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Groups acting on trees with almost prescribed local action

Adrien Le Boudec

Abstract. We investigate a family of groups acting on a regular tree, defined by prescribing
the local action almost everywhere. We study lattices in these groups and give examples of
compactly generated simple groups of finite asymptotic dimension (actually one) not containing
lattices. We also obtain examples of simple groups with simple lattices, and we prove the
existence of (infinitely many) finitely generated simple groups of asymptotic dimension one.
We also prove various properties of these groups, including the existence of a proper action on
a CAT(0) cube complex.

Mathematics Subject Classification (2010). 20E08, 20F65, 20E32, 22E40.

Keywords. Groups acting on trees, geometric group theory, simple groups.

1. Introduction

1.1. Local action prescribed almost everywhere. Let 2 be a set of cardinality
d >3 and 7; a regular tree of degree d. Recall that the group Aut(7;) of
automorphisms of 7, endowed with the permutation topology coming from the
action on the set of vertices, is a totally disconnected locally compact group.

Given a permutation group F < Sym(€2), the Burger-Mozes’ group U(F) is the
group of automorphisms of 7; whose local action around every vertex is prescribed
by F [10]. The definition of the groups investigated in this paper can be seen as a
relaxation of the definition of the groups U(F), in the sense that the local action is
prescribed almost everywhere only. More precisely, we let G(F) be the subgroup of
Aut(7;) consisting of automorphisms whose local action is prescribed by F for all
but finitely many vertices. The group G (F') was first considered by the authors of [2]
in the particular case when F = Alt($2).

The group U(F) is always closed in Aut(7;), while G(F') turns out to be dense
in Aut(7z) as soon as F acts transitively on Q2. Given a second permutation group
F’' < Sym(2) containing F, we consider the group G(F, F') = G(F) N U(F’)
consisting of automorphisms whose local action belongs to F’ for all vertices and
to F for all but finitely many of them. The group G(F, F’) always admits a natural
group topology, which is defined by requiring that the inclusion U(F) < G(F, F’)
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is continuous and open, where U(F) is endowed with the induced topology
from Aut(7;). This topology turns G(F, F’) into a compactly generated totally
disconnected locally compact group. The action of G(F, F’) on T; is continuous,
but not proper in general. The motivation for considering these groups is precisely
to eliminate the properness of the action on the tree, in order to build groups locally
isomorphic to U(F) but with a significantly different structure.

1.2. Simplicity. Recently the class S of compactly generated locally compact groups
that are totally disconnected, topologically simple and non-discrete, has received
much attention [14—16]. We refer the reader to the introduction of [16] for the
motivation and the most recent developments in the study of these groups. We prove
in Section 4 that the family of groups G(F, F') contains many examples of groups
that virtually belong to the class S. Note that, although the class of groups of tree
automorphisms was known to be a source of examples of groups in the class S,
see [16, Subsection 1.1], all the examples mentioned therein are closed subgroups of
the automorphism group of the tree, which is definitely not the case of G(F, F’).

Theorem 1.1. Let F < F' < Sym(f2) be permutation groups such that F is
transitive, and F' is generated by the derived subgroups of its point stabilizers
together with point stabilizers of F. Then G(F, F’) has a subgroup of index two that
is simple.

We point out that permutation groups satisfying these assumptions are abundant,
see Section 4 for examples.

For the sake of simplicity, the following result is not stated here in its more general
form, and we refer to Theorem 4.19 for a more comprehensive statement. We point
out that Theorem 1.2 had been previously obtained by Bader—Caprace—Gelander—
Mozes in the case F = Alt(£2) (unpublished). We thank them for communicating
their result.

Theorem 1.2. Let F < F' < Sym(2) be permutation groups such that:
(a) F has index two in F';
(b) F is transitive and generated by its point stabilizers.

Then G(F, F') has a subgroup of index eight that is simple.

1.3. Small finitely generated simple groups. The question whether the class of
finitely generated simple groups contains examples of groups having a “small”
geometry has recently received much attention. For example it has been proved that
the derived subgroup of the topological full group associated to a minimal subshift,
which is a finitely generated simple group [30], is amenable [28] (see also [29]).

Here we prove that the family of groups G (F, F’) provides examples of finitely
generated simple groups which are small from the point of view of asymptotic
dimension.
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Recall that infinite finitely generated simple groups of finite asymptotic dimension
are known to exist, as for instance it follows from the main result of [23] that the
finitely generated simple groups constructed in [12] have finite asymptotic dimension.
Finitely presented groups with these properties have moreover been constructed
in[11] and [17]. The following result provides the first examples of finitely generated
simple groups of asymptotic dimension one.

Theorem 1.3. Let F < F' < Sym(Q2) be permutation groups such that:
(a) F is simply transitive;
(b) F’ is generated by the derived subgroups of its point stabilizers.

Then G(F, F') has a subgroup of index two that is simple, finitely generated and of
asymptotic dimension one.

Moreover there exist infinitely many isomorphism classes of groups generated by
four elements and having these properties.

Theorem 1.3 is obtained by combining Theorem 1.1 together with Corollary 3.10,
Corollary 5.2 and Proposition 3.11 (see Example 4.15 for a family of examples
generated by four elements).

1.4. Lattices in simple groups. The study of lattices in locally compact groups is
of central interest, and experienced recent developments beyond the classical theory
of Lie and algebraic groups. Of particular interest is the case of simple groups, and
we refer to the introduction of [2] for the motivation. Up to now the only compactly
generated simple group without lattices that is known is the group AAut(7;) of
almost automorphisms of a regular tree [2]. This group has a very rich geometry,
and is also very large in the sense that it contains discrete Z" -subgroups for all n. In
particular AAut(7;) has infinite asymptotic dimension.

In Section 7 we study the existence of lattices in the groups G (F, F’). Recall that
it follows from Bass—Kulkarni’s theorem [6] that every closed compactly generated
unimodular G < Aut(7;) admits cocompact lattices. By investigating certain locally
elliptic groups which appear as union of infinitely iterated wreath products, we prove
that some of the groups G(F, F’) contain no lattice (see Corollary 7.7).

Theorem 1.4. There exist permutation groups F < F' < Sym(S2) such that
G(F, F’) does not contain lattices.

There are natural permutation groups satisfying Theorem 1.4, for example
F =PSL(2,q9) and F’ = PGL(2, q) acting on the projective line P!(F,), where
g = 1 mod 4. We refer to the end of Section 7 for more examples. Theorem 1.4
shows that Bass—Kulkarni’s theorem cannot be extended to a compactly generated
unimodular group G equipped with a continuous inclusion in Aut(7;). Combined
with other results of the paper, Theorem 1.4 also implies:

Corollary 1.5. Simple groups without lattices exist among compactly generated
groups of asymptotic dimension one.
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Nevertheless some of the groups G(F, F’) do have lattices. We actually prove
the following result, which shows that among compactly generated simple groups,
having lattices is not invariant by passing to a closed cocompact subgroup (so in
particular not invariant by quasi-isometry).

Theorem 1.6. There exist totally disconnected locally compact compactly generated
groups H < G such that:

(a) H is cocompact in G;
(b) H and G are abstractly simple;
(c) G contains lattices but H does not contain lattices.

Given a countable group I', the study of the envelopes of I', i.e. the groups that can
contain I' as a lattice, is very natural since lattices generally reflect the properties of
the ambient group. This problem is addressed in [24] for certain solvable groups, and
structure results of envelopes of a large class of countable groups have been announced
in [3]. Note that the groups G (F, F') that are finitely generated have infinite amenable
commensurated subgroups, and therefore do not satisfy the assumptions of [3].

Our study of the family of groups G (F, F’) provides examples of finitely generated
simple groups having non-discrete simple envelopes. As far as we know, the existence
of such groups is original.

Theorem 1.7. There exist non-discrete locally compact groups that are compactly
generated, abstractly simple, and having (cocompact) lattices that are simple.

1.5. Relative commensurators. If G is a profinite group, the group of abstract
commensurators of G consists of equivalence classes of isomorphisms between open
subgroups of G, where two isomorphisms are identified if they coincide on some
open subgroup. The idea of studying abstract commensurators of profinite groups was
initiated in [5], with the motivation to use them as a tool to study totally disconnected
locally compact groups.

In [13] the authors proved that when F is 2-transitive and every point stabilizer F,
in F is equal to its normalizer in Sym(£2), the group of abstract commensurators of
any compact open subgroup of U(F) is a certain group of almost automorphisms
AAutg, (T4 ») of the quasi-regular rooted tree 7 » (see Theorem C and Theorem 6.14
in [13]).

Given a profinite group G and a group L containing G, a relative commensurator
of G in L is an element of . whose conjugation induces an isomorphism between two
open subgroups of G. The group of relative commensurators of G in L is denoted
Commy, (G).

In Section 5 we give a second interpretation of the group G(F, F’) by investigating
the relative commensurator of a compact open subgroup K of U(F) in U(F’). We
prove that, although Commyg;(r(K) is not equal to G(F, F') in general, we have the
following result.
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Proposition 1.8. Let d > 3, and let F < F' < Sym(S2) be two permutation groups
such that F' stabilizes the orbits of F. Assume that for every a € Q, the point
stabilizer Fy is equal to its normalizer in F,. Then G(F, F') is equal to the group of
relative commensurators of any compact open subgroup of U(F) in U(F').

1.6. Proper action on a CAT(0) cube complex. When F is strictly contained
in F’, the action of G(F, F’) on T is continuous but not proper, and actually the
group G(F, F') cannot act continuously and properly on a tree (see Lemma 5.3). A
tree being nothing but a one dimensional CAT(0) cube complex, this naturally raises
the question whether G (F, F’) can act continuously and properly on a CAT(0) cube
complex. We answer this question in the positive in Section 6.

Theorem 1.9. Let d > 3, and let F < F' < Sym(2) be two permutation groups
such that F is transitive. Then the group G(F, F') admits a continuous and proper
action on a CAT(0) cube complex.

This result implies in particular that the group G(F, F') has the Haagerup
property. The action of G(F, F’) on this CAT(0) cube complex is not cocompact,
and actually the group G (F, F') cannot act properly and cocompactly on any CAT(0)
metric space (see Remark 6.13). This CAT(0) cube complex is not even finite
dimensional, and we show that the group G(F, F’) cannot act properly on a finite
dimensional CAT(0) cube complex.

Organization of the paper. In Section 2 we set some notation and terminology, and
we establish preliminary results on the groups G(F, F’) in Section 3. The question
of the virtual simplicity of G(F, F’) is addressed in Section 4, which contains
the proofs of Theorem 1.1 and Theorem 1.2. In Section 5 we investigate further
properties of the groups G(F, F'), among which the connections with groups of
relative commensurators. In Section 6 we give the proof of Theorem 1.9 by adopting
the point of view of commensurating actions. Finally Section 7 concerns the study of
lattices in the groups G(F, F'). We give a concrete criterion to detect the absence of
lattices in a locally compact group, and apply it to some locally elliptic groups (see
Theorem 7.6) and to the groups G(F, F’) (see Corollary 7.7).

Acknowledgements. I am very grateful to Yves de Cornulier for useful remarks
and valuable discussions concerning this work. I am also extremely grateful to the
authors of [2] for pointing out to my attention the idea of relaxing the local action, and
especially to Pierre-Emmanuel Caprace for several comments that largely improved
the contents of the paper. Finally I also thank the referee for his corrections and
helpful comments improving the exposition.
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2. Notation and terminology

2.1. Groups acting on trees. We will denote by 2 a set of cardinality 4 > 3 and
by 74 aregular tree of degree d. The vertex set of 7; will be denoted V(7;) and the
set of non-oriented edges will be denoted E(7;).

We fix once and for all a coloring ¢ : E(7;) — 2 such that for every vertex
v € V(T4), the map c restricts to a bijection ¢, from the set E(v) of edges containing v
to Q. We will refer to c(e) as the color of the edge e. For every g € Aut(7;) and
every v € V(7y), the automorphism g induces a bijection g, : E(v) — E(gv), which
gives rise to a permutation o (g, v) € Sym(Q2) defined by o(g,v) = cgp 0 gy o ¢ L.
The permutation o (g, v) will be called the local permutation of g at the vertex v.
These permutations satisfy the rules

o(gh,v) = o(g, hv)o(h,v) and o(g ', v) =o(g, g v) ! (2.1)

for every g, h € Aut(7;) and v € V(7).

We easily see that an automorphism g € Aut(7;) is uniquely determined by the
image of some vertex together with the collection of permutations o (g, v), where
v € V(7). Note that given 0 € Sym(£2), there always exists g € Aut(7;) such that
all the local permutations of g are equal to o, and moreover g may be chosen to be
hyperbolic. This observation will be used repeatedly in the paper.

A vertex v of a subtree T of 7 is called a leaf of T if v has exactly one neighbour
in 7', and otherwise v is called an internal vertex of T. A subtree T of 7  is said to
be complete if for every internal vertex v, all the neighbours of v in 7; belong to 7'.

For every vertex v and every n > 0, we will denote by B(v, n) the subtree of 7
spanned by vertices at distance at most #» from v. Note that B(v, n) is a complete
subtree as soon as n > 1.

For every subtree T of 7; and every group G acting on 74, we denote by Gr
the pointwise stabilizer of 7" in G. For example if 7 = e is a single edge, then G,
is the subgroup of G fixing both vertices of e. The subgroup of G generated by the
subgroups G, where e ranges over the set of edges of 7, will be denoted G . Note
that G is a normal subgroup of G, and if G is endowed with the topology induced
from Aut(7y), then Gt is open in G.

Recall that the set of vertices V(7;) admits a natural bipartition, in which two
vertices belong to the same block if they are at even distance. The subgroup of G
(of index at most two) preserving this bipartition will be called the type-preserving
subgroup of G and will be denoted G*. Note that the subgroup of G generated by
its vertex stabilizers lies inside G*, so a fortiori G T is also included in G*.

From now and for all the paper we fix an edge eg € E(7;), whose vertices will
be denoted vy and vy.



Vol. 91 (2016) Groups acting on trees with almost prescribed local action 259

2.2. Permutation groups. Every partition of £2 gives rise to a subgroup of Sym(£2)
consisting of permutations of €2 stabilizing each block of the partition. Such a
subgroup is called a Young subgroup of Sym(€2), and is naturally isomorphic to the
direct product of the symmetric groups on each block of the partition. In particular
when F < Sym(€2) is a permutation group, we can consider the Young subgroup
F < Sym(£2) associated to the partition of 2 into F-orbits. Note that we always
have F < F,and F = Sym(€2) if and only if the permutation group F is transitive.

Given a permutation group F < Sym(€2) and a € €2, the stabilizer of ¢ in F' will
be denoted F,. The (normal) subgroup of F' generated by its point stabilizers will
be denoted F ™.

3. Preliminaries

3.1. Definitions. Letus fix a permutation group F < Sym(£2). The Burger—Mozes’
group U(F) is defined as the subgroup of automorphisms of 7; whose local action
is prescribed by F [10], that is

UF)={gecAut(Ty) : o(g,v) € F forallv € V(73)}.

It is a closed subgroup of Aut(7,), which is discrete if and only if the permutation
group F acts freely on Q. Clearly U(F) is a subgroup of U(F’) when F < F’.
Combined with the fact that the group U({1}) acts transitively on the set V(7;), this
observation implies that U(F') is always vertex-transitive.

The definition of the groups under consideration in this paper can be seen as a
relaxation of the definition of the groups U(F), in the sense that the local action is
prescribed almost everywhere only. More precisely, we let

G(F)={g € Aut(7Ty) : o(g,v) € F for all but finitely many v € V(7;)}.

It readily follows from the multiplication rules (2.1) that G(F') is a subgroup of
Aut(7y), and of course one has U(F) < G(F).

Definition 3.1. Given g € G(F), we say that a vertex v is a singularity of g if
o(g,v) ¢ F. The set of singularities of g will be denoted S(g).

For every g € G(F), we let T'(g) be the 1-neighbourhood of the subtree of 7y
spanned by S(g). Equivalently, 7'(g) can be defined as the unique minimal complete

subtree of 7; such that (g, v) € F forevery v € V(7;) that is not an internal vertex
of T(g).

Lemma 3.2. Let g € G(F), and denote by T = T(g), Ur = U(F)r and Ug(1y =
U(F)g(r)- Then one has gUrg™" = Uy (r).
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Proof. Observing that g(T) = T(g~!), by symmetry it is enough to prove that
gUrg™' C Ug(ry. The fact that gUrg ™! fixes pointwise g(7) is easy, so the only
thing that needs to be checked is that gUrg ™! lies in U(F). So let u € Ur and
v € V(74). According to (2.1), one has

o(gug™,v) = o(g,ug”'v)o(u, g 'v)o(g, g 'v)™". 3.1)

As observed previously, the element gug™! fixes pointwise g(T'), so we only have
to deal with the case when v is not an internal vertex of g(7T'), i.e. when g~ 1(v)
is not an internal vertex of 7. This implies that ug~!(v) is not an internal vertex
of T either, and by definition of 7 we deduce that (g, g~ 'v) and o (g, ug~'v) both
belong to F. Now o (u, g~ 'v) belongs to F as well since u € U(F), so it follows
from (3.1) that o (gug=—',v) € F. O

Lemma 3.2 implies in particular that G(F) commensurates the compact open
subgroups of U(F), and it follows (see for instance [8, Chapter 3]) that there exists a
group topology on G (F) such that the inclusion of U(F) in G(F) is continuous and
open. In particular the group G(F) is a totally disconnected locally compact group,
which is discrete if and only if F acts freely on 2. We point out that in general G(F)
need not be closed in Aut(74) (see Proposition 3.5), and the topology on G(F) is
not the topology induced from Aut(7;).

Let v € V(7;) being fixed. For every n > 0, we denote by K, (v) the set of
automorphisms g € G(F) fixing the vertex v and having all their singularities in
B(v,n). Again, it follows from (2.1) that K, (v) is a subgroup of G(F’). Note that
the stabilizer of the vertex v in G(F') is exactly the increasing union

A
G(F)y, = U Ky (v).

n=>0

Since the ball B(v,n) contains finitely many vertices, each K,(v) contains the
stabilizer of the vertex v in U(F) as a finite index subgroup. The latter being
compact open, K,(v) is a compact open subgroup of G(F). Therefore G(F), is
a locally elliptic open subgroup of G(F), i.e. an increasing union of compact open
subgroups.

3.2. Preliminary results. The following result shows that, although elements
of G(F) are not required to act locally like F' everywhere, their local action exhibits
some rigidity.

Lemma 3.3. For every g € G(F) and every vertex v € V(7 ), the permutation
o (g, v) stabilizes the orbits of F in Q. In other words, the group G(F) is contained
in U(F).
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Proof. For a given g € G(F), we consider the set V, of vertices for which the
conclusion does not hold. We want to prove that V, is empty. The key observation
is that if v belongs to Vg, then v must have at least two neighbours that also belong
to Vg. It follows that if Vg is not empty, then it must contain an infinite subtree,
which is impossible by definition of G(F). O

For every permutation group F' < Sym({2) such that F < F' < F, we denote
by G(F, F') the subgroup of G(F') consisting of elements g € G(F) such that
o(g,v) € F' for all v € V(Ty), ie. G(F,F') = G(F) N U(F'). This is the
subgroup of G(F) consisting of elements having all their singularities in F’. Clearly
we have G(F, F') < G(F,F") assoonas F' < F”, and G(F, F) = U(F) and
G(F, F ) = G(F). Therefore the family of subgroups G(F, F') < G(F) interpolates
between U(F) and G(F) when F’ ranges over subgroups of F containing F'. Note
that G(F, F’) is always an open subgroup of G (F), and when referring to a topology
on G(F, F') we will always mean the induced topology from G(F).

From now and for all the paper, we denote by I, F ' < Sym(2) two permutation
groups such that F < F' < F.

In some sense, the following result can be seen as a converse of Lemma 3.3.

Lemma 3.4. Letv € V(Tz) andn > 0. If h € Aut(Ty) is such that o (h, w) € F' for
every vertex w in B(v, n), then there exists g € G(F, F') such that g and h coincide
on B(v,n + 1) and o(g, w) € F for every vertex w that is not in B(v, n).

Proof. We denote by S(v, n) the set of vertices which are at distance exactly n from
the vertex v. For every x € S(v,n), we denote by V5 the set of vertices w such that
the unique path between v and w contains the vertex x.

Since the group U( F) acts transitively on the set of vertices of 7, we may assume
that / fixes the vertex v. So we impose that g fixes v as well, and therefore giving
the value of o (g, w) for every vertex w is enough to define the element g. Naturally
we put 0 (g, w) = o(h, w) for every vertex w in B(v,n). This implies that g and A
coincide on B(v,n + 1), and we must explain how to extend the definition of g to an
element of G(F, F').

For every x € S(v,n) and every a € Q, we choose 0, € F such that
o (h,x)(a) =04 x(a). Note that such an element 0, _, exists because o (h, x) € F’ < F.
Now for every vertex w € Vy different from x, we set 0 (g, w) = 04 (w),x» Where a(w)
is the color of the unique edge emanating from x and separating x and w. By
construction the definition of the element g is consistent, and g € G(F, F’) because

S(g) C B(v,n). O

Recalling that a basis of neighbourhoods for the topology on the group Aut(7;)
is given by pointwise stabilizers of finite sets, we immediately deduce the following
result.
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Proposition 3.5. The closure of G(F, F') in the topological group Aut(T;) is the
group U(F').

In particular when F' = Sym(S2), the group G(F) is dense in Aut(T;) if and
only if the permutation group F is transitive.

We derive the following result, which says in particular that the action of G(F, F')
on 7y is never proper when F is strictly contained in F’.

Corollary 3.6. The following statements are equivalent:
(@ F=F'y
(ii) G(F,F") = U(F);
(iii) G(F, F') is a closed subgroup of Aut(Ty);

(iv) vertex stabilizers G(F, F'), are compact.

Proof. The implications (i) = (ii) = (iii) = (iv) are trivial.

(iv) = (iii) follows from a general argument: since G(F, F’) is locally compact
and its action on 7 is continuous and proper, the subgroup G(F, F’) must be closed
in Aut(7y).

(iii) = (i). Since G(F, F’) is closed, according to Proposition 3.5 the group
G(F, F'") must contain U(F’), and this easily implies that F = F”. O

3.3. Generators. For every n > 0 and every vertex v € V(7;), we denote by
K, rr(v) the intersection between K,(v) and G(F, F’). This is the open subgroup
of G(F, F’) consisting of elements fixing v and having all their singularities in the
ball or radius n around v.

Proposition 3.7. Let k > 0 and g € G(F, F') with at most k singularities. Then
there exist vertices vy, ..., vk € V(Tg) and elements y € U(F) and g; € Ko r'(v;)
such that g = yg1 -+ gk.

In particular the group G(F, F') is generated by U(F) together with Ko r’(vo).

Proof. We argue by induction on the number k. The result is clear when & = 0
by definition. Now let g € G(F, F’) having at most k + 1 singularities, and let
v € S(g). Since the group U(F) is transitive on the set of vertices, there exists
y1 € U(F) such that g’ = y;g fixes v. Note that since y; € U(F), for every
vertex w we have o (g, w) ¢ F ifand onlyif o(g’, w) ¢ F. According to Lemma 3.4
applied with n = 0, there exists g, € Ko r’(v) acting like g’ on the star around the
vertex v. Let g’ = g'g;! = y1gg,!. By construction g” fixes the star around v,
and the singularities of g” are exactly the vertices g,(w) where w a singularity
of g’ different from v. Therefore g” has at most k singularities, so by the induction
hypothesis there exist vy, ..., v € V(Tg) and y» € U(F), gy, € Ko,r/(vi), such
that g = Y28y, * - &v» Which can be rewritten g = (y7'y2)gv, - Qv, go-

Since the group U(F) is vertex-transitive, the subgroup of G(F, F') generated
by U(F) and Ky, r’(vo) contains all the subgroups Ko, r/(v), for v € V(7). Since
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all these subgroups together with U(F) generate the group G(F, F') according to
the previous paragraph, this proves the second statement. L

Since the group U(F) is always compactly generated and Ko r(vo) is compact,
we deduce the following.

Corollary 3.8. The group G(F, F’) is compactly generated. In particular when F
acts freely on 2, the group G(F, F') is finitely generated.

Remark 3.9. Since the group U(F) is unimodular and open in G(F, F'), the modular
function A of G(F, F') must vanish on U(F). Moreover by continuity A vanishes
on any compact subgroup as well. Since G(F, F’) is generated by U(F) and some
compact open subgroup, the group G(F, F’) is always unimodular.

We end this paragraph by giving a particular compact generating subset when the
permutation group F is assumed to be transitive.

Corollary 3.10. Assume that F is transitive. Then G(F, F’)* is generated by
Ko, (vo) and Ko,r’(v1).

Proof. Write S = Ky r/(vo) U Ko, r/(v1). Since F is transitive, the group U(F)*
is generated by U(F)y, U U(F)y,, and therefore U(F)* lies inside the subgroup
generated by S. So by conjugating the two subgroups K¢, r/(vo) and Ko r/(v;) one
may obtain Ko g/(v) in (S) for every v € V(7;), and we conclude the corollary
thanks to Proposition 3.7. O

We derive from Corollary 3.10 the following result.

Proposition 3.11. Assume that F acts simply transitively on Q2. Assume also that
k < d is such that any action of F’ on a set of cardinality k is trivial. Then any
morphism ¢ : G(F, F')* — Aut(Ty) is trivial.

Proof. We fix v € V(7z), and we let K = Ko r/(v). The map K — F/,
g+ o(g,v), is a group morphism by (2.1), which is onto according to Lemma 3.4.
Moreover it is also injective since F acts freely on €2, so that the subgroup K is
isomorphic to F’. The assumption on the group F’ implies that it does not have any
subgroup of index two, and therefore the image ¢(K), which is a finite subgroup of
Aut(7), must fix a vertex w of 7. The action of ¢ (K) on the set of edges around w
yields an action of F’ on a set of cardinality k, which must be trivial by assumption.
Therefore ¢(K) actually fixes the star around w, and it follows that ¢(K) has to be
trivial.

Now since the action of F on 2 is transitive, by Corollary 3.10 the group
G(F, F')* is generated by Ko r/(vo) and Ko p/(v1). According to the previous
paragraph both must be sent by ¢ to the identity, and it follows that ¢ is trivial. ]
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4. Simplicity

Recall that Tits introduced in [35] a simplicity criterion for groups acting on trees,
usually referred to as Tits’ independence property (P). The groups G(F, F’) do not
satisfy Tits’ independence property (P), but rather a weaker independence property
that we will call the edge-independence property. Following the same strategy as in
the proof of Tits’ theorem, we establish in the following paragraph a simplicity result
based on the edge-independence property (see Corollary 4.6). The second part of
this section will be devoted to the application to the groups G(F, F").

4.1. A simplicity criterion. Recall that if 7 is a simplicial tree, we say that the
action of a group G on T is minimal if G does not stabilize any proper subtree of 7'.
If 7' is a subtree of 7', we denote by G7- the pointwise stabilizer of 7’ in G. We also
let G be the subgroup of G generated by the set of subgroups G, where e ranges
over the set of edges of 7.

If e is an edge of 7" and v a vertex of e, we denote by 7,(v) the subtree of T
spanned by vertices whose closest point projection on the edge e is the vertex v. A
subtree T’ of T is called a half-tree if T’ = T,(v) for some edge e and vertex v.

The main result of [35] says that if G satisfies Tits’ independence property (P) (a
definition of which can be found in [35]) and acts minimally on 7" without fixing any
end of T, then the group G T is simple as soon as it is not trivial. This remarkable
result has been extensively used to establish simplicity of various groups. For example
the group U(F)™ is simple as soon as the permutation group F does not act freely
on 2.

The goal of this paragraph is to prove a simplicity criterion, namely Corollary 4.6,
by weakening the assumption that the group satisfies Tits’ independence property (P).
Our motivation comes from the fact that the groups G(F, F’) do not satisfy Tits’
independence property (P) as soon as F is a proper subgroup of F’.

Let G < Aut(T). Given an edge e of T, we denote by T’ and T” the two
half-trees separated by e. The group G, induces permutation groups G, and G, on
the set of vertices of 7/ and T, so that we have a natural injective homomorphism
@e : Ge > G, x G,.

Definition 4.1. We say that a group G < Aut(7) satisfies the edge-independence
property if @, is an isomorphism for every choice of e.

This means that for every edge e, the pointwise stabilizer of e in G acts
independently on the two half-trees emanating from e. The edge-independence
property already appeared in [1,4] (it is called “independence property” in [1] and
“property I P, in [4]), and is strictly weaker than Tits’ independence property (P).
However, one can check that these are equivalent for closed subgroups of Aut(7")
(see for instance [1, Lemma 10]). Note that when G satisfies the edge-independence
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property, the subgroup G 1 is also the subgroup generated by pointwise stabilizers of
half-trees in G.

The following two lemmas are standard. Recall that the action of a group G on T
is said to be of general type if there exist in G hyperbolic isometries without common
endpoints, or equivalently if G does not have any finite orbit in 7 U 97".

Lemma 4.2. Let H be a non-trivial subgroup of Aut(T), and G < Au(T) a

subgroup normalizing H. If the action of G on T is minimal and of general type,
then the same holds for H.

Proof. Since the set of fixed vertices of H in T is G-invariant, if it is non-empty then
by minimality of the action of G it must be the entire 7", which is a contradiction with
H # 1. For the same reason, we see that H does not stabilize an edge, and H cannot
stabilize line because this would contradict the existence of independent hyperbolic
elements in G. Moreover if H has a unique fixed boundary point, then this is also a
fixed point for G, which is again a contradiction. So it follows that the action of H
on T must be of general type. In particular H contains hyperbolic isometries, and
it follows that A admits a unique invariant minimal subtree 7. By uniqueness, 7’
must be G-invariant, so by minimality of the action of G we musthave 7/ = T. [

Lemma 4.3. Let G be a subgroup of Aut(T') whose action on T is minimal and of
general type. Given any half-tree T' C T, there exists a hyperbolic element in G
whose axis is contained in T

Proof. Let X be the set of hyperbolic elements of G. First remark that there exists
x € X having an endpoint in d7’. Indeed, otherwise we would have a G-invariant
subtree (namely the union of the axes of the elements of X)) contained in the
complement of 7’, which is a contradiction with the fact that G acts minimally
on T'. Now the conclusion follows from the fact that if y € X does not have any
endpoint in common with x, then there exists some integer k € Z such that the axis
of x*¥yx~¥ is contained in 7. O

The following result plays an essential role in the proof of Theorem 4.5. In the
proof we make use of the classical idea of using double commutators, which appears
for example in [26, Theorem 4].

Lemmad4.4. Let G be asubgroup of Aut(T"), and N a subgroup of Aut(T') normalized
by G. Let T' be a half-tree in T. Assume that N contains a hyperbolic element
whose axis is contained in T'. Then N contains the derived subgroup of Gr.

Proof. Let y € N be a hyperbolic element whose axis is contained in 7’. We let e
be the edge of T and v the vertex of T such that 7" is the half-tree emanating from e
containing v. We denote by w the projection of the vertex v on the axis of y. We
denote by L the maximal subtree of T containing w but not its neighbours on the
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axis of y. By construction the subtrees L and y(L) are disjoint, and y*1(L) C T".
This implies that for every g € G7v, the element [g, y] = gyg~'y~! € N acts like g
on L, like yg~—!'y~! on y(L), and is the identity elsewhere. It follows that for every
h € Gr/, the element [[g, y], 4] (which remains in N) acts like [g, #] on L and is the
identity elsewhere, and therefore this element is equal to [g, A]. L

Theorem 4.5. Suppose that G < Aut(T') acts minimally on T and does not fix any
end. If N is a non-trivial subgroup of Aut(T) normalized by G™, then N contains
the derived subgroup of Gt for every half-tree T'.

Proof. We may assume that G* is non-trivial, which implies in particular that T
is neither a point nor a line. By assumption G acts minimally on 7" and does not
fix any end, so it follows that G is of general type. Thanks to Lemma 4.2 applied
successively to G and N, we deduce that the action of N on T is minimal and of
general type. Therefore we are in position to apply Lemma 4.3, which ensures the
existence of a hyperbolic element of N whose axis is contained in 7’. The fact that
the derived subgroup of G7- is contained in N then follows from Lemma 4.4. [

The difference between the following result and Tits’ theorem [35] is that the
independence assumption is strictly weaker here. This is counterbalanced by the
fact that we impose a condition on pointwise stabilizers of edges in order to obtain
simplicity of GT.

Corollary 4.6. Let G be a subgroup of Aut(T) such that:
(a) G acts minimally on T and does not fix any end of T';
(b) G satisfies the edge-independence property.

Assume that N is a non-trivial subgroup of Aut(T) normalized by G*. Then N
contains (G, G| for every edge e.
In particular if all G, are perfect groups, then G is simple (or trivial).

Proof. We denote by T’ and T” the two half-trees emanating from the edge e. It
follows from the assumption that G satisfies the edge-independence property that G,
is equal to the product of the subgroups Gz and G, so that [G,, G.] is the product
of the derived subgroups of G and Gr~». Now according to Theorem 4.5, the
derived subgroups of Gr/ and G~ are contained in N, so it follows that [G,, G.] is
also contained in N. This proves the statement. O

4.2. Application to the groups G(F, F’). In this subsection, we isolate sufficient
conditions on F < F’ so that the group G(F, F’) has a simple subgroup of finite
index.

Remark that the group G (F, F") always satisfies the assumptions of Corollary 4.6,
so that by applying directly the second statement in Corollary 4.6 we deduce that
G(F, F')T is simple as soon as all the G(F, F'), are perfect and non-trivial.
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However by refining the argument rather than applying directly the second statement
in Corollary 4.6, we will establish simplicity results under much more general
assumptions, namely Theorem 4.13 and Theorem 4.19.

Recall that for G < Aut(7y), we denote by G* the subgroup (of index at most two)
of G preserving the natural bipartition of the set of vertices. Clearly G* contains G
as a normal subgroup.

The following proposition characterizes permutation groups F, F’ for which
G(F,F")* = G(F, F')*. Note that this result implies that if the group G(F, F’)
is virtually simple, then F and F’ must satisfy the condition (iii). In the case of
the group G(F), i.e. when F’ = Sym(f2), this condition becomes that F must be
transitive (note the difference with the group U(F) [10, Proposition 3.2.1]).

Proposition 4.7. The following conditions are equivalent:
(i) G(F, F")" has index two in G(F, F’), that is G(F, F')* = G(F, F')*;
(ii) G(F, F")" has finite index in G(F, F');

(iii) F is transitive and F’ is generated by its points stabilizers.

Proof. (ii) = (iii). We let €21,..., 2, be the orbits of F in 2. For every a € 2,
we let w(a) be the unique integer such that a € €,,(,). We identify the tree 7; with
the Cayley graph of I = (xa, aeQ|x2= 1). Let us consider the quotient ' of I
defined by adding the relation x, = x; when w(a) = w(b). The Cayley graph Tx
of I'r is a regular tree of degree r, and we have a natural projection pr : 75 — TF.

Let g € G(F, F’) fixing some vertex, and let v, v’ € V(7;) such that v’ = g(v).
Since g fixes a vertex, the distance between v and v’ must be even. Let us consider
the unique path from v to v’, whose sequence of colors of edges is denoted by
(ai,...,azy). Since the element g fixes a vertex and stabilizes the orbits of F' on
the set of edges, the sequence w(a,), ..., w(azy,) is palindromic, which implies that
the vertices v and v’ have the same image by the projection pg. In other words, any
g € G(F, F’) fixing some vertex must stabilize the fibers of vertices of the map pr,
and a fortiori the same holds for the group G(F, F')*. Now if r # 1 then the tree Tf
is infinite. Therefore G(F, F')* must have infinitely many orbits of vertices in 7,
which prevents G(F, F')* from being of finite index in G(F, F’).

Now we want to prove that F’ is generated by its point stabilizers, or equivalently
that F'T is transitive on 2. We carry out the same construction as in the previous
paragraph by replacing F-orbits by F'*-orbits. Since any element of G(F, F’)™ has
all its local permutations in F’*, the group G(F, F’)™ must stabilize the fibers of
the projection, and the conclusion follows by the same argument.

(iii) = (i). The fact that F’ is transitive and generated by its point stabilizers
implies that for every vertex v € V(7y), the group G(F, F’)}\ is transitive on the
set of edges around v. We easily deduce that G(F, F’)" is transitive on the set of
non-oriented edges of 7, and therefore has index two in G(F, F'). O
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We denote by N(F, F’) the subgroup of G(F, F’)* generated by the derived
subgroups of pointwise stabilizers of edges, that is

N(F, F') = ([G(F, F')e. G(F, F).]),

where e ranges over E(7;). Clearly N(F, F’) is normal in G(F, F’). Note that
when F’ acts freely on €2, all the G(F, F'), are trivial, so that N(F, F’) is trivial as
well.

Lemmad.8. Lete € E(7;), andlet T' be one of the two half-trees defined by e. Write
a = c(e), and assume that the point stabilizer F, is non-trivial. Then G(F, F')r/ is
not solvable.

Proof. We write H = G(F, F')7, and we prove that H contains a copy of itself in
its derived subgroup. Combined with the fact that H is non-trivial, this implies the
statement.

We let v be the vertex of e not contained in 77, and we consider the vertex w
at distance two from v and such that the unique path (e’, e”) between v and w is
colored (b, a). If we denote by T” the half-tree defined by e¢” and not containing w,
then K = G(F, F')r» is conjugate to H inside G(F, F’), so in particular K is
isomorphic to H.

We let 0 € F’ such that o(a) = a and o(b) # b, and we fix an element h € H
such that o(h,v) = o. If we denote by X the half-tree facing 7", then the half-
trees X and h(X) are disjoint by construction. For every g € K, we consider the
element [g, h] = g(hg~'h™'). Since g is supported in X, we easily see that [g, /]
is supported in X U A(X), and that [g, k] is equal to g on X and [g, A] is equal to
hg='h~! on h(X). In particular it follows that the map ¢y, : K — G(F, F’), defined
by g > [g, A, is an injective group morphism. Since K lies in H, the image of ¢y, is
clearly contained in the derived subgroup of H. Therefore the derived subgroup of H
contains a copy of H, and combined with the fact that H is non-trivial (for instance
because A is a non-trivial element of H), this shows that H cannot be solvable. [

We derive from Corollary 4.6 the following structure result for normal subgroups
of G(F, F")™.

Corollary 4.9. Assume that the action of F' on Q is not free. Then the following
hold:

(a) N(F, F'") is equal to the intersection of all non-trivial normal subgroups of
G(F,F)*;

(b) N(F,F') is a simple group;

(c) U(F)* < N(F, F"), so in particular N(F, F') is open in G(F, F’).

Proof. (a) Since the group G(F, F’) satisfies the assumptions of Corollary 4.6, we
deduce that the intersection of all non-trivial normal subgroup of G(F, F’)™ contains
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N(F, F'"). To see that the converse inclusion also holds, remark that N(F, F’) is
itself a non-trivial (normal) subgroup according to Lemma 4.8.

(b) Let us consider the intersection M of all non-trivial normal subgroups
of N(F, F"). We shall prove that M = N(F, F'). First observe that M is a
characteristic subgroup of N(F, F’). The latter being normal in G(F, F')™, the
subgroup M is a normal subgroup of G(F, F’)*. So if we prove that M is non-
trivial, then M must contain N(F, F’) according to statement (a), and we will have
M = N(F, F').

Let T’ be a half-tree in 7, and N a non-trivial normal subgroup of N(F, F’).
Since N(F, F') is non-trivial, it follows from Lemma 4.2 that the action of N(F, F')
on 7, is minimal and of general type. Therefore we may apply Theorem 4.5, which
shows that N contains the derived subgroup of N(F, F')r/. By Lemma 4.8 the latter
is non-trivial, so in particular the subgroup M is non-trivial.

(c) We may clearly assume that U(F)* is non-trivial, i.e. that F does not act
freely on Q. Thanks to Lemma 4.8 applied with F = F’, we see that fixators of half-
trees in U(F) are not abelian. In particular, by definition of the subgroup N(F, F’),
we deduce that U(F)* and N(F, F’) must intersect non-trivially. Since the group
U(F)™ is simple by Tits’ theorem [35], we must have U(F)* < N(F, F'). O

When F’ does not act freely on €, Corollary 4.9 says in particular that
G(F, F)™ admits a unique minimal non-trivial normal subgroup, which is open
in G(F, F')*. In particular any non-trivial normal subgroup of G(F, F')* is open,
which immediately implies the following result.

Corollary 4.10. The group G(F, F")" is topologically simple if and only if it is
abstractly simple.

4.2.1. First theorem. Given a permutation group H < Sym(S2), and a subset
Sa C H, for every a € Q, we will denote by (S,) the subgroup of H generated by
the S,, where a is implicitly assumed to range over 2. For example ([H,, H,]) is
the subgroup of H generated by the derived subgroups of point stabilizers in H .

Lemma 4.11. Assume that p belongs to ([F,, F]]), and let v € V(T;). Then there
exists y € N(F, F')y such that o (y,v) = p and (y, w) € F for every w # v.

Proof. By assumption the permutation p can be written p = [][ot, Br], Where
for every k the elements ok, Bx € F’ fix a common point a; € Q2. According to
Lemma 3.4 applied with n = 0, for every k one can find elements g, hy € G(F, F'),
such that 0 (gx,v) = o, and o (hg,v) = Bk, and o (gg, w), o (hr, w) € F for every
w # v. Lety = [][gk,hx]. By construction y fixes the vertex v and one has
o(y,v) = [[lak, Bx] = p and o(y, w) € F for every w # v. Moreover for every k,
the elements gy, hy fix the edge emanating from v and having color ag. It follows
that each [gg, hx] belongs to N(F, F'), and consequently y € N(F, F'). O
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Note that since ([F,,, F,]) is normal in F’, the subgroup ([F,, F,] U F,) of F’
generated by the derived subgroups of its point stabilizers together with point
stabilizers in F is equal to ([F), F]]) F .

Proposition 4.12. Assume that F is transitive and that F is contained in
([F., F)1U F,) = ([F}, F)]) F*. Then N(F, F') contains U(F)*.

Proof. Observe that since F is transitive, the group U(F)* is generated by vertex
stabilizers in U(F), so it is enough to prove that U(F), lies in N(F, F’) for every
v e V(Ty).

Let g € U(F),, and consider the permutation o (g, v). By assumption one can
write 0(g,v) = oo’ with o € ([F,, F]]) and ¢’ € FT. Applying Lemma 4.11 to
the permutation 0 ~!, we see that there exists y; € N(F, F’) such that y; g remains
in U(F) and o(y1g,v) = ¢’ € FT. Therefore one can find y, € U(F)* such
that y,>y1 g acts trivially on the star around v, and in particular y,y; g is contained
in U(F)*. Now by Corollary 4.9, the group U(F)™ is contained in N(F, F'), so
211 € N(F, F') and consequently g € N(F, F'). O

We now prove the main result of this paragraph. Note that by Proposition 4.7,
for the group G(F, F’)* to be simple, it is necessary that F is transitive and that F’
is generated by its point stabilizers. To ensure that G(F, F’)* is simple, we slightly
strengthen the second assumption by requiring that F’ is generated by the derived
subgroups of its point stabilizers together with point stabilizers of F.

Theorem 4.13. Ler F < F' < Sym(Q) be permutation groups such that F
is transitive, and F' = ([F], F)1U F,). Then the type-preserving subgroup of
G(F, F') is simple.

Proof. First note that the assumption on F’ implies that F’ is generated by its point
stabilizers, so that G(F, F')* is equal to G(F, F’)* according to Proposition 4.7.
Now by Corollary 4.9, the group G(F, F’)™ is simple if and only if N(F, F') =
G(F, F')*. Sowelet g beanelementof G(F, F’)*,and we provethatg € N(F, F’).

Argue by induction on the cardinality of S(g). Assume first that S(g) is empty,
i.e.g € U(F)*. Since ([F,, F)] U F,) contains F, by Proposition 4.12 the subgroup
N(F, F') contains U(F)*, and therefore g € N(F, F’). Now assume that S(g)
has cardinality » + 1 > 1, and let v € S(g). According to the assumption
F' = ([F,, F]1U F,), there exists p € ([F, F,]) such that pa (g, v) belongs to F.
Therefore applying Lemma 4.11 to the vertex g(v) and to the permutation p, we
obtain an element y € N(F, F’) such that S(yg) has cardinality at most n. By
induction yg € N(F, F'), and finally g € N(F, F'). O

We point out that the class of permutation groups F, F’ satisfying the assumptions
of Theorem 4.13 is very large. For example it is enough to have F’ generated
by the derived subgroups of its point stabilizers. Examples of such permutation
groups are given by Alt(d) for d > 5, or PSL(2,g) acting on the projective



Vol. 91 (2016) Groups acting on trees with almost prescribed local action 271

line P!(FF,) for any prime power ¢ # 2,3. A fortiori it is enough to take for F’
any 2-transitive permutation group with perfect stabilizers (for example simple non-
abelian). Examples of such permutation groups can be found in [10, Example 3.3.1],
and we refer the reader to [22] for a list of finite 2-transitive permutation groups.

When d = 4, one may check that the only examples of F < F’ < Sym(4)
satisfying the assumptions of Theorem 4.13 are ' = D4 the dihedral group, and
F' = Sym(4).

When specializing to discrete groups, i.e. when the permutation group F is
moreover assumed to act freely on €2, we obtain the following result. Note that the
assumption implies in particular that F'’ is a perfect group.

Corollary 4.14. Let FF < Sym(S2) be a permutation group whose action on 2 is
simply transitive. Assume that F’ is generated by the derived subgroups of its point
stabilizers. Then the type-preserving subgroup of G(F, F') is a simple group.

Example 4.15. When d > 5 and F’ = Alt(d), a simply transitive subgroup F is
for instance given by a cycle of length d if d is odd. If d = 4n, one can choose
for F the abelian subgroup generated by (1,...,2n)(2n + 1,...,4n) together with
[T72,G.2n + ).

Note that since Alt(d) is two-generated, Corollary 3.10 yields finite generating
subsets for the groups G(F, F’)* from Example 4.15 consisting of four elements.
Note also that since Alt(d) satisfies the assumption of Proposition 3.11 with
k = d — 1, all these examples G(F, F') are pairwise non-isomorphic when d varies.

4.2.2. Second theorem. We begin this paragraph by focusing on the particular case
when the permutation group F has index two in F’. Under this assumption, we
identify a certain canonical subgroup of index eight in G(F, F"').

Recall that eg € E(7;) is a fixed edge whose vertices are denoted vg and v;. We
will denote by V (resp. V1) the set of vertices at even distance from vg (resp. vq). For
g € G(F,F')andi € {0, 1}, we denote by S;(g) the intersection of S(g) with V;.
Clearly S(g) = So(g) L S1(g).

The following lemma identifies the set of singularities of the product of two
elements in G(F, F')*.

Lemma 4.16. Assume that (F' : F) = 2, and let i € {0,1}. Then S;(gh) =
Si (W) Ah™'S;(g) for every g, h € G(F, F')*.

Proof. The inclusions
Si(h)ART'Si(g) C Si(gh) C Si(h) UR™'Si(2)

are always satisfied, and follow from (2.1) together with the fact that g and / preserve
the set V;. To prove the statement, we shall prove that if a vertex v belongs to
both S;(h) and A~1S;(g), then it is not a singularity of gh. Since v € S;(h) and
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h(v) € Si(g), then a(gh,v) = o(g,hv)o(h,v) is the product of two elements of
F’\ F, and therefore belongs to F because F has index two in F'. Sov ¢ S;(gh),
and the statement is proved. 0

We are grateful to Nicolas Radu for correcting an earlier version of the argument
here.

Proposition 4.17. Assume that (F' : F) =2, and leti € {0,1}. Then
Gi(F,F')={g € G(F,F')* : Si(g) has even cardinality}
is a subgroup of index two in G(F, F')*.

Proof. It follows from Lemma 4.16 that for every g,h € G(F, F')*, the set S;(gh)
has cardinality

1Si(gh)| = |Si (W] + |Si()] = 2 |Si (k) N h™'Si(g)].

Therefore if g, h € G;(F, F'), then the product gh remains in G; (F, F’). Moreover
for g € G(F, F')*, we have S; (g ') = g8, (g), soitis clear that G; (F, F’) is stable
by inversion. So we have proved that G;(F, F’) is a subgroup of G(F, F’)*. The
fact that its index is equal to two is clear. 0

We now return to the situation when F, F’ only satisfy FF < F’ < F, but we
assume that there is a permutation group F” between F and F’ and having index
two in F'. In other words we have F < F” < F' < F and (F' : F") = 2.

Remark that in this situation F” must contain the derived subgroup of F”.
Therefore the subgroup ([F,, F,] U F,) is a subgroup of F"”, so that the assumption
F' = ([F,, F]] U F,) of Theorem 4.13 cannot be satisfied.

Since we now have three permutation groups, talking about singularities might
be unclear. In order to avoid any ambiguity, we will adopt the following notation for
g€ G(F,F'):

Z(g) ={veV(T):0(g.v) ¢ F"}.

Lemma 4.18. Assume that N(F, F') contains G(F, F")*. Then given any two
vertices v # w at even distance from each other, there exists y € N(F, F') such

%(y) = {v, wy.

Proof. Letus consider an element g1 € G(F, F’) fixing v and such that X(g) = {v}.
We also denote by g an element of G(F, F”)* such that g>(v) = g7 '(w) (such
an element exists because v and g7!(w) remain at even distance from each other).
Define y = [g2, g1] = (828185 )¢ " Since g2 € G(F, F”), the element g2g1g5 "
has only one singularity that does not belong to F”, namely g>(v). By applying
Lemma 4.16, we obtain

Z(y) = {v} A{g1£20)} = {v, w}.
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Now g» belongs to N(F, F’) because g, € G(F, F")* and G(F, F")* < N(F, F')
by assumption. Moreover N(F, F’) is normal in G(F, F'), so the element y remains
in N(F, F'), and the proof is complete. O

We are now able to prove the main result of this paragraph. Note that Theorem 4.13
and Theorem 4.19 are complementary, in the sense that examples of permutation
groups F, F" satisfying the second assumption of Theorem 4.19 can be found by
making use of Theorem 4.13.

Theorem 4.19. Let F < F"” < F' be permutation groups such that:
(a) F" has index two in F’;
(b) the type-preserving subgroup of G(F, F") is simple.

Then N(F, F') is a simple subgroup of index eight in G(F, F’).

Proof. First note that the second assumption implies by Proposition 4.7 that F is
transitive and F"” is generated by its point stabilizers. Therefore F’ is also generated
by its point stabilizers, so that G(F, F’)™ has index two in G(F, F’) (again by
Proposition 4.7).

Write N = G(F,F') N Go(F",F") N G1(F",F’). The two subgroups
G(F,F' )N Go(F",F')and G(F, F') N G{(F"”, F’") are not equal, and have index
twoin G(F, F')*. So their intersection has index fourin G(F, F’)*, and consequently
is of index exactly eight in G(F, F’). Moreover according to Corollary 4.9, the
subgroup N must contain N(F, F’), and to prove that N is simple, it is enough to
prove the converse inclusion.

Remark that N(F, F’) intersects G(F, F”)* along a non-trivial normal subgroup
of G(F, F")*. Since G(F, F")* is simple by assumption, it follows that N(F, F’)
must actually contain G(F, F")*.

We let g € N, and we prove that g € N(F, F’) by induction on | (g)|. If Z(g)
is empty, then g actually belongs to G(F, F")*, and therefore g € N(F, F’). When
¥ (g) is not empty, it must have even cardinality since g € Go(F"”, F')NG{(F", F'),
and moreover we may find x; # x, € X(g) at even distance from each other. Given
such vertices, we apply Lemma 4.18 to v = g(x;) and w = g(x2). This provides us
with an element y € N(F, F’) such that (y) = {g(x1), g(x2)}. Now consider the
element g’ = yg. According to Lemma 4.16, we have

2(g) = Z(g)Ag7'=(y) = Z(g) \ {x1, x2}.

Consequently we can apply the induction hypothesis to g’, and we obtain that g’
belongs to N(F,F’). But g = y~!g’ and y € N(F, F'), so we deduce that g
belongs to N(F, F’) as well, and the proof is complete. O

Note that F = F"” is allowed in Theorem 4.19, in which case the second
assumption becomes that F is transitive and generated by its points stabilizers.
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Corollary 4.20. Let F < F’' be permutation groups such that:

(a) F has index two in F';

(b) F is transitive and generated by its points stabilizers.
Then Go(F, F") N G{(F, F') is a simple subgroup of index eight in G(F, F').

Examples of permutation groups satisfying these assumptions are F' = Alt(d)
and F’ = Sym(d) for d > 4. For d = 4 this is the only example. For d = 5 we
can take for F the dihedral group Ds and F' = s x FZ. A generalization of this
example will be detailed at the end of Section 7.

5. Further properties of the groups G(F, F’)

5.1. Asymptotic dimension. Let X be a metric space. Recall that A, B C X are
r-disjoint if d(a,b) > r for every a € A,b € B. Recall also that collection of
subsets (A;) is uniformly bounded if there is C > 0 so that diam(A4;) < C for all ;.
We say that X has asymptotic dimension at most n > 0 if for every (large) r > 0,
one can find n + 1 uniformly bounded families Xy, ..., X, of r-disjoint sets, whose
union is a cover of the space X. The asymptotic dimension of X is the smallest
integer n such that X has asymptotic dimension at most 7. Asymptotic dimension is
an invariant of metric coarse equivalence, so that if G is a locally compact compactly
generated group, the asymptotic dimension of G is well defined.

Proposition 5.1. Let G be a locally compact compactly generated group acting on
a locally finite tree X such that all vertex stabilizers in G are locally elliptic open
subgroups. Then G has asymptotic dimension at most one.

Proof. Let xq be a vertex of X, and let H = G, . Since the tree X is locally finite,
for every r > 0, the coarse stabilizer W, (xo) = {g € G : d(gxo.x0) < r} of xq is
a finite union of left cosets of H. Since the subgroup H is locally elliptic, it has
asymptotic dimension zero [20, Proposition 4.D.4], and therefore by the previous
observation W, (xo) (endowed with the induced topology) has asymptotic dimension
zero as well. So we are in position to apply Theorem 2 from [7], which implies that G
has asymptotic dimension at most one. Note that the result is stated there for discrete
groups, but the same proof works in the locally compact setting. [

This result applies notably to the family of groups G(F, F’), which clearly do not
have asymptotic dimension zero.

Corollary 5.2. The group G(F, F') has asymptotic dimension one.
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5.2. Compact presentability. Recall that the group U(F) acts properly and
cocompactly on 7;. Soin particular U(F') is coarsely simply connected, and therefore
compactly presented [20, Proposition 8.A.3]. In this paragraph we characterize
subgroups of G(F, F') that are compactly presented, and show in particular that the
groups G(F, F’) are not compactly presented when F is a proper subgroup of F’.

Lemma 5.3. Let G be locally compact compactly generated unimodular group,
admitting a proper and continuous action on a tree X. Then compact open subgroups
of G have uniformly bounded Haar measure. In particular G does not have non-
compact locally elliptic open subgroups.

Proof. Upon replacing X by a minimal G-invariant subtree, one may assume that X
is a locally finite tree on which G acts with finitely many orbits of vertices (see
for example the second part of the proof of Lemma 2.4 in [13]). Since the action
is proper, vertex stabilizers are compact open, and by the previous remark there are
only finitely many conjugacy classes of vertex stabilizers. Moreover G is unimodular,
so vertex stabilizers have a finite number of possible Haar measures. Since every
compact open subgroup has a subgroup of index at most two that is contained in a
vertex stabilizer, the first statement is proved. The second statement follows because
any non-compact locally elliptic open subgroup would be a strictly increasing union
of compact open subgroups, which cannot happen. Ol

Proposition 5.4. Let G be a closed unimodular subgroup of G(F, F'). If G is
compactly presented, then the action of G on Ty is proper.

In particular, the group G(F, F') is never compactly presented as soon as F is a
proper subgroup of F'.

Proof. Since G(F, F’) has asymptotic dimension one by Corollary 5.2, it follows
that G must have asymptotic dimension zero or one. If G has asymptotic dimension
zero, then G is compact because G is compactly generated. So we may assume that G
has asymptotic dimension one. Since the fundamental group of a Cayley graph of G is
generated by loops of bounded length because G is compactly presented, the group G
must be quasi-isometric to a tree according to [25, Theorem 1.1]. This implies that the
group G must act geometrically on some locally finite tree (see [18, Theorem 4.A.1]
and references therein), and since G is unimodular, it follows from Lemma 5.3 that
every locally elliptic open subgroup of G must be compact. In particular vertex
stabilizers in G for its action on 7, are compact, so the first statement is proved.
The second statement follows from the first together with Corollary 3.6. O

Proposition 5.4 applies notably to discrete subgroups of G(F, F’), and implies
that any finitely presented discrete subgroup of G(F, F') must intersect G(F, F'),
along a finite subgroup, where v is any vertex of 7;. In particular if F is a proper
subgroup of F’ and if T is a lattice in G(F, F”’), then I" cannot be finitely presented,
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because I';, would be at the same time a finite group and a lattice in the non-compact
group G(F, F'),, which is impossible.

5.3. Relative abstract commensurators. In this paragraph we give a second
interpretation of the groups G(F, F') in terms of relative commensurators (see
Proposition 5.7).

Let G be a profinite group, and L an abstract group containing G. A relative
commensurator of G in L is an element of L whose conjugation induces an
isomorphism between two compact open subgroups of G. The set Commy (G)
of relative commensurators of G in L is a group, which only depends on the local
structure of G in the sense that Commy (G) = Commy (K) for any compact open
subgroup K of G.

The idea of studying commensurators of profinite groups was initiated in [5]. The
motivation comes from the desire to study the structure of totally disconnected locally
compact groups, by asking how much information we can recover about the ambient
group by studying its local structure. This approach has been further investigated
in [13] and in [15, 16].

Here we investigate the relative commensurator of a compact open subgroup K of
U(F)in U(F"). First remark that it follows from Lemma 3.2 that the group G(F, F')
commensurates K, so that we always have an inclusion G(F, F') < Commg(r/)(K).
The following result shows that G(F, F') and Commy(r~(K) do not coincide in full
generality.

Proposition 5.5. Ifthe group of relative commensurators of a compact open subgroup
of U(F) in U(F') is equal to G(F, F’), then the normalizer of FT in F' must be
equalto F.

Proof. Weleto € F' normalizing F, and we prove thato € F. Welet g € U(F’)
such that o(g,v) = o for every v € V(7). Let K be the pointwise stabilizer
of an edge in U(F), and let h € K. Then for every vertex v, it readily follows
from the multiplication rules (2.1) that o (ghg™!,v) = oo (h, g~ 'v)o~!. Moreover
since A belongs to U(F) and fixes an edge of 75, we easily check that all the
permutations o (h, w) belong to F™. Now by definition o normalizes F*, so we
deduce that ghg™! actually belongs to U(F). Therefore there is an open subgroup
K’ < K such that gK’g~! < K, which means that g is a relative commensurator
of K in U(F'). By assumption Commy ) (K) = G(F, F'), so we deduce that
there are only finitely many vertices v such that o(g,v) ¢ F. This clearly implies
that o belongs to F', and the proof is complete. [

Remark 5.6. We point out that the conclusion of Proposition 5.5 implies in particular
that F must be equal to its normalizer in F’, but these two conditions are not
equivalent, as the example d = 6, F = Cg and F’' = C; ? C3 shows (where C,, is
the cyclic group of order n).
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Nevertheless, we prove in the following proposition that G(F, F’) does coincide
with the group of relative commensurators of a compact open subgroup of U(F) in
U(F") under the assumption that every point stabilizer F, is equal to its normalizer
in F. Note that this assumption covers many interesting cases.

Proposition 5.7. Assume that for everya € 2, the group F, is equal to its normalizer
in F). Then G(F, F’) is equal to the group of relative commensurators of any compact

open subgroup of U(F) in U(F").

Proof. We let g € U(F’) commensurating a compact open subgroup of U(F'), and
we prove that g has finitely many singularities. By assumption there exists a finite
subtree T of Ty such that if we denote U(F)r = Ur, then gUrg™! < U(F). We
fix a vertex v such that g=!(v) ¢ T, and we prove that 0 = o (g, g~ 'v) € F. Since
all but finitely many vertices satisfy the condition g~!(v) ¢ T, this will prove the
result.

Weleta € Q be the color of the unique edge emanating from g~ (v) and pointing
toward the subtree 7. We also let p be an element of F,, and we denote by % an
element of Ur fixing g~!(v) and such that o(h, g~ 'v) = p. It follows from (2.1)
that 0 (ghg™!,v) = opo~!. Now since & € Ur, the element ghg™! remains in
U(F) by definition of 7. According to the previous computation, this means that
opo_l € F, and we have proved that oF,07' < F. Now since F’ < F , there exists
a permutation t € F such that ot € F/, and we easily deduce that o 7 must lie in the
normalizer of F, in F,. By assumption this latter group is reduced to F,,so ot € F
and finally o € F. O

6. Commensurating actions

6.1. Diagrams. In this paragraph we explain how the group G(F, F’) can be
profitably studied by using a notion of diagrams introduced below. In the case
when F is transitive, one shows that this combinatorial data yields an estimate of
the word-metric in the group G(F, F') (see Proposition 6.6). We will use this
result later to prove that any closed inclusion of G(F, F') into some G(H, H') is a
quasi-isometric embedding (see Proposition 7.2).

Recall that we have fixed an edge eg € E(7;) whose vertices are denoted vy
and v;. We identify 2 with the set of positive integers which are at most d, and
we assume that c(eg) = 1. To every vertex v € V(7;), we associate the subtree
of 74 consisting of vertices whose projection to the geodesic between v and ey is the
vertex v. This subtree is naturally isomorphic to an infinite regular rooted tree, and
will be denoted L(v).
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Given g € G(F, F'), it readily follows from the fact that g has only finitely many
singularities that there exists a unique finite complete subtree 7, of 7 such that:

(i) 7, contains the edges ¢p and g 1 (eo);

(ii) for every vertex v that is not an internal vertex of 7;,_, we have o (g, v) € F;

and being minimal for this property. We let 7? be the image of 7, by g, and denote
by N (g) the number of internal vertices of 7. Note that N (g) is also the number of
internal vertices of 7;,+. We easily check that 7,” = e, or equivalently N(g) =0,
if and only if g belongs to U(F) and stabilizes ey.

Recall that a length function on a group I is amap £ : I' — Ry satisfying
L(1)=0,L(g7") = L(g) and L(gh) < L(g) + L(h) forevery g, h € T.

Lemma 6.1. The map N : G(F, F’) — R is a length function on G(F, F").

Proof. By definition we have N'(1) = 0 and N (g) = N(g™!) for every g €
G(F,F'). Weletg,h € G(F, F'), and we prove that N'(gh) < N'(g) + N'(h). We
denote 7' = 7,” U h1 (7, ), which s a (complete) subtree because 7, and h1 (Tg)
both contain 4~ !(eg). By construction T contains the edges eo and (gh)™!(eo),
and gh acts locally like F outside 7. By minimality it follows that 7;,_,1 must be
a subtree of 7', and in particular the number of internal vertices of T_h is smaller
than the number of internal vertices of 7. The latter is at most N'(g) + N (h) by
construction, so we have N'(gh) < N (g) + N (h). O

So in particular the map N : G(F, F') — R, gives rise to a left-invariant
pseudo-metric on G(F, F") defined by dist(g, h) = N (g~ 'h), and the aim of the
rest of this subsection is to prove that when F' is transitive, this pseudo-metric is
quasi-isometric to the word metric in G(F, F').

Lemma 6.2. For every g € G(F, F'), there existy € U(F) and g' € G(F, F')y,
such that g = yg' and N(g') < N(g) + 1.

Proof. Let g € G(F, F'). Since the group U(F) is transitive on the set of vertices
of T, we can choose some y € U(F) such that y(v;) = g(vy), and set g’ = y~!g.
Let us consider the complete subtree 7~ of 7; obtained by adjoining if necessary the
star around the vertex v; to the subtree 7;,_. We check that 7 contains the edges eg
and g'"!(ep), and that g’ acts locally like F around every vertex of 7 which is not
an internal vertex of 7. It follows that A/(g’) is at most equal to the number of
internal vertices of 7, which by construction is at most A/ (g) + 1. O

Assume that the permutation group F is transitive. Giveni € Q \ {1}, we choose
some 0; € F such that ¢;(1) = i, and we denote by vf) (resp. v‘i) the vertex of Ty
connected to vg (resp. v1) by an edge having color i. Let us consider the bi-infinite
line ¢; in T4 defined by saying that £; contains the edge eq, and the edge of £; in L(vg)
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(resp. L(vy)) at distance n from eq has color o; " (1) (resp. 07 (1)). We let h; be the
hyperbolic isometry of 7; of translation length one, whose axis is £;, and such that
o(hi,v) = a; for every v € V(7;). Note that h; belongs to U(F) and sends the
subtree L(v1) onto the subtree L(v}), and h; ! sends L(vg) onto L(vi).

Recall that for v € V(75), we denote by K¢ r/(v) the compact open subgroup of
G(F, F’) consisting of elements fixing v and not having any singularity outside the
vertex v. Here for simplicity we write K(vo) = Ko, r/(vo) and K(v;) = Ko,F(v1).
In the sequel we let Sy = {ha,...,hgyand S = Sy U Ko r/(vo) U Ko r/(v1), and
the goal of the end of this paragraph is to prove that S is a compact generating subset
of G(F, F") whose word length is comparable to .

The following result is the first technical lemma toward Proposition 6.6.

Lemma 6.3. For every g € G(F, F') (y,), we have |g|ls <3(d — )N (g) + 1.

Proof. Let us argue by induction on A/ (g). The case when N (g) = 0 is easily
settled, because N'(g) = 0 easily implies that g € U(F),, C K(v1), so we have
lgls < 1.

Now assume that the result holds for every g € G(F, F') (v,) With N'(g) < n
for some integer n > 0, and let g € G(F, F')|(y,) be such that N'(g) = n + 1. We
want to prove that the word length of g is at most 3(d — 1)(n + 1) + 1. We may find
u € K(vy) such that g’ = ug fixes the star around the vertex vy, and u acts trivially
on L(vg). The element g’ can therefore be written as a product g’ = g, --- g4, where
gi € G(F, F') acts trivially outside L(v). By construction we have N'(g;) < N(g)
and > ; N(gi) < N(g) + d — 2, because the vertex v; can be counted d — 1
times in the sum, whereas it is counted only once in N (g). This last inequality
can be rewritten as > ;(N(g;) — 1) < n. Now for each g; different from the
identity, let us consider the element g} = hi_l gih;. Since h; sends the subtree L(v;)
onto the subtree L(v}), the element g belongs to G(F, F') (y,). Moreover since
all the local permutations of h; are equal to the same element of F, the set of
singularities of g! satisfies S(g!) C h;'(S(gi)). and therefore N'(g!) < N'(gi) — 1.
Therefore N (g;) is at most 7, so by the induction hypothesis the word length of g/
is at most 3(d — 1)N(g!) + 1. It follows that the word length of g; is at most
2 +3(d — )N (g]) + 1, and we obtain

gls <1+ Y lgils <1+ Y (2+3(d-DN(g)+1)

giF#id gi#id
<1+3@d-D+3@d-1) Y WN(@E)-1
gi #id

<1+3d-D+3d-Dn=3d—-Dn+1)+1.
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Note that the conclusion of Lemma 6.3 also holds for elements of G(F, F')_(y,),
just by replacing K(v;) in the proof by K(vg), and each h; by its inverse. This allows
us to obtain the following.

Lemma 6.4. For every g € G(F, F')y,, we have |g|s < 3(d — DN (g) + 3.

Proof. Let g € G(F, F') fixing the vertex vy;. By definition of K(v;), there
exists u € K(vy) such that g’ = ug € G(F, F’') fixes the edge ¢o. Note that
since the element u acts locally like F at every vertex different from v;, we
have N(g’) < N(g). Now the element g’ can be written g’ = g,g}, where
80 € G(F,F)ig). &1 € G(F, F')w,) satisfy N(gg) + N(g)) = N(g).
Therefore Lemma 6.3 can be applied to these elements, and we obtain

gls <1+ |gols +181ls < 1+3(d — DN (gg) + 14+ 3(d — DN (g}) + 1
<3(d -1N(g) + 3.

Lemma 6.5. For everyy € U(F), we have |y|s < d(y(vq),v1) + 1.

Proof. We argue by induction on d(y(vy), vy). If y fixes vy then y belongs to K(v1)
and therefore |y|s < 1. Assume that |y|s < d(y(vy),vq1) + 1 forevery y € U(F)
such that d(y(v1),v1) < n,and let y € U(F) be such that d(y(vy),v1) =n + 1. If
the vertex y(v;) belongs to the subtree L(v;), then there exists some integer i such
that y’ = h; 'y € U(F) satisfies d(y'(v1),v1) < n. By the induction hypothesis,
the word length of y’ is at most n + 1, and we deduce that |y|s < n + 2. Now
if y(vq) belongs to L(vg) then the same argument can be applied to 4;y for some
integer i. L]

We are finally able to give the following precise estimate for the word metric in

G(F, F").

Proposition 6.6. Assume that F is transitive. Then S is a compact generating subset
of G(F, F'), and for every g € G(F, F'), we have

N(g) <lgls < (3d —2)N(g) + 3d +2.

Proof. The lower bound easily follows from the fact that the function A\ is subadditive
by Lemma 6.1 and takes values 0 or 1 on elements of S. Let us prove the upper
bound. According to Lemma 6.2, one can write g = yg’ with y € U(F) and
g’ € G(F, F')y, such that N(g’) < N(g) + 1. It follows from Lemma 6.5 that the
word length of y satisfies

lyls <d(y(v1),v1) +1=d(g(v1),v1) + 1 < N(g) +2.
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On the other hand, we can apply Lemma 6.4 to the element g, which yields
g'ls <3(d —DN () +3<3d-DWN(g) +1)+3.
We finally obtain
gls = Iyls+lg'ls = N(g)+2+3(d-1DN(g)+1)+3 = 3d-2)N(g)+3d +2.

O

6.2. A commensurating action of G(F, F’). In this subsection we prove that
the group G(F, F’) admits a commensurating action whose corresponding cardinal
definite function is equal to twice the function N (see Proposition 6.11). By a general
argument, we obtain a proper action of G(F, F’) on a CAT(0) cube complex. This
cube complex is infinite dimensional, and we actually prove that G(F, F’) cannot act
properly on a finite dimensional CAT(0) cube complex.

Recall that eq is a fixed edge of 7; having color c(eg) = 1. Let H denote the
open subgroup of G(F, F’) consisting of elements g stabilizing L(vo) setwise, and
such that o(g, w) € F for every vertex w in L(vg). Equivalently,

H={geG(F, F)e:S(g) CL(v)}.

For every vertex v € V(74), we let M, be the set of elements g € G(F, F') such
that g(L(vg)) = L(v) and o (g, w) € F for every vertex w in L(vg).

Lemma 6.7. For every v € V(Tz), My is either empty or equal to a single H -coset.

Proof. Let us check that all the elements of M, belong to the same left coset of H. If
21,82 € My, then g7' g» must stabilize setwise L(vo). Moreover for every vertex w
in L(vo), we have (g7 "'g2,w) = 0(g1,87'g2w) '0(g2, w) € F because w and
gl_1 gow are vertices of L(vg), so gl_1 g» € H. Thus, if non-empty, M, is contained
in exactly one H -coset.

Conversely if g € My and h € H, then (gh)(L(vo)) = g(L(vo)) = L(v), and for
every vertex w in L(vg), we have o (gh, w) = o(g, hw)o(h,w). Now o(h,w) € F
because & € H, and (g, hw) € F because h(w) remains in L(vg) and g € M,. So
o(gh,w) € F, and we have proved that gh € M,,. O

Lemma 6.8. Forevery v € V(7;), the set M, is empty if and only if the color of the
unique edge around v that is not in L(v) is not in the F-orbit of 1.

Proof. Let e, be the unique edge around v that is not in L(v), whose color is denoted
by iy.

Assume that M), is non-empty, and let g € M,. Since g sends the subtree L(vq)
onto L(v), we have g(ep) = e,. But the permutation (g, vg) preserves the orbits
of F, so it follows that i, is in the F-orbit of c(eg) = 1.
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For the converse implication, let o € F such that o (1) = i,. We let y be the
automorphism of 7, define by declaring that y(vg) = v, and o(y, w) = o for every
vertex w. Clearly y € U(F) and by construction y must send L(vg) onto L(v)
because o (y, vg)(1) = iy. So y € M, which is therefore non-empty. U

We will need the following lemma.

Lemma 6.9. Given g € G(F, F') and v € V(Ty), the following statements are
equivalent:

(i) g(L(v)) =L(g(v))and o(g,w) € F for every vertex w in L(v),

(ii) v is not an internal vertex of T, .

Proof. By construction g sends the complement of 7, onto the complement of T;‘
locally like F', so it is clear that if v is not an internal vertex of 7, then g(L(v)) =
L(g(v)) and 0(g, w) € F for every vertex w in L(v). For the converse implication,
remark that if v is an internal vertex of Tg_, then either there is a vertex w in L(v) such
that o(g, w) ¢ F, or the edge g~ (eg) belongs to L(v). This last property implies
that g(L(v)) contains the edge eg, and therefore cannot be equal to L(g(v)). O

Assume that F is transitive. According to Lemma 6.8, this assumption ensures
that the set M, is non-empty for every v € V(7).

Lemma 6.10. Let v,v' € V(7;) and g € G(F, F'). Then gM,, and M, are either
disjoint or equal, and gM,, = M, if and only if v/ = g(v) and v is not an internal
vertex of T, .

Proof. The fact that gM,, and M, are either disjoint or equal follows immediately
from Lemma 6.7. Assume that gM,, = M,/. Since the subset M, is non-empty,
there exists g, € G(F, F’) such that g, (L(vg)) = L(v) and o(g,, w) € F for every
vertex w in L(vg). Since gg, € M, by assumption, we have gg, (L(vo)) = L(v’) and
o(ggy,w) € F forevery vertex w in L(vg). In particular we have g(L(v)) = L(v'), so
v' = g(v). Since 0(ggy, w) = o(g, gyw)o(gy, w) and o(ggy, w), o (g, w) € F,
we obtain that o (g, w’) € F for every vertex w’ in L(v). According to (i) = (ii) of
Lemma 6.9, this implies that the vertex v is not an internal vertex of 7;.,_.
Conversely assume that v is not an internal vertex of 7;,—. According to the
implication (ii) = (i) of Lemma 6.9, we have g(L(v)) = L(g(v)) and o(g,w) € F
for every vertex w in L(v). By the same argument as above, it follows that
gM, C Mg(y), and therefore gM, = Mg (y). [

We denote by M C G(F, F’) the union of the subsets M,, when v ranges over
the set of vertices V(7;). Since M is a union of left cosets of H, we identity the
subset M of G(F, F') with its image in G(F, F')/H.

Recall that if G is a group acting on a set X, a subset A C X is commensurated
by G, or G commensurates A, if #(gAA A) is finite for every g € G.
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Proposition 6.11. Assume that F is transitive. Then the action of G(F, F') on
G(F, F')/H commensurates the subset M. More precisely, we have #(gM AM) =
2N (g) for every g € G(F, F").

Proof. Let g € G(F, F"). According to Lemma 6.10, the subset gM\ M is the
union of gM,, where v ranges over the set of internal vertices of 7;,‘. Since none
of these gM,, is empty, this union consists exactly in N (g) left cosets of H, and
therefore #(gM \ M) = N (g). By applying the same argument to g~ !, we obtain

#gM AM) = #(gM\M) +#(M\gM) = N(g) + N(g7") =2N(g). O

By a general principle (see for instance [19, Proposition 5.17] and references
therein), we deduce the following result.

Corollary 6.12. Assume that F is transitive. Then there exist a CAT(0) cube
complex C on which G(F, F') acts properly, and a vertex xo € C such that in
the L' -metric, d(gxo, xo) = 2N (g) for every g € G(F, F').

Corollary 6.12 reveals that Proposition 6.6 established in the previous subsection
has a geometric interpretation: it exactly means that the orbital map G(F, F') — C,
g > gXo, is a quasi-isometric embedding.

Remark 6.13. The action of G(F, F") on this CAT(0) cube complex is not cocompact
when F is a proper subgroup of F’, and more generally one cannot hope that G(F, F”)
acts properly and cocompactly by isometries on a simply connected metric space.
The reason is that the existence of such an action would imply that G(F, F’) is
coarsely simply connected and therefore compactly presented [20, Proposition 8.A.3],
a contradiction with Proposition 5.4.

The end of this section is devoted to the proof that, although G(F, F”) does act
properly on a CAT(0) cube complex, it cannot act properly on a finite dimensional
CAT(0) cube complex (see Proposition 6.15). The argument will consist in
embedding in G(F, F’) a compact extension of the wreath product C, ? 5, and
using the fact that the latter group does not admit such an action.

If H < H' and G are groups, we call the semi-restricted wreath product of H, H'
and G the set of pairs (f, g) where g € G and f : G — H'issuchthat f(y) € H
for all but finitely many y € G. It is a subgroup of the unrestricted wreath product
of H" and G, which will be denoted (H, H') ? G. Note that (H, H') ; G always
contains the restricted (or standard) wreath product H'? G.

For every a € €2, we denote by U? (resp. G?) the pointwise stabilizer in the

group U(F) (resp. G(F, F")) of a half-tree of 7; defined by an edge e € E(Ty) such
that c(e) = a.

Proposition 6.14. For every a € 2, the semi-restricted wreath product (U4, G%) F
embeds as a subgroup of G(F, F'), where F is a free group of rank d — 2.
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Proof. Let us consider the largest subtree 7" of 7 containing the vertex vy and such
that all the edges e of T satisfy c(e) # a. Note that T is a regular tree of degree
d —1. We let IF be the subgroup of U({1})* stabilizing T'. The group I acts freely and
without inversion on 7', and the quotient [F\ 7" has two vertices and d — 1 non-oriented
edges, so it follows that I is free of rank (d — 1) —2+ 1 = d — 2 [33, Theorem 4°].

Let us denote by V} the set of vertices of T" at even distance from vy. For every
vertex v € Vp, let e, be the edge of 7; containing v and such that c¢(e,) = a,
and we denote by 7V the unique half-tree defined by e, not containing 7. We also
denote by I'? the subgroup of G(F, F') fixing T', acting on 7" by an element of G¢
if w = v, and by an element of U otherwise; and being the identity elsewhere.
By construction the subgroup of G(F, F’) generated by all the I'), v € Vp, is the
subgroup ]_[S G? of [, G* consisting of elements having all but finitely many of
their coordinates in U“. Now the group IF permutes the subtrees 77, so it follows that
the subgroup I' of G(F, F’) generated by [ together with all the I} is isomorphic
to ]_[3 G“ x F. Moreover since [ acts simply transitively on Vp, we deduce that I is
exactly the semi-restricted wreath product (U%, G%)? F. O

Proposition 6.15. For every d > 4 and every permutation groups F < F’, the
group G(F, F") cannot act properly on a finite dimensional CAT(0) cube complex.

Proof. We first claim that for every a € 2, there exist an integer £ > 1 and a prime p
such that F; contains C,x and Cpx N F = Cp,x-1. Indeed, since F is a proper
subgroup of F’, one can find an element x in F, \ F. Without loss of generality we
may assume that the order of x is a prime power, and the claim follows by considering
the subgroup generated by some suitable power of x.

By combining this observation with Proposition 6.14, we deduce that the semi-
restricted wreath product (C,x—1,Cp) ¢ F embeds as a (closed) subgroup in
G(F, F’"). Since rk(F) = d —2 > 2, one can find in F a non-abelian free group
of rank two [, and therefore the group (C k-1, Cpk) 2 F2 also embeds as a closed
subgroup in G(F, F’).

Assume that G(F, F') has a proper action on a finite dimensional CAT(0) cube
complex. Then according to the previous paragraph, the group H = (C px—1, Cpr ) 2 F2
has the same property. Since the normal subgroup K = HIFz Cpk—1 is compact, K
must have fixed points [9, Corollary I1.2.8]. So we would obtain a proper action
of H/K =~ Cp, ! F, on the set of fixed points of K, which (upon passing to the
barycentric subdivision) is again a finite dimensional CAT(0) cube complex. Now
as observed in [21], it follows from [31, Corollary 2.12] together with [27] that the
restricted wreath product Cj, 2 [F, cannot act properly on a finite dimensional CAT(0)
cube complex. So we have reached a contradiction, and the proof is complete. [

Remark 6.16. The above proof actually shows that when d > 4 and F £ F’, the
standard wreath product C, ¢ F, embeds as a discrete subgroup of G(F, F’) as soon
as there exists an element of prime order p in F’ \ F fixing a point of 2.
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7. Lattices

7.1. Embeddings. This paragraph concerns the study of the properties of inclusions
of the groups G(F, F’) into each other for a fixed d > 3.

For all of this subsection we fix some permutation groups F < F' < F and
H < H' < H suchthat F < H and F' < H'.

These conditions imply that G(F, F') is a subgroup of G(H, H'). The following
lemma is easy, and we leave the proof to the reader.

Lemma 7.1. The inclusion G(F, F') — G(H, H') is:
(a) openifandonlyif Hy < F foreverya € Q;

(b) closed ifand onlyif H N\ F' = F;
(¢) discrete if and only if H N F’ acts freely on Q.

We derive from Proposition 6.6 the following interesting result, which says that
every closed inclusion between the groups G (F, F') is undistorted.

Proposition 7.2. Suppose that F is transitive and H N F' = F. Then the group
G(F, F') is quasi-isometrically embedded inside G(H, H').

Proof. Let g € G(F, F'), and v € V(73). If a(g,v) does not belong to F then it
does not belong to H either, in view of the fact that F" and H intersect along F'. This
means that g has the same set of singularities when viewed as an element of G(F, F’)
and G(H, H'). Therefore we have Nr r/(g) = Ng p(g), and the conclusion then
follows from Proposition 6.6. Ul

Proposition 7.3. Suppose that H' = HF'. Then the group G(F, F’) has cocompact
closure in G(H, H").

Proof. We shall prove that G(H, H') = K-G(F, F'), where K = U(H),,. Clearly
it is enough to prove G(H, H')y, = K - G(F, F'),,. Welet g € G(H, H'),,, and
we argue by induction on the cardinality of S(g). If S(g) is empty, then g € K and
the result is trivial. Assume that g has n + 1 singularities, n > 0, and let v € S(g).

We deal with the case v # vy (the case v = vg being similar). Let e be the edge
emanating from v and pointing toward ve, and let a = c(e). Since F’ < F, one
can check that the assumption " = HF' implies H' = HF}, and it follows that
there exists 0 € F,, such that o(g,v)o € H. Therefore if we take y € G(F, F')y,
fixing the half-tree emanating from e and containing vy, and such that o (y,v) = ¢
and v is the only singularity of y, then g’ = gy € G(H, H)y, has at most n
singularities. By induction there is y’ € G(F, F'),, such that g'y’ € K, and
therefore g(yy’) € K. O
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We highlight the following consequence for future reference.

Corollary 7.4. Suppose that H N F' = F and H' = HF'. Then G(F,F') is a
closed cocompact subgroup of G(H, H").

If moreover F acts freely on 2, then it is a cocompact lattice.

7.2. Iterated wreath products and lattices. In this paragraph we study the
existence of lattices in a family of locally compact groups which appear as union
of infinitely iterated permutational wreath products. We give a very short proof that
some of the groups under consideration do not have lattices (see Theorem 7.6), and
apply this result to the groups G(F, F’) (see Corollary 7.7).

We let X be a finite set of cardinality £ > 2, and we fix some permutation groups
D < D’ < Sym(X). To avoid confusion, we intentionally do not use the notation F
and F' for the permutation groups, because the present construction will actually be
applied to point stabilizers in F and F’.

We let Wo(D) = 1 and W,11(D) = D W,(D) for n > 0, where wreath
products are considered with their imprimitive wreath product action. The group
W, (D’) is defined similarly. We denote by L the infinitely iterated wreath product

Lo=..2D?...2D,

which is the projective limit of the finite groups W, (D), and denote by U,, the kernel
of the natural projection of L onto W, (D).

For n > 0 we also let
L= ;a0 Dsd DED' 20023 D

where the permutation group D’ appears n times. Each L, is a subgroup of the
infinitely iterated wreath product of Sym(X), and since D is a subgroup of D’, L, is
a subgroup of L, forevery n > 0. We denote by L(D, D’) the increasing union of
the groups L,. Endowed with the topology making the inclusion of L a continuous
open map, L (D, D’) is a locally elliptic totally disconnected locally compact group.

The following lemma gives a general obstruction for a locally compact group to
contain lattices. Recall that a subgroup H < G is said to be essential if H intersects
non-trivially every non-trivial subgroup of G.

Lemma 7.5. Let G be a locally compact group, and | a Haar measure on G.
Let (Uy) be a basis of neighbourhoods of the identity consisting of compact open
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subgroups. Assume that there exists a sequence of subgroups (K,) such that:
(a) K, contains U, as an essential subgroup;
(b) nw(K,) — oo whenn — oc.

Then for every k > 1, the group G* does not have lattices.

Proof. If G satisfies these assumptions, then so does G* for k > 1, so it is enough
to give the proof for k = 1. Assume that I is a lattice in G. Since the Haar measure
of K, goes to infinity, I' must intersect K, non-trivially for n large enough, and
therefore I" must intersect U, non-trivially as well thanks to the first assumption.
This means that I" intersects non-trivially any neighbourhood of the identity, and
therefore I' cannot be discrete. Contradiction. O

The following is the main result of this paragraph.
Theorem 7.6. Let D < D’ < Sym(X), and { = |X|. Assume that:
(a) D is an essential subgroup of D’;
(b) |D'| < (D' : D).

Then for every k > 1, the group L(D, D')* does not have lattices.

Proof. Let us fix a Haar measure p on L(D, D’), normalized so that u(Lgy) = 1.
For n > 0, we consider the kernel K, = U,41 % (D’)¥" of the natural projection of
L, +1 on W, (D), and we shall prove that the sequence (K, ) satisfies the assumptions
of Lemma 7.5.

Since being an essential subgroup is stable by taking finite direct products, D% is
an essential subgroup of (D’ )En, and we deduce that U, = U,,; x D" is essential
in K.

Now the Haar measure of K, is equal to u(K,) = u(Un+1)|D’|*", and since
Uy = Lo has measure one, we have

en+1_4

U(Uns1) = (Up : Ups1) 7 = |Wyst (D)7 = |D|” 7

where the last equality is easily obtained by induction. Therefore

n en
DT el | D'
w(kn) = —mig =D DIUED ) -

|D| 7—1

Now the assumption |D’| < (D’ D) is easily seen to be equivalent to |D’| >
|D|*/¢=1D)_ Therefore the above computation shows that the Haar measure of K,
goes to infinity, and the conclusion then follows from Lemma 7.5. O
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Note that when G is a finite group, a subgroup H is essential if and only if H
contains all elements of prime order. This is for instance the case when there is
a short exact sequence 1| —- H — G — C, — 1 that does not split. Examples
of permutation groups satisfying the assumptions of Theorem 7.6 are D = Cj and
D’ = Cy, where £ = pk and p is a prime dividing k, and Cy, and Cy act by translation
on Cy.

We derive the following consequence for the groups G(F, F’).

Corollary 7.7. Let F < F' < Sym(R2) be permutation groups such that F is
transitive, and let a € Q and d = |S2|. Assume that there exists a subgroup D’ with
F, < D’ < F/ and such that:

(a) F, is an essential subgroup of D’;
(b) |D| < (D" Fa)*".
Then the group G(F, F') does not have lattices.

Proof. Since F is assumed to be transitive, all point stabilizers in F' are conjugate,
and the stabilizer of an edge in G(F, F') is isomorphic to the group L(F,, F.)>.
Therefore if we write D = F,, the group G(F, F’) contains L(D, D")? as an open
subgroup. It follows that any lattice in G(F, F’) would intersect L(D, D’)? along a

lattice in L(D, D")?, and the conclusion then follows from Theorem 7.6 applied with
k=2, O

Example 7.8. G(F, F’) does not have lattices when F = PSL(2,q) and F' =
PGL(2, q) acting on the projective line P!(F,), and ¢ = 1 mod 4.

Indeed, the stabilizer of the point co in F is Foo = Fy x ]F;(’z, where ]F‘}(’2 is the
set of non-zero squares in F,;. Since ¢ = 1 mod 4, the element —1 is a square in g,
and it follows that the short exact sequence

1—>IE‘;"2—>]F;< —Cy —> 1
does not split, and that Fe is essential in F, = Fg x F7. Moreover
ol =q(g—1) <20 = (Fjy : Fag) “ ™",
so Corollary 7.7 applies.

7.3. Proofs of the results. We finally prove the results stated in the introduction.

We claim that there are many permutation groups giving rise to groups G(F, F’)
as in Theorem 1.6, and we shall detail one family of examples. Note that this will
prove Corollary 1.5 at the same time in view of Corollary 5.2.
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Proof of Theorem 1.6. Let ¢ = 1 mod 4 be a prime power, n > 1 and £ = F.
Let F’ be the affine group Fy x GL(n,q), and let F = F} x GL?(n, q) be its
subgroup of index two consisting of elements whose linear part has a determinant
that is a square.

We claim that F lies in Alt(2) and that F’ does not. Indeed, consider the
decomposition GL(n,q) = SL(n, q) x Fy, where F is embedded in GL(n, g) via
x > diag(x,1,...,1). If x is a generator of F, we easily see that, viewed as a
permutation on 2 = F7, the element x is a cycle of length ¢ — 1. This shows that F’
does not lie in Alt(£2). Now let us denote by Fy 2 the set of non-zero squares in [,
and check that F = F x (SL(n, q) x F;*?) is a subgroup of Alt(2), by verifying
that the three subgroups F”, SL(n, ¢) and F, 2 are all in Alt(€2). Every non-zero
element of Fy is a product of p-cycles, where p is the characteristic of Fg, so these
permutations are alternating. Since SL(7n, g) is perfect, it must be a subgroup of
Alt(£2); and if x is a generator of ]]5‘;< 2 then one may check that x is a product of two
cycles of length (¢ — 1)/2, so in particular x is alternating. Finally F' < Alt($2).

Now let us take H = Alt(Q2) and H' = Sym(f2). The assumptions of
Corollary 4.20 are satisfied for both G(F, F’) and G(H, H'), and therefore these have
open normal simple subgroups N(F, F’) and N(H, H') of index eight. Moreover
N(F, F') is contained in N(H, H'), and according to Corollary 7.4 this inclusion is
closed and cocompact.

Since ¢ = 1 mod 4, the short exact sequence

1>F?>F, > C—1
does not split. A fortiori
1 - GL%(n,q) - GL(n,q) - C, — 1

does not split either, and it follows that Fo = GL?(n, q) is essential in Fj = GL(n, ).
Moreover

n—1
Fyl = [[@" - ") <™ <29"' = (Fy: Fo)' ™",
i=0

so Corollary 7.7 applies and shows that G(F, F’) (and a fortiori N(F, F’)) does not
have lattices.

To complete the argument, we shall prove that N(H, H'), or equivalently
G(H, H'), contains lattices. To this end, let us assume that g" > p, where p
is the characteristic of F,. Write 2 = {1,...,4"}, and let x = ¢"/p. Then
a =[[;—;((—=1Dp+1,...,ip) is a product of p-cycles with disjoint support,
and therefore K = («) acts freely on 2, and K < Alt(2). Now consider
T= ]—[;D:l (i, p + i). By construction 7 is an involution and  commutes with «, so
K’ = (a, ) is a extension of K by C5, and K’ does not lie in in Alt(2). Therefore



290 A. Le Boudec CMH

the assumptions of Corollary 7.4 are all fulfilled, so it follows that G(K, K’) is a
cocompact lattice in G(H, H'). O

We now turn to the proof of Theorem 1.7. Note that by Proposition 3.11, the
following family of examples actually gives infinitely many pairwise non-isomorphic
non-discrete simple groups with simple lattices.

Proof of Theorem 1.7. Assume that d > 7 is equal to 0,3 mod 4. Let H = D, be
the dihedral group, H' = Sym(d), and take F = Dy N Alt(d) and F' = Alt(d).
The assumption on d implies that point stabilizers in H are not contained in Alt(d),
so it follows from Theorem 4.13 that G(H, H')* is simple. Moreover F and F’
satisfy the assumptions of Corollary 4.14, so G(F, F’)* is also simple. Now by
definition H N F’ = F and H' = HF', so by Corollary 7.4 the group G(F, F')* is
a cocompact lattice in G(H, H')*. This proves the statement. O

7.4. Final remark. The study of the groups U(F) has recently been extended to
the case of infinite permutation groups F, in which case U(F) acts on a tree that is
not locally finite [34]. Similarly, given infinite permutation groups F < F’, we can
consider the group G(F, F'). While the results from Section 4 are likely to extend to
this framework, some of the results from Section 3 need some care to be generalized
(notably if we wish to obtain a locally compact topology on G(F, F')). Nevertheless,
investigating further the family of groups G(F, F’) in the setting of [34] is likely to
provide interesting examples.

Added on January 19th, 2016. After completing this work, we learned that some
examples of groups G (F, F') appeared in [32]. In the terminology of [32], there are
examples of G(F, F’) which are p-localizations of U(F").
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