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Minimal entropy for uniform lattices in product of hyperbolic
planes
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Abstract. Let M be a quotient of HI2 x • • • x I2 (product of hyperbolic planes) by a uniform
lattice of (PSL2OR))". We prove that, among metrics of M of prescribed volume, the sum of
hyperbolic metrics has minimal volume entropy.
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1. Introduction

Let (X, g) be a compact Riemannian «-manifold and X be the universal Riemannian

cover of X. The volume entropy is defined as

Kg) I "4 log(Vol(ß(x, R)))
R^-oo K

where B(x, R) is the ball of radius R in X centered at any point x e X. The limit
exists and is independent of the choice of x (see [16, p. 568]).

In this paper, we are interested in the following problem.

Question 1. Let M be a compact locally symmetric space ofnoncompact type with

locally symmetric metric go- Let g be any other metric on M such that Vol(M, go)
Vol(M, g). Do we have

Kg) ^ Kgo)1

M. Gromov was the first to conjecture such a result in [10]. He was only interested
in the real hyperbolic case. But the question still makes sense for a general symmetric
space of noncompact type.

In the case where M is reducible, there exist a unique locally symmetric metric
of minimal entropy among locally symmetric metrics of prescribed volume, which
are obtained by scaling the metric in the factors [6, Chapter 2], This metric is called
"the" locally symmetric metric and is denoted by go.



108 L. Merlin CMH

In this work, we give a positive answer to Question 1 in the case of compact
quotients of products of n hyperbolic planes, that is M T\ (H2)" where T is a

uniform lattice in (PSL2(M))". More precisely our main result is the following:

Theorem 2 (Main theorem). Assume that (M, go) is a compact quotient of the

product ofn hyperbolic planes. Then, for any other metric g on M,

h2n(g) Vol(M, g) 5= h2n(go) Vol(M, go).

Let us remark that the above inequality is sharp and no assumption is made on
the metric g.

In the fundamental paper [2], G. Besson, G. Courtois and S. Gallot dealt with
the case where M is a locally symmetric space of rank one (go is negatively curved)
and obtained a similar statement than the main theorem for such spaces. The same
result was obtained before (see [1]) in any rank but for a metric g in the conformal
class of the locally symmetric metric go (supposed to be irreducible). In the case

where dim M ^ 3, the method is based on the barycenter map and the inequality in
Theorem 2 appears as an inequality of calibration (to be described below). In the

case where dimM 2, already proved by Katok (see [12]), one can still ask if the

inequality can be seen as an inequality of calibration. Besson, Courtois and Gallot
showed that it is indeed true and gave another proof of the conjecture for hyperbolic
surfaces.

The barycenter method was improved by Connell and Farb in [6] and, working
factor by factor, they also gave a positive answer to Question 1 in the case where M
is locally a product of rank one symmetric spaces with no factor H2.

In both of those papers, the authors pointed out that the case of products of
hyperbolic surfaces still remained unknown.

Note also that there is an answer to question 1 in the same setting as [6] (products
of rank 1 symmetric spaces without H2-factors) in [3] using an interesting different

point of view. The inequality between volumes and entropies appears as a corollary
of a general work on representations of fundamental groups of compact manifolds
into Lie groups of noncompact types.

We now describe the content of this paper. To prove our main result, we use

the general outline introduced in [2], It consists of an application of a method of
calibration. To make this method efficient, we embed the universal cover H2 x • • • x H2
in the unit sphere of L2-functions on the Furstenberg boundary T" S1 x • • x S1

by products of Poisson kernels. The aim is to show that this embedding has minimal
volume. In order to detect this minimality property, one may use a differential
Inform taking its extremal values over orthonormal frames in tangent frames of the

embedding. The method is briefly recalled in Sections 2.1 and 2.2.

The hardest part is to find the calibrating form. Apart from the barycenter

map, which is not efficient in the 2-dimensional case, Besson, Courtois and Gallot
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developed an alternative idea. In Chapter 3 of [1], following Gromov [9], there is

a general process to build suitable differential forms using bounded cocycles. The

choice of the appropriate cocycle in H2 is then discussed in [2] Chapter 6. We

generalize this approach for the compact quotients of (H2)" using the bounded

2«-cocycle on T" that M. Bucher exploits in [4] (for n 2). We describe this
bounded cocycle in paragraph 3.1 and we check that the derived differential form has

the required properties afterwards. The calibrating inequality is finally obtained in
paragraph 3.4.

The last section is devoted to applications. We obtain a (non optimal) estimate

for the minimal volume (to be defined in Section 4) of a compact quotient T\ (H2)

Corollary 3. Let M T\ (H2)" be a compact quotient o/(H2)". Then

2n

Vol(go).

The most spectacular application is that we are able to give an optimal bound
for degrees of maps / : Y2n —> P\ (H2)" from any Riemannian 2n-manifold.
Precisely,

Corollary 4. Let Y be a smooth manifold of dimension 2n endowed with a
Riemannian metric g and let f be a continuous map

f : (Y,g) —> (M,go).

Then

h(g)2n Vol(T, g) |deg f | h(g0)2n Vol(M, g0).

We strongly believe that the equality is achieved if and only if / is homotopic to a

Riemannian covering map but our approach is not relevant to investigate the equality
case.

Acknowledgements. I would like to thank my PhD advisor C. Bavard for many useful
discussions and comments. I am also grateful to G. Besson for his encouragement
and the remarks he made on a preliminary version of this paper.

2. Calibration method

2.1. The spherical volume. In this section, M is a quotient of (H2)" by a uniform

torsion-free lattice f jti(M) and then M is the Riemannian product (H2)"
with the usual metric of curvature —1 in each factors (called g0 in both of the

manifolds M and M). Remark that go is the best locally symmetric metric in the

sense of [6, Chapter 2], that is the metric with minimal entropy among all locally
symmetric metrics of same volume. As above, g is any other metric on M.

MinVol(M) f
2w l)
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Let us start with a few notations. We choose once and for all a basepoint o e H2,
for instance o 0 in the Poincare disk model (sitting inside the complex plane).
We will denote by the same letter o the basepoint in (H2)". There will be no

ambiguity resulting from that convention. The basepoint is used to compute the
Buseman functions and to identify the boundary at infinity 3ooH2 with the circle S1

(see below).
In what follows, 3f(M) will denote the Furstenberg boundary of M : the space

of Weyl chambers at infinity in M emanating from the same point (see [7] or [11] for
further discussions). There will be no conceptual difficulties coming from a general

theory of Furstenberg boundary: we just use the fact that 9/r((H2)") is identified

to the «-dimensional torus T" (S1)", by the above choice of a basepoint. The

Furstenberg boundary is better adapted to the case of higher rank symmetric spaces
and it is one of the key points in [6]. The Furstenberg boundary and the visual

boundary are the same in the rank one case and that's why the distinction does not

appear in [2],
The Furstenberg boundary turns out to be a probability space in the following

way. The circle S1 K/2jtZ is endowed with the Lebesgue probability measure dO

(normalized in such a way that d9(ß1) 1). The «-torus is the product (in the sense

of probability spaces) of n such circles. The spaces of L2 functions on T" is defined
with respect to this measure.

The Poisson kernel p0 of the disk is defined by:

po(x,0) e~B°<-x'9\

where B0(x, 9) is the Buseman function. A classical computation gives the explicit
expression in the Poincare disk

for any x e B(0,1) and 9 e S1.

The definition of the spherical volume in [2] extends to (H2)" in the following
way. We consider two representations of T. The first one in Isom(M,go) is the

holonomy representation of T. The second one is the representation in the unit
sphere of L2(3jfM), the Hilbert space of L2-functions on the Furstenberg boundary
with real values. We denote this unit sphere by S°° or 5°°(3f M) if the universal

cover needs to be specified. More precisely, it is a unitary representation restricted

to S°°. It is defined by

(yf)(6) /(y_1 (0)) vWm > 0!) • • • \/poiron, on)

where o is the basepoint of (H2)", yo (yo\,..., yon) e (H2)" and

9 (01,..., 9") e T". This is the change of variables formula (for L2 functions).
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Indeed the Jacobian of an isometry acting on the Furstenberg boundary is given by
the product of Poisson kernels.

Then, as in [2], we introduce the family TV of Lipschitz immersions

: M —> L2(dFM)

which are T-equivariant, that is satisfying the following equation

<f>(yx) y<J>(x)

for all y e T and all x e M. We also require that

Vx e (H2)" ||<F(x)||l2 1,

that is <5(x) e S°° and that, for every x e M, <F(x) is positive almost everywhere.
We can also consider those immersions as functions of two variables <£> : (x, 9)
<F(x)(0). The product of square roots of Poisson kernels

(H2)" — 5°°
<t>0 ;=

v '
(x'.-.-.x") I yjPo (x1, X X y/p0(xn,-)

is an example of such an immersion (see Lemma 6 below). Moreover it is an

embedding. We will think of (H2)" as embedded in S°° by the product of Poisson

kernels. The spherical volume is then defined by

SphereVol(M) inf {Vol(d>)}

where

Vol(O) I J|det
J M

where g<j> denotes the almost everywhere defined pull-back of the usual Hilbertian
metric on L2 by the Lipschitz immersion <J> and det^(g<j>) is computed in any g-
orthonormal basis. The integral on M means that we integrate on a fundamental
domain in (H2)" for the T-action and the equivariance relation satisfied by <f> shows

that this does not depend on the fundamental domain.
The spherical volume is a transitional object. We use it to make a link between

entropies and volumes. We want to prove the following inequalities.

(^fr~) Vol(M'^o) sPhereVol(M) ^ Vol(M,g).

First we recall the second inequality.

Proposition 5 ([2] Chapter 3). We have

SphereVol(M) ^ Vol(M.g).
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Proof. We refer to Chapter 3 of [2] for the same proof in the rank one case. There are

only very few modifications to make in our setting. Let's first reintroduce a family of
immersions which satisfy the conditions above. For a real parameter c > h(g), we
consider :

^c(x,e) ^e-cd^p0(yl,e1)---p0(yn,dn)dvg(y))j
'

The condition on c ensures that the integral converges. Indeed for uniform lattices
volume entropy and critical exponent are the same. Then we define an element of M
by

r m Vc(.X,9)
<S>c(x,6) - —.(jrt^(x,d)d9y'2

We just have replaced the boundary sphere by the Furstenberg boundary. We can

now perform the very same computation as [2] (p. 742 for a proof of the Lipschitz
regularity and p. 746 for the volume computation). We get the required estimate for
the spherical volume.

It remains to check now that if M is a compact quotient of (H2)", we have

)2\ *

V 8n

In fact, we can find an immersion 4>o ofA''which has precisely the needed volume.

Lemma 6. Let M be a compact quotient of (E2)". Let 4>0 : (H2)" —> L2(T") be

defined by

SphereVol(M) (Vol(M,g0).

<t>0(x\...,xn,o\...,en) n ' 1

i i v \xl — e2l7tS' '2

Then

(1) 4>o is a smooth embedding, it belongs to M and

Vol(0o) (/^ir) Vo1^) G) Vol(^o)-

(2) The tangent space at the basepoint 1 S°° of the image cj/Oq. 7i<E>o ('(HI2)" j
is generated by the 2n functions

f : T" —> E
e (e\...,en) Vicosd1
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and
fi+i T» —> M

6 (6\...,0n) I—». V2sin0! '

for i 1,... ,n.

Proof. It is enough to handle the same situation with only one factor H2, the volume
and the description of the tangent space will be easily deduced from the 2-dimensional

case. The family of measures (vz)zeH2 on ^ which are in the Lebesgue class and

satisfy
dvz 1 — \z\2

do |z — g2ind |2

are in fact the so-called Patterson-Sullivan measures of the hyperbolic plane which
were constructed in [17]. We refer to this original paper for the equivariance relation

(note that this family of measures is even SL2(M)-equivariant).
Then it is enough to show that 4>o is an immersion at the basepoint o, SL2(M)

acting (transitively on H2) by diffeomorphisms. The differential of <t>o is easy to

compute and we get the basis we claimed for the tangent.
This shows in particular the point 2 of the above Lemma which shall be used later

on. As the 2 functions cos and sin are a free family in L2(§1), we obtain that T>0 is

an immersion at o.

Finally the volume of 4>o has been computed in [2, p. 744],

This Lemma 6 shows in particular that

SphereVol(M) $ Vol(M,g0).

The purpose of Section 3 is to prove that this inequality is sharp, providing the

required equality.

2.2. Calibration theory. In order to show that the Spherical Volume is achieved by
the map O0, we use a classical method of calibration, following [2] chapter 4. Let us
make a brief review on how we implement this method.

Let £2 be a differential 2«-form which is T-invariant.

Definition 7. (1) The comass of £2 is the quantity

comass(£2) sup \Sl<p{fi,..., f2n)\.

where the supremum is taken over all functions <p e S°° and every orthonormal
family (f\,..., /2„) where each f belongs to TVS°°.

(2) One says that the differential form £2 calibrates some immersion 4>0 AC if
(a) The form £2 is closed,
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(b) its comass is finite and nonzero and

(c) when we restrict Q, to orthonormal families, it is maximal on the tangent
space T4>o((BI2)"), that is,

l^^oC*) ' ^^0(^2«))!
11 TUT? comass(f2)
\WMui) A ••• A dx®o(u2n)\\

for every x (H2)" and every orthonormal family (u\,..., u2n).

Here is the way we shall exploit a calibrating differential form. The following
proposition follows readily from Stokes theorem. Here, we emphasize the fact that

we use in a decisive way the compactness hypothesis for M (see [18]).

Proposition 8 ([2] Proposition 4.3, p. 748). Assume there exists a differential 2n-form
which calibrates an immersion Oo A/". Then

SphereVol(M) Vol(4>o)-

From now on it remains to find such a calibrating form for the Poisson kernel.

3. A calibrating form for (H2)"

3.1. Definition of the form. We will denote by e the Euler class of the circle,

!e(Qo,
Q\, O2) — 1 if the points are cyclically ordered on §'.

e(90, 0i, 62) — -1 if not.

Then we consider the application C : (T")2"+1 IR given by the following formula,

C(d0, • • •, e2n) ^ J2 sisn(°0 f[ e (5(2;_2), 9la(2l_x), 0;(2I))
' ce&2n+\ 1 1

For example if n 1 then C e, the Euler class and if n =2, this is the cocycle
used in [4], This map C could be seen as the alternation of the cup product of n

Euler classes. In particular C is alternate, that is,

C(0ff(0),..., 0a(2n)) sign(ff)C(0o,..., e2n)-

Then the following formula defines a differential 2n-form on S°°:

fuhn) f c(60,e2n)<P2(e0W(e1) <pf{e2n)de0 de2n.
J (Tn)

We conclude this paragraph by stating some properties of C that we shall use later

on.
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Proposition 9. Let G be the group (Diff+ (S1))" embedded diagonally in Diff+ (T").
The map C is G-invariant, that is

Vg G, C(gOo,..., ge2n) C(90,..., e2n).

Proof. The group Diff+ (S1) preserves the cyclic order on S1 then, for y e Diff+ (S1),

e(y9o,y0i,y02) e(90,9i,92)-

Taking g (yl,..., yn) G, one has

C(g0o,...,g02n)
1

Sign(ff)flg()/<öä(2.--2).3/i0ff(2i-l)./öff(2«))
' ae&2n+ l ' 1

1 "

(2n + 1)' ^ SiSn(-) 11 ^(2,-2)' da(2i-l)'ea(2^
' cee2n+i i=l

C(0O,...,02n).

Proposition 10. The map C is closed as a combinatorial cochain, that is

2n + \

^(-l)'C(0o,...,0i,...,02n+ l) =o.
i=0

Proof. It is classical that alternating cup products of cocycles leads to a cocycle.

3.2. An invariance relation satisfied by Q.. Let us show now that the form Q is

invariant under the action of the group G (Diff+(§1)) This group contains

(PSL2(K))" and extends its action on L2(T") by the change of variables formula,

(gf)(9) VJacg-Wog-1^).
The action being unitary, we let act G on the unit sphere S°° by restriction and on
the tangent space of this sphere. Then we have, for g e G,

Wl /2.)

2n

J C{do,...,d2n){gcp)2{9o)\\{gtp){gfi){0l)d9l

(ip/i)2rt+l
I —I

n. 2n

I C(0O, • •, 02») lacg~l(90)<p2(90) ]~[ ^cg-\9l)tpfl{9i)d9l.
(IT77

H-1
1 ^
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We now perform the change of variables formula 9- g_1 (0,-). We get

• • •, hn) J C(g60,g02n)<p2(Qo)<pf(0i) <pf(02n)d9o d02n.

0vj)2rt+ I

The conclusion now follows from proposition 9.

3.3. Closure of £2. In order to use the method of calibration, we have to deal with
a closed form. This is the aim of this paragraph.

Proposition 11. The differential 2n-form £2 is closed.

Proof. To differentiate £2, it is easier to have an expression on a space of measures
instead of the unit L2-sphere. Let us begin by a quick review on the structure of the

space of measures we will deal with.
Let A4 be the Banach vector space dual to C°(T"), the Banach space of continuous

functions on T". The space A4 is also the space of Radon measures on T". We
consider the affine space

Mi {ii 6 M\n(T") 1}.

We think of this affine space as an infinite dimensional manifold shaped on a Banach

space. The tangent space in each point is the vector space of zero-mass measures.
The differential form £2 comes from a form on A4 \ pulled-back by the smooth

map
A: S°° —> AAi

<p i—> B i-> fB <p2(9)d6.

The image of a function <p is the measure with density <p2 with respect to the Lebesgue
measure. Let us define a differential 2n-form Q.' on Ad,,

S2^(ai,...,Qt2„) j C(d0,...,92n)dix(90)da1(di)---da2n(e2n).

^jprt)2rt + l

Clearly
Q 22nA*£l'.

Then it is enough to show that £2' is closed. But now, £2' is a linear map with respect
to /i. Then, we have (see [14, p. 84] for the differential formula of a form on a Banach

manifold)

2n

dQ'ß(a0,...,a2n) ^(-1)' dß£2ß(a0,..., a;,..., a2n) a,-.

i=0
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By linearity this expression is also

2n

dQ'ß(a0,...,a2n) ^(-1)'^«, (a0,... ,a,-,... ,a2n).
/=o

With skew-symmetry, this is again

dQ'ß(a0,... ,a2„) (2n + 1) J C(80,..., 92n)da0(90) • • da2n(82n).

Cjp«)2« + 1

Each measure has a vanishing total mass. Let us show that the above expression is in
fact

dQ'ß(a0,.. .,a2„)

~(2n + 1) j dC(9o,...,92n+i)dcto(0o)---da2n(62n)dix(82n+i).

(Trt)2fl+2

Let us recall the definition of the combinatorial boundary of a cochain,

2« + l
dC(9o,..., 02n+i) ^ (—l)'C(0o. ,9i,., 92n+\).

i=0

First we have,

J C(9o,92n)da0(80) da2n(92n)

j C{8Q,...,92n)daQ{9o)---da2n{82n)dji{92n+i)

because /x(T") 1. We recognize the opposite of the last term in the expression
of 3C (corresponding to the index i 2n + 1). We now prove that the other terms
in the expression of 3C vanish. Each of these remaining terms are of the form

j C(6»0,..., 6i,..., 92n+l)da0(90) da2n(92n)dii(92n+i)

^«)2/,+2

with i ^ 2n + 1. Integrating with respect to the variable 0, which is not involved
in the cocycle, make appear a multiplicative term, the total mass of one of a tangent
measure, supposed to be zero.

So finally the closure of C as a combinatorial cocycle (see Proposition 10) proves
the result.
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3.4. The calibrating inequality. Let us first remark that we only have to establish the

inequality at the basepoint cp 1. Indeed one can show exactly as in paragraph 3.3

that

j C(g90,...,g92n) (<p2(90) - I)<pf(9i)---<pf(e2n)d0o---d92n 0-

Cfl7J)2AJ + l

Replacing the functions f\ e TVS°° by the functions (pfi e 7j <S°°, we can make the

assumption cp 1.

Besson, Courtois and Gallot studied the 2-dimensional case in [2, Chapter 6].
They used the Euler class to build a differential form

o<p(fi,h)= I e(do,0i,d2)(p2(9o)<pfi(0i)<pf2(92)d9od8idd2.

(si)3

Here is what they proved:

Proposition 12 ([2] Chapter 6). (1) One may use the following alternative ex¬

pression for CO,

(ov(fi,f2) 2 f FydF2,
Js1

where F\ and F2 are the primitives with vanishing integrals for cpf\ and cpf2.

(2) The comass of co equals

(3) Moreover a> is a calibrating form for the Poisson kernel, that is, at the

basepoint 1, co is maximal over orthonormal families (/i, f2) if

fi(9) a/2cos0 and f2(9) V2sin0.

Back to the 2n-dimensional situation, we first show that the differential form £2 is

nonzero, evaluating it on 7"^ O0C(lH[2)"). Remember the family of functions given by

f: T" —> R
8 (9\...,8n) i—* \/2cos 9'

and

fi+i T» —> R
9 (9f...,9n) i—> a/2 sin

for i 1is an orthonormal basis of 7i<f>o j.
Lemma 13. We have the relation

h, fin) nTtn(2n)\
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Proof. Let us look for permutations o ©2«+i for which the corresponding term

C
n

2" sign(cr) J ]~~[ (e(ß^2l_2). $a(2i-t)' ^(21))cos ^21-1 sin ^21-2) ddo • • • d02n

C]pn)2«+1 l~ ^

is nonzero. In order to get such a permutation, the variables d2l_l and 0l2l which are

involved in the expression

COS $1 sin $2 • • • COS 02n-l sin ®2n

have to appear also in the expression

n

n e(^CT(2i-2)' 0<t(2i —1)' ^cr(2l)l
1=1

If not we integrate with respect to one of the variables 02i-i or @21 missing in the

term of the cocycle and we get a multiplicative vanishing term which is the integral
of one of the functions /,. Hence, we need that, for each i,

{$2i — l>02i} C {0a(2i-2)> 0(i(2i-l)> 0<j(2i)} •

Let us now compute the number of suitable permutations. The first image a(0)
could be any of the 2n + 1 elements. Let us say ct(0) falls in the ilh Euler class,

ct(0) e {2i — 2,2i — 1,2i} (e.g a(0) 2i — 2, other cases are similar). From the

condition above, it remains only two possibilities for o(2i — 1) and a(2i), namely,

ct(2/ — 1) ct(2i — 1) and a(2i) — o(2i)
or ct(2; — 1) cr(2z') and ct(2z) o(2i — 1).

Once we fill the ith Euler class, the adjacent one(s) already have one element imposed
(remember 621 appears in both the /'th Euler class and the (i + l)th Euler class). Hence

we have again two possibilities for the two remaining arguments and inductively for
each Euler class.

Finally we find
2" (2n + 1)

suitable permutations.
We now play with the skew-symmetry relation to show that, for each suitable

permutation ct, the corresponding term

r "
2" sign (ct) J ]~[ (e(0;(2!_2),0;(2i_1),0;(2!))cos0^_1sin0^_2)fi?0o---^2«

(Tnfn+\
1 ^

equals From now on, we assume that ct is some suitable permutation
characterized above.
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The variable $o appears in one or two Euler classes, let us say for example that

er(0) 2 /

for some i < n (other cases are simpler). Then the variable 6q appears in both the /th

and the (/ + l)th Euler class. We compute the term

Ta:=
r n

sign(o-) J ]~[ (e(elo(2l_2),9la(2l_1),e,a(2l))cos6'2l_lsm9,2l_2^de0---d92n

by first performing the change of variables

6<j(2i—2) $l> @o(2i—1) $2> ^cr(2i + l) @o(2i+2) @4 and 6k 6/c'

for k ^ 2i — 2,2i — 1, 2i + 1,2/ + 2. Since the Jacobian of this change of variable
is 1, we do not change the value of Ta. Remember we took o such that

{a(2/ — 2), er(2/ - 1)} {2/ -2,2/ - 1}

and {ct(2/ + 1), o(2i + 2)} {2/ + 1,2/ + 2}.

So we can assume that 90 appears in the first two Euler classes.

Now the disjoint support cycles of the permutation a are all contained in sets of
the form

{2/ -2,2/ - 1,2/}.

Hence, when one reorders the variables in each Euler class such that 0ff(2;-i) sits in
the (2/ — l)th place and 0a(2i) sits in the (2/)th place, the sign by which we changed Ta

is precisely sign(a).
Therefore, because the first variables in each Euler class don't play any role, each

term Ta equals 7jj. The computation of Tlc[ is easy because the situation appears
now as a product and one can use Lemma 12. Indeed,

Tid 2" ]~~[ f
3

e(@2t—2' ^21-1' 621) cos 621-1 sin2(
1 ^(§1)

n

J~| comass(cu)

i~i
1

7Tn
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We now proceed to the calibrating inequality. We introduce the (2n — l)-cochain,

D(9x,...,92n) f C(90,...,92n)d90.
JT"

The reasoning involves the Fourier coefficient of D. A function / e 7x500 is written
as

f(9\...,9n) akcos{kl91+--- + kn9n) + bksm(kx9l+--- + kn9n),
Jfc=(fc1,k")el

where 9 (9l,..., 9") T" and k e I, the subset of Z" given by

/ N\ {0} x 1T~X U {0} x N\ {0} x Z""2 U • • • U {0,..., 0} x N\ {0}

The convergence of the sum has to be understood for the L2 topology.
We denote by y : S1 —> R a function which can be either V2 cos or *J2 sin. For

some K (k1,, kn) e I we denote by yx ' T" R a function which can be

either

6 (91,...,9n) I-»- V2cos{kl9l +--- + kn9n)

or 9 (9x,...,9n) i—> V2sin(kl9x +--- + kn9n).

Definition 14 (Fourier transform and Fourier coefficients). Let F be a map
from (Tn)2n to K. The Fourier transform of F is the map

F : I2n —^ M22"

(Ki,..., K2n) i—> /(jnfn D(9i,..., 92nYKi(9i) YK2n(^2n)d9i •d92n.

We call F(K\,..., K2n) a Fourier coefficient. The 22" coordinates of a Fourier
coefficient correspond to the possible choices of functions y.

Remark. Fourier coefficients of the cochain D contain values of 12. In particular

D

(\ 1 0 0 0\
001 1 ••0

Vo 0 ••• 1 \)
contains the value of Q on the orthonormal tangent of the image of the Poisson kernel.
That is why we investigate the combinatorial properties of D.
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Here is a characterization of the nonzero Fourier coefficients of D.

Lemma 15. (1) The Fourier coefficient D(K\,..., K2n) is nonzero ifand only if
there exist some nonzero integers kx,... ,kn such that

(Ku...,K2n)

(kl k1 0 0

0 0 k2 k2
0\
0

0 0 kn kn

up to permutation oflines and rows. Moreover if(K\,..., K2n) is as above, the

nonzero coordinates ofD(K\,..., K2n) (among the 22n ones) is constructed

by taking

Yk2i~i($) V^cos^'ö1) and yx2i V2sin(kl9n)

for all i and up to permutations of the functions.

(2) A nonzero coordinate of some Fourier coefficient, that is,

2

(UV?)
2/1 + 1

equals

n J c(e0,...,e2n)(f\
TmJ-1 \l 1

cos(A:!02;-i) sin(fc'02,) d6o d02n

2"

(2n)\nn nr=i kl

In particular, any nonzero value is smaller than the value of Fl on the tangent
of the image of the Poisson kernel.

Proof. Take some functions yk2„ One may use the addition formulas for
the trigonometric functions yk, Hence D(K\,..., K2n) is a sum of terms of the

form

/n
2n n

n««lo.-«. »;<2o) n n r (^«i) <«>;

2n2 i \ J U l

(if for some integer kl} 0, we set y(k' 0l) l). We show that if (A"i,..., K2n) is

not as in the statement of the Lemma, every such term vanishes. In order to do that,

we will use several times the arguments below.

Argument 1 : If there is some variable 9l e S1 which is involved in some
function y and which is not involved in the term of the cocycle, that is

ri

^ LJ {^a(2i—2)' ^a(2i —1)' @a(2i)) '
i 1
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then we integrate with respect to this variable 9l and we get zero as a

multiplicative term because the integral of 9l h-» y(/c' 0') vanishes.

Argument 2 : One can also show exactly as in paragraph 3.3 that

j e(9o,9x,92)y(k090)y(ki9i)y(k292)d9od91d92 0.

(sO3

Indeed the Euler class e is combinatorially closed.

Argument 3 : An expression of the form

j e(9o, 9i, 92)y(9o)d9od9id92

(s>)3

must vanish. Indeed for a fixed 6q,

f e(60,9i,92)d9\d92 0.

(si)2

In each term of the cocycle there is 3n variables involved. Then we cannot have

more than 3n nonzero integers (otherwise we use argument 1 above). We cannot
have also more than 3 nonzero integers in each row. Indeed,

• If there is 4 or more, there is at least one variable involved in the functions and

not in the term of the cocycle. We use argument 1.

• If there is 3, there is again 2 possibilities. Either the variables involved in the

functions and in the cocycle are not the same and we use argument 1; either

they are the same and after we integrate with respect to this 3 variable, we use

argument 2.

Moreover we cannot have more than 2 nonzero integers in each line. Indeed there
is at most one repetition of the variables in the different Euler classes. In fact there is

exactly two nonzero integers in each line. If there is only one, this means that there
is only one of three variables in some Euler class matching with a variable in the

functions. We integrate with respect to this three variables and we use argument 3.

Hence there is exactly 2n nonzero integers in the 2n2 coordinates of a nonzero
index (K\,..., K2n) e I2n and exactly two nonzero integers in each line. So there
is exactly one nonzero integer in each row.

So far we can assume that

/k1 k2 00
0 0 k3 k4

0

0
(*!,..., K2n)

\0 0

for In nonzero integers kl, k2,..., k2n.

k2n-\ k2nJ



124 L Merlin CMH

Indeed, up to sign, the values of D{K\,..., K2n) are left unchanged when we

permute the Kt's. One can also reorder the lines by performing some change of
variables of the form

which only changes the sign. From now on the situation appears completely as

a product. One can check that the permutations a e 62/1+1 giving a nonzero
contribution are exactly the ones we characterized in Lemma 13. Each term gives
the same value. A generic coordinate of D{K\,..., K2n) can be written as

We can now conclude with the assertion 1 of Lemma 12. Indeed we must choose
the integers k1, k2,..., k2n and the functions yk] Yk2, • • YK2n such that, for all
index i, yk2, and the primitive of Yk2,~\ are not L2-orthogonal.

We can also perform the exact computation of the nonzero values thanks to the

same assertion 1 of Lemma 12. Indeed for each index i,

2 f e(e,2t_2,9t2l_1,e^)cos(kle^l_1)sm(ktdl2l)det2l_2d92l-ide,2t

(§1)3

4/ Fsi"2(*'9')rf,,' t+'
s1

We finally deduce the calibrating inequality. Take 2n functions f\,..., f2n with
integrals zero, the family (/1,..., f2n) being orthonormal. For each function f, we
write

f(d) aK,lCos(kldl + --- + knOn) + bK>l sin(kl6l + + kn9n).

K=(kL- ,k»)el

and we denote by ck,i some Fourier coefficient of /, which can be either a k,i or bu t.
Beside, let us set the following convention in order to design the coordinates of some
Fourier coefficient. We take C {cku\> • • ck2„ ,2«) n?=i {aK„i,bK„t} and

A v-T A

denote by D{K\,..., K2n) the coordinate of D(K\,..., K2n) corresponding to

\yk, (0) cosf^1#1 + • • • + k"0n) ifcKl,i aKltl.
(^,(0) sin(Kel +--- + k?dn) if
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Hence

£2l(/l. • frn) E D(Kl, • K2n)CCKul • •CK2n,2n-
KU...,K2„

Cen^Li {«*,.« .Atf,.,}

We already isolated the vanishing Fourier coefficients. Let B (fii,..., en) be a

basis of E". For p e we denote by Q(p) then xn matrix in B of the linear map
sending et to ep(,). We have

• • •. fin)

Y,i>

(k1 k1 0 0 ••• 0\
Q(p)

0 0 k2 k2 0
]~I ckp('),2i—lckkPt't 2l"
1 1

\ \0 0 ••• kn knJ J

The sum is taken over all possible choices of nonzero integers kl,...,kn, all
permutations p e <5n and over all possibilities of ckPu)j2l-i ar,d c'kpU) 2;

such that,

for all i,

ckp(-'\2i-\ — akp('\2i—l an(i C'kp('t,2i bkp('*>,2i

or ckp^,2i-\ — bkp('\2i-l and c'lcpU)t2i =akp(-'\2i-
We now have

^ 2n n
i

|(p(f\,..., f2n)I =$ E (2n)\jin n"_! kl n IckpU)>2'-tckp('i,2i

^ 2n n
|

^ ^ (2n)\nn n \ckp^,2i-ic'kPU)t2i
1 1

It is a standard fact that, using repetitively the Cauchy-Schwartz inequality, one gets

e Ux«ß ^ n Je <8-
a<=A B 1 3 1 V aeA

for some countable set A, some integer N and some non-negative numbers xa^.
Here we obtain

2"

2"

i=i
f2n)\ ^ (7nVit n n vEicw2i-iin \iJ2\ckpb\

i=i
2n

{2n)\nn

2n

I 1

(2n)!;r"
This inequality is an equality when (/i,..., f2n) generates the tangent to the image
of the Poisson kernel. The proof of the main theorem is then complete.
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4. Applications

We finally look for some consequences, suggested in the last chapter of [2],
It is possible to extend the main result to the case where g lives on another

differentiable manifold related to M by a map of non-zero degree. The result we
obtain is an optimal "degree theorem" as in the article [5] who misses the case we

investigate. There is also a similar result in [15] but with a nonoptimal constant and

with an additional hypothesis on the Ricci curvature of g.
We denote again M T\ (H2)" a compact quotient of (H2)" and go the sum of

hyperbolic metrics in the different factors H2.

Corollary 4. Let Y be a differentiable manifold of dimension 2n endowed with a
Riemannian metric g and let f be a continuous map

f : (F,g) — (M,go)

Then

h(g)2n Vol(7, g) ^ |deg f\ h(g0)2n Vol(M, g0)

Proof Observe that the inequality is trivial if deg(/) 0. So let us assume that

deg(/) is non-zero. First, one can regularize the map / in a homotopic map, still
denoted /, which is C1. We call / the map induced by / from Y to M. Let us

introduce the invariant appropriated to this new situation

SphereVol(/) inf Vol((f/, 4>*(can)))

where <E> are Lipschitz continuous equivariant immersions from Y to L2(T"). As
before, one example is given by the product of Poisson kernels,

*o(y,8) fly/po(f(yY,0i),
i 1

where the / (y)''s are the coordinates in the factors H2 and the 6l's are the coordinate
in T". We also consider

m (fye-^$2(z,9)dvg(z)\1/2
c y'

\ fTne-cd(-y>^$l(z,e)dd

where d is the g-distance in Y. The two arguments above (page 111 for the first and

Section 3 for the second) give in this context

(1) SphereVol ^ Vol(T,g) using the computation of Vol(«J>c)

(2) The image of Oo is still calibrated because / is surjective and then

SphereVol Vol(<I>o)- Moreover

(h(go)2^"Vol(d>o) |deg/|^-^H Vol(A,g0).



Vol. 91 (2016) Minimal entropy for uniform lattices in product of hyperbolic planes 127

We also obtain an estimate for the minimal volume. Let X be a compact manifold.
The minimal volume is defined as

MinVol inf{Vol(g), |^f(g)| ^ 1}

(see [9]).

Corollary 3. Let M T\ (H2)" be a compact quotient of (H2)". Then

2n

MinVol(M) =s v" Vol(g0).

In particular, we reprove in a quantitative way a general theorem of [13] stating
that MinVol is nonzero. However the inequality is probably not sharp.

Proof. We still follow chapter 9 of [2]. Take a metric g on M with \K(g)\ <: 1. We

deduce an equality on the Ricci curvature

Ric(g) ^ -(2n - l)g.

We then apply Bishop's inequality ([8] p. 144) comparing volumes of balls for g and

volumes of balls in the hyperbolic 2n-space H2". Taking the logarithm and making
the radius go to infinity, we have

h(g) ^ 2n — 1.

We conclude introducing this inequality in

voi(g) * (£))Voi(go)' D

Here is a last consequence in dimension 4. R Suarez-Serrato in [19] classified
the 4-dimensional Thurston geometries admitting a metric of minimal normalized
volume entropy. The only missing case were the case of quotients of i2 x i2. In
dimension 4, there exist 19 geometries admitting a compact quotient (see the list
and references in [19] p. 366). P. Suarez-Serrato was able to decide among the 18

geometries (all but H2 x H2) which ones admit a metric of volume 1 with minimal
volume entropy (theorem A). Hence we obtain

Corollary 16. The 4-dimensional Thurston geometries admitting a metric with
minimal normalized volume entropy are only those of "hyperbolic type"

HI^, Hp and x H^.
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