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On Serre’s injectivity question and norm principle

Nivedita Bhaskhar™

Abstract. Let k be a field of characteristic not 2. We give a positive answer to Serre’s injectivity
question for any smooth connected reductive k-group whose Dynkin diagram contains connected
components only of type A,,, B, or C,. We do this by relating Serre’s question to the norm
principles proved by Barquero and Merkurjev. We give a scalar obstruction defined up to spinor
norms whose vanishing will imply the norm principle for the non-trialitarian D,, case and yield
a positive answer to Serre’s question for connected reductive k-groups whose Dynkin diagrams
contain components of (non-trialitarian) type D, too. We also investigate Serre’s question for
quasi-split reductive k-groups.

Mathematics Subject Classification (2010). 14L35, 20G10, 20G15.

Keywords. Principal homogeneous spaces, Serre’s question, zero cycles, norm principles,
spinor norm, Galois cohomology.

1. Introduction

Let k be a field. Then the following question of Serre, which is open in general, asks

Question 1.1 (Serre, [13, p. 233]). Let G be any connected linear algebraic group
over a field k. Let Lq,La,...,L, be finite field extensions of k of degrees
di,da, ..., d, respectively such that gcd; (d;) = 1. Then is the following sequence
exact ?

.
I - H'(k.G) > [ [H'(Li. G).
i=1

The classical result that the index of a central simple algebra divides the
degrees of its splitting fields answers Serre’s question affirmatively for the group
PGL,,. Springer’s theorem for quadratic forms answers it affirmatively for the (albeit
sometimes disconnected) group O(q) and Bayer—Lenstra’s theorem [2], for the groups
of isometries of algebras with involutions. Jodi Black [3] answers Serre’s question
positively for absolutely simple simply connected and adjoint k-groups of classical
type. In this paper, we use and extend Jodi’s result to connected reductive k-groups
whose Dynkin diagram contains connected components only of type A,, B, or C,.

*The author acknowledges support from the NSF-FRG grant 1463882.
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Theorem 1.2. Let k be a field of characteristic not 2. Let G be a connected reductive
k-group whose Dynkin diagram contains connected components only of type A, By
or Cy. Then Serre’s question has a positive answer for G.

We also investigate Serre’s question for reductive k-groups whose derived
subgroups admit quasi-split simply connected covers. More precisely, we give a
uniform proof for the following :

Theorem 1.3. Let k be afield of characteristic not 2. Let G be a connected quasi-split
reductive k-group whose Dynkin diagram does not contain connected components of
type Eg. Then Serre’s question has a positive answer for G.

We relate Serre’s question for G with the norm principles of other closely related
groups following a series of reductions previously used by Barquero and Merkurjev
to prove the norm principles for reductive groups whose Dynkin diagrams do not
contain connected components of type D,, E¢ or E7 [1]. We also give a scalar
obstruction defined up to spinor norms whose vanishing will imply the norm principle
for the (non-trialitarian) D, case and yield a positive answer to Serre’s question for
connected reductive k-groups whose Dynkin diagrams contain components of this
type also.

In the next section, we begin with some lemmata and preliminary reductions. In
Section 3, we introduce intermediate groups G and G and relate Serre’s question for
G to Serre’s question for G and G via the norm principle. In Section 4, we investigate
the norm principle for (non-trialitarian) type D,, groups and find the scalar obstruction
whose vanishing will imply the norm principle for the (non-trialitarian) D, case. In
the final section, we use the reduction techniques used in Sections 2 and 3 to discuss
Serre’s question for connected reductive k-groups whose derived subgroups admit
quasi-split simply connected covers.

2. Preliminaries

We work over the base field k of characteristic not 2. By a k-group, we mean a
smooth connected linear algebraic group defined over k. And mostly, we will restrict
ourselves to reductive groups. We say that a k-group G satisfies SQ if Serre’s
question has a positive answer for G.

2.1. Reduction to characteristic 0. Let G be a connected reductive k-group whose
Dynkin diagram contains connected components only of type A,, B, C, or (non-
trialitarian) D,. Without loss of generality we may assume that & is of characteristic 0
[7, p. 47]. We give a sketch of the reduction argument for the sake of completeness.

Suppose that the characteristic of k is p > 0. Let Ly, L,, ..., L, be finite field
extensions of k of degrees d;,d>, ..., d, respectively such that ged;(d;) = 1 and
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let £ be an element in the kernel of

H'(k.G) - [ [H'(L:i. G).

i=1

By a theorem of Gabber, Liu and Lorenzini [5, Thm. 9.2] which was pointed out
to us by O. Wittenberg, we note that any torsor under a smooth group scheme G/ k
which admits a zero-cycle of degree 1 also admits a zero-cycle of degree 1 whose
support is étale over k. Thus without loss of generality we can assume that the given
coprime extensions L;/k are in fact separable.

By [10, Thms. 1 & 2], there exists a complete discrete valuation ring R with residue
field k and fraction field K of characteristic zero. Let S; denote corresponding étale
extensions of R with residue fields L; and fraction fields Kj.

There exists a smooth R-group scheme G with special fiber G and connected
reductive generic fiber Gk. Now given any torsor ¢ € H! (k, G), there exists a torsor
= Hét(R, G) specializing to # which is unique upto isomorphism. This in turn gives
a torsor g in H'(K, Gg) by base change, thus defining a map iy : H'(k,G) —
H! (K, G k) [6, p. 29]. It clearly sends the trivial element to the trivial element. The
map i also behaves well with the natural restriction maps, i.e., it fits into the following
commutative diagram :

H(k,G) —% s HY(K, Gk)

| l

[TH! (L,,G) > [TH'(K;, Gg).

Let § denote the torsor in Hét(R, G) corresponding to £ as above. Therefore § g =
ix(£) is in the kernel of

H'(K,Gx) — [ [H' (K, Gk).
i=1

Suppose that G ¢ satisfies SQ. Then E k is trivial. However by [12], the natural
map HY (R, G) — HY(K, Gg) is injective and hence £ is trivial in H} (R, G). This
1mp11es that its specialization, £, is trivial in H! (k, G).

Thus from here on, we assume that the base field k has characteristic 0.

2.2. Lemmata.
Lemma 2.1. Let k-groups G and H satisfy SQ. Then G x; H also satisfies SQ.

Proof. Let L/k be a field extension. Then the map
H'(k,G xx H) - H'(L, G x4 H)
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is precisely the product of the maps
H!(k,G) - H'(L,G) and H!(k, H) - H'(L, H).
This immediately shows that if G and H satisfy SQ, so does G x; H. [

Lemma 2.2. Let 1 — Q — H — G — 1 be a central extension of a k-group G by
a quasi-trivial torus Q. Then H satisfies SQ if and only if G satisfies SQ.

Proof. Let L; be field extensions of k such that gcd[L; : k] = 1. Since Q is quasi-
trivial, H'(L, Q) = {1} V L/k. From the long exact sequence in cohomology, we
have the following commutative diagram.

| — 5 H' (k. H) —— H'(k,G) —% 3 H2(k, Q)

| | |

| —— TTH! (L1, H) — [TH'(Li.G) 2% [THA(L;. 0)
From the above diagram, it is clear that if G satisfies SQ, so does H.

Conversely, assume that H satisfies SQ. Let a € H!'(k, G) become trivial
in [TH!(L;,G). Then &;(a) becomes trivial in each H?(L;, Q). Hence
the corestriction Cory,/r (6x(a)) = 81 (a)¥ becomes trivial in H2(k, Q) where
d; = [L; : k]. Since ged; (d;) = 1, this implies that §; (a) is itself trivial in H2 (k, Q).
Therefore a comes from an element b € H! (k, H) which is trivial in [[H'(L;, H).
(The fact that H' (L;, Q) = {1} guarantees that b is trivial in H'(L;, H).) Since H
satisfies SQ by assumption, b is trivial in H! (k, H) which implies the triviality of a
in H' (k, G). H

Lemma 2.3. Let E be a finite separable field extension of k and let H be an E-group
satisfying SQ. Then the k-group Rg i (H) also satisfies SQ.

Proof. Set G = REg/r(H) and let § be an element in the kernel of H'(k,G) —
[Ti—, H'(Li, G) where ged; [L; : k] = 1.

Since char(k) = 0, L; ®; E is an étale E-algebra and hence isomorphic to
Eyi x Ey; x---x Ey. ; where each E; is a separable field extension of E. Thus
> iy [Eji: E] = [L; : k] and therefore gcd [Ej; : E] = 1 where 1 <i <r and
1 <j=<n;

By Eckmann—Faddeev—Shapiro, we have a natural bijection of pointed sets

H! (k,G) ~H! (E, H),

nj
H' (L.G) =~ | [ H' (Ej4. H).
=1

Thus we have that £ is in the kernel of H'(E, H) — l—[isr, ey HY(E;;, H).
Since H satisfies SQ, we see that £ is trivial. ]
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3. Serre’s question and norm principles

3.1. Intermediate groups G and G. Notations are as in Section 5 of [1].

Let G be our given connected reductive k-group whose Dynkin diagram contains
connected components only of type A,, B,, C, or (non-trialitarian) D,, and let G’
denote its derived subgroup. Let Z(G) = T and Z(G') = p

Let p : 4 < S be an embedding of p into a quasi-trivial torus S. We denote the
cofibre product e(G’, p) = % by G. This k-group is called an envelope of G’.

5

=
@

0

» —

¥

%)

Now the quasi-trivial torus § = Z (G) and G fitinto an exact sequence as follows:
1->8>G->G6G'%% 1 ()

where G’ 44 corresponds to the adjoint group of G’. We now recall the following
result of Jodi Black which addresses Serre’s question for adjoint groups of classical
type.

Theorem 3.1 (Jodi Black, [3, Thm. 0.2]). Let k be a field of characteristic different
from 2 and let J be an absolutely simple algebraic k-group which is not of type Eg
and which is either a simply connected or adjoint classical group or a quasi-split
exceptional group. Then Serre’s question has a positive answer for J .

Since every adjoint group of classical type is a product of Weil restrictions of
absolutely simple adjoint groups, the above theorem, along with Lemmata 2.1 and 2.3,
implies that G’ ad satisfies SQ. Applying Lemma2.2 to the exact sequence () above,
we see that G satisfies S Q. Let us chose such an envelope G of G' which satisfies SQ.

Define an intermediate abelian group T to be the cofibre product —= TXS

=~

—

p (04

— &

~

v
Let the algebraic group G be the cofibre product defined by the following diagram:

G xT 25 G

liaxe g

G2 T 5 6.
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Then we have the following commutative diagram with exact rows [1, Prop. 5.1].
Note that each row is a central extension of G.

1 > L G B el —Es > 1 (%)
L
1 5§ 8 Bl sy G > 1 (% * %)

Since T is abelian, the existence of the co-restriction map shows that 7
satisfies §Q. Since G satisfies SQ, we can apply Lemmata 2.1 and 2.2 to (x * *) to
see that G satisfies SQ.

3.2. Norm principle and weak norm principle. Let f : G — T be a
map of k-groups where 7' is an abelian k-group. Then we have norm maps
Npjk : T(L) — T (k) for any separable field extension L/k.

&L L5 Ty

LNL/k
Gy L9 T

We say that the norm principle holds for f : G — T if for all separable field
extensions L/ k,

Npk(Image f(L)) S Image £ (k).

That is, we say that the norm principle holds for f : G — T if given any
separable field extension L/k and any ¢ € 7'(L) such that

t € (Image f(L): G(L) — T(L)),
then Nrp/k(t) € (Image f(k) : G(k) — T'(k)).

Note that the norm principle holds for any algebraic group homomorphism
between abelian groups.

We say that the weak norm principle holds for f : G — T if givenany ¢t € T (k)
such that

t € (Image f(L): G(L) — T(L)),
then 2k = Np e (6) € (Image f(k) : G(k) — T(k)).

It is clear that if the norm principle holds for f, then so does the weak norm
principle.
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3.3. Relating Serre’s question and norm principle. The deduction of SQ for G
from G and G follows via the (weak) norm principles.
Let 8 : G — G be the embedding of k- -groups with the cokernel P isomorphic

to the torus E where G and G are as in Section 3.1. Thus we have the following
exact sequence:

1—>G£>G£>P—>1.

Lemma 3.2. If the weak norm principle holds for = © G — P, then G satisfies S 0.

Proof. From the long exact sequence of cohomology, we have the following
commutative diagram:
T 8k Bk

1> Gk - Gk) 5 Pk =5 HEKG =5 HE%GE
e \) ) i\ 1

| = [16(L) — [[6L) 24 rwy 224 u(L.6) - [[H'(L:.G).

Leta € H'(k, G) become trivialin [TH' (L;, G). As G satisfies SO, B (@) becomes
trivial in H! (k, G). Hence a = §;(b) for some b € P(k) and 81, (b) is trivial in
H!(L;, G). Therefore, there exist ¢; € G(L;) such that myp;(ci) =b.

Showing that G satisfies SQ, i.e. that a is trivial, is equivalent to showing
b € (Image 7y : G(k) — P(k)).

However b € (Image mr; G(L;) — P(Li)). Since the weak norm principle holds
form : G — P, b% e Image (k- G (k) — P(k)) where [L; : k] = d; for each i.
As ged; (d;) = 1, this means b € Image (7y. G(k) —> P(k)). O

We recall now the norm principle of Merkurjev and Barquero for reductive groups
of classical type.

Theorem 3.3 (Barquero—Merkurjev, [1]). Let G be a reductive group over a field k.
Assume that the Dynkin diagram of G does not contain connected components D,,
n >4, E¢or E7. Let T be any commutative k-group. Then the norm principle holds
for any group homomorphism G — T.

This shows that the norm principle and hence the weak norm principle holds for
the map 7 : G — P forreductive k-groups G as in the main theorem (Theorem 1.2).
Thus we have concluded the proof for the following:

Theorem 1.2. Let k be a field of characteristic not 2. Let G be a connected reductive
k-group whose Dynkin diagram contains connected components only of type Ay, By,
or Cy. Then Serre’s question has a positive answer for G.
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4. Obstruction to norm principle for (non-trialitarian) D,,

4.1. Preliminaries. Let (A, o) be a central simple algebra of degree 2n over k and
let o be an orthogonal involution. Let C (A, o) denote its Clifford algebra which is a
central simple algebra over its center, Z / k, the discriminant extension. Let i denote
the non-trivial automorphism of Z/k and let o denote the canonical involution
of C(A,0).

Recall that, depending on the parity of n, o is either an involution of the second
kind (when n is odd) or of the first kind (when n iseven). Let u : Sim (C (A,0),0) —
Rz kG denote the multiplier map sending similitude ¢ to o(c)c.

Let Q (A,0) be the extended Clifford group. Note that this has center
Rz /xGm and is an envelope of Spin (A, o) [1, Ex. 4.4]. We recall below the map
x:Q(A,0) (k)= Z*/k* as defined in [9, p. 182].

Given w € Q (A, 0) (k), let g € GO (A, 0) (k) be some similitude such that
w ~» gk* under the natural surjection Q (A, o) (k) — PGO™ (A, o) (k).

Leth = u(g) 'g? € O (A,0) (k) and let y € T (A, o) (k) be some element
in the special Clifford group which maps to & under the vector representation
¥ :T(A,0)(k) > Ot (A,0)(k). Then w? = yz for some z € Z* and
x(w) = zk*.

Note that the map » has I (A, o) (k) askernel. Alsoifz € Z*,thenx(z) = z2k*.

By following the reductions in [1], it is easy to see that one needs to investigate
whether the norm principle holds for the canonical map

Q(A,0)
[2(A,0),Q (A, 0)]

QA,0)—

We will need to investigate the norm principle for two different maps depending
on the parity of n.

The map p, for nodd. LetU C Gy, x Rz Gy, be the algebraic subgroup defined
by
Uk) = {(f,2) € k* x Z*| f* = Nz/x(2)}.

Recall the map pu« : Q (A,0) — U defined in [9, p. 188] which sends

0~ (1).ai@ pw)?).

where w € Q(A,0) (k) and x(w) = a k*. This induces the following exact
sequence [9, p. 190]

1 — Spin(A,0) — Q (A, 0) 25 U — 1.

Since the semisimple part of Q2 (A, o) is Spin (A, o), the above exact sequence
shows that it suffices to check the norm principle for the map fix.
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The map p for n even. Recall the following exact sequence induced by restricting
K to (A,0) 9, p. 187]

p
1 — Spin(A,0) = Q(A,0) = Rz/kGm — 1.

Since the semisimple part of €2 (A, o) is Spin (A, o), the above exact sequence
shows that it suffices to check the norm principle for the map .

4.2. An obstruction to being in the image of x, for n odd. Given (f,z) € U(k),
we would like to formulate an obstruction which prevents ( f, z) from being in the
image « (2 (A, 0) (k)). Note that for z € Z*, u«(z) = (Nz/£(2), z*) and hence
the algebraic subgroup Uy C U defined by

Uo(k) = {(Nzx(2),z%)|z € Z*}

has its k-points in the image w4 (2 (A, o) (k)).

Let ,[z) denote the kernel of the norm map Ry fin —IL tn wWhere K/k is a
quadratic extension. Note that p4(z) is the center of Spin (A, o) as n is odd. Also
recall that [9, Prop. 30.13, p. 418]

Uk
H! (k,,LL4[Z]) x~ Eo(v()_)‘

Thus, we can construct the map S : PGO™ (A, o) (k) — H! (k, ;1,4[21) induced
by the following commutative diagram with exact rows:

I , Z* s Q (A, 0) (k) —~ PGO™ (A, 0) (k) —> 1

|+ [ Js

1 —— Up(k) —— U(k) ——— H' (k, jtagz]) —— 1

The map S also turns out to be the connecting map from PGO™ (A, o) (k) —
H! (k, ,u4[z]) [9, Prop. 13.37, p. 190] in the long exact sequence of cohomology
corresponding to the exact sequence

1 — j4pz] — Spin (A, 0) — PGO™ (A,0) — 1.
Since the maps i« : Z* — Up(k) and x' : Q2 (A, 0) (k) — PGO™ (A, 0) (k) are

surjective, an element ( f, z) € U(k) is in the image u« (22 (A, 0) (k)) if and only if
its image [ f, z] € H' (k, pa[z)) is in the image S (PGO™ (A, 0) (k)).
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Therefore we look for an obstruction preventing [ £, z] from being in the image
S(PGO™ (A,0) (k)). Recall the following commutative diagram with exact rows
and columns:

1
M2
1 > o » Spin (A,0) —— Ot (A,0) —— 1
J :

| —— w4z — Spin(A,0) —— PGO* (A,0) — 1

The long exact sequence of cohomology induces the following commutative
diagram (Figure 1) with exact columns [9, Prop. 13.36, p. 189], where

0% (A,0) (k) 2L > £
U Y

PGO™ (A, 0) (k) 5 s HY (k. jtagz)
M J

Figure 1. Spinor norms and S for n odd

w: PGOT (A, 0)(k)— 157*2 is induced by the multipliermap i : GO (A, 0) — G,

. * k) . .
f & ;‘*2 — H (k, ftagz7) = % is the map sending fk*? ~ [f, f?]

i {;;((",3) = H! (k. pajz)) — 1 is the map sending [, z] ~> N(z0)k*2,

where zo € Z* is such that zgi (z9) ™! = f2z.

Definition 4.1. We call an element ( f,z) € U(k) to be special if there exists a
[g] € PGO™ (A, 0) (k) such that j ([, z]) = p([g]).
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Let (f.z) € U(k) be a special element and let [g] € PGO™ (A, o) (k) be such
that j([f,z]) = w([g]). From the discussion above, it is clear that (f, z) is in the
image (2 (A, o) (k)) if and only if [ £, z] is in the image S (PGOJr (A,0) (k)).

Thus S([g])[f.z]! is in kernel j = Image i and hence there exists some « € k*

such that B
_ 2
[f.z] = S([gD[e, "] € Tol)

Note that if g is changed by an element in O (A, o) (k), then & changes by a
spinor norm by Figure 1 above. Thus given a special element, we have produced a
scalar a € k™ which is well defined upto spinor norms.

[f.2] € S (PGO™ (A,0) (k) <= [a,a’] € S (PGO™ (A, 0) (k))
= (o, 0?) € ux (R (A, 0) (k).

This happens if and only if there exists w € Q2 (A, o) (k) such that

@ = p(w)
@ = x(w)i (x(w)) ™ p(w)?

This implies »(w) € k* and hence w € I" (A, o) (k). Thus « is a spinor norm, being
the similarity of an element in the special Clifford group. Also note if « is a spinor

norm, then @ = p(y) for some y € I' (A, 0) (k) and p«(y) = (,u(y), u(y)z).
Thus a special element ( f, z) is in the image of p if and only if the produced

scalar @ is a spinor norm. We call the class of « in k* _ to be the scalar

obstruction preventing the special element ( f,z) € U(k) from being in the image

s (82 (A, 0) (k).

4.3. An obstruction to being in the image of u for n even. Given z € Z*, we
would like to formulate an obstruction which prevents z from being in the image

1 (R (A,0) (k)) . Note that for z € Z*, u(z) = z2 and hence the subgroup Z*? is
in the image u (€2 (A, o) (k)).

Like in the case of odd 7, we can construct the map S : PGO™ (A, 0) (k) — ZZ—,:;

induced by the following commutative diagram with exact rows [9, Def. 13.32,
p. 187]:

| —— Z* — 5 Q(A,0) (k) -2 PGO* (A, 0) (k) — 1
l& lg lS
] ey %2 > Z* s > 1

Again by the surjectivity of the maps, n : Z* — Z*2and y' : Q(A,0) (k) -
PGO™ (A,0) (k), an element z € Z* is in the image K (R (A, 0) (k)) if and only
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if its image [z] € ZZ—; is in the image S (PGOJr (A,0) (k)). Therefore we look for
an obstruction preventing [z] from being in the image S(PGO™ (A, o) (k)). And as
before, we arrive at the the following commutative diagram (Figure 2) with exact

rows and columns [9, Prop. 13.33, p. 188], where

O (A,0) (k) Mo A
T i

PGO™ (A, o) (k) 2 - £
K J

o = -

Figure 2. Spinor norms and S for n even

w: PGOY(A,0)(k)— :T*z isinduced by the multipliermap 1. :GO™ (A, 0) — G,
;:c**z = ZZ_:Z

j: ZZ—:Z —- ]‘f—*Z is induced by the norm map from Z* — k*.

L% is the inclusion map

Definition 4.2. We call an element z € Z* to be special if there exists a
[g] € PGO™ (A, o) (k) such that j([z]) = p([g]).

Let z € Z* be a special element and let [g] € PGO™ (A, o) (k) be such that
J([z]D) = n([g]). Asbefore a special elementz € Z* is in the image i (2 (A, o) (k))
if and only if [z] is in the image S (PGO"" (A, 0) (k)).

Thus S([g])[z]~! is in kernel j = Imagei and hence there exists some o € k*
such that

*

2] = S(lgDle] € oy

Note that if g is changed by an element in O" (A, o) (k), then « changes by a

spinor norm by Figure 2 above. Thus given a special element, we have produced a
scalar a € k™ which is well defined up to spinor norms.

z] € S (PGO™ (A, 0) (k)) < [a] € S (PGO™ (A, 0) (k))
= (@) € p(Q(A,0) (k).

Since a € k* also, this is equivalent to « being a spinor norm [9, Prop. 13.25,
p. 184].

We call the class of « in #:,0) to be the scalar obstruction preventing the special
element z € Z* from being in the image w (2 (A, o) (k)).
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4.4. Scharlau’s norm principle for £ : GOt (A, 0) = G,,. Letu:GO1 (A, 0) — G,y
denote the multiplier map and let L/ k be a separable field extension of finite degree.
Let g1 € GO™ (A,0) (L) be such that £ (g1) = f1 € L*. Let f denote N/ (f1).
We would like to show that f is in the image 1 (GO™ (A, o) (k)).

Note that by a generalization of Scharlau’s norm principle ([9, Prop. 12.21]; [3,
Lemma 4.3]) there exists a & € GO (A, o) (k) such that f = u(g) . However we
would like to find a proper similitude g € GO™ (A, o) (k) such that u(g) = f.

We investigate the cases when the algebra A is non-split and split separately.

Case I: A is non-split. Note that g; € GO™ (A,0) (L). If g € GOT (A, 0) (k), we
are done. Hence assume ¢ ¢ GO™ (A, o) (k). By a generalization of Dieudonné’s
theorem [9, Thm. 13.38, p. 190], we see that the quaternion algebras

By =(Z, f1) = 0€Br(L),
B> = (Z, f) = A € Br(k).

Since A is non-split, B, # 0 € Br(k). However co-restriction of B from L to k
gives a contradiction, because

0 = Cor By = (Z,Nr;k(f1)) = B> € Br(k).

Hence § € GO™ (A, 0) (k).

Case II: A is split. Since A is split, A = End V where (V, g) is a quadratic space
and o is the adjoint involution for the quadratic form g. Again, if g € GO™ (A, o) (k),
we are done. Hence assume g & GO™ (A, o) (k). That is

det(g) = — "% = —(f™).

Since A is of even degree (2n) and split, there exists an isometry! & of
determinant —1. Set g = gh. Then det(g) = f" where u(g) = f. Thus
we have found a suitable g € GO™ (A, o) (k) which concludes the proof of the
following:

Theorem 4.3. The norm principle holds for the map i : GO (A, 0) — Gy,

4.5. Spinor obstruction to norm principle for non-trialitarian D,. Let L/k be
a separable field extension of finite degree. And let w; € Q (A, a) (L) be such that
for

n odd : s« (wy) = 6 which is equal to ( f1,z1) € U(L),
neven : p(w1) = 6 which is equal to z; € (Rz/xGm) (L).

ISince V is of even dimension 27, & can be chosen to be a hyperplane reflection for instance
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We would like to investigate whether Ny /¢ (€) is in the image of 114 (2 (A, 0) (k))
(resp. i (2 (A, o) (k))) when n is odd (resp. even) in order to check if the norm
principle holds for the map 4 : Q (A, 0) — U (resp. . : 2 (A, 0) — Rz/kGm).

Let [g1] € PGO™ (A,0) (L) be the image of w; under the canonical map
¥ :Q(A,0)(L)—PGO(A,0)(L). Clearly f is special andlet g; € GO (A, o) (L)
be such that p([g1]) = j([0]).

By Theorem 4.3, there exists a g € GO (A, o) (k) such that?

u(gD) =Nr/k (j16]) = j (INL/x 0]) -

Hence Ny, /1 (0) is special.

By Subsection 4.2 (resp. 4.3) , N/ () is in the image of 4 (resp p) if and only
if the scalar obstruction « € #;}) defined for Nz, (@) vanishes. Thus we have a
spinor norm obstruction given below.

Theorem 4.4 (Spinor norm obstruction). Let L/k be a finite separable extension of
fields. Let f denote the map |« (resp W) in the case when n is odd (resp. even).
Given 0 € f (2 (A, ) (L)), there exists scalar obstruction « € k™ such that

k *

N 0) e f(Q2 (A, k)) <— a=1€ —.
k@ € f Q@A) (1) &= a=1le
Thus the norm principle for the canonical map

Q (A, 0)
[©2(A,0),82 (A, 0)]

QA 0)—

and hence for non-trialitarian D, holds if and only if the scalar obstructions are
spinor norms.

5. Quasi-split groups

Let G be a connected reductive k-group whose Dynkin diagram does not contain
connected components of type Eg and let G’ denote its derived subgroup. Let G*¢
denote the simply connected cover of G’. Then one has the exact sequence 1 —
C — G*¢ — G’ — 1, where C is a finite k-group of multiplicative type, central in
G*¢. Assuming that G*¢ is quasi-split, we would like to show that G satisfies SQ by
following the reduction techniques used in Sections 2 and 3.

Lemma 5.1. Let G be a connected reductive k-group. If G*°¢ is quasi-split, then

. . ¥ . e
there exists an extension 1 — Q — H — G — 1, where Q is a quasi-trivial
k-torus, central in reductive k-group H with H' simply connected and quasi-split.

2The map j commutes with Nz /« in both cases.
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Proof. Recall that there is a central extension (called a z-extension) of G by a quasi-
trivial torus Q such that H' is semisimple and simply connected ([11, Prop. 3.1]
and [4, Lemma 1.1.4]).

1—>Q—>H£>G—>1.

The restriction ¥ | g/ : H' — G yields the fact that H' is the simply connected cover
of G’ and hence is quasi-split. (I

Lemmata 2.2 and 5.1 imply that we can restrict ourselves to connected reductive
k-groups G such that G’ is simply connected and quasi-split.

Lemma 5.2. Let H be any reductive k-group such that its derived subgroup H'
is semisimple simply connected and quasi-split. Let T denote the k-torus H/H'.

® . .
Then the natural exact sequence 1| — H' — H — T — 1 induces surjective maps

@ (L) : H(L) — T (L) for all field extensions L/ k. In particular, the norm principle
holds for¢p : H — T.

Proof. There exists a quasi-trivial maximal torus Q; of H’ defined over k [8,
Lem. 6.7]. Let Q; C Q,, where Q5 is a maximal torus of H defined over k.
The proof of [8, Lem. 6.6] shows that ¢|g, : Q2 — T is surjective and that O, N H'
is a maximal torus of H’. Since O, N H' C Q1, we get the following extension of
k-tori

l1->0,—>0,—>T—>1

Since Q; is quasitrivial, H! (L, Q1) = 0 for any field extension L /k which gives
the surjectivity of ¢(L) : Q2(L) — T (L) and henceof ¢(L) : H(L) — T(L). O

Let G be an envelope of G’ defined using an embedding of © = Z(G’) into a
quasi-trivial torus S. Note that G’ is assumed to be simply connected and quasi-split
and is also the derived subgroup of G by construction.

,u—8+G’

Pl

AT

Thus, we get an exact sequence | — G’ — G — G /G’ — 1 to which we can
apply Lemma 5.2 to conclude that the norm principle holds for the canonical map
G — .

[6:6]

Constructing the intermediate group G as in Section 3.1, we see that the norm
principle also holds for the natural map G—>G /G [1, Prop. 5.1]. Then using
Theorem 3.1 [3], Lemma 3.2, and a remark from Gopal Prasad that G*¢ is quasi-split

if and only if G is quasi-split, we can conclude that Theorem 1.3 (restated below)
holds.
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Theorem 1.3. Let k be a field of characteristic not 2. Let G be a connected quasi-split
reductive k-group whose Dynkin diagram does not contain connected components of
type Eg. Then Serre’s question has a positive answer for G.

Acknowledgements. The author thanks Professors A. S. Merkurjev, R. Parimala,
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