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Asymptotic equivalence of symplectic capacities

Elim D. Gluskin and Yaron Ostrover*

Abstract. A long-standing conjecture states that all normalized symplectic capacities coincide

on the class of convex subsets of R2". In this note we focus on an asymptotic (in the dimension)
version of this conjecture, and show that when restricted to the class of centrally symmetric
convex bodies in R2", several symplectic capacities, including the Ekeland-Hofer-Zehnder
capacity, the displacement energy capacity, and the cylindrical capacity, are all equivalent up to
a universal constant.
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1. Introduction

Consider the space R2" equipped both with the standard symplectic form
a> dp A dq, and with the standard inner product (•,•). Note that under the usual

identification between R2" and C", these two structures are the real and the imaginary
parts, respectively, of the standard Hermitian inner product in C". Moreover, one
has that co(v, u) (v, Ju), where J is the standard complex structure in R2" ~ C".
Symplectic capacities, whose axiomatic definition below is due to Ekeland and

Hofer [4], are numerical invariants which roughly speaking measure the symplectic
size of sets. More precisely, let B2n (r) stand for the Euclidean open ball of radius r,
and Z2n(r) for the cylinder B2(r) x C"-1.

Definition 1.1. A symplectic capacity on (R2", co) associates to each subset U C R2"
a number c(U) e [0, oo] such that the following hold:

(PI) c(U) < c(V) whenever U c V (monotonicity),

(P2) c(Tjf(U)) \a\c(U) for 1jf e Diff(R2") such that acu for
0 ^ cf e R (conformality),

(P3) 0 < c(P2"(r)), and c(Z2"(r)) < oo (nontriviality).

*The second-named author was partially supported by the European Research Council (ERC) under
the European Union's Horizon 2020 research and innovation programme, starting grant No. 637386, and

by the ISF grant No. 1274/14.
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Moreover, a symplectic capacity is said to be normalized if in addition it satisfies

(P4) c(B2n(r)) c(Z2n(r)) nr2 (normalization).

Note that property (P2) implies that c is a symplectic invariant which scales like
a two-dimensional invariant, and (P 3) that symplectic capacities significantly differ
from any volume related invariants. The first examples of symplectic capacities were
constructed by Gromov in [9], where he developed and used pseudoholomorphic
curve techniques to prove a striking symplectic rigidity result, nowadays known as

Gromov's "non-squeezing theorem". It states that one cannot map a ball inside a

thinner cylinder by a symplectic embedding. More precisely, the theorem asserts

that if r < 1, there is no symplectic embedding of the unit ball B2n into the

cylinder Z2"(r). This naturally leads to the definition of two normalized symplectic

capacities: the Gromov width, given by c(U) sup{jrr2 | B2n(r) [/}; and

the cylindrical capacity, c(U) in{{nr2\U A- Z2"(r)}. Here » stands for
symplectic embedding. It is not hard to verify that these two capacities are the

smallest and largest possible normalized symplectic capacities, respectively.

Shortly after Gromov's work [9] many other symplectic capacities were
constructed, reflecting different geometrical and dynamical properties. Among these

are the Hofer-Zehnder capacity [13,14], the Ekeland—Hofer capacities [4,5], the

displacement energy [11], the Floer-Hofer capacity [7,8], spectral capacities [6,
19, 26], and more recently, Hutchings' embedded contact homology (ECH)
capacities [15], These quantities play an important role in symplectic geometry,
and their properties, interrelations, and applications to symplectic topology and

Hamiltonian dynamics are intensively studied (see e.g., [3] and [17] for two excellent

surveys).
In the two-dimensional case, Siburg [23] showed that any symplectic capacity of

a compact connected domain with smooth boundary Q c I2 equals its Lebesgue
measure. In higher dimensions symplectic capacities do not coincide in general.
A theorem by Hermann [10] states that for any n > 2 there is a bounded star-

shaped domain S C R2" with cylindrical capacity c(S) > 1, and arbitrarily small
Gromov width c(S). Still, for a large class of sets in R2", including ellipsoids,
polydiscs, and convex Reinhardt domains, all normalized symplectic capacities
coincide [10], In [25] Viterbo showed that for any bounded convex set K of R2" one
has c(K) < 4n2c(K). Moreover, it was conjectured [10,12,25] that:

Conjecture 1.2. For any convex body K in R2" one has c(K) c(K).

Here, by a convex body we mean a compact convex subset of R2" with
nonempty interior. The above conjecture is particularly challenging due to the scarcity of
examples of convex domains for which capacities have been computed. Moreover, an

affirmative answer to Conjecture 1.2 would in particular implies Viterbo's volume-

capacity conjecture [25], and it was recently shown that the latter would in turn settle

a 70-years old question in convex geometry known as the Mahler conjecture. For

more information regarding these applications of Conjecture 1.2 see [1] and [20],
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A somewhat more modest question in the same direction (c.f. Problem 1.4 in [10],
Problem 8 in [3], and Section 5 in [20]) is whether Conjecture 1.2 above holds

asymptotically in the dimension, i.e.,

Question 1.3. Is there is an absolute constant A > 0 such that for every convex
body K in R2" one has

c(K) < Ac(K).
Here we will give a partial answer to this question. Before we state our main

result we wish to recall the definition of the Ekeland-Hofer-Zehnder capacity. The

restriction of the symplectic form co to a smooth closed hypersurface S C R2"

canonically defines a 1-dimensional subbundle, ker(<y|<S), whose integral curves
comprise the characteristic foliation of S. In other words, a closed characteristic of S
is an embedded circle in S tangent to the canonical line bundle

65 {(x, l)eTS | co(l, t]) 0 for all r, e TXS}.

Recall that the symplectic action of a closed curve y is defined by A(y) fy A,
where A pdq is the Liouville 1-form. The action spectrum of S is

£(5) {|A(y)|; y is a closed characteristic on S}.

In [4] and [14] it was proved that for a smooth convex body K C R2", the

two aforementioned Hofer-Zehnder and Ekeland-Hofer capacities coincide, and are

given by the minimal action over all closed characteristics on the boundary of the

body K, i.e.,
cehC*0 chz(k) min £(3*0- (1)

We remark that although the above definition of closed characteristics, as well as the

equalities in (1), were given only for the class of convex bodies with smooth boundary,
they can naturally be generalized to the class of convex sets in R2" with nonempty
interior (see e.g., [2]). In what follows, we refer to the coinciding Ekeland-Hofer and

Hofer-Zehnder capacities on this class as the Ekeland-Hofer-Zehnder capacity, and

denote it by cEHZ.

Our first result in the note is the following. Recall that a convex body K c R" is

said to be centrally symmetric if K — K.

Theorem 1.4. For every centrally symmetric convex body K in R2",

c(K) < 4cehz(A').

Remark 1.5. Other symplectic capacities, like the spectral capacities ca, which are
based on a choice of an action selector o, and the displacement energy d, are known
to be bigger than or equal to the Hofer-Zehnder capacity (see e.g., Section 2.3.4
in [3]). Thus, it follows from Theorem 1.4 that on the class of symmetric convex sets

in R2", the normalized symplectic capacities cEHZ, d, ca and c, all coincide up to an
absolute constant.
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In fact, we prove a slightly stronger result than Theorem 1.4 which shows that
for a centrally symmetric convex body K C M2", the aforementioned symplectic
capacities are all equivalent to yet another quantity associated with the body K.
More precisely, for a convex body K C R2" with 0 e Int(Af), we denote by
K° {y R2" | (x, y) < 1, for every x e K} the polar body of A" Moreover,
we denote

\\J\\Ko^K sup (Jv,u).
v,ueK°

To explain the reason for this notation, we remark that when the convex body K is

centrally symmetric, is the operator norm of the complex structure ./,
when the latter is considered as a linear map between the normed spaces
J :(R2M|-|| *:»)-> (K2",||-Ik), i.e..

11^11*0^= sup (Jv,u)= sup ||/u||a:-
v,uK° v : ||d|| <1

Here we use the standard identification between normed spaces and centrally
symmetric convex bodies, i.e., for a non-empty centrally symmetric convex body K
in R2" we denote by || • ||a; the norm on R2" induced by K, that is,

|| • Ha: inf{r : x e rK}.

Theorem 1.6. For every centrally symmetric convex body K in R2",

1

< cw(K) < c(K) < ^ (2)
K°->K H^ll K°^rK

Remark 1.7. In fact, in the proof of Theorem 1.6 we use the centrally symmetric
assumption on the body K only for the right-most inequality of (2). The first two
inequalities on the left-hand side hold for every convex body K in R2".

Note that Theorem 1.4 follows immediately from Theorem 1.6. Moreover, we
wish to emphasize that Theorem 1.6 provides in many cases an efficient way to

approximate the numerical value of the capacities cEHZ{K) and c(K) (for centrally
symmetric convex bodies), as the quantity is a-priori much easier to

compute than the above mentioned symplectic capacities.
Another by-product of Theorem 1.6, which may be of independent interest,

concerns the equivalence of the cylindrical capacity and the Gromov width capacity
with their linearized versions Ciin and clin respectively. The definitions of these

two quantities are given in Definitions 2.4 and 3.1 below. It turns out that for
centrally symmetric convex bodies in R2", the cylindrical capacity c is asymptotically
equivalent to its linearized version ciin, while surprisingly enough, this is false for the

Gromov width capacity.

'As a matter of fact, the polar body K° should be defined as a subset of the dual space of R2".
However, since we have fixed a scalar product in our setting, we will identify the latter space with R2"
itself.
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More precisely,

Theorem 1.8. For every centrally symmetric convex body K in R2",

C(K) < c,in(a:) < 4c(K).

On the other hand, there exist a centrally symmetric convex body K in R2" such that

Note that an immediate corollary from Theorem 1.8 is that the linearized versions

of the Gromov width and the cylindrical capacity are not asymptotically equivalent.

Notation. We denote by Kn the class of convex bodies of R", i.e., compact convex
sets with non-empty interior. For K e /C", we denote by hx R" -»• R its support
function given by hx(u) sup{(x, u) : x e K). Also, we denote by gK ' R" -> R
the gauge function gfcix) inf{r|x e rK} associated with K. Note that when K
is centrally symmetric, i.e., K —K, the gauge function gfc(x) is a norm, and is

denoted by ||x|| Furthermore, when 0 int(AT), one has that h% gK°- where

K° {y e R" | (x,y) < 1, for every x e K) is the polar body of K. The
Euclidean norm will be denoted by | • |. Finally, we denote by S" the unit sphere
in R"+1, i.e., S" {x e R"+1 | |jc| 1}.

Acknowledgements. The authors are grateful to Shiri Artstein-Avidan and Boaz

Klartag for many stimulating discussions on various topics related to symplectic
geometry and convexity.

2. Proof of Theorem 1.6

Note first that there is no loss of generality in assuming that in addition to being
compact and with non-empty interior, all convex bodies considered also have a

smooth boundary, and contain the origin in their interior. Indeed, affine translations
in R2" are symplectomorphisms, which accounts for the assumption that the origin is
in the interior. Secondly, once Theorem 1.6 is proved for smooth convex domains, the

general case follows by standard approximation arguments, as symplectic capacities
are continuous on the class of convex bodies with respect to the Hausdorff distance

(see e.g. [18, p. 376]).
Moreover, in what follows we will make repeated use of the following well-known

geometric observation from convex geometry.

Lemma 2.1. Let gK be the gauge function associated with a smooth convex body K.
Then, when restricted to the boundary i)K, the gradient VgK is a surjective map
VgK : 3A: -> dK°.
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A proof of Lemma 2.1 can be found e.g., in Subsection 1.7.1 of [22], We turn
now to the proof of Theorem 1.6, and start with the following proposition.

Proposition 2.2. For every smooth convex body K e fCZn,

To prove Proposition 2.2 we first need some preparation. Recall (see e.g.,
Chapter 1 of [13]) that the classical geometric problem of finding closed
characteristics on 3K has the following dynamical interpretation. If the boundary 3K
is represented as a regular energy surface {x e R2n | H(x) 1} of a smooth

Hamiltonian function H : R2" -> R, then the restriction to 3K of the Hamiltonian
vector field Xh, defined by ixHco —dH, is a section of the line bundle 63^.
Thus, the images of the periodic solutions of the classical Hamiltonian equation
x Xfj(x) JXH(x) on 3K are precisely the closed characteristics of 3K.
In particular, the closed characteristics do not depend (up to parametrization) on
the choice of the Hamiltonian function. Indeed, if the energy surface can be

represented as a regular level set of some other function F : R2" —> R, then

Xh aXp on 3K for some scalar function a 0, and the corresponding
Hamiltonian equations have the same solutions up to parametrization. Finally, note
that for a smooth convex body K the gauge function g% is a defining function for K,
i.e., K g^([0.1])» 9^ and 1 is a regular value of gK-

Lemma 2.3. Let y : [0, T] —> 3K be a solution of the Flamiltonian equation

y JVgx(y), with y(0) y(T). Then there exist to [0, T] such that

gx(y(to) - y(o)) > 1.

Proof of Lemma 2.3. It follows immediately from the assumptions that

Next, from Lemma 2.1 it follows that Vg^(y(f0)) £ dK°, and we obtain that

From this one can conclude that

In particular, this implies that there exists to e [0, T] such that

(Vgx(y(to)),y(o)) < 0. (3)

gK(y(to) - y(0)) sup{(y(?o) - y(0), u) \ u e K°}
> (y(t0) - y(0), Vgjf(y(r0))).

(4)
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Finally, from Euler's homogeneous function theorem it follows that for every x e dK,
one has (x, Vg^(x)) gx(x) 1, and hence the combination of this fact together
with inequalities (3) and (4) completes the proof of the lemma.

Proof of Proposition 2.2. Let y : [0, T] —>• dK be a closed characteristic on the

boundary dK, i.e., a solution of the Hamiltonian equation y JVgx(y), with
y(0) y(T). Note that

a(y) \fo(Jy(0>dt \ J vg/KyO))}dt p (5)

It follows from Lemma 2.3, the subadditivity property of gx, and the definition of y,
that there exists to e [0, T] such that

l <gK^ y(t)dtj ^ gK(y(t))dt gK(JVgK(y(t)))dt. (6)

On the other hand, it follows from the definition of an operator norm that

[,0 gK{JVgK(y(t)))dt < P \\J\\K^KgK°{VgK(y{t)))dt. (7)
Jo Jo

The combination of (6), (7), and Lemma 2.1 gives

1 < f \\J\\K0^KgK°(ygK(y{t)))dt f \\J\\Ko^Kdt, (8)
Jo Jo

and thus we obtain that

Töb;-'0' <9)

Note that since y(0) y(T), repeating the same arguments as above (this time,
integrating in (6), (7), and (8) between to and T) we obtain also that

TFT T ~to- (10)
II"' I' AT°—»-ÄT

From (5) it follows that min{/o, T — to) < T/2 A(y), and since, by definition, the

capacity cEHZ (K) is defined to be the minimal action of closed characteristics on the

boundary dK, we conclude from (9) and (10) that,

— CEHz(^0-
I ^ II

*r°—>-*:

This completes the proof of the proposition.



138 E. D. Gluskin and Y. Ostrover CMH

To describe the second ingredient in the proofofTheorem 1.6 we need to introduce
one more definition. It is known (see e.g., Appendix C in [21]) that for a Lebesgue
measurable set U C M2",

cfiJ) inf Area(n((p(U))),

where n is the orthogonal projection to the complex line

E {z e C" | Zj 0 for j ^ 1},

and the infimum is taken over all symplectic embeddings <p ol'U into M2". Recall
that with our notations, under the natural identification R2" ~ C" one has that

Zj q, + ipj. Thus, a natural way to "linearize" the cylindrical capacity c is

as follows. Let ISp(2n) be the affine symplectic group, defined as the semi-direct

product Sp(2/7.) k T(2/z) of the linear symplectic group and the group of translations
in R2".

Definition 2.4. The linearized cylindrical capacity ci,n of a set U c R2" is defined
as

c\m(U) inf Area(71 (S(U)jfi

where the infimum is taken over all affine symplectic maps S e ISp(2n).

The second main ingredient in the proof of Theorem 1.6 is the following:

Proposition 2.5. For every centrally symmetric convex body K e K2n,

c(K) < clin(ÄT) < 77-777— • (11)
Ik

To establish Proposition 2.5 we shall need the following geometric observation.
For v e R2", we denote by Kv the section K D {?j}x, and by || • || K° the semi-norm
defined by

IHIxg sup{(tn, y) I y e Kv}.

Lemma 2.6. For a symmetric convex body K e K?n, a linear symplectic map
S e Sp(2n), and the orthogonal projection n to the complex line

E {z C" I Zj Ofory 7^ 1}

defined above, one has

Area(7r(S(*0)) < 4||Sre||*o||5r7e||^o, (12)

where ST stands for the transpose of the matrix S, e is a unit vector parallel to the

qi-axis, and v STe.
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Proof of Lemma 2.6. The lemma follows from a much more general result by Rogers
and Shephard [24], which states that for every symmetric convex body K cW one
has

Vol„(tf) < (yo\k(7tE(K))\oln-k(K n £->-)) < Qvoln(/0, (13)

for every ^-dimensional subspace E of M", where tie stands for the orthogonal
projection on the subspace E. We remark that we use only the case where n 2

and k 1, in which inequality (13) is an elementary geometric fact. It can be easily
checked that the right-hand side of (12) exactly equals the product of the length of
the projection of jt(SK) to the qq-axis, and the length of the intersection of n(SK)
with the pi-axis.

We are now in a position to prove Proposition 2.5.

Proof of Proposition 2.5. Note that, by definition, for every measurable set

U C M2" one has c(U) < c\m(U), and hence the left-hand side inequality in (11)
holds. Next, we recall the easily verified fact that for any v, w e R2" such that

o)(v, w) 1, there exists a linear symplectic map S Sp(2«) such that v STe
and w ST Je, where as before, e is a unit vector parallel to the qi-axis. From this

fact, Lemma 2.6, and Definition 2.4 it follows that for a centrally symmetric convex

body K e K2n

c\m{K)<A inf ,inf IMItHMIx-g
w:(Jv,w) l

4 inf \\v\\Ko inf |M|*o.
ue§2/z—l w:(Jv,w) l

We focus now on the second infimum on the right-hand side of (14). Note that for a

fixed vectoru e S2"-1, the equality (Jv, w) 1 is equivalent to (Jv, w — Jv) 0.

Denoting z := w — Jv, we can write

inf IMItcg inf 11^" + zlltcg- (15)
w.(Jv,w) l z:z±Jv

This quantity measures the distance, with respect to the semi-metric induced by
|| • Hjj-o, between the vector Jv and the subspace {Tu}2- orthogonal to it. By duality,

inf ||/u + zll^o dist|.||r°(Jv,{Jv}^) sup(u, Jv), (16)
z:z±Jv u

where the supremum is taken over all vectors u such that u e span {J v\ and

I|m||jc„ R 1- Note that we have used the fact that (K°)° Kv. Next, we use
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the fact that J v is orthogonal to v (and hence in particular || / v || kv < oo) to deduce

from (15) and (16) that

inf JtuH/fg sup (u,Jv) <
1|

• (17)
w:(Jv,w)— 1 MSspan{/u}, II ^ II l|7u||^

MIa:w<I

From the combination of (14) and (17) we conclude that

Chn(tf) < 4 inf —-i (18)
v^O ||/u|k II IIA:0 »-/e

which completes the proof of the proposition.

Remark 2.7. For a general convex body K in M2" (not necessarily centrally
symmetric), the same proof as the one above will give the following bound:

j chn{K -K)< chn(K) <
"jTTjj

" • (19)
II II (.K-K)°^(K-K)

On the other hand, from Proposition 2.2 it follows that

cEHZ (K) > sup —
1

(20)
V || 7 ||(Ar_u)o_+(tf_i,)

where the supremum is taken over all v e R2" such that v e Int(A'). We remark
that although the upper bound for C|in(A') in (19), and the lower bound for crn/(K)
in (20) seem not too far away, we do not expect them to be asymptotically equivalent
in general.

Proof of Theorem 1.6. For a smooth symmetric convex body K, the proof follows

immediately from Propositions 2.2 and 2.5. The general case (i.e., without the

smoothness assumption) follows by a standard approximation argument, as indicated
at the beginning of this section.

3. Linearized symplectic capacities

In this section we prove Theorem 1.8. We recall first the following definition.

Definition 3.1. The linearized Gromov width clin of a set U C R2" is defined as

chn(U) sup{7rr2 | SB2n(r) C U),
s

where the supremum is taken over all affine symplectic maps S e ISp(2/j).
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The following is the main ingredient in the proof of Theorem 1.8.

Proposition 3.2. Let Q — [—1, l]2" be the standard cube in M2". Then, for every
orthogonal transformation O 0(2n) one has P\m{OQ) < jr. Moreover, there is a
rotation O e 0(2«) for which cfO Q) > y/n/2.

Proof of Proposition 3.2. Note first that for every orthogonal transformation O eO(2n),

c]in(OQ) < supjjrr2 | LB2n(r) c Q}, (21)
L

where the supremum is taken over all affine volume-preserving linear maps L of M2".

It is straightforward to check that the largest ellipsoid contained in the cube Q is the

unit-ball BZn(1), and hence cUn(OQ) < n for every orthogonal transformation
0 e 0(2n).

For the second part of the proposition, consider the Lagrangian splitting
W(q) x R"(/j) of M2", and the following configuration: Bf{a) x B"(ß) C M2",
where

Bloia) {(?!,••,*«) GR"(?)| maxd^l,..., \qn\) < a}
n

B?(ß) {(pl,...,pn)eRn(p)\J2\Pi\<ß}-
i 1

Note that Bf,(\) x B"( 1) is the product of a hypercube and its dual body, the

cross-polytope. It is known (see e.g., §4 of [16]) that for every e > 0, the

ball B2n(r) symplectically embeds (via a non-linear symplectomorphism) into the

product 5^,(1) x B"{ß{ 1 +e)), for a parameter ß such that Vol(5^,(l) x B"{ß))
Vol(ß2"(r)). In particular, this implies that for an orthogonal transformation O

of R2m, one has the following lower bound

£(0ß) > sup{4r | Ol) x B"(r) Q OQ}.

Thus, to complete the proof of the proposition it is enough to find an orthogonal
transformation O e 0(2«) such that

0(01) x *?(?)) c 0,

where?' > y/n/2. In particular, it is enough to find an orthogonal transformation O'
of W(p) such that 0'(B"(r)) c [—1,1]" c M"(p), withT as above. The fact that
such a transformation exists is well known to experts. For completeness we will give
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an explicit construction2. We define the elements 0'k - of the matrix O' by

VnO'kj —

\/2sin for 1 < k < | and 1 < j < n,

(—l)7 for k | and 1 < j <n,
V2cos for | < k < n and 1 < j < n,

1 for k 7i and 1 < j < n.

(22)

IO'ei ||oo := .max \(0'ei)j\ < —,

It is a straightforward computation (based on the orthonormality of the standard

Fourier basis) to check that the matrix 0' defined by (22) is indeed an orthogonal
transformation. Moreover, denote by {e;}f=1 the standard basis of M"(p). Note that

B"(1) Conv{±<?(}. It follows immediately from the definition of the matrix O'
that

V2
il,H" ivv "i/j I —: /—>

1 <J<n y/n

where (0'ei)j stands for the j-th component of the vector O'e, This
implies in particular that

0'(B"(^/n)) 0'(Conv{±Vnei}) Conv{±0'\fnei) c [—a/2, V2]n,

which completes the proof of Proposition 3.2.

Proof of Theorem 1.8. Note that an immediate corollary from Propositions 2.2
and 2.5 is that the cylindrical capacity c is asymptotically equivalent to its linearized
version cym for symmetric convex domains in R2", i.e., for every symmetric convex
body K e K2n,

c(K) < cun(K) < 4cehz(K) < 4c(K).

This establishes the first part of Theorem 1.8. The second part follows from
Proposition 3.2.
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