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Motivic construction of cohomological invariants

Nikita Semenov*

Abstract. Let G be a group of type Eg over Q such that Gy is a compact Lie group, let K be a
field of characteristic 0, and

qg={-1,-1,-1,—-1,—-1)

a 5-fold Pfister form. J.-P. Serre posed in a letter to M. Rost written on June 23, 1999 the
following problem: Is it true that G g is split if and only if ¢ x is hyperbolic?

In the present article we construct a cohomological invariant of degree 5 for groups of
type Eg with trivial Rost invariant over any field k& of characteristic 0, and putting k = @Q answer
positively this question of Serre. Aside from that, we show that a variety which possesses a
special correspondence of Rost is a norm variety.

Mathematics Subject Classification (2010). 20G15, 19E15.

Keywords. Linear algebraic groups, cohomological invariants, algebraic cycles, algebraic
cobordism, motivic cohomology, motives.

1. Introduction

Let G be a group of type Eg over (Q such that Gg is a compact Lie group. Let
now K /Q be a field extension and ¢ = {(—1,—1, —1,—1, —1)) a 5-fold Pfister form.
J.-P. Serre posed in a letter to M. Rost written on June 23, 1999 the following problem:

Is it true that G is split if and only if gx is hyperbolic?

M. Rost replied on July 2, 1999 proving that if g is hyperbolic, then G is split
(see [11] for the proof). One of the goals of the present article is to give a positive
answer to Serre’s question (see Theorem 8.8).

Let us recall first some recent developments in the topics which are relevant for
the method of the proof of this result.

*The author gratefully acknowledges the support of the DFG (project GI706/1-1), MPIM Bonn, and
the Sonderforschungsbereich/Transregio 45 (Bonn-Essen-Mainz).
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1.1. Cohomological invariants. The study of cohomological invariants was initi-
ated by J.-P. Serre in the 1990s. Serre conjectured the existence of an invariant in
HZ (k,Q/Z(2)) of G-torsors, where G is a simply connected simple algebraic group
over a field k. This invariant was constructed by M. Rost and is now called the Rost
invariant of G (see [16, 31.B and pp. 448-449]).

Nowadays there exist numerous constructions and estimations of cohomological
invariants for different classes of algebraic objects (see e.g. [8]). Nevertheless, the
most constructions of cohomological invariants rely on a specific construction of
the object under consideration. Unfortunately, for many groups, like Eg, there is no
classification and no general construction so far.

1.2. Chow motives of twisted flag varieties. Another direction which we discuss
now is the theory of motives of twisted flag varieties. Typical examples of such
varieties are projective quadrics and Severi—Brauer varieties.

The study of twisted flag varieties was initiated by Rost when he provided a motivic
decomposition of a Pfister quadric used later in the proof of the Milnor conjecture
(see [27]). The motives of Severi—Brauer varieties were studied by Karpenko and the
motives of general quadrics by Izhboldin, Karpenko, Merkurjev, and Vishik.

A systematical theory of motives of general twisted flag varieties was developed
in a series of our articles with a culmination in [24] and [22] where the structure of
the motive of a generically split twisted flag variety was established. Moreover, in
some cases we provided an alternative construction of generalized Rost motives as
indecomposable direct summands of generically split varieties (see [24, §7]).

The technique developed in our articles does not use cohomological invariants of
algebraic groups and of twisted flag varieties at all, and our arguments do not rely on
specific constructions of algebraic groups.

1.3. The Bloch-Kato Conjecture. The Bloch—Kato conjecture (more precisely its
proof) provides a bridge between cohomological invariants and motives.

The Bloch—Kato conjecture says that for any » and any prime number p the norm
residue homomorphism

Ky (k)/p — H(k, nS")

{ala-'-aan}'_> (al)U"‘U(an)

between the Milnor K-theory and the Galois cohomology of a field k with chark # p
is an isomorphism.

The case p = 2 of the Bloch—Kato conjecture is known as the Milnor conjecture.

The proof of the Bloch-Kato conjecture goes as follows. Given a pure symbol u
in H} (k, ,u?”) M. Rost constructs a splitting variety X,, for u with some additional
properties (If p = 2 one takes norm quadrics, for n = 2 one takes Severi—Brauer
varieties, for p = 3 the construction is based on the Merkurjev—Suslin varieties;
see [30] for an explicit construction for p = n = 3). Then V. Voevodsky using the
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category of his motives and symmetric powers splits off a certain direct summand M,
from the motive of X, (see [42]). The motive M, is called the generalized Rost
motive.

Later Rost was able to simplify Voevodsky’s construction and found the same
motive M, staying inside the category of classical Chow motives (see [29]). His
main idea was to produce an algebraic cycle on X, called a special correspondence
(see Definition 4.2), forget about the symbol u and use the special correspondence to
construct the motive M,,. This motive is used then to construct exact triangles in the
category of Voevodsky’s motives. These triangles essentially involve mixed motives,
in particular, deviate from the category of classical Chow motives, and are used
(among other results of Rost and Voevodsky) to finish the proof of the Bloch—Kato
conjecture.

The symbol u is a cohomological invariant of the variety X, (see [42,
Theorem 6.19]). Aside from that, one can notice that the special correspondences
of Rost resemble the algebraic cycles that we construct in the proof of our motivic
decompositions (compare [29, Lemma 5.2] and [24, Lemma 5.7]).

Summarizing: The technique developed by Rost and Voevodsky in the proof of
the Bloch—Kato conjecture gives a way to produce algebraic cycles and motives out
of cohomological invariants of varieties.

1.4. Conclusion. The discussion in the above subsections leads to the following
conjecture. Namely, there should exist a way back from motives to cohomological
invariants. Notice that an evidence of this conjecture appears already in articles of
O. Izhboldin and A. Vishik [12] and [35], where the case of quadrics was treated.

In the present article we show in a constructive way that the varieties which
possess a special correspondence of Rost admit cohomological invariants.

This result has several unexpected applications in the theory of algebraic groups.
In the present article we use it to construct a cohomological invariant in HJ, (k, Z/2)
for any group of type Eg whose Rost invariant is trivial. In turn, this invariant allows
us to give in the last section a positive answer to a question of Serre about compact
groups of type Eg mentioned above.

We remark that the construction of this invariant essentially relies on the motivic
decomposition of the respective variety of Borel subgroups. We compute this
decomposition in Section 8 using the J-invariant of algebraic groups (see [24])
and the classification of generically split twisted flag varieties (see [22] and [23]).

1.5. Leitfaden of the proof. Let us present a simplified scheme of the construction
of the degree 5 invariant for groups of type Eg.

Let G be an anisotropic group of type Eg over a field k of characteristic 0 with
trivial Rost invariant and let X be the variety of Borel subgroups of G.

Using “compression” described in Section 7 we construct a smooth projective
variety ¥ over k of dimension 15 = 2°~! — 1 with no O-cycles of odd degree and
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such that the direct summands of the motives of X and ¥ supporting the 0-cycles are
isomorphic (see Definition 7.3).
Next we show in Lemma 8.5:

J-invariant of algebraic groups [22-24]

“ the Rost invariant of G is zero

Direct summand of the motive of X (and hence of 7)
supporting the 0-cycles is binary

Finally, we show (Theorem 6.1):

Algebraic cobordism

Special correspondence (Rost) (Levitie, Morel)

“ |
Rost motive (Prop. 5.2) and
computation of characteristic v,—1-varieties (Vishik, Prop. 2.7)

numbers (Lemma 6.2)
\V[ilnor Conjecture (Voevodsky)/

A smooth projective variety Y over k of dimension 2"~ — 1
with no 0-cycles of odd degree and with a binary motivic
summand supporting the O-cycles possesses a cohomological
invariant u € HZ (k,Z/2) such that for any field extension K/k
one has ug = 0 iff ?K has a O-cycle of odd degree.

All this together gives an invariant u of degree 5 for Eg.

We remark that the number 15 = dim Y has a combinatorial origin. Namely, it
is related to degrees of certain polynomial invariants of the Weyl group of type Eg
(see [13]).

Letnow G be a group of type Eg over Q of compact type and let G be a split group
of type Eg over a field K of characteristic zero. Then u = (—1)°> € H),(Q,Z/2)
and one can show (see [11]):

PGL,(31) < Gy —1 is a sum of 16 squares in K
ﬂ Serre H Quadratic form theory
. (%)
G splits << (=1)° =0€ H(K,Z/2)

Thus, the positive solution to Serre’s problem (x) implies some classification
results about finite subgroups of algebraic groups over a field K. Moreover, instead
of 16 squares one can take any number of squares between 16 and 31 (see [25]). We
remark finally that one can write 31 in PGL,(31) as 30 + 1, and 30 is the Coxeter
number for Eg, see [33, Section 2.1, Example 5] for a general case.
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1.6. Structure of the article. In Section 2 we recall some results on algebraic co-
bordism of Levine—Morel and v, -varieties. We need them to prove a certain statement
about v, -varieties (Prop. 2.7) which appears as Conjecture 1 before Thm. 6.3 in [42].
The proof belongs to A. Vishik, and we represent it here with his kind permission. In
Sections 3 and 4 we recall basic properties of the category of motives of Voevodsky
and the Rost construction of special correspondences resp. Sections 5 and 6 are
devoted to the construction of cohomological invariants for varieties admitting a
special correspondence (Theorems 5.1 and 6.1). In Section 7 we provide some general
results which allow to “compress” varieties. Finally, in Section 8 we construct an
invariant for groups of type Eg with trivial Rost invariant and solve Serre’s problem
(Theorem 8.8) finishing the proofs of all main results of the present article.

Acknowledgements. The first version of this article appeared on arXiv.org in May,
2009. I would like to thank sincerely Skip Garibaldi, Nikita Karpenko, Alexander
Merkurjev, Fabien Morel, Victor Petrov, Alexander Vishik, Kirill Zainoulline,
Maksim Zhykhovich, the anonymous referee, and especially Stefan Gille for
encouragement and for interesting discussions and remarks on the subject of the
article over a long period of time.

2. Algebraic cobordism and v,-varieties

2.1 (Lazard ring). Fix a prime p and a field k with char k = 0. Consider the algebraic
cobordism Q* of Levine—Morel (see [18]) and the Lazard ring I. = Q(Spec k). This
is a graded ring additively generated by the cobordism classes of maps

[X] = [X — Speck] € L™4mX

where X is an irreducible smooth projective variety over k. It is known that this ring

is isomorphic to the polynomial ring with integer coeflicients on a countable set of
variables.

2.2 (Characteristic numbers). Given a partition J = (/y,...,[,) of arbitrary length
r > 0with/y > [, > ---> [, > 0 one can associate with it a characteristic class

o (11=X 1)

i>1
of X as follows: Let Py(xy,...,x,) be the smallest symmetric polynomial (i.e., with
a minimal number of non-zero coefficients) containing the monomial xil e xﬁ’ . We
can express Py as a polynomial on the standard symmetric functions o1, ..., 0, as

P_]()C],...,)Cr) = QJ(U],...,U,-)

for some polynomial Q ;.
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Let ¢; = ¢j(—Tx) denote the i-th Chern class of the virtual normal bundle of X.
Then

CJ(X) = QJ(C].’"-’CI')'

The degrees of the characteristic classes are called the characteristic numbers.

IfJ =(,...,1) (i times), c;j(X) = ¢;(—Tyx) is the usual Chern class. We
denote b;(p—1)(X) = c(p—1,..,p—1)(X) (i times). In particular, if p = 2 then
bi(X) =ci(=Tx). If J = (p" —1), we write cj (X) = spn_1(X). The class 54 (X)
is called the d-th Milnor class of X (see [18, Section 4.4.4]).

The characteristic numbers satisfy different divisibility properties. Moreover,
there exist relations between different characteristic numbers (see e.g. [29, Section 9],
[20, Prop. 7.11]).

Definition 2.3 (v, -varieties). Let p be a fixed prime.

(I) A smooth projective variety X is called a v,-variety if dim X = p" — 1, all
characteristic numbers of X are divisible by p, and

deg saim x (X) # 0 mod p?.

(II) A smooth projective variety X is called a v<,-variety if X is a v,-variety
and for all 0 < i < n there exists a v;-variety Y¥; and a morphism ¥; — X.

Example 2.4. A typical example of a v,,-variety is a smooth projective hypersurface u
of degree p in P?" (see [40, Proposition 3.6]).

The fact that all characteristic classes of u are divisible by p follows from the
divisibility of its characteristic numbers by deg /" ~! = p, where / is a hyperplane
section of u.

Remark 2.5. The above definition of a v,-variety is more restrictive than the
definition which Voevodsky uses in his articles. Namely, he does not assume that all
characteristic numbers are divisible by p.

By [18, Lemma 4.4.19] one can extend the definition of characteristic numbers
to an additive map Q24 (Spec k) — Z, where d = deg Py(x1,...,x,). In particular,
one may speak about a v,-element in the Lazard ring, i.e., an element u in L pn_;
with all characteristic numbers divisible by p and with degs,»_;(u) # 0 mod p2.

2.6 (Landweber—Novikov operations). Further on one can construct the Landweber—
Novikov operations on the cobordism ring Q*(V) for a smooth quasi-projective
variety V. Given a partition J as above we write

S v (V) - Vi)

for the operation which maps a cobordism class [f/: X — V] € Q*(V) to
f*(QJ(cfz, o0y, where ¢ = cig(—TX + f*(Ty)) are the cobordism Chern

i

classes (see [36, Definition 2.12]).
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Since % is a universal cohomology theory, there exists a canonical map
pr: Q* — CH*

which turns out to be surjective. For a particular partition J = (p —1,...,p—1)
(i times) denote S} _ 5 =S 1{— ~- Then the following diagram commutes:

Q* (V) b CH*(V) Ch*(V)

Q*+-Diy) L cg*te-Di(y) > Ch*+@=Di ()

where Ch* := CH* /p and S’ denotes the i-th Steenrod operation in the Chow
theory (see [3]). In particular, since S'|cpm(y) = O for i > m, the image

pro SE_N (%))

is divisible by p for such m. Moreover, the total operation Sz 1= ) _; Si_ yisa
ring homomorphism (see [18,36,44]).

For an integer n let I(p,n) denote the ideal of IL generated by the varieties of
dimension < p” — 1 with all characteristic numbers divisible by p. This is a prime
ideal invariant under the action of the Landweber—Novikov operations on L. By
definition I(p,n — 1) C I(p,n). Moreover, as an LL-ideal I(p, n) is generated by
I(p,n — 1) and by any v, -variety. Besides, I(p,n — 1) does not contain v,-varieties
(see [20, Section 11], [37, Section 3], and [17, Section 2]).

The following proposition seems to be known in algebraic topology. The existence
of Landweber—Novikov operations in the algebraic cobordism theory of Levine—
Morel allows to prove it in the context of algebraic geometry. This proposition
appears as Conjecture 1 before Thm. 6.3 in [42].

Proposition 2.7. A v,-variety is a v<,-variety.
Proof. (A. Vishik) It is well known that a smooth hypersurface of degree p in P?"

is a v,-variety (see [40, Prop. 3.6] and Example 2.4). Denote its class in L as u.
There are the following exact sequences of vector bundles

0—>Ty — l*(T]pp”) — "(O(p)) = 0

and 0= 0 — O = Tpon -0,
where Ty, is the tangent bundle of v and ¢: u — PP" .
Therefore L+ [k
Q, _ P
¢ ( Tu) - (1 _+_h)pn+1’

where & is a hyperplane section of u and
[pJh = h +q +--- +q h = ph + decomposable terms

is the sum with respect to the cobordism formal group law.
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A direct computation shows now that § f:vl (u) modulo I(p,n —2) is a multiple of
the class of a hypersurface of degree p in P? "~! with a coefficient not divisible by p.
In particular, S f:vl (u) is a v,—1-element.

Let now v, be a v,-element in .. Then y := av, —u € I(p,n — 1) for some
a € Z coprime to p. To conclude that v, is a v,_j-element, it suffices to show that

Sf:,l (y) € I(p,n — 2). We can write
Y = Up—1Xp—1 + Up—2Xp—2 + 4+ VoXo
where v; is a v;-element and x; € L. Since the ideal I(p,n — 2) is stable under the
Landweber—Novikov operations, we have that
Sfjvl (Vn—2Xn—2 + +++ + voxo) € I(p,n —2).
Moreover, Sty (vp—1) € I(p,n —2) forall i > 0. Finally, we have the term

0 pn—l pn—l
n—1
But § f_ ~ (xn—1) is divisible by p, since x,_; € L0 and this Landweber—Novikov
operation induces the Steenrod operation S P""" on the Chow group. Thus,

n—1
Si_y ) € I(p,n—2),

and we are done. ]

3. Category DM

The base field k is assumed to have characteristic zero, and all varieties are assumed
to be irreducible.

If A — B is amorphism in a triangulated category, then there exists a unique up
to isomorphism object C with an exact triangle of the form A — B — C. We write
C = Cone(A — B).

Definition 3.1. Let X be a smooth projective variety over k. As C (X) we denote
the standard simplicial scheme associated with X :

X:XXXEXXXXX“-

In the present article we work in the category DM := pMme// (k) of effective
motives of V. Voevodsky over k with p-adic coefficients Z ,, where p is a fixed prime
number (see [19,42,43]). In the same way we could work with Z,)-coefficients, but
this would make the proofs of some statements (e.g. of Lemma 7.6) technically more
involved.
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It is known that there are functors from the category of smooth schemes over k
and from the category of smooth simplicial schemes over k to DM. Therefore we
can speak about the motives of smooth schemes and smooth simplicial schemes.

The category of classical Grothendieck’s Chow motives is a full subcategory
of DM closed under direct summands. Its objects are called pure motives. For an
integer b we set {b} := (b)[2b]. For example, if M € DM, then M {b}[1] means
M (b)[2b + 1] and M {b} is a Tate twist of M. We have an exact triangle:

Zp 5 2y — T/ p — Tl (1)

where 7, is the motive of the base point. For M € DM its motivic cohomology with
Z | p-coefficients is given by

H*¢(M,Z/p) = Hom(M, Z/ p(c)[d]).

We list now some properties of the category DM.

Lemma 3.2 ([19, Cor. 19.2 and Thm. 5.1]). Let X be a smooth projective variety
over k. Then

Hom(X,Z/ p(i)[2i]) = CH (X) ® Z/p =: Ch' (X)
is the Chow group of X. If X = Speck, then additionally
Hom(X, Z/ p()[i]) = KM (k)/p

is the Milnor K-theory of k mod p.

We remark that these statements are given in [19] integrally. The mod-p version
follows from the integral version, from exact triangle (1) and from the facts that

Hom(X,Z,(i)[2i 4+ 1]) = 0 and Hom(Speck,Z,(i)[i +1]) =0

forall i > 0 (see [19, Thm. 3.6 and Thm. 19.3]).

Lemma 3.3 ([35, Theorem 2.3.4], [40, App. B]). Let X and Y be smooth projective
irreducible varieties over k and let Xy (resp. Xy ) be the motive of C (X) (resp. of
C(Y)). The natural morphism Xy — Spec k is an isomorphism if and only if X has
a zero-cycle of degree coprime to p.

The motives Xx and Xy are isomorphic if and only if X has a zero-cycle of degree
coprime to p over k(Y) and Y has a zero-cycle of degree coprime to p over k(X).

Lemma 3.4 ([19, Thm. 3.6 and Thm. 19.3)]). Let X be a smooth projective variety
over k. Then

Hom(X,Z/p(c)ld]) =0

ford —c > dim X and for d > 2c¢. The same formula holds for motivic cohomology
with integral coefficients.
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We remark that again this mod- p version follows from the integral version given
in [19] and from exact triangle (1).

Lemma 3.5 (Cancellation; [41, Corollary 4.10]). Let A, B € DM. Then for all
i,j =0, we have

Hom(4, B) = Hom(A()[/]. B@)[j])-

Definition 3.6. A localizing subcategory of DM generated by an object A € DM is
a minimal triangulated subcategory closed under direct summands, arbitrary direct
sums, and containing A.

Lemma 3.7 ([40, Lemma 4.7], [35, Theorem 2.3.2]). Let X be a smooth projective
variety over k and M an object of the localizing subcategory of DM generated by X .
Denote as X the motive of C(X). Then

(I) the natural morphism M @ X — M is an isomorphism,

(Il) and the natural homomorphism Hom(M,X) — Hom(M,Z,) is an
isomorphism.

In DM there is an action of the Milnor operations for smooth simplicial schemes U
Q;:Hom(U,Z/ p(r)[s]) = Hom(U,Z/p(r + p' — D[s +2p" —1]).

In the same way there is an action of the Milnor operations on the reduced motivic
cohomology H**(U,Z/ p) for smooth pointed simplicial schemes U. They satisfy
the following properties:

Lemma 3.8 ([39, Sectiorl 1?], [38, Theorem 3.17]). Let U be a smooth pointed
simplicial scheme u,v € H**(U,Z/ p). Then
(D 97 =0;
) 9iQ; +0;0:i=0;
(D) Qi(uv) = Qi(wv + uQi(v) + > E"¢;u)y;(v), where n; > 0,

@j and rj are some homogeneous cohomological operations of bide-
grees (*,%) with ¥ > 2x > 0, and & is the class of —1 in
Hom(Speck,Z/p(1)[1]) = k*/k*P. (In particular, & = 0 if p is odd).

Thus, the following sequence is a complex:

Fr2r =iy gz ) B (U2 p) B H N L, 7 ),
(2)
Definition 3.9. The cohomology groups of complex (2) are called Margolis motivic
cohomology groups and are denoted as HM f’*’(U k.
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The following lemma is of particular importance for us.

Lemma 3.10. Let X be a smooth projective variety over k, Y a vy-variety over k,
and let X be the motive of C (X). Denote as X = Cone(X — Speck) the cone of
the natural projection.

Assume that there existsamap Y — X. Thenforall0) <i <nandall *,*" € 7
HM* (X) =0.

Proof. The lemma immediately follows from [42, Lemma 4.3] and Proposition 2.7.
O

The following lemma immediately follows from exact triangle (1) and from the
fact that the complex Z ,(c) = 0 for ¢ < 0.

Lemma 3.11. We have Hom(X', Z/ p(c)[d]) = 0 if ¢ < 0. The same formula holds
with integral coefficients.

The following lemma follows from the proof of Sublemma 6.2 of [12].
Sublemma 6.2 in [12] is about quadrics, but the same proof works for any smooth
projective irreducible variety.

Lemma 3.12 ([12, Proof of Sublemma 6.2]). Let X be a smooth projective irreducible

variety, let X be the motive ofé(X), and ' € Hom(X, X{b}[1]) for some b. Let

w € Hom(X, Z ,{b}[1]) be the image of 1" under the natural map of Lemma 3.7(11).
Then for all ¢, e the pull-back

(u")*:Hom(X,Z,(c)[e]) = Hom(X,Z,(c + b)[e + 2b + 1])

coincides with the multiplication by L.
The next two lemmas follow from the (proven) Bloch—Kato Conjecture.

Lemma 3.13 ([42, Lemma 6.6v]). Let X be a smooth projective irreducible variety
over k, let X be the motive of C(X), and X = Cone(X — Speck).
Then

H(X,7Z/p) =0
foralld <c + 1.

Lemma 3.14 ([29, Lemma 2.1]). Let X be a smooth projective irreducible variety
over k, n > 2, and let X be the motive of C(X). Then there is a natural exact
sequence:

0— H™" WX, 2/ p) — Hey (k. pg"™D) — H, (k(X), up™™D).

In particular, any element of H”*~1(X,7Z/ p) can be identified with an element
of the Galois cohomology HZ (k, i,y D=ty
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4. Rost’s construction

We assume that chark = 0 and k contains a primitive p-th root of unity .

Definition 4.1 (Norm varieties). Let u € HJ,(k, /L?” . A smooth projective
irreducible variety X over k is called a norm variety for u if X is a v,—;-variety and

uk(X) = (0,

Ifu isapure symbol, i.e.,u = (a;)U---U(a,) forsomea; € H), (k, jup) = k> k<P,
then it was shown by M. Rost that a norm variety for u exists. There is a general
conjecture that if X' is a norm variety for u, then u is a pure symbol.

Definition 4.2 (Rost). Let n be a positive integer, p a prime, b = p"p__ll_ Land X a

smooth projective geometrically irreducible variety over k of dimension p"~! — 1.
Consider the complex

* *® * * *
g =7

b b Ty =Ty 7y b
CH(X) — CH° (X xX) ——— > CH° (X x X x X)
where 7; is the i-th projection in the diagram

Xﬁ:XxXg—_:XXXxX.

Let p € CH?(X x X). Define
c(p) == (m0)«(p?~") € CH*(X) = Z.
The cycle p is called a special correspondence of type (n, p) for X if

(mg — 7y +73)(p) =0
and c(p) # 0 mod p.

In this definition we assume that X is geometrically irreducible, since we consider
products of varieties, like X x X, which can be reducible, if X is irreducible, but not
geometrically irreducible.

M. Rost showed that a variety X which possesses a special correspondence and
has no zero-cycles of degree coprime to p is a v,—j-variety (see [29, Section 9]). We
remark also that by [29, Lemma 5.2] one has pg(x) = H x 1 —1 x H for some cycle
H € CH? (Xy(x)).
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The following table gives some examples of norm varieties (cf. [28]). We refer
to [16] for notations.

4 n symbol norm variety

2 any | (ay)U---U (ap) the projective quadric given by ¢ = 0
where ¢ = {(a1,...,an—1) L (—a,).

2 5 fs the variety of singular trace zero lines

in a reduced Albert algebra with the
cohomological invariant fs; this variety
is a twisted form of F4/ P4, where Py is
a maximal parabolic subgroup of type 4
(enumeration of simple roots follows

Bourbaki).
any | 2 (@) U (b) Severi—Brauer variety SB(A) where A =
(x,y | x? =a,y? =b,xy = {pyx).
3 3 g3 the twisted form of a hyperplane section

of Gr(3, 6) defined in [30]; this variety
is closely related to Albert algebras with
the Rost invariant g3.

5 3 hj the variety is related to groups of
type Eg with the Rost invariant hs3;
it can be constructed from projective
Eg-homogeneous varieties using the
algorithm of Section 7.

any | 3 (a) U (b) U (c) any smooth compactification of the
Merkurjev—Suslin variety MS(a, b, c) =
{d¢ € A | Nrd4(x) = ¢} where A is as
above, and Nrd 4 is its reduced norm.

3 4 (@)U (b)U(c)U (d) | any smooth compactification of the
variety {& € J | Ny(a) = d} where J
is the Albert algebra obtained from the
Ist Tits construction out of A and c¢
with A as above, and N is the cubic
norm on J.

We recall now the construction of the special correspondences of Rost out of a
symbol. Let n > 2 be an integer, p a prime, u € HJ,(k, ,Uu?("_l)) an element in
the Galois cohomology of the field k, and X a geometrically irreducible smooth
projective variety such that ugx) = 0.

By Lemma 3.14 the element u can be identified with an element

§e H"" 1(X,Z/p)

of the motivic cohomology of the standard simplicial scheme A" associated with X.
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Definenow it = Qgo Q1 0---0 Qpn_s(8) € H**+10 (X 7Z), where Q; are the
Milnor operations, QO is the integral valued Bockstein, and b = 2 np__li" L

Consider now the skeleton filtration on X. Let Y = Cone(X — AX’) be the cone
of the natural map. Then there is another natural map (X x X)[1] — Y such that the
composition (X x X)[1] - Y — X[1] equals 7wy — 7;.

Let Z = Cone((X x X)[1] — Y). Then again there is a natural map

X xXxX)[2] = Z
such that the composition
X xXxX)2] > Z — (X x X)[2]
equals mo — 71 + m>.
These exact triangles give the long exact sequences for motivic cohomology with

integral coeflicients:

sz’b(X)—>H2b+1’b(Y)—>H2b+1’b(X)-—>H2b+l’b(X)
and H®+1b(y) s H2D(X x X) S HP+24(Z),

Notice now that
H?%%(x) = CH®(X), H?*®*Yb(x)=0, H?**’(X xX)=CH’(X x X)
and there is a map
H?12b(7)y - H?b(X x X x X) = CH? (X x X x X)
such that the composition
CH?(X x X) > H?*2b(Z) - CHP (X x X x X)

equals wy — 7wy + 5.
Summarizing we have the following diagram:

0

CH? % of f— H?2b+1.b (Y)

*k Ed
k Jf

CH? (X x X) —2— H?b+2.b(7)

”3>T+”2‘\ l

CH?(X x X x X)

H2b+1,b (./Y)
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Thus, the element 1 € H22T12(X) gives rise to an element p = p(u) in the
homology of the complex

* * * * *
T —7q Ty~ +7,

CH?(X) — CH?(X x X) ————5 CHP(X x X x X).
If the element p (as a cycle in CH? (X x X)) satisfies additionally the condition

¢(p) # 0 mod p,

then p turns out to be a special correspondence on X .

5. Norm varieties and special correspondences

We continue to assume that char k = 0 and k contains a primitive p-th root of unity.
The goal of this and of the next sections is to prove the following theorem:

Theorem 5.1. Let X be a smooth projective geometrically irreducible variety which
possesses a special correspondence of type (n, p). Assume that X has no zero-cycles
of degree coprime to p. Then there exists a unique up to non-zero scalar (functorial)
element 0 # u € H],(k, /,Lg’(”_l)) such that X is a norm variety for u.

For any field extension K/k the invariant ux = 0 iff Xg has a zero-cycle of
degree coprime to p.

As in [29] we define 7(X) as the image of the degree map deg: CHo(X) — Z,
where X is a smooth projective variety over k.

Proposition 5.2 (M. Rost). Let X be a smooth projective geometrically irreducible
variety which possesses a special correspondence p of type (n, p). Assume I1(X )CpZ
and set b = £ ’:_11_ L. Then the motive of X considered with Zpy-coefficients has
an indecomposable generically split (see Definition 7.4 below) direct summand R

constructed in [29] such that

p—1
R® X ~ P X{bi}.
i=0

This Proposition is proved in [29, Proposition 7.14]. The motive R is called a
generalized Rost motive. We outline Rost’s proof for reader’s convenience to make
the exposition more self-contained.

We write CH for the Chow group with Z,)-coeflicients. By Manin’s identity
principle (Yoneda lemma for motives) it suffices to construct a correspondence

p—1
6 € Hom (@X{bi}, X ® R)

i=0
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such that for any smooth projective variety 7" over k

p—1
6 o — Hom (T, 5 X{bi}) — Hom(7, X ® R)
i=0
is an isomorphism. Notice that the composition with 6 equals the realization of
AT ® 6.
Define

= (Ax x (1 xp') e Hom(X{b(p —1—-)},X®R), i=0,....,p—1,

and
p—1
0 = Z 0;.
i=0

LetY =T x X and f:Y — X be the projection. For0 <i < p — 1 let
;i CH"(Y) — CH"™? (¥ x X)
o >y (@) - (f xidx)*(p"),

where mx:Y x X — Y is the projection,

p—1
O=3 "¢
i=0
and
¥ CH ™% (Y x X) - CH"(Y)
B (mx)«(B - (f xidx)*(p?'7),

p—1
="y
i=0

One verifies using projection formulas that the realization of A7 ® 6 equals .
In [29, Proof of Proposition 7.14] Rost shows that ® is an isomorphism. Therefore €
is an isomorphism.

Observe also the following: Let X = Xyx) and R = Rk(X) Then a
direct computation shows that over k(X ) (where R becomes EB Z( pibi}) the
constructed isomorphism

p— 9k(x B p—1
DFwi 20 ¥ o 7 - @ Xibi
i=0 1=0

is a lower triangular matrix with A%’s up to invertible scalars on the diagonal, i.e.,
Ok(x): X{bi} — X{bj} is zero fori > j, and equals A up to an invertible scalar
fori = j. Moreover, Rost shows that R >~ (X,c - p?~!) mod p for some scalar c.
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The following lemma will not be used in the construction of a cohomological
invariant for groups of type Eg given in Section 8 below. This lemma was inspired
by [40, Proof of Thm. 4.4] and [35, Proof of Statement 1.1.1].

Lemma 5.3. Let X be a smooth projective geometrically irreducible variety which
possesses a special correspondence p of type (n, p). Assume [(X) C pZ and let R
be a direct summand of the motive of X with Z ,-coefficients given in Proposition 5.2.
Then there exists the following filtration of R consisting of exact triangles:

Rp2{b} > Rp—1 > X
Rp_3{b} — Rp_2 —_ X

Ro{b} > Ry - X
0— Ry — X,

where R,_1 = R and X denotes the motive of C (X).

Proof. In this proof we write CH for Chow groups with Z ,-coefficients. The proof
goes by induction.

First of all, notice that X lies in the localizing subcategory generated by X.
Let M be a motive in the localizing subcategory generated by X such that there is an
isomorphism

P X} >MX
i€l
for some finite set / of non-negative integers. Denote X = X xj k(X) and take an
isomorphism v = (V;)ier: Mrx) = D,y Zp{i} defined over k(X). Notice that
the isomorphism v = (v;) is unique up to a sequence of invertible scalars, since
Hom(Zp{i}, Zpij}) = Zp if i = j and is O otherwise.
Assume additionally that the composite morphism

k(X)

DTl =2 (M ® X —% DT}

iel iel

is a lower triangular matrix with isomorphisms on the diagonal.

Observe that these conditions are satisfied by the motive R = R,_; given
in the previous proposition. So, we can start induction with M = R,_; and
I ={bi,i=0,...,p—1}.

Consider the skeleton filtration of X'. Let Y = Cone(X — X’) be the cone of the
canonical map X — A induced by the structural map X — Spec k. Then we have
the following exact triangle:

M@X->-MX ->MQY. (3)
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By Lemma 3.7(1) M ® X = M. Let now / be the smallest element in /.
The above triangle induces the long exact sequence

Hom(M ® Y, Z,{l}) — Hom(M,Z,{l}) — Hom(M @ X,Z,{l})
— Hom((M ® Y)[—1], Z,{l}).

The group Hom(M ® Y, Z,{l}) = 0 by [40, Prop. 8.1], since
Hom(VA{I'}[j]. Zp{l}) = Hom(V[j],Zp{l —1'}) = 0

“)

for any smooth projective variety V' and any j > 0 and [’ > [ (see Lemma 3.4) and
since Y is an extension of X'[i —1],i > 1.

Moreover, the same arguments applied to the exact triangle (X x X)[1] = Y — Z,
where Z denotes the respective cone, show that we have an injection

Hom((M ® Y)[—1],Zp{l}) - Hom(M ® X ® X,Z,{l})
induced by the natural map (X ® X)[1] — Y. Observe that the composition
XRX)[1] =Y — X|[1]

is the difference of two projections 7ty — 1 (see Section 4 and [35, p. 31]).

Since by induction hypothesis M ® X ~ (P, .; X{i} and since / is minimal, we
have Hom(M ® X, Z,{l}) ~ Hom(X{l},Z,{l}) = Hom(X,Z,) = CH°(X).

We claim next that the image of the structural map pr: X — Spec k (as an element
of Hom(M ® X, Z ,{l}))inHom((M ®Y )[—1], Z{l}) is trivial. Indeed, by the above
identifications the morphism Hom(M ® X,Z,{l}) — Hom(M ® X ® X,Z,{l})
corresponds to the morphism CH?(X) — CHO(X x X) given by 75 — n, which
sends pr = [X] to 0. Therefore, since sequence (4) is exact, we can find a preimage
p € Hom(M, Z ,{1}) of the structural map.

Lemma 3.7(II) gives us a map M — X'{/}. Define

M’ = Cone(M — X{l})[-1]
and consider the composite map
) " a®idy = ; .
y: M ®X—>M®X;>€BX{:}—> @X{t}
iel iel\{l}

arising from the exact triangle (M’ S Mo X {l}) ® X, where the last map in y
is the canonical projection. By our inductive assumptions on M one can see that
over k(X) where the motives M and M’ become sums of twisted Tate motives,

Yk(x) is an isomorphism given by a lower triangular matrix with isomorphisms on
the diagonal. Therefore by [35, Theorem 2.3.5] we have an isomorphism

MeX®X~EXeX{i}
iel\{l}
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So, we can replace X by X x X and apply induction. Notice that the motives of C (X)
and of C (X x X) are isomorphic by Lemma 3.3, and y satisfies all the hypothesis
needed for the next inductive step.

Therefore by induction we can construct the motives

Mp—l = RaMp—2’Mp—3, sie sy MOa M—l
together with exact triangles
Mg > M, —> X{b(p—1-s5)}, s=0,...,p—1,

and such that My @ X775 ~ EBf:;_l_s XP~#{pi} for all s. In particular,

M_; ® XPTl =0,

But then M_; = M_; ® X = 0. Finally, the existence of exact triangles as in
the statement of the lemma follows from the cancellation theorem (see Lemma 3.5)
with Rg{b(p — 1 —s)} >~ M, for all s. We are done. O

Next we investigate the construction of Lemma 5.3 in more details.

LemmaS4. Fori =1,...,p—1ifcy > ¢y then
Hom(R; (c1)[d1]. Z/ p(c2)[d2]) = 0.
The same formula holds for integral coefficients.
Proof. The statement follows from Lemma 5.3 and Lemma 3.11. U

Lemma 5.5. Let X be a smooth projective irreducible variety over k and R a direct
summand of the motive of X with 7 ,-coefficients. Assume that I(X) C pZ. Denote
by X the motive of the standard simplicial scheme associated with X. Assume that
one of the following two conditions hold:

I) The motive R arises from a special correspondence p of type (n, p) (in
particular, in this case we assume that X is geometrically irreducible) or

II) p = 2 and the motive R has a filtration X{b} — R — X for some b > 0.

Let K/k be a field extension. Then the group Hom(Xk,Z,{b}[1]) is finite cyclic
of order 1 or p, and Hom(Xk,Z,{b}[1]) = O iff Xk has a zero-cycle of degree
coprime to p.

Proof. We write CH for Chow groups with Z,-coefficients. By functoriality of all
our constructions it suffices to prove the lemma for K = k.

In Case I of the present lemma we use notation from Lemma 5.3, in particular,
R=Rp, 1. InCasellweset R_1 :=R,Rp_»:=X,and R)_3 :=0.
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Consider Hom from the exact triangle R, _»{b} — R,y — X to Z,{b}. We
get the following long exact sequence:
£
Hom(R,—1,Zp{b}) — Hom(R,—2{b}, Z,{b})
% Hom(X[~1]. Z,{b}) — Hom(R p_[~1], Z,{b}).
Notice that Hom(R ,—1,Z ,{h}) = CH?(R,_1) (since R,_; is a pure motive),

Hom(Rp—2{b},Zp{b}) = Hom(R p—2,Zp) (Lemma 3.5),
Hom(X[—-1], Z,{b}) = Hom(X,Z,{b}[1]),
and  Hom(R,_1[—1],Zp{b}) < Hom(X[-1],Zp{b}) =0  (Lemma 3.4).

Assume that we are in Case 1. It follows from the proof ‘of Lemma 5.3 that the
homomorphism

Hom(Rp—3,7Z,) — Hom(R,—» ® X,Z,) = CH’(X)

coming from exact sequence (4) (with M = R,_»{b}) is an isomorphism. Thus, we
get the following commutative diagram with exact rows

Hom(R p—1, Zp{b}) —L > Hom(R y—2{b}, Z, {b}) ——> Hom(X, Z, {b}[1]) —= 0

| - |

CHY(R,_1) ¢ CHE (X {b}) Hom(X, Z, {b}[1]) — 0

We take now the extension of scalars from k to k(X). We have the following
commutative diagram with exact rows

CH?(Rp_1) —L—~ CHO(X) —%— Hom(X, Z, {b}[1]) — 0

| -

S
CH? ((R p—1)k(x)) —= CH®(Xy(x)) 0

The morphism fg(x) is surjective, since by Lemma 3.3 the motives Xy (x) and
Spec k(X)) are isomorphic and hence by Lemma 3.4 Hom(Xy (x), Zp{b}[1]) = 0.
On the other hand, by [29] (see also [15, Lemma SC.3]) the image of the restriction
homomorphism
CH?(Rp-1) = CHP((Rp-1)k(x)) = Zp

(the last equality is due to the fact that R ,_; is isomorphic over k(X)) to @f =_01 Zp{bi})
contains pZ,. In particular, the group Hom(&X', Z,{b}[1]) has order 1 or p (and, in
particular, it is cyclic).
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If X has a zero-cycle of degree coprime to p, then by Lemma 3.3
Hom(X, Z,{b}[1]) = 0.
Conversely, if Hom(AX', Z ,{b}[1]) = 0, then the restriction homomorphism
CH’(Rp-1) = CH*((Rp-1)kx))

is surjective and hence Xy (x) has a zero-cycle of degree coprime to p defined over k,
namely, the cycle H?~!, where the special correspondence pkx) =Hx1—-1xH
(see [29, Lemma 5.2]).

Assume now we are in Case II. Proceeding as in Case I we have a commutative
diagram with exact rows:

CHP(R) — Hom(X {b}[1], Z2{b}[1]) — Hom(X, Z,{b}[1]) — 0

| - |

CH?(RF) Zs 0

where F/k is a field extension over which X has a zero-cycle of odd degree.
If X has a zero-cycle of odd degree, then exactly as in Case I the group

Hom(X, Z,{b}[1]) = 0.
Conversely, if this group is zero, then the restriction homomorphism
CH?(R) — CHY(RF)

is surjective.

Let R = (X, ). Since over F the motive RF is isomorphic to Z, & Z,{b}, the
projector r equals to 1 x pt 4+ x x y, where pt is a zero-cycle on X of degree 1,
x € CH?(RFp) and y € CHp(RF). The cycle y is rational by [10, Lemma 3.5]
(applied to the transposed projector ') and the cycle x is rational by the above
considerations. Therefore X has a zero-cycle x - y of degree 1, which is defined
over k.

Finally, by the proof of the next Lemma 5.6 (which does not use the present
lemma), the group Hom(X', Z,{b}[1]) is a 2-torsion group. Therefore, if this group
is non-trivial, then it has order 2. This implies the lemma. |

Lemma 5.6. In the settings of Lemma 5.5 the natural homomorphism

Hom(&X', Zp(f)[g]) — Hom(X, Z/ p(f)[g])

is injective for g > f.
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Proof. Let R = (X, m). Since R is a direct summand of X, the 0-cycle (7o)« (7 - 7"),
where mo: X? — X is the first projection, has degree p (since R is a sum of p twisted
Tate motives over an extension of the base field). In particular, there exists a finite
field extension K/k of degree pm with m coprime to p such that Xg has a zero-
cycle of degree coprime to p. Therefore by Lemma 3.3 X'x >~ Spec K and hence
Hom(Xk,Z,(f)[g]) = 0 by Lemma 3.4.

By a transfer argument the composite map

Hom(X, Z, (f)[g]) —> Hom(Xx.Z,(f)[g]) = Hom(X. Z(f)[g])

where the first map is the extension of scalars and the second map is the transfer map,
is the multiplication by pm. Therefore Hom(&X', Z,( f)[g]) is a p-torsion group.
The exact sequence

Hom(X, Z,(f)[g]) = Hom(X, Z,(f)[g]) — Hom(X,Z/p(f)[g])

implies now the statement of the lemma. O
Lemma 5.7. In the settings of Lemma 5.5 the natural homomorphism

Hom(X, Z{b}[1]) — Hom(X, Z/ p{b}[1])
is an isomorphism.

Proof. The injectivity of this homomorphism follows from Lemma 5.6. To prove
surjectivity it suffices to show that Hom(&X', Z ,{b}[2]) = 0.

We use notation from the proof of Lemma 5.5. Consider Hom from the exact
triangle R, 2{b} — Rp_1 — X to Z,{b}[2]. We get the following long exact
sequence:

Hom(R,_—2(b)[2b + 1], Zp(b)[2b + 2]) — Hom(X,Z,(b)[2b + 2])
— Hom(R -1, Zp(b)[2b + 2]).

The last group of this sequence is zero by Lemma 3.4, since R,_; is a pure
motive. The first group of this sequence equals Hom(R ,_», Zp[1]) by cancellation.

Consider now Hom from the exact triangle R,_3{b} — Rp,_o — X to Zp[1].
We get the following exact sequence:

Hom(X, Z,[1]) — Hom(R 3. Z,[1]) — Hom(R ,_3(b)[2b], Z,[1]).

The last group of this sequence is zero by Lemma 5.4. By [40, Cor. 6.9] and
[38, Prop. 2.7] the first group of this sequence is isomorphic to

Hi"(X,Zp) ~ Hy'(k, Zp) = 0.
Therefore Hom(R ,—2, Z[1]) = 0 and hence
Hom(X, Z,{b}[2]) = 0. O
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Let X = Cone(X — Speck).

Lemma 5.8. In the settings of Lemma 5.5 assume additionally in Case II that
b > 2"~2 — 1. Define

u € Hom(X, Z/ p{b}[1]) = H***>* (X, Z/p)
as the image of a generator of the cyclic group Hom(X, Z ,{b}[1]) under the natural

map Hom(X, Z ,{b}[1]) = Hom(X,7Z/ p{b}[1]). Then forall0 <i <n—2 we
have Q;(n) = 0.

Proof. 'We use notation from the proof of Lemma 5.5.
The exact triangle R, — X — R,_»{b}[1] gives the exact sequence

Hom(R,—{b}[1],Z/ p(b + p' — 1)[2b + 2p])
— Hom(X,Z/p(b + p' — 1)[2b + 2p'))
— Hom(Rp—1, 7/ p(b + p' — 1)[2b + 2p')),

and Q; (i) € Hom(X,Z/p(b + p' — 1)[2b + 2p']).
Since 2(b + p' — 1) < 2b + 2p* and R,_; is a pure motive, the group

Hom(R,—1,Z/p(b + p' — D[2b +2p']) =0

by Lemma 3.4.
Therefore in order to prove that Q;(u) = 0, it suffices to show that the group

Hom(R,—2{b}[1],Z/p(b + p' — D)[2b + 2p'])
= Hom(R,—2,Z/p(p' — 1)[2p" - 1]) = 0.
The same exact triangle R, — X — R, »{b}[1] gives the exact sequence
Hom(Rp—2(b)[2b + 11.Z/p(p' = D[2p" — 1))
— Hom(X,Z/p(p' — D[2p" —1])
— Hom(Rp-1,Z/p(p' — D[2p" = 1)).

The first group in this sequence is zero by Lemma 5.4, since b > p' — 1 by our
assumptions. The last group is zero, since R, is a pure motive and

2p" —1>2(p" —1).
Therefore Hom(X,Z/p(p' — D[2p" —1]) = 0.
The exact triangle R,_3{b} — R,_» — X gives the exact sequence
Hom(X,Z/p(p' — D[2p' — 1)) = Hom(Rp—2, Z/ p(p' — D[2p" —1])
— Hom(R,—3{b}. Z/ p(p" = D[2p" —1)).

The first and the last groups are zero by Lemma 5.4 and by the previous considerations.
The lemma is proved. [
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The following lemma is due to V. Voevodsky. We reproduce its proof for reader’s
convenience to make the exposition more self-contained.

Lemma 5.9 ([42, Proof of Lemma 6.7]). In the settings of Lemma 5.8 assume
additionally in Case II that there exists a v,—1-variety Y and a morphism Y — X.

Let§ € H"" Y X, Z/p). If Qn—2-+- 01Q0(8) =0, then § = 0.
Proof. The exact triangle of pointed simplicial schemes
X+ — Specky — X

defines an isomorphism H % “(X,Z/p) — HatL C(X Z/ p) for any d > c. Thus,
we can identify § with its image §in HnLn- I(X Z/p). _

Assume that § # 0. We want to show that Q; Q;—1 - QO(S) # Oforalli <n-2.
Assume by induction that Q;—1 -+ Qo(8) # 0. If @; Qi1+ Qo(d) = 0, then by
Lemma 3.10 and by Lemma 5.8 there exists v such that Q;(v) = Qi—1 -+ Qo(4).

A straightforward computation shows that v € H% Hd«c (2(' Z/ p) where

i_ _ i_
c=n—i—p’+1+p P and d=n—i+2—2p’-|—2-p p
pP— p—1

But d — ¢ < 1. Therefore by Lemma 3.13 v = 0. Contradiction. 0

Lemma 5.10. Assume that p > 2. Then in the settings of Lemma 5.9 there exists an
element 6 € Hom(X,Z/p(n — 1)[n]) such that p = Qn—2 -+ Q1Q0(9).

Proof. As in the previous lemma it suffices to prove this identity in the reduced
motivic cohomology of X. Let n € H20+2:0(X, Z/ p) be the image of L.

Assume we have constructed a sequence of elements 17,—2, Np—3, ..., s for
some 2 < s < n such that n,—j+1 = Qu—i(ny—i) and

Nn=0n20n-3" Qn--s(n-s)-

For s = 2 such an element 7,—, with n = Q,—2(1n,—2) exists by Lemma 3.10,
since Q,—2(n) = 0 by Lemma 5.8.

We claim that there exists 1, —s—; satisfying the same conditions. To prove this it
suffices to show that v := Q,—s—1(7n—s) equals 0.

Consider

0n—20n-30n-s() = 0p20n-3 On-sOn—s—1(Nn—s)
=3+ 0n—s5-1(0n—20n-3"- On—-s(Mn—s))
= £Qn—s-1(n) =0,

since0<n—s—1<n-3,
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A straightforward computation shows that

1_ 1_
AR e L W AT -
Nn—s € H = (X 7/ p)
and
oy B pht—1l_pn—s il o n—1_ ,n—s il
= HZb-I-S z—p—l +2p b+s—2 LL})—I (X Z/p)

Let2 <t <s. Weclaim thatif O, (Qp—t—1 -+ On—s(v)) = 0, then

On—it—1-"" On—s(v) = 0.
Indeed, if O, (Qn—t—1--- Qn—s(v)) = 0, then there exists w such that

On—t(w) = Op—r—1-++ Qn—s(v).
A straightforward computation shows that w € Hd-c (;’? ,Z/ p), where

n—t_l
C:%—l+pn_s_l+t—pn—t
pn—t_l

p—1

and d=2- +2p" S —2p" T 41,
Another straightforward computation shows that d < ¢ + 1 if p > 2, and by
Lemma 3.13 w = 0. Therefore v = 0. U

Proof of Theorem 5.1 for p > 2. The element § constructed in Lemma 5.10 can be

identified with an elementu € H, (k, 1, S 1)) by Lemma 3.14. It remains to show
that for any field extension K/ k

ug = 0iff Xk has a zero-cycle of degree coprime to p.

By construction ux = 0 iff 5x = 0. By Lemma 5.9 §g = 0 iff ux = 0. By
Lemma 5.5 ux = 0 iff Xk has a zero-cycle of degree coprime to p.

Finally, by Lemma 5.5 and by Lemma 5.7 the group H2?+1:2(X| Z/ p) and hence
the group H™"~1(X,7Z/ p) is cyclic. This implies the uniqueness of u. The theorem
is proved. L]

6. Binary motives

In this section we investigate the structure of binary direct summands of smooth
projective varieties, i.e., of motives which over a field extension of the base field
become isomorphic to a direct sum of two twisted Tate motives. In this section we
assume that the characteristic of the base field k is 0.
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Theorem 6.1. Let X be a smooth projective irreducible variety over a field k of
characteristic 0 with no zero-cycles of odd degree. Denote by X the motive of the
standard simplicial scheme associated with X. Let M be a direct summand of X
such that we have an exact triangle

X{dy > M > X5 i )

in the category DM with Zj-coefficients. Assume that one of the following two
conditions holds:

(@) dimX =d > 0or

(b) there exists a vy,—y-variety Y for some n > 2 and a morphism Y — X, the
motive M{dim X — d} is a direct summand of X in the category of Chow
motives with Z-coefficients, and 2" > — 1 < d < 21,

Then
(D) d =2""1—1for somen > 2in case (a) and d = 2"~! — 1 in case (b).

(II) There exists a (functorial) element u € H.(k,Z/2) such that for any field
extension K /k we have ug = 0 iff Xk has a zero-cycle of odd degree.

One can notice that Rost’s proof [29, Proof of Theorem 9.1 and Lemma 9.10]
implies the following lemma. For reader’s convenience we sketch Rost’s proof below
to make the exposition more self-contained.

Lemma 6.2. Let X be a smooth projective irreducible variety over k of dimension
d > 0 with no zero-cycles of odd degree which possesses a cycle r € CHg (X x X)
such that over any field extension F/k over which X has a rational point, r p mod 2
is a projector and (Xf,rp) >~ Z/2 ® 7Z/2{d } in the category of Chow motives with
7./ 2-coefficients. Then d = 2"~! — 1 for some n and X is a v,_1-variety.

Proof. Let F be the function field of X. By assumptions, the cycle rr mod 2 equals
Hx14+1xH’,

where H and H’ are zero-cycles on X of degree 1 mod 2. Substituting r by r’ o r
we can assume without loss of generality that H' = H.

Set p = 2 and let S, (resp. S*) denote the homological (resp. cohomological)
Steenrod operations in the Chow theory modulo p (see [3]).

Then Se(er) = S*()be(X), @ € Ch(X), where b, is the (total) characteristic
class defined in section 2.2 for partition (p — 1,..., p — 1) (Since p = 2, we have
be(X) = co(—Tx)).
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One has bz (X) = S4([X]). By our assumptions the cycle r has the property
(0)«(r) = c(r)[X]

with ¢(r) = 1 mod 2, where mo: X? — X is the first projection. Moreover, we have
Se(r) = S°*(r)be(X?).

We show first that deg bz (X) # 0 mod p?. To do this, it suffices to find an integral
representation of the cycle S;(r) with degree not divisible by 4 (see [29, Proof of
Thm. 9.1] for more details).

We have

d
Sa(r) = S8'(r)ba—i(X?). 6)
i=0
The lastterm S? () = r2 mod 2 and deg r? = 2¢(r)? is not divisible by 4. Therefore
it suffices to show that all other terms of this sum have integral representatives whose
degrees are divisible by 4.
For the first term of (6) we have

rpbd(Xz) =H xbg(X)+bs(X) x H.

This cycle has degree divisible by 4.

Let = be an integral representative of S'(r). We want to show that
deg(mby_i(X?)) is divisible by 4. By dimension reasons S'(H) = 0 for
1 <i <d —1. Therefore S'(rr) = 0 for such i’s. Thus, there exists a cycle y
over F such that 7 = 2y. It remains to show that deg(yby_; (X?)) is divisible
by 2.

We set X = Xo = X; and write X2 = Xy x X;. We have

ba—i(X?) = ) bj(Xo)br(X1).
JHr=d—i

By assumptions j +r = d —i > 0. Therefore r > 0 or j > 0. In the first case
deg(yb;(Xo)br(X1)) = deg((mo)«(yb; (X0)br(X1))). Therefore it suffices to show
that deg (e B) is divisible by 2 for all « € CH" (X), B € CHY " (XF).

Let ¢ be a preimage of 8 under the natural map

CHY™"(X?) - CH?" (X x Spec F).

Consider the cycle w = r(a x 1) € CHp(X?).

Onehaswr = (H x1)(apx1)pr+ (A xH)(ar x1pr = (I1xH)(ap x1)gF.
Therefore degw = deg(arf) = (mwo)«((¢r x DoFr) = c(r) deg(ar B) is divisible
by 2, since X2 has no zero-cycles of odd degree.

The case j > 0 is similar.

Thus degby(X) # 0 mod p?. By [29, Lemma 9.10] dim X = 2"~! — 1 for
some n. Finally, by [29, Lemma 9.13] X is a v,_;-variety. 1
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Now we return to the settings of Theorem 6.1. Define n as the unique number
such that 2"=2 — 1 < d < 2", Denote by

n € Hom(X, Zy(d)[2d + 1]) = Hom(X,Z/2(d)[2d + 1])

(by Lemma 5.6) the pull-back of ;” under the map of Lemma 3.7(I). It follows from
Lemma 6.2 that condition (a) of Theorem 6.1 implies condition (b) with ¥ = X.

The following lemmas were proven by O. Izhboldin and A. Vishik in the case
when X is a quadric. Nevertheless their proofs are general and do not use any
specific of quadrics. We reproduce them below for reader’s convenience to make the
exposition more self-contained.

Lemma 6.3 ([12, Sublemma 6.3]). The map
Hom(X', Z»(c)[e]) = Hom(X, Za(c + d)[e + 2d + 1]) (7)

induced by the multiplication by | is surjective for e > c¢. The same holds for
cohomology with 7./ 2-coefficients.

Proof. Consider the morphism from the exact triangle

M= x5 x@)2d +1]
to Zo(d + ¢)[2d + e + 1].
We get the long exact sequence

Hom(X (d)[2d + 1], Zo(d + ¢)[2d + e + 1])

2 Hom(X,Z2(d + ¢)[2d + e + 1])
— Hom(M, Zy(d + c)[2d + e + 1]).
Notice that Hom(X (d)[2d + 1], Z>(d + ¢)[2d + e + 1]) = Hom(X, Z;(c)le])
and by Lemma 3.12 the map p'* coincides with the multiplication by . Moreover,
Hom (M.Z»(d + ¢)[2d + e + 1])
= Hom (M{dimX —d},
Zo((dimX —d) +d + ¢)2(dim X — d) + 2d + e + 1])
= (J

by Lemma 3.4, since M {dim X — d} is a direct summand of X and
2(dimX —d)+2d +e+1—((dimX —d)+d +¢)
=dimX +e—c+1>dimX.

Therefore the multiplication by p is surjective for e > c.
The case of Z/2-coefficients follows from the integral case and from exact
triangle (1). O
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Let X = Cone(X — Speck).
Lemma 6.4 ([12, Sublemma 6.6]). Foreveryi = 0,1,...,n—2the Milnor operation
0;: He¢(X,2/2) — Het2 T'-1et2-1(% 79y
is injective ife —c = d + 2 + 2"

Proof. Letv € H®® (;’?, Z./2) with Q;(v) = 0. We want to show that then v = 0.
Since Q;(v) = 0, by Lemma 3.10 there exists

te ﬁe—2f+1+1,c—2i+1(3’(,z/2)
such that v = Q; (¢).
On the other hand, the exact triangle of pointed simplicial schemes
7(’[—1] = X+ — Speck
induces with help of Lemma 3.4 an isomorphism
o He—2i+1,c—2i+1(X, 7.)2) — ﬁe—2i+1+1,c—25+1(%’ 7.)2).
Therefore there exists
w € Hom(X,Z/2(c — 2" + 1)[e —2'*1))
with *(w) = t. Moreover, by Lemma 6.3 there exists
u € Hom(X,Z/2(c =2 + 1 —d)[e —2'T! —2d — 1))

which maps to w under the homomorphism (7).
By Lemma 3.8(III) we have

Qi () = Qi(p) u+ - Qi(u) + Y ™ @ ()vrj(u),

where £ is the class of —1 in Hom(Spec k,Z/2(1)[1]), n; > 0 and ¢;, ¥, are some
homogeneous cohomological operations of some bidegrees () [*'] with %" > 2% > 0.

Since f :=e —2""1 —2d —1 = ¢ — 2" + 1 — d by assumptions, Lemma 3.13
implies an isomorphism pr*: Hom(Speck,Z/2(f)|f]) — Hom(X,Z/2(f)[f)]),
where pr: X — Spec k is the structural map. Therefore there exists

ug € Hom(Speck,Z/2(f)[f])
with u = pr*(up).
On the other hand, since by Lemma 3.4 Hom(Speck,Z/2(h)[g]) = 0 for all
g > h,wehave Q;(up) = 0and ¥ (up) = 0. Since the Milnor operations commute
with pull-backs, we also have Q;(u) = 0 and ¥; (u) = 0.
Summarizing we obtain:
v=0;(t) = Qi(x"(w)) = 7(Qi(w)) = T(Qi (- u)) = T(Qi (1) -u) = 0,

where the last equality follows from Lemma 5.8. O
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Lemma 6.5 ([12, Sublemma 6.7]). We have d = 2" ' — 1 and Lemma 5.10
holds for p = 2, i.e., there exists § € Hom(X,Z/2(n — 1)[n]) such that

= On-2--01Q0().
Proof. Using Lemma 3.4 we can identify p with its image in the reduced motivic
cohomology H24%2:4 (X 7/ p). We denote this image as = 1_;.

Assume by induction that we have constructed an element ,,, —1 <m <n — 3,
suchthat n = Q-+ Q1 Q0(nm). We want to show that there exists 71,,+1 with

Nm = Om+1(Mm+1).
By Lemma 3.10 it suffices to show that v := Q+1(nm) = 0. We have

OmOm—100®) = 0mOm-1--000m+1(Nm)
= O0m+19mQOm-1-+- QO(’?m)
= Qm+1(n) =0

by Lemma 5.8.
A straightforward computation shows that for any 0 < ¢ < m the element

Q-1+ Qolv) € H*®(X,Z/2)

withe —c = d +2+2'. By Lemma 6.4 Q, is injective on Hes (33, Z./2) for such ¢
and e. Therefore the equality Q. Om—1 -+ Qo(v) = 0 implies v = 0.
Thus, in this way we can construct an element

’Sve ﬁzd—2”+n+3,d—2"“‘+n(;\"; 7./2)

such that Qn_z---QlQO(’g) = u (recall that we identify p with its image in
H24+2d(x 7,/2)). By the assumptions the variety X has no 0O-cycles of odd
degree. Therefore by Lemma 5.5 & # 0. Therefore § # 0. On the other hand, if
d <2"1_—1,then2d —2" +n+2 <d —2""! + n. Therefore by [40, Cor. 6.9]
and [38, Prop. 2.7]

I’;,zd—2"+n+3,d—2"—l+n(’;( 7./2) = 0.

Hence d = 2"! — 1 and § € H" '»=1(X,7Z/2) and can be identified with an
element § € Hom(X,Z/2(n — 1)[n]).

Alternatively, in case (a) of Theorem 6.1 the claim that d = 2"~! — 1 follows
from Lemma 6.2. Ol

Proof of Theorem 6.1. The first part of the Theorem follows from Lemma 6.5.
The proof of the second assertion repeats word by word the proof of Theorem 5.1
given at the end of the previous section with Lemma 5.10 replaced by Lemma 6.5. [

Proof of Theorem 5.1 for p = 2. This is a particular case of Theorem 6.1, since
Lemma 5.3 gives us exact triangle (5). O
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7. Compression of varieties and some supplementary results

The goal of this section is to provide a certain compression algorithm for smooth
projective varieties. We assume that char k = 0 and fix a prime p.

Lemma 7.1. Let X be a smooth projective irreducible variety and Y an irreducible
closed subvariety of X of minimal dimension such that Yi(x) has a zero-cycle of
degree coprime to p.

Then there exists a smooth projective irreducible variety Y which is birational
to Y together with a morphism Y — Y and such that Yk(X) has a zero-cycle of
degree coprime to p.

Proof. Let U C Y be the open subvariety of smooth pointsin ¥ and V' =Y \ U the
singular locus. We claim that there is a zero-cycle of degree coprime to p supported
in U (x). Indeed, assume the contrary. Then all zero-cycles supported on Uy (x) have
degrees divisible by p. Since there exists a zero-cycle on Yy (x) of degree coprime
to p, there is an irreducible component V” of V' such that the variety V}/ kx) C Xk(x)
has a zero-cycle of degree coprime to p. Since dimV’ < dimY and dimY is
minimal by our assumptions, we come to a contradiction.

Using the standard algorithm of resolution of singularities due to Hironaka we
can find a smooth projective variety Y birational to ¥ which contains U together

with a morphism Y — Y identical on U. This ¥ has a zero- cycle of degree 1 mod p
over k(X). O

A smooth projective irreducible variety X over k is called generically split, if the
motive of Xy (x) is a finite direct sum of twisted Tate motives.

Corollary 7.2. Let X be a generically split smooth projective geometrically
irreducible k-variety. Let Y be a closed irreducible subvariety of X of minimal
dimension such that the class [Y(x)] in Ch(Xg(x)) is non-zero. Then there exists
a smooth projective irreducible variety Y birational to Y together with a morphism
Y — Y and such that Yk(X) has a zero-cycle of degree 1 mod p.

Proof. Since X is generically split, by [14, Remark 5.6] and [21, Prop. 1.5] there
exists a closed subvariety Z C Xy (x) such that [Y(x)]-[Z] has degree coprime to p.
Since the product Y (x) - Z in the Chow ring can be represented by a cycle on the
intersection Yy (x) N Z, the variety Yx(x) N Z C Yi(x) has a zero-cycle of degree
coprime to p.

By Lemma 7.1 it suffices to show that ¥ has minimal dimension among all closed
irreducible subvarieties of X such that Y (x) has a zero-cycle of degree coprime to p.

The proof of this claim copies the proof of [14, Theorem 5.8].

Let Y/ <> X be a closed irreducible subvariety of X of minimal dimension
such that Yk’( X) has a zero-cycle of degree coprime to p. It remains to show that
dimY’ > dimY.
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For an arbitrary variety Z over k we write Ch(Z) for Ch(Z k(x)) and we write
Ch(Z) for the image of the restriction map Ch(Z) — Ch(Z).

It suffices to show that Ch;(X) is non-zero for some i < dimY’. Notice that
exactly as in [14, Remark 5.6 et seq.] we have Cho(X) = Z/ p. By [14, Corollary 5.4]
it suffices to show that the push-forward

(in xidy)s:Ch(Y’' x X) — Ch(X x X)

is non-zero.

Denote FF = k(X). By the assumptions there exists a p-coprime field
extension K/F such that k(Y") — K. Let W be the closure of the image of
the morphism K — Y’ x X. Then the cycle (in x idy)«([W]) is non-zero, since for
the second projection m1: X2 — X we have

(r1)x(in x idy)«((W]) = [K : k(X)] -1 £ 0. O

Definition 7.3. Let X be a smooth projective variety over k, let p be a prime, and
let R = (X, ) be a direct summand of the motive of X with Z/ p-coeflicients. We
say that R supports O-cycles of X, if Ch®(R) # 0.

Definition 7.4. Let X be a smooth projective irreducible variety over k. A motive
M = (X, m) is called a generically split direct summand of X, if My (x) is a direct
sum of twisted Tate motives over k(X).

Lemma 7.5. Let X be a twisted flag variety over k of inner type and let p be a
prime number. Let R be an indecomposable generically split direct summand of the
motive of X with 7] p-coefficients supporting 0-cycles. Let Y be a smooth projective
irreducible variety over k. Assume that X has a zero-cycle of degree 1 mod p
over k(Y) and Y has a zero-cycle of degree 1 mod p over k(X). Then R is an
indecomposable direct summand of Y and R splits over k(Y).

Proof. We denote by ptx (resp. pty) a zero-cycle of degree 1 mod p on X
over k(Y) (resp. on Y over k(X)). Since X has a zero-cycle of degree 1 mod p
over k(Y), there exists by the localization sequence (generic point diagram) a cycle
@1 € Chgim x (X x Y) such that ¢1: ptx — pty over k(Y).

By symmetry there exists a cycle ¥y € Chgimy (Y x X) such that vy : pty — ptx
over k(X).

Let r be a projector defining R, i.e., R = (X,r), and consider the cycles
@2 =¢@iorand yp =royYy.

Consider now End(Rg(x)). Since R is generically split summand of X, this is a
finite group. Therefore by the Fitting lemma some power, say m > 1, of the cycle
(Y2 © @2)k(x) is an idempotent. The cycle (Y o ¢2)™ € End(R) and is non-zero,
since Y, o @y: ptx + ptx over k(X). Therefore, since R is indecomposable, the

cycle (Y, o goz)Z’( X) equals ri(x).-
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By [5, Section 8] Rost nilpotence holds for R, i.e., for any field extension K/ k the
kernel of the natural map End(R) — End(R k) consists of nilpotent correspondences.
Therefore (Y, o ¢2)™ = r + n, where n is some nilpotent element in End(R).
Since n is nilpotent, r + n is invertible and (r +n)~! o ({2 0 92)™ = r. Define now
V3 = (r+n)"loyn and g3 = @, 0 (Y2 0 2)™ L. Then Y3 0 p3 = r, and therefore
@3 o Y3 is a projector on Y and (Y, ¢3 o ¥3) =~ (X, r) = R with mutually inverse
isomorphisms ¢3 and V5.

Over k(Y') the variety X has a zero-cycle of degree coprime to p. Let L be a
finite field extension of k(Y) of degree coprime to p such that X7 has a rational
point. By [2, Thm. 21.20(ii)] the variety X, is rational and, hence, the field extension
L(X1)/L is purely transcendental. Since the motive R splits over k(X), it also splits
over L(X;) and, hence, over L. Therefore, since the degree [L : k(Y)] is coprime
to p, the motive R splits already over k(Y"). ]

Lemma 7.6. Let X be a twisted flag variety over a field k and let p be a prime number.
Assume that we are given a motivic decomposition of X with 7/ p-coefficients of the

form
X ~ P R}
iel

for some indecomposable motive R and some multiset I of non-negative indices
containing 0.

Then there is a motivic decomposition of X with Zp-coefficients of the form
X ~ PR}
iel

where the motive R is indecomposable and R =~ R mod P

Proof. By [31, Theorem 4.3] there is a motivic decomposition of X with Z ,-coeffi-
cients of the form
X~ @F
iel

such that for all i € / the motives R; are indecomposable and Riiy =~ R mod p.
Let R denote one of the motives R ,J € I,suchthat R ~ R mod p. The proof that
R; ~ R{l} foralli € I is 31rmlar to the proof of [31, Theorem 4.3], where instead
of lifting of projectors one applies the same procedure to lift the isomorphisms

(R; mod p) ~ (R{i} mod p). O
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8. Serre’s question about Eg

Let G be a simple linear algebraic group of inner type over k with chark = 0. We
briefly sketch the definitions of two invariants of G: the J-invariant and the Rost
invariant. See [24] and [16, §31] for formal definitions.

8.1 (J-invariant). Let p be a prime number and let R be a motive which is a finite
direct sum of twisted Tate motives. The polynomial

P(R,1) =) ait’ € Z[1],

i>0

where a; = dim Ch’ (R) is called the Poincaré polynomial of R mod p.
Informally speaking, the J-invariant of a simple group G is a discrete invariant
which measures the motivic decomposition of the variety of Borel subgroups of G.
Consider the motive of the variety of complete G-flags (variety of Borel
subgroups) with Z/ p- or Zp)-coefficients. It turns out that it is isomorphic to a
direct sum of shifted copies of the same indecomposable generically direct summand
R = R,(G) such that over any splitting field K of G the Poincaré polynomial of Rg

equals

r d‘pji
|

P(Rk,t) = Y

(Ri,0) =[] —7—

i=1

(8)

for some given numbers r and d; < d» < --- < d, which depend only on the
Dynkin type of G and some r-tuple (ji, ..., jr) of non-negative integers (see [24,
Definition 4.5 and Theorem 4.9]).

The tuple J,(G) = (j1,..., jr) arising from this decomposition is called the
J -invariant of G modulo p. We leave the problem of correctness of such a definition
aside and refer to [24] and [26, Section 3] for more details.

An important application of the J-invariant which is essentially used in the proof
of Serre’s problem described below is the classification of generically split twisted
flag varieties given in [22, Theorems 5.5 and 5.7] and [23, Thm. 3.3].

Notice also that formula (8) implies that the variety of Borel subgroups of G has
a binary direct summand if J>(G) = (0,...,0,1,0,...,0). In Lemma 8.5 we’ll
provide a concrete example.

Example 8.2. If G has type Eg and p = 2, thenr = 4,d; = 3,d, = 5,d3 = 9,
and d4 = 15. Moreover, j4 = 0 or 1, and if j; = O then j, = j3 = 0 (see [24, §4,
Table]).

8.3 (Rost invariant). Let G be a simply connected simple algebraic group over k. The
Rost invariant of G is an invariant of G-torsors which takes values in H2, (k, Q/Z(2)).

Formally: consider the abelian group Inv3(G, Q/Z(2)) of natural transformations
of functors H., (—, G) — HJ2 (—, Q/Z(2)) defined on the category of field extensions
of k.
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It turns out that it is a finite cyclic group with a canonical generator called the Rost
invariant of G. If G is adjoint and simply connected, then one can identify H, (k, G)
with the (pointed) set of isomorphism classes of the twisted forms of G over k. In
particular, in this case one can associate with each twisted form of G an element in
H2, (k,Q/Z(2)) (the Rost invariant). More generally, if G is a simple group with
trivial Tits algebras, then one may speak about its Rost invariant, see [9, Section 2].

Example 8.4. Let G be a group of type Eg. It is known that it is adjoint and simply
connected, and the Rost invariant of G takes values in

H2(k,Z/4) ® H (k,Z/3) & H], (k, u2?),

i.e., consists of a mod-4 (or mod-2), mod-3, and mod-5 component (see [8, §9-16
and App. A] and references there). Notice that 4 -3 -5 = 60 is the Dynkin index
of Eg. If the group G splits over a field extension of degree coprime to /, then the
[-component of its Rost invariant is zero (/ € 7Z).

Lemma 8.5. Let G be a group of type Eg and X the variety of Borel subgroups
of G. If the even component of the Rost invariant of G is trivial, then the motive of X
with 7. 2- (or Z,-)coefficients is a direct sum of twisted copies of a motive R whose
Poincaré polynomial over any splitting field of G equals 1 4 t'°> € Z[t].

Proof. Since we are talking about the even component of the Rost invariant and about
the motives with Z/2-coefficients we may assume that the base field k does not have
any proper finite field extension of odd degree.

Let X; be the projective G-homogeneous variety of maximal parabolic subgroups
of G of typei,i = 1,...,8. If the Rost invariant of G is trivial, then so is the Rost
invariant of G (x;) and of its semisimple anisotropic kernel. On the other hand, since
by the Tits classification [34] the semisimple anisotropic kernel of G (x,) is of type
D7, E7, D, Eg, is simple of rank smaller than 6, or is trivial, the group G (x,;) must
be split (see e.g. [6, Theorem 0.5]). Thus, X; is a generically split variety for all
I = 1;e0es0

The classification of generically split varieties of type Eg (see [22, Theo-
rem 5.7(7)]) and the classification of the J-invariants for groups of type Eg (see [24,
§4, Table] or Example 8.2) immediately imply that the J-invariant of G modulo 2
equals either J>(G) = (0,0,0,1) or (0,0,0,0).

In the first case we are done by formula (8). In the second case the variety of
Borel subgroups is a direct sum of twisted Tate motives and the present lemma is
trivial.

Finally, by Lemma 7.6 one can lift a motivic decomposition of X with
Z/2-coefficients to a motivic decomposition of X with Z;-coefficients, and the
conclusion of the present lemma holds with Z,-coefficients as well. 4
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Lemma 8.6. In the notation of Lemma 8.5 let X be the motive of the standard
simplicial scheme associated with the variety X. Then for the motive R there is an
exact triangle of the form

X{15} - R - X — X{15}[1].

Proof. The proof is the same as the proof of [40, Thm. 4.4] with Theorem 4.3 of [40]
replaced by Lemma 8.5 above (cf. Lemma 5.3). Notice that Theorem 4.4 in [40]
is formulated for norm quadrics, but the proof does not use any specific of norm
quadrics, only the existence of a binary direct summand. [

Theorem 8.7. Let k be a field with chark = 0. Let G be a group of type Eg over k
whose even component of the Rost invariant is trivial. Then there exists a functorial
invariant u € H2,(k,7/2) of G such that for any field extension K [k the invariant
ug = 0iff G splits over a field extension of K of odd degree.

Proof. Let X be the variety of Borel subgroups of G. It is generically split, since
over k(X)) the group G splits. By Lemma 8.5 the motive of X contains a binary
direct summand R which supports zero-cycles of X.

Without loss of generality we may assume that X has no zero-cycles of odd
degree over k. Consider the image Ch(X) of the natural map Ch(X) — Ch(Xg(x))-
By [24, Proposition 6.1] and [14, Theorem 5.8]

min{i | Ch; (X) # 0} = 15.

By Corollary 7.2 there exists a smooth projective irreducible variety Y of
dimension 15 birational to some closed subvariety ¥ of X together with a morphism
Y — Y <> X such that 7;{(;() has a zero-cycle of odd degree. The converse
obviously holds, i.e., X %% has a zero-cycle of odd degree.

Therefore by Lemma 7.5 the variety Y has the same direct summand R. It
follows from Lemma 6.2 that Y is a v4-variety. We are done by Theorem 6.1 and
Lemma 8.6. C

The next theorem gives a positive answer to Serre’s question described in the
Introduction.

Theorem 8.8. Let G be a group of type Eg over QQ such that Gy is a compact Lie
group, let K /Q be a field extension, and g = {(—1,—1,—1,—1,—1)) a 5-fold Pfister
form. If Gk is split, then qk is hyperbolic.

Proof. The compact real group of type Eg has Rost invariant zero (see [7, 13.4]),
so we may speak of its invariant u € HJ (R,Z/2) = {0,(—1)°} constructed in
Theorem 8.7.

If u = 0, then by Theorem 8.7 this compact group splits over a field extension
of odd degree. Since R has only one field extension of odd degree, we come to a
contradiction. Thus, u = (—1)°.
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Let now G be a group of type Eg defined over () that becomes compact Eg over R.
Set F = Q(+/—1). Then by [32, Ch. II, §4.4, Prop. 13] Hg(F, Z/p™(d—-1))=0
for all prime numbers p, all m > 1 and all d > 3. By restriction—corestriction
argument, H2(Q,Z/p™(d — 1)) = 0 if p is odd, and HZ(Q,Z/2™(d — 1)) is
2-torsion for all m > 1 and all d > 3.

Therefore by [8, App. A] the Rost invariant takes values in

H2(Q,Q/Z(2)) = H}(Q,Z/2).

Since H ft(F ,ZJ)2) = 0ford > 3, [16, Cor. 30.12(1)] gives that the multiplication
by (—1) is an injection from H&(Q,Z/2) — Hf,“(@, 7Z/2). It follows now
from [1, Satz 3] that HZ (Q, Z/2) injects into HZ (R, Z/2).

Therefore, G has Rost invariant zero over (), and again we may speak of the
invariant u € H2,(Q,Z/2) of the group G. But restriction identifies H2,(Q,Z/2)
with H2,(R,Z/2). Sou = (—1)°.

Finally, if G g splits for some field extension K /Q, then u ¢ = 0 by Theorem 8.7.
We are done. O
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