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Minimal entropy for uniform lattices in product of hyperbolic
planes

Louis Merlin

Abstract. Let M be a quotient of H? x --+ x H? (product of hyperbolic planes) by a uniform
lattice of (PSL2(R))”. We prove that, among metrics of M of prescribed volume, the sum of
hyperbolic metrics has minimal volume entropy.

Mathematics Subject Classification (2010). 37B40, 51M25, 52C07, 53C35, 53C38.
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1. Introduction

Let (X, g) be a compact Riemannian z#-manifold and X be the universal Riemannian
cover of X. The volume entropy is defined as

h(g) = Rli_}moo % log(Vol(B(x, R)))

where B(x, R) is the ball of radius R in X centered at any point x € X . The limit
exists and is independent of the choice of x (see [16, p. 568]).
In this paper, we are interested in the following problem.

Question 1. Let M be a compact locally symmetric space of noncompact type with
locally symmetric metric go. Let g be any other metric on M such that Vol(M, g¢) =
Vol(M, g). Do we have

h(g) = h(go)?

M. Gromov was the first to conjecture such aresultin [10]. He was only interested
in the real hyperbolic case. But the question still makes sense for a general symmetric
space of noncompact type.

In the case where M is reducible, there exist a unique locally symmetric metric
of minimal entropy among locally symmetric metrics of prescribed volume, which
are obtained by scaling the metric in the factors [6, Chapter 2]. This metric is called
“the” locally symmetric metric and is denoted by go.
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In this work, we give a positive answer to Question 1 in the case of compact
quotients of products of n hyperbolic planes, that is M = I'\ (H2)" where T" is a
uniform lattice in (PSL;(R))". More precisely our main result is the following:

Theorem 2 (Main theorem). Assume that (M, go) is a compact quotient of the
product of n hyperbolic planes. Then, for any other metric g on M,

h*"(g) Vol(M, g) = h*"(go) Vol(M, go).

Let us remark that the above inequality is sharp and no assumption is made on
the metric g.

In the fundamental paper [2], G. Besson, G. Courtois and S. Gallot dealt with
the case where M is a locally symmetric space of rank one (g is negatively curved)
and obtained a similar statement than the main theorem for such spaces. The same
result was obtained before (see [1]) in any rank but for a metric g in the conformal
class of the locally symmetric metric go (supposed to be irreducible). In the case
where dim M > 3, the method is based on the barycenter map and the inequality in
Theorem 2 appears as an inequality of calibration (to be described below). In the
case where dim M = 2, already proved by Katok (see [12]), one can still ask if the
inequality can be seen as an inequality of calibration. Besson, Courtois and Gallot
showed that it is indeed true and gave another proof of the conjecture for hyperbolic
surfaces.

The barycenter method was improved by Connell and Farb in [6] and, working
factor by factor, they also gave a positive answer to Question 1 in the case where M
is locally a product of rank one symmetric spaces with no factor H?2.

In both of those papers, the authors pointed out that the case of products of
hyperbolic surfaces still remained unknown.

Note also that there is an answer to question 1 in the same setting as [6] (products
of rank 1 symmetric spaces without H?2-factors) in [3] using an interesting different
point of view. The inequality between volumes and entropies appears as a corollary
of a general work on representations of fundamental groups of compact manifolds
into Lie groups of noncompact types.

We now describe the content of this paper. To prove our main result, we use
the general outline introduced in [2]. It consists of an application of a method of
calibration. To make this method efficient, we embed the universal cover H?2 x - - - x H?
in the unit sphere of L2-functions on the Furstenberg boundary T” = S! x ... x S!
by products of Poisson kernels. The aim is to show that this embedding has minimal
volume. In order to detect this minimality property, one may use a differential 2n-
form taking its extremal values over orthonormal frames in tangent frames of the
embedding. The method is briefly recalled in Sections 2.1 and 2.2.

The hardest part is to find the calibrating form. Apart from the barycenter
map, which is not efficient in the 2-dimensional case, Besson, Courtois and Gallot
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developed an alternative idea. In Chapter 3 of [1], following Gromov [9], there is
a general process to build suitable differential forms using bounded cocycles. The
choice of the appropriate cocycle in H? is then discussed in [2] Chapter 6. We
generalize this approach for the compact quotients of (H?)" using the bounded
2n-cocycle on T" that M. Bucher exploits in [4] (for n = 2). We describe this
bounded cocycle in paragraph 3.1 and we check that the derived differential form has
the required properties afterwards. The calibrating inequality is finally obtained in
paragraph 3.4.

The last section is devoted to applications. We obtain a (non optimal) estimate
for the minimal volume (to be defined in Section 4) of a compact quotient T\ (H2)".

Corollary 3. Let M = '\ (H2)" be a compact quotient of (H?)". Then

2n
MinVol(M) > (=YY Vol(go).
2n —1
The most spectacular application is that we are able to give an optimal bound
for degrees of maps f : Y?* — T'\ (H?)" from any Riemannian 2n-manifold.
Precisely,

Corollary 4. Let Y be a smooth manifold of dimension 2n endowed with a
Riemannian metric g and let f be a continuous map

f (Y, 8) — (M, go).

Then
h(g)*" Vol(Y, g) = |deg f|h(go)*" Vol(M, go).

We strongly believe that the equality is achieved if and only if f is homotopic to a
Riemannian covering map but our approach is not relevant to investigate the equality
case.

Acknowledgements. [would like to thank my PhD advisor C. Bavard for many useful
discussions and comments. I am also grateful to G. Besson for his encouragement
and the remarks he made on a preliminary version of this paper.

2. Calibration method

2.1. The spherical volume. In this section, M is a quotient of (Hz)n by a uniform
torsion-free lattice I' = mw;(M) and then M is the Riemannian product (Hz)n
with the usual metric of curvature —1 in each factors (called g¢ in both of the
manifolds M and H). Remark that g¢ is the best locally symmetric metric in the
sense of [6, Chapter 2], that is the metric with minimal entropy among all locally
symmetric metrics of same volume. As above, g is any other metric on M.
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Let us start with a few notations. We choose once and for all a basepoint 0 € H?,
for instance 0 = 0 in the Poincaré disk model (sitting inside the complex plane).
We will denote by the same letter o the basepoint in (]le)n. There will be no
ambiguity resulting from that convention. The basepoint is used to compute the
Buseman functions and to identify the boundary at infinity do[H? with the circle S!
(see below).

In what follows, d (M) will denote the Furstenberg boundary of M: the space
of Weyl chambers at infinity in M emanating from the same point (see [7] or [11] for
further discussions). There will be no conceptual difficulties coming from a general
theory of Furstenberg boundary: we just use the fact that d ((H?2)") is identified
to the n-dimensional torus T" = (Sl)n, by the above choice of a basepoint. The
Furstenberg boundary is better adapted to the case of higher rank symmetric spaces
and it is one of the key points in [6]. The Furstenberg boundary and the visual
boundary are the same in the rank one case and that’s why the distinction does not
appear in [2].

The Furstenberg boundary turns out to be a probability space in the following
way. The circle S' = R/2nZ is endowed with the Lebesgue probability measure d6
(normalized in such a way that d6(S') = 1). The n-torus is the product (in the sense
of probability spaces) of n such circles. The spaces of L? functions on T” is defined
with respect to this measure.

The Poisson kernel p, of the disk is defined by:

Po(x,8) = e Bo(x.0)
where B, (x, 8) is the Buseman function. A classical computation gives the explicit
expression in the Poincaré disk

for any x € B(0,1) and € S!.

The definition of the spherical volume in [2] extends to (]I-]Iz)n in the following
way. We consider two representations of I'. The first one in Isom(ﬁ, go) is the
holonomy representation of I". The second one is the representation in the unit
sphere of L2(d 7 M), the Hilbert space of L2-functions on the Furstenberg boundary
with real values. We denote this unit sphere by S or S°(0 F M) if the universal

cover needs to be specified. More precisely, it is a unitary representation restricted
to S. It is defined by

)O) = f(y~'©)V po(yor,6") - v/ po(yon, ")

where o is the basepoint of (H2)", yo = (yo1,...,yon,) € (H?)" and
6 = (0',...,0™) € T". This is the change of variables formula (for L? functions).
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Indeed the Jacobian of an isometry acting on the Furstenberg boundary is given by
the product of Poisson kernels.
Then, as in [2], we introduce the family A of Lipschitz immersions

®: M — L*3FM)
which are I'-equivariant, that is satisfying the following equation
®(yx) = yP(x)
forally e 'and all x € M. We also require that
Vx € (H?)", o))z =1,

that is ®(x) € S and that, for every x € M, O(x) is positive almost everywhere.
We can also consider those immersions as functions of two variables ® : (x, ) —
®(x)(0). The product of square roots of Poisson kernels

(Hz)n — S
(el x™) = Vpo () x e x v po(xm, )

is an example of such an immersion (see Lemma 6 below). Moreover it is an
embedding. We will think of ([[-]Iz)n as embedded in S by the product of Poisson
kernels. The spherical volume is then defined by

(DO =

SphereVol(M) = cgn;fv {Vol(d)}
€

where

Vol (@) = fM Vet g0 (g0 (x))|dvg, ().

where g¢ denotes the almost everywhere defined pull-back of the usual Hilbertian
metric on L? by the Lipschitz immersion ® and det, (g¢) is computed in any g-
orthonormal basis. The integral on M means that we integrate on a fundamental
domain in (]HIz)n for the I"-action and the equivariance relation satisfied by ® shows
that this does not depend on the fundamental domain.

The spherical volume is a transitional object. We use it to make a link between
entropies and volumes. We want to prove the following inequalities.

2\ 7
(h(gO) ) Vol(M, go) = SphereVol(M) < (h(g)2
8n 8n

) Vol(M, g).

First we recall the second inequality.
Proposition 5 ([2] Chapter 3). We have

h 2
SphereVol(M) < ( ;g )
n

) Vol(M, g).
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Proof. We refer to Chapter 3 of [2] for the same proof in the rank one case. There are
only very few modifications to make in our setting. Let’s first reintroduce a family of
immersions which satisfy the conditions above. For a real parameter ¢ > h(g), we
consider :

1/2
We(x,0) = ([M ¢4 po(y1, 0 -+ po(Y™, 9”)dvg(y)) -

The condition on ¢ ensures that the integral converges. Indeed for uniform lattices
volume entropy and critical exponent are the same. Then we define an element of A/
by

Y. (x,0)

(for ¥2(x.0)d0)

We just have replaced the boundary sphere by the Furstenberg boundary. We can
now perform the very same computation as [2] (p. 742 for a proof of the Lipschitz
regularity and p. 746 for the volume computation). We get the required estimate for
the spherical volume. O

d.(x,0) =

It remains to check now that if M is a compact quotient of (H?)", we have

SphereVol (M) = (h(g;’)z) Vol(M, go).

In fact, we can find an immersion ®y of A" which has precisely the needed volume.

Lemma 6. Let M be a compact quotient of (]1-]12)”. Let @y : (Hz)n — L2(T") be
defined by

1 n 1 ny __
(I)o(x,...,x,9,...,9)—||\/xl 2;7:9'

i=1 -
Then
(1) ®g is a smooth embedding, it belongs to N and

2\ " n
Vol(®g) = (h(g’,j) ) Vol(go) = (é) Vol(go).

(2) The tangent space at the basepoint 1 € S of the image of ®¢, T1 Py ((HZ)H)

is generated by the 2n functions

fis ke — R
0=(9",....,0") — +/2cosb
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and
Fopa j i — R
0 =(,...,0") — +/2sinf? "’

fori =1,...,n.

Proof. It is enough to handle the same situation with only one factor H?, the volume
and the description of the tangent space will be easily deduced from the 2-dimensional
case. The family of measures (v;),cy2 on S! which are in the Lebesgue class and
satisfy

dv, I —Jzf®

d0 "~ |7 eaine]?

are in fact the so-called Patterson—Sullivan measures of the hyperbolic plane which
were constructed in [17]. We refer to this original paper for the equivariance relation
(note that this family of measures is even SL; (R)-equivariant).

Then it is enough to show that ®¢ is an immersion at the basepoint o, SL,(RR)
acting (transitively on H?) by diffeomorphisms. The differential of ® is easy to
compute and we get the basis we claimed for the tangent.

This shows in particular the point 2 of the above Lemma which shall be used later
on. As the 2 functions cos and sin are a free family in L%(S!), we obtain that ® is
an immersion at o.

Finally the volume of @ has been computed in [2, p. 744]. O

This Lemma 6 shows in particular that

h(go)*
n

n
SphereVol(M) < ( ) Vol(M, go).

The purpose of Section 3 is to prove that this inequality is sharp, providing the
required equality.

2.2. Calibration theory. In order to show that the Spherical Volume is achieved by
the map @y, we use a classical method of calibration, following [2] chapter 4. Let us
make a brief review on how we implement this method.

Let €2 be a differential 2n-form which is I'-invariant.

Definition 7. (1) The comass of €2 is the quantity

comass(£2) = sup \pr(fp vevs J2n)

where the supremum is taken over all functions ¢ € $° and every orthonormal
family ( f1, ..., fan) where each f; belongs to T,5°.

(2) One says that the differential form Q calibrates some immersion ®q € N\ if

(a) The form €2 is closed,

’
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(b) its comass is finite and nonzero and

(c) when we restrict €2 to orthonormal families, it is maximal on the tangent
space T ®o((H?)"), that is,

Qa0 00) (@x Po(u1), ... dxPo(u2n))|

= comass($2
[ds®o(ur) A~ A dsBoluian)] &)

for every x € (Hz)n and every orthonormal family (u1,...,U2,).

Here is the way we shall exploit a calibrating differential form. The following
proposition follows readily from Stokes theorem. Here, we emphasize the fact that
we use in a decisive way the compactness hypothesis for M (see [18]).

Proposition 8 (2] Proposition 4.3, p. 748). Assume there exists a differential 2n-form
which calibrates an immersion ®y € N. Then

SphereVol(M) = Vol(®y).

From now on it remains to find such a calibrating form for the Poisson kernel.

3. A calibrating form for (H?)"

3.1. Definition of the form. We will denote by e the Euler class of the circle,
e(6p,01,6,) =1 if the points are cyclically ordered on S!.
e(6o,01,02) = —1 ifnot.

2n+1

Then we consider the application C : (T") — R given by the following formula,

1 i
C(6o,--- ,bthn) = m Z 31gn(cr)1—[ (0(21 —2)° 0(21 1)790(21))

0€G2,+1 i=1

For example if n = 1 then C = e, the Euler class and if n = 2, this is the cocycle
used in [4]. This map C could be seen as the alternation of the cup product of n
Euler classes. In particular C is alternate, that is,

C(Os(0)s -+ -+ Os(2n)) = sign(a)C(bo, ..., 0an).

Then the following formula defines a differential 2n-form on §°°:

Qo(f1s.-0s f2n) = [ C(bo, ..., 020)0%(00)pf (61) -+ @f (B2n)dbo - - dOrp.

(r]rn )2l7+ 1

We conclude this paragraph by stating some properties of C that we shall use later
on.
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Proposition 9. Let G be the group (Diff* (S'))" embedded diagonally in Diff* (T™).
The map C is G-invariant, that is

VgeG, C(gby,...,g62n) =C(bp,...,0).
Proof. The group Diff* (S!) preserves the cyclic order on S then, for y € Diff T (S!),
e(y0o,701,702) = e(bo, b1, 62).
Taking g = (y',...,y") € G, one has

1 _ : - : o8 "
C(g@(), w0y gQZn) = m Z Slgn(U) 1_[ 6(]/1 9:)-(21'_2)9 VI 9;.(21‘_1)3 J/ 9:).(21))

0€62p+1 i=1
1 n , _
- 1 Z sign(o) 1_[ (05 2i-2) %o 2i-1) Oo2iy)
2n + 1! _
0EGIn41 i=l1
= C(go, ey 92,,).

Proposition 10. The map C is closed as a combinatorial cochain, that is

2n+1 _ )
> (=1)C(bo,....0,....0041) = 0.

i=0

Proof. It is classical that alternating cup products of cocycles leads to a cocycle. [

3.2. An invariance relation satisfied by 2. Let us show now that the form €2 is
invariant under the action of the group G = (Dil‘fJr (Sl))n. This group contains
(PSL,(IR))" and extends its action on L?(T") by the change of variables formula,

(8f)(0) = VIacg=1(0) f o g~ (6).

The action being unitary, we let act G on the unit sphere S by restriction and on
the tangent space of this sphere. Then we have, for g € G,

(&"R)e(f1.--, f2n)
= Qg(ﬁ’(gflv---’gf2n)

2n
= [ €. 025000 [ [ (o) s 01t

(Tn)2)l+1 l=1

2n

= [ €G-8 Yac g™ Gl 60 [ ac g @B

(T”)2”+1 =1
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We now perform the change of variables formula 6] = g~*(6;). We get

("R (f1,-. ., f2n) = f C(gbo, - - -, 02)¢*(B0)¢f (61) -+~ @f (B20)dBp - -+ d .
(Tn)2n+l

The conclusion now follows from proposition 9.

3.3. Closure of 2. In order to use the method of calibration, we have to deal with
a closed form. This is the aim of this paragraph.

Proposition 11. The differential 2n-form S2 is closed.

Proof. To differentiate €2, it is easier to have an expression on a space of measures
instead of the unit L2-sphere. Let us begin by a quick review on the structure of the
space of measures we will deal with.

Let M be the Banach vector space dual to C°(T"), the Banach space of continuous
functions on T". The space M is also the space of Radon measures on T". We
consider the affine space

My = {p € M|p(T*) = 1}.

We think of this affine space as an infinite dimensional manifold shaped on a Banach
space. The tangent space in each point is the vector space of zero-mass measures.
The differential form €2 comes from a form on M pulled-back by the smooth
map
.A : Soo e M1
¢ > B [p¢%(0)de.

The image of a function ¢ is the measure with density ¢? with respect to the Lebesgue
measure. Let us define a differential 2n-form ' on My,

Q1.0 = [ COo. Oo)du(Gu)das (1) dasn (5an)
(']1‘11)2”"‘1

Clearly ,
£ = 2" A¥Q".

Then it is enough to show that Q' is closed. But now, £’ is a linear map with respect
to ;. Then, we have (see [14, p. 84] for the differential formula of a form on a Banach
manifold)

2n
dQ (@, ... .02n) = Y (=10, Qpu(@0,....d,....020) .
=0
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By linearity this expression is also

2n
dQ:L(ao, veay Olzn) = Z(—l)lﬂai (a{(), 5555 (f,‘, i (]!2").
i=0
With skew-symmetry, this is again

A%, @o..--.020) = @1 +1) [ COor....ban)dao(60) - detzn (B2r).
(Tn)2n+1

Each measure has a vanishing total mass. Let us show that the above expression is in
fact

A, (ao, ..., 2n)

—_@n+1) f BC (B0, ..., Bans1)dato(80) - doton (Oan)d it (Bans1).
(Tn)2n+2

Let us recall the definition of the combinatorial boundary of a cochain,

2n+1

0C(6o,....0ms1) = »_ (=1)'C(bo,....0.....0ms1).

i=0

First we have,

f C(@o, p— 92n)do¢0(90) . ave da2n(92n)

(.]I-n)zn-l—l

= / C(b,...,02n)dag(00) - -+ dotan(621)d L (020 +1)
(Tny2n+2

because ©(T") = 1. We recognize the opposite of the last term in the expression
of dC (corresponding to the index i = 2n + 1). We now prove that the other terms
in the expression of dC vanish. Each of these remaining terms are of the form

A

[ C@o, ..+, ., Bans1)deto(Bo) - datan (Ban)dpt(Bams)
(Tn)2n+2

with i # 2n + 1. Integrating with respect to the variable 8; which is not involved
in the cocycle, make appear a multiplicative term, the total mass of one of a tangent
measure, supposed to be zero.

So finally the closure of C as a combinatorial cocycle (see Proposition 10) proves
the result. O
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3.4. The calibrating inequality. Letus firstremark that we only have to establish the
inequality at the basepoint ¢ = 1. Indeed one can show exactly as in paragraph 3.3
that

f C(g00..... 802m) (¢2(B0) — 1) 0f (B1) - 0f (Bam)dBo -~ dBsy = 0.

(T” )2n+1

Replacing the functions f; € T,5% by the functions ¢ f; € 715, we can make the
assumption ¢ = 1.

Besson, Courtois and Gallot studied the 2-dimensional case in [2, Chapter 6].
They used the Euler class to build a differential form

0o f2) = [ (B0, 00.62)07 O0)¢fi (B0 f2(0) B0 10
(s1)’
Here is what they proved:

Proposition 12 ([2] Chapter 6). (1) One may use the following alternative ex-
pression for w,

wy(f1, f2) = 2[81 Fi1dF,,

where Fy and F, are the primitives with vanishing integrals for ¢ f1 and @ f>.
1
(2) The comass of ® equals —.
(3) Moreover w is a calibrating form for the Poisson kernel, that is, at the
basepoint 1, w is maximal over orthonormal families ( f1, f2) if

f1(0) = V2cos8 and f>(0) = +/2siné.

Back to the 2n-dimensional situation, we first show that the differential form €2 is
nonzero, evaluating it on 77y <I)0((IHI2)"). Remember the family of functions given by

£t i — R
6 =(01,...,0") — +2cosf’

and
ﬁ.{_] ‘ ™ — R
6 =(@0,...,0") —> /2sinf "’
fori = 1,...,n,is an orthonormal basis of 75 ®q ((HZ)")
Lemma 13. We have the relation
2)1
an(2n)!

a1y Boisnen fon)=
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Proof. Let us look for permutations o € &5, for which the corresponding term

n

2" sign(0) [ n( ¢(0(2i—2: O 2i—1)- O 2)) €08 02 Sin@éi—z) do -+ dban

myntt

is nonzero. In order to get such a permutation, the variables 6%, | and 6. which are
involved in the expression

1. 1 n ia Qh
cos 6 sinf, ---cos 6y, _; sin 03,

have to appear also in the expression

n
1_[ ( o(2i-2)° 0'(21 1) 90(2;))
i=1
If not we integrate with respect to one of the variables 6%, | or ). missing in the

term of the cocycle and we get a multiplicative vanishing term which is the integral
of one of the functions f;. Hence, we need that, for each i,

{02i-1,62i} C {Bs2i-2), 0o (2i—1): Oo(2i) } -

Let us now compute the number of suitable permutations. The first image o (0)
could be any of the 21 + 1 elements. Let us say o(0) falls in the i™" Euler class,
o(0) € {2i —2,2i —1,2i} (e.g 0(0) = 2i — 2, other cases are similar). From the
condition above, it remains only two possibilities for 0(2i — 1) and ¢(2i), namely,

0(2i —1)=0QR2i—1) and o(2i) = o(2i)
or 0(2i —1) =0i) and o(2i) =0a(2i —1).

Once we fill the i ® Euler class, the adjacent one(s) already have one element imposed
(remember ,; appears in both the i " Euler class and the (i + 1) Euler class). Hence
we have again two possibilities for the two remaining arguments and inductively for
each Euler class.

Finally we find
2"(2n + 1)
suitable permutations.

We now play with the skew-symmetry relation to show that, for each suitable
permutation o, the corresponding term

n

(21

equals ;1,7 From now on, we assume that o is some suitable permutation

characterized above.
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The variable 6, appears in one or two Euler classes, let us say for example that
o(0) =2i

for some i < n (other cases are simpler). Then the variable 6 appears in both the ;™
and the (i + 1)® Euler class. We compute the term

T =
n . . . . .
sign(o) f 1—[ (6(9:7(21-_2), O 2i—1)+ U5 (2i)) €08 03;_1 sin 955_2) dbty---db,
(Tny2nt1 i=1
by first performing the change of variables
Os2i-2) = 01, boi—1) = 03, boit1) =03, Oi42) =65 and O = 6},

fork £ 2i —2,2i —1,2i + 1,2i 4 2. Since the Jacobian of this change of variable
is 1, we do not change the value of 7,. Remember we took o such that

{oQi —2),0Q2i — 1)} ={2i —2,2i — 1}
and {0(2i +1),0(2i +2)} = {2i +1,2i 4+ 2}.

So we can assume that 6y appears in the first two Euler classes.
Now the disjoint support cycles of the permutation o are all contained in sets of
the form

o5 —3, 9 — 1,273,

Hence, when one reorders the variables in each Euler class such that 85(2;—1) sits in
the (2i —1)"™ place and 6, (27 sits in the (2i )™ place, the sign by which we changed 7,
is precisely sign(o).

Therefore, because the first variables in each Euler class don’t play any role, each
term T, equals T;z. The computation of 7;4 is easy because the situation appears
now as a product and one can use Lemma 12. Indeed,

Toa =2 T] [ e@hima Oy, 040 con sy sindy 4oty

i=1

n
= 1—[ comass(w)
i=1

1

an’
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We now proceed to the calibrating inequality. We introduce the (2n — 1)-cochain,

D, ..., 60m) =f C(Bo, .. ., Oan)dbo.
TII

The reasoning involves the Fourier coefficient of D. A function f € T3 8% is written
as

fO'.....0M = Y apcos(k'0' + -+ k"0") + by sin(k' 0" + - + k"6,
k=(k1,"' ,k")EI

where § = (0',...,0™) € T" and k € I, the subset of Z" given by
I =N\{0} xZ" U {0} x N\ {0} x Z" 2 U-..-U{0,...,0} x N\ {0}.

The convergence of the sum has to be understood for the L? topology.

We denote by y : S' — R a function which can be either /2 cos or +/2 sin. For
some K = (k!,...,k™) € I we denote by ygx : T" — R a function which can be
either

6=, ...,0") — V2cos(k'0 +--- + k"™
or 6 =(0",...,0") — +2sin(k'6! +--- + k"6™).

Definition 14 (Fourier transform and Fourier coefficients). Let F be a map
from (T")*" to R. The Fourier transform of F is the map

F: Jan — R
(K1,...,Kap) +—> f(TH)Zn D(61,....02nyk,(61) - VK>, (62,)d0; - - - dO3y.

We call F (Ki,...,K2,) a Fourier coefficient. The 22" coordinates of a Fourier
coeflicient correspond to the possible choices of functions y.

Remark. Fourier coefficients of the cochain D contain values of €2. In particular

1 1.0 0 - 0
.10 0 1 1 - 0
Dyf. .

0 0 e 11

contains the value of €2 on the orthonormal tangent of the image of the Poisson kernel.
That is why we investigate the combinatorial properties of D.
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Here is a characterization of the nonzero Fourier coefficients of D.

Lemma 15. (1) The Fourier coefficient D (K1,..., Kay,) is nonzero if and only if

there exist some nonzero integers k', ... k™ such that

kKt k0 0 -+ 0

0 0 k% k? 0

(Ky,oonKop) = . . . .

0 0 R A <
up to permutation of lines and rows. Moreoverif (K1, ..., Ka,) is as above, the
nonzero coordinates of D(K1, ..., Kay,) (among the 22" ones) is constructed
by taking

YKy, (8) = V2cos(k' ') and yk,, = ~/2sin(k' ™)

for all i and up to permutations of the functions.

(2) A nonzero coordinate of some Fourier coefficient, that is,

n [ C(6o,...,02n) (]‘[cos(kfegil)sin(kfag;,.)) dby - dbay,

(Tn)2n+1 i=1

equals
2n
@n)lman [1Io k-
In particular, any nonzero value is smaller than the value of 2 on the tangent
of the image of the Poisson kernel.

Proof. Take some functions yk,, ..., Yk,,. One may use the addition formulas for
the trigonometric functions yg,. Hence D(Kjy,..., K3,) is a sum of terms of the
form
)
[ l—[ 0(21 -2) 0(21 1) 0(21)) 1_[ 1_[ ( )dej
2’72 1= —1[ 1
(s1)

(if for some integer ki. = 0, we set y(ki. 9}’.) = 1). We show that if (K, ..., K3,) is
not as in the statement of the Lemma, every such term vanishes. In order to do that,
we will use several times the arguments below.

Argument 1 : If there is some variable 911- € S! which is involved in some
function y and which is not involved in the term of the cocycle, that is

I .
9 ¢ U{ o(2i—2)° 0(21'—1)’ (;(21')}’

i=1
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then we integrate with respect to this variable 95- and we get zero as a
multiplicative term because the integral of 6% - y(k’ 6%) vanishes.
Argument 2 : One can also show exactly as in paragraph 3.3 that

[ (0,61, 621 (o) (K160 (k261015 = .
(s1)’
Indeed the Euler class e is combinatorially closed.
Argument 3 : An expression of the form

[ ¢(0. 01, 02)y (B0)d0od 6,d6;
&)’

must vanish. Indeed for a fixed 6y,

f 8(90, 91, 92)d01d92 =
(s1)’

In each term of the cocycle there is 3n variables involved. Then we cannot have
more than 3n nonzero integers (otherwise we use argument 1 above). We cannot
have also more than 3 nonzero integers in each row. Indeed,

e [If there is 4 or more, there is at least one variable involved in the functions and
not in the term of the cocycle. We use argument 1.

» If there is 3, there is again 2 possibilities. Either the variables involved in the
functions and in the cocycle are not the same and we use argument 1; either
they are the same and after we integrate with respect to this 3 variable, we use
argument 2.

Moreover we cannot have more than 2 nonzero integers in each line. Indeed there
is at most one repetition of the variables in the different Euler classes. In fact there is
exactly two nonzero integers in each line. If there is only one, this means that there
is only one of three variables in some Euler class matching with a variable in the
functions. We integrate with respect to this three variables and we use argument 3.

Hence there is exactly 2n nonzero integers in the 212 coordinates of a nonzero
index (K, ..., K3,) € I*" and exactly two nonzero integers in each line. So there
is exactly one nonzero integer in each row.

So far we can assume that

' k2 0 0 - 0
0 0 k* k* - 0
(Kl,..‘,Kzn): B . . . . .
0 0 ... gen—1 p2n

for 2n nonzero integers k', k2, ..., k*".
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Indeed, up to sign, the values of 15(1(1, ..., K3y,) are left unchanged when we
permute the K;’s. One can also reorder the lines by performing some change of
variables of the form

‘ol) _ pl
Qj = Bj

which only changes the sign. From now on the situation appears completely as
a product. One can check that the permutations o0 € G;,4; giving a nonzero
contribution are exactly the ones we characterized in Lemma 13. Each term gives
the same value. A generic coordinate of l3(K 1, ..., K2,) can be written as

6(921—2’951 1’951)}/(1‘721 lgéz l)y(kmgfiz)dem ZdQéi—ldgéi'

(2 )"
“e)

We can now conclude with the assertion 1 of Lemma 12. Indeed we must choose
the integers k', k2, ..., k*" and the functions yk,, Yk, - - » YK, such that, for all
index i, yk,; and the primitive of yg,; , are not L2-orthogonal.

We can also perform the exact computation of the nonzero values thanks to the
same assertion 1 of Lemma 12. Indeed for each index i,

[ e(0h;_5, 04,05 cos(k*0%;_ ) sin(k’ 0.)d0s. _,d6L;_,do};
(s1)’
1 s .z ;
= 4] Fsin2(k’c9l)an9’ = —

O
We finally deduce the calibrating inequality. Take 2n functions fi,..., f2, with
integrals zero, the family ( f1, ..., f2n) being orthonormal. For each function f;, we

write

fi(0) = > agicos(k'0' + -+ k"0") + bg; sin(k'6" 4 --- + k"60").
K=(k!, km)el

and we denote by ¢k ; some Fourier coefficient of f; which can be eitherag ; or bg ;.
Beside, let us set the following convention in order to design the coordinates of some
Fourier coefficient. We take C = (ck,.1,. . +» CKap, 2n) € Hl_l {ak,,i bk, i} and
denote by ﬁ(Kl, ..., K2,)€ the coordinate of D(Kl, ..., K2,) corresponding to

vk, (0) = cos(k; 01 +--- + kI'0")  ifck, i = ak,,i.
vk; (0) = sin(k! 01 + .-+ kI'6")  ifck, i = bk,

1
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Hence
Qu(fi..os fon) = Y_D(Ki..... Kan)Ccky 1 Ckapoan.
Kl: :K2n
Cenz—]{al{ ubKI-.i}
We already isolated the vanishing Fourier coefficients. Let B = (e;,...,e,) be a

basis of R”. For p € G,,, we denote by Q(p) the n X n matrix in B of the linear map
sending e; to e,(;). We have

Q]l(fla . --,on)
kKt k0 0 - 0
. 0 0 k* k* .-~ 0 i
= ZD R l—lck"(”’z"“lc’lc”(”ﬂf'
S - =1
0 0 R L 4
The sum is taken over all possible choices of nonzero integers kYoo k2, all

permutations p € &, and over all possibilities of cxo() »;—1 and c;
forall i,

ko) 2i such that,

/
Co(i) 2j—1 = Ajol) pj—1 and Cro) 2; = bro o
I d o o = o
or Crr) 2i—1 = Do) 2j—1 ANA Cppi) 55 = Qo) 2j-

We now have

2f1
‘ng(fl, T f2n)‘ < Z en)nt [T, k' 1—1 lckp(,) v 1Ckp(z) 2,‘
: i= i=1

g F
< E —1_[ Choti) 2i—1Chot) o; | -
(21’1)!71’” 2 21—=1"fpt) 2§
i=1

It is a standard fact that, using repetitively the Cauchy—Schwartz inequality, one gets

> e <1 (5 20

o€l =1 B=1 | a€A

for some countable set A, some integer N and some non-negative numbers Xy g.
Here we obtain

on n n
|Qﬂ(f1, s f2n)| = W ]—I \fz |Ck»°(f),2i—l| 1_[ \/ Z C;cp(f),zj‘
i=1 i=1

<o H Il
211
B 2n)!mxn’
This inequality is an equality when ( f1, ..., f2,) generates the tangent to the image

of the Poisson kernel. The proof of the main theorem is then complete.
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4. Applications

We finally look for some consequences, suggested in the last chapter of [2].

It is possible to extend the main result to the case where g lives on another
differentiable manifold related to M by a map of non-zero degree. The result we
obtain is an optimal “degree theorem” as in the article [5] who misses the case we
investigate. There is also a similar result in [15] but with a nonoptimal constant and
with an additional hypothesis on the Ricci curvature of g.

We denote again M = I'\ (H?)" a compact quotient of (H?)" and go the sum of
hyperbolic metrics in the different factors H?>.

Corollary 4. Let Y be a differentiable manifold of dimension 2n endowed with a
Riemannian metric g and let [ be a continuous map

f:(Y.g) — (M, go)
Then
h(g)*" Vol(Y, g) = |deg f|h(go)*" Vol(M, go)

Proof. Observe that the inequality is trivial if deg(f) = 0. So let us assume that
deg(f) is non-zero. First, one can regularize the map f in a homotopic map, still
denoted f, which is C'. We call f the map induced by f from ¥ to M. Let us
introduce the invariant appropriated to this new situation

SphereVol( /) = inf Vol((U, ®*(can)))

where @ are Lipschitz continuous equivariant immersions from Y to L?(T"). As
before, one example is given by the product of Poisson kernels,

o(y,0) = [V po( S, 60,

i=l1

where the f (y)!’s are the coordinates in the factors H? and the 6" s are the coordinate
in T”. We also consider

f?e—cd(y,z) CI)%(Z, 0)dvg (Z)) V2

(Dc ,9 -
(v.6) ( Jon €40 D@2 (2, 6)d0

where d is the g-distance in Y. The two arguments above (page 111 for the first and
Section 3 for the second) give in this context

n
(1) SphereVol < (%) Vol(Y, g) using the computation of Vol(®,)

(2) The image of ®q is still calibrated because f is surjective and then
SphereVol = Vol(®). Moreover

(go)

Vol(®) = [deg £ (8¢ )Vol(x,go>. 0
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We also obtain an estimate for the minimal volume. Let X be a compact manifold.
The minimal volume is defined as

MinVol = inf {Vol(g), |K(g)| < 1}
(see [9]).

Corollary 3. Ler M = T\ (H?)" be a compact quotient of (H?)". Then

N

2n —1

2n
MinVol(M) = ( ) Vol(go).

In particular, we reprove in a quantitative way a general theorem of [13] stating
that MinVol is nonzero. However the inequality is probably not sharp.

Proof. We still follow chapter 9 of [2]. Take a metric g on M with |K(g)| < 1. We
deduce an equality on the Ricci curvature

Ric(g) = —(2n —1)g.

We then apply Bishop’s inequality ([8] p. 144) comparing volumes of balls for g and
volumes of balls in the hyperbolic 2n-space H?". Taking the logarithm and making
the radius go to infinity, we have

h(g) <2n-—1.

We conclude introducing this inequality in

2n
Vol(g) = (%) Vol(go). O

Here is a last consequence in dimension 4. P. Suarez-Serrato in [19] classified
the 4-dimensional Thurston geometries admitting a metric of minimal normalized
volume entropy. The only missing case were the case of quotients of H? x H?2. In
dimension 4, there exist 19 geometries admitting a compact quotient (see the list
and references in [19] p. 366). P. Suarez-Serrato was able to decide among the 18
geometries (all but H? x H?) which ones admit a metric of volume 1 with minimal
volume entropy (theorem A). Hence we obtain

Corollary 16. The 4-dimensional Thurston geometries admitting a metric with
minimal normalized volume entropy are only those of “hyperbolic type”

H&,Hé and HZ x H2.
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