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On Serre's injectivity question and norm principle

Nivedita Bhaskhar*

Abstract. Let A be a field of characteristic not 2. We give a positive answer to Serre's injectivity
question for any smooth connected reductive A-group whose Dynkin diagram contains connected

components only of type A„, Bn or Cn. We do this by relating Serre's question to the norm
principles proved by Barquero and Merkurjev. We give a scalar obstruction defined up to spinor
norms whose vanishing will imply the norm principle for the non-trialitarian Dn case and yield
a positive answer to Serre's question for connected reductive A-groups whose Dynkin diagrams
contain components of (non-trialitarian) type Dn too. We also investigate Serre's question for
quasi-split reductive A:-groups.
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Keywords. Principal homogeneous spaces, Serre's question, zero cycles, norm principles,
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1. Introduction

Let A: be a field. Then the following question of Serre, which is open in general, asks

Question 1.1 (Serre, [13, p. 233]). Let G be any connected linear algebraic group
over a field k. Let L\, L2, Lr be finite field extensions of k of degrees

d\,di, ,dr respectively such that gcd(- (di) 1. Then is the following sequence
exact

r
1 — H!(A, G) ^- ]~~[ G).

1

The classical result that the index of a central simple algebra divides the

degrees of its splitting fields answers Serre's question affirmatively for the group
PGL„. Springer's theorem for quadratic forms answers it affirmatively for the (albeit
sometimes disconnected) group O(q) and Bayer-Lenstra's theorem [2], for the groups
of isometries of algebras with involutions. Jodi Black [3] answers Serre's question
positively for absolutely simple simply connected and adjoint A-groups of classical

type. In this paper, we use and extend Jodi's result to connected reductive A-groups
whose Dynkin diagram contains connected components only of type An, Bn or Cn.

*The author acknowledges support from the NSF-FRG grant 1463882.
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Theorem 1.2. Let k be afield ofcharacteristic not 2. Let G be a connected reductive

k-group whose Dynkin diagram contains connected components only of type An, Bn

or Cn. Then Serre's question has a positive answerfor G.

We also investigate Serre's question for reductive /c-groups whose derived

subgroups admit quasi-split simply connected covers. More precisely, we give a

uniform proof for the following :

Theorem 1.3. Let k be afield ofcharacteristic not 2. Let G be a connected quasi-split
reductive k-group whose Dynkin diagram does not contain connected components of
type Es- Then Serre's question has a positive answerfor G.

We relate Serre's question for G with the norm principles of other closely related

groups following a series of reductions previously used by Barquero and Merkurjev
to prove the norm principles for reductive groups whose Dynkin diagrams do not
contain connected components of type Dn,E6 or Ej [1], We also give a scalar
obstruction defined up to spinor norms whose vanishing will imply the norm principle
for the (non-trialitarian) D„ case and yield a positive answer to Serre's question for
connected reductive k-groups whose Dynkin diagrams contain components of this

type also.

In the next section, we begin with some lemmata and preliminary reductions. In
Section 3, we introduce intermediate groups G and G and relate Serre's question for
G to Serre's question for G and G via the norm principle. In Section 4, we investigate
the norm principle for (non-trialitarian) type Dn groups and find the scalar obstruction
whose vanishing will imply the norm principle for the (non-trialitarian) Dn case. In
the final section, we use the reduction techniques used in Sections 2 and 3 to discuss

Serre's question for connected reductive k-groups whose derived subgroups admit

quasi-split simply connected covers.

2. Preliminaries

We work over the base field k of characteristic not 2. By a k-group, we mean a

smooth connected linear algebraic group defined over k. And mostly, we will restrict
ourselves to reductive groups. We say that a k-group G satisfies SQ if Serre's

question has a positive answer for G.

2.1. Reduction to characteristic 0. Let G be a connected reductive k-group whose

Dynkin diagram contains connected components only of type An, Bn, Cn or (non-
trialitarian) D„. Without loss of generality we may assume that k is of characteristic 0

[7, p. 47], We give a sketch of the reduction argument for the sake of completeness.

Suppose that the characteristic of k is p > 0. Let L\, L2,..., Lr be finite field
extensions of k of degrees d\, rf2. • • •, dr respectively such that gcd, (di) 1 and



Vol. 91 (2016) On Serre's injectivity question and norm principle 147

let £ be an element in the kernel of

r
H*(A:, G) -> ]~[ H^L,, G).

1 1

By a theorem of Gabber, Liu and Lorenzini [5, Thm. 9.2] which was pointed out
to us by O. Wittenberg, we note that any torsor under a smooth group scheme G/ k
which admits a zero-cycle of degree 1 also admits a zero-cycle of degree 1 whose

support is etale over k. Thus without loss of generality we can assume that the given
coprime extensions L, / k are in fact separable.

By [ 10, Thms. 1 & 2], there exists a complete discrete valuation ring R with residue
field k and fraction field K of characteristic zero. Let St denote corresponding etale

extensions of R with residue fields Lt and fraction fields K,.
There exists a smooth R-group scheme G with special fiber G and connected

reductive generic fiber Gk Now given any torsor t e H1 (/c, G), there exists a torsor
t e G) specializing to t which is unique upto isomorphism. This in turn gives

a torsor Ik in H1^, Gk) by base change, thus defining a map ik : Hx(/c, G) —>

H1 (K, Gk) [6, p. 29], It clearly sends the trivial element to the trivial element. The

map i also behaves well with the natural restriction maps, i.e., it fits into the following
commutative diagram:

H\k,G) ^ H\K,Gk)

nH^G) ntfW.Gjr).

Let £ denote the torsor in H^/L G) corresponding to f as above. Therefore %k

ik(£) is in the kernel of

r
h1^, G*)^nHi^'0*)-

i=i

Suppose that Gk satisfies SQ. Then fk is trivial. However by [12], the natural

map Hlt(7?, G) H1 Gk) is injective and hence f is trivial in H!t(7?, G). This
implies that its specialization, £, is trivial in H1 (A:, G).

Thus from here on, we assume that the base field k has characteristic 0.

2.2. Lemmata.

Lemma 2.1. Let k-groups G and H satisfy SQ. Then G H also satisfies SQ.

Proof. Let L/k be a field extension. Then the map

Hl(k,Gxh H)^H\L,Gxk H)
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is precisely the product of the maps

H1^, G) -* H^L, G) and H1^, H) -> F^(L, H).

This immediately shows that if G and H satisfy SQ, so does G H.

Lemma 2.2. Let \ ^ Q H G —> \ be a central extension ofa k-group G by

a quasi-trivial torus Q. Then H satisfies SQ ifand only ifG satisfies SQ.

Proof Let L, be field extensions of k such that gcd[L; : k] 1. Since Q is quasi-
trivial, H1 (L, Q) {1} V L/k. From the long exact sequence in cohomology, we
have the following commutative diagram.

1 > H\k,H) v Hl(k,G) ^—y H2(k,Q)

1 mHLi,H) riH^L/.G) nH2(Li,ö)

From the above diagram, it is clear that if G satisfies SQ, so does H.
Conversely, assume that H satisfies SQ. Let a e H1 (k, G) become trivial

in ]~[ H1 (L,, G). Then S/fia) becomes trivial in each H2(L;, Q). Flence

the corestriction CorL,/k (8k(a)) &k(fl)dl becomes trivial in H2(k,Q) where

di [Li : k\. Since gcd; (dQ 1, this implies that 8k(a) is itself trivial in H2(fi, Q).
Therefore a comes from an element fie H1 (k, H) which is trivial in ]~[ FI1 (L;, H).
(The fact that H1 (L,, Q) {1} guarantees that fi is trivial in H1 (L;-, H).) Since H
satisfies SQ by assumption, fi is trivial in H1 (k, H) which implies the triviality of a

inHHJk.G).

Lemma 2.3. Let E be afinite separablefield extension ofk and let H be an E -group
satisfying SQ. Then the k-group Rß/kiH) also satisfies SQ.

Proof. Set G Rß/kiH) and let £ be an element in the kernel of H1 (k, G) —>

HU H^L,, G) where gcd, [L, : k] 1.

Since char(fi) 0, Lt E is an etale ^-algebra and hence isomorphic to

E\,i x E2,i x • • • x E„ltl where each Eul is a separable field extension of E. Thus

YTj=i [Ej,i ' E~\ [Li : k] and therefore gcd \Eul : £] 1 where 1 < i < r and
1 < j < nt.

By Eckmann-Faddeev-Shapiro, we have a natural bijection of pointed sets

H1 (k,G) ~ H1 (E,H),
n,

H1 (L,, G) ~ nHl
7 1

Thus we have that £ is in the kernel of H^is, H) —> ]~[i<r, j<nt H).
Since PI satisfies SQ, we see that £ is trivial.
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3. Serre's question and norm principles

3.1. Intermediate groups G and G. Notations are as in Section 5 of [1 ].
Let G be our given connected reductive k-group whose Dynkin diagram contains

connected components only of type An, Bn, Cn or (non-trialitarian) Dn and let G'
denote its derived subgroup. Let Z(G) T and Z(G') p.

Let p : p S be an embedding of p into a quasi-trivial torus S. We denote the

cofibre product e(G', p) G *s by G. This k-group is called an envelope of G'.

p G'

p

S —G
Now the quasi-trivial torus S Z(G) and G fit into an exact sequence as follows:

1 -* 5 -> G -* G'ad - 1 (*)

where G'ad corresponds to the adjoint group of G'. We now recall the following
result of Jodi Black which addresses Serre's question for adjoint groups of classical

type-

Theorem 3.1 (Jodi Black, [3, Thm. 0.2]). Let k be a field ofcharacteristic different
from 2 and let J be an absolutely simple algebraic k-group which is not of type E%

and which is either a simply connected or adjoint classical group or a quasi-split
exceptional group. Then Serre's question has a positive answerfor J.

Since every adjoint group of classical type is a product of Weil restrictions of
absolutely simple adjoint groups, the above theorem, along with Lemmata 2.1 and 2.3,

implies that G'ad satisfies SQ. Applying Lemma 2.2 to the exact sequence (*) above,

we see that G satisfies SQ. Let us chose such an envelope G ofG' which satisfies SQ.
Define an intermediate abelian group f to be the cofibre product

p. > T

p
^

ot

S —-—> f
Let the algebraic group G be the cofibre product defined by the following diagram:

G'xf —^ G

id xa ß

G'xf —-—^ G.
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Then we have the following commutative diagram with exact rows [1, Prop. 5.1].
Note that each row is a central extension of G.

1 y fx -^y G'xf —e—y G y 1

id

1 y S GxT y G y 1

(**)

(* * *)

Since T is abelian, the existence of the co-restriction map shows that T
satisfies SQ. Since G satisfies SQ, we can apply Lemmata 2.1 and 2.2 to (* * *) to
see that G satisfies SQ.

3.2. Norm principle and weak norm principle. Let / : G —> T be a

map of k-groups where T is an abelian k-group. Then we have norm maps
Nl/Ic ' T(L) —> T(k) for any separable field extension L/k.

G(L) -^4 T(L)

NL/k

G(k) -^-y T(k)

We say that the norm principle holds for / : G —T if for all separable field
extensions L/k,

NL/k (Image f{L)) c Image f(k).

That is, we say that the norm principle holds for / : G -> T if given any
separable field extension L/k and any t T(L) such that

t e (Image f(L):G(L)^T(L))
then NL/k(t) e (Image /(k) : G(k) —r T(k)).

Note that the norm principle holds for any algebraic group homomorphism
between abelian groups.

We say that the weak norm principle holds for / : G T if given any t 6 T(k)
such that

t (Image/(L) : G(L) T{L)),
then NL/k(t) e (Image f(k) : G(k) T(k)).

It is clear that if the norm principle holds for /, then so does the weak norm
principle.
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3.3. Relating Serre's question and norm principle. The deduction of SQ for G

from G and G follows via the (weak) norm principles.
Let ß : G -» G be the embedding of ^-groups with the cokernel P isomorphic

to the torus 77 where G and G are as in Section 3.1. Thus we have the following
h*'

exact sequence:

1->G^G4P->1.

Lemma 3.2. If the weak norm principle holds for n : G —> P, then G satisfies SQ.

Proof. From the long exact sequence of cohomology, we have the following
commutative diagram:

1 G(k) G(k) P(k) HUk.G) Yf(k,G)

1 nGCM -> ncd,) n^(^) ^ n^c^c) -» rw^ö).
Leta e H^k.G) become trivial in flH'^.G). As G satisfies SQ, ßk (a) becomes

trivial in H!(/:, G). Hence a &k(b) for some b e P(k) and 8li (b) is trivial in
H1 (Li, G). Therefore, there exist c, e G(L;) such that 7tl, (g) b.

Showing that G satisfies SQ, i.e. that a is trivial, is equivalent to showing

b e (image : G(k) —r P(k)).

However b e (image jZLj : G(L( —P(LQ). Since the weak norm principle holds

for 7T : G -» P, bdl e Image (n^ : G(k) —> P(k)) where [L, : k] — dt for each i.
As gcd^ö?,) 1, this means b e Image (n^ : G(k) —> P(k)).

We recall now the norm principle ofMerkurjev and Barquero for reductive groups
of classical type.

Theorem 3.3 (Barquero-Merkurjev, [1]). Let G be a reductive group over afield k.
Assume that the Dynkin diagram ofG does not contain connected components Dn,
n > 4, or E7. Let T be any commutative k-group. Then the norm principle holds

for any group homomorphism G —> T.

This shows that the norm principle and hence the weak norm principle holds for
the map 7r : G —»• P for reductive k-groups G as in the main theorem (Theorem 1.2).
Thus we have concluded the proof for the following:

Theorem 1.2. Let k be a field ofcharacteristic not 2. Let G be a connected reductive

k-group whose Dynkin diagram contains connected components only of type An, Bn

or Cn. Then Serre's question has a positive answerfor G.
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4. Obstruction to norm principle for (non-trialitarian) Dn

4.1. Preliminaries. Let (A, a) be a central simple algebra of degree 2n over k and

let a be an orthogonal involution. Let C (A, a) denote its Clifford algebra which is a

central simple algebra over its center, Z/k, the discriminant extension. Let i denote

the non-trivial automorphism of Z/k and let a denote the canonical involution
of C (A, a).

Recall that, depending on the parity of n, g_ is either an involution of the second

kind (when n is odd) or of the first kind (when n is even). Let /i : Sim (C (A, a), a) —>

Rz/k&m denote the multiplier map sending similitude c to a_(c)c.
Let Q, (A, er) be the extended Clifford group. Note that this has center

Rz/k^m and is an envelope of Spin (A, o) [1, Ex. 4.4]. We recall below the map
x : £2 (A, a) (k) -> Z*/k* as defined in [9, p. 182],

Given co e £2 (A, a) (k), let g e GO+ (A, a) (k) be some similitude such that
co ^ gk* under the natural surjection £2 (A, a) (k) -» PGO+ (A, a) (k).

Let h /i(g)~1g2 e 0+ (A, a) (k) and let y e T (A, a) (k) be some element
in the special Clifford group which maps to h under the vector representation
X1 : T (A, a) (k) 0+ (A, a) (k). Then co2 yz for some z e Z* and

x {co) zk*.
Note that the map x has T (A, a) (k) as kernel. Alsoifz e Z*,thenx(z) — z2k*.
By following the reductions in [1], it is easy to see that one needs to investigate

whether the norm principle holds for the canonical map

ort ^
A'a

[£2 (A, a), Q. (A, a)]'

We will need to investigate the norm principle for two different maps depending
on the parity of n.

The map /r* for n odd. Let U c Gm x Rz/kGm be the algebraic subgroup defined

by

U(k) {(/,z) e k* x Z*\f4 NZ/k(z)}.

Recall the map /r* : Q, (A, a) -» U defined in [9, p. 188] which sends

co ^p(co),ai(a)~1 p((o)2^

where co Q (A, o) (k) and x{co) a k*. This induces the following exact

sequence [9, p. 190]

1 —» Spin (A, o*) —> £2 (A, a) —> U —> 1.

Since the semisimple part of Q (A, a) is Spin (A, a), the above exact sequence
shows that it suffices to check the norm principle for the map p.*.
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The map /a for n even. Recall the following exact sequence induced by restricting

/a to £2 (A, o) [9, p. 187]

1 —>• Spin (A, ct) -> £2 (A, a) Rz/k^m —> L

Since the semisimple part of £2 (A, a) is Spin (A, a), the above exact sequence
shows that it suffices to check the norm principle for the map /a.

4.2. An obstruction to being in the image of /a, for n odd. Given (f z) e U(k),
we would like to formulate an obstruction which prevents (/, z) from being in the

image /a# (£2 (A, er) (k)). Note that for z 6 Z*, /a*(z) (Nz/it(z), z4) and hence
the algebraic subgroup Uq <^U defined by

U0(k) {(Nz/k(z),z4)\z eZ*}

has its A-points in the image /a* (f2 (A, a) (A:)).
N

Let Hn[Z] denote the kernel of the norm map Rn/kl^n —> AG where K/ k is a

quadratic extension. Note that ji4[z] is the center of Spin (A, o) as n is odd. Also
recall that [9, Prop. 30.13, p. 418]

Thus, we can construct the map S : PGO+ (A, a) (k) ->• H1 (k, /a4[z]) induced

by the following commutative diagram with exact rows:

1 > Z* > (A, a) (k) —^-4 PGO+ (A, a) (k) > 1

1 > U0(k) > U(k) > H1 (k,fi4[Z]) > 1

The map S also turns out to be the connecting map from PGO+ (A, a) (k) ->
H1 (A,/a4[z]) [9, Prop. 13.37, p. 190] in the long exact sequence of cohomology
corresponding to the exact sequence

1 -»• AG[Z] —** Spin (A, a) —> PGO+ (A, a) —> 1.

Since the maps /a* : Z* —» Uo{k) and x' ' ^ (A, a) (k) -»• PGO+ (A, a) (k) are

surjective, an element (/, z) e U(k) is in the image /a* (£2 (A, a) (k)) if and only if
its image [/, z] e H1 (k, ß4[Z]) is in the image S (PGO+ (A, a) (A)).
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Therefore we look for an obstruction preventing [/, z] from being in the image
S(PGO+ (A, a) (k)). Recall the following commutative diagram with exact rows
and columns:

1

A*2

1 > fi2 > Spin (A, a) —-—> 0+ (A, a) > 1

id

1 > i^4[z] > Spin (A, a) > PGO+ (A, a) > 1

The long exact sequence of cohomology induces the following commutative
diagram (Figure 1) with exact columns [9, Prop. 13.36, p. 189], where

0+ (A, or) (Ac)

PGO+ (A, or) (Ik)

k*
k*2

Sn k*
k*2

-4 H1 {k,ji4[z])

k*
k*2

Figure 1. Spinor norms and S for n odd

/x : PGO+(A, u)(k) is induced by the multiplier map/u,:GO+(A, ct) Gm

i ^2 H1 (k, /x4[z]) is the map sending fk*2 [/, /2]
U(k)

J ' Wfa Rl (k> /X4[Z]) -4- jz2 is the map sending [/, z] N(z0)k*2,

where zo e Z* is such that zoz'(zo)-1 f~2z-

Definition 4.1. We call an element (/, z) e U(k) to be special if there exists a

[g] PGO+ (A, a) (Jc) such that j([f z]) K[g])-
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2n_ U{k)

Let (/, z) e U(k) be a special element and let [g] G PGO+ (A, a) (k) be such

that j([f,z]) p([g\). From the discussion above, it is clear that (/, z) is in the

image p* (£2 (A, a) (k)) if and only if [/, z] is in the image S (PGO+ (A, a) (k)).
Thus S([g])[/, z]-1 is in kernel j Image i and hence there exists some a £ k*

such that

[/,z] S(fe])[«.« - um.
Note that if g is changed by an element in 0+ (A, a) (k), then a changes by a

spinor norm by Figure 1 above. Thus given a special element, we have produced a
scalar a G k* which is well defined upto spinor norms.

[fi z] G S (PGO+ (A, a) (k)) [a, a2] e S (PGO+ (A, a) (k))

<t=> (a, a2) G /X* (£2 (A, a) (k)).

This happens if and only if there exists w G £2 (A, a) (k) such that

a p(w)
a2 x(w)i(x(w))~l p(w)2

This implies x(tu) G k* and hence w G T (A, a) (k). Thus a is a spinor norm, being
the similarity of an element in the special Clifford group. Also note if a is a spinor

norm, then a /x(y) for some y G T (A, a) (k) and p,*{y) (p,(y), p-(y)2^j.

Thus a special element (/, z) is in the image of pt* if and only if the produced
lr*scalar a is a spinor norm. We call the class of a in Sn^A to be the scalar

obstruction preventing the special element (/, z) G U(k) from being in the image

p.* (£2 (A, a) (k)).

4.3. An obstruction to being in the image of p. for n even. Given z G Z*, we
would like to formulate an obstruction which prevents z from being in the image

p (Q (A, a) (k)) Note that for z G Z*, /x(z) z2 and hence the subgroup Z*2 is

in the image p (£2 (A, a) (k)).
Like in the case of odd n, we can construct the map S : PGO (A, a) (k) —>

induced by the following commutative diagram with exact rows [9, Def. 13.32,

p. 187]:

1 Z* £2 (A, a) (k) —PGO+ (A, a) (k) > 1

a.

1 > Z*2 y Z* y ^ y 1

Again by the surjectivity of the maps, p : Z* —> Z*2 and /' ' G (A, o) (k) —

PGO+ (A, ct) (k), an element z G Z* is in the image p (£2 (A, o*) (k)) if and only
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if its image [z] e is 'n the image S (PGO+ (A, a) (k)). Therefore we look for

an obstruction preventing [z] from being in the image S(PGO+ (A, a) (k)). And as

before, we arrive at the the following commutative diagram (Figure 2) with exact

rows and columns [9, Prop. 13.33, p. 188], where

0+(A,o)(k) -

7X

PGO+ (A, a) (k)

ß

k*
k*2

Figure 2. Spinor norms and S for n even

p, : PGO+ (A, a)(k) -> ^ is induced by the multiplier map p,: GO+ (A, a) —> Gm

i ' p?2 is the inclusion map

j ' ~z*2 ptä is induced by the norm map from Z* ^ k*.

Definition 4.2. We call an element z e Z* to be special if there exists a

[,g] PGO+ (A, a) (k) such that j([z]) ix([g]).

Let z e Z* be a special element and let [g] G PGO+ (A, a) (k) be such that

j([z]) /z([g]). As before a special element z G Z* is in the image ji (Q, (A, a) (k))
if and only if [z] is in the image S (PGO+ (A, a) (k)).

Thus •S'([g])[z]_1 is in kernel j Image/ and hence there exists some a e k*
such that

[z] S(\g])[a] J^.
Note that if g is changed by an element in 0+ (A, a) (k), then a changes by a

spinor norm by Figure 2 above. Thus given a special element, we have produced a
scalar a e k* which is well defined up to spinor norms.

[z] G 5 (PGO+ (A, or) (fc)) 4=> [a] e S (PGO+ (A, a) (k))

(a) e /x(Q (A, a) (k)).

Since a e k* also, this is equivalent to a being a spinor norm [9, Prop. 13.25,

p. 184],
Ir*We call the class of a in Sn^A to be the scalar obstruction preventing the special

element z e Z* from being in the image /x (G (A, a) (k)).

Sn k*
k*2

Z*
Z* 2

k*
k*2



Vol. 91 (2016) On Serre's injectivity question and norm principle 157

4.4. Scharlau's norm principle for p: GO+ (A, a) -» Gm. Let /x: GO+ (A, a) —r Gm
denote the multiplier map and let L/ k be a separable field extension of finite degree.
Let gi G GO+ (A, a) (L) be such that fx (gi) f\ G L*. Let / denote N^/k (/i).
We would like to show that / is in the image jx (GO+ (A, a) (k)).

Note that by a generalization of Scharlau's norm principle ([9, Prop. 12.21]; [3,
Lemma 4.3]) there exists age GO (A, o) (k) such that / /x(g) However we
would like to find a proper similitude g e GO+ (A, er) (k) such that p(g) f.

We investigate the cases when the algebra A is non-split and split separately.

Case I: A is non-split. Note that gi e GO+ (A, a) (L). If g e GO+ (A, a) (k), we
are done. Hence assume g ^ GO+ (A, a) (k). By a generalization of Dieudonne's
theorem [9, Thm. 13.38, p. 190], we see that the quaternion algebras

Bl (Z, /,) 0 G Br(L),
B2 (Z, f) Ae Br{k).

Since A is non-split, B2 ^ 0 e Br(k). However co-restriction of B\ from L to k
gives a contradiction, because

0 Cor B, (Z.Nl/^/O) B2 e Br(k).

Hence g e GO+ (A, ct) (k).

Case II: A is split. Since A is split, A End V where (V, q) is a quadratic space
and u is the adjoint involution for the quadratic form q. Again,ifg <s GO+ (A,ct) (k),
we are done. Hence assume g ^ GO+ (A, a) (k). That is

det(g) -f2n'2 -(f).
Since A is of even degree (2n) and split, there exists an isometry1 h of

determinant —1. Set g gh. Then det(g) fn where p(g) — f. Thus

we have found a suitable g e GO+ (A, a) (k) which concludes the proof of the

following:

Theorem 4.3. The norm principle holds for the map /x : GO+ (A, a) —> Gm.

4.5. Spinor obstruction to norm principle for non-trialitarian Dn. Let L/k be

a separable field extension of finite degree. And let w\ e Q (A, a) (L) be such that
for

n odd : p*(u>i) 6 which is equal to e U(L),
n even : gt{w\) 9 which is equal to z\ G (Rz/k&m )(!<)

'Since V is of even dimension 2n, h can be chosen to be a hyperplane reflection for instance
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We would like to investigate whether (9) is in the image of /i* (f2 (A, a) (k))
(resp. p (f2 (A, a) (k))) when n is odd (resp. even) in order to check if the norm
principle holds for the map p* : G (A, a) —> U (resp. p : Q.(A, a) Rz/k^m)-

Let [gi] e PGO+(A, ct)(L) be the image of w \ under the canonical map
/':G(A, a)(L)-^PGO+(A, a)(L). Clearly 9 is special and let gi e GO+ (A, a) (L)
be such that /r(L?i]) j([&])

By Theorem 4.3, there exists age GO+ (A, a) (k) such that2

mm) nL/k um j ([Nla0]).

Hence NL/k(@) is special.
By Subsection 4.2 (resp. 4.3), l^L/kiß) is in the image of p* (resp p) if and only

if the scalar obstruction a e Sn*A a^
defined for NL/k(ß) vanishes. Thus we have a

spinor norm obstruction given below.

Theorem 4.4 (Spinor norm obstruction). Let L/k be a finite separable extension of
fields. Let f denote the map p* (resp p) in the case when n is odd (resp. even).

Given 0 e f (G (A, o) (L)), there exists scalar obstruction a e k* such that

NL/k(9) e / (n (A, a) (*)) ^a le

Thus the norm principle for the canonical map

O (A, o)^ ; [n(A,ff),n(A,ff)]
and hence for non-trialitarian Dn holds if and only if the scalar obstructions are

spinor norms.

5. Quasi-split groups

Let G be a connected reductive A-group whose Dynkin diagram does not contain
connected components of type Eg and let G' denote its derived subgroup. Let Gsc

denote the simply connected cover of G'. Then one has the exact sequence 1 —>

C —> Gsc G' —> 1, where C is a finite A:-group of multiplicative type, central in
Gsc. Assuming that Gsc is quasi-split, we would like to show that G satisfies SQ by
following the reduction techniques used in Sections 2 and 3.

Lemma 5.1. Let G be a connected reductive k -group. If Gsc is quasi-split, then
iff

there exists an extension \ —?Q—?H^G^\, where Q is a quasi-trivial
k-torus, central in reductive k-group H with H' simply connected and quasi-split.

2The map j commutes with NL/k in hoth cases.
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Proof. Recall that there is a central extension (called a z-extension) of G by a quasi-
trivial torus Q such that H' is semisimple and simply connected ([11, Prop. 3.1]
and [4, Lemma 1.1.4]).

t(r

The restriction x//\h' ' H' —y G yields the fact that H' is the simply connected cover
of G' and hence is quasi-split.

Lemmata 2.2 and 5.1 imply that we can restrict ourselves to connected reductive
A:-groups G such that G' is simply connected and quasi-split.

Lemma 5.2. Let H be any reductive k-group such that its derived subgroup H'
is semisimple simply connected and quasi-split. Let T denote the k-torus H/H'.

(p
Then the natural exact sequence 1 —> H —> H —* T —>-1 induces surjective maps
<p{L) : H(L) —> T (L) for allfield extensions L/k. In particular, the norm principle
holds for f : H —> T.

Proof. There exists a quasi-trivial maximal torus Q\ of H' defined over k [8,
Lern. 6.7]. Let Q\ C Q2, where Q2 is a maximal torus of H defined over k.
The proof of [8, Lern. 6.6] shows that <P\q2 : Q2 -> T is surjective and that Q2 n H'
is a maximal torus of H'. Since Q2 D H' c gi, we get the following extension of
A;-tori

Since Q\ is quasitrivial, H1 (L, Qi) 0 for any field extension L/k which gives
the surjectivity of 4>{L) : Q2(L) T(L) and hence of </>(L) : H(L) —> T{L).

Let G be an envelope of G' defined using an embedding of p Z{G') into a

quasi-trivial torus S. Note that G' is assumed to be simply connected and quasi-split
and is also the derived subgroup of G by construction.

p > G

p

S G

Thus, we get an exact sequence \ G' —> G -> G/G' ^ I to which we can

apply Lemma 5.2 to conclude that the norm principle holds for the canonical map

[g,g]
Constructing the intermediate group G as in Section 3.1, we see that the norm

principle also holds for the natural map G —> G/G [1, Prop. 5.1]. Then using
Theorem 3.1 [3], Lemma 3.2, and a remark from Gopal Prasad that Gsc is quasi-split
if and only if G is quasi-split, we can conclude that Theorem 1.3 (restated below)
holds.
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Theorem 1.3. Let k be afield ofcharacteristic not 2. Let G be a connected quasi-split
reductive k-group whose Dynkin diagram does not contain connected components of
type Eg. Then Serre's question has a positive answerfor G.
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