Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 91 (2016)

Heft: 2

Artikel: Bounded cohomology with coefficients in uniformly convex Banach
spaces

Autor: Bestvina, Mladen / Bromberg, Ken / Fujiwara, Koji

DOl: https://doi.org/10.5169/seals-630557

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-630557
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Cumment, Math. Helv. 91 (2016), 203-218 Commentarii Mathematici Helvetici
poI110.4171)CM1LJ3Q2 © Swiss Mathematical Society

Bounded cohomology with coefficients in uniformly convex
Banach spaces

Mladen Bestvina; Ken Bromberg* and Koji Fujiwara**

Abstract. We show that for acylindrically hyperbolic groups I" (with no nontrivial finite normal
subgroups) and arbitrary unitary representation p of I" in a (nonzero) uniformly convex Banach
space the vector space H bz(F; p) is infinite dimensional. The result was known for the regular
representations on £# (') with 1 < p < oo by a different argument. But our result is new even
for a non-abelian free group in this great generality for representations, and also the case for
acylindrically hyperbolic groups follows as an application.

Mathematics Subject Classification (2010). 20F65; 46B99.

Keywords. Uniformly convex Banach space, second bounded cohomology, acylindrically
hyperbolic groups.

1. Introduction

1.1. Quasi-cocycle and quasi-action. Let G be a group and E a normed vector
space (usually complete, either over R or over C). The linear or rotational part of an
isometric G-action on E determines a representation p : G — O(E) where O(E)
is the group of norm-preserving linear isomorphisms £ — E. We will refer to p as
a unitary representation. We will usually write p(g)x as g(x) or gx.

The translational part of the G-action is a cocycle (with respect to p). Namely
the translational part is a function F : G — E that satisfies

F(gg') = F(g)+ gF(g) (1.1)

for all g, g’ € G. Going in the other direction, if p is a unitary representation and F
a cocycle then the map g — (x — p(g)x + F(g)) determines an (affine) isometric
G-action on E. Note that F(g™!) = —g7 1 F(g). p(g) is sometimes called the linear
part of the action.

*The first two authors gratefully acknowledge the support by the National Science Foundation.
**The third author is supported in part by Grant-in-Aid for Scientific Research (No. 23244005,
15H05739).
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For an isometric quasi-action of G on E the linear part will still be a unitary
representation. However, the translational part F° will become a quasi-cocycle and
will only satisfy (1.1) up to a uniformly bounded error so that

A(F):= sup |F(gg")— F(g)—gF(g')| < oo. (1.2)
g.8'eG

The quantity A(F) is the defect of the quasi-cocycle.

A basic question is if there are quasi-actions that are not boundedly close to an
actual action. Such a quasi-action is essential. Since quasi-actions determine unitary
representations a more refined question is if there are essential quasi-actions for a
given unitary representation.

The above discussion is perhaps more familiar in its algebraic form where it can
be rephrased in terms of bounded cohomology. A quasi-cocycle F' can be viewed as
1-cochain in the group cohomology twisted by the representation p. Condition (1.2),
is equivalent to the coboundary 6 F being a bounded 2-cocycle and will therefore
determine a cohomology class in H 5 (G; p), the second bounded cohomology group.
Now this cocycle will clearly be trivial in the regular second cohomology group
H?(G; p) as it is the coboundary of a 1-cochain. If the cochain F is a bounded
distance from a cocycle then § F' will also be trivial in H g(G; p) so we are interested
in the kernel of the map

H}(G:p) — H*(G:p)

from bounded cohomology to regular cohomology. In particular this kernel is the
vector space QC(G; p) of all quasi-cocycles modulo the subspace generated by
bounded functions and cocycles. We denote this quotient space QC (G; p). This is
the vector space of essential quasi-cocycles and it is the main object of study of this
paper.

For the trivial representation on R a cocycle is just a homomorphism to R
and a quasi-cocycle is usually called a quasi-morphism. When G = F5, the free
group on two generators, Brooks [7] gave a combinatorial construction of an infinite
dimensional family of essential quasi-morphisms.

1.2. Uniformly convex Banach space and main result. Following the work of
Brooks, there is a long history of generalizations of this construction to other groups.
Initially, the work focused on the trivial representation. See [4,5,12]. This was
followed by generalizations to the same groups G but with coefficients in the regular
representation £7(G), 1 < p < oo. See [14, 16].

In this paper we will extend this work to unitary representations in uniformly
convex Banach spaces. Note that this essentially includes the previous cases
since £7(G) is uniformly convex when 1 < p < oo.

If one is a bit more careful about how the counting is done then Brooks
construction of quasi-morphisms can also be used to produce quasi-cocycles. In
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Brooks’ original work (i.e., for trivial representations) it is easy to see that the quasi-
morphisms are essential. Here we will have to work harder to get the following
result.

Theorem 1.1 (Theorem 3.9). Let p be a unitary representation of F> on a uniformly
convex Banach space E # 0. Then dim Q C (Fy; p) = oo.

To show Qf‘ (F3; p) is non-trivial is already hard. We will argue that for a certain
Brooks’ quasi-cocycle H into a Banach space E, there exists a sequence of elements
in F> on which H is unbounded. For that we use that E is uniformly convex in an
essential way (Lemma 3.4). We also show those quasi-cocycles are not at bounded
distance from any cocycle using that £ is reflexive (using Lemma 3.6). Those two
steps are the novel part of the paper. It seems that the uniform convexity is nearly a
necessary assumption for the conclusion. See the examples at the end of this section.

Recently Osin [20] (see also [11]) has identified the class of acylindrically
hyperbolic groups and this seems to be the most general context where the Brooks’
construction can be applied. Osin has shown that acylindrically hyperbolic groups
contain hyperbolically embedded copies of F, and then applying work of Hull-
Osin [17] we have the the following corollary to Theorem 3.9. See Section 4 for the
proof.

Corollary 1.2. Let p be a unitary representation of an acylindrically hyperbolic
group G on a uniformly convex Banach space E # 0 and assume that the maximal
finite normal subgroup has a non-zero fixed vector. Then dim QC (G; p) = o0.

A wide variety of groups are acylindrically hyperbolic. In particular our results
apply to the following examples. To apply our result, in all examples assume G has
no nontrivial finite normal subgroups, or more generally that for the maximal finite
normal subgroup N (see [11]) we have that p(/N) fixes a nonzero vector in E.

Examples 1.3 (Acylindrically hyperbolic groups).
* (G is non-elementary word hyperbolic,

* G admits a non-elementary isometric action on a connected §-hyperbolic space
such that at least one element is hyperbolic and WPD,

G = Mod(S), the mapping class group of a compact surface which is not
virtually abelian,

G = Out(Fy) forn > 2,

G admits a non-elementary isometric action on a CAT(0) space and at least
one element is WPD and acts as a rank 1 isometry.

Remark 1.4. Recall that a Banach space is superreflexive if it admits an equivalent
uniformly convex norm. It is observed in [1, Proposition 2.3] thatif p : G — E is
a unitary representation with £ superreflexive, then there is an equivalent uniformly
convex norm with respect to which p is still unitary. Thus in Corollary 1.2 we may
replace “uniformly convex” with “superreflexive”.
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Remark 1.5. There is also a more direct approach to going from Theorem 3.9 to our
the main theorem. The key point is that any group G covered in the the main theorem
acts on a quasi-tree such that there is a free group F C G that acts properly and
co-compactly on a tree isometrically embedded in the quasi-tree. This is done using
the projection complex of [2]. Using this one can apply the Brooks’ construction
to produce quasi-cocycles that when restricted to the free group are exactly the
quasi-cocycles of Theorem 3.9. We carry this out in a separate paper [3].

1.3. Known examples with certain Banach spaces. Here are some known
vanishing/non-vanishing examples in the literature.

* E = Randpistrivial. Inthiscase H lf (G; p) is the usual bounded cohomology
and quasi-cocycles are quasi-morphisms. As we said this case was known for
various kinds of groups.

« E = [?(G) and p is the regular representation, see [13, 15]. When
1 < p < o0, £7(G) is uniformly convex and our theorem applies. When
p = 1 or p = oo then £7(G) is not uniformly, or even strictly, convex.
However, for p = 1 summation determines a p-invariant functional and one
can produce a family of quasi-cocycles that when composed with the invariant
functional are an infinite dimensional family of non-trivial quasi-morphisms
in OH (G) implying that dim OC (G; £1(G)) = oo.

On the other hand,

* When p = oo given any quasi-cocycle one can explicitly find a cococyle a
bounded distance away so QC (G;£°°(G)) = 0 for any group G.

» If G is countable and exact (e.g., F>), then Hbz(G; £5°(G)) = 0. In particular,
QE'(G; £°(G)) = 0 (Example 3.10). Here £5°(G) is the subspace of £°°(G)
consisting of sequences which are asymptotically 0.

There are also examples where G is not acylindrically hyperbolic but where
QC(G; p) is known to be non-zero for certain actions of G on £# spaces.

* If G has a non-elementary action on a CAT(0) cube complex then
Q—Z’ (G; p) # 0where p is the representation of G on the space of £”-functions
(1 < p < o0) on a certain space where G naturally acts [8]. Note that this
class of groups is closed under products so it contains groups that aren’t
acylindrically hyperbolic.

There are other examples where essentially nothing is known.

« E ={}(G) C £'(G) is the space of £!-functions on G that sum to zero and p
is the regular representation. Unlike with £(G), £§(G) has no p-invariant
functionals.

e E = B(£?*(G)) the space of bounded linear maps of £?(G) to itself. This

example was suggested to us by N. Monod as the non-commutative analogue
to £°(G).
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2. Quasi-cocycles from trees

Fix >, = (a,b) and choose a word w € F,. For simplicity we will assume that w
is cyclically reduced. Let E be a normed vector space and p : G — O(FE) a linear
representation. Also choose a nonzero e € E. We now set up some notation that
will be convenient for what we will do later.

Let [g, h] be an oriented segment in the Cayley graph for F, with generators a

and b. Then we write [g, h] - [g', 1] if [g, h] is a subsegment of [g’, 4] and the
orientations of the two segments agree. We then define

w4 (g) = {h € G|[h, hw] C 1, g]}
and w_(g) = {h € H|[h, hw] C [g, 1]}.

Now define a function H = Hy, . : F> — E by

H(g)= Y h(e)— Y _ h(e)

hew (g) hew_(g)

In other words, to a translate 4 - w we assign /(e) when traversed in the positive
direction, and —h(e) when traversed in negative direction. Note that it follows that

H(g™") =—-g ' H(g).
Proposition 2.1. The function H constructed above is a quasi-cocycle.

Proof. This is the standard Brooks argument. Consider the tripod spanned by 1, g,
gf. Call the central point p. We will see that contributions of copies of w in the
tripod that do not cross p cancel out leaving only a bounded number of terms.

Ifh-w E [1, p] then h(e) enters with positive sign in H(g) and in H(gf), so

it cancels in the expression H(gf) — H(g). Likewise, if h - w c [p, 1] then —h(e)
enters both H(g) and H(gf), so it again cancels.

fh-wc [P, g] then h(e) is a summand in H(g). Since - w c [gf g] we
also have g7 1h - w c [£.1],s0 —g~'h(e) is a summand in H( f), and thus we have
cancellation in —H(g) — gH(f). There is similar cancellation if 4 - w C lg. p].

fh-wc [p,gf] or [gf, p] then similarly to the previous paragraph there is
cancellation in H(gf) — gH(f).

After the above cancellations in the expression H(gf)— H(g) — gH(f) the only
terms left are of the form +/(e) where /(w) is contained in the tripod and contains p
in its interior. The number of such terms is clearly (generously) bounded by 6|w| so
we deduce that A(H) < 6|w|||e]|. O
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Remark 2.2. Note that if /2 - w does not overlap w for any 1 # h € F;, then
A(H) < 6|le||. More generally, for a given w, write w = u"v as a word such that
|v| < |u| and n > 0 is maximal. Then, A(H) < 6(n + 1)|e||.

Example 2.3. Suppose w = ab. Then H(a") = H(b") = 0, while H((ab)") =
(1 +ab + (ab)? + --- + (ab)"1)e € E. If the operator | —ab : E — E has a
continuous inverse (i.e. if 1 € C is not in the spectrum of ab) then H is uniformly
bounded on the powers of ab since (1 —ab)H((ab)") = e — (ab)" (e) has bounded
norm. For example, this happens even for E = R? when p(ab) is a (proper) rotation.

On the other hand, for the representation £ (F,) with 1 < p < oo and with
e € {P(F,) defined by e(1) = 1, e(g) = 0 for g # 1, the quasi-cocycle H is
unbounded on the powers of ab.

3. Nontriviality of quasi-cocycles

In Brooks’ original construction of quasi-morphisms F, = (a,b) — R it is easy to
see that the quasi-morphisms are nontrivial. Choosing w to be a reduced word not of
the form a™ or b™ it is clear that H (w"™) will be unbounded while H(a") and H(b")
will be zero. By this last fact if G is a homomorphism that is boundedly close to H
then G must be bounded on powers of a and b and therefore G(a) = G(b) = 0.
Since any homomorphism is determined by its behavior on the generators we have
G = 0 and the nontriviality of H follows.

When the Brooks construction is extended to quasi-cocycles it is no longer clear
that the quasi-cocycle is nontrivial. In particular if H = H,, . it may be that H (w")
is bounded. See Examples 2.3 and 3.5. In fact if 1 is not in the spectrum of p(w)
then H (w") will be bounded for all choices of vectors e. Even if 1 is in the spectrum,
when e is chosen arbitrarily H(w™) may be bounded. To show that the Brooks quasi-
cocycles are unbounded we will need to restrict to the class of uniformly convex
Banach spaces and to look at a wider class of words than powers of w.

We will also have to work harder to show that a cocycle G that is bounded on
powers of the generators is bounded everywhere. In fact we cannot do this in general
but instead will show that in a reflexive Banach space (which includes uniformly
convex Banach spaces) either the cocycle is bounded or the original representation,
when restricted to a non-abelian subgroup, has an eigenvector. In this latter case it is
easy to construct many nontrivial quasi-cocycles.

3.1. Uniformly convex and reflexive Banach spaces. We will use basic facts about

Banach spaces. General references are [6, 18]. The following concept was introduced
by Clarkson [10].

Definition 3.1. A Banach space E is uniformly convex if for every € > 0 there is
8 > O0suchthatx,y € E, |x| <1, |y| <1, |x — y| = € implies |%| <1-6.
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The original definition in [10] replaces | x|, |y| < 1 above with equalities, but it
is not hard to see that the two are equivalent.

Proposition 3.2. (i) £? spaces are uniformly convex for 1 < p < oo [10]. £! and
£%° spaces are not uniformly convex and not reflexive.

(ii) A uniformly convex Banach space is reflexive (the Milman—Pettis theorem).

(iit) If E is uniformly convex, then for any R > 0 there are € > 0 and x > 0 so
that the following holds. If |v| < R and f : E — R is a functional of norm 1
with f(v) = |v| and if e is a vector of norm > 1/2 with f(e) > —u then
v +e| > |v| + e

Proof. We only prove (iii). Choose § € (0, 1) so that |x|, |y| < 1, |x — y| > m

1_u
implies |m| < 1—46. Then choose €, 4 > O sothate < = and 8=2 > 1 —§.
2 8 k+e

g
Suppose f, v, e satisfy the assumptions but |[v + e| < R + €. If |[v| < 1/8 then

lv+e| > |e|] —|v| > 1/4 > |v| + 1/8 and we are done. So assume that |[v| > 1/8.
vte

Then for x = #’y = norie wehave x|, [y[ < Tand [x—y| =

so we must have |%| < 1—4. Thus

1 1
>
2(Ju[+1) = 2(R+1)°

1—§> x+y}= vie/2| Pl-F 5-%
| 2 lv] + € v|+€ 7 L +e

since f(v +e/2) = |v| + f(e)/2 = |v| — 5 and | f| = 1. This contradicts the
choice of u, €. O

Lemma 3.3. Let p be a unitary representation of a group F on a reflexive Banach
space E. If there is a linear functional f and a vector e € E such that the F -orbit
of e lies in the half space { f > u} with i > 0 then there is an F -invariant vector
e’ # 0 € E and an F-invariant functional ¢ with ¢(e’) > u. If e is F-invariant,
then we can take e’ = e.

Proof. Let A be the convex hull of the F-orbit of e in the weak topology on E.
Since E is reflexive, A is weakly compact. The convex hull A is also F-invariant so
by the Ryll-Nardzewski fixed point theorem it will contain an F-invariant vector e’.
Since ¢’ € A, f(e’) > p and therefore e’ # 0.

Since €’ is a functional on the reflexive Banach space E* and the F-orbit of f
will be contained in the half space {¢’ > u} we similarly get a F-invariant vector

¢ € E* with ¢/'(¢) = ¢(e’) > L. a

Note that if £ contains a nonzero vector that is F-invariant, then the Hahn—
Banach theorem supplies a functional that satisfies the conditions of the lemma and
so there is also a nonzero F-invariant functional.
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3.2. Detecting unboundedness.

Lemma 3.4. Let p be any unitary representation of F» = (a,b) into a uniformly
convex Banach space E. Then one of the following holds:

(i) for everye # 0 € E and any 1 # w € F, not of the form a™b™ nor b™a" the
quasi-cocycle H = Hy, . is unbounded on F3, or

(ii) thereis a free subgroup F' C F> with F = F5, a linear functional g, a vector e
and a )0 > 0 such that the F -orbit of e is contained in the half-space {g < —u}.
In particular, there is an F-invariant vector ¢’ # 0 in the half space.

Proof. We first make some observations about words in F,. Given a word w as in
(i) we can find buffer words B and B’ of the form a*h® or h*a* and a subgroup
F = (a™,b™) with m > £, |w| such that if w" = BwB’ and y, y2,...,yn € F
then in the reduced word for the element x = y,w’y,w’--- y,w’ there is exactly
one copy of w for each w’ and no other copies of either w or w™'. Note that the
word yjw’y,w’ -+ y,w’ may not be reduced and in its reduced version there may be
cancellations in the w’. However, the buffer words will prevent these cancellations
from reaching w. The restrictions on w ensure that w does not appear as a subword
of some y;. In particular, |H(w")| = |e|] and H(xyw’) = H(x) + xH(yw') =
H(x) + xyH(w') forany y € F.

For simplicity, normalize so that |e| = 1, so |H(w’)] = 1. Assume that (ii)
doesn’t hold, and that A is bounded on F,. Let F, be the set of words of the form

yiw'yw’ - ypw', (yi € F)

and let R = sup |H(x)| < oo. Lete, u > 0 be as in Proposition 3.2(iii). Choose an

XEFw

x € Fy, such that |H(x)| > R —e. We will find a y € F such that | H(xyw’)| > R
to obtain a contradiction since xyw’ € Fy,.

Let ¢ be a linear functional of norm 1 such that ¢(H(x)) = |H(x)|. Let
¥ = ¢ o x. Since (ii) doesn’t hold, there exists a y € F with ¥ (yH(w")) > —pu.
(We are applying the negation of (ii) not to e but to H(w’), which is in the F,-orbit
of e, but it is easy to see that this follows from the corresponding fact for e by
replacing F' with a conjugate.) So, ¢(xyH (w")) > —u. Then by Proposition 3.2(iii),
|H(xyw")| = |H(x) + xyH(w")| > |H(x)| + € > R, contradiction.

For an F-invariant vector in (ii), see the proof of Lemma 3.3. O]

We give an application of Lemma 3.4.

Example 3.5. Choose an embedding p : F> C U(2) so that every nontrivial element
is conjugate to a matrix of the form

eZJrit 0
0 e27ris

with 7, s, £ all irrational.
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(Such representations can be constructed by noting that they form the complement
of countably many proper subvarieties in Hom(F,, U(2)).) Put E = C2.

Then any H = Hy,, with0 # e € E,1 # w € F;, is bounded on any cyclic
subgroup, but many are globally unbounded. The second statement follows by noting
that the orbit of any unit vector under a nontrivial cyclic subgroup is dense in a torus
St x ST ¢ C?, so (ii) of Lemma 3.4 fails, and (i) must hold. For the first statement,
observe that for a fixed g € F the values H(g") can be computed, up to a bounded
error, by adding sums of the form

Un = u(e) + gu(e) +---+ g"'u(e)

one for every g-orbit of occurrences of w or w™! along the axis of g. Applying g we
have

g(Un) = gu(e) +--- + g"ule)

and so |g(Up) — Uy| < 2|e|, which implies that |U,| is bounded, since g : C? — C?
moves every unit vector a definite amount. It follows H(g") is bounded on n. This
gives an isometric quasi-action of F» on C? or R* with unbounded orbits, but with
every cyclic subgroup having bounded orbits.

In fact, since H!(F,;p) # 0, it follows that there are isometric actions of F,
on R* with unbounded orbits and with every element fixing a point.

The following is our basic method of detecting bounded cocycles. In the presence
of reflexivity of the Banach space, bounded isometric actions have fixed points. Thus
acocyle G : F, — E is bounded if and only if for some v € E (a fixed point of the
action) we have G(g) = v — p(g)v for every g € F>.

Lemma 3.6. Let p be a unitary representation of F> on a reflexive Banach space E
and G a cocycle that is bounded on {(a®,b) and (a3, b). Then one of the following
holds.

(i) G is bounded on F>, or

(ii) There is a free subgroup F C F, with F = F, such that p|f fixes a nonzero
vectorin E.

Proof. The cocycle G induces an action of F, on E by affine isometries and the
image of G is the orbit of 0 under this action. If the restriction of this action to
(a?, b) is bounded (with respect to the norm topology) then the convex hull of the
orbit (in the weak topology) will be (a2, b)-invariant and compact since E is reflexive
so by the Ryll-Nardzewski fixed point theorem (a?, b) will have a fixed point. Thus
Fix(a®?)N Fix(b) # @. If this intersection is not a single point then (ii) holds since
the representation p restricted to F = (a2, b) fixes the difference of any two vectors in
the intersection. (p is the derivative!) Similarly, (ii) holds if Fix(a®) N Fix(b) #
is not a single point. Now suppose each intersection is a single point. If the two
intersections coincide then the intersection point is fixed by botha = a3(a?)~! and b,
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thus by the whole group F,, which implies that G is bounded. If the intersections
are distinct then F = (a®, b) fixes two distinct points, so (ii) holds as before. n

3.3. Detecting essentiality and proof of Theorem 1.1. We now show that under
suitable conditions our quasi-cocycles are essential. We consider two cases. If there
is a free subgroup that fixes a nonzero vector e € E, the argument essentially goes
back to Brooks, since in this case we restrict to the trivial representation. This case
is presented first.

Proposition 3.7. Let p be a unitary representation of F, in a reflexive Banach
space E and let F be a rank two free subgroup such that p|r has an invariant vector
e # 0. Then quasi-cocycles of the form Hy, , where w is a reduced word span an
infinite dimensional subspace of Qf‘ (F2; p).

Proof. After possibly conjugating ' we can assume that the minimal F-tree contains
the identity in the Cayley graph for F; and allows us to find cyclically reduced words
« and B in F such that the concatenation

Wy = akﬁkakﬁk

is cyclically reduced. Furthermore we can assume that @ and B generate F. Let Hy =
Hy, .. By Lemma 3.3 there exists an F-invariant (continuous) linear functional ¢
with ¢(e) > u > 0.

Then the restriction to F of the composition ¢ o G with any co-cycle G is a
homomorphism, and similarly the restriction of the composition ¢ o H to F' with any
quasi-co-cycle H is a quasi-morphism.

We will show that the sequence H;p, H,,--- represents linearly independent
elements in éf‘(Fz; p). Indeed,if H = Hy —c1Hy —+++—cp_1 Hp—1, with 1 < k,
for any constants c; then the quasi-morphism ¢ o H on F is 0 on the powers of «
and f3, so if a co-cycle G is boundedly close H, then the homomorphism ¢ o G on F
must be bounded, and therefore zero, on powers of @ and 8. Therefore ¢ o G is trivial
when restricted to F'. On the other hand a staightforward calculation shows that
¢ o H(wy) > nu so ¢ o H is unbounded on F and H and G cannot be boundedly

close. We showed that H is non-trivial in @E‘ (F2;p),so Hy, Hy, ..., Hy are linearly
independent. O

‘We now consider the opposite case when no reduction to the trivial representation
is possible.

Proposition 3.8. Let p be a unitary representation of F, = (a,b) on a uniformly
convex Banach space and assume that no nonabelian subgroup of F5 fixes a nonzero
vector. Then for any fixed e # 0 the quasi-cocycles of the form Hy, . span an infinite

dimensional subspace of Qf-é (F3: p), where w ranges over cyclically reduced words.
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Proof. Let wy, = a®™b>™a’™b™™, m > 1, and gcd(m,6) = 1. By Lemma 3.4,
H,, = Hy,, is unbounded. Furthermore H,, is 0 on the subgroups (a?,b) and
(a3, b) listed in Lemma 3.6.

We claim that those H},,’s are linearly independent in @\(/? (F>; p). Fix m and let
H = Hy — ) ;_,ciH; for constants ¢;. Then H is also unbounded, since the H;
for i < m are visibly 0 on all words in Fy,,, , the set given in the proof of Lemma 3.4,
but H,, is unbounded on F,,,. H is bounded on (a2, b) and (a3, b).

Suppose H differs from a cocycle G by a bounded function. Then G is also
bounded on the subgroups (a2, b) and (a3, b), therefore G is bounded on F; since (i)
must hold in Lemma 3.6. So, H is bounded on F>, contradiction. We showed that
H;,i < m are linearly independent in é_é (F2:p). O]

Theorem 1.1 now follows immediately.

Theorem 3.9. Let p be a unitary representation of F> on a uniformly convex Banach
space E # 0. Then dim Q C (F>; p) = oo.

Proof. If there is a rank two free subgroup F in F> with an F-invariant vector e # 0,
then use Proposition 3.7 to produce an infinite dimensional subspace. Otherwise, use
Proposition 3.8. O

We remark that Pascal Rolli has a new construction, different from the Brooks
construction, that he showed in [22] produces nontrivial quasi-cocycles on F, (and
some other groups) when the Banach space E is an £”-space (or finite dimensional).

Example 3.10. To see the importance of uniform convexity we will look more closely
at the examples £°°(F,) of bounded functions and £3°(F>) of bounded functions that
vanish at infinity.

(1) For the regular representation on £°°(F,) (or any group G) the constant
functions determine a one-dimensional invariant subspace. In particular, any quasi-
morphism canonically determines a quasi-cocycle with image in this invariant
subspace. If the original quasi-morphism is essential one may expect that the
associated quasi-cocycle is also essential. However, for any quasi-cocycle H we
can define the function Hy : F> — £°°(F;) by

Ho(g)(f) = H( ) f)—p(@H (" /)f)=H()(F)—HE " fHg " f)

and then we can check that Hy is a cocycle (essentially it is the coboundary of the
0-cochain defined by the function f + H(f)(f)) and that | H — Hy||lco < A(H).
In particular, O C (F»; £>®(F,)) = 0 and HZ(Fy;£%°(F,)) = 0.

(2) For the regular representation of F> on £3°(F>) neither I, nor any non-trivial
subgroup fixes a non-trivial subspace so we cannot, as in the £°°( F;) case, use quasi-
morphisms to construct unbounded quasi-cocycles. Furthermore for some choices
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of the vector e, the quasi-cocyle Hy,  will be bounded. For example if e € £5°(F?)
is defined by

1 =1
0 %=1
then || Hy ¢(x)]lco = 0 or 1 depending on whether x does or doesn’t contain a copy

of w. More generally if e € £1(F,) C £5°(F>) we have that || Hy ¢(x) [0 < [le]1.
On the other hand if we define f € £3°(F>) by

e(x) = ;

I/n x=w",n>0

f(x) =

0 otherwise

then |Hy, r(w™)(id)| = Y.7_;1/i 50 ||[Hy, r(w")| s is unbounded. We can still
construct the cocycle Hy as in the previous paragraph where H = H,, r but this
cocycle will not lie in £5°(F>). This example emphasizes an inherent difficulty in
extending our results to a wider class of Banach spaces.

Note that H}} (G;£>°(G)) = 0(n > 1) for any group G [19, Proposition 7.4.1]
since £°°(G) is a “relatively injective” Banach G-module [19, Chapter II], so some
assumption on the Banach space is necessary.

(3) We also note that HbZ(G;EgO(G)) = 0 for any countable, exact group
(e.g. G = F,, see [21]). This can be seen as follows. First, since £°(G) is a
relatively injective Banach G-module, Hj (G;£>°(G)) = 0 for all n > 0. From
the long exact sequence in bounded cohomology [19, Proposition 8.2.1] induced
by the short exact sequence 0 — £5°(G) — £°(G) — £>(G)/€3°(G) — 0, it
suffices to show H}} (G, £%°(G)/L$(G)) = 0. But this holds if G is countable and
exact [9, Theorem 3]. We thank Narutaka Ozawa for pointing out his work to us.

To show Hy (G;£3°(G)) = 0 for all n > 1 it suffices to know

Hy (G, £2(G)/{5°(G)) =0

for all n > 0. Ozawa informs us that this is also true.

4. Hyperbolically embedded subgroups

Before proving our main theorem we need a couple of straightforward lemmas.

Lemma 4.1. Let p be a unitary representation of a group G on E and K a finite
normal subgroup. Let E' C E be the closed subspace of K -invariant vectors and p'
the unitary representation of G on E' obtained by restriction. Then every (quasi)-
cocyle in QC(G; p) is a bounded distance from a (quasi)-cocyle in QC(G; p’)

Proof. We first define a linear projection 7 : E — E’ by

(%) = |17| Z p(k)x.

keK
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If H is a (quasi)-cocycle in QC(G;p) then H = 7 o H is a (quasi)-cocycle in
QC(G: p'). We need to show that H is at bounded distance from H.

Recall that H is the translational part of an isometric G (-quasi)-action on E. By
the normality of K if two points in E are in the same G-orbit then their K-orbits
are (quasi)-isometric. Since H(G) is the G-orbit of 0 under this (quasi)-action and
H(Kg) is at bounded distance from the K-orbit of H(g) we have that the K-orbits
of points in the image of H are uniformly bounded, and so & moves points in /m(H)
a uniformly bounded amount. O

Corollary 4.2. The natural map é—é (G;p') = QE* (G; p) is an isomorphism.

Lemma 4.3. Let p be a unitary representation of G x K on E such that K is finite

and p restricted to the K-factor is trivial. Then there is a natural isomorphism from
QC(G x K;p) > QC(G;p).

Proof. Given H € QC(G x K;p) define H € QC(G:;p) by H(g) =
H(g,id). The linear map defined by H H descends to a linear map
Q-E' (G xK;p)— 66‘ (G; p). Any quasi-cocycle in QC(G; p) determines a quasi-
cocylce in QC(G x K; p) by extending it to be constant on the K-factor. This also
descends to a map Q_E' (G;p) — @7:“ (G x K; p), which is an inverse of our first map
since |H(g,k) — H(g.id)|| < A(H) + C where C = max{||H(id,k)|/|k € K}.
Hence we have the desired isomorphism. U

In [11], Dahmani, Guiradel and Osin defined the notion of a hyperbolically
embedded subgroup. For convenience we recount the definition here. Let G be a
group, H a subgroup and X C G such that X U H generates G. Let ['(G, X U H)
be the Cayley graph with generating set X LI /. Then H is hyperbolically embedded
in G if

 I'(G, X U H) is hyperbolic;

e Foralln > 0 and & € H there are at most finitely many #° € H that can be

connected to 4 in I'(G, X U H) by a path of length < n with no edges in H.

A quasi-cocycle is anti-symmetric if

H(g™) =—-p(g HH(g).

A cocycle automatically satisfies this condition. Furthermore every quasi-cocycle is
a bounded distance from an anti-symmetric quasi-cocycle. (Simply replace H(g)

with %(H (g) —p(g)H(g™').) We have the following important theorem of Hull and
Osin.

Theorem 4.4 ([17]). Let G be a group and F a hyperbolically embedded subgroup.
Then there exists a linear map

t: QCas(F;p) = QCus(G;p)

such that if H € QCug(F: p) then H = ((H)|p. In particular, dim QC (F; p) <
dim QC (G: p).
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The action of a group G on a metric space X is acylindrical if for all B > 0
there exist D, N such that if x,y € X and with d(x,y) > D then there are at
most N elements g € G with d(x,gx) < B and d(y,gy) < B. A group G
is acylindrically hyperbolic if it has an acylindrical, non-elementary, action on a
d-hyperbolic space. To apply the previous theorem we need the following result of
Dahmani—Guirardel-Osin and Osin:

Theorem 4.5 ([11,20]). Let G be an acylindrically hyperbolic group and K the
maximal finite normal subgroup. Then G contains a hyperbolically embedded copy
Of Fz x K.

Remark 4.6. Theorem 4.5 is a combination of two theorems. In [20, Theorem 1.2],
Osin proves that an acylindrically hyperbolical group contains a non-degenerate
hyperbolically embedded subgroup. In [11, Theorem 2.24], Dahmani—Guirardel—
Osin show that if G contains a non-degenerate hyperbolically embedded subgroup
then it contains a hyperbolically embedded copy of F; x K. We note that this latter
theorem relies on the projection complex defined in [2].

Proof of Corollary 1.2. Let E' C E be the subspace fixed by K and p’ the restriction
of p to E’. By assumption dim E/ > 0. By Theorem 4.5 there is a copy of
F, x K hyperbolically embedded in G. By Lemma 4.3 and Theorem 3.9 we have
that dim QC(F2 x K;p') = dim QC(F2 p') = oo. Corollary 4.2 implies that
dim QC (F x K; p) = o0o. The corollary then follows from Theorem 4.4. O
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