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On the Fermat-type equation x> + y3 = z?

Nuno Freitas™

Abstract. We prove that the Fermat-type equation x> + y3 = z? has no solutions (a, b, ¢)
satisfying abc # 0 and ged(a,b,c) = 1 when —3 is not a square mod p. This improves to
approximately 0.844 the Dirichlet density of the set of prime exponents to which the previous
equation is known to not have such solutions.

For the proof we develop a criterion of independent interest to decide if two elliptic curves
with certain type of potentially good reduction at 2 have symplectically or anti-symplectically
isomorphic p-torsion modules.

Mathematics Subject Classification (2010). 11D41; 11GO07.
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1. Introduction

In this paper we consider the Fermat-type equation
x3 4 y3=2zP (1.1)
which is a particular case of the Generalized Fermat Equation (GFE)
xP 4+ y9 =2z", P.q,r € ZL>a, I/p+1/g+1/r <1.

Here we are concerned with solutions (a, b, ¢) which are non-trivial and primitive,
thatisabc # 0and ged(a, b, ¢) = 1, respectively. To the triple of exponents (p, g, r)
we call the signature of the equation.

The equation (1.1) is one of the few instances of the GFE where there is a known
Frey curve defined over Q attached to it. The other few signatures with available
rational Frey curves are (p, p, p), (p, p.2), (p. p.3), (5.5, p), (7.7, p), (2,3, p)
and (4, p, 4) (see [3] for their explicit definitions).! However, only for the signatures
(p,p,p), 4, p.4), (p, p,2) and (p, p, 3) the existence of a Frey curve led to a full

*This work was partly supported by the grant Proyecto RSME-FBBVA 2015 José Luis Rubio de
Francia.

IThere are also Frey curves attached to signatures of the form (r, r, p) and (2£, 2m, p) but defined
over totally real fields (see [7] and [1]).
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resolution of the corresponding equation. The first due to the groundbreaking work
of Wiles [17] and the other three due to work of Darmon [4] and Darmon—Merel [5].

Among the remaining signatures, equation (1.1) is the one where most progress was
achieved so far, due to the work of Kraus [10] and Chen—Siksek [2].

Theorem 1 (Kraus, 1998). Let p > 17 be a prime and (a,b,c) be a non-trivial
primitive solution to (1.1). Then va(a) = 1, va(b) = 0, va(c) = 0, and v3(c) > 1.
Moreover, there are no solutions for exponents p satisfying 17 < p < 10%,

Theorem 2 (Chen-Siksek, 2009). For a set of primes L with density 0.681 the
equation (1.1) has no non-trivial primitive solutions. The primes in L are determined
by explicit congruence conditions, for example p = 2,3 mod 5.

Moreover, there are no solutions for exponents p satisfying 3 < p < 10”.
In this work our main goal is to prove the following theorem.

Theorem 3. Let p > 17 be a prime satisfying (—3/p) = —1, that is p = 2 mod 3.
Then equation (1.1) has no non-trivial primitive solutions.

Therefore, equation (1.1) has no non-trivial primitive solutions for a set of prime
exponents with density approximately 0.844.

A crucial tool for the proof is the following criterion to decide whether two elliptic
curves having certain type of potentially good reduction at 2 admit a symplectic or
anti-symplectic isomorphism between their p-torsion modules (see beginning of
Section 3 for the definitions).

Write Q4" for the maximal unramified extension of Q».

Theorem 4. Let E/Q, and E'/Q, be elliptic curves with potentially good reduction.
Write L = Q4'(E[p]) and L' = Q5'(E’[p]). Write Ay (E) and Ap(E’) for the
minimal discriminant of E and E’ respectively. Let I, C Gal(Q,/Q-) be the inertia
group.

Suppose that L = L' and Gal(L/Q}") =~ SLy(F3). Then, E[p] and E'[p] are
isomorphic 1,-modules for all prime p > 3. Moreover,

(1) if 2/ p) = 1 then E[p] and E’|p] are symplectically isomorphic I,-modules.

(2) if(2/p) = —1then E|[p] and E'[ p) are symplectically isomorphic I>-modules
if and only if V2(Am(E)) = v2(Am(E’)) (mod 3).

Furthermore, E[p| and E’[p] cannot be both symplectic and anti-symplectic
isomorphic I,-modules.

This theorem extends the ideas in [9, Appendice A] and it is proved in Section 3;
in Section 2 we use it to establish Theorem 3. In [8] we develop further symplecticity
criteria and apply them to the Generalized Fermat Equation x2? + y3 = z?.
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Idea behind the proof. Our proof of Theorem 3 builds on Kraus’ modular argu-
ment [10]. Indeed, for p > 17 he attaches to a putative non-trivial primitive solution
(a,b,c) of (1.1) a Frey elliptic curve

Egp:Y2=X>+3abX +b>—a®,  A(E,p) =-2%-3%.c°P

and shows that its mod p Galois representation pg_ , , is mostly independent of
(a,b,c). By the now classic modularity, irreducibility and level lowering results
over Q it follows that p_, , is isomorphic to p £, the mod p representation attached
to a rational newform f in a finite list. Finally, among all the possibilities for f
Kraus obtains a contradiction except for the newform corresponding to the rational
elliptic curve with Cremona label 72al.

In particular, following the ideas in [14], Kraus’ work implies that the
solution (a, b, ) gives rise to a rational point on one of the modular curves X, (p)
or X-,,;(p); these curves respectively parameterize elliptic curves with p-torsion
modules symplectically or anti-symplectically isomorphic to the p-torsion module
of 72al. By applying Theorem 4 and [12, Proposition 2] we will show that there
are no 2-adic points in X7, ,,(p) and 3-adic points in X7_2(a_13/ p) (p) arising from
relevant solutions of (1. 1) In particular, when (—3/p) = —1 this implies there are
no relevant points on X 5a1(P)Q).

Acknowledgements. 1 would like to thank Benjamin Matschke, Bartosz Naskrecki
and Michael Stoll for helpful discussions. I also thank Alain Kraus for his comments.

2. Proof of Theorem 3

Let (a, b, ¢) be a non-trivial primitive solution to x> + y* = z?. From Theorem 1
we know that vp(a) = 1, va(b) = 0, v2(c) = 0 and vs3(c) > 1 and we can attach to
it the Frey curve
By i Y2 = X3+ 3abX + b3 —a’.

A closer look into Kraus’ proof shows also that the mod p Galois representation
of Egp has to satisfy pg , , ~ pwr, p, Where W' is the elliptic curve with Cremona
label 72al. Moreover, this possibility is the unique obstruction to conclude that (1.1)
has no non-trivial primitive solutions. We shall show that p Eap.p # Pwr,p, When
(=3/p) = -

Note that W’ has potentially multiplicative reduction at 3, which becomes
multiplicative after twisting by —3. Write E and W for the quadratic twists by —3 of
E, p and W', respectively. Thus we have

PEp ~ Pw,pe @

where W has Cremona label 2444 with j-invariant ji = 2048/3 and minimal
model

W Y?=XxX3-X2+X.
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Since v (jw) = 11 the curve W has potentially good reduction at 2 and it gets good
reduction over L = Q4" (W {[p]). The curve W also satisfies

V2 (A (W) =4 and va(cs(W)) =5,

hence Gal(L/Q4") ~ SL,(F3) by [11]. From (2.1) the same must be true for E,
therefore we are under the hypothesis of Theorem 4.

From part (2.2) in the proof of [10, Lemma 4.1] we have that E, ; is minimal
at 2 and satisfies v2(Ap(E, 5)) = 4. Hence the same is true for the quadratic twist
E = =3E,  and we have U2 (Ap(E)) = va(Ap(W)) (mod 3). We conclude from
Theorem 4 that E[p] and W|p] are symplectically (and not anti-symplectically)
isomorphic />-modules for all p > 3. Since py p(Iz) is non-abelian, by [9,
Lemma A.4] the same is true for E[p] and W |p] as Gg-modules.

From [12, Proposition 2] applied with the multiplicative prime £ = 3 it follows
that E[p] and W|p] are symplectically isomorphic if and only if vs(A,,(W)) and
v3(A,, (E)) differ multiplicatively by a square modulo p. We now compute these
quantities.

One easily checks that v3(A,,(W)) = 1.

From part (3.1) in the proof of [10, Lemma 4.1] we see that

us(ca(Eap)) =2, v3lcs(Eap)) =3, v3(A(Eqp)) = 3+ 2pus(c).
Therefore, the twisted curve E = —3FE, j satisfies
us(ca(E)) =4, us(c(E)) =6, Us(A(E)) =9+ 2pus(c).

Since v3(c) > 1 it follows from Table Il in [13] that the equation for E is not minimal.
After a change of variables we obtain

v3(cq) = 0, v3(cg) = 0, v3(Am(E)) = =3 + 2pus(c)

and the model gets multiplicative reduction. Therefore, E[p] and W{p] are
symplectically isomorphic if and only if

1 = v3(Am(W)) = u?v3(Am(E)) = u*(=3 + 2pus(c)) (mod p)

which is equivalent to (—3/p) = 1. The result follows.
The statement about the density follows by the same computations as in [2,
Section 10] but now we also take into account the congruence p = 2 mod 3.

3. Symplectic isomorphisms of the p-torsion of elliptic curves

Let p be a prime. Let K be a field of characteristic zero or a finite field of
characteristic # p with an algebraic closure K. Fix {, € K a primitive p-th
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root of unity. For E an elliptic curve defined over K we write E[p] for its p-torsion
Gg-module, pg , : Gg — Aut(E[p]) for the corresponding Galois representation
and eg , for the Weil pairing on E[p]. We will call an F,-basis (P, Q) of E[p]
symplectic if eg ,(P, Q) = {p.

Now let E/K and E’/K be two elliptic curves and ¢ : E[p] — E’[p] be an
isomorphism of G g-modules. Then there is an element r (¢) € F7 such that

er p(@(P),¢(Q)) = eg (P, Q) ® forall P, Q € E[p].

Note that for any a € F, we have r(a¢) = a’r(¢). We say that ¢ is a symplectic
isomorphism if r(¢) = 1 or, more generally, r(¢) is a square in IF;‘,. Fix a
nonsquare r, € ]F;. We say that ¢ is a anti-symplectic isomorphism if r(¢) = rp
or, more generally, r(¢) is a nonsquare in F7. Finally, we say that E[p] and E'[p]
are symplectically isomorphic (or anti-symplectically isomorphic), if there exists a
symplectic (or anti-symplectic) isomorphism of G g-modules between them. Note
that it is possible that E[p] and E’[p] are both symplectically and anti-symplectically
isomorphic; this will be the case if and only if E[p] admits an anti-symplectic
automorphism.
We will need the following criterion.

Lemma 1. Let E and E' be two elliptic curves defined over a field K with isomorphic
p-torsion. Fix symplectic bases for E[p] and E'[p]. Let ¢ : E[p] — E'[p] be an
isomorphism of G g -modules and write My for the matrix representing ¢ with respect
to the fixed bases.

Then ¢ is a symplectic isomorphism if and only if det(My) is a square mod p;
otherwise ¢ is anti-symplectic.

Moreover, if pg ,(Gk) is a non-abelian subgroup of GL»(Fp), then E[p]
and E’[p] cannot be simultaneously symplectically and anti-symplectically isomor-
phic.

Proof. Let P, Q € E[p]and P’, Q' € E'[p] be symplectic bases. We have that

eEf’p(gb(P),gb(Q)) = eE’,p(Pl, Q/)det(Md:) = é-pdet(Mcb) - eE,p(P, Q)det(MdJ),

so r(¢) = det(My). This implies the first assertion.

We now prove the last statement. Let 8: E[p] — E'[p] be another isomorphism
of G g-modules. Then B~!¢ = A isin the centralizer of PE,p(Gk). Since pg ,(Gk)
is non-abelian, A is represented by a scalar matrix (see [9, Lemme A.3]). Therefore
det(Mp) and det(Mgy) are in the same square class mod p. O

We now introduce notation from [15, Section 2] and [9, Appendice A]. Let
p # € be primes such that p > 3. For an elliptic curve E/Q with potentially
good reduction write L = Qy"(E[p]). Write also I = Gal(L/Q}"). Write E for

the elliptic curve over Fy obtained by reduction of a minimal model of E/L and
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¢ : E[p] — E|p] for the reduction morphism which is a symplectic isomorphism
of (trivial) Gz -modules. Let Aut(E) be the automorphism group of E over Fy and
write ¥ : Aut(E) — GL(E|p]) for the natural injective morphism. The action of /
on L induces an injective morphism yg : I — Aut(E). Moreover, for o € I we
have

¢opg,p(0) =vY(ye(0)) cp. (3.1

The following group theoretical lemma is proved in Section 3.1. For convenience
we state it here since it plays a crucial role in the proof of Theorem 4.

Lemma 2. Let p > 3 and G = GL,(Fp). Let H C SL»(F,) C G be a subgroup
isomorphic to SLp(IF3). Then the group Aut(H) of automorphisms of H satisfies

Ng(H)/C(G) ~ Aut(H) =~ Sa,

where N (H ) denotes the normalizer of H in G and C(G) the center of G. Moreover,
(a) if (2/p) = 1, then all the matrices in Ng (H) have square determinant;

(b) if (2/p) = —1, then the matrices in Ng(H) with square determinant
correspond to the subgroup of Aut(H ) isomorphic to A,.

Proof of Theorem 4. Let E, E’ be elliptic curves as in the statement. Note that
L = Q3'(E[p]) is the smallest extension of Q5" where E obtains good reduction
and the reduction map ¢ is an isomorphism between the I ,-vector spaces E[p](L)
and E[p](F2). By hypothesis E’ also has good reduction over L and the same is
true for ¢’. Applying equation (3.1) to both £ and E’ we see that E[p] and E’|[p]
are isomorphic /;-modules if we show that 1 o yg and ¥ o ygs are isomorphic as
representations into GL(E[p]) and GL(E’[p]), respectively.

We have that j(E) = j(E’) = 0 (see the proof of [6, Thereom 3.2]) thus E
and E’ are isomorphic over Fy. So we can fix minimal models of E/L and E’ /L
both reducing to the same E. Write H := Aut(E) and note that H ~ SL,(F3)
(see [16, Thm.III.10.1]). Therefore

v (ye() = y(ye(I)) = y(H) C SL(E[p]) C GL(E[p])

and there must be an automorphism & € Aut(y(H)) such that ¥ (yg) = oy (yg’).
The first statement of Lemma 2 shows there is g € GL(E|[p]) suchthata(x) = gxg~!
for all x € ¥ (H); thus ¥ o yg and o yg/ are isomorphic representations.

Fix a symplectic basis of E[p] identifying GL(E[p]) with GLy(F,). Let M,
denote the matrix representing g and observe that My € Ngp,r,)(¥(H)). Lift
the fixed basis to bases of E[p] and E’[p] via the corresponding reduction maps ¢
and ¢’. The lifted bases are symplectic. The matrices representing ¢ and ¢’ on these
bases are the identity. From (3.1) it follows that pg ,(0) = Mgpg/ ,(0)M, ! for all
o € I. Moreover, M, represents some />-modules isomorphism ¢ : E[p] — E’[p]
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and from Lemma 1 we have that E[p] and E'[p] are symplectically isomorphic if
and only if det(Mp) is a square mod p. Part (1) now follows from Lemma 2 (a).

We now prove (2). From Lemma 2 (b) we see that E[p] and E’[p]
are symplectically isomorphic if and only if « is an automorphism in A4 C
Aut(¥ (H)) ~ S4. Note that these are precisely the inner automorphisms. For each p
the map o, := ¥~ ! o a o ¢ defines an automorphism of yg(I) = H = Aut(E)
satisfying @, o ygr = yg. Since yg, yg’ are surjective and independent of p it
follows that «, is the same for all p. Since o and «, are simultaneously inner or not
it follows this property is independent of the prime p satisfying (2/p) = —1. This
shows that E[p] and E’[p] are symplectically isomorphic />-modules if and only
if E[£] and E’[{] are symplectically isomorphic /,-modules for one (hence all) £
satisfying (2/¢) = —1.

We are left to show that symplecticity is equivalent to v (A, (E)) = va(Am(E"))
(mod 3). Since (2/3) = —1 from the observation above we can work with p = 3.

Fixw € F, a primitive cubic root of unity. Let L3 C L be an extension of Q%"
of degree 8. Hence L/Lj is cyclic of degree 3 and we write o for a generator of
G = Gal(L/L3) C I. Thus y(G) and yg/(G) are order 3 subgroups of Aut(E).

Recall that ¥ : Aut(E) — GL(E[3]) is the natural injective morphism. After
fixing a symplectic basis for E[3], conjugation by an element of SL,(F3) (which
preserves the property of a basis of E[3] being symplectic) allows to assume that
Y (ye(G)) is the group generated by U = ((1) }) In particular, £ has a 3-torsion
point defined over L.

By doing the same for E’ we obtain ¥ (yg (0)) = Mgy (ye (o)) M !, where M,
belongs to the normalizer N = Ngp, r;) (¥ (YE(G))). Observe that the centralizer C
of ¥ (yg(0)) in GL,(IF3) is generated by the scalar matrices and U; moreover N is
generated by C and the diagonal matrices. Therefore, the elements of C are precisely
the elements of N with square determinant. It follows that that

ve(0) = ye/(0) & E[3] ~ E’[3] symplectically.

We can further assume that the residual curve E is of the following form

E :y2+a3y=x3+a4x—|-a6, a,-er, as # 0.

For such a model the elements in Aut(E) given by the linear transformations
T(u) : (x.y) — (u2x,u3y), where u = ok for k = 0,1,2 have order 1
or 3. Since E has a 3-torsion point defined over L3, the same argument
leading to equation (17) in [9] applies (possibly after replacing o by o2). Thus
vE(0) = T (0 ®mE)). By doing the same for E’ we get yg/(0) = T (wVAmED)
and the result follows. U

3.1. Alemma in group theory. Write S, and A, for the symmetric and alternating
group on n elements, respectively. We write C(G) for the center of a group G. If H
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is a subgroup of G, then we write Ng(H) for its normalizer and Cg(H) for its
centralizer in G.

Let o, B € F7 satisfy a? + B%? = —1 and consider the following matrices in
SL,(F)p)

_ (0 -1 (o B _1{f—-a-1 1—-a-—-p
We observe that (g1, g2) ~ Hg and (g1, g2,83) =~ SL,(F3). The proof of
Lemma 2 requires the following proposition.

Proposition 1. Let p > 3 and G = GLy(Fp). Let H C SLy(F,) C G be a
subgroup isomorphic to SLy(F3). Then H and (g1, g2, g3) are conjugated by an
element of G.

Proof. We can write H as H = (i, j, k,u) where

(1) Hg = (i, j, k) is a subgroup isomorphic to the quaternion group; there is no
other subgroup of H with order 8, hence Hg is normal in H;

(2) u has order 3 and satisies uin~! = j,uju~! =k, uku=! =i.

We claim that Hg can be conjugated by anelement g € G into (g1, g2). Moreover,

we have gHg™' = (g1, 82. 8182, ug) Where gig™' = g1, 8jg™" = g2, gkg™' =
8182, Ug = gug~!. One checks that the action by conjugation of ug and gz on
(g1, g2) is equal, therefore u, = g3A forsome A € Cg({g1, g2)), thatis A is a scalar
matrix. Since ugy € SLy(F,) by taking determinants we see that A = +1; A = —1
is impossible due to order considerations, thus u, = g3. This shows that we can
suppose the generators of H arei = g1, ] = g2,k = g1g2 and u = g3 as desired.

We now prove the claim by showing there is only one irreducible 2-dimensional
representation of Hg over F,. The maximal abelian quotient of Hg is the
Klein four group, so Hg has four 1-dimensional representations. Note that
8 = 12 4+ 12 4 12 + 12 + 22, Therefore, over F, (p # 2) there is only space
for one further irreducible representation which must be 2-dimensional. This is
also true over the field where the 2-dimensional representation is defined. Since
an injective representation of Hg into GL(IF p) must be irreducible we conclude
that up to isomorphism Hg >~ (g1, g2) <> G is the unique irreducible 2-dimensional
representation. [

Proof of Lemma 2. It can be easily checked that Aut(H) ~ Aut(SL2(F3)) ~ S4.
By Proposition 1 we can assume that H = (g1, g2, g3)-

From [9, Lemma A.3] we have Cg(H) = C(G). Now the action by conjugation
induces a canonical group homomorphism Ng(H) — Aut(H) with kernel Cg (H ),
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leading to an injection Ng(H)/C(G) — Aut(H) ~ S4. To see that this map is also
surjective (and hence an isomorphism), note that Ng ( H) contains the matrix

np = (1 _1) -
1 1
Since n1C(G) and g3 C(G) have respectively order 4 and 3, the group Ng(H)/C(G)
is isomorphic to a subgroup of S4 with order divisible by 12. It cannot be A4 (a
4-cycle is not in A4) so it must have order 24 and the first statement follows.
Note that A4 is the unique subgroup of S4 of index 2. The determinant induces a
homomorphism S; ~ Ng(H)/C(G) — F}, /IF’;Z whose kernel is either S4 or A4.

Since H C SL;(FF)), all matrices in C(G) have square determinant and det(r;) = 2
the result follows. O
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