘KOo — 0, we have
ker(y) = [ [ H'Uv Te(Koo)y ®ig, Tko,) ®lxey Ikoo/Tee:  (23)
vlp

Note that Tp(Keo), ®1x Ik, = H*Koo(a; . 8}_{100) (cf. Section 2.2). Since
Ix../(y+ — DIk, = I, one finds

H(Iy, Te(Koo)y ®1x, Ik,) = Ik, @p)[y+ — 1] = I*(a})

(recall that a7 is the unramified character on Gq,, sending an arithmetic Frobenius

to a,). Finally, note that @ = [pw] — yi acts as Wy = [yw] — 1 on I* =
Ik [y+ — 1], so that [* is wc-divisible, and hence

H(Iy, Ti(Koo)y @ik, Tk..) ®lxey Koo/ Tec = 0

for every prime v|p of K. Together with (23), this implies that (22) holds true, and
then proves the claim (21). When combined with the isomorphism (20), this gives
canonical isomorphisms of [-modules

Sely*(f/K) = Sely_ ()[az]; X5 S(f/K) = X3 _(£)/az.

Since ‘B = (a;,az) - Ic, combined with the second isomorphism in (19), this
concludes the proof. ]

4.4. Specialising Skinner-Urban to the central critical line. We can finally state
the following corollary of the theorem of Skinner—Urban. For every f(k) € </ (U),
write ordg—» f(k) € N U {o0} to denote the order of vanishing of f(k) at k = 2.
Given a finite [-module M, write as usual length,, (M) for the length of the
localisation M}, . over the discrete valuation ring I, .
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Corollary 4.2. Assume that Hypotheses 1, 2 and 3 are satisfied. Then
S.cc
ordg=2 L (foo/ K. k) < length, (X 5°(f/K)).

Proof. Combining Skinner-Urban’s Theorem 3.3 with Proposition 4.1, we easily

deduce that the characteristic ideal of XS;ZC (f/K) is contained in the principal ideal

generated by the projection [% (f) mod P (cf. the proof of [31, Corollary 3.8]). In
other words

{Characteristic ideal of Xg:c(f /K )} C (ﬁ}g((f) mod ‘13“).
In particular, writing ord, , : Frac(l) — Z U {oo} for the valuation attached to p ¢,
ordy , (L3 (F) mod ) < length, (Xg;fj(f/K)) .

Write for simplicity Cg;: (f/K) := L3(f) mod P. To conclude the proof it remains
to verify that
ordy, Lo ) K) = otdy=s L. 3 foo K Ho /3, 1) (24)

Note that, by the definition of the Mellin transform M (and the normalisation
Xey(Y+) = Yw) we have

M = 2(s—1 2(s—1 2(k/2—
H(@e)(k,5,7) = k2 =yl ™0 = yal 0 (ral27 1)

(25)
=0mod (s —k/2)- (U xZ, xZL,),
and then M(w.)(k,k/2,1) = 0. Similarly, writing £y, := log , (yw) and £— :=
1og , (Xacy(y-)), we have
M(wy) (k) = £y - (k —2) mod (k — 2)?;
() (k) oF ! ) ( ) 26)

Mw_)(k,s,r)={_-(r—1)mod (r — 1)%.

Assume now that E(S};‘; (f/K) € ppL,, — p’}’“]lp_ ., for some integer m > 0, so that
ord, fﬁgﬁ(f /K) = m. Since p¢l, , is a principal ideal generated by wy, (17),
equation (26) gives

ordg —,M (z:gj;(f/x)) (k) = ordy , L3(F/K).

On the other hand, we have by construction Ef{(f) = ngg(f) mod ‘P, so that
equations (25) and (26) give

LS (foo/ K. ek /2, 1) :=H(LE @) (. k/2,1) = M (LG ®/K) ) ().
Combining the preceding two equations, we deduce that (24) holds in this case.
Assume finally that DIS;(f) € P, ie. Eéi;(f/]() = 0. (This is the case ‘m = 00’.)

Then Lg(foo/]{, k,k/2,1) = 0by (25) and (26), so that (24) holds also in this case
(giving oo = 00). O
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5. Bertolini-Darmon’s exceptional zero formula

Throughout this section, the notations and assumptions are as in Section 4. In
particular, we assume that Hypotheses 1-3 are satisfied.

Let k € UY be a classical point in U, let ¢ € X*"(I) be the associated
arithmetic point (of weight « and trivial character), and let f, € Sc(I'o(Np)) be the

corresponding p-stabilised newform (cf. Section 4.1). Write qb;r = @ X Xfy/ 271yt

[[Goo x Doo] — Q,, for the morphism of Op-algebras such that qb,I (0 x h) =
Xey(0)</271 for every 0 x h € Goo X Do, and such that Pr(x) = de(x) for every
x €. Sincek =2mod 2(p —1), p # 2, and p splits in K (i.e. ex(p) = 1),
equations (12) and (13) yield

" 2
Forsan 1 2 [P /2= LIPS k/2)
¢x (E'K(f)) - A"DK (1 ap(,{)) (—271’1')"/2_19;(

Gleg)k/2-1)!- LSMPY(fo, ek, k/2)
(—2mi /21

By the very definition of the central critical p-adic L-function L ( foo/ K, k) we
then deduce: for every k € U*

i 2
ce _ap (P /2= D'L(fe,k/2)
bpldoof K} =400 (1 ap(:c)) (—2miy2-1Q

G(eg)(k/2 — DIL(fic, €k, K/2)
(—2mi)<I2-1Q;, '

Since U is a dense subset of U, if we compare this formula with [5, Theorem 1.12],
we obtain a factorisation

k=2
LG (foo/K.k) = D* Lp(foo k k/2)Lp(foo. €.k K/2). (27)

Here, for every quadratic Dirichlet character y of conductor coprime with Np,
Ly(foo, x,k,s) € @ (U xZ,) is a Mazur-Kitagawa two-variable p-adic L-function
attached to f. and y in [5, Section 1] (see also [12, 16,25]), and we write simply
L,(foork,8) := Lp(foos Xurivs kK, §) when ¥ = xuiv is the trivial character. Like
chc(foo/K, s) (once the periods Q;-;‘K are fixed for k € U, Lp(foo.x.k.58)
is characterised by its interpolation property (namely [5, Theorem 1.12]) up to
multiplication by a nowhere-vanishing analytic function on U, so the preceding
equality has to be interpreted up to multiplication by such a unit in &7 (U).
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The following exceptional-zero formula is the main result (Theorem 5.4) of [5],
where it is proved under a technical assumption (namely the existence of a prime g|| V)
subsequently removed by Mok in [18]. Write sign(4/Q) € {£1} for the sign in the
functional equation satisfied by the Hecke L-series L(A/Q,s) = L(f,s).

Theorem 5.1 (Bertolini-Darmon [5]). Let y be a quadratic Dirichlet character of
conductor coprime with N4 = Np, such that

X(=N) = —sign(4/Q): x(p) =ap(A4) = +1.

If x is non-trivial (resp., x = 1), let K, /Q be the quadratic extension attached to x
(resp., let Ky := Q). Then

1. Lp(foo: X:k,k/2) vanishes to order at least 2 at k = 2.
2. There exists a global point P, € A(Ky)* #such that

2

EﬁL'p(fOOv X k. k /2= = log} (Py),
where log 4 : A(Gp) —-Q p IS the formal group logarithm?, and = denotes equality
up to multiplication by a non-zero (explicit) factor in Q;.

3. Py has infinite order if and only if the Hecke L-series L( f, x,s) has a simple
zeroats = 1.

In the preceding result, ysis'allowed to be a generic Dirichelt character of conductor
coprime with Np. Applyingthe theorem to both y = yuiv and y = €k, we obtain
the following corollary.

Corollary 5.2. Assume that:sign(A/Q) = —1, and that Hypotheses 1, 2 and 3 are
satisfied. Denote by L(A/K.,s) := L(f,s) - L(f €x.s) the complex Hasse-Weil
L-function of A/ K. Then LG ( foo/ K, k) vanishes to order at least 4 at k = 2, and

ordg=2 Ly (foo/ K. k) =4 <= ords=1L(A/K,s) = 2.

Proof. Since sign(A/Q) = —1, the hypotheses of the preceding theorem are satisfied
by x = xwiv.- Moreover, since p splits in K by Hypothesis 2, ex(p) = +1, and
ex(—N) = —e(N7) = +1 by Hypothesis 3. Then y = ek also satisfies the
hypotheses of the theorem. The corollary then follows by applying the theorem to
both y = yuiv and y = €k, and using the factorisation (27). O

4By A(K,)* we mean the subgroup of A(K,) on which Gal(K, /Q) acts via .
X R o be v
SWriting $re 1 Q),/ g% = A(Q,) for the Tate p-adic uniformization of 4/Q, (see Section 6.3

below), one can define log 4 := log,, , od 1 : A(Gp) — GP, where log,, , is the branch of the p-adic
logarithm vanishing at the Tate period g4 € pZ, of A/Qp.
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6. Bounding the characteristic ideal via Nekovar’s duality

Recall the arithmetic prime ¢ r € X*™"(I) defined in Section 4.1, and write as above
p s := ker(¢ ¢), which is a height-one prime ideal of Il. Let y be a quadratic Dirichlet
character of conductor coprime with Np. If y is non-trivial (resp., y = 1), let K, /Q
be the corresponding quadratic extension (resp., let K, := Q), and let D, be the
discriminant of K. Fix afinite set S of primes of K, containing all the prime divisors
of NpD,, and decomposition groups Gk, ., := Gal(Qy/Kyw) — Gk, at w, for
every w € S dividing the rational prime £ (where K ,, denotes the completion of K
at w). Define the strict Greenberg Selmer group of Ty/ K, (cf. Section 2.2):

Sels(f/Ky) :=ker | H'(Gk,,s, Ty ®11%) — [ [ H'(Ky0. Ty, ®11%) | .
vlp

where Gk, s denotes as usual the Galois group of the maximal algebraic extension
of K, which is unramified outside S U {oc}. Let

X&) Ky) = Homy,, (Self5 (£/Ky), Qp/Z) °.

For every Z[Gal(K,/Q)]-module M, write M * for the submodule of M on which
Gal(K,/Q) acts via y (so that MX := M is yx is trivial, and M % is the submodule
of M on which the nontrivial automorphism of Gal(K,/Q) acts as —1 if y is
nontrivial). The aim of this section is to prove the following theorem.

Theorem 6.1. Let y be a quadratic Dirichlet character of conductor coprime
with Np. Assume that:

(i) x(p) =1, i.e psplitsin Ky;
(ii) rankzA(K,)* = 1;
(iii) the p-primary subgroup (A /K )% oo of IIL(A/ K y)* is finite.

Then the localisation at p y of XG.(£/ K )X is isomorphic to the residue field of the
discrete valuation ring 1, , :

Xe (/K @1y, =L, /prly,.

6.1. Nekovar’s theory. In this section we recall the needed results from Nekovar’s
theory of Selmer complexes [20]. Unless explicitly specified, all notations and
conventions are as in loc. cit.

6The Selmer groups already defined depend in general on the choice of the set S. On the other hand,
we are interested here only in the structure of the localisation of X & (f/ K ) at p s, and such a localisation
does not depend, up to canonical isomorphism, on the choice of .S
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6.1.1. Nekovai’s Selmer complexes. Given a ring R, write D(R) := D(gMod)
for the derived category of complexes of R-modules, and D (R) C D(R)
(resp., D ¢(R) C D(R)) for the subcategory of cohomologically bounded complexes,
with cohomology of finite (resp., cofinite) type over R.

Recall the self-dual, ordinary I-adic representation Ty = (T, ']1‘;*:), defined in
Section 2.2. Denote by

Ar 1= Homeon (Tr, ftpo): Af 1= Homeon(T¢, t poo)

the Kummer dual p-ordinary representation. Set Ty := Ty/psTy and T; :=
']I‘fi /p f'I['EE. Then one has

Af = Homcont(Tf! I'Lpoo) = Af[pf]; A? = Homcont(T}F’Mp"O) = A?:[Pf]

Given a multiplicative subset .% of a ring R, and an R-module M, write as usual
=1 M for the localisation of M at.%. Fix a multiplicative subset .# of I or Oy, let

X e{S T, Ty, Ar, Ay}
and let Ry € {7 11,.710..1,0.} be the corresponding ‘coefficient ring’.
For every prime v|p of Ky, set X;f := 7T (resp., #~IT/, A, A}) if

X = .S Ty (resp., /1Ty, As, Ay), and X, := X/X,. The exact sequence (11)
then induces short exact sequences of Rx[G g, ]-modules

iy Py
0—>XSL—>X - X, —=0.

(Recall that ']I‘;"r w = 'II'f+ for every prime w|p of Q, cf. equation (11).)
As in [20, Section 6], define local conditions Ag(X) = {A,(X)},cs for X/K,
as follows’. For a prime v € § dividing p, let A,(X) be the morphism

iy (X) : U (X) i= Co(K vy X)) — Co (K0, X)),

i.e. Ay(X) is the Greenberg local condition attached to the Rx[Gk, ,]-submodule
if X, C X. Forevery S > w { p, we define Ay (X) to be the full local
condition: it (X) : U (X) = 0 - C2 (Kyw,X) (resp., the empty local

"Let R be alocal complete Noetherian ring with finite residue field of characteristic p, and let 7" be an
R-module of finite or cofinite type, equipped with a continuous, linear actionof G g, 5. Foreveryw € §,
fix a decomposition group Gy, at w, ie. Gy := Gk, .w <> Gk, - Gk, s. According to Nekovat’s
theory of Selmer complexes, a local condition at w € S for T 1s the ch01ce Ay (T) of a complex of
R-modules Uy (T), together with a morphism of complexes i, () : US(T) - CauKyw,T).
For G = Gk, s or Gy (w € §), CS (G, T) (also denoted C& (K w,T) when G = Gy) is the
complex of continuous (non- homogeneous) T -valued cochains on G. If # is a localisation of R, and

T = T®RL@ set C® (*,,7) =C® (%,T) ® g #. Then a local condition for 7 at w € S is a

cont COn[

morphism 1 TR % : U (T) ®r % — C2 . (Ky.w,7), obtained as the base change of a local
condition iy, (T) for T at w.
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condition: ij(X) = id : U (X) := C2 . (Kyw, X) = C2 . (Kyw, X)) in case
X € {7 Ty, S 'Tr} (resp., X € {Ar, Ar}). The associated Nekovdi’s Selmer
complex [20] is defined as the complex of Ry-modules

C%(Ky. X) = C%(Gk,.s. X; As(X))

resS—i+
:= Cone (CC'OM(GKX,S, X)® @ urx)y —° @CC'()H((KX’Ua X)) [—1],

veS vES

where ress = @yesres, and i ; = @Uesij (X). It follows by standard results
on continuous Galois cohomology groups [20, Section 4] (essentially due to
Tate [33]) that 5}(1( x. X ) is cohomologically bounded, with cohomology of finite
(resp., cofinite) type over Ry if X is of finite (resp., cofinite) type over Ry. Let

RT (Ky. X) € D} (oo oy (Rx):

ﬁ*f(K)(v X) = H*(i{—-l:"f(KX’ X)) € (RXMOd)ft,(resp., cf)

be the image of 5} (K, X) in the derived category and its cohomology respectively.
If X € {T¢, Ty} and Ry € {I, O} is the corresponding coefficient ring, then

RT f(Ky, X) = RT £(Ky, X) @Ry Ry:
H%(Ky. X) = H%(Ky, X) ®ry Rx.
which we consider as equalities in what follows.
Let X € {7 'y, 'Ty} (resp., X € {As, As}), and let S > w  p. Define
the Rx[Gk, ,w]-module X := X (resp., X, := 0). By the definition of Nekovéi’s

Selmer complexes, there is a long exact cohomology sequence of Ry-modules
[20, Section 6]:

o> @ HI (K, X) > HY(Ky, X)

weS

— H(Gg,5.X) > P HI(Kyw. X)) = -+

weS
In particular this gives an exact sequence of R y-modules

XYCky.5 5 @ HO(Kx,w,Xu_)) — ﬁlf(Kx,X) - 6(K,, X) = 0. (28)

wesS

Here S(Ky, X) = 6(Gk,,s. X) is the (S-primitive, strict) Greenberg Selmer group
of X/ K, defined by

S(Ky. X) := ker (HI(GKX,S,X) — T] Hl(Kx,w,X;)).

wesS
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6.1.2. A control theorem. We know that I, , is a discrete valuation ring, and that
its maximal ideal p /I, , 1s generated by @y 1= yw— 1 € A (see (17)). Write
Vi =Tf ®p, L and Tf’pf = Ty &g ]Ipf. By [20, Propositions 3.4.2 and 3.5.10],
the arithmetic point ¢ 5 € X*1"(I) induces an exact triangle in Dﬁ Iy )

W wi

— — bre ——
RT #(Ky. Trp,) — RT s(Ky, Trp,) — RT £(K,Vy),

and then an isomorphism in Df?l(L):

ey i L(;b}(ﬁ.ff(Kx,Tf,pf)) - ﬁ.ff(Kx, Vy), (29)

where qu} :D7(I, ,) — D(L) is the left derived functor of the base-change functor
¢}(-) = - @, L. (Note that, since / = f has integral Fourier coefficients, the
residue field I, . /p rI, . of I, , equals L.) This induces in cohomology short exact
sequences of L-modules

0— HY(Ky. Tep )/ @w =~ HY(Ky, Vr) = HE (K, Trp e — 0.
(30)

6.1.3. Nekovai’s duality I: global cup-products. Let X' € {Ty, Ty}, and
let R € {I, O} be the corresponding coefficient ring. For ¥ € {I—p s, O —mp}
(where mz is the maximal ideal of Op), write X := . ~'X € {Ty, . Vy} and
Ry :=""Re{l,,, L} Let

JTX:X®RX X — R)((l)

be the localization at .% of the perfect duality 7 : Ty ® Ty — I(1) if X = Ty, or
the localisation at .’ of its ¢ r-base change 7 s := qb} () : T o, Tr — OL(1)
if X = T (see Section 2.2). As a manifestation of Nekovdi’s wide generalization
of Poitou—Tate duality, Section 6 of [20] attaches to mx a morphism in D‘;’I(R x):

Uii‘ :ii-l::f(Kx’X) ®EX ﬁﬁf(KX1 X) — T23RFC,COHI(KX1 RX(I)) - Rx[—3],

where RI¢ cont(Ky, —) denotes the complex of cochains with compact support
[20, Section 5], and the isomorphism comes (essentially) by the surg_gf the invariant
maps of local class field theory for v € S. The pairings UN®* on RT (K, Tty ,)

and Uﬁefk on RT f(Ky,Vy) are compatible with respect to the isomorphism
o B L¢} (ifl_“’f(Kx,’JI‘f,pf)) e ﬁf(Kx, V) in D(L) described in (29).

ek

The global cup-product pairing UN .

gives in cohomology pairings
qUny  HY(Ky, X) ®ry Hy *(Ky. X) — Ry (31)

(forevery g € Z).
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Writing Zx := Frac(RYy), they induce by adjunction isomorphisms

adj (yUNS) : HY (K, X) ®ry #x = Homay, (HY U(Ky, X) ®ry #x, Fx ),
(32)

as follows from [20, Proposition 6.7.7], since RI'con(Ky,w, X) = 0 is acyclic for

every prime w 1 p of K,. (See also [20, Propositions 12.7.13.3 and 12.7.13.4].)

6.1.4. Nekovar’s duality II: generalised Pontrjagin duality. Let X denote either
Ty or T, let Ry be either I or Oy, (accordingly), and let Ay := Homgon (X, tt poo)
be the (discrete) Kummer dual of X. Appealing again to Nekovai’s generalised
Poitou-Tate duality, we have Pontrjagin dualities

Yy (Ky hx) = Homeon (HY (Ky. X).Qp/Z,) = HY (K. X)". (33)
We refer the reader to [20, Section 6] for the details.

6.1.5. Nekovar’s duality III: generalised Cassels-Tate pairings. Section 10
of [20] — which provides a generalisation of a construction of Flach [10] — attaches
to w : Ty @ Ty — 1(1) a skew-symmetric pairing

UgT . ﬁ?"(ny Tf)tors X1 ﬁ?’(Kx, Tf)tors — FraC(H)/]I:

where M., = ker (M —l> M ®; Frac(]I)) denotes the I-torsion submodule of M.
Denote by

U;ET " ﬁzf(Kx, Tf,pf)tors ®11pf ﬁ2f(KXv Tf,pf)tofs - Frac(]lpf)/]lpf (34)

its localization at p 7, Niors := N[w]] denoting now the I, ,-torsion submodule
of N (see (17)). As proved in [20, Proposition 12.7.13.4], UST is a perfect pairing,
i.e. its adjoint

adj (UgT) : H?(KXa Tf,pf)tors = HOme P (Hif (KXs Tf,pf)tO]‘Sa Fl‘aC(pr)/pr)
| (35)
is an isomorphism. We call UST Nekovdr (localized) Cassels—Tate pairing on Tep -
This is the pairing denoted Uy (p ,),0,2,2 in loc. cit. We refer to Sections 2.10.14, 10.2
and 10.4 of [20] for the definition of UST.

6.1.6. Comparison with Bloch-Kato Selmer groups. Recallthat Vs .= Tr ®o, L,
and ijfv = T}":v ®o, L for v|p. Then Vy = Ty, ®1, .4, L is isomorphic to

the ¢ r-base change of the localisation T,y ., and similarly V}tv is isomorphic to
the ¢ r-base change of the localisation of Tfﬂfv at pr. By (7), combined with the
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Chebotarev density theorem and [28, Chapters V and VII], there is an isomorphism
of L[Gk,,s]-modules (cf. Section 2.2)

Vi 2 Vp(A) ®q, L, (36)

where V,(4) = Tapy(A4) ®z, Qp is the p-adic Tate module of A/Q with
Q-coeflicients. We fix from now on such an isomorphism, and we will use it
to identify V¢ with V,(A4) ®q, L.

Consider the classical (or Bloch—-Kato [8]) Selmer group attached to V,(A4)/ K
via Kummer theory:

I H'(Ky, Vp(4))

Sel,(A/K,) :=ker | H' (K, 5, V,(A)) =
p X X P i A(Kx,v)®Qp

(it is easily verified using Tate local duality and [28, Chapter VII] that H (K v,
Vp(A)) = 0 for w 1 p), sitting in a short exact sequence

0— A(KX)QQP — Sel,(A/Ky) = V) (UI(A/KX)) — 0, (37)
where III(A/K ) is the Tate—Shafarevich group of A/ K, and
Vp(') =% Lii]nz](')p" ®Zp Qp

is the p-adic Tate module of the abelian group () with Q,-coefficients. R. Green-
berg [11] has proved that

Sel,(A/Ky) ®q, L = &(Ky, Vy).

Since ap, = ap(A) = +1 (as A/Q) has split multiplicative reduction), the Gq,,-
representation Vs = V,(A4)®q, L is a Kummer extension of the trivial representation
L 1.8 VJ}',r , = L(1)and VE , = L forevery v|p (where L is the trivial representation
of Gk,,v and L(1) := L ®q, Qp(1) is its Tate twist). As H°(Gk,,s.Vs) C
H%G Ky, Vy) = 0 forevery w 1 p (by [28, Chapter VII] and local Tate duality),
(28) gives rise to an exact sequence

0—> @D L~ HY(Ky. Vi) = Sel,(4/Ky) ®q, L — 0. (38)
v|p

(See Section 6.3 below for more details.)

6.1.7. Galois conjugation. Let 2{ be as in Section 6.1.1. Section 8 of [20] defines a
natural action of Gal(K,/Q) on H ‘jp(K ¥, X ), making it a Ry [Gal(K,/Q)]-module.
If r is a nontrivial automorphism on K, we will write t(x) or x* for its action on
x € H ?(K x: X). To be short, all the relevant constructions we discussed above
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commute with the action of Gal(K,/Q). In particular, we mention the following
properties.

Nekovii’s global cup products qu§§£‘ (defined in (31)) are Gal(K /Q)-equivari-
ant [20, Section 8].

Nekovai’s Pontrjagin duality isomorphisms (33) are Gal( K, /Q)-equivariant [20,
Prop. 8.8.9].

The abstract Cassels-Tate pairing UST is Gal(K,/Q)-equivariant [20, Sec-
tion 10.3.2].

The exact sequences (28), (30) and (38) are Gal(K,/Q)-equivariant. (In case
K, /Q is quadratic and p splits in K,, the action of the non-trivial element 7 €
Gal(Ky/K) on the first term €P,,, L = L & L in (38) is given by permutation of
the factors: (¢,9")* = (¢',q) forevery q,.q’ € L.)

6.2. The half-twisted weight pairing. Define Nekovdr’s half-twisted weight pairing
by the composition

(= =V Hy (K V) ®L HYy (Ky, Vi)
iwl®iw[ —~

H?(Kx, Trp ) [@wl B, , ﬁi’(Kx’ Tep )@l

cr X‘ewl

L Owt dr
. 4 (Frac(ﬂp_,)/n,, f)[wwt] 1, /o, = LO2'L

where the notations are as follows. The morphism iy : H }(K V) —
H 7} (Ky, Tt,p . )[@w] is the one appearing in the exact sequence (30) (taking g = 1).
UCT is Nekovit’s Cassels—Tate pairing attached to = : Ty ®; Tf — I(1), and
defined in Section 6.1.5. 6Oy : (FraC(]Ipf)/pr)[wwt] =~ I, ,/psl,, is defined
by GW‘(wLw. mod I, ,) := a mod p s, for every a € I, .. (We remind that wy, € A
is a uniformiser of I, . by (17)). Finally, £y := log,(yw) (Where @y, := Yy — D).
Note that both the morphisms iy, and 6y depend on the choice of the uniformiser ;.
Multiplication by £, serves the purposes of removing the dependence on this choice.

Since UST is a skew-symmetric, Gal(K,/Q)-equivariant pairing, and since iy
is a Gal(K,/Q)-equivariant morphism (cf. Section 6.1.7), (—, —)ﬁ'j:‘ﬂ is a skew-
symmetric, Gal(K /Q)-equivariant pairing. (Of course, here we consider on L the

trivial Gal(K, /Q)-action.)
The aim of this section is to prove the following key proposition, whose proof

2Ny

uses all the power of Nekovai’s results mentioned above. Let y be (as above) a

quadratic Dirichlet character of conductor coprime with Np. Write (—, —)ﬁefk’ﬁ for
the restriction of (—, —)l;lf;‘,n to ﬁ}(Kx, V)X L FIlf(KX, V)X, (Of course, if x

is the trivial character, i.e. if K y = Q, we are defining nothing new.) Given an
[-module M, we say that M is semi-simple at py if M, , is a semi-simple I, -
module, and we write length, (M) to denote the length of M,, . over I, .
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Proposition 6.2. Let y be a quadratic Dirichlet character of conductor coprime
with Np, and assume that p splits in K,. Then the following conditions are
equivalent:

1 (_ _)Nek,x

=)\ is a non-degenerate L-bilinear form on H }(K v V)X,

length,, (ﬁ}([{x, irf)X) — dimy (FI}(KX, Vf)X).

3. H ?(K x> L)X is a torsion I-module, which is semi-simple at p 7.

If these properties are satisfied, then XG.(£/K,)* is a torsion I-module, which is
semi-simple at p ¢, and

length, , (Xg;;(f/ KX)X) = dimg, (selp (A/ Kx)’“)'

The proposition will be an immediate consequence of the following three lemmas
(in which we will prove separately the equivalences 1| <= 3,3 <= 2 and the
last statement, respectively).

Lemma 6.3. (—, —)Iljffﬁ is non-degenerate if and only if H ?(K 0 Tep )X is a

torsion, semi-simple I, ,-module.

Proof. Taking the y-component of the exact sequence (30), we see that the
restrictions

. o =qg+1
iXo = ig® : HY (K, Vi) — HYTH (K, T ) [

of the morphisms iy, = iy, defined in (30) are surjective. Since H (}(K xVr) C

H°(G K,s-Vr) =0, this implies in particular that H } (Ky., T,y ,)* is torsion free,

and i&,{x is injective if and only if H }(K x> Ttp,)* = 0. Moreover, since y is

quadratic and ;U is Gal(K; /Q)-equivariant, the duality isomorphism (32) shows
that the latter condition is equivalent to the fact that H ?(K x> Ltp )% is a torsion

I, ,-module.

Write for simplicity N := H ?(K x> Lt.p s )rors for the I,  -torsion submodule of
?I?(KX, Tt ). Since UST is Gal(K,/Q)-equivariant, p # 2 and y is quadratic,
the isomorphism (35) restricts to an isomorphism

adj (US") : N* ~ Homy, , (N*,Frac(Iy ,)/Iy ).
Let Ugik, : N¥[@ww] ® N¥[wyw] — (Frac(l, ,)/I, ) [mw] denote the restriction
of UST to the wy-torsion of NX. It follows by the preceding isomorphism that the
right (or left) radical of U,C,Tgw, equals NX := wy N* N NX[wy,]. In other words,
USE,T;,;‘W[ is non-degenerate if and only if /X = 0. On the other hand, as @, is a
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uniformiser for I, ,, the structure theorem for finite modules over discrete valuation
rings gives an isomorphism of I, -modules N* = @30:0 (I, , /(wwt)j)ej,
for positive integers e; such that e; = 0 for j > 0. Then NX = 0 if and

only if e; = 0 for every j > 1,i.e. if and only if N X is semi-simple.

X o sx

Since i, = i,,;" is surjective, it follows by the definitions that (—, —)Nek’x

Vism

non-degenerate (1.e. has trivial right=left radical) if and only if i, is injective and

uﬁTg‘wt has trivial radical. Together with the preceding discussion, this concludes the

proof of the lemma. 0

is

Lemma 6.4. length, (ﬁz (Ky. Tf)X) > dimg, (ﬁ}(Kx, Vf)X), and equality
holds if and only if "> +(Kx. Tt,p ,)* is a torsion, semi-simple T, . -module.

Proof. Write for simplicity w = @y, M« = H?(KX,Tf,p.f-)x, and A, =
H "}(K x» V)X, so that there are short exact sequences of L-modules (30):

0> M;/w — My - My [w] = 0.

We can assume that M is a torsion T, .-module, hence M; = 0 by the duality
isomorphism (32) (cf. the preceding proof). Then .#, =~ M;[w] and

dimg 4, = dimy M,[w]. (39)

The structure theorem for finite, torsion modules over principal ideal domains yields

an isomorphism
oo
m(J)
=D, /)"

where m : N — N is a function such that m(j) = 0 for j > 0. Since
(I, /@w/) [w] =1, , /@ for j = 1:

length, M = Zm(j)-j = Zm(j) + Zm(j)'(j -1
j=0 j=1 J=2

= dimz Ma[@] + ) m(j)-(j = D).
j=2

Together with (39), this gives length, M> > dimg A, with equality if and only if
m(j) = 0 forevery j > 2, i.e. if and only if M5 is a semi-simple [, ,-module. [

Lemma 6.5. Assume that H ?(K X 'JI'r,pf)X is a torsion, semi-simple IIpf -module.
Then X, (f/Ky)* ®1 1, , is a torsion, semi-simple 1, . -module, and

length, , (X (F/K)¥) = dimq, (Sel,(4/K7)¥).
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Proof. Since adj(r) : Ty =~ Homy(T¢, I[(1)) and Ty is a free I-module, there is a
canonical isomorphism of I[G g, s]-modules

Tf Q1 I* = Hom]I(Tfs ]1(1)) Q1 Homcont(ﬂa Qp/Zp) = Homcom(va Mpoo) = Af,

the second isomorphism being defined by composition: ¥ ® u +— @ o Y.
Similarly, the isomorphism of I[Gq,]-modules adj(z) : Ty = Homﬂ('ﬂ'?' LI(1))
gives an isomorphism of I[Gg,]-modules Ty ®; I* =~ A;. (Recall here that
Ar and A; are the Kummer duals of Ty and ']1‘;F respectively.) This implies that
Selgs (f/Ky) = & (Ky, A). (Note that A, := 0 for every S 3 w { p, so that we
impose no condition at w { p in both the definitions of Self;.(f/ K, ) and &(K, A¢).)
By (28) one then obtains an exact sequence

H%(Gk,.s. A1) > P HO(K 0. Af,) — H' (Ky. Ap) — Sels(£/K,) — 0.
vlp
(40)
We claim that the localisation at p ¢ of the Pontrjagin dual of H %G K,,S» Ar) vanishes,
i.e.

H(Gg,.5. Ap)};, := Homg, (HO(GKX,S,Af),Qp/Zp) @i, =0. (41)

Indeed, let w be a prime of K,. By Tate local duality, H%(Ky,Ar) is
the Pontrjagin dual of H2(K, ., T¢), so that the inclusion H O(GKX,S,Af) C
H%(Ky . As) induces a surjection H*(Ky .y, Trp,) — HO(GKX,S,Af);/. on
(localised) Pontrjagin duals. As Rlcon(Kyw,Trp,) = 0 € D(I,,) is acyclic
for every prime w { p (as easily proved, cf. [20, Proposition 12.7.13.3(i)]), the
claim (41) follows. Since H ;(K x» Ar) is the Pontrjagin dual of H Zf(K x> It) by
Nekovéi’s duality isomorphism (33), applying first Homgz,(—,Qp/Z) and then
— &1 I, , to (40), and using (41), yield a short exact sequence of I, .-modules

0= X&E(E/Ky) @11, > H3(Ky.Try,) > @D H* (Kyo Tf, ®11,,) — 0,

v|p
42)

where we used once again local Tate duality to rewrite the Pontrjagin dual of
H(Kyv. Ap,) as H*(Ky,. Ty ,). Lemma 6.6 below gives an isomorphism of
I, ,-modules

H*(Kyo. Tgy @11p ) = H*(Qp. Tf @11p,) =Ty, /04T

for every v|p. Since p splits in (the at most quadratic field) K,, taking the
x-component of (42) gives a short exact sequence of I, .-modules

0— XEE/K)* @11, — ﬁzf(Kx,Tf,pf)x — 1L, /psl,, — 0.



Vol. 91 (2016) On the p-converse of the Kolyvagin—Gross—Zagier theorem 431

(Note that, if y is nontrivial, the nontrivial automorphism of Gal(K,/Q) acts by
permuting the factors in the sum

H*(Kyv,, Ty, @11y ,) @ H*(Ky . T, @11, ) =iV BV,

where {v|p} = {vi,v2}. Then the e-component of V' & V is equal to either the
subspace {(v,v) : v € V} = Vife = lorto {(v,—v) : v eV} x=Vif
€ = x.) In particular, XG;(f/Ky)¥ is a torsion module, which is semi-simple at p s
if H?,(KX,'JI},,,J,.)X is. Moreover, if H}(Kx,'IFf,pf)X is indeed semi-simple, the
preceding equation and Lemma 6.4 give

lengthpf (Xéi(f/KX)X) — lengthpf (ﬁ?(Kx,’]I‘f)X) -]
= dimy, (HY(Ky V)¥) = 1.

Since dimy, FI}(KX, V)X = dimq, Sel,(4/Ky)* + 1 by (38), this concludes the
proof of the lemma. O

Lemma 6.6. H*(Q,, Tf ®11,,) =1, ,/psl,,.

Proof. Write w := wy,. Since Ty Rl /o = V;F =~ L(1) as Gq,-modules (see
Section 6.1.6), there are short exact sequences of L-modules

0— H (Qp, T @11, ,)/@w — H (Qp.Qp(1)) ®q, L
— H/TQ,. Tf @11, )[w] — 0. (43)

Taking j = 0 one finds H'(Q,. T{ ®11,,)[w] = 0,ie. H'(Qp. Tf ®11, ) is
a free I, ,-module. It is immediately seen by the explicit description of T given
in (9) that H°(Q,,T;") = 0 and H°(Q,,Ty) = 0. Since Ty = Homy(T;",1(1))
(under the duality = from Section 2.2), Tate local duality tells us that H2(Q,, 'IF;" )
is a torsion I-module. Since Ty is free of rank one over I, Tate’s formula for the local
Euler characteristic now gives Z]2€=0(_1)k rank; 5/ (Q P ’]I‘f+ ) = —1. Together with
what already proved, this allows us to conclude H'(Q,, ’II‘;»" ®rlp ) = I, ,. Taking
now j = land j = 2 in (43) we find exact sequences

0—1,, /@ = H'(Qp.Qp(1)) ®q, L = H*(Qp, T ®11, ,)[w] — 0;
H*(Qp, Tf ®11,,)/@ = H*(Q,,Qp(1)) ®q, L.

Since dimg, H'(Q,,Q,(1)) = 2 and dimg, H*(Q,.Q,(1)) = 1, and since
[, ,/@ = L, it follows that both the w-torsion H?*(Q,, ']I‘;r ®i [, ,)[w] and the
w-cotorsion H2(Q,, T ®; I, ,)/@ have dimension 1 over L = I,  /@. The
structure theorem for finite torsion modules over principal ideal domains then gives
H?(Q,, T ®r I,,)=1,,/@" for some n > 1. To conclude the proof, it remains
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to show thatn = 1, i.e. that H?(Q,, TE‘" ®1 I ) is semi-simple, or equivalently that
the composition

H:H'(Qp, L(1)) » H*(Qp, Tf @11, )[w] — H*(Qp, T @11, )
— HX(Q,. T} @11,,)/m =~ H2(Q,. L(1)) = L

is non-zero. To do this, identify H'(Q,, L(1)) = Q;;@L via Kummer theory, and
letg € Q},. We want to compute the image H(q) = H(q®1) € L. Identify T with
I(ay™ XeylXey]'/?) (cf. Section 2.2), and write ¢, : Gg, — L(1) for a 1-cocycle
representing g®1. Since I, , isa L-algebra and ¢y : I, . — L is a morphism of
L-algebras, one can consider ¢; : Gq, — T ®1 I, , as 1-cochain which lifts ¢4
under ¢ ¢. The differential (in C4,(Q,. Ty ®1 1)) of ¢q is then given by

deg(g.h) = a%(2) ™" xey(8) - [Xey(@)]"/? - cqh) — cq(gh) + c4(g)
= Yesl(g) - (a}',(g)_1 ey ()12 - 1) - cq(h),
where we used the cocyle relation (in C3 (Qp, L(1))) for the second equality.

Retracing the definitions given above, the class H(g) is then the image under inv , of
the class represented by the 2-cocycle

ay(2)™" - [xey]?(g) — 1
w

H(g. h) := xey(g) -cq(h) - @y ( ) € L(1). (44)

Consider the Tate local cup-product pairing

(= =)ok H'(Qp. L) x H'(Qp. L(1)) — L.

Noting that

a;‘)_I ' [X(:)v’]l/2 =1 ab 1
Dy o= ¢f w € Homcont(GQp’ L)y=H (QP’ L),

the equality (44) can be rewritten as
H(g) = invp(class of #) = (P, q) ¢ € L. (45)

Let go € Iq, be such that xcy(g0)'/? = yuw (Where @ = [yw] — 1), and let g € Iqg,.
Then k., (g)"/? = yZ, for some z € Z,, satisfying 3 log,, (xey(g)) = z - log, (Ywo)-
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(Recall that «.y : Gg, — | + pZ, is the composition of the p-adic cyclotomic
character ycy : Gq, — Z7, with projection to principal units.) Since a7,(g) = I this
implies

a*(2)~! - [xe]/2(g) — 1
D) = ¢f( *(g) [xwy] (g) )
(46)
_ [yZ]—1\  1log, (xey(8)
_¢f( w )_2—5 log, (Yw)

Let now Frob, € Gal(Q}'/Q)) =: G, be an arithmetic Frobenius, where Q' /Qp
is the maximal unramified extension of Q,, and Ga“p is viewed as a subgroup

of the abelianisation Gg’p of Gq, under the canonical decomposition Gabp -
Gal(Qp((p=)/Qp) X Gg‘p. Using the Mellin transform introduced in Section 4.1,

and the well-known formula of Greenberg—Stevens [12]: afl—ka p(K)k=2 = —%.iap (A),
where Zp(A4) 1= :;ﬁ‘; 8’: ; for the Tate period g4 € pZ, of A/Q, (see the following

section), one easily computes

= EP(A)'

=3 (47)

w

®¢(Frob”) = ¢ ¢ (a;(FrOb;)_l ~ 1) :
P

log, (Yw)

Let rec, : Q) — Gf‘;,bp be the reciprocity map of local class field theory [24].
By combining the explicit formula for rec, given by Lubin-Tate theory with
formulae (46) and (47) above yields

ak(recy(9) ™" - [xey] 2 (recy(q)) — 1)

w

Pe(rec,(q)) = ¢ (

1 1

=~ log;,(q)
210gp(ywt) qu q

for every g € QJ, where log, , : Q) — Q, is the branch of the p-adic logarithm
vanishing at the Tate period g 4. Equation (45) and another application of local class
field theory then give (cf. [24])

H(g) = (Pr.q)gs = Pr(recy(q)) = log, ,(4).

where = denotes equality up to a non-zero factor. This clearly proves that H is
non-zero, hence (as explained above) that H 2(Qp,'1[';" ®r I, ,) is a semi-simple
[, ,-module. This concludes the proof of the lemma. O

6.3. Algebraic exceptional zero formulae. Since A/Q, has split multiplicative
reduction, it is a Tate curve [34], [29, Chapter V], i.e. isomorphic (as a rigid analytic
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variety) to a Tate curve G,/ qi over Q,, where g4 € pZ, is the so called Tate
period of A/Q,. In particular, there exists a Gg,-equivariant isomorphism

Oree : Q, /0% = AQ,). (48)

Write Ky p := Ky ®q Qp = [y, Ky.v» and write 1y : Ky — Ky C Q,, for the
resulting embedding of K in its completion at v. Following [19] and [3], define the
extended Mordell-Weil group of A/K,:

AT(Ky) == {(P, (v)vip) € A(Ky) x K5, : @raee(yv) = 1o(P), forevery v|p}.

In concrete terms, an element of AT(K) is a K-rational point on A, together with
a distinguished lift under ®ry for every prime v|p. Then AT(K x) is an extension of
the usual Mordell-Weil group A(K,) by a free Z-module of rank #{v|p}. In other
words there is a short exact sequence

0> Pz AT(Ky) - A(Ky) — 0. (49)
v|p

where the first map sends the canonical v-generator to

qv := (0,q4) € AT(Ky), (50)

g4y € K )’(‘ p being the element having g4 as v-component and 1 elsewhere. When
K, /Q is quadratic, AY(K x) has a natural Gal(K,/Q)-action, coming from the
diagonal action on A(Ky) x K7 , (with Gal(K/Q) acting on Ky, , := Ky ®q Qp
via its action on the first component). Recall the Kummer map A(K X)@Q p =
Sel,(A/K,) [28, Chapter X]. The following lemma is proved in [35, Section 4]
(see in particular Lemma 4.1 and Lemma 4.3). For every abelian group .A, write for
simplicity A ® L := (ARZ,) ®z, L.

Lemma 6.7. There exists a unique injective and Gal(K , /Q)-equivariant morphism
of L-modules

it AT(Ky) ® L — HY(Ky, Vy).
satisfying the following properties:

(i) i ; gives rise to an injective morphism of short exact sequences of L[Gal(K  /Q)]-

modules:
0—@P,, L—ANK) L AKy) ® L 0
‘ % Kummer
00— @D, , L — HY(Ky, Vi) — Sel,(4/Ky) ®q, L —>0,

the bottom row being (38).
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(i) Let P = (P,(yu)u|p) € AT(Ky) be such that y, € O;‘(X,v for every
v|p. Then the image of i};(IP’) under the natural map H }(Kx, Vi) —
Dyip HY (K., V;'v) lies in the finite subspace |, H}(Kx,v, V}Lv) 8

In particular, i;; : AT(KX) @ L =~ ﬁ}(Kx, V) is an isomorphism provided that
HI(A/Ky) poe is finite.

We will consider from now on AT(KX) (or precisely AT(KX)/torsion) as a

submodule of H%(K,,Vy) via the injection i . In particular (P, Q)}* =
ke A A

V_/‘,JT
i g Nek
(ljl(P), IL(Q))Vf,n for every P, Q € AT(K,).

For every a € Zp, let a = (a'/?, al/P? .) be a (fixed) compatible system
of p"-th roots of « in Gp. Using the Tate parametrisation (and recalling that
qga € pZp has positive p-adic valuation), we can identify V,(A) with the Q ,-module
generated by 1 € Z (1) and g 4. Thanks to our fixed isomorphism (36), the duality
ny =7 ®r1,, ¢, L induces a duality 7y : V;(A4) ®q, Vp(A) — Qp(1). Denote
by msy : Vp(A) ®q, Vp(A) = Q) the composition of 7 ¢ with the isomorphism
Q,(1) = Qp; 1+ 1. We can then state the main result of this section.

Theorem 6.8. Let (P, P) € AT(Ky), with P = (P,),, € K ,. Then

(v (P.P))y) = c(m) - logy, (Nk,.0/0, (Pr)).

vlp

where log, 6; — Gp is the branch of the p-adic logarithm vanishing at q 4,
Nk, v/Qp, : K5, — Qp is the norm, and the non-zero constant c(w) € Q3
(depending on 1, but not on (P, P)) is given by c(m) = %th,l 1®@q4).

Proof. This is Corollary 4.6 of [35]. (In loc. cit. w : Ty @ Ty — 1(1) is normalised
in such a way that 7z takes the value 1 on 1 ® g4, so that the constant ¢ ()
becomes 1/2.) For a more general statement, see also [36]. UJ

6.4. Proof of Theorem 6.1. Assume that y(p) = 1, i.e. that p splits in K.
Moreover, assume that

rankz A(K ¥ = 1; #(LU(A/KX)j;OO) < o0, (51)

and let Py € A(K)* be a generator of A(K,)* modulo torsion. Fix a lift P; =
(Py. (Pyv)vip) € AT(Ky) of Py under (49), and define a y-period

qy € AT(Ky)*

8More precisely, by the definition of Nekovdi’s Selmer complexes, we have a natural surjective
morphism of complexes pj,' A l?ff (K, Vr) - @Dyip Rlcon( Ky 05 V_;!_'v). The map referred to
in the lemma is the morphism induced in cohomology by p'}-. Moreover, we recall that the finite (of
Bloch—Kato) subspace H )lr (Ky.v,—) is defined to be the subépace of H'(K .., —) made of crystalline
classes, i.e. classes with trivial image in H'(K .y, — ® Beris) [8].
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as follows. If y is the trivial character, i.e. K, = Q, then let

gy = (0.94) € AT(Q) C A(Q) x Qj.
Similarly, if K, /Q is quadratic, let

qx = (0.(q4.95")) € AT(K)* C A(Ky) x K, x K35

where pOg, = p-p. By the exact sequence of Z[Gal(K,/Q)]-modules (49), our
assumptions, and Lemma 6.7 one has

.'.

HY(Ky Vi)* 2 (AK)® L)  =L-qy @ L-P}. (52)
Since (—,—)I{J,efk,n is a skew-symmetric bilinear form, (qx,qx)lf,j],(ﬂ = 0 and
Nek .
(P,;r , P; )V = 0. Moreover, in case K, = Q, Theorem 6.8 gives
£

1’Nek . P
(qX1 PX)V = - loqu(Px’p) - logA(Px),

s
where log 4 := log, , o®Ll : A(Qp) = Q) is the formal group logarithm on A/Q,,

and = denotes equality up to multiplication by a non-zero element of L*. In case
KX/Q is quadratic, write as above (p) = p-p, and ¢, : Ky C Ky, = Qp and
: Ky C Ky5 = Q) for the completions of K at p and p respectively. Then

Lp = tp o T, where 7 is the non-trivial element of Gal(K,/Q). Since PT AT(KX)X
we have Py = —Py and Pxp = P‘ . As gy == qp — g5 (by the definitions),
another applicatlon of Theorem 6.8 al[ows us to compute

¥ Nek 3 + i g p—
(qx’ Px> = <‘1p9 P;()Vf (qpv P ) Vs = log,, (Px,p) —log, , (ngﬁ)
= log 4 (tp(Py)) — log4(t5(Py)) = log (tp (Py — Py))
=2-logy (Py).
where we write again (with a slight abuse of notation)
tp log 4
log, : A(Ky) — A(Qp) — Q,.

The preceding discussion can be summarised by the following formulae (valid
for y trivial or quadratic):

Nek

Vi

(qx’qx)l:/_e,l-(,n (9 ;)?/ikn

det(—,—)?,?"r)g :=det
77 + Nek t pt\Nek
(Px~qx)v_,~,n (Py- Px)v_,-,;r

_ 0 log 4(Py) ‘
= det = log% (Py)
—log4(Py) 0
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(where we used again the fact that (—,—)I;I,il,(,n is skew-symmetric to compute
T Nek _ T Nek & .
(Px,qx)vf,?r = —(qx, PX)V,»,;:’ and we wrote as above = to denote equality up

to multiplication by a non-zero element in L*). Since P, € A(K,) is a point
of infinite order, and log, gives an isomorphism between A(Q,) ® Q, and Q,,
log 4 (Py) # 0, so that

det (—, —)?}j“;; £ (.
Recalling that qy and P; generate H }( K. Vyr)* as an L-vector space by (52), this

Nek, x

implies that (—, —)y 7

finally gives

is non-degenerate, and the last statement of Proposition 6.2

(37) and (51)

length,, (X&Cr(f/Kx)x) = dimg, (Selp(A/KX)X) L.

This means that X (f/Ky)* &1, , = I, ,/psl,, as I, ,-modules, as was to be
shown.

7. Proof of the main result

This section is entirely devoted to the proof of Theorem A stated in the introduction.

7.1. An auxiliary imaginary quadratic field. We will need the following crucial
lemma, which follows combining the main result of [7], Nekovéi’s proof of the parity
conjecture [20], and the KGZ Theorem.

Lemma 7.1. Let N4 = Np be the conductor of A/Q (with p 4 N ). Assume that the
following properties hold:

(a) there exists a prime q # p such that q||N 4,
(b) rankzA(Q) = 1 and III(A/Q) p< is finite.

Then there exists an imaginary quadratic field F/Q, of discriminant D, satisfying
the following properties:

1. DF is coprime to 6N 4;
2. q (resp., every prime divisor of N4/q) is inert (resp., splits) in F;
3. ords— L(AT /Q.5) = I;
4. rankzA(F) = 2 and I1I(A/ F) po< is finite.
(In3: AF /Q is the ep-twist of A/Q, € being the quadratic character of F.)

Proof. By condition (») and Nekovai’s proof of the parity conjecture [20, Section 12]

sign(4/Q) = -1
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(where sign(A4/Q) denotes the sign in the functional equation satisfied by the Hasse—
Weil L-series L(A/Q,s)). Let y be a quadratic Dirichlet character of conductor ¢,
coprime with 6 N 4 such that:

(ay) x(q) = —1and y(£) = +1 for every prime divisor £ of N4/q;
(By) x(=1) = +1,

and let AX/Q be the y-twist of A/Q. As ¢q||N4, we deduce by [27, Theorem 3.66]
and the preceding properties

sign(4*/Q) = x(—=Na) - sign(4/Q) = —x(N4) = +1.
The main result of [7] then guarantees the existence of a quadratic Dirichlet
character ¥, of conductor coprime with 6¢, N 4, such that
(ay) Y (£) = +1 for every prime divisor £ of 6¢, N 4;
(By) ¥v(=1) =-1;
(y) ords—i L(AXY/Q.s) = 1.
Define F = F,y as the quadratic field attached to yvy, so yy¥ = e€p and
L(A*Y /Q,s) = L(AF /Q, s) is the Hasse—Weil L-series of the F-twist of 4/Q. In
particular, property 3 in the statement is satisfied. By the KGZ theorem, it follows

by (yy ) that A(F)€F has rank one and ILI(A/F)¢F is finite. Together with (b), this
gives

rankz A(F) = 2; #(H_I(A/F)poo) < 00,

i.e. property 4 in the statement. Property 1 is clear by construction. Moreover, by

(@y), (By), (oty) and (By) we deduce ep(—1) = —1,€er(gq) = —land ep (£) = +1
for every prime divisor of N4/g. This means precisely that F/Q is an imaginary
quadratic field satisfying property 2 in the statement, thus concluding the proof. [

7.2. Proof of Theorem A. Assume that A/Q and p > 2 satisfy the hypotheses
listed in Theorem A, i.e.

(@) py,p is an irreducible G-representation;
(B) thereexistsaprimeq # p at which A has multiplicative reduction (i.e. g||N4);
() ptordg(ja);
(6) rankzA(Q) = 1 and III(A/Q) pe< is finite.
Let K/Q be a quadratic imaginary field such that
(¢) Dk is coprime with 6N 4;
(¢) g isinertin K;
(n) every prime divisor of N4/q splits in K;
(0) rankzA(K) = 2 and III(A/K) o< is finite;
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(1) ordg— L(AK/Q,s) = 1.
The existence of such a K/Q has been proved in Lemma 7.1 above. Finally, let
L/Q, be a finite extension containing Q,, (D;(/z, (=12 11/Np) /Qp.letgk 1 6p

be a rational prime which splits in K, and let S be the set of primes of K consisting
of all the prime divisors of g Ny D k. Then:

Lemma 7.2. The data (f, K, p, L,qk, S) satisfy Hypotheses 1, 2 and 3.

Proof. By construction and properties (€) and (), Hypothesis 2 is satisfied. Since p;
is isomorphic (by definition) to the semi-simplification of p4 ,, assumption (@) is
nothing but a reformulation of Hypothesis 1. To prove that Hypothesis 3 holds
true, note that (with the notations of loc. cit) Nt = Ny/pg and N~ = ¢
by ({) and (n) above. Then N~ is a square-free product of an odd number of
primes. It thus remains to prove that p4 , = p; is ramified at g. By Tate’s theory,
we know that A /Gq is isomorphic to the Tate curve G,/ tqZ over the quadratic
unramified extension of Q,, where 7, € gZ, is the Tate period of A/Qy, satisfying
ordy (tq) = —ordy(ja) [34], [29, Chapter V]. Then

Alpl = AQ)pl = 1tF ¢l 0<i,j <p

as Iqg,-modules, where t; /P ¢ ﬁq and {, € ﬁq are fixed primitive pth roots of 7
and 1 respectively. As Qg(C,)/Qy is unramified, p4 , is ramified at ¢ precisely if
Q, (1, 'Pyy Q, is ramified. Recalling that t; € gZ,; and ord,(t;) = —ordg(j4), this
is the case if and only if p { ord,(j4). Then Hypothesis 3 follows from (y). O

In order to prove Theorem A, we need one more simple lemma. Omitting S
from the notations, recall the dual Selmer groups X5 (f/K) := X g:;c(f /K) and
X&.(f/ K) introduced in Sections 4.3 and 6 respectively.

Lemma 7.3. length, (X(SCOO (f/K)) < length,, (Xé‘;(f/K)) + 2.

Proof. As remarked in the proof of Lemma 6.5, the perfect, skew-symmetric duality
7 : Ty ® Ty — (1) induces a natural isomorphism of [[Gq,]-modules: Ty ®;I* =
Homeon (T, it pc) =: Ay. By construction and the inflation-restriction sequence,
there is then an exact sequence

0 — Sel (f/K) — Selis_(t/K) — ED H' (Frobv, (Af—)lv) :
v[p

where I, := I, is the inertia subgroup of Gk, , Frob, € Gk, /I, is the arithmetic
Frobenius at v, and we write for simplicity H*(Frob,, —) := H*(Gk,/Ik,,—).



440 R. Venerucci CMH

(Here the reference to the fixed set S is again omitted, so that Selg  (f/K) :=

Selgg(f/ K).) Taking Pontrjagin duals and then localising at p s gives an exact
sequence of I, .-modules:

@Hl (Frobv, (A;)IU): — X5 (€/K),, = X5 (E/K), , = 0,
vlp g

where (—);f, is an abbreviation for ((—)*)p/_ = (—)* ®1 L, .. As p splits in K, one
deduces -

length, , (Xgoo (f/K))
< length,,, (Xécr(f/K)) +2-length,, (H1 (Frobp, (Af—)"f’)"= ) (53)

where I, := Ig, C Gq, is the inertia subgroup and Frob, € Ggq,/Iq, is the
arithmetic Frobenius at p.

By equation (9), ’]1‘;r = ]I((a;)—l Koy * [ch]llz) as Gq,-modules. Then its

Kummer dual A is isomorphic to I* (a} - [xy]™'/?). Let y € 1 + pZ, be a
topological generator, let [y] € I be its image under the structural morphism [-] :
A — I, and let w = [y] —1 € A. Since aj, is an unramified character and
[p] = 1 mod @ for every p € 1 + pZ,, one has isomorphisms of Frob ,-modules

H(Ip, A7) = Af [o] = (/@D)* (a}). (54)

Applying H'(Frob,, —) to (54) then yields

H' (Frobp, (Af_)]p) = (%)* /(ap—1) (%)*

Taking the Pontrjagin duals and then localising at p r one deduces

1, = () ),

I .
( 1 )[cbf(ap)—l]:]lp.f/pfl["f'

w-I,,

(35)

Il

Indeed, as remarked in (17), @ is a uniformiser of I, .. Moreover, p s := ker(¢ r)
and ¢r(ap) = ap(2) = +1 (as A/Q) is split multiplicative), so that a, — I acts
trivially on I, . /p ¢, . and (55) follows. In particular, (55) yields

lengthpf(Hl (Frobp, (Af_)l”)*) =T

Together with equation (53), this concludes the proof of the lemma. (Il
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We can finally conclude the proof of Theorem A. To be short, we have

Cor. 5.2 Cor. 4.2
4727 ordema LS (foo/ K K) < lengthy, (Xg (6/K))

Lemma 7.3

(56)
< length, , (Xg;(f/K)) 4281y

Indeed, hypothesis (8) gives dimg,Sel,(A/Q) = 1, and then (as in the
proof of Lemma 7.1) Nekovai’s proof of the parity conjecture guarantees that
sign(A/Q) = —1. Together with Lemma 7.2, this implies that the hypotheses of
Corollary 5.2 are satisfied, and then that the first inequality in (56) holds true.
Lemma 7.2 also allows us to apply Skinner-Urban’s Corollary 4.2, which gives the
second inequality in (56). The third inequality in (56) is the content of the preceding
lemma. Finally, let y denote either the trivial character or the quadratic character € g
of K, and let K, := Q or K, := K accordingly. Then () and () imply that (with
the notations of Section 6)

rankz A(K,)¥ = 1; #(m(A/Kx)goo) < 0.

Moreover, we know that p splits in K, (i.e. in K, by hypothesis (1)). Then the
hypotheses (i), (ii) and (iii) of Theorem 6.1 are satisfied by both our x’s, and by
applying the theorem twice yields

X/ K)p, = X8/ Qp, & X6 (®/ KN =Ty /psTly, @y, /07Ty %

justifying the last equality in (56).

Equation (56) proves that ordg—2L%(foo/K,k) = 4. It then follows by
Bertolini-Darmon’s Corollary 5.2 that the Hasse-Weil L-function of A/K has a
double zero at s = 1:

oty LA/ K, 8) = 2.

Since L(A/K,s) = L(A/Q,s) - L(AX/Q,s) is the product of the Hasse-Weil
L-functions of A/Q and its K -twist AX /Q, and since L(A% /Q, 5) has a simple zero
at s = 1 by (¢) above, we finally deduce

ords=1 L(A/Q,s) = 1.
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