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Abstract. We use the Invariance Principle of Avila and Viana to prove that every partially
hyperbolic symplectic diffeomorphism with 2-dimensional center bundle, having a periodic
point and satisfying certain pinching and bunching conditions, can be Cr-approximated by
non-uniformly hyperbolic diffeomorphisms.
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1. Introduction

In the theory of Dynamical Systems, hyperbolicity is a core concept whose roots may
be traced back to Hadamard and Perron and which was first formalized by Smale [39]
in the 1960s. It implies several features that are most effective to describe the system's
dynamical behavior.

While Smale's uniform hyperbolicity was soon realized to be a fairly restrictive

property, a more flexible version was proposed by Pesin [30] about a decade later: one

speaks of non-uniform hyperbolicity when all the Lyapunov exponents are different
from zero almost everywhere with respect to some preferred invariant measure (for
instance, a volume measure).

While being more general, non-uniform hyperbolicity still has many important
consequences, most notably: the stable manifold theorem (Pesin [30]), the abundance

of periodic points and Smale horseshoes (Katok [25]) and the fact that the fractal
dimension of invariant measures is well defined (Barreira, Pesin and Schmelling [9]).
Thus, the question of how general non-uniform hyperbolicity is, naturally arises, and

indeed, it goes back to Pesin's original work.

However, the set of non-uniformly hyperbolic systems is usually not dense.

Herman (see the presentation of Yoccoz [45]) constructed open subsets of Cr,
with large r, volume-preserving diffeomorphisms admitting invariant subsets with
positive volume consisting of codimension-1 quasi-periodic tori: on such subsets

all the Lyapunov exponents vanish identically. Other examples with a similar flavor
were found by Cheng and Sun [19] and Xia [43],

Before that, in the early 1980s, Mane [27] observed that every area-preserving
diffeomorphism that is not Anosov can be C1 -approximated by diffeomorphisms
with zero Lyapunov exponents. His arguments were completed by Bochi [10] and

were extended to arbitrary dimension by Bochi and Viana [11,14]. In particular,
Bochi [11] proved that every partially hyperbolic symplectic diffeomorphism can be
C1 -approximated by partially hyperbolic diffeomorphisms whose center Lyapunov

exponents vanish.

By the end of last century, Alves, Bonatti and Viana were studying the ergodic
properties of partially hyperbolic diffeomorphisms. In [1, 17] they proved that
under some amount of hyperbolicity along the center bundle ('mostly contracting'
or 'mostly expanding' center direction) the diffeomorphism admits finitely many
physical measures and the union of their basins contains almost every point in the

manifold.
This again raised the question of how frequent non-uniform hyperbolicity is, this

time focusing on the partially hyperbolic setting. Can one always approximate the

diffeomorphism by another whose center Lyapunov exponents are non-zero? This

question was the origin of a whole research program, focusing first on linear cocycles
and dealing more recently also with non-linear systems. We refer the reader to the

book of Viana [40] for a detailed survey of some of the progress attained so far.
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Our own results are based on methods that were developed in these 15 years or
so and may be viewed as the fulfillment of that program in the context of symplectic
diffeomorphisms with 2-dimensional center. We proved (all the keywords will be

recalled in the next section):

Theorem A. Let f : M —> M be a partially hyperbolic symplectic Cr
diffeomorphism on a compact manifold M. Assume that f is accessible, center-
bunched andpinched, the set ofperiodicpoints is non-empty, and the center bundle Ec
is 2-dimensional. Then, f can be Cr-approximated by non-uniformly hyperbolic
symplectic diffeomorphisms.

Let us stress that our perturbation holds in the Cr topology, for any r e [2, +oo).
The case r 1 is very special and much better understood.

The first result along these lines was due to Shub and Wilkinson [37], who
proved that certain partially hyperbolic skew-products with circle center leaves can
be perturbed to make the center Lyapunov exponent different from zero. Their
approach relates the issue of non-uniform hyperbolicity into the analysis of the center
foliation and its measure-theoretical properties, a connection that has been much

deepened and clarified in the recent work of Avila, Viana and Wilkinson [7],
Baraviera and Bonatti [8] extended the approach of Shub and Wilkinson to prove

that any stably ergodic partially hyperbolic diffeomorphism can be C1 -approximated
by another for which the sum of the center Lyapunov exponents is non-zero. In
particular, this implies that every partially hyperbolic diffeomorphism with 1-

dimensional center bundle can be C1 -approximated by non-uniformly hyperbolic
systems.

The results in [8], together with the results mentioned above of Bochi and Viana
in [14], were used by Bochi, Fayad and Pujals [12], to prove that every Cl+a stably
ergodic diffeomorphism can be C1-approximated by non-uniformly hyperbolic ones.
More recently, Avila, Crovisier and Wilkinson [3] proved a general theorem that

implies that every partially hyperbolic volume-preserving diffeomorphism can be
C1 -approximated by non-uniformly hyperbolic systems, thus solving the question
completely in the C1 case.

Perturbative results in the Cr topology, r > 1, are notoriously more difficult
and, in fact, there is good evidence suggesting that the conclusions may also be very
different. In this regard, we refer the reader to the discussions in Chapter 12 of [15],
Chapter 10 of [40], Theorem A of [5] and the Conjectures in Section 6 of [31].

The obvious first case to look at is when the center bundle is 1-dimensional.
While there are some situations where we know how to get rid of a zero center

Lyapunov exponent, for example [20,37], Cr-density of (non-uniform) hyperbolicity
is not known even in this case. Our methods in the present paper, which are based

on the projectivization of the center bundle, do not seem to be useful in this context.
An important tool in our approach is the Invariance Principle, which was first

developed by Furstenberg [22] and Ledrappier [26] for random matrices and was
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extended by Bonatti, Gömez-Mont, Viana [16] to linear cocycles over hyperbolic
systems and by Avila, Viana [5] and Avila, Santamaria, Viana [4] to general

(diffeomorphisms) cocycles. In [5] the base dynamics is still assumed to be

hyperbolic, whereas in [4], it is taken to be partially hyperbolic and volume-

preserving.

The Invariance Principle asserts that for the Lyapunov exponents to vanish the

system must exhibit rather rigid (holonomy invariant) features. Often, one can

successfully exploit those features to describe the system in a rather explicit way. One

fine example is the main result ofAvila, Viana and Wilkinson [7]: small perturbations
of the time-1 map of the geodesic flow on a surface with negative curvature either

are non-uniformly hyperbolic or embed into a smooth flow.

Another fine application was made by Avila and Viana [5], who exhibited

partially hyperbolic diffeomorphisms for which the Lyapunov exponents can not
vanish because structure arising from the Invariance Principle, namely invariant line
fields, is incompatible with the topology of the center leaves (which are assumed to
be surfaces of genus g > 1).

Perhaps the main novelty in this work is that we are able to use the Invariance

Principle in a perturbative way, to prove that the Lyapunov exponents can be made

non-zero. At a more technical level, another main novelty resides in our handling of
the accessibility property, namely the way su-paths and their holonomies vary, under

perturbations of the diffeomorphism; see Sections 4 and 5.

As an example of the reach of Theorem A, let us state the following result that is

related to Question lb) in [37], Let / : T2d —> T2d be a Anosov symplectic Cr
diffeomorphism and gx ' T2 —> T2 denote the standard map on the 2-torus.

Corollary. If X is close enough to zero, then f x gx can be Cr-approximated by

non-uniformly hyperbolic symplectic diffeomorphisms.

Acknowledgements. The author would like to thank Marcelo Viana for the guidance
and encouragement during her Ph.D. Thesis at IMPA which originates this work,
Artur Avila for useful conversations and the anonymous referee for a thorough revision
of the paper that greatly helped improve the presentation. The author has been

partially supported by IMPA, CNPq, CAPES and FAPERJ.

2. Preliminaries and statements

From now on, M will denote a compact manifold and / : M —> M a partially
hyperbolic diffeomorphism. In this section we define this and other related notions.
For more information we referred the reader to [15,24,36],
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A diffeomorphism / : M —> M of a compact manifold M is partially
hyperbolic if there exist a nontrivial splitting of the tangent bundle

TM Es © Ec © Eu

invariant under the derivative map Df, a Riemannian metric ||-|| on M, and positive
continuous functions x, 'x, v, v, y, y with

X < v < 1 < xT1 < 2_1 and v < y < y-1 < \Tl,

such that for any unit vector v e TPM,

X(p) < I A//>(v)|| < v(p) if v e E'(p),
Y(P) < \\Dfp(v)\\ < yip)'1 if v e Ec(p), (2.1)

v(p)_1 < \\Dfp(v)\\ < x(p)-1 if v e Eu(p).

Partial hyperbolicity is a C1 -open condition, that is, any diffeomorphism sufficiently
C1 -close to a partially hyperbolic diffeomorphism is itself partially hyperbolic.

Here, ji will always denote a probability measure and co a symplectic form. The

Lebesgue class of M is the measure class of the volume induced by any Riemannian
metric and we say that / is volume-preserving if it preserves some probability
measure in this class.

For r > 2, denote by PHrjL(M) the set of partially hyperbolic volume-

preserving Cr diffeomorphisms. If M is a symplectic manifold, denote by PH^(M)
the set of partially hyperbolic Cr diffeomorphisms preserving co.

For every partially hyperbolic diffeomorphism the stable and unstable bundles Es
and E" are uniquely integrable and their integral manifolds form two transverse

(continuous) foliations Ws and W", whose leaves are immersed submanifolds of the

same class of differentiability as /. These foliations are called the strong-stable and

strong-unstable foliations. They are invariant under /, in the sense that

f(Ws(x)) Ws(f(x)) and f(Wu(x)) W"(f(x)),
where Ws(x) and W"(x) denote the leaves of IVs and W", respectively, passing
through any x e M.

Given two points x, y e M, x is accessible from y if there exists a path that
connects x to y, which is a concatenation of finitely many subpaths, each of which
lies entirely in a single leaf of W" or a single leaf of Ws. We call this type of path an

su-path. This defines an equivalence relation and we say that / is accessible if M is

the unique accessibility class.

Definition 2.1 (a-pinched). Let / be a partially hyperbolic diffeomorphism and

a > 0. We say that / is a-pinched if the functions in Equation (2.1) satisfy,

v<yxa, v<fxa,
v < y IT» and "v < y x01
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This is a C1 -open property and every partially hyperbolic diffeomorphism is

a-pinched for some a > 0. Moreover, from the works in [2,24,32], we know that the

center bundle Ec, and the Ws and Wu holonomies are a-Hölder for every a-pinched
C2 diffeomorphism.

We say that a partially hyperbolic diffeomorphism is center bunched if

v < y Y and v" < yy.

By Theorem 0.1 of [18], in the volume-preserving setting, center bunching together
with accessibility implies that the diffeomorphism is ergodic.

Since we want to use the Invariance Principle, we need / to be center bunched.

However, this notion is not enough for our work and we need to define a stronger
condition.

Definition 2.2 (a-bunched). Let / be a partially hyperbolic diffeomorphism and

a > 0. We say that / is a-bunched if the functions in Equation (2.1) satisfy,

va < yy and v01 < yy.

This is also a C1 -open property. If Df\Ec is an isometry, then the condition
holds for every a > 0. Moreover, a-bunched implies center bunched if a < 1.

Notice that as a decreases it is more difficult to have a-bunched, contrary to what
happens with the condition of a-pinched.

At this point we are ready to give the precise definition of the set of partially
hyperbolic systems where Theorem A holds. Recall * e {ß.oj} where ß denotes

some probability measure in the Lebesgue class and co denotes a symplectic form.

Definition 2.3. If r > 2, we will denote the subset of PH£(M) where /
is accessible, a-pinched and a-bunched for some a > 0 and the center bundle Ec is
2-dimensional.

We want to remark two properties of the set B£ (M). First, as already mentioned,

every / e B^(M) is ergodic. Moreover, Avila and Viana in [6] proved, under the

hypothesis of 2-dimensional center bundle, that accessibility is a C1 -open property.
This implies that B^(M) is an open set. In Section 5, we will give the precise
statement and some ideas of the proof of the results in [6].

The conditions of a-pinched and a-bunched will allow us to use the Invariance

Principle. In Section 3, we are going to apply both of them to prove that the

cocycle associated to f,F Df\Ec, admits holonomies. Moreover, the a-pinched
condition is going to be use also in Section 4 where we need the Ws and Wu
holonomies to be a-Holder in order to estimate how 5 u-paths change when we

perturb the diffeomorphism.
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If / is a volume-preserving C1 diffeomorphism, by the Theorem of Oseledets for

/2-almost every point x e M, there exist k(x) e N, real numbers Ai(fx) > • • • >
A£(*)(/, x) and a splitting TXM E\ © • • © Ekxx) of the tangent bundle at x, all
depending measurably on the point x, such that

lim -log || Df"(v) || Aj (f x) for all v e EJX\{0}.
n-»-±oo n

The real numbers Aj(f,x) are the Lyapunov exponents of x. We say that / is

non-uniformly hyperbolic if the set of points with non-zero Lyapunov exponents has

full measure.
Let Ai(/ x) > A2(/, x) >••> Xj (f x) be the numbers A, (/(x), each repeated

with multiplicity dim E]x and written in non-increasing order.

If / e B*(M), the Theorem of Oseledets can be applied and because of the

ergodicity, the functions k and Ay are constants almost everywhere. Moreover, the

Oseledets splitting is a measurable refinement of the original splitting and we can
consider the Lyapunov exponents of Ec. They are called center Lyapunov exponents
and will be denoted by X\(/) and Xc2(f).

If dim M 2d and / is a symplectic ergodic diffeomorphism, then

Xj(f) -X2d-j+\{f) forall 1 < j < d.

Therefore, in the symplectic case Xc\{f) Xc2{f) is equivalent to A^' (/) Xc2{f) 0.

This symmetry property has been proved in [13].
Now we give the statement of the main result.

Theorem A. Let f B^(M) and assume the set ofperiodic points of f is

nonempty, then f can be Cr -approximated by non-uniformly hyperbolic symplectic
dijfeomorphisms.

Remark 2.4. Observe that the hypothesis of existence of a periodic point in
Theorem A can be replace with the hypothesis of / having a periodic compact
C center leaf. In this case, we can find a symplectic diffeomorphism arbitrarily
Cr-close to / and having a periodic point. See [44].

The proof of Theorem A relies in two principal cases determined by the periodic
point being hyperbolic or elliptic. The hyperbolic case has a generalization to the

volume-preserving setting with the appropriate modifications in the hypotheses.

Definition 2.5. Let / be a partially hyperbolic diffeomorphism and p a periodic
point with np per (p). We say that p is a pinching periodic point if Dfnp\Ec(p)
has two real eigenvalues with different norms.

Recall * e {p., coj.

Theorem B. Let f e B^(M) and assume f has a pinching periodic point, then f
can be Cr-approximated by volume-preserving (symplectic) diffeomorphisms whose



364 K. Marin CMH

center Lyapunov exponents are different almost everywhere. In particular, f can be

C r -approximated by diffeomorphisms with some center Lyapunov exponent non-zero.

One of the main tools in our proof is the Invariance Principle. Below we give
some preliminaries and state it in the form of [4].

2.1. Invariance principle. Let / be a partially hyperbolic diffeomorphism and

jt : V —> M a continuous vector bundle with fiber N M.k for some k > 2. A
linear cocycle over / : M —> M is a continuous transformation, F : V —> V,
satisfying no F f o n and acting by linear isomorphisms, Fx : Vx —> V/(x>,
on the fibers. By Fustenberg, Kesten [23], the extremal Lyapunov exponents

A+(F, x) lim — log |||[ and A_(F,x) lim — log II (F")_1 II l,
n—xoo yi n->oo n

11 11

exist at v-almost every x e M, relative to any /-invariant probability measure v.
If (/, u) is ergodic, then they are constant on a full u-measure set. It is clear that

A_(F, x) < X+(F, x) whenever they are defined.

The projective bundle associated to a vector bundle n : V —> M is the

continuous fiber bundle n : P(V) —> M whose fibers are the projective quotients
of the fibers of V. This is a fiber bundle with smooth leaves modeled on N P(Rfc).

The projective cocycle associated to a linear cocycle F : V —> V is the smooth

cocycle P(F) : P(V) —»• P(V) whose action F(FX) : P(VX) —> P(V/(x)j on the

fibers is given by the projectivization of Fx.
For every /-invariant probability measure v, there exists an P(F)-invariant

probability measure m that project down to v. This is true because the projective
cocycle F(F) is continuous and the domain P(V) is compact. Moreover, the extremal

Lyapunov exponents of P( F) exist and satisfy,

A+(P(F), x, I) < X+(F, x) - A_(F, x)
and A_(P(F), x, f) > A_(F, x) — X+(F, x),

whenever they are defined.

Let R > 0 be fixed, then the local strong-stable leaf Wfoc (x) of a point x M
is the neighborhood of radius R around x inside Ws(x). The local strong-unstable
leaf is defined analogously. Since we are working in the context of [4], the choice

of R here will be the same than in Section 5 of that paper.

Definition 2.6. We call invariant stable holonomy for P(F) a family IF of
homeomorphisms hsx : P(VX) —> P(Vj), defined for all x and y in the same

strong-stable leaf of / and satisfying

(a) hsy zohsxy hsxz and hsxx Id\
(b) F(Fy) o hsx y hsf(x) f(y) o P(Fx);
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(c) (x,y,f) i—^ hxy(f) is continuous when (x, y) varies in the set of pairs of
points in the same local strong-stable leaf;

(d) there are C > 0 and r) > 0 such that hsxy is (C, /^-Holder continuous for

every x and y in the same local strong-stable leaf.

Invariant unstable holonomy is defined analogously, for pairs of points in the same

strong-unstable leaf.

Let m be a probability measure in P(V) and v tx*m be its projection, then
there exists a disintegration of m into conditional probabilities {mx : x e M} along
the fibers which is essentially unique, that is, a measurable family of probability
measures such that mx{T{Vx)) 1 for almost every x e M and

for every measurable set U C P(V). See [35],

Definition 2.7, A disintegration {mx : x e M} is s-invariant if

(hsx y)*mx my for every x and y in the same strong-stable leaf.

The definition of u-invariant is analogous and we say the disintegration is bi-invariant
if it is both s-invariant and u-invariant.

Invariance Principle ([4, Theorem B]). Let f : M —s- M be a C2 partially hyperbolic,

volume-preserving, center bunched diffeomorphism and p be an invariant
probability measure in the Lebesgue class. Let F be a linear cocycle such that P(F)
admits holonomies and suppose that X~(F, x) X + (F, x) at p-almost every point.

Then, every ¥(F)-invariant probability m on the projective fiber bundle P(V)
with JT*m p admits a disintegration {mx : x 6 M} along the fibers such that

(a) the disintegration is bi-invariant over a full measure bi-saturated set

MF C M ;

(b) iff is accessible, then Mf M and the conditional probabilities mx depend
continuously on the base point x G M, relative to the weak* topology.

2.2. Toy model. Given / e Brx(M), the linear cocycle F Df\Ec will be

called center derivative cocycle for /. In Section 3, we prove that we can apply the
Invariance Principle to this cocycle when A\{f) Ac2(f). For this, we prove the

existence of holonomies for P(F) and study how they vary under the perturbation of
the diffeomorphism. The main results are Proposition 3.4 and Corollary 3.5.

We consider the following toy model to explain the main ideas and steps for
the proof of Theorem B. These ideas are classical and have already appeared, for
example, in [5,41],

Suppose / e p is a pinching fixed point (Definition 2.5), there exists

z e Msuchthatz e Wss(p)C\Wuu(p) andA^(/) Xc2(f). Then, we can apply the
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Invariance Principle for any P(F)-invariant probability measure m with n*m — p.
Therefore, there exists a disintegration {mx : x 6 M} such that (hs(f))*mp mz
and (hu(f))*mp mz where hs(f) and hu(f) denote the holonomies along
the strong-stable and strong-unstable leaves respectively. Moreover, there exist

a, b e P(££) such that suppm^, C {a, b).
We make a perturbation supported in a neighborhood of z, B$(z), which has the

property that fJ(z) B$(z) for every je Z \ {0}. Since dim Ec 2, P(F) is a

cocycle of circle diffeomorphisms over / and it makes sense to consider rotations
in P(Ep). The perturbation is chosen in order to have g close enough to / and

hs(g) Rß ° hs(f) and hu(g) hu(f). Here, Rß denotes a rotation of angle
ß > 0. This implies that g does not satisfy the Invariance Principle and therefore

A5(g)^A|(g).

2.3. Strategy of the proof. We extend the argument above to the general case when

we do not necessarily have a point of homoclinic intersection.

First we find an s u-path from p to itself with a special node z, which is slowly
accumulated by the orbits of all the nodes including its own. This is done in

Proposition 4.2. Next, we construct a sequence of Cr-perturbations denoted by fk
and supported in Bgk (z). The details are given in Lemma 4.1 and Lemma 4.4.

In the second part of Section 4, we study how the sir-path and the holonomies
change under the variation of the diffeomorphism. The main results are

Proposition 4.8 and Proposition 4.10. In the first one, we define the continuation
of the .s ir-path for every fk and estimate the distance between the new nodes and the
nodes of the original sir-path. In the second one, we estimate the angle between the

center bundle of / and the center bundle of fk Finally, we summarized these results

in Corollary 4.11. The main observation is that the variation in the holonomies is

exponentially small in k, although the size of the perturbations 8k is polynomial in k.
This will allow us to break the rigidity given by the Invariance Principle.

We are going to suppose that A\{fk) Ac2(fk) for every k e N and apply the
Invariance Principle for some probability measure mk with n*mk pi. This gives a

family of disintegrations {mk : x e M}. In order to conclude the argument we need

the functions x i—> mk to be equicontinuous. We are not able to prove this property,
but the problem is solved using the hyperbolicity of p and the results in Sections 5

and 6. In Section 5, we state the theorems from [6] and prove Proposition 5.7. This

proposition gives some kind of continuity for .su-paths under the variation of the

diffeomorphism. In Section 6, we study the disintegration given by the Invariance

Principle for some PfFj-invariant probability measure m with | supp wx| 1. In
this particular case, we obtain Proposition 6.1.

Finally, in Section 7 we combine all these results to give the proofs of Theorem B

and Theorem A. In Section 8, we apply Theorem A to partially hyperbolic
diffeomorphisms of the torus.
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3. Center derivative cocycle

As already mentioned, in order to prove Theorem B we need to be able to apply
the Invariance Principle to the center derivative cocycle, F Df\Ec, when

^•l (/) ^2(/)• Notice that the Lyapunov exponents of F coincide with the center

Lyapunov exponents of /.
Let * 6 {/x, &>} and r > 2. By the definition of we only need to prove

thatP(F) admits holonomies. For every / B^(M), there exists a > 0 such that /
is a-pinched. Then, the center bundle Ec is a-Hölder and the center derivative
cocycle F is a C0 a cocycle. Moreover, since / is a-bunched, it is enough to apply
the results in Section 3 of [4] to prove that P(F) admits holonomies. However, we

provide a new proof that allow us to give estimations about how these holonomies

change under the variation of the diffeomorphism. These are new results that we
have to prove in order to be able to work in a perturbative way.

Although the statements are for / e B^(M), the only necessary hypotheses are
the a-pinched and a-bunched conditions.

Since M is compact, we can define a distance in TM in the following way: For

every x,y e M close enough, denote nx,y : TXM —> TyM the parallel transport
along £, where £ is the geodesic satisfying dist(x, y) length(£). Then, given two
points (x, v) and (y,w) in TM define

d((x, v), (y, w)) dist(x, y) + ||TTjc.y (f) — w ||
•

To simplify the notation we are going to write

d((x, v), (y, w)) d(v, w) and jr" y

Since / is C2, there exists Co > 0 such that for every (x, v), (y, w) e TM,

d(Df(x,v),Df(y,w)) < C0d(v,w).

Let V be a vector space with inner product and let E\ and E2 be subspaces of V.
Then, define dist(£i, E2) max{£i, f2} where

fi sup inf ||x — y ||,
xeEi, yeE2
Ik ll=i

and %2 is defined analogously changing the places of E\ and E2. If Pe denotes the

orthogonal projection to the subspace E, then

inf ||x — y|| ||x-P£(x)||.

Therefore, ^
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If x and y are close enough, given Ex and Ey subspaces of TXM and TyM
respectively, define

dist(£x, Ey) dist(7rXjj(Ex), Ey) dist(£x, jiy^x(Ey)).

Since Ec is a-Hölder, there exists C\ > 0 such that

dist(Ex,Ey) < Ci dist(x,y)a.

Moreover, the constant C\ can be taken uniform in a C2 neighborhood of /. See

for example, [42].
The next proposition proves the existence of a family of maps for F, Hx y, with

certain properties that will imply that ¥{Hx<y) defines an invariant stable holonomy
forP(F).
Proposition 3.1. Let * 6 {p, m) and r > 2. Fix f e B^(M) and denote

F Df\Ec. Then, for any pair ofpoints x, y in the same leafof the strong-stable
foliation Ws, there exists a linear isomorphism Hx y Ecx -x Ecy satisfying:

(a) Fy o H'Xty o Fx, and

(b) Hsy z o Hf y Hlz and Hsx x Id.

Proof Fix / G B^(M) and let F Df\Ec. For n e N,

Fn(x) F(fn~1(x)) o • • • o F(x),

and for any continuous function r : M —> R+,

rn(x) r(x)r(/(x)) • r(/n_1(x)).

Here, we are going to consider the continuous functions given by Equation (2.1).
If x, y e M with y e W^oc{x), then for every /ieN define

A„(x,y) Fn(y)~1 o PEc(fn(y)) o n^y o Fn{x),

and

A0(x,y) P£c(y) °nx,y\Ec(x).
We are going to prove that this sequence is a Cauchy sequence and define

Hsx lim An(x,y).,y n->-oo

Observe that

An+j(x,y) FJ(y) o An(fJ(x), fJ(y)) o FJ(x).

Therefore, once we have proved that the limit above exists, we can use this identity
to demonstrate the general case when y e Ws(x) and also to conclude property (a).
The proof of (b) is an easy calculation from this formula.
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In order to prove that An(x, y) is a Cauchy sequence we find constants C2 > 0

and 5" < 1 such that

\\An+i(x,y) - An(x,y)|| < C2vn(x)(-i~s)a dist(x, y)a,

for every n £ N U {0}. This is a consequence of the definitions at the beginning of
this section and the following lemma.

Lemma 3.2 ([4, Lemma 3.1]). There exist C > 0 and q < 1 such thatfor all x e M,
y,z 6 W£oc{x) andn > 1,

n—1

FI II WOO)|| 1 F{fi{z)Tl\ <Cv\x)-^.
j=o

Remark 3.3. For every y e Wfoc (x) we have,

OO

Hx,y + A0(x,y).
j= 0

Let C3 > 0 be a bound for vn(x)^~Aa and let C C2 C3, then

OO

II-^o(^,t)|| < WAn+\{x,y) -A„(x,y)\\
7=0

OO

< C2 dist(x, y)a ^v"(x)(1-?)a
7=0

< C distCx.yf.

Then, we have proved that there exists C > 0 such that for every y e Wf (_jc),

||//j;J| < 1 + C dist(x,>0o.

Moreover, the constant C depends only on /.
Observe that all the estimations in the proposition and the remark can be taken

uniform in a C2 neighborhood of /. For every / e we fix this C2

neighborhood and denote it by U(f). From now on, every g C2-close to / will be

understood to belong to it.
Now that we have proved the existence of Usx y, we can define hsx y P(Hx y).

In order to show that the family hsx y
is an invariant stable holonomy for P(F), we

need to prove property (c) in Definition 2.6.

Using the explicit formula for Hx y given in the proof of Proposition 3.1, we are
able to prove a stronger result, that will imply (c), but provides also an estimation
about how Hx y changes under the variation of the diffeomorphism.



370 K. Marin CMH

Proposition 3.4. Let * £ {//, co} and r > 2. Fix f £ x £ M,
y £ Wf {x,f) and a £ Ec(x,f). For every > 0 there exist 8 > 0 and a

neighborhood off in the C1 topology, V(f), such thatfor every g £ IA(f) fl V(/),
every w,z £ M with w £ W* (z, g), dist(x, z) < 8 and dist(^, w) < 8 and every
b £ Ec(z, g) with d(a, b) < 8, we have

d(H^y(f)(a),HsZtW(g)(b))<.

Proof Let F Df\Ec(f). Similar estimations to the ones in Remark 3.3, provide
a C > 0 and g < 1 such that for any n > 1,

IHly(f) - An(fx,y)\ < C v"(*)a(1-ff)

and \\H^w(g)- An(g,z,w)\\ < C v"(z)a(1_f).

Then, the proposition is a consequence of the continuity of

An(f,x,y) Fn{y)~1 o PEc(fn(y)) o jr^y o Fn{x),

as a function of (/, x, y).
More precisely, the distance

d(An(f x, y)(a), An(g, z, w)(b))

can be bounded by an expression that depends on the following terms:

dist(x,z), dist(y,iu), d(a,b),
Z(Ec(x, /), Ec(x, g)), Z(Ec(y, /), Ec(y, g)),

\\Df(fj(x))-Dg(fJ(x))\\ and \\Df-\f^\y)) - Dg-\f^\y))\\
for j £ {0,...,«}.

By Proposition 3.1 and Proposition 3.4, the family hsx y P(Hfy is an invariant
stable holonomy for P(F).

Observe that Proposition 3.4 implies the continuity of invariant stable holonomies
in compact parts of the strong-stable foliation. That is, the application

(f,x,y) I-+ H^y(f),

is continuous on Wf{f) {(g,x,y) : g £ V(/) and gn(y) £ Wfoc{gn{x))}, for

every n > 1.

There are analogous propositions and properties for the invariant unstable

holonomy, hux y. Locally, it will be defined by the projectivization of

H*,y ° 0 n",y °
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where

F~n(x) o ••• o F~l(x),

for every n e N.

Let £ [zo.zi. • • •, ?n] be an sw-path for / and denote HZi z for

every i e {1,..., N} with * e {5, u}. Then, we consider H% HZn o ••• o HZl.
The following corollary gives an estimation about how this holonomy changes under
the variation of / and the su-path.

Corollary 3.5. Ifg is close enough to f, [xo, • • •, -Xjv] and [jo> • • •» Ja?]

are su-paths for f and g respectively, a Ec(x0, /) and b Ec(y0, g), then

N—l N N

e n II HXj \\f(HXi+1)+ n II HXj I d(a,b),
i=07=1+2 7=1

where

+ d(HXj+1 (fli)' Hyi + l (rix,,)/, iai)))

and

at HXl o ••• o HXl (a).

By Remark 3.3, there exists C > 0 such that for every j e {1 if
xj—1 e W*oc(xj) with * {j, u}, then ||HXj || < 1 + C dist(x7_i, Xj)a. Therefore, if
f [xo,...,xpj] is an su-path with e W*oc{xj) and dist(xy_i, Xj) < L for

every j e {1,..., N}, then

N

[~[ II HX] I <(1 + CLa)N.
]=1

This proves that we can find a bound for I~[yLi || EIX] || depending only on the number
of legs of the .s u-path and the distance between the nodes. This will be important in
Section 6.

4. Perturbation

In this section, we construct a sequence of perturbations ft and study its properties.
First, we state elementary results for C r -perturbations in Lemma 4.1. In Section 4.2,
we find an su-path from p to itself with slow recurrence, Proposition 4.2, and apply
the previous lemma to construct the perturbations /&. This is done in Lemma 4.4.

In Sections 4.3 and 4.4, we study how the ,sn-path and the center bundle change
when we perturb the diffeomorphism. The main results are Proposition 4.8 and

Proposition 4.10. Finally, in Section 4.5 we summarize all the results to obtain
Corollary 4.11 which gives estimations for the variation in the holonomies.



372 K. Marin CMH

4.1. C -elementary perturbations. Fixed r > 2, we are going to define the Cr
Whitney topology in the volume-preserving and symplectic case specifying basic

neighborhoods.
Let p be a volume form and pick two finite open coverings

U {(Uj,(f>j) :j 1,....,«} and V {(F,, fj) : j 1,..., n)

of M by Cr conservative coordinates charts such that f(Uj) C V} for all j. This
means that we are using [28] to find <f3 : U, —> Rd and fj : V3 —> M.d,

Cr diffeomorphisms with p <p*(du\ A • • • A duf) if*(dui A • • A duf) where

(u\,..., Ud) are coordinates in M.d.

Let e > 0. Define t]rß(f, U, V, e) to be the set of diffeomorphisms g e Diff^fM)
such that

(a) g(Uj) c Vj for all j, and

(b) dlfjg<f>j H*) - Vifjfcpj \x) < for x e <p(Uj), |t| < r
and j e {!,•••,«}•

Here t (ti, Lr) is a multi-index of non-negative integers, |i| ii + • • + ir,
and 3' denotes the corresponding partial derivative.

For the symplectic case, pick two finite open coverings by Cr symplectic charts.

That is, use Darboux's Theorem to find (j>j : Uj —> M2rf and ^ : Vt —> R2rf, Cr
diffeomorphisms with co <p*(du A dv) is* (du A dv) where to is the symplectic

form and (u, v) are coordinates in M.2d. Then, rfw(j\lA, V, e) is defined analogously.
We will write ^*(/, U, V, c) with * e {/r, to}.

Lemma 4.1. Fix r > 2. Let f be a partially hyperbolic volume-preserving
(symplectic) diffeomorphism with dim Ec 2. Then, there exist eo > 0, 3'o > 0

and Co > 0 such that for every 0 < e < Cq, 0 < S < So and z M, there exists

g e ?7*(/> U, V, e) such that

(a) gO) f(x) ifx £ Bs(z),

(b) g(z) f(z) and

(c) Dgz Dfz o Aß where sin ß Co Sr~ie and Aß is the linear map from
TMZ to TMZ given in coordinates TM Es © Ec ® Eu by

with Id** : E** —> E** being the identity map for ** 6 {5, u} and Rß the

rotation of angle ß in some (symplectic) base {t'\, f\} of Ec(z).
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The proof in the volume-preserving setting is standard. However, we need to be

more careful for the symplectic case and we need to use generating functions. The

symplectic version of this lemma is a direct consequence ofLemma 2.1 (Perturbation
Lemma) of [29],

4.2. Choice of the perturbation. Now, we use Lemma 4.1 to construct a sequence
of perturbations fa. As already mentioned, we need to find an su-path from p to
itself with slow recurrence.

Proposition 4.2 ([4, Proposition 8.2]). Let f be a partially hyperbolic accessible C2

diffeomorphism. Then, for every x e M there exists an su-path, £ [zo,..., zjv]
with x zq — iff, I e {0,..., N} and c > 0 such that

dist(fJ(zt),zi) >
1 ^

for every (j, i) e Z x {0,..., N} \ (0, /).

For every partially hyperbolic diffeomorphism /, there exist R\ > 0 and a C1

neighborhood of /, V(/), such that for every g V(/) and every y e M, the ball

B{y, Ri) is contained in foliation boxes for both IV" (g) and Wfag). See [24],
In the next section, we are going to need that dist(z,_i, z,) < Ri for every

i 6 {1,..., N}. Since we are using the same definition of local strong-stable and local
strong-unstable leaves than in Section 5 of [4], this will imply that z;_i e W*oc (z,)
for every i e {1,..., N} with * e {s, u}.

It is possible to slightly modify the proof of Proposition 4.2 in [4] to control the

distance between the nodes and obtain the desire bound. However, notice that we
need to fix / in order to obtain Ri and only then apply the proposition.

We are going to use this remark in the next section.

Remark 4.3. Fixed / e (M) and x e M, we can suppose that the su-path given
by Proposition 4.2 for / and x, £ [zo,..., zjy], satisfies dist(z,_i, z,) < R\ for

every i e {1,..., N}.

Let * e {p,to} and r > 2. Fix / e B^(M) and suppose p is a periodic point
for /. Then, apply Proposition 4.2 to / and p. We are going to construct a sequence
of perturbations for /, like in Lemma 4.1, supported in the point z/.

First, we fix some constant a a (v. a,np, N) > 0. Here, v represents the
functions in Equation (2.1) for f, a is the exponent for which / is a-pinched and

a-bunched, np is the period of p and N the number of nodes in the su-path given
by Proposition 4.2. This is a technical constant that we need to consider in order to
have exponential estimations in Corollary 4.11, Equation (7.1) and Equation (7.2).
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Then, define

8k 7—TTÜ' (4-1)
1 + (ok)2

for every k > 1, where c > 0 is given by Proposition 4.2.
The following lemma is a corollary of Lemma 4.1. We are assuming that eo is

small enough in order to have all the estimations in Section 3 uniform for every g
eo-close to /.
Lemma 4.4. Let * {ji, oj} and r > 2. There exist eo > 0. ko *= N and Co > 0

such thatfor any 0 < e < eo and k > ko, there exists fk B£ (M) D rf^(f,lA,V,)
such that

(a) fk(x) f(x) ifx £. BSk(zi),

(b) fk(zi) f(zi), and

(c) Dfk(zi) Df(zi) o Aßk with sin ßk C0 8rfl e.

Moreover, if we fix > 0 and consider the sequence defined by fk for k > ko, we
have fk f in the C1 topology when k -+ 00.

Observe that the sequence of perturbations fk is e-close to / in the C-topology.
However, since 8k is going to zero as k goes to infinity, the C1 distance is also going
to zero, because of that fk -> / in the C1 topology.

4.3. Control of the vn-paths. Proposition 4.2 gives information about how much
time the nodes of the .s u-path stay outside of the support of the perturbation. We will
use this information to estimate how the dynamics is changing. Some results similar
to these appear in [21].

Let * {p,, co}, r > 2, / e B^(M) and suppose p is a periodic point for /.
For the functions in Equation (2.1), define

v(x, R) sup v(y), y(x, R) inf y(y),
yeB(x,R) y&B)x,R)

fi(x, R) sup v(y) and y(x, R) inf y(y).
y&B(x,R) y£B(x,R)

Then, by continuity of the functions and compactness of M, there exist Rq > 0

and to < 1 such that for every x e M,

v(x, R0) < To y(x, R0) and v(x, R0) < r0 y(x, R0).

Remark 4.5. Observe that Ro depends only on / and therefore we can suppose that
the constant R\ in Remark 4.3 was chosen to satisfy R\ < Ro-
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Lemma 4.6. Fix x e (to, 1). There exist C\ > 0 and \ > 0 such that for every
x e M, y e Wf)c(x) n B(x, Rq) and g c\-close to f in the C1 topology, if there

exists m 6 N with fJ(x) g1 (x) and fJ(y) g3 (y) for every 1 < j < m, then
there exists w e Ws(x, g) D B(y, C\tm).

Proof Since / is partially hyperbolic, there exists a cone family around Eu © Ec,
Kcu, such that

(a) Df(Kcu(x)) c Kcu{f(x)) for every x e M,

(b) Kcu is uniformly transverse to Es,

(c) For every v Kcu(x),

\\Dfx{v)\\ > xv(x,R0) |M|,

for every x e M.

Moreover, all the above are still valid for every g C1-close enough to /.
Let V be a topological disk of dimension u + c passing through y such that

TV C Kcu. Since fm{x) gm(x) and fm(y) — gm(y), we have

dist(gm(x),gm(y))<v(x,Ro)m.

Then, there exists C\ > 0, depending only on /, and wi e Ws(gm(x), g) n gm(V)
such that

dist(gm(x), wi) < C\ v(x,R0)m.

Define w g~m(u>i), then w e Ws(x, g) and

dist(y, w) < Ci xm.

There is an analogous statement for the strong-unstable foliation Wu. Using these

results we are able to prove the following lemma.

Lemma 4.7. Iff [zo,..., zjy] is the su-path given by Proposition 4.2 for f and p
and fk is given by Lemma 4.4for some e > 0, then there exist C\ > 0, r (0,1) and
k i e N such that for every k > k\ and i e {1,..., N} there exist points vjf 6 M
with

tnf e W*(zl-i,fk) n B(zt,Ci rak).

Here, the constant a is given by Equation (4.1) and

w*, rs [w'^-ufk) if ZieW'fzi-uf),W (Zi — i, fk) — {
| WU (Zi — fk) if Z^W^Z.-uf).
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Proof. Fix i £ {1,..., N} and suppose z, £ Ws(zt-\, /). Notice we can assume

z, £ Wfoc(z;_i, /) H S(z,_i,/?o)- This is a consequence of Remark 4.3 and

Remark 4.5. Then, we are going to apply Lemma 4.6 for x z,_i and y zt. The
value of k\ is chosen in order to have fk \ -close to / in the C1 topology for every
k > k\.

By Equation (4.1) and Lemma 4.4,

fk (z* -i) /'' Oh -i) and fk (zi) fJ(zi)'
for every 1 < j < a k.

Then, for every k > k\ there exists wk Ws(z,-1, fk) Fl B(zl, Ci xak). The

case for z,_i £ W"(z,) is analogous.

By the results in [32,33], the a-pinched condition implies that the Ws and Wu
holonomies are a-Hölder. Moreover, there exists a C2 neighborhood of /, V(/),
such that the Ws and W" holonomies for every g e V(f) are er-Holder with uniform
Holder constant. For this see [42].

We can suppose that q > 0 in Lemma 4.4 was chosen small enough in order to
guarantee that fk £ V(/).

Fix k >k\ and define z\ w\ by Lemma 4.7. Then,

dist(zf, zi) < Ci rak.

Suppose z2 £ Ws(z\, /). Let R\ > 0 be the constant in Remark 4.3 and wk be

defined by Lemma 4.7. If k is big enough, zk,wk £ B(z\,R\). Then, z2, zk

and wk are all in the same foliation box for Ws(fk). Denote U this foliation box
and let E(x) be a smooth foliation by admissible transversals defined in U. Define
zk as the only point of intersection of Ws{z\, fk) with ^(w^). Then, there exists

C i C i (/) > 0 such that

dist(iU2, zk) < C\ dist(zf, z{)a.

Then,

dist(z2, z2) < dist(z2, wk) + dist(u;2, z%) < Ci tuk + C i Cf xaka.

If z2 W"(zi, /), we proceed in the same way using a foliation box for the strong-
unstable foliation.

Repeating the argument for all the nodes of £ we have the following:

Proposition 4.8. IfC,— [zo,..., zm] is the su-path given by Proposition 4.2 for f
and p, and fk is given by Lemma 4.4 for some e > 0, then there exist C2 > 0,

x £ (0,1) and k2 £ N such that for every k > k2 there exists an su-path for fk,
Kk [zo' • • •' zAf]' wüh zo z° P aRd such thcit

dist(Z;, zk) < C2 xaik,

for every i £ {I,..., N}, where a\ — a aN and a is given by Equation (4.1).
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Although £ is a closed .su-path, zo zjy, the .vw-path for fk given by this
k
N-proposition is not necessarily closed. We can have Zq zk

4.4. Angle estimations. Now we study how the splitting in the tangent bundle is

changing under the variation of the diffeomorphism.
Let V be a vector space with inner product and let E\ and E2 be subspaces of V.

Define Z (£1, £2) max{fi, £2} where

£1 sup inf Z x, y,
xeEi, y^E2,
x^o y^o

and %2 is defined analogously, changing the places of E\ and £2.
The relation between this definition and the distance of subspaces defined in

Section 3 is given by
sin Z (£1, £2) dist(£i, £2).

By Equation (2.1), there exist C3 > 0 and do > 0 such that for every £"+c and
Fc+S distributions of dimension u + c and c + .s' respectively, with

max{Z(£"+c, £"+c), Z(EC+S, Fc+S)} < 60, (4.2)

we have

ADfj (.Eux+C), Dfi (£;+e)) < C3 pJ, (4.3)

and

A{Df-] (Ecx+S), Df~> (Fx+S)) <C-iPJ. (4.4)

for every x e M and j > 0, where

p max (max{v(x)/y(x),\>(x)/y(x)}).
xeM

Lemma 4.9. There exist C3 > 0, p G (0, 1) and 3 > 0 such that ifg is e^-close to

f in the C1 topology, g f outside some compact set I and there exists m e N
such that fJ (x) do not enter I for every j e Z with \j \ < m, then

Z(£"+C(x, /), Eu+C(x, g) < C3 pm (4.5)

and Z(EC+S(x, /), Ec+S(x, g)) < C3 pm (4.6)

Proof For every j e Z with |y | <m,fJ (x) ^ / implies that f] (x) gJ (x) and

Df{f ' (x)) Dg(gJ (x)). Moreover, if g is C1 -close enough to /, the inequality
in Equation (4.2) holds for £"+c Eu+C(g) and Fc+S Ec+S(g). Therefore,

Z(£"+C(x, f),Eu+c(x,g))
Z(Dfm(Eu+c(f~m(x), /)), Dgm{Eu+c{g-m{x),g)))

Z(Dfm(Eu+c(f~m(x), f)),Dfm(Eu+c(f-m(x),g))).

Finally, we conclude Equation (4.5) by Equation (4.3). The stable case is analogous:
we use Equation (4.4) to prove Equation (4.6).
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This provides a result about how the center bundle is changing with the

perturbation.

Proposition 4.10. Ift, [zo,. zn] is the su-path given by Proposition 4.2 for f
and p, and fk is given by Lemma 4.4 for some e > 0, then there exist C4 > 0,

p G (0,1) and k4 G M such thatfor every k > k4 and i G {1,..., N}, we have

Z(Ec(Zl,f),Ec(Zi,fk)) < C4p°k~\ (4.7)

where a is given by Equation (4.1).

Proof. If i -^ /, that is, z, is not the point where we did the perturbation, then by
Equation (4.1) and Lemma 4.4 we have that f] (z,) do not enter the support of the

perturbation for every je Z with \j | < ok — 1. Then, we can apply the lemma
above for Eu+C and Ec+S with m ok — 1. The proposition follows because Ec is

the intersection of this two transversal bundles.

In order to prove Equation (4.7) for z/, we need to prove a lemma similar to
Lemma 4.9 for Eu+C(zi) and Ec+S(zi), using the fact that Dfk(zf) Df(zf)oAßk
and Aßk leaves invariant the subbundles in the splitting E" © ECZ[ © ESZ[. Then, we
conclude the proposition with the same argument than for the other nodes.

4.5. Summary of the results. Let * e {p,co}, r > 2, f G B^(M) and suppose

p is a periodic point for /. Proposition 4.2 gives an .su-path from p to itself,
£ [z0,..., zn], and a node with slow recurrence z;.

Let fk be given by Lemma 4.4 for some e > 0. Then, fk satisfies Propositions 4.8
and 4.10 for every k > max{/c2, k4}. Moreover, if k is big enough, f] (p) B$k (z/)
for every j G {0,..., np — 1}.

Let
£1 [z0,...,z;] and [zN,... ,zi\.

We can suppose z/_i G Ws(zi) and z/ G fL"(z/+1).
In the notation of Proposition 4.8, define

Zfe=zf, Pk zkN,

[p, ...,zk\ and £ [pk,... ,zk\.

In the following, for i e {1,2} will denote the holonomy defined by if for
F Df IEc(/) and H^k the holonomy defined by (k for Fk Dfk\Ec(fk). Then,

HKl : Ec(p) Ec(zi, /), Hi2 : Ec(p) ^ Ec(zh /),
Hf,c : Ec(p) Ec(zk, fk), and Hg : Ec(pk, fk) Ec(zk, fk).
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Using Corollary 3.5 combined with Propositions 4.8 and 4.10 we can estimate
the variation in the holonomies:

Corollary 4.11. There exist C > 0, A 6 (0,1 )andK e N such thatfor every k > K,
a e Ec(p) and ak Ec(pk, fk) we have

d(R~ßl o (a), N(t(a)) < C Xk, (4.8)

and

d(Hh(a), H(k(ak)) < C Xk + C d(a,ak), (4.9)

where Rßk : Ec(zi,f) —> Ec(zi,f) is the rotation of angle ßk > 0 defined by
Lemma 4.4.

Proof. Consider Equation (4.9). By Corollary 3.5, it is enough to estimate the
distances between the holonomies Hl+\(f) and Hl+\(fk) for i e {/,..., N — 1},
where H, H**+uWi and ** e {s,u}.

Fix i e N — 1} and suppose zl + \ e Ws(z,). The other case is analogous.

By Proposition 3.4, we can estimate the distance between Hl + \{f) and Hl+1 (fk)
by an expression depending on:

vfc(zi)a(1_?), vk(zk)a(1~s\

dist(z,, zk), dist(z, + ,,zf+|),
Z(£c(z,, /), Ec(zl, fk)), AEc(zl+u /), Ec{zl+l,fk)),

and the following terms:

I £>/(/; (z;_0) - DMf (2,-0)1
and IDf-l(f>+\z,)) -Dfjfl(f'+\z,))\
for every j e {0,..., k}.

Since v < 1 and g < 1, the first two terms are going exponentially fast to zero
as A —» oo. The estimations for the two terms in the second line are given by
Proposition 4.8 and for the third line by Proposition 4.10. By Equation (4.1) and

Lemma 4.4 the last terms are all equal to zero because / and fk coincide outside the

support of the perturbation.
Although we have exponential estimations for each term, we can only guarantee

that the whole expression is going exponentially fast to zero as k —> oo due to the

constant a in Equation (4.1).

If we want to estimate d(H^ (a), H^k (a)) everything works the same than above

except that now we have the following term which is not zero,

I Df-l(f(zt))-Dfjf\f(zi))\.
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Because of that we consider Rj* o instead of in Equation (4.8). This allows
us to obtain the desired estimation.

Notice that we are comparing the values of the derivative at the point z/ and not in
Zfc z*. This is an important observation since we have no control on Dfk(z^).

5. Accessibility

We obtain a continuity property for .vu-paths under the variation of the diffeomor-
phism using the results and techniques in [6], In order to clarify the presentation we
state here the results that we are going to need.

In this section, all the maps will be C1 and we will always consider the C1

topology. If / is a partially hyperbolic diffeomorphism, we denote u dim Eu,
s dim Es.

Recall that given two points x, y e M, x is accessible from y if there exists a

path that connects x to y, which is a concatenation of finitely many subpaths, each of
which lies entirely in a single leaf of IT" or a single leaf of Ws. This is a equivalence
relation and we say that / is accessible if M is the unique accessibility class.

In the sequel, we state the principal results in [6] which will allow us to prove
the main results in this section. The following theorem was already mentioned in
Section 2.

Theorem 5.1. Iff is a partially hyperbolic accessible diffeomorphism and the center
bundle Ec is 2-dimensional, then f is stably accessible.

The next theorem provides a parametrization of accessibility classes.

Theorem 5.2. For every partially hyperbolic diffeomorphism f : M —> M, there

exist I > 1, a neighborhood of f, V(f), and a sequence

Pm : V(/) x M x M/("+-s)m — M

of continuous maps such that, for every (g, z, v) e V(/) x M x E""+5)m,

(a) Pn(g, Pm(g,z,v),w) Pn+m(g, z,(v,w)) for every w eRl(u+s)n;

(b) £ i—> Pm(g, u) is a homeomorphism from M to M and Pm(g,*, 0) id;
(c) Um>o Pmiiig'z)} x M'("+'v)m) is the g-accessibility class ofz.

Using this theorem, Avila and Viana introduce a class of paths, called deformation
paths, contained in accessibility classes and having a useful property of persistence
under the variation of the diffeomorphism and the base point. More precisely,

Definition 5.3. A deformation path based on (/, z) is a map y : [0, 1] —> M such

that there exist m > 1 and a continuous map T i-> satisfying y(t)
Pm(fz,T(t)).
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The continuity of the maps Pm given by Theorem 5.2 implies the following
corollary.

Corollary 5.4. If y is a deformation path based on (/, z), then for every g close

to f and any w close to z, there exists a deformation path based on (g, w) that is

uniformly close to y.

The main technical step in the proof of Theorem 5.1 is a result of approximation
of general paths in accessibility classes by the deformation paths defined above. We

state a simpler version of this result that is sufficient for our purposes.

Theorem 5.5. Iff is accessible, then for every z e M the set ofdeformation paths
based on (f z) is dense on C°([0,1], M).

The final ingredient is what is called the Intersection Property, and it is in this
result that the hypothesis of dim Ec 2 is necessary.

Theorem 5.6 (Intersection Property). Letf be apartially hyperbolic diffeomorphism
with 2-dimensional center bundle. Let D be a 2-dimensional disk transverse to
Es © Eu and rju, t]s be smooth paths in D intersecting transversely at some point.
Then, for every diffeomorphism g C1 -close to f and any continuous paths yu, ys

uniformly close to rju, rjs, there are points xu, xs in the images ofyu, ys such that

W"(xu,g) intersects Ws(xs, g).

Let / be a partially hyperbolic accessible diffeomorphism with 2-dimensional
center bundle and x, y e M. By Theorem 5.1, if g is enclose enough to /, then
there exists some .s u-path for g joining x to y. Besides, the proof of the theorem
in [6] uses Theorems 5.5 and 5.6 and provides a way to find the su-path for g. The

following results use that information to prove relations between the s u -paths for /
and for a sequence /&—»/.

Proposition 5.7. Let f be a partially hyperbolic accessible diffeomorphism with
2-dimensional center bundle. For every x,y M, y>k —> y and every sequence

fk^f in the C1 topology, there exist a subsequence k3, su-pathsfor fkJ denoted

by t,kj and a su-pathfor f denoted by £ satisfying the following:

(a) Kkj [Zo, • • •, zn] J°ins x to ykj,

(b) t, [zo,..., zjy] joins x to y and

(c) for every e > 0 there exists K e N such that for every kj > K,

dist(z;, z\) < e

for every i {0,..., N}.
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Proof. Fix a small 2-disk D and r\u and qs like in the hypotheses of Theorem 5.6. By
Theorem 5.5, there exist a deformation path yu based on (/, x) which is uniformly
close to qu and a deformation path ys based on (/, y) which is uniformly close to qs.

Moreover, by Corollary 5.4, if k big enough, there exist

(a) a deformation path yk based on (fk, x) which is still close to rju and

(b) a deformation path yk based on (fk,yk) which is still close to qs.

Theorem 5.6 implies that there exist tk, tk £ [0,1] and wk £ M such that

wk e Wu(yk(tk), fk) n Ws(yk(tk), fk).

Then, for every k big enough, we have an .sw-path for fk, joining x to yk, denoted

by 'C,k and defined by the nodes of yk(tk), the intersection point wk and the nodes

of yH1*)-
By compactness, there exist a subsequence k} and tu, ts such that

Je k
tuJ tu and ts' ts.

Since fk —> f and Ws and Wu are continuous under the variation of the

diffeomorphism we can find w M such that wk w and

u> e Wu(yu(tu),f)nWs(ys(ts),f).

Denote t, the .vw-path for / joining x to y and defined by the nodes of yu (tu), the

intersection point w and the nodes of ys(ts).
Finally, by the construction of the su-paths and, again, Corollary 5.4, we have

that for every e > 0 there exists K e N such that the distance between the nodes of £

and t,kj is bounded by e for every k} > K.

The s u-paths in the proposition above can be chosen in a uniform way. That is,
with a uniform number of legs and a uniform bound for the distance between the

nodes.

Corollary 5.8. Let f be a partially hyperbolic accessible diffeomorphism with
2-dimensional center bundle. Then, there exist L > 0 and N > 0 such thatfor every
x, y £ M, yk y and every sequence fk —> f in the C1 topology, the su-paths
defined by Proposition 5.7 can be taken to have at most N legs and distance between

the nodes bounded by L.

Proof. Observe that in order to prove this corollary it is sufficient to prove the

following claim.

Claim. Fix q C°([0, 1], M) and > 0. Then, there exist L > 0 and N > 0 such

that for every x £ M there exists a deformation path based on (/, x), denoted by y,
which is e -close to q and satisfies thatfor every t £ [0,1], the su-path defined by y(t)
has at most N legs and the distance between the nodes is bounded by L.
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By Theorem 5.5, for every x G M there exists a deformation path based on (/, x),
that is e-close to q. Therefore, the claim follows from the persistence of the

deformations under the variation of the base point and the compactness of M.

Corollary 5.8, together with Remark 3.3 and Corollary 3.5 give the following
result. Given / 5£(M), let U(f be a C2 neighborhood of / where all the

estimations in Section 3 can be taken uniform.

Corollary 5.9. Let * G {/i,, coj, r > 2 and f G Then, there exists C > 0

such that for every x,y G M, }>k V and every sequence fk f in the C1

topology with fk U( f), the su-paths given by Proposition 5.7, denoted by
and can be taken to satisfy the following estimation for the holonomies defined by
them,

d(H{(a), Hikj (b)) < fi(kj) + C d(a,b),

where f (kj) goes to zero as k} goes to oo.

There are analogous estimations for hf F(Hf) and h^k P(H%k We

are going to use this result to prove Proposition 6.1 and to conclude the proof of
Theorem B in Section 7.

6. Disintegration

Let * G {p,(o}, r > 2, / g B^(M) and assume p is a pinching periodic point
for /. That is, Df"p\Ec(p) has two real eigenvalues with different norms, where

np per(p). Then, there exist C\ > 0, do > 0, p e (0,1) and one-dimensional
subspaces E\, E2 of Ecp such that for every F\ and F2 one-dimensional subspaces
of Ecp with

max{Z(£j, Fj), Z(F2, F2)} < 0O, (6.1)

we have

E-(Df"pJ (Ei), Dfnp2(Fy)) < Cx pj (6.2)

and Z.(Df~"pJ (F2), Df~"pj (F2)) <ClPJ, (6.3)

for every j > 0.

By the Invariance Principle, if A\{f) Ac2(f), then every P(F)-invariant
probability measure m with n*m p. admits a disintegration, {mx : x G M},
invariant by holonomies and continuous with the weak* topology. The continuity
of mx and the invariance of m implies that P(F(x))*mx m f(X) for every x e M.

Then, if a, b G P(Ecp) are defined by a [F^ and b [£2], we have

suppm^ C {a, b). (6.4)
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Let fk and ko be given by Lemma 4.4 for some e > 0. Suppose A j (fk) A£(fk)
for every k > ko. We will denote Fk Dfk\Ec{fk) the center derivative cocycle
for fk and P(Fk) its projectivization.

We can suppose that for every k > ko, fJ(p) £ Fsk(zl) f°r every

j £ {0,...,np — 1}. Then, for every k > ko and any P(Ffc)-invariant probability
measure mk with n*mk p., we have

suppm^ C {a, b).

Moreover, if for every k > ko we fix some mk, then there exist a subsequence k}
and a measure m in P(TM) such that mk> —> m in the weak* topology. The limit
measure m has the following properties:

(a) suppm C F(Ec(f)),
(b) m projects down to pt,

(c) m is P(F)-invariant.
k

Denote mpJ and mp the element of the disintegration given by the Invariance

Principle at p for mkJ and m respectively.

Proposition 6.1. If \ suppmp\ 1, then there exist a subsequence of kJt that we
continue to denote kj, and Kq £ N such that

k,
suppmp C supp mp

for every k; > Ko-

Proof. Suppose that supp mp {a}. The case suppm^ {b} is analogous.
Consider C > 0 given by Corollary 5.9 and fix some 0 < 5 < d(a, b)/4C. Define
the function f : M —> P(TM) by £ (x) (x, suppmx) and the set

Ts {(x, v) £ ¥(TM) : (x, v) £ (?(*))}.

The Invariance Principle implies that the function £ is continuous and therefore Tg

is an open set. Moreover, by definition, m{Ts) 1. These two properties imply that

mkj(Ts) j mkxJ(Ts n P(£c(x, fkj )))dp,(x) 1.

Then, there exist a subsequence of k}, that we continue to denote k}, x £ M and

£ N such that for every k} > K\,

Ts n supp mkxJ f 0.

We apply Proposition 5.7 to fkj, x and ykj p. Then, we have a new
subsequence, that we continue to denote k}, .vu-paths for fkj denoted by t,kj and a
.s u-path for / denoted by f all joining x to p.
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Denote h the holonomy defined by £ for F(F) and hkj the holonomy defined

by t,kj for ^(Fkj)- By Corollary 5.9, there exist C > 0 and a function f(kj)
going to zero as kj -» oo, such that for every a' e P(Ec(x, /')) and every
b' P(Ec(x, fkj)), we have

d(h(a'), hkj (b')) < + C d(a', b').

Since the disintegration given by the Invariance Principle is invariant by holono-
mies and we suppose suppmp {a}, we have suppm* h~l(a). Moreover,
since

supp mkxJ n Ts f 0,

there exists

a'kj e suppmkxJ with d{h~1{a),a'kj) < 8 for every k} > K\.

k
Define akj hkj(a'k Then, ak/ e supp mpJ and for kt big enough,

d(a,akj) d(h(h~x(a)),hkj ia'kj)) < f(kj) + C d(h~x(a),akj)

< d(a,b)/2.
k

Since supp mpJ C {a, b}, this implies akj a and finishes the proof.

7. Proof of the theorems

In this section we give the details of the proof of Theorem B and explain how to
conclude Theorem A.

7.1. Proof of Theorem B.

Definition. Let / be a partially hyperbolic diffeomorphism and p a periodic point
with np — per(p). We say that p is a pinching periodic point if D fn" \Ec(p) has

two real eigenvalues with different norms.

Theorem B. Let * e {p,a>}, r > 2, f e B^(M) and assume f has a pinching
periodic point, then f can be Cr -approximated by volume-preserving (symplectic)
diffeomorphisms whose center Lyapunov exponents are different.

Proof. Let / B^(M) and p be a pinching periodic point, with np per(p).
Consider F Df\Ec and suppose (/) Ac2{f).

We proved in the previous section (Equation (6.4)) that there exist a,b e F(Ecp)
such that for every P(F)-invariant probability measure m with n*m pt, the element
of the disintegration given by the Invariance Principle at p satisfies,

suppmp C {a,b}.
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Fix a neighborhood in the Cr-topology, ?/(/, Z7, V, e), with e > 0 small enough.
Consider the su-path given by Proposition 4.2 for / and /»and let Co > 0, ko e N

and fk be defined by Lemma 4.4 for this e. Then, for every k > ko, fk has the

following properties:

(a) fk e B:(M)nr,:(fU,V,e),
(b) fk(x) f{x) if x £ BSk(z)

(c) fk(z) f(z), and

(d) Dfk{z) Df(z) o Aßk with sin ßk C0 <5£_1 c.

Moreover, fk -> / in the C1 topology when k -> oo.
Denote 7/ Dfk \ Eck the center derivative cocycle for fk and suppose Aj fk)

Xc2(fk) for every k > ko-

We can assume that for every k > ko, fJ(p) £ Bgk(zi) for every

j e {0,..., tip — 1}. Then, for any P(7//invariant probability measure mk with
7x*mk fi, we have

suppm^ C {a, b).

Consider the following two cases:

(i) V k > ko there exists an P(7//invariant probability measure mk with
jz*mk p, such that suppm^ {a,b}.

(ii) V /invariant probability measure m with n*m /x, we have

| suppm^l 1.

It is enough to prove Theorem B for these two cases. Suppose the sequence of
perturbations fk does not satisfy the condition in case (i). Then, there exists k\ > ko
such that for every P(7</ /invariant probability measure mk] with 7i*mkl ji,
we have | supp mp] \ 1. Then, is a diffeomorphism satisfying case (ii). If
Theorem B is true in this case, we will be able to find a diffeomorphism g which is

e-close to fkl in the Cr topology and such that A j (g) / A2(g)- Moreover, since fk[
is e-close to f, g will be 2 e-close to /. This will prove the theorem for /.

In the following, we give the details of the proof of Theorem B for case (i)
and (ii). Since the two arguments are very similar, we are going to explain them

simultaneously.
Let K e N be given by Corollary 4.11. Ifwe are in case (i), for every k > K, there

exists mk such that supp mkp {a, b). Then, via a subsequence, we can suppose
that there exists an P(77)-invariant probability measure m with jv*m )i such that

m lim mk. If we are in case (ii), for every k > K, we choose any P(7//invariant
probability measure mk and define m lim mk. Then, | suppm/ 1 and we can

apply Proposition 6.1. From now on, if we are in case (ii), it is understood that fk
denotes the subsequence that verifies Proposition 6.1 and K > Kq-
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For every k > K, let {mk : x e M} and \mx : x e M} be the disintegrations
given by the Invariance Principle for mk and m respectively. Suppose a supp mp,
the other case is analogous.

By Proposition 4.8 there exist C > 0, r e (0,1) and pk zkN such that

dist(p, pk) < C x°lk.

The following argument allow us to find a point in the supp mkpk which is

exponentially close to supp mkp. The hypothesis of p being a pinching periodic
point is essential here. We need this estimation in order to apply Corollary 4.11 and

get a contradiction.
Define

qk fk"pk(pk)-

Then, there exists C2 > 1 such that

dist(p,qk) < C^npk distQ?, pk) < C (C2~n"T°'1)fc- (7.1)

Here C2 depends on the functions in Equation (2.1) and o\ a aN. The constant a
is defined in Equation (4.1) and was chosen in order to have this expression going to
zero as k —00.

Claim. Let 0o > 0 be the constant defined in Equation (6.1). Then, there exists

K\ e N such thatfor every k > K\, there exists dk supp mkk with d(a, dk) < 6q.

Proof. Since qk p, we can apply Theorem 5.7 for fk,x p and yk qk- Then,
there exist 5u-paths for fk denoted by (k joining p to qk and a .vn-path for / denoted

by £ joining p to p. Moreover, they satisfy Corollary 5.9.

Denote h the holonomy defined by £ for P(F) and hk the holonomy defined by £^

forP (Fk).
If we are in case (i), we have to possibilities: h(a) a or h(a) b. Then, define

hk(a) if h(a) a,

hk(b) if h(a) b.

Since suppmp — {a, b}, in any case we have dk £ suppmkk.
If we are in case (ii), then h(a) — a and we define dk hk(a). Proposition 6.1

implies that dk supp mkk.
Then, by Corollary 5.9 there exists (k) -»• 0 as k —> 00, such that

d(a,dk) < i?(k).

Therefore, choose K\ big enough in order to have f(k) < 0O for every k > K\.
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As before, Pe will denote the orthogonal projection to E and nx,y the parallel
transport between x and y.

Define

ak 0 Jtq/cpidk)

where [*] denote the class in the projective space, and

ck nFnk"(qk))(dk).

We have the following consequences:

ak e P(£p, F(a,ak)<90 and cfcesuppm^_.

Then, there exist C\ > 0, p e (0,1) and C3 > 1 such that

d(a,ck) d(nFnpk(p)){a),¥{FnkP\qk)){dk))

< d(P(Fn»k(p))(a), P{Fn"k{p)){ak))

+ d(¥(F^k(p))(ak),¥(F^k(qk))(dk)) (7-2)

< Ci pk + C"pk dist(p, qk)

<C1 pk + C (C"PC~"PrCl)k.

The estimation in the first term is a consequence of Equation (6.2). Since, the

constant C3 depends only on the functions in Equation (2.1), we can suppose that a
in Equation (4.1) was chosen to have the expression on the second term going to zero

exponentially fast as k —> 00.

If £ [zo,..., zw] is the .su-path given by Proposition 4.2 for / and p, let

£1 [z0,...,z/] and & [zt,... ,zN].

Denote and the holonomies defined by for F and f(F) respectively, with
i {1,2}. Then,

Htl : Ec(p) Ec{zu /), and hit : P(£e0>)) P(£c(z,, /)),

for i {1,2}.
By Proposition 4.8, we have

„k „ „kzk — zl Pk — ZN •>

and su-paths for fk,

[p,...,zk] and £ \pk,...,Zk].
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Denote H^k and h^k the holonomies defined by for Fk and P( Fk) respectively,

with i e {1,2}. Then,

Hkh : Ec{p) -> Ec(zk, fk), H(k : Ec(pk, fk) -* Ec(zk, fk),

hKk : P(£C(P)) -* nEc(zk, fk)) and h(k : P(£c(^, fk)) P(£c(z*, fk)).

Although we have two possibilities, suppm^ {a} or supp {a, b), we
are going to consider only the second case, because it imposes more restrictions.
Moreover, we can suppose there exist c,d e P(Ec(zi, /)) such that c (a)
h{2(a) and d h^t (b) h^2(b). The other cases are analogous.

In order to simplify the notation, we are going to use the same symbol to denote

both a nonzero vector in Ecx and the corresponding element of P(Ex).
If % : Ec(zk, fk) Ec(zh f) is defined by % Pe^z,,/) ° zk*zl' then

for k big enough d>k is an isomorphism. By Corollary 4.11 and Equation (7.2),
there exist C > 0, A e (0,1) and K e N such that for every k > K there exists

ck supp mkpk such that
"

< C A*(a)

(b)

(c)

R~ßl(c) - <S>k(H^(a))

R~ßl{d) - <S>k(H(k(b))

®k(Hrf(Ck))

< C Xk, and

< C Xk,

where Rßk : Ec(zi, f) -»• Ec(zi, f) is the rotation of angle ßk > 0 defined by
Lemma 4.4.

By the definition of ßk in Lemma 4.4 and Equation (4.1), we have

Xk
0 when k -> oo.

sin2 ßk

Since <£>k is an isomorphism, for k big enough, the one-dimensional subspaces

generated by H^k(a), H^k(b) and H^k(ck) are all different. In the projective level

this means,

htk(a),htk(b) ^ htk(ck).

On the other hand, since suppm^ c {a,b}, the invariance by holonomies given
by the Invariance Principle implies

suppmkk C {h^(a),h^(b)}.

Moreover, since ck e supp mkpk, then h^k (ck) e supp mkk.
We arrive to this contradiction because we were assuming that the Invariance

Principle could be applied for every fk with k > k0. Then, there exists ky e N such

that Affkf) f Xc2(fk] Since fkl is e-close / in the Cr topology and e > 0 was
chosen arbitrarily, this conclude the proof of Theorem B.
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7.2. Proof of Theorem A.

Theorem A. Let r >2, f e Bf(M) and assume the set ofperiodic points of f is

non-empty, then f can be Cr-approximated by non-uniformly hyperbolic symplectic
dijfeomorphisms.

The following observations are going to prove that we can reduce the proof to two
cases.

Suppose M is symplectic manifold and dimM 2d. Let / : M M be a

symplectic diffeomorphism and p a periodic point for /. If np per(p), define
the principal eigenvalues of Df"p to be those d eigenvalues with norm greater that

one or with norm equal to one and imaginary part greater than zero and the half
of the eigenvalues equals to 1 or -1. If the principal eigenvalues are multiplicative
independent over the integers, that is f] 1 with pi e Z implies pt 0 for

every i e {1,..., d}, we say p is elementary.
Let / e Bf(M) and p be a periodic point with np per(p). By the results

in [34], we can suppose that p is elementary. This implies that the eigenvalues of
Dfnp\Ecp satisfy one of the following:

(i) there exists 0 < p < 1 such that the eigenvalues are p and p~l, or

(ii) there exist x, y M such that the eigenvalues are x + iy and x — iy with
x2 + y2 1 and they are not a root of unity.

We are going to call option (i) the hyperbolic case and option (ii) the elliptic case.

Then, it is sufficient to prove Theorem A under the hypothesis of p being in one of
these cases.

7.2.1. Hyperbolic case. Fix / e Brw(M) and suppose p is a periodic point
satisfying (i). Then, p is a pinching periodic point and we can apply Theorem B to
find a symplectic diffeomorphism g Cr-arbitrarily close to /, with A

j (g) f Aj(g).
By the symmetry of the Lyapunov exponents, we have that they are non-zero almost

everywhere and therefore we have proved Theorem A in this case.

7.2.2. Elliptic case.

Definition 7.1. We say that a periodic point p of period np is quasi-elliptic if there
exists 1 < / < d such that Dfpp has 21 non-real eigenvalues of norm one and its

remaining eigenvalues have norm different from one.

We are going to use the following result:

Proposition 7.2 ([29, Proposition 3.1]). For every 1 < r < oo, there exists a residual
set R C Diff^(M), such that if f R, then each quasi-elliptic periodic point of f
is the limit of transversal homoclinic points.
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Fix / 6 B^(M) and suppose p is a periodic point satisfying (ii). Then, p is a

quasi-elliptic periodic point. By Proposition 7.2, we can suppose that besides of p, f
has a hyperbolic periodic point q. At this point we could apply Theorem B to finish
the proof. However, we are going to show that the coexistence of hyperbolic and

elliptic periodic points is an obstruction for the rigidity given by Invariance Principle.
An argument similar to the one we give here can be found in Remark 2.9 of [4],

Define F Df\Ec and suppose Aj(/) Xc2(f). We fix some P(F)-invariant
probability measure m with n*m fi and apply the Invariance Principle. Then,
there exits a disintegration {mx : x e M) such that F(F(x))*mx m f(x) for every
x e M.

Since / is accessible, there exists an su-path £ joining q to p. Let denote the

holonomy defined by £ for P(F).
Denote np — per(p) and nq per(g). Let mp and mq be the elements of the

disintegration given by the Invariant Principle at p and q respectively. Then,

P(Fnp(p))*mp mp, P {Fnq(q))*mq mq and (h^)*mq=mp.

Since q is hyperbolic, there exist two points, a and b, in P(£"£) such that

suppmq C {a,b}. Therefore, the support of mp contains at most two points.
This implies that P(F"p (p)) has a periodic point of period 1 or 2. However, this
contradicts the fact of p being an elliptic periodic point satisfying (ii).

Therefore, we have that the center Lyapunov exponents of / must be different at

almost every point. This finish the proof of Theorem A.

8. Applications

In this section we show examples of partially hyperbolic symplectic diffeomorphism
that can be Cr-approximated by diffeomorphisms in Brm (M) having a periodic point.
Then, by Theorem A, we are able to approximate these examples by non-uniformly
hyperbolic systems.

Let r > 2. B^(M) is the subset of PH^(M) where / is accessible, a-pinched
and a-bunched for some a > 0 and the center bundle Ec is 2-dimensional.

For d > 1, let T2d denote the 2d-torus.

Corollary 1. Let f : T2d —> T2d be a Cr Anosov symplectic diffeomorphism and

g : T2 —> T2 a symplectic linear map with eigenvalues ofnorm one. Then, f x g
can be Cr-approximated by non-uniformly hyperbolic diffeomorphisms.

Proof. Notice that / x g is a partially hyperbolic symplectic diffeomorphism with
2-dimensional center bundle. Moreover, / x g is a-pinched and a-bunched for some

a > 0 and has a periodic point.
Theorem A in [38] imply that for every e > 0, there exists a partially hyperbolic

symplectic diffeomorphism h which is accessible and «-close to / x g in the
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Cr topology. By the proof in [38], we can suppose that h coincides with / x g
in the orbit of some periodic point and therefore it has itself a periodic point. If

is small enough, we have h e Brm(M). Then, we can apply Theorem A to

Cr-approximate h by non-uniformly hyperbolic diffeomorphisms. This finishes the

proof.

Using the same argument than above and Theorem B in [38], we can prove the

following result.

Corollary 2. Let g : T2 —> T2 be a Cr symplectic diffeomorphism. Then, for every
d > 1 there exists f : T2d —> Yld a Cr Anosov symplectic diffeomorphism such

that f x g can be Cr-approximated by non-uniformly hyperbolic diffeomorphisms.

Let A be a real parameter. The standard map g\ of the 2-torus is defined by

gx(z, w) (z + w, w + A sin(27r(z + w))),

and it preserves the symplectic form in T2. By KAM theory, for all values of A

near zero, there exists a Cr neighborhood of g\ such that any diffeomorphism in
this neighborhood has an invariant subset with positive volume where both Lyapunov
exponents are zero. The following result shows that if we add some transverse

hyperbolicity, we are able to remove the zero Lyapunov exponents.

Corollary 3. Let f : T2d —> T2d be a Cr Anosov symplectic diffeomorphism. IfX
is close enough to zero, f x g\ can be Cr -approximated by non-uniformly hyperbolic
diffeomorphisms.

Proof. The argument is the same as before, we need to prove that f x gx can be

C-approximated by diffeomorphisms in Br0J(M) having a periodic point. The only
observation we need to make is that / x gx is a-pinched and a-bunched for some

a > 0 when A is close enough to zero because / x g0 is a-pinched and a-bunched and

both conditions are open. The rest of the proof follows using [38] and Theorem A.
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