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C" -density of (non-uniform) hyperbolicity in partially
hyperbolic symplectic diffeomorphisms

Karina Marin

Abstract. We use the Invariance Principle of Avila and Viana to prove that every partially
hyperbolic symplectic diffeomorphism with 2-dimensional center bundle, having a periodic
point and satisfying certain pinching and bunching conditions, can be C’ -approximated by
non-uniformly hyperbolic diffeomorphisms.

Mathematics Subject Classification (2010). 37D25; 37D30.

Keywords. Lyapunov exponents, non-uniform hyperbolicity, invariance principle.

Contents
] IntrOdEHON + « w5 ¢ s 5 s e v w @ F @ ¥ 5 5 5 B W BH & 5 56 &8 BB EEE § 358
2 Piehminaries and SEeMEls « o « s s ¢ s s s o w s @ % 65 5 &% 55 % 3 360
21 ISyRnERCe PROGIPIE . o n e v v ¢ 3 s nEE B ® 5 18 HA PG EE E 364
Ao IOVHOEEL o » < : : v mEEE s F N5 EERE T L5 E BEAHE B 365
2.3 Strategyoftheproof. . . . . . . . .. .. ... L 366
3 Center derivativecocycle . . . . . . .. .. ... ... 367
4 Perturbation . . . . . . ... 97l
4.1 CT7-elementary perturbations . . . . . .. ... ... .. ...... 372
4.2 Choice of the perturbation . . . . ... ... ... ... ...... 373
4.3 Controlof the su-paths . . . . . . ... ... ... ......... 374
4.4 Angleestimations . . . . .. .. ... .. 377
4.5 Summaryoftheresults . . . .. ... ... ... .......... 378
D ACCRSSIBITY « v ¢ s 5 som s m @ s 5§ 8 BB BB A K s s b e e mm s n e . 380
O DISIDICETAtioON. - « + » ww o w w5 i 7 5 6B B WM 4§ 33 6.5 A W64 845 s 383
7 Piool ol thetheortms o « o v 5 5 ¢ s s s wwwmw s s s 8 oo @n@ s i 5 5 3 385
d:1 Proofof TheoremB . « « « o s s sscma 2 89 v 6 o mma s 18 3 385
dee, ProolOLTHEOIEM A% » o = : s : s s @ s 5 6 ¢ S AR ESE & § 5 5 8 390
8 ApplicatiOns . . . : s o 5 w9 3 5 = » v wEw E B 5 8 3 F M E KL H E I B 391

References . . . . . . . . L L e, 392



358 K. Marin CMH

1. Introduction

In the theory of Dynamical Systems, hyperbolicity is a core concept whose roots may
be traced back to Hadamard and Perron and which was first formalized by Smale [39]
in the 1960s. It implies several features that are most effective to describe the system’s
dynamical behavior.

While Smale’s uniform hyperbolicity was soon realized to be a fairly restrictive
property, a more flexible version was proposed by Pesin [30] about a decade later: one
speaks of non-uniform hyperbolicity when all the Lyapunov exponents are different
from zero almost everywhere with respect to some preferred invariant measure (for
instance, a volume measure).

While being more general, non-uniform hyperbolicity still has many important
consequences, most notably: the stable manifold theorem (Pesin [30]), the abundance
of periodic points and Smale horseshoes (Katok [25]) and the fact that the fractal
dimension of invariant measures is well defined (Barreira, Pesin and Schmelling [9]).
Thus, the question of how general non-uniform hyperbolicity is, naturally arises, and
indeed, it goes back to Pesin’s original work.

However, the set of non-uniformly hyperbolic systems is usually not dense.
Herman (see the presentation of Yoccoz [45]) constructed open subsets of C”,
with large r, volume-preserving diffeomorphisms admitting invariant subsets with
positive volume consisting of codimension-1 quasi-periodic tori: on such subsets
all the Lyapunov exponents vanish identically. Other examples with a similar flavor
were found by Cheng and Sun [19] and Xia [43].

Before that, in the early 1980s, Mafié [27] observed that every area-preserving
diffeomorphism that is not Anosov can be C!-approximated by diffeomorphisms
with zero Lyapunov exponents. His arguments were completed by Bochi [10] and
were extended to arbitrary dimension by Bochi and Viana [11, 14]. In particular,
Bochi [11] proved that every partially hyperbolic symplectic diffeomorphism can be
C '-approximated by partially hyperbolic diffeomorphisms whose center Lyapunov
exponents vanish.

By the end of last century, Alves, Bonatti and Viana were studying the ergodic
properties of partially hyperbolic diffeomorphisms. In [I, 17] they proved that
under some amount of hyperbolicity along the center bundle (‘mostly contracting’
or ‘mostly expanding’ center direction) the diffeomorphism admits finitely many
physical measures and the union of their basins contains almost every point in the
manifold.

This again raised the question of how frequent non-uniform hyperbolicity is, this
time focusing on the partially hyperbolic setting. Can one always approximate the
diffeomorphism by another whose center Lyapunov exponents are non-zero? This
question was the origin of a whole research program, focusing first on linear cocycles
and dealing more recently also with non-linear systems. We refer the reader to the
book of Viana [40] for a detailed survey of some of the progress attained so far.
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Our own results are based on methods that were developed in these 15 years or
so and may be viewed as the fulfillment of that program in the context of symplectic
diffeomorphisms with 2-dimensional center. We proved (all the keywords will be
recalled in the next section):

Theorem A. Let f : M —> M be a partially hyperbolic symplectic C”
diffeomorphism on a compact manifold M. Assume that f is accessible, center-
bunched and pinched, the set of periodic points is non-empty, and the center bundle E°
is 2-dimensional. Then, f can be CT-approximated by non-uniformly hyperbolic
symplectic diffeomorphisms.

Let us stress that our perturbation holds in the C” topology, for any r € [2, +00).
The case r = 1 is very special and much better understood.

The first result along these lines was due to Shub and Wilkinson [37], who
proved that certain partially hyperbolic skew-products with circle center leaves can
be perturbed to make the center Lyapunov exponent different from zero. Their
approach relates the issue of non-uniform hyperbolicity into the analysis of the center
foliation and its measure-theoretical properties, a connection that has been much
deepened and clarified in the recent work of Avila, Viana and Wilkinson [7].

Baraviera and Bonatti [8] extended the approach of Shub and Wilkinson to prove
that any stably ergodic partially hyperbolic diffeomorphism can be C ! -approximated
by another for which the sum of the center Lyapunov exponents is non-zero. In
particular, this implies that every partially hyperbolic diffeomorphism with 1-
dimensional center bundle can be C!-approximated by non-uniformly hyperbolic
systems.

The results in [8], together with the results mentioned above of Bochi and Viana
in [14], were used by Bochi, Fayad and Pujals [12], to prove that every C ! 7% stably
ergodic diffeomorphism can be C !-approximated by non-uniformly hyperbolic ones.
More recently, Avila, Crovisier and Wilkinson [3] proved a general theorem that
implies that every partially hyperbolic volume-preserving diffeomorphism can be
C '-approximated by non-uniformly hyperbolic systems, thus solving the question
completely in the C! case.

Perturbative results in the C” topology, r > 1, are notoriously more difficult
and, in fact, there is good evidence suggesting that the conclusions may also be very
different. In this regard, we refer the reader to the discussions in Chapter 12 of [15],
Chapter 10 of [40], Theorem A of [5] and the Conjectures in Section 6 of [31].

The obvious first case to look at is when the center bundle is 1-dimensional.
While there are some situations where we know how to get rid of a zero center
Lyapunov exponent, for example [20,37], C”-density of (non-uniform) hyperbolicity
is not known even in this case. Our methods in the present paper, which are based
on the projectivization of the center bundle, do not seem to be useful in this context.

An important tool in our approach is the Invariance Principle, which was first
developed by Furstenberg [22] and Ledrappier [26] for random matrices and was
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extended by Bonatti, Gomez-Mont, Viana [16] to linear cocycles over hyperbolic
systems and by Avila, Viana [5] and Avila, Santamaria, Viana [4] to general
(diffeomorphisms) cocycles. In [5] the base dynamics is still assumed to be
hyperbolic, whereas in [4], it is taken to be partially hyperbolic and volume-
preserving.

The Invariance Principle asserts that for the Lyapunov exponents to vanish the
system must exhibit rather rigid (holonomy invariant) features. Often, one can
successfully exploit those features to describe the system in a rather explicit way. One
fine example is the main result of Avila, Viana and Wilkinson [7]: small perturbations
of the time-1 map of the geodesic flow on a surface with negative curvature either
are non-uniformly hyperbolic or embed into a smooth flow.

Another fine application was made by Avila and Viana [5], who exhibited
partially hyperbolic diffeomorphisms for which the Lyapunov exponents can not
vanish because structure arising from the Invariance Principle, namely invariant line
fields, is incompatible with the topology of the center leaves (which are assumed to
be surfaces of genus g > 1).

Perhaps the main novelty in this work is that we are able to use the Invariance
Principle in a perturbative way, to prove that the Lyapunov exponents can be made
non-zero. At a more technical level, another main novelty resides in our handling of
the accessibility property, namely the way su-paths and their holonomies vary, under
perturbations of the diffeomorphism; see Sections 4 and 5.

As an example of the reach of Theorem A, let us state the following result that is
related to Question 1b) in [37]. Let f : T?¢ — T24 be a Anosov symplectic C”
diffeomorphism and g, : T?> — T? denote the standard map on the 2-torus.

Corollary. If A is close enough to zero, then [ x g; can be C”"-approximated by
non-uniformly hyperbolic symplectic diffeomorphisms.

Acknowledgements. The author would like to thank Marcelo Viana for the guidance
and encouragement during her Ph.D. Thesis at IMPA which originates this work,
Artur Avila for useful conversations and the anonymous referee for a thorough revision
of the paper that greatly helped improve the presentation. The author has been
partially supported by IMPA, CNPq, CAPES and FAPERJ.

2. Preliminaries and statements

From now on, M will denote a compact manifold and f : M —> M a partially
hyperbolic diffeomorphism. In this section we define this and other related notions.
For more information we referred the reader to [15, 24, 36].
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A diffeomorphism f : M — M of a compact manifold M is partially
hyperbolic if there exist a nontrivial splitting of the tangent bundle

TM = E*® E° @ E*

invariant under the derivative map Df, a Riemannian metric ||-|| on M, and positive
continuous functions y, ¥, v, v, ¥, ¥ with

1 1 1 ]

I<v<l<V ' '<y  and v<y<y <V -,

such that for any unit vectorv € T, M,

x(p) < | Dfr()| < v(p) if ve E°(p),
y(p) < |Dfp)| <7(p)™"  ifve E(p), (2.1)
Wp) < | D] <F(p)T'  ifve E¥(p).

Partial hyperbolicity is a C '-open condition, that is, any diffeomorphism sufficiently
C!-close to a partially hyperbolic diffeomorphism is itself partially hyperbolic.

Here, 1 will always denote a probability measure and @ a symplectic form. The
Lebesgue class of M is the measure class of the volume induced by any Riemannian
metric and we say that f is volume-preserving if it preserves some probability
measure in this class.

For r > 2, denote by PH, (M) the set of partially hyperbolic volume-
preserving C” diffeomorphisms. If M is a symplectic manifold, denote by PH/ (M)
the set of partially hyperbolic C” diffeomorphisms preserving w.

For every partially hyperbolic diffeomorphism the stable and unstable bundles E*
and E* are uniquely integrable and their integral manifolds form two transverse
(continuous) foliations W$ and W*, whose leaves are immersed submanifolds of the
same class of differentiability as f. These foliations are called the strong-stable and
strong-unstable foliations. They are invariant under f, in the sense that

JW2(x) =W (f(x)) and  f(W¥(x)) = W*(f(x),

where W¥(x) and W¥(x) denote the leaves of W* and W¥, respectively, passing
through any x € M.

Given two points x,y € M, x is accessible from y if there exists a path that
connects x to y, which is a concatenation of finitely many subpaths, each of which
lies entirely in a single leaf of W* or a single leaf of W*. We call this type of path an
su-path. This defines an equivalence relation and we say that f is accessible if M is
the unique accessibility class.

Definition 2.1 (x-pinched). Let f be a partially hyperbolic diffeomorphism and
a > 0. We say that f is a-pinched if the functions in Equation (2.1) satisfy,

v<yx% v
v

v<yx% and
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This is a C!-open property and every partially hyperbolic diffeomorphism is
a-pinched for some « > 0. Moreover, from the works in [2,24,32], we know that the
center bundle £¢, and the W* and W* holonomies are a-Holder for every a-pinched
C? diffeomorphism.

We say that a partially hyperbolic diffeomorphism is center bunched if
v<yy and V< yy.

By Theorem 0.1 of [18], in the volume-preserving setting, center bunching together
with accessibility implies that the diffeomorphism is ergodic.

Since we want to use the Invariance Principle, we need f to be center bunched.
However, this notion is not enough for our work and we need to define a stronger
condition.

Definition 2.2 (a-bunched). Let f be a partially hyperbolic diffeomorphism and
a > 0. We say that f is a-bunched if the functions in Equation (2.1) satisfy,

o o~

Ve < yy and

V¥ <yy

<7VY.

This is also a C!-open property. If Df|E€ is an isometry, then the condition
holds for every ¢ > 0. Moreover, a-bunched implies center bunched if ¢ < 1.
Notice that as « decreases it is more difficult to have a-bunched, contrary to what
happens with the condition of ¢-pinched.

At this point we are ready to give the precise definition of the set of partially
hyperbolic systems where Theorem A holds. Recall * € {u,®w} where u denotes
some probability measure in the Lebesgue class and o denotes a symplectic form.

Definition 2.3. If r > 2, we will denote B] (M), the subset of PH] (M) where f
is accessible, «-pinched and «-bunched for some « > 0 and the center bundle E€ is
2-dimensional.

We want to remark two properties of the set BL (M). First, as already mentioned,
every f € BL(M) is ergodic. Moreover, Avila and Viana in [6] proved, under the
hypothesis of 2-dimensional center bundle, that accessibility is a C -open property.
This implies that B] (M) is an open set. In Section 5, we will give the precise
statement and some ideas of the proof of the results in [6].

The conditions of a-pinched and «-bunched will allow us to use the Invariance
Principle. In Section 3, we are going to apply both of them to prove that the
cocycle associated to f, F = Df|E€, admits holonomies. Moreover, the «-pinched
condition is going to be use also in Section 4 where we need the W* and W*
holonomies to be w-Hdélder in order to estimate how su-paths change when we
perturb the diffeomorphism.
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If f is a volume-preserving C! diffeomorphism, by the Theorem of Oseledets for
U~ -almost every point x € M, there exist k(x) € N real numbers )Ll( fix)>--->

Ak(x)( f.x) and a splitting TxM = E1 & --- & E ) of the tangent bundle at x, all
depending measurably on the point x, such that

1 ~ i
lim —log||Df} ()| =A;(f,x) forallv e E]l\{0}.
n—toon

The real numbers ’A\j (f. x) are the Lyapunov exponents of x. We say that f is
non-uniformly hyperbolic if the set of points with non-zero Lyapunov exponents has
full measure. R

LetA;(f, x) > A2(f.x) > --- > A4(f. x) bethe numbers A ; ( f, x), eachrepeated
with multiplicity dim £ ,Jf and written in non-increasing order.

If f € B.(M), the Theorem of Oseledets can be applied and because of the
ergodicity, the functions k and A ; are constants almost everywhere. Moreover, the
Oseledets splitting is a measurable refinement of the original splitting and we can
consider the Lyapunov exponents of E€. They are called center Lyapunov exponents
and will be denoted by A{(f) and A5(f).

If dim M = 2d and f is a symplectic ergodic diffeomorphism, then

Aj(f) = ~Aza—jar(f) foralll < j <d.

Therefore, in the symplectic case A{(f) =A5( f) isequivalentto A{(f) =A5(f) =0.
This symmetry property has been proved in [13].
Now we give the statement of the main result.

Theorem A. Let f € B] (M) and assume the set of periodic points of f is non-
empty, then [ can be CT-approximated by non-uniformly hyperbolic symplectic
diffeomorphisms.

Remark 2.4. Observe that the hypothesis of existence of a periodic point in
Theorem A can be replace with the hypothesis of f having a periodic compact
C" center leaf. In this case, we can find a symplectic diffeomorphism arbitrarily
C7-close to f and having a periodic point. See [44].

The proof of Theorem A relies in two principal cases determined by the periodic
point being hyperbolic or elliptic. The hyperbolic case has a generalization to the
volume-preserving setting with the appropriate modifications in the hypotheses.

Definition 2.5. Let f be a partially hyperbolic diffeomorphism and p a periodic
point with n , = per(p). We say that p is a pinching periodic point if Df"?|E€(p)
has two real eigenvalues with different norms.

Recall x € {u, w}.

Theorem B. Let f € BL(M) and assume f has a pinching periodic point, then f
can be C" -approximated by volume-preserving (symplectic) diffeomorphisms whose
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center Lyapunov exponents are different almost everywhere. In particular, f can be
C" -approximated by diffeomorphisms with some center Lyapunov exponent non-zero.

One of the main tools in our proof is the Invariance Principle. Below we give
some preliminaries and state it in the form of [4].

2.1. Invariance principle. Let f be a partially hyperbolic diffeomorphism and
7 1V —> M a continuous vector bundle with fiber N = R* for some k > 2. A
linear cocycle over f : M — M is a continuous transformation, F : V — )/,
satisfying 7 o F = f o m and acting by linear isomorphisms, Fx : Vx —> Vy(x),
on the fibers. By Fustenberg, Kesten [23], the extremal Lyapunov exponents

— 1 1 n T 1 nn—11-1
Ar(F,x) = nlglgoglog |Fyl| and A_(F,x)= nlgrc}oglog ||(Fx) ” ;

exist at v-almost every x € M, relative to any f-invariant probability measure v.
If (f,v) is ergodic, then they are constant on a full v-measure set. It is clear that
A_(F,x) < A4+(F, x) whenever they are defined.

The projective bundle associated to a vector bundle 7 : V — M is the
continuous fiber bundle = : P(V) — M whose fibers are the projective quotients
of the fibers of V. This is a fiber bundle with smooth leaves modeled on N = P(RF).

The projective cocycle associated to a linear cocycle F' : )V — V is the smooth
cocycle P(F) : P(V) — P(V) whose action P(Fyx) : P(Vx) — P(Vy(x)) on the
fibers is given by the projectivization of F.

For every f-invariant probability measure v, there exists an P(F')-invariant
probability measure m that project down to v. This is true because the projective
cocycle P(F) is continuous and the domain IP()) is compact. Moreover, the extremal
Lyapunov exponents of P(F') exist and satisfy,

A‘+(]P)(F)axsg) = A'-|-(F‘s 'x) —A_.(F,X)
and A_(P(F), x,£) > A_(F. x) — A4 (F, X),

whenever they are defined.

Let R > 0 be fixed, then the local strong-stable leaf Wy, .(x) of a point x € M
is the neighborhood of radius R around x inside W*(x). The local strong-unstable
leaf is defined analogously. Since we are working in the context of [4], the choice
of R here will be the same than in Section 5 of that paper.

Definition 2.6. We call invariant stable holonomy for P(F) a family hA° of
homeomorphisms 43, : P(Vx) —> P(V,), defined for all x and y in the same
strong-stable leaf of f and satisfying

(@) h} ,0hy, =hy, and hy , =1Id;

(b) P(Fy) 0y y = Mpay, 45y © P(FR);



Vol. 91 (2016) C" -density of (non-uniform) hyperbolicity in PH (M) 365

(¢) (x,y,§) > h3 ,(§) is continuous when (x, y) varies in the set of pairs of
points in the same local strong-stable leaf;

(d) there are C > 0 and n > 0O such that 45 , is (C, n)-Holder continuous for
every x and y in the same local strong-stable leaf.

Invariant unstable holonomy is defined analogously, for pairs of points in the same
strong-unstable leaf.

Let m be a probability measure in P(V) and v = m.m be its projection, then
there exists a disintegration of m into conditional probabilities {m, : x € M } along
the fibers which is essentially unique, that is, a measurable family of probability
measures such that m, (P()x)) = 1 for almost every x € M and

mU) = /mx(U NP(Vy))dvu(x),

for every measurable set U C P()). See [35].

Definition 2.7. A disintegration {m, : x € M} is s-invariant if
(hfc’y)*m x = m, forevery x and y in the same strong-stable leaf.

The definition of u-invariant is analogous and we say the disintegration is bi-invariant
if it is both s-invariant and u-invariant.

Invariance Principle ([4, Theorem B]). Let f : M —> M be a C? partially hyper-
bolic, volume-preserving, center bunched diffeomorphism and | be an invariant
probability measure in the Lebesgue class. Let F be a linear cocycle such that P(F)
admits holonomies and suppose that A_(F, x) = A+ (F, x) at p-almost every point.
Then, every P(F)-invariant probability m on the projective fiber bundle P())
with w.m = [ admits a disintegration {my : x € M } along the fibers such that

(a) the disintegration is bi-invariant over a full measure bi-saturated set
MF C M,‘

(b) if f isaccessible, then Mg = M and the conditional probabilities my depend
continuously on the base point x € M, relative to the weak™ topology.

2.2. Toy model. Given f € BL(M), the linear cocycle F = Df|E¢ will be
called center derivative cocycle for f. In Section 3, we prove that we can apply the
Invariance Principle to this cocycle when A{(f) = A§(f). For this, we prove the
existence of holonomies for IP(F') and study how they vary under the perturbation of
the diffeomorphism. The main results are Proposition 3.4 and Corollary 3.5.

We consider the following toy model to explain the main ideas and steps for
the proof of Theorem B. These ideas are classical and have already appeared, for
example, in [5,41].

Suppose f € BL(M), p is a pinching fixed point (Definition 2.5), there exists
z € M suchthatz € W¥(p)NW**(p)and A{(f) = A5(f). Then, we can apply the
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Invariance Principle for any P(F)-invariant probability measure m with w.m = u.
Therefore, there exists a disintegration {my : x € M} such that (h*(f))smp = m;
and (h*(f))smp = m, where h*(f) and h"(f) denote the holonomies along
the strong-stable and strong-unstable leaves respectively. Moreover, there exist
a,b € P(E}) such that suppm, C {a,b}.

We make a perturbation supported in a neighborhood of z, Bs(z), which has the
property that f/(z) ¢ Bgs(z) forevery j € Z \ {0}. Since dim E€ = 2, P(F) isa
cocycle of circle diffeomorphisms over f and it makes sense to consider rotations
in P(E%). The perturbation is chosen in order to have g close enough to f and
h*(g) = Rpg o h*(f) and h*(g) = h*(f). Here, Rg denotes a rotation of angle
B > 0. This implies that g does not satisfy the Invariance Principle and therefore

AS(g) # A5(g).

2.3. Strategy of the proof. We extend the argument above to the general case when
we do not necessarily have a point of homoclinic intersection.

First we find an su-path from p to itself with a special node z, which is slowly
accumulated by the orbits of all the nodes including its own. This is done in
Proposition 4.2. Next, we construct a sequence of C”-perturbations denoted by fx
and supported in By, (z). The details are given in Lemma 4.1 and Lemma 4.4.

In the second part of Section 4, we study how the su-path and the holonomies
change under the variation of the diffeomorphism. The main results are
Proposition 4.8 and Proposition 4.10. In the first one, we define the continuation
of the su-path for every f; and estimate the distance between the new nodes and the
nodes of the original su-path. In the second one, we estimate the angle between the
center bundle of f and the center bundle of f;. Finally, we summarized these results
in Corollary 4.11. The main observation is that the variation in the holonomies is
exponentially small in k, although the size of the perturbations & is polynomial in k.
This will allow us to break the rigidity given by the Invariance Principle.

We are going to suppose that A{( fx) = AS(fx) for every k € N and apply the
Invariance Principle for some probability measure m* with ,m* = . This gives a
family of disintegrations {mﬁ : x € M}. In order to conclude the argument we need
the functions x m’; to be equicontinuous. We are not able to prove this property,
but the problem is solved using the hyperbolicity of p and the results in Sections 5
and 6. In Section 5, we state the theorems from [6] and prove Proposition 5.7. This
proposition gives some kind of continuity for su-paths under the variation of the
diffeomorphism. In Section 6, we study the disintegration given by the Invariance
Principle for some P(F)-invariant probability measure m with | suppmy| = 1. In
this particular case, we obtain Proposition 6.1.

Finally, in Section 7 we combine all these results to give the proofs of Theorem B
and Theorem A. In Section 8, we apply Theorem A to partially hyperbolic
diffeomorphisms of the torus.
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3. Center derivative cocycle

As already mentioned, in order to prove Theorem B we need to be able to apply
the Invariance Principle to the center derivative cocycle, F = Df|E¢, when
A{(f) = A5(f). Notice that the Lyapunov exponents of F' coincide with the center
Lyapunov exponents of f.

Let * € {,w} and r > 2. By the definition of B (M), we only need to prove
that P(F') admits holonomies. For every f € BL(M), there exists &« > O such that f
is a-pinched. Then, the center bundle E€ is a-Holder and the center derivative
cocycle F is a C%* cocycle. Moreover, since f is -bunched, it is enough to apply
the results in Section 3 of [4] to prove that P(F') admits holonomies. However, we
provide a new proof that allow us to give estimations about how these holonomies
change under the variation of the diffeomorphism. These are new results that we
have to prove in order to be able to work in a perturbative way.

Although the statements are for f € B] (M), the only necessary hypotheses are
the a-pinched and «-bunched conditions.

Since M is compact, we can define a distance in TM in the following way: For
every x,y € M close enough, denote y , : TxM —> T, M the parallel transport
along ¢, where ( is the geodesic satisfying dist(x, y) = length({). Then, given two
points (x,v) and (y, w) in TM define

d((x,v), (y,w)) = dist(x, y) + ||7rx,y(v) — w|| .
To simplify the notation we are going to write
d((x,v),(y,w)) =d(v,w) and 7w, =7 rn(e), ().
Since f is C?2, there exists Cp > 0 such that for every (x,v), (y,w) € TM,
d(Df(x,v), Df(y,w)) < Cod(v,w).

Let V be a vector space with inner product and let £, and E» be subspaces of V.
Then, define dist(E, E>) = max{&;, &} where

§1= sup inf |lx—y],
x€Eq, YEL£2
lxll=1

and &; is defined analogously changing the places of E; and E,. If Pg denotes the
orthogonal projection to the subspace E, then

inf [lx =yl = lx — Pe(x)]].
yeE

Therefore, §; = H (Id — Pg,) Pg, ” and we have an analogous identity for &;.
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If x and y are close enough, given E, and E, subspaces of 7xM and T, M
respectively, define

Since E€ is a-Holder, there exists C; > 0 such that
dist(E5, E}) < Cy dist(x, y)“.

Moreover, the constant C; can be taken uniform in a C2 neighborhood of f. See
for example, [42].

The next proposition proves the existence of a family of maps for F, Hy ,,, with

certain properties that will imply that P(H ,) defines an invariant stable holonomy
for P(F).

Proposition 3.1. Let x € {u,w} and r > 2. Fix [ € BL(M) and denote
F = Df|E€. Then, for any pair of points x, y in the same leaf of the strong-stable
foliation W?, there exists a linear isomorphism Hy |, : EX — EY satisfying:

(@) FyoHy, = H}(x)’f(y) o Fy, and

(b) HS,oHS, = HS, and HS, =Td
Proof. Fix f € B,(M)andlet F = Df|E€. Forn € N,
F'(x)=F(f" '(x)) o--- 0 F(x),
and for any continuous function 7 : M — R™,
(x) = ()T (f(x))--- T ("7 ().

Here, we are going to consider the continuous functions given by Equation (2.1).
If x,y € M with y € W (x), then for every n € N define

A,,(x, y) = Fn(y)_l o PEC(fn(y)) o n’;jy o F"(x),
and
Ao(x,y) = Pge(y) © 7tx,y| E€(X).
We are going to prove that this sequence is a Cauchy sequence and define
H;,y = nll{go An(x’ y)
Observe that
Antj(x,9) = F/(9) 0 Au(f7 (x), f7 () o F (x).

Therefore, once we have proved that the limit above exists, we can use this identity
to demonstrate the general case when y € W¥(x) and also to conclude property (a).
The proof of (b) is an easy calculation from this formula.
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In order to prove that A,(x, y) is a Cauchy sequence we find constants C; > 0
and ¢ < 1 such that

| Ans1(x, ) — An(x, )| < Cov™ (x) 179 dist(x, y)*,

for every n € N U {0}. This is a consequence of the definitions at the beginning of
this section and the following lemma.

Lemma 3.2 ([4, Lemma 3.1]). There exist C= Oand ¢ < 1 suchthat forallx € M,
y,Z € Wlf,c(x) andn > 1,

n—1
[TIFC7ODIFUI @] < Cvmx)@s.
j=0

Remark 3.3. For every y € W}

v o (X) we have,

o0
HE, = (Ang1(x,9) — An(x, ) + Ao(x, y).
j=0

Let C3 > 0 be a bound for Z?ozo ™ (x)1=9)% and let C = C, Cs, then

o0

|HS = Ao, 9| < D Il Ant1(x.¥) — An(x, )
j=0

(e ]

< C, dist(x, y)“ Z " (x)(1—9)e
j=0

< C dist(x, y)*.

Then, we have proved that there exists C > 0 such that for every y € W} (x),
|H; | <1+ C dist(x, y)*.
Moreover, the constant C depends only on f.

Observe that all the estimations in the proposition and the remark can be taken
uniform in a C? neighborhood of f. For every f € BL(M), we fix this C2
neighborhood and denote it by Z/( f). From now on, every g C2-close to f will be
understood to belong to it.

Now that we have proved the existence of Hy ,, we can define h5 , = P(H{ ).
In order to show that the family /7, , is an invariant stable holonomy for P(F), we
need to prove property (c) in Definition 2.6.

Using the explicit formula for Hy , given in the proof of Proposition 3.1, we are
able to prove a stronger result, that will imply (c), but provides also an estimation

about how H , changes under the variation of the diffeomorphism.
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Proposition 3.4. Let x € {u,w} and r > 2. Fix [ € BL.(M), x €¢ M,
e Wi (x,f) and a € E°(x, f). For every € > 0 there exist § > 0 and a
neighborhood of f in the C! topology, V( f), such that for every g € U(f) NV (),

every w,z € M withw € W/ (z, g), dist(x, z) < § and dist(y,w) < & and every

b e E°(z,g)withd(a,b) < §, we have

d(Hy ,(f)(a). H; ,,(8)(b)) < €.

Proof. Let F = Df|E°(f). Similar estimations to the ones in Remark 3.3, provide
aC > 0and ¢ < 1suchthat foranyn > 1,

|Hy ,(f)—An(fix,p)| =C V" (x)21-¢)
and | o (8) — An(g, 2, w)]| < C v (2)*09.

Then, the proposition is a consequence of the continuity of

An(fix,y) = F'(y)"' 0 Pge(pn(yy) o 1y, 0 F™(x),

as a function of (f, x, y).
More precisely, the distance

d(An(f. x,y)(a), An(g, 2, w) (b))

can be bounded by an expression that depends on the following terms:

dist(x,z), dist(y,w), d(a,b),
Z(E(x, f), BX(x.8)), L(E"(y, JF)E (v, 8}
IDf(f7(x)) — Dg(f?(x))| and |DF (7 (y)—Dg (7 ).

for j € {0,...,n}. O

By Proposition 3.1 and Proposition 3.4, the family /3, , = P(H} ,) is an invariant
stable holonomy for P(F').

Observe that Proposition 3.4 implies the continuity of invariant stable holonomies
in compact parts of the strong-stable foliation. That is, the application

(fix,y) = Hy (),

is continuous on W,/ (f) = {(g,x,y) : g € V(f) and g"(y) € W;} (g"(x))}, for
every n > 1.

There are analogous propositions and properties for the invariant unstable
holonomy, A% . Locally, it will be defined by the projectivization of

HY, = lim F"(y)™" o Pge(gn(yy) o 7y, © F"(x),



Vol. 91 (2016) C" -density of (non-uniform) hyperbolicity in PH, (M) 371

where
F7'x)=F'(f™ ' (x))o---0 F'(x),

for every n € N.

Let { = [z0,21,...,2zN] be an su-path for f and denote H,, = H;i—l,zz- for
every i € {l,..., N} with x € {s,u}. Then, we consider H = H;, o---0 H;,.
The following corollary gives an estimation about how this holonomy changes under

the variation of f* and the su-path.

Corollary 3.5. If g is close enoughto [, {5 = [xo,...,xny]and {g = [yo,..., YN]
are su-paths for f and g respectively, a € E¢(xg, f) and b € E€(y¢, g), then

N-1 N N
d(Hy, (@), He,0) < 3 [ [ Hey |9 (He) + [T | Hx, || dCa,b),
i=0 j=i+2 j=1
where
W(Hx,-.;_l) = d(HxH_l(ai)’ Hy,-+1(7[x,-,y,- (al)))
and

a; = Hy; o---0 Hy, (a).

By Remark 3.3, there exists C > 0 such that for every j € {1,...,N}, if
xj—1 € W)} (x;) with * {s, u}, then ||ij ” < 14 C dist(x;_1, x;)*. Therefore, if
{f = [xo0,...,xn]is an su-path with x;_; € W] (x;) and dist(x,—,x;) < L for
every j € {1,..., N}, then

N
115 | <@+cLoy.
j=1

This proves that we can find a bound for ]_[5‘;1 ” Hy, ” depending only on the number
of legs of the su-path and the distance between the nodes. This will be important in
Section 6.

4. Perturbation

In this section, we construct a sequence of perturbations f; and study its properties.
First, we state elementary results for C”-perturbations in Lemma 4.1. In Section 4.2,
we find an su-path from p to itself with slow recurrence, Proposition 4.2, and apply
the previous lemma to construct the perturbations f;. This is done in Lemma 4.4.
In Sections 4.3 and 4.4, we study how the su-path and the center bundle change
when we perturb the diffeomorphism. The main results are Proposition 4.8 and
Proposition 4.10. Finally, in Section 4.5 we summarize all the results to obtain
Corollary 4.11 which gives estimations for the variation in the holonomies.
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4.1. C"-elementary perturbations. Fixed r > 2, we are going to define the C”
Whitney topology in the volume-preserving and symplectic case specifying basic
neighborhoods.

Let w be a volume form and pick two finite open coverings

U={Uj.¢;):j=1,....n} and V={V;,¥;):j=1,...,n}

of M by C” conservative coordinates charts such that f (U_j) C Vj for all j. This
means that we are using [28] to find ¢; : U; — R and ¥; : V; — R9,
C" diffeomorphisms with 1 = @7 (duy A+~ Adug) = w;(dul A---Adug) where
(u1,...,ug) are coordinates in R?.

Lete > 0. Define nj, (f,U, V, €) to be the set of diffeomorphisms g € Diff}, (M)
such that

(a) g(U;) C Vj forall j,and

®) |0v;8071 (1) = 8w, f67 (0)| < e forx € $(U)), Wl <7
and j € {l,...,n}.

Here ¢ = (t1,....,t,) is a multi-index of non-negative integers, |t| = ¢; + +++ + tp,
and 0' denotes the corresponding partial derivative.

For the symplectic case, pick two finite open coverings by C” symplectic charts.
That is, use Darboux’s Theorem to find ¢; : U; —> R24 and vV — R2¢ Cr
diffeomorphisms with w = @7 (du Adv) = ¥ 7 (du A dv) where w is the symplectic
form and (u, v) are coordinates in R2¢. Then, nh, (f.U, V), €) is defined analogously.

We will write 0, ( f,U, V, €) with x € {1, w}.

Lemma 4.1. Fix r > 2. Let f be a partially hyperbolic volume-preserving
(symplectic) diffeomorphism with dim E€ = 2. Then, there exist g > 0, §p > 0
and Cy > 0 such that for every 0 < € < €9, 0 < § < 89 and z € M, there exists
g € N (f,U,V, €) such that

(@) g(x) = f(x)ifx ¢ Bs(2),
(b) g(2) = f(z) and

(¢) Dg; = Df, 0o Ag where sin 8 = Co 8" e and Ag is the linear map from
TM; to TM; given in coordinates TM = E° & E¢ & E" by

Idgs 0 0
0 Rg 0
0 0 Id,

with Idys © E}* — EJ™ being the identity map for xx € {s,u} and Rg the
rotation of angle 8 in some (symplectic) base {e1, f1} of E€(z).
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The proof in the volume-preserving setting is standard. However, we need to be
more careful for the symplectic case and we need to use generating functions. The

symplectic version of this lemma is a direct consequence of Lemma 2.1 (Perturbation
Lemma) of [29].

4.2. Choice of the perturbation. Now, we use Lemma 4.1 to construct a sequence
of perturbations fr. As already mentioned, we need to find an su-path from p to
itself with slow recurrence.

Proposition 4.2 (4, Proposition 8.2]). Let f be a partially hyperbolic accessible C*
diffeomorphism. Then, for every x € M there exists an su-path, { = [zo,...,ZN]
withx = zog = zn, [ €{0,..., N} and c > 0 such that

dist(ff(z,-),zl) ad e jz,

forevery (j,i) € Zx{0,...,N}\ (0,1).

For every partially hyperbolic diffeomorphism f, there exist Ry > 0 and a C'!
neighborhood of £, V(f), such that for every g € V(f) and every y € M, the ball
B(y, R;) is contained in foliation boxes for both W*(g) and W¥(g). See [24].

In the next section, we are going to need that dist(z;_1,z;) < R; for every
i €{l,...,N}. Since we are using the same definition of local strong-stable and local
strong-unstable leaves than in Section 5 of [4], this will imply that z;_; € Wl’; (zi)
foreveryi € {1,..., N} with x € {5, u}.

It is possible to slightly modify the proof of Proposition 4.2 in [4] to control the
distance between the nodes and obtain the desire bound. However, notice that we
need to fix f in order to obtain R; and only then apply the proposition.

We are going to use this remark in the next section.

Remark 4.3. Fixed f € BL(M) and x € M, we can suppose that the su-path given
by Proposition 4.2 for f and x, { = [zo,...,zn], satisfies dist(z;—;,z;) < R; for
everyi € {l,...,N}.

Let * € {,w} and r > 2. Fix f € BL(M) and suppose p is a periodic point
for f. Then, apply Proposition 4.2 to f and p. We are going to construct a sequence
of perturbations for f, like in Lemma 4.1, supported in the point z;.

First, we fix some constant 0 = o(v,a,n,, N) > 0. Here, v represents the
functions in Equation (2.1) for f, « is the exponent for which f is a-pinched and
a-bunched, n, is the period of p and N the number of nodes in the su-path given
by Proposition 4.2. This is a technical constant that we need to consider in order to
have exponential estimations in Corollary 4.11, Equation (7.1) and Equation (7.2).
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Then, define
&

T 1+ (0k)2

for every k > 1, where ¢ > 0 is given by Proposition 4.2.

The following lemma is a corollary of Lemma 4.1. We are assuming that €q is
small enough in order to have all the estimations in Section 3 uniform for every g
€o-close to f.

8k (4.1)

Lemma 4.4. Let x € {,w} and r > 2. There exist g > 0, kg € Nand Cy > 0
such that for any 0 < € < €9 and k > ko, there exists f € BL(M) N nL(f,U,V,¢€)
such that

(a) Jfi(x) = f(x)ifx ¢ Bs,(21),
(b) fi(z1) = f(z1), and
(c) Dfi(z1) = Df(z;) o Ag, withsin B = Cp 5,’;1 €.

Moreover, if we fix € > 0 and consider the sequence defined by fi for k > kg, we
have fi — f inthe C! topology when k — <.

Observe that the sequence of perturbations f is e-close to f in the C”-topology.
However, since 8y is going to zero as k goes to infinity, the C'! distance is also going
to zero, because of that f; — f in the C! topology.

4.3. Control of the su-paths. Proposition 4.2 gives information about how much
time the nodes of the su-path stay outside of the support of the perturbation. We will
use this information to estimate how the dynamics is changing. Some results similar
to these appear in [21].
Let x € {iu,w}, r = 2, f € BL(M) and suppose p is a periodic point for f.
For the functions in Equation (2.1), define

v(x, R) = sup v(y), y(x, R) = inf y(y),
ye€B(x,R) Y€B(x,R)

V(x,R) = sup v(y) and 7P(x,R) = inf y(y).
yeB(x,R) yeB(x,R)

Then, by continuity of the functions and compactness of M, there exist Ry > 0
and tp < 1 such that for every x € M,

v(x, Ro) < 10 ¥(x,Rp) and 7V(x,Ro) < 10 ¥(x, Ryp).

Remark 4.5. Observe that R, depends only on f and therefore we can suppose that
the constant Ry in Remark 4.3 was chosen to satisfy R; < Ryp.
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Lemma 4.6. Fix t € (19, 1). There exist C; > 0 and €; > 0 such that for every
x €M,y e W (x)N B(x,Ro) and g €;-close to f in the C' topology, if there

loc\™/ ) : :
exists m € Nwith f7(x) = g/(x)and f'(y) = g’/ (y) forevery 1 < j < m, then
there exists w € W*(x,g) N B(y, C1™).

Proof. Since f is partially hyperbolic, there exists a cone family around E¥* @ E°,
K", such that

(a) Df(K*(x)) C K¥(f(x)) forevery x € M,

(b) K€ is uniformly transverse to E*,

(c) Forevery v € K“(x),

IDfx ()| = Tv(x, Ro) [[v],

forevery x € M.

Moreover, all the above are still valid for every g C!-close enough to f.
Let V' be a topological disk of dimension u + ¢ passing through y such that
TV C K. Since f™(x) = g"(x) and f™(y) = g™(y), we have

dist(g™ (x), g”(¥)) < v(x, Ro)™.

Then, there exists C; > 0, depending only on f, and wy € W*(g™(x),g) N g™ (V)
such that

dist(g™(x), wy) < Cy v(x, Ro)™.

Define w = g™ (wy), then w € W*(x, g) and
dist(y,w) < Cy ™. O

There is an analogous statement for the strong-unstable foliation W*. Using these
results we are able to prove the following lemma.

Lemmad4.7. If{ = [z¢, ..., zN] is the su-path given by Proposition 4.2 for f and p
and fy is given by Lemma 4.4 for some € > 0, then there exist C; > 0, t € (0, 1) and
k1 € N such that for every k > ky and i € {1,..., N} there exist points w,_(‘ eM
with

wf € W*(zi—1, fi) N B(zi, C1 t7),

Here, the constant o is given by Equation (4.1) and

Wi(zior, fi) i zi € Wo(zioa, f),

W I P\, o) i e WeGi
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Proof. Fixi € {l,..., N} and suppose z; € W9(z;_1, /). Notice we can assume
zi € W (zi-1, f) N B(zi-1, Ro). This is a consequence of Remark 4.3 and
Remark 4.5. Then, we are going to apply Lemma 4.6 for x = z;_; and y = z;. The
value of ky is chosen in order to have fj €;-close to f in the C! topology for every
k > k.

By Equation (4.1) and Lemma 4.4,

fl@io) = fl@io) and  fl(z) = f/ (@),
forevery 1 < j <ok.
Then, for every k > k; there exists wf € Wi(zi-1, fr) N B(z;, Cy r"k). The
case for z;_y € W¥(z;) is analogous. O

By the results in [32,33], the a-pinched condition implies that the W* and W*
holonomies are a-Holder. Moreover, there exists a C? neighborhood of £, V(f),
such that the W* and W* holonomies for every g € V( /) are a-Holder with uniform
Holder constant. For this see [42].

We can suppose that g > 0 in Lemma 4.4 was chosen small enough in order to
guarantee that fz € V(f).

Fix k > k, and define z{‘ = w’f by Lemma 4.7. Then,

dist(z’f,zl) < C; 7°F,

Suppose z; € W¥(zy, ). Let Ry > 0 be the constant in Remark 4.3 and w’z‘ be
defined by Lemma 4.7. If k is big enough, z’f, w’zc € B(zy,Ry). Then, z,, z’f
and w’2‘ are all in the same foliation box for W*( fx). Denote U this foliation box
and let X (x) be a smooth foliation by admissible transversals defined in U. Define
zé‘ as the only point of intersection of W* (zi‘, fr) with E(w’,f ). Then, there exists

C1 = C1(f) > 0 such that
dist(wX, z%) < €, dist(z¥, z1)%.
Then,
dist(zé‘, zp) < dist(z,, wéc) b dist(wé‘, zé‘) 2101 ¥ = Ty CY gk,

If z, € W¥(zq, f), we proceed in the same way using a foliation box for the strong-
unstable foliation.
Repeating the argument for all the nodes of ¢ we have the following:

Proposition 4.8. If { = [zg, ..., zN] is the su-path given by Proposition 4.2 for f
and p, and fy is given by Lemma 4.4 for some € > 0, then there exist C; > (),
7 € (0,1) and ko € N such that for every k > ko there exists an su-path for fx,
(p = [z’o‘, e ,zf‘v], with Zg = zo = p and such that

dist(z;, zF) < C 191%,

foreveryi € {1,...,N}, where 61 = o & and o is given by Equation (4.1).
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Although ¢ is a closed su-path, zo = zp, the su-path for f; given by this
proposition is not necessarily closed. We can have z’g s Z’]‘\‘,.

4.4. Angle estimations. Now we study how the splitting in the tangent bundle is
changing under the variation of the diffeomorphism.
Let V' be a vector space with inner product and let £y and E, be subspaces of V.
Define £ (E1, E>) = max{{1, &2} where
§1 =sup inf Zx,y,
x€eE,, YEE;,
x#0 y#0
and &, is defined analogously, changing the places of E; and E5.
The relation between this definition and the distance of subspaces defined in
Section 3 is given by
sin £ (El, Ez) = diSt(El, Ez)

By Equation (2.1), there exist C3 > 0 and 8y > 0 such that for every F**¢ and
F¢TS distributions of dimension u + ¢ and ¢ + s respectively, with

max{Z(E**¢, F*T¢), L(ETS, FC*5)} < By, (4.2)
we have _ ‘ _
Z(DfI(E¥T), Df (FET9) < Cap/, (4.3)
and _ _ .
L(DfI(ES*), DY (FEF$)) < Cap’. (4.4)

forevery x € M and j > 0, where
p = max (max {v(x)/y(x), V(x)/V(x)}) .
xeEM

Lemma 4.9. There exist C3 > 0, p € (0,1) and €3 > 0 such that if g is €3-close to
f in the C 1. topology, g = [ outside some compact set I and there exists m € N
such that f7(x) do not enter I for every j € Z with |j| < m, then

L(E"TC(x, ). E*(x.8) < C3 o™ (4.5)
and (B %, ), BOT%, g)) = Ca g™ (4.6)
Proof. Forevery j € Z with |j| <m, f7(x) ¢ I implies that f/(x) = g/ (x) and

Df(f7(x)) = Dg(g’(x)). Moreover, if g is C'-close enough to f, the inequality
in Equation (4.2) holds for F¥*¢ = E“*¢(g) and F¢*$ = E°*5(g). Therefore,

L(E* %, £),B4 (%, 2))
= Z(Df™(E*TC(f7"(x). f)). Dg"(E**¢(g7™(x). £)))
= Z(Df™(E"*(f7™(x), /)), DfM(E*TC(fT™(x), 8)))

Finally, we conclude Equation (4.5) by Equation (4.3). The stable case is analogous:
we use Equation (4.4) to prove Equation (4.6). H
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This provides a result about how the center bundle is changing with the
perturbation.

Proposition 4.10. If { = [zo, ..., zN] is the su-path given by Proposition 4.2 for f
and p, and fy is given by Lemma 4.4 for some € > 0, then there exist C4 > 0,
p € (0,1) and k4 € N such that for every k > kq andi € {1,..., N}, we have

L(E(zi, [) E(zi, fi)) < Ca p7*71, 4.7)
where o is given by Equation (4.1).

Proof. 1f i # [, that is, z; is not the point where we did the perturbation, then by
Equation (4.1) and Lemma 4.4 we have that f/(z;) do not enter the support of the
perturbation for every j € Z with |j| < ok — 1. Then, we can apply the lemma
above for E¥*¢ and E¢** with m = ok — 1. The proposition follows because E€ is
the intersection of this two transversal bundles.

In order to prove Equation (4.7) for z;, we need to prove a lemma similar to
Lemma 4.9 for E¥*¢(z;) and E°**(z;), using the fact that Dfy(z;) = Df(z;) o Ag,
and A, leaves invariant the subbundles in the splitting E7, & E7, & E;,. Then, we

!
conclude the proposition with the same argument than for the other nodes. O

4.5. Summary of the results. Let x € {u,w}, r > 2, f € BL(M) and suppose
p is a periodic point for f. Proposition 4.2 gives an su-path from p to itself,
¢ = [zo,...,znN], and a node with slow recurrence z;.

Let f be given by Lemma 4.4 for some € > 0. Then, fj satisfies Propositions 4.8
and 4.10 for every k > max{k,, k4}. Moreover, if k is big enough, 7 (p) ¢ Bs, (z1)
forevery j €{0,...,n, —1}.

Let

1 =1z0,...,2;1] and & =[zn,...,z1].
We can suppose z;_1 € W¥(z;) and z; € W¥(z741).
In the notation of Proposition 4.8, define
2 = Z{c, Pk = fov,
tF=1p,....z] and &K =[pk.....z).

In the following, for i € {1,2} H, will denote the holonomy defined by ¢; for
F = Df|E‘(f)and H, the holonomy defined by g“ik for Fy = Dfy|E€(fx). Then,

Hy, : E°(p) — E°(z1, /), Hy, : E°(p) — E°(z1, /),
H;‘lr‘ . Ec(p) — Ec(zko fk)’ and Hg'éf : Ec(pk’ fk) - EC(Zk, fk)
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Using Corollary 3.5 combined with Propositions 4.8 and 4.10 we can estimate
the variation in the holonomies:

Corollary 4.11. Thereexist C > 0, A € (0, 1) and K € N such that for everyk > K,
a € E°(p) and ay € E(pi, fi) we have

d(R3! o Hy, (a). Hye(a)) < C L (4.8)

and
d(Hg,(a), Hy (ax)) < C A* + C d(a, ax). (4.9)

where Rp, : E€(z;, f) — E€(z1, f) is the rotation of angle By > 0 defined by
Lemma 4.4.

Proof. Consider Equation (4.9). By Corollary 3.5, it is enough to estimate the
distances between the holonomies H;+1(f) and H;+1(fx) fori € {{,...,N — 1},
where H; = H:):‘—sti and *x* € {s,u}.
Fixi € {l,..., N —1} and suppose z;+1 € W?(z;). The other case is analogous.
By Proposition 3.4, we can estimate the distance between H; 11 (f) and H; 41 (fx)
by an expression depending on:

vk (Zi)“(l—s), vk (Z{c)a(l_g),

dist(z;, zf‘), dist(z;+1, zf‘H),

L(E(zi, ), E°(zis fi)),  Z(E°(zig1, [, E(Zig1, Si)),

and the following terms:

| Df(f7(zi-1)) = Dfie(f7 (zi-1))|
and |Df N7 @) — DA @)

forevery j € {0,...,k}.

Since v < 1 and ¢ < 1, the first two terms are going exponentially fast to zero
as k — o00. The estimations for the two terms in the second line are given by
Proposition 4.8 and for the third line by Proposition 4.10. By Equation (4.1) and
Lemma 4.4 the last terms are all equal to zero because f and f; coincide outside the
support of the perturbation.

Although we have exponential estimations for each term, we can only guarantee
that the whole expression is going exponentially fast to zero as k — oo due to the
constant o in Equation (4.1).

If we want to estimate d (H, (a), H £k (a)) everything works the same than above
except that now we have the following term which is not zero,

| DF 1 (f ) = DA ()] -

| ’
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Because of that we consider RE‘: o H¢, instead of H¢, in Equation (4.8). This allows
us to obtain the desired estimation.

Notice that we are comparing the values of the derivative at the point z; and not in
By = Z;‘ . This is an important observation since we have no control on D f; (z{‘). O

5. Accessibility

We obtain a continuity property for su-paths under the variation of the diffeomor-
phism using the results and techniques in [6]. In order to clarify the presentation we
state here the results that we are going to need.

In this section, all the maps will be C! and we will always consider the C'!
topology. If f is a partially hyperbolic diffeomorphism, we denote u = dim E¥,
s = dim E”.

Recall that given two points x,y € M, x is accessible from y if there exists a
path that connects x to y, which is a concatenation of finitely many subpaths, each of
which lies entirely in a single leaf of W¥ or a single leaf of W*. This is a equivalence
relation and we say that [ is accessible if M is the unique accessibility class.

In the sequel, we state the principal results in [6] which will allow us to prove
the main results in this section. The following theorem was already mentioned in
Section 2.

Theorem 5.1. If f is a partially hyperbolic accessible diffeomorphism and the center
bundle E€ is 2-dimensional, then f is stably accessible.

The next theorem provides a parametrization of accessibility classes.

Theorem 5.2. For every partially hyperbolic diffeomorphism f : M —> M, there
exist | > 1, a neighborhood of f, V(f), and a sequence

P V() x M x RIutIm __, pp

of continuous maps such that, for every (g,z,v) € V(f) x M x RI@+s)m
@) Pu(g, Pm(g.z,v),w) = Poim(g, z, (v, w)) for every w € RI®+s)n.
(b) & — Pu(g.£,v) is a homeomorphism from M to M and P,,(g,*,0) = id;
©) Unso Pm({(g,2)} x RI@+m) i the g-accessibility class of z.
Using this theorem, Avila and Viana introduce a class of paths, called deformation

paths, contained in accessibility classes and having a useful property of persistence
under the variation of the diffeomorphism and the base point. More precisely,

Definition 5.3. A deformation path based on (f,z) isamap y : [0,1] — M such
that there exist m > 1 and a continuous map I' > R!®+9)™ gatisfying y(t) =

P (f. 2, T(1)).
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The continuity of the maps P, given by Theorem 5.2 implies the following
corollary.

Corollary 54. If v is a deformation path based on (f,z), then for every g close
to f and any w close to z, there exists a deformation path based on (g, w) that is
uniformly close to y.

The main technical step in the proof of Theorem 5.1 is a result of approximation
of general paths in accessibility classes by the deformation paths defined above. We
state a simpler version of this result that is sufficient for our purposes.

Theorem 5.5. If f is accessible, then for every z € M the set of deformation paths
based on (f,z) is dense on C°([0, 1], M).

The final ingredient is what is called the Intersection Property, and it is in this
result that the hypothesis of dim £¢ = 2 is necessary.

Theorem 5.6 (Intersection Property). Let f be a partially hyperbolic diffeomorphism
with 2-dimensional center bundle. Let D be a 2-dimensional disk transverse to
E’ & EY and ny, ns be smooth paths in D intersecting transversely at some point.
Then, for every diffeomorphism g C'-close to f and any continuous paths yy, Vs
uniformly close to ny, ns, there are points Xy, X5 in the images of Yy, Vs such that
WH*(xy, g) intersects W*(xs, g).

Let f be a partially hyperbolic accessible diffeomorphism with 2-dimensional
center bundle and x, y € M. By Theorem 5.1, if g is C!-close enough to f, then
there exists some su-path for g joining x to y. Besides, the proof of the theorem
in [6] uses Theorems 5.5 and 5.6 and provides a way to find the su-path for g. The
following results use that information to prove relations between the su-paths for f
and for a sequence fr — f.

Proposition 5.7. Let [ be a partially hyperbolic accessible diffeomorphism with
2-dimensional center bundle. For every x,y € M, yr — y and every sequence
fx = f inthe C! topology, there exist a subsequence k j, su-paths for Ji; denoted
by {x; and a su-path for f denoted by  satisfying the following:

(a) &k, = [z({, e ,ZI{,]joins X 10 Yk,

(b) ¢ = |z0,...,2N] joins x to y and

(c) for every € > 0 there exists K € N such that for every k; > K,
dist(z;, zlj) <€

foreveryi € {0,...,N}.
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Proof. Fix asmall 2-disk D and n,, and 7 like in the hypotheses of Theorem 5.6. By
Theorem 5.5, there exist a deformation path y,, based on (f, x) which is uniformly
close to 1, and a deformation path y; based on ( £, y) which is uniformly close to 7;.
Moreover, by Corollary 5.4, if k big enough, there exist

(a) a deformation path V{f based on ( f%, x) which is still close to 1, and
(b) a deformation path yf based on ( fx, yx) which is still close to 7.
Theorem 5.6 implies that there exist £X, tf € [0, 1] and wg € M such that

wr € W*(yy (2, fi) N WS (v (1), fio)-

Then, for every k big enough, we have an su-path for fi, joining x to yx, denoted
by {; and defined by the nodes of )/[f (tl’f ), the intersection point wy and the nodes
of y¥*(t%)

Vs s )-

By compactness, there exist a subsequence & ; and 7, ¢ such that

k; k;
t, Y > t, and t;’ — ;.

Since fr — f and W?* and W" are continuous under the variation of the
diffeomorphism we can find w € M such that wy — w and

w € Wu(yu([u)v f) N WS(}’S(IS)7 f)

Denote ¢ the su-path for f joining x to y and defined by the nodes of y,,(t,), the
intersection point w and the nodes of y;(Zs).

Finally, by the construction of the su-paths and, again, Corollary 5.4, we have
that for every € > 0 there exists K € N such that the distance between the nodes of {
and {y , is bounded by € for every k; > K. O

The su-paths in the proposition above can be chosen in a uniform way. That is,
with a uniform number of legs and a uniform bound for the distance between the
nodes.

Corollary 5.8. Let f be a partially hyperbolic accessible diffeomorphism with
2-dimensional center bundle. Then, there exist L > 0 and N > 0 such that for every
X,y € M, yv — y and every sequence fi — f in the C! topology, the su-paths
defined by Proposition 5.7 can be taken to have at most N legs and distance between
the nodes bounded by L.

Proof. Observe that in order to prove this corollary it is sufficient to prove the
following claim.

Claim. Fixn € C°([0,1], M) and € > 0. Then, there exist L > 0 and N > 0 such
that for every x € M there exists a deformation path based on ( f, x), denoted by y,
which is e-close to n and satisfies that for every t € [0, 1], the su-path defined by y(t)
has at most N legs and the distance between the nodes is bounded by L.
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By Theorem 5.5, for every x € M there exists a deformation path based on ( f, x),
that is e-close to n. Therefore, the claim follows from the persistence of the
deformations under the variation of the base point and the compactness of M. [

Corollary 5.8, together with Remark 3.3 and Corollary 3.5 give the following
result. Given f € BL(M), let U(f) be a C? neighborhood of f where all the
estimations in Section 3 can be taken uniform.

Corollary 5.9. Let x € {t,w}, r > 2 and f € BL(M). Then, there exists C > 0
such that for every x,y € M, yx — y and every sequence fi — f in the C!
topology with fi € U([), the su-paths given by Proposition 5.7, denoted by (.
and &, can be taken to satisfy the following estimation for the holonomies defined by
them,

d(Hy(a), Hy, (b)) < ¥(k;) + C d(a.b),
where Y (k ;) goes to zero as k; goes to oo.

There are analogous estimations for h; = P(H;) and h;kj = P(H;kj). We

are going to use this result to prove Proposition 6.1 and to conclude the proof of
Theorem B in Section 7.

6. Disintegration

Let x € {u,w}, r > 2, f € BL(M) and assume p is a pinching periodic point
for f. Thatis, Df"7|E(p) has two real eigenvalues with different norms, where
np = per(p). Then, there exist C; > 0, 6p > 0, p € (0, 1) and one-dimensional
subspaces E;, E; of Ef, such that for every F; and F, one-dimensional subspaces
of E7, with

max{L(El, Fl), L(Ez, Fz)} < 90, (61)

we have
Z(Df"?) (Ey), Df"?7 (Fy)) < Cy p’ (6.2)
and Z(Df P (E,), Df "PJ (F,)) < Cy1 p’, (6.3)

for every j > 0.

By the Invariance Principle, if A{(f) = A5(f), then every P(F)-invariant
probability measure m with m.m = p admits a disintegration, {m, : x € M},
invariant by holonomies and continuous with the weak™ topology. The continuity
of my and the invariance of m implies that P(F(x))«my = m () for every x € M.

Then, ifa, b € IP’(E;) are defined by a = [E1] and b = [E,], we have

suppmp C {a, b}. (6.4)
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Let fi and ko be given by Lemma 4.4 for some € > 0. Suppose A{(fx) = A5(fx)
for every k > ko. We will denote F, = Dfi| E€( f¢) the center derivative cocycle
for fr and P(F}) its projectivization.

We can suppose that for every k > ko, f/(p) ¢ Bgs, (z;) for every
J €1{0,...,np, —1}. Then, for every k > ko and any P(Fj)-invariant probability
measure m¥ with 7.mk = W, we have

supp mi; C {a, b}.

Moreover, if for every k > ko we fix some m*, then there exist a subsequence k j
and a measure m in P(TM) such that m¥/ — m in the weak* topology. The limit
measure m has the following properties:

(a) suppm C P(E“(f)),
(b) m projects down to pu,

(¢c) m is P(F)-invariant.

Denote mj,’ and m, the element of the disintegration given by the Invariance
Principle at p for m*/ and m respectively.

Proposition 6.1. If |suppm | = 1, then there exist a subsequence of k j, that we
continue to denote k j, and Ko € N such that

supp m p C supp m];j,
forevery k; > K.

Proof. Suppose that suppm, = {a}. The case suppm, = {b} is analogous.
Consider C > 0 given by Corollary 5.9 and fix some 0 < § < d(a, b)/4C. Define
the function § : M — P(TM) by £(x) = (x, supp my) and the set

Ty = {(x,v) e P(TM) : (x.v) € Bs(§(x))} .

The Invariance Principle implies that the function & is continuous and therefore 7’5
is an open set. Moreover, by definition, m(7s) = 1. These two properties imply that

ki (T5) = j I (Ty O P(ES (x, fi, )dp(x) — 1.

Then, there exist a subsequence of k;, that we continue to denote k;, x € M and
K, € N such that for every k; > K,

Ts N supp m',;j # 0.

We apply Proposition 5.7 to fi,, x and yx; = p. Then, we have a new
subsequence, that we continue to denote k;, su-paths for fi; denoted by i and a
su-path for f denoted by ¢, all joining x to p.
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Denote / the holonomy defined by ¢ for P(F) and Ay, the holonomy defined
by {i, for P(Fy,). By Corollary 5.9, there exist C > 0 and a function ¥ (k)

going to zero as k; — oo, such that for every a’ € P(E°(x, f)) and every
b" € P(E°(x, f;)), we have

d(h(a'), hi, (b)) < ¥(k;)+ C d(a',b').

Since the disintegration given by the Invariance Principle is invariant by holono-
mies and we suppose suppm, = {a}, we have suppmy = h~'(a). Moreover,
since

supprmy’ N Ty # 0.
there exists
a;cj € supme;“’ with d(h“l(a),a;cj) <8 forevery k; > Kj.

Define ag; = hy, (aj{j )- Then, ag, € supp m];,j and for k; big enough,

d(a,ax;) = d(h(h™"(a)). h, (ap ) <v(kj)+C d(h_l(a),afcj)
<d(a,b)/2.

Since supp ml;',j C {a, b}, this implies ax; = a and finishes the proof. O

7. Proof of the theorems

In this section we give the details of the proof of Theorem B and explain how to
conclude Theorem A.

7.1. Proof of Theorem B.

Definition. Let f be a partially hyperbolic diffeomorphism and p a periodic point
with n, = per(p). We say that p is a pinching periodic point if Df"?|E“(p) has
two real eigenvalues with different norms.

Theorem B. Let x € {u,w}, r = 2, [ € BL(M) and assume f has a pinching
periodic point, then f can be C”-approximated by volume-preserving (symplectic)
diffeomorphisms whose center Lyapunov exponents are different.

Proof. Let f € BL(M) and p be a pinching periodic point, with n, = per(p).
Consider F = Df|E€ and suppose A{(f) = A5(f).

We proved in the previous section (Equation (6.4)) that there exist a, b € P(E IC,)
such that for every P( F')-invariant probability measure m with w,m = p, the element
of the disintegration given by the Invariance Principle at p satisfies,

suppmp C {a,b}.
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Fix a neighborhood in the C"-topology, nL.( /.U, V, €), with € > 0 small enough.

Consider the su-path given by Proposition 4.2 for f and p andlet Cy > 0,ko € N
and f; be defined by Lemma 4.4 for this €. Then, for every k > kg, f; has the
following properties:

@ fr € BL(M)Nni(fUV,e),

() fk(x) = f(x)ifx ¢ B, (2)

(¢) fk(z) = f(z),and

(d) Dfi(z) = Df(z) o Ag, withsin B = Co8; €.

Moreover, f; — f inthe C! topology when k — oo,
Denote Fy = Df|E;, the center derivative cocycle for f and suppose A{(fx) =
A5 (fx) for every k > k. _
We can assume that for every k > ko, f/(p) ¢ Bs.(z;) for every
j €140,...,n, —1}. Then, for any P(F})-invariant probability measure m* with
msm¥® = p, we have
suppm’;, C {a, b}.

Consider the following two cases:

(i) YV k > ko there exists an P(Fj)-invariant probability measure m* with
mxm* = i such that suppm’; = {a, b}.

(i) V IP(F)-invariant probability measure m with m.m = u, we have

| suppmp| = 1.

It is enough to prove Theorem B for these two cases. Suppose the sequence of
perturbations f; does not satisfy the condition in case (i). Then, there exists k1 > ko
such that for every IP(Fy,)-invariant probability measure m*k1 with w.m*l = p,
we have | supp m];1| = 1. Then, fi, is a diffeomorphism satisfying case (ii). If
Theorem B is true in this case, we will be able to find a diffeomorphism g which is
e-close to fi, inthe C” topology and such that A{(g) # A5(g). Moreover, since fj,
is e-close to f, g will be 2 e-close to f. This will prove the theorem for f.

In the following, we give the details of the proof of Theorem B for case (i)
and (ii). Since the two arguments are very similar, we are going to explain them
simultaneously.

Let K € Nbe given by Corollary 4.11. If we are in case (i), forevery k > K, there
exists m* such that supp m’l‘, = {a,b}. Then, via a subsequence, we can suppose
that there exists an P( F')-invariant probability measure m with w.m = p such that
m = limm¥. If we are in case (ii), for every k > K, we choose any P( Fy)-invariant
probability measure m* and define m = limm¥*. Then, | suppm p| = 1 and we can
apply Proposition 6.1. From now on, if we are in case (ii), it is understood that fj
denotes the subsequence that verifies Proposition 6.1 and K > Kj.



Vol. 91 (2016) C” -density of (non-uniform) hyperbolicity in PH[, (M) 387

For every k > K, let {m’; :x € M} and {m, : x € M} be the disintegrations
given by the Invariance Principle for m* and m respectively. Suppose a € supp m P
the other case is analogous.

By Proposition 4.8 there exist C > 0, 7 € (0,1) and px = zf‘v such that

O']k

dist(p, pxr) < C1

The following argument allow us to find a point in the supp m’;k which is

exponentially close to supp m’;. The hypothesis of p being a pinching periodic

point is essential here. We need this estimation in order to apply Corollary 4.11 and
get a contradiction.
Define

qr = fk_npk(pk)-

Then, there exists C5 > 1 such that
dist(p, gx) < Cz—""k dist(p, px) < C (Cz—n”t‘”)k. (7.1)

Here C, depends on the functions in Equation (2.1) and 0y = o o . The constant o
is defined in Equation (4.1) and was chosen in order to have this expression going to
zero as k — o0.

Claim. Let 6y > 0 be the constant defined in Equation (6.1). Then, there exists
K, € N such that for every k > K, there exists dy € supp mgk with d(a, dy) < 6.

Proof. Since gx — p, we can apply Theorem 5.7 for fi, x = p and y; = gi. Then,
there exist su-paths for f; denoted by {; joining p to gx and a su-path for f denoted
by ¢ joining p to p. Moreover, they satisfy Corollary 5.9.

Denote 4 the holonomy defined by ¢ for P(F') and /4 the holonomy defined by i
for P(Fy).

If we are in case (i), we have to possibilities: #(a) = a or h(a) = b. Then, define

_Vhg(a) ifh(a) = a,
“T ) ifh(a) =b.

Since supp m’; = {a, b}, in any case we have dj. € supp m’;k.

If we are in case (ii), then &(a) = a and we define d; = hy(a). Proposition 6.1
implies that dj € supp mz -

Then, by Corollary 5.9 there exists ¥ (k) — 0 as k — oo, such that

d(a,dy) < ¥ (k).

Therefore, choose K big enough in order to have ¥ (k) < 6y forevery k > K,. [
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As before, Pg will denote the orthogonal projection to £ and my , the parallel
transport between x and y.
Define

ai = [ Peg 0 gy (i)
where [x] denote the class in the projective space, and
cx = P(F;” (q))(dy).
We have the following consequences:
ap € P(E,), Z(a,ax) <6 and cx € supp m";k.

Then, there exist C; > 0, p € (0,1) and C5 > 1 such that

n k
d(a,cx) = d®(F"**(p))(a), P(F;"" (qx))(dk))
< d@(F"*(p)(a). P(F"* (p))(ax))
k k
+ d(P(F, "™ (p))(ax), P(F, " (qx)) (dk)) 7.2)
< Cy p* + CJ7F dist(p, i)
< Cy p* + C(CFPC "o,
The estimation in the first term is a consequence of Equation (6.2). Since, the
constant C3 depends only on the functions in Equation (2.1), we can suppose that o
in Equation (4.1) was chosen to have the expression on the second term going to zero

exponentially fast as k — oo.
If { = [zo,...,2znN] is the su-path given by Proposition 4.2 for f and p, let

¢1 =[z0,...,z;7] and &2 =[z,...,zN]

Denote H¢; and h¢; the holonomies defined by ¢; for F* and P(F) respectively, with
i €{1,2}. Then,

Hy, t E°(p) = E°(z1, f), and  he, : P(E°(p)) = P(E°(z;, f)),

fori € {1,2}.
By Proposition 4.8, we have

k k
Zk = Zj Dk = Zp,

and su-paths for fy,

ff =[p,...,2zx] and é‘f = [pk,---»2k].
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Denote H ¢k and h £k the holonomies defined by é‘ik for Fy and P(Fy) respectively,
with i € {1,2}. Then,

Hyr : ES(p) = E°(2k fi)s  Hye : E°(pis fir) = E€ (21, Ji),
hew - P(ES(p)) = P(E®(2k, fi)) and Ry - P(EC(pr, fu)) = P(E® 2k, fi)).

Although we have two possibilities, suppm, = {a} or suppm, = {a, b}, we
are going to consider only the second case, because it imposes more restrictions.
Moreover, we can suppose there exist c,d € P(E€(z;, f)) such that ¢ = h¢ (a) =
he,(a) and d = he (b) = he, (b). The other cases are analogous.

In order to simplify the notation, we are going to use the same symbol to denote
both a nonzero vector in E¢ and the corresponding element of P(E¥).

If ®; : E°(zk, fx) = E°(z;, f) is defined by ®x = Pge(y,, f) © Tz,,z,, then
for k big enough ®; is an isomorphism. By Corollary 4.11 and Equation (7.2),
there exist C > 0, A € (0,1) and K € N such that for every k > K there exists
Ck € supp m’;k such that

@ | Rp!(©) = @u(He (@) < € 2%,

) [R5 (@) - CDk(Hc{c(b))H < C Ak, and

(© | = Px(Hyx (k) H < C Ak,

where Rg, : E°(z;, f) — E(z;, f) is the rotation of angle Bz > 0 defined by
Lemma 4 4.
By the definition of f; in Lemma 4.4 and Equation (4.1), we have

kk
sin? B
Since @ is an isomorphism, for k big enough, the one-dimensional subspaces

generated by H £k (a), H £k (b) and H ¢k (cx) are all different. In the projective level
this means,

— 0 when k — 0.

et (@) g (b) # hgg (k).

On the other hand, since supp m’; C {a, b}, the invariance by holonomies given
by the Invariance Principle implies

suppmi, C {hex (@), hyi (b))

’;,k, then h§§ (ck) € supp m’z‘k.

We arrive to this contradiction because we were assuming that the Invariance
Principle could be applied for every f; with k > kq. Then, there exists k; € N such
that A{(fx,) # A5(fk,)- Since fi, is e-close f inthe C” topology and € > 0 was
chosen arbitrarily, this conclude the proof of Theorem B. Il

Moreover, since cx € suppm
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7.2. Proof of Theorem A.

Theorem A. Letr > 2, f € B] (M) and assume the set of periodic points of f is
non-empty, then f can be C" -approximated by non-uniformly hyperbolic symplectic
diffeomorphisms.

The following observations are going to prove that we can reduce the proof to two
cases.

Suppose M is symplectic manifold and dimM = 2d. Let f : M — M be a
symplectic diffeomorphism and p a periodic point for f. If n, = per(p), define
the principal eigenvalues of Df™? to be those d eigenvalues with norm greater that
one or with norm equal to one and imaginary part greater than zero and the half
of the eigenvalues equals to 1 or -1. If the principal eigenvalues are multiplicative
independent over the integers, that is ]_]/If " = 1 with p; € Z implies p; = 0 for
everyi € {l,...,d}, wesay p is elementary.

Let f € B/ (M) and p be a periodic point with n, = per(p). By the results
in [34], we can suppose that p is elementary. This implies that the eigenvalues of
Df"r|E7 satisfy one of the following:

(i) there exists 0 < p < 1 such that the eigenvalues are p and p~ !, or

(ii) there exist x, y € R such that the eigenvalues are x + iy and x — iy with
x2 + y? = 1 and they are not a root of unity.

We are going to call option (i) the hyperbolic case and option (ii) the elliptic case.
Then, it is sufficient to prove Theorem A under the hypothesis of p being in one of
these cases.

7.2.1. Hyperbolic case. Fix f € B] (M) and suppose p is a periodic point
satisfying (i). Then, p is a pinching periodic point and we can apply Theorem B to
find a symplectic diffeomorphism g C"-arbitrarily close to f, with A{(g) # A5(g).
By the symmetry of the Lyapunov exponents, we have that they are non-zero almost
everywhere and therefore we have proved Theorem A in this case.

7.2.2. Elliptic case.

Definition 7.1. We say that a periodic point p of period n, is guasi-elliptic if there
exists 1 <[ < d such that Df, ; ” has 21 non-real eigenvalues of norm one and its
remaining eigenvalues have norm different from one.

We are going to use the following result:

Proposition 7.2 ([29, Proposition 3.1]). Forevery 1 < r < oo, there exists a residual
set R C Dift] (M), such that if f € R, then each quasi-elliptic periodic point of f
is the limit of transversal homoclinic points.
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Fix f € B] (M) and suppose p is a periodic point satisfying (ii). Then, p is a
quasi-elliptic periodic point. By Proposition 7.2, we can suppose that besides of p, f
has a hyperbolic periodic point g. At this point we could apply Theorem B to finish
the proof. However, we are going to show that the coexistence of hyperbolic and
elliptic periodic points is an obstruction for the rigidity given by Invariance Principle.
An argument similar to the one we give here can be found in Remark 2.9 of [4].

Define F = Df|E€ and suppose A{(f) = AS(f). We fix some P(F)-invariant
probability measure m with w.m = u and apply the Invariance Principle. Then,
there exits a disintegration {m, : x € M} such that P(F(x))«mx = m r(x) for every
xXeEM.

Since f is accessible, there exists an su-path { joining g to p. Let h¢ denote the
holonomy defined by ¢ for P(F).

Denote n, = per(p) and ny; = per(q). Let m, and m, be the elements of the
disintegration given by the Invariant Principle at p and ¢ respectively. Then,

P(F"?(p))smp = mp, P(F"i(q))«mq = my and (h¢)smyg = mp.

Since g is hyperbolic, there exist two points, a and b, in P(E7) such that
suppmg C {a,b}. Therefore, the support of m, contains at most two points.
This implies that P(F"#(p)) has a periodic point of period 1 or 2. However, this
contradicts the fact of p being an elliptic periodic point satisfying (ii).

Therefore, we have that the center Lyapunov exponents of f must be different at
almost every point. This finish the proof of Theorem A. L]

8. Applications

In this section we show examples of partially hyperbolic symplectic diffeomorphism
that can be C”-approximated by diffeomorphisms in B (M ) having a periodic point.
Then, by Theorem A, we are able to approximate these examples by non-uniformly
hyperbolic systems.

Letr > 2. B, (M) is the subset of PH/ (M) where f is accessible, a-pinched
and a-bunched for some o > 0 and the center bundle £€ is 2-dimensional.

For d > 1, let T2¢ denote the 2d-torus.

Corollary 1. Ler f : T2¢ —s T24 pe a C” Anosov symplectic diffeomorphism and
g : T?> — T? a symplectic linear map with eigenvalues of norm one. Then, f x g
can be C" -approximated by non-uniformly hyperbolic diffeomorphisms.

Proof. Notice that f x g is a partially hyperbolic symplectic diffeomorphism with
2-dimensional center bundle. Moreover, f x g is a-pinched and «-bunched for some
a > 0 and has a periodic point.

Theorem A in [38] imply that for every € > 0, there exists a partially hyperbolic
symplectic diffeomorphism % which is accessible and e-close to f x g in the
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C" topology. By the proof in [38], we can suppose that /# coincides with f x g
in the orbit of some periodic point and therefore it has itself a periodic point. If
€ is small enough, we have h € B/ (M). Then, we can apply Theorem A to
C"-approximate & by non-uniformly hyperbolic diffeomorphisms. This finishes the
proof. O

Using the same argument than above and Theorem B in [38], we can prove the
following result.

Corollary 2. Let g : T?> — T2 be a C” symplectic diffeomorphism. Then, for every
d > 1 there exists f : T?¢ — T2 q C” Anosov symplectic diffeomorphism such
that f x g can be C"-approximated by non-uniformly hyperbolic diffeomorphisms.

Let A be a real parameter. The standard map g of the 2-torus is defined by
giz,w) =z 4+ w,w+ Asinr(z + w))),

and it preserves the symplectic form in T?. By KAM theory, for all values of A
near zero, there exists a C” neighborhood of g; such that any diffeomorphism in
this neighborhood has an invariant subset with positive volume where both Lyapunov
exponents are zero. The following result shows that if we add some transverse
hyperbolicity, we are able to remove the zero Lyapunov exponents.

Corollary 3. Let f : T2¢ —s T24 be a C” Anosov symplectic diffeomorphism. If A
is close enough to zero, [ x gy can be C"-approximated by non-uniformly hyperbolic
diffeomorphisms.

Proof. The argument is the same as before, we need to prove that f x g, can be
C"-approximated by diffeomorphisms in B/,(M) having a periodic point. The only
observation we need to make is that f x g, is «-pinched and «-bunched for some
« > 0 when A is close enough to zero because f x g¢ is «-pinched and e-bunched and
both conditions are open. The rest of the proof follows using [38] and Theorem A. [
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