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Ergodic properties of equilibrium measures for smooth three
dimensional flows
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Abstract. Let {T'} be a smooth flow with positive speed and positive topological entropy on
a compact smooth three dimensional manifold, and let /x be an ergodic measure of maximal

entropy. We show that either {7"'} is Bernoulli, or {T1} is isomorphic to the product of a

Bernoulli flow and a rotational flow. Applications are given to Reeb flows.
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1. Introduction and statement of main results

Introduction. In 1973, Ornstein and Weiss proved that the geodesic flow of a

compact smooth surface with constant negative curvature is Bernoulli with respect to
the Liouville measure [36], Ratner extended this to variable negative curvature [43].
In the case of non-positive and non identically zero curvature, Pesin showed that

some ergodic component of the Liouville measure is open, dense, and Bernoulli
[39], [4, Thm 12.2.13], It follows from his work that all other ergodic components
(if they exist) have zero entropy. Katok and Burns extended Pesin's work to Reeb

flows [20]. Burns and Gerber proved that geodesic flows on certain surfaces with
some positive curvature ("Donnay's examples") are Bernoulli [11], Hu, Pesin and

Talitskaya constructed smooth volume-preserving Bernoulli flows on every compact
manifold of dimension at least three [18].

Ratner's work extends to general Anosov flows equipped with ergodic equilibrium
measures of Holder continuous potentials [43], In this case the flow is either
Bernoulli, or isomorphic to a Bernoulli flow times a rotational flow (this happens in
the non-mixing case). Pesin's work extends to all C1+£ flows preserving an ergodic
hyperbolic measure whose conditional measures on the unstable manifolds are

absolutely continuous with respect to the induced Riemannian measure [21,27,32,38],
with the same modification in the non-mixing case.

*This work was partially supported by the Brin Fellowship and by the ERC award ERC-2009-StG
no. 239885.
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The measure of maximal entropy does not have absolutely continuous conditional

measures, except in special cases [19]. The purpose of this paper is to determine
the ergodic theoretic structure of this measure in the context of general smooth three
dimensional flows with positive topological entropy. Our methods also apply to
ergodic equilibrium measures of Holder potentials with positive entropy.

Basic definitions. Let {X, S3, p) be a Lebesgue probability space.

Measurable flow: A quadruple T (X, S3, p, {T'}) such that (t, x) f-f T*(x) is

measurable, and the time-t map (X, S3, ß, T') is probability preserving, St e M.

Eigenfunction: A non-constant measurable function / is an eigenfunction of T

(with eigenvalue eia) if for a.e. x X, f(T'x) eiat f(x) for all t e M. T is called
ergodic if 1 is not an eigenvalue, and weak-mixing if it has no eigenfunctions at all.

Entropy: The entropy of T is the entropy of the time-1 map T].

Rotational flow: Given c > 0, the rotationalflow is T' (x) := x + t/c (mod 1) on

M/Z equipped with the Haar measure, c is called the period, and it is an invariant of
the flow since c — min{f > 0 : T* Id}.

Bernoulli flow: T is called Bernoulli if Tl is a Bernoulli automorphism. T is
called Bernoulli up to a period if T is Bernoulli, or if T is isomorphic to the product
of a Bernoulli flow and a rotational flow.

If T is a Bernoulli flow then T' is a Bernoulli automorphism, St f 0 [33].
Entropy is a complete set of invariants for Bernoulli flows [34], and entropy and

period (if it exists) are a complete set of invariants for Bernoulli up to a period flows
since the Bernoulli term is determined by the entropy and the rotational term is the
Pinsker factor, see [52, Prop. 4.4],

Main results. Let M be a three dimensional compact C°° Riemannian manifold
without boundary, let S3 be its Borel o-algebra, let A : M —> TM be a C1+e vector
field on M such that Xp ^ 0, S p e M, let T be the flow on M generated by X, and

let p, be a T-invariant probability measure.

Equilibrium measure: p is an equilibrium measure of a potential F : M —> E if
hß(Tl)+ fM Fdp sup{/iv(T1)+ fM Fdv), where sup ranges overall T-invariant
probability measures v. If F 0, then p is called a measure ofmaximal entropy.

Equilibrium measures always exist if A is C°° and F is continuous [29],

Theorem 1.1. Under the above assumptions on M, X, T, every equilibrium measure

of a Holder continuous potential has at most countably many ergodic components
with positive entropy. Each of them is Bernoulli up to a period.
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Periods can exist (e.g. for the constant suspension of an Anosov diffeomorphism),
but sometimes they can be discounted. Let {T*} be a Reeb flow on a compact smooth
three dimensional contact manifold M (see Section 7 for definitions). For example,

{T'} could be the geodesic flow of a surface, or the Hamiltonian flow of a system with
two degrees of freedom on a regular energy surface [1], Katok and Burns showed

that every ergodic absolutely continuous invariant measure with positive entropy is

Bernoulli [20], The following result covers other measures of interest, such as the

measures of maximal entropy.

Theorem 1.2. If Tis a three dimensional Reeb flow, then every equilibrium measure

of a Holder continuous potential has at most countably many ergodic components
with positive entropy. Each of them is Bernoulli.

Corollary 1.3. Let S be a compact smooth orientable surface without boundary,
with nonpositive and non-identically zero curvature. Then the geodesic flow of S is

Bernoulli with respect to its (unique) measure ofmaximal entropy.

Proof. Let m be the invariant Liouville measure. By the curvature assumptions, m
has positive metric entropy, see for example [40, Corollary 3]. Hence the geodesic
flow has positive topological entropy. Also by the curvature assumptions, S is a rank
one manifold [3], therefore there is a unique measure of maximal entropy [24], By
uniqueness, it is ergodic. By Theorem 1.2, it is Bernoulli.

The "geometric potential" J(x) := —~\s=0 log WdT^gu^W and its scalar

multiples (see [8] and Section 8) are not directly covered by Theorems 1.1 and 1.2,

because they are not necessarily Holder continuous or even globally defined on M.
But our methods do apply to them and give the following:

Theorem 1.4. Under the assumptions of Theorem 1.1, every equilibrium measure

oftJ (t M) has at most countably many ergodic components with positive entropy.
Each is Bernoulli up to a period. IfTis a Reeb flow, each is Bernoulli.

Corollary 1.5. ([39, Thm 9.7]) Let S be a compact smooth orientable surface without
boundary, with nonpositive and non-identically zero curvature. Then the geodesic

flow ofS is Bernoulli with respect to every positive entropy ergodic component of the

invariant Liouville measure. There are at most countably many such components.

Proof. The invariant Liouville measure is an equilibrium measure for the geometric
potential J(x), by the Pesin Entropy Formula and the Ruelle Entropy Inequality. It
has positive metric entropy, as shown in the proof of Corollary 1.3.

Methodology. Our approach is similar to that of [43,44]: First we code the flow as

a topological Markov flow (Holder suspension of a topological Markov shift), and

then we analyze equilibrium measures for the symbolic model. The first step was
done in [28]. The second step is the subject of the present work.
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The ergodic behavior of equilibrium measures on topological Markov flows

depends on the height function r. If r is cohomologous to a function taking values in
a discrete subgroup, then one can choose a coding with constant height function, and

deduce that the flow is isomorphic to the product of a Bernoulli flow and a rotational
flow. If r is not cohomologous to a function taking values in a discrete subgroup, then

one can exhibit a generating sequence of very weak Bernoulli partitions as in [36,43],
and conclude that the flow is Bernoulli. An important step in the proof of the very
weak Bernoulli property is to prove the K property. This is done using the method
of Gurevic [17].

In Ratner's case the flow is Anosov, and the symbolic flow is a suspension over
a topological Markov shift with finite alphabet [42], In our case the flow is a

general C1+fi flow on a three dimensional manifold, and the topological Markov shift
has countable alphabet [28], The thermodynamic formalism for countable Markov
shifts [12] provides us with the local product structure we need to implement the

ideas of [17,36,43,44],
The paper is divided into two parts. The first contains the analysis of topological

Markov flows. The second contains the application to smooth flows, and in particular
to Reeb flows and geodesic flows.

Part I. Topological Markov flows

2. Topological Markov flows

Topological Markov shifts (TMS). Let be a directed graph with countable set of
vertices V. We write v —> w if there is an edge from v to w. We assume throughout
that for every v there are u, w such that u -> v, v —> w, and that (S is not a cycle.

Topological Markov shift (TMS): The topological Markov shift (TMS) associated

to Sf is the discrete-time topological dynamical system a : X —> E where

S Z(&) := {paths on $?} {{u,}/sz : vt+i, V/ Z},

and a : {u,};6% H» {u,- + i}/ez is the left shift.

Points in S will be denoted by x {x;}ie%. The topology of £ is given by
the metric d(x,y) := exp[—min{|«| : xn yn}}. The Borel a-algebra ^?(E) is

generated by the cylinders

m[a0,.. .,an-j] := {x e S : xi+m at for all 7 01}.
The index m denotes the left-most coordinate of the constraint. If it is zero, we will
simply write \a\ := o[fl]- The parameter n is called the length of the cylinder, also

denoted by \a\. A cylinder is non-empty iff <a0 — • • —ß«-1 is a path on In this

case we call the word a admissible.
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For x e E and i < j in Z, let xf := (x,,..., xs), Xj00 := (x,, x,+i,..and
x!_oo := ...Xj-i.x,).

A TMS is topologically transitive iff for every u,v e V there is a finite path on -<f

from u to u. It is topologically mixing iff for every u,v G V there is N N(u, v)
such that for every n > N(u, v) there is a path of length n on If from u to u.

Every ergodic a-invariant probability measure on E is carried by a topologically
transitive TMS inside E. If the measure is mixing, then the TMS is topologically
mixing.

Every topologically transitive TMS has a spectral decomposition E [+Jf=o

where each E, is the union of cylinders of length one at the zeroth position,
op : E, ->• E, is topologically conjugate to a topologically mixing TMS for every i,
and a(Ej) — 2ji+i(mod[23].

Topological Markov flows (TMF). Let r : E —>• M+ be Holder continuous, bounded

away from zero and infinity, and let Er := {(x, ():xeE,0<(< r(x)}.

Topological Markov flow (TMF): The topological Markovflow (TMF) with roof
function r and basis a : E —> E is the flow {of} on Sr which increases the t
coordinate at unit speed subject to the identifications (x, r(x)) (cr(x), 0).

Formally, of is defined as of (x, t) := (on(x),t + r — rn(x)) for the unique
n e Z such that 0 < / + r — rn(x) < r(a"(x)) where r„ is the n-th Birkhoff sum.
Recall that rn r + r oo -\ fro a"-1 for n > 1, and that there is a unique way
to extend the definition to n < 0 so that the cocycle identity rm+n rn + rm o on
holds for all m, n e Z. It is given by ro := 0 and rn := —r\n\ ° ct-'"' for n < 0. The

cocycle identity guarantees that o>1+T2 of1 o of2 for all ti, r2 e E.
A TMF is topologically transitive iff its basis is a topologically transitive

TMS, but the same is not true for topological mixing. For instance, if the roof
function is constant then the TMF is never topologically mixing. By the spectral
decomposition [23], every TMF whose basis is a topologically transitive TMS can be

recoded as a TMF whose basis is a topologically mixing TMS. Just replace S by So
and r by rp. Let /z be a or-invariant probability measure on Er.

Induced measure: The induced measure of /z is the unique a-invariant probability
measure v on E such that /z ^

lrdv /s /0' W &(x,t)dtdv(x).

Above, S denotes the Dirac measure. A ar-invariant measure is ergodic iff its
induced measure is. Every ergodic ar-invariant measure on Er is carried by a TMF
whose basis is a topologically transitive TMS.

Bowen-Walters Metric [9]. This is a metric which makes or : Er ^ Er
continuous. Suppose first that r 1 (constant suspension).
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Let \// : Si £j be the suspension flow, and introduce the following
terminology:

o Horizontal segments: Ordered pairs [z,w]h e £ i x £ j where z (x, t) and

w (>!, I) have the same height 0 < t < 1. The length of a horizontal segment
[z, w]f, is defined as I([z, w]h) := (1 — t)d(x, y) + td(o(x), a(y)).

o Vertical segments: Ordered pairs [z,w]v & £:i x £j where w \jjl (z) for
some t. The length of a vertical segment [z, w]v is £([z, iu]t,) := min{|/ > 0 :

w ifr'(z)}.

r, i j- / f0 'l tfl—2 t„-1
o Basic paths trom z to w: y := (zo z —» z\ —> • • • z„_i >• z„ w)

with tt £ {h, d} such that z,-]*^, is a horizontal segment if t;_i h, and

a vertical segment if f,_i v. Define t(y) := YH=o ^(izi > z«'+i]f, )•

Bowen-Walters Metric on £i: d\(z,w) := inf{f(y)} where y ranges over all
basic paths from z to u;.

Next we consider the general case r ^ 1. The idea is to use a canonical bijection
from £r to £i and declare it to be an isometry.

Bowen-Walters metric on £r: dr(z,w) := d\(ßr(z), tir(w)), where dr : £r —> £i
is given by dr(x, t) := (x,t/r(x)).
Lemma 2.1 ([9,28]). dr is a metric, and a*r : £r —»• £r lv continuous with respect
to dr. Moreover, (t, x) i-h>- o'(x) is Holder continuous on [—1,1] x £.

Roof functions independent of the past or future. We say that r : £ -» R is

independent of the past if r(x) /(xo,Xi,...) for some function /, and it is

independent of the future if r(x) g(... ,x_i,Xo) for some function g (note that

we allow dependence on the zeroth coordinate). The next lemma is an adaptation
of [43, Lemma 2], Let or : £r —»• £r be a TMF and p, be an ergodic ov--invariant
probability measure.

Lemma 2.2. (£r, or, p) is isomorphic to a TMF with rooffunction independent of
the past, and to a TMF with rooffunction independent of the future.

Proof. Let us prove the first statement (the second is proved similarly). If p. is

supported on a periodic orbit, then every function is independent of the past on the

support of p. Henceforth we assume that p does not sit on a periodic orbit.
It is well known that there is a bounded continuous function hs : £ -» E such

that rs := r — hs + hs o o is bounded, Holder continuous and independent of the past.
Proofs for £ T((f) with Sf finite can be found in [6,51], As noted in [14], these

proofs extend without much difficulty to the case where <3 is countable. Since the rs

produced by the proofs may take negative values, we now explain how to change r
and hs to have rs > 0.

Claim. It is possible to change r, hs such that 0 < hs < |r. In particular rs > 0.
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Proof. Since hs is bounded, we can add a large constant to get a new hs that is

positive. The other inequality is more complicated. Let c sup(hs) < oo, and take

no e N with c < inf(r). Let v be the induced measure of pt. Since pt is ergodic
and does not sit on a periodic orbit, v is non-atomic, hence there is a cylinder \b\

such that 0 < v\b\ < Let <Pb(x) — inf{n > 1 : on(x) e [&]}. By the Kac

formula, cp^dv > no- Thus there exists an admissible word a b^b such

that v[a] > 0 and <pb |"[o]> «o-
Recode the flow using the Poincare section [a] x {0} to obtain a suspension flow

with basis aVa- : [a] — [£1 and roof function R r<pa, where <pa(x) inf{n > 1 :

<jn(x) e [a]}. The map cr'V : [a] —^ [a] admits a countable Markov partition

S := {[a,£,a] : (pa f[a,£,<d l«l + l£l} \ i0}-

Coding with S, ov^- : [a] —> [a] becomes a TMS, therefore the suspension flow is a

TMF. Under this new coding, Rs := R — hs + hs o a^s. is independent of the past
and Holder continuous. Note that (p^ > <Pb_ > no inf R > no inf(r) > 2c
hs < ±R.

Henceforth we assume, without loss of generality, that 0 < hs < ^r for the

original flow. Then rs is bounded, positive and uniformly bounded away from zero.
This allows us form the TMF o>s : Ers —» Erv. This TMF is isomorphic to

oy : Sr —> Sr via the conjugacy

$ (x t) if%>hs(x)
s '

((c-1 (*), £ + r(cr-1(x)) — hs{a~l (x))), if 0 < f < hs(x),

which recodes Er using the Poincare section {(x, hs(x)) : x e E}.

Strong manifolds and the Bowen-Marcus Cocycles [7]. The strong stable and

strong unstable manifolds of (x,t) are:

o Wss{x,t) := {(y,s) : dr{az{x,t),oz(y, j)) > 0}.
x—OO

O Wsu{x,t) := {(y,s) : dr(pfz(x,t),ofz{y,s)) 0}.
x—>-00

These are not manifolds, but they play the same role as their smooth analogues in

hyperbolic dynamics.
To calculate Wss, Wsu we make the following definitions. Assume x is not

pre-periodic (i.e. there are no m, n such that x"pf or x"^ is a periodic sequence). Let

Wws{x) := {y e E : 3m, n such that x~}
and define Ps(x, •) : Wws{x) —> E by

Ps(x,y) := lim [rm+k(y) - rn+k(x)\
fc—oo

for some (every) m, n such that yfp1 xf.
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Similarly, let

Wwu(x) := {y £ E :3m, n such that yf^
and set Pu(x, ): Wwu (x) -* E by

Pu(x,y):= lim [rm+k(y) - rn+k(x)]
k—t—OQ

for some (every) m, n such that
These definitions are independent of the choice of m, n, because in the non-pre-

periodic case any two possible pairs (m,n), (mr, n') satisfy m' m+ko, n' n+ko
for some k0 e Z. The limits which define Px(-, •) exist because they are the limits of
the partial sums of the series

OO

rm(y) - rn(x) + £>(am+A:(y)) - r(an+k(x))] (r s)
k~Q
oo

or rm(y) - rn(x) - r(am~k(y)) - r(an~k(x))\ (r u).
k=1

Since r is Holder continuous, the summands decay exponentially fast, and these

series converge. Define Wsloc(x) {y £ S : y0°° x0°°} and Wu\oc(x)
{y e S : y—oo° x—oo0}.

Lemma 2.3 ([7]). Suppose x is not pre-periodic, then for r s, u it holds:

(1) Bowen-Marcus condition: (y,.s) £ WST(x, t) iffy e Wwr(x) and s — t —

PT(x,y).
(2) Shift identity: Pr(ax, ay) — PT(x, y) r(x) — r(y) wherever defined.

(3) Cocycle equation: For all y,z £ Wwt(x), Px(x,y) + Px(y,z) —

PT(x,z). In particular, PT(x,x) 0 and Px (x, y) —Px(y,x).
(4) Holder property: There are C > 0, 0 < a < 1 such that \PT(x, y)\ <

Cd(x, y)a for all y £

Ps(-, •), Pu(-, •) are called the Bowen-Marcus cocycles.

3. Equilibrium measures for topological Markov flows

Equilibrium measures. Let o> : Er —> Er be a TMF, and let <I> : Er —» R be

bounded and continuous. The (variational) topological pressure of <f> is

Aop(^) := sup j/i^CT,.1) + / d>dji : p. is oy-invariant Borel probability measurej.

Equilibrium measure: p. is called an equilibrium measure (for the potential <1> and

the flow {oy}) if hß(a/) + / <t>dp Et0p(0).
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In this section, we will describe the equilibrium measures when E is topologically
mixing, <1> is bounded and Holder continuous, and AopC^) < oo. Instead of
describing them directly, we describe the one-sided version of their induced measures.
Let ß be a cr,—invariant probability measure, and let v be its induced measure, a

cr-invariant. v is a o-invariant probability measure on E.

One-sided TMS: Let 7ts : x e E m>- (xo.-M, • • •)• The one-sided TMS is the

discrete-time topological dynamical system as : T,s —> E5 where

{ivs(x) : x E}

and os : {xi },>o {x;+i}, >o is the one-sided left shift.

One-sided version of v: The one-sided version of v is the probability measure
Vs := v o It is a cry-invariant probability measure on EL

The probability measure Vs determines v since v oa_1 v, and v determines ß.
Here is the description of vs.

Theorem 3.1. Letar : Er —» Er be a topologically transitive TMFand $ : Er —> R
be bounded and Holder continuous with Pl0p(d>) < oo. Let ß be an equilibrium
measure for <t>, and v its induced measure. Then the one-sided version ofv has the

form Vs hs%s, where:

(1) hs is a positive function on EL and is a positive measure on EL

(2) There is (ps : S1* —> R bounded Holder continuous with Pt0p(<ps) < oo such

that Lhs Xhs and L*tjs AfL where X expfPtopO^)] and L is the

Ruelle operator of (ps, (L/)(xg°) ^(j,oo)=;(.oc exp[<^(y£°)]/(y£°) for
all f : Ef -» R.

(3) hs(x) lim -^F-drn{Ln l\a\}{x)for every cylinder [a] and x e EL
oo IhJ

(4) log hs is uniformly Holder continuous on cylinders of length one at the zeroth

position.

(5) vs is ergodic.

Proof. Bowen and Ruelle proved the theorem in [8] for TMF built from finite
graphs, using Ruelle's Perron-Frobenius Theorem [6,25,48]. Since Ruelle's Perron-
Frobenius Theorem is false for general infinite graphs, we sketch the modifications
needed to treat our case.

Claim 1. v is an equilibrium measure for (p(pc^ .— J*q t^)dt
The function (j) : £ —> R is bounded Holder continuous with Ptop(0) 0.
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Proofof Claim 1. This is proved exactly as in [8]. The function f is clearly bounded
and Holder continuous. By the Abramov entropy formula [2], hß(or) j~^;hv(o).
Hence

hv{o) + fxfo{x)$(,x,t)dtdv(x)
^ n ^J7d~v
5 n°pW'

with equality iff p is an equilibrium measure for <1>. This can be rewritten as

hv(o) + (p(x)dv(x) < 0, with equality iff v is an equilibrium measure for (p.

Therefore Ptop(<p) 0, and p is an equilibrium measure for <f> iff its induced

measure v is an equilibrium measure for <f>.

Claim 2. The measure v is an equilibrium measurefor a bounded Holder continuous

potential that is independent of the past and has zero pressure.

Proofof Claim 2. By [6,14,51] there is a bounded Holder continuous function v :

£ —»• R such that f + v — voo is independent of the past. Since f(v — voa)dm 0

for every a-invariant probability measure m, Pt0+ v — v o a) Plop(fi) 0.

Now we proceed to the proof of Theorem 3.1. By Claims 1-2, there is
(f>s : 17 —> R bounded Holder continuous such that o ns <j> + v — v o o,
v is an equilibrium measure for <ps o ns, and Plap((ps o its) 0. We want to conclude
that Vs is an equilibrium measure for <//, and that Ptop(<ps) 0.

If v is a a-invariant probability measure then (£, v,a) is the natural extension
of (£i, Vs, CTj). Conversely, if Vs is a cry-invariant probability measure then it is the
one-sided version of some a-invariant probability measure v (its natural extension).
Since natural extensions preserve entropy, Ptop(<ps) PioP(<ps ° ns) 0, and v is an

equilibrium measure for (ps o ns iff Vs is an equilibrium measure for (ps.

The structure of equilibrium measures for Holder continuous potentials on
onesided TMS was determined in [12]. There it is shown that if Es is topologically
mixing (a consequence of the topological mixing of £), then <ps is positive recurrent
in the sense of [49], and parts (1)—(3) of the theorem hold. Also, if the equilibrium
measure exists then it is unique [12, Thm 1.1], and this gives part (5). Part (4) follows
from part (3) and the boundedness and Holder continuity of <ps.

Corollary 3.2. Suppose £r is a topologically transitive TMF, and 4> is a bounded
Holder continuous potential withfinite pressure. Then $ has at most one equilibrium
measure and if this measure exists then it is ergodic.

Proof. By Theorem 3.1, vs is ergodic. Therefore its natural extension v is ergodic.
If the induced measure is ergodic, then the original measure is ergodic. It follows that

every equilibrium measure is ergodic. This implies that the equilibrium measure is

unique: if there were two equilibrium measures, then their average would have been

a non-ergodic equilibrium measure.
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Conditional measures of the induced measure. Theorem 3.1 can be used to
construct the conditional measures v(-|x£°) for all, rather than almost all, x G V5.

The basic tool is the g-function of v. This is the function g : E,s' -a R given by

e**hs
_

dvs
^ ' Xhs o <j d(vs o as)

The reader can check that g > 0 and J2as(y00)=x'x S(yo°) 1> whence 0 < g < 1.

Thus g is a g-function in the sense of [2^]. The function logg is bounded and

uniformly Holder continuous on cylinders of length two, since </>s, log hs are bounded
and uniformly Holder continuous on cylinders of length one at the zeroth position.

Theorem 3.3 ([26]). Let v, Vs, L as in Theorem 3.1.

(1) Iff G Ll(vs) thenEvs(f\x°°) £as(yco)=x°° gCVo^/W) vs-a.e.

(2) vs(x0\xi,x2,...) := lim v([x0]|i [xx,... ,xk]) g(x) vs-a.e.
k-*oo

(3) lim v{-n[x-n,... ,x-\]\o[xq, ,Xk\) is equal v-a.e. to
k—>oo

v{x-n,...,x-i\x^) := gn(xn) := g(xfn)g(xn+1) g(x). (3.1)

Proof. Part (1) follows from the equations v5 hs^s, Lhs Xhs, L*!js X%s

as in [26]. Part (2) follows from part (1) and the martingale convergence theorem.
Part (3) follows from part (2) and the invariance of v.

One should view (3.1) as a consistent set of equations which determine the

conditional probability measure v(-|xJJ°) on W^fx), by specifying the weights these

measures give to cylinders. Consistency follows from ^ai(y°0)=x§° S(yo°) '

Henceforth, we define v(-|x£°) as follows.

Measure v(-|x£°): v(-|x^°) is the unique probability measure on Wfjc{x) such that

v(a\xf) := gn (aX(f) for all admissible words a of length n.

Lemma 3.4. Let v be as in Theorem 3.1. IfZr is topologically transitive and Sr is

not a union ofcycles, then v(-|x£°) is non-atomic for v-a.e. x G S.

Proof. Since Sr is topologically transitive and Er is not a union of cycles, the same
is true for E. In particular there is a state b with in-degree at least two. Fix one such

edge a —> b. Since ^CTj(zoo)=>,oo g(zjf) 1, we have g(z) < 1 for every z e Es

such that (z0, z\) (a,b). By the Holder continuity of logg, we can find a word
w := (a,b,bz, ,bn) such that g [[«q< 1. By (3.1), v({z}|x£°) 0 whenever

z G Z := {z G E : z"+'~' 1

w for infinitely many n < 0}. The conclusion is

that v(-|x£°) is non-atomic for every x£° such that v(Z|x£°) 1.

Let us show that this last condition is true v-a.e. By Theorem 3.1, v is ergodic
and positive on cylinders, hence v(Z) 1, i.e. f v{Z\x^)dv{x) v(Z) 1, so

v(Z|x£°) 1 for v-a.e. x G E.
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Local product structure of the induced measure. Let a : E —»• E be a TMS. The

following definitions are motivated by smooth ergodic theory, see e.g. [4]:

o Ws(x) := {)> 6 S : d{on{x),on{yj) »• 0}
71— OO

{y £ : 3« such that y%° x£°}.

o W"(x) := {y e E : ^(^"(x), cr"(y)) 0}
71—>—OO

{y e £ : 3n such that y^ x^}.
° W&(*) := {J e S : y0°° x0°°}.

° W.ocW yin x»«,}.

Smale bracket of points: Let xj 6 E with xo Jo- The Smale bracket of x, y
is [x, y] := z where z,- x,- for i < 0 and z,- y,- for i > 0.

If xo yo v, then

[Wdoix), W»c(y)\ {[x'.y'] : x' e W&(x),y' e W&(y)}
[i)] {zeS:z0 v}.

We can also consider the Smale products of measures. Let asx, ß" be finite measures

on W£.(x), W»c(y), respectively.

Smale bracket of measures: The Smale bracket of ax, ß" is a finite measure on

[W&.(x), W£c(y)] [v] defined by

(asx * ß")(E) := J J 1 E([x',y'])dax(x')dß"(y'), (E Borel measurable).

KcM «&(*)

The Smale product produces measures on E out of measures on Wß0C{x), H^"c(y).
We can also produce measures on W:lc(x), !Li"c(y) from measures on E. Let:

° Pi ' [*o] ->• W"loc(X)' Px(') [•'*]•
O : [x0] -> Wfocix), p"(-) [x, •].

Projection measures: The projections of v on WjQC(x), ILj"c(y) are

j vi v o (psx)~l, a measure on W£.(x),
v" := v o (p")~l, a measure on W^c(y).

Note that for r u, s:

O V* Vry iff ^(x) Wfo(y).

0 K (V; O pxy) w whenever Xo y0-
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Local product structure: v is said to have local product structure if for every

x, y e E such that xo yo v we have vsx v" ~ v [[„].

Theorem 3.5. Let p be an equilibrium measure of a bounded Holder continuous

potential with finite pressure on a topologically transitive TMF, and let v be its
induced measure. Then v is globally supported, and v has local product structure.

Proof. Let a : E -» £ be the associated TMS, and let S be a directed graph
associated to S. Since the TMF is topologically transitive, a : £ —> £ is

topologically transitive, hence any two vertices on S can be joined by a path.

Claim. Every non-empty cylinder on £ has positive v—measure, and for every
edge v w there is a constant Cvw > 1 such that if m < 0, n > 0 and
m\Pmi • • • > vn] ^ 0, then

/->—1 <
vimlvm> > t>n])

^Uot'1 ~ «ol^CoN «»]) ~ V°Vl'

Proofof the claim. Let Vs be the one-sided version of v. Theorem 3.1 implies, as

in [50, Corollary 3.2], the existence of constants Kv, Dvw > 0 such that

„-1 vs([a0,...,a„-i,bo,...,bk-i])
(a) Kn < — —— — < Ka„ for all a, b such that- v»([fl0, • • •, V ([bo,..., bk-1]) - a""1

\a,b]^0,

sus n-1 ^ vs([b0,...,bk-x]) MUm(b) - „nia,-t,h fa-]) 5 Da-"°whene er [""-a / 0-

By (a)—(b), there are constants Cvw such that for all a, b with [a_,b]f0 we have:

c-i <
vs{[a0,... ,an-\,bo,... <an-lb0 - vsr([fiE0 <2„_1])VS([<2„_1, Äfc—j]) ~ an~lb°'

Substituting a (vm,... ,Vq),b (vi,..., vn) gives the claim.

By the claim, if £ is a cylinder contained in [i>, w] and x,y e [u] then:

Cvw X K * vUy)(E) < V{E) < Cvw X (vi * vuy)(E). (3.3)

The collection of cylinders E C [u.w] satisfying (3.3) is closed under increasing
unions and decreasing intersections. By the monotone class theorem, (3.3) holds for

every Borel set E C [u, tu], whence vx * v" ~ v [[„].

Corollary 3.6. Let v be as in the previous theorem. IfE C £ is Borel and v(E) — 0,

then vsx(E) vx(E) 0 for v-a.e. x.
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Proof. Let S3V := {x e E : xo v and vx(E) > 0}, and assume by contradiction
that u(Q„) > 0 for some v. Since v has local product structure, if x,y e [u] then:

f f lav([x',y'])dvsx(x,)dv$(y')>0.
JW&iy) Jw£c(x)

Note that [x',y'] e v[x> y>](E) > 0 Ö vsyf(E) > 0 y' e (44 is

because vsy,). Hence ln„ ([*',/]) ln„(y')- Calculating the double

integral, we find that > 0 => v"[£2„] > 0. We use this to get a

contradiction.

Let / e fi„. Using that vsy, (vj o psx) we have

0 < v'y,(E) (vsx o psx)[E n Wfoc(y')) v%{x' W^(x) : [*',/] 6 E}

f lE([x',y'])dvsx(x').
Jw&W

Since > 0, if we integrate this inequality we obtain

f (f \E{[x',y'\)dvsx(x') J dv^(y') > 0,
Jw&(y) \JW&c(x) J

thus (vsx vy)(E) > 0. Since v has local product structure, this gives that v(E) > 0,
a contradiction. We have just proved that v[Q„] 0 for every vertex v, whence

vsx(E) 0 for u-a.e. x. By symmetry, vx(E) 0 for v-a.e. x.

4. The Pinsker factor of a topological Markov flow

Review of general theory. Let (X, 3d, p, T) be an automorphism, i.e. (X, 3d, p)
is a non-atomic Lebesgue probability space and T is an invertible transformation

preserving p.. Given E e 3d, let aE {E, X \ E}.

Pinsker factor: E e 33 is called a Pinsker set if htl(T, aE) 0. The Pinsker

o-algebra is ^(T) := {E e 3d : E is a Pinsker set}. (X, 33(T), p, T) is called
the Pinskerfactor of (X, 3d, p,T).

The <7-algebra 33 (T) is T-invariant [41], hence (X, 33(T), p, T) is indeed a

factor. (X, &(T), p, T) has zero entropy, and if si C 33 such that (X, si, p, T) is

a factor of zero entropy then si C 33(T) modulo p. Therefore (X, 33(T), p, T) is
the largest factor of (X, 33, p,T) with zero entropy.

Completely positive entropy: (X, 3d, p,T) is said to have completely positive
entropy if it has a trivial Pinsker factor, i.e. if 3^{T) {0, X} modulo p.
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Note that (X, SB,p,T) has completely positive entropy iff all of its non-trivial
factors have positive entropy.

Tail ct-algebra: Given a n-algebra si C SB with T~xsi C si, the tail o-algebra
of si is Tail(si) Hn>o T~nsi.

K property; (X, SB, p, T) has the K property if there is a a-algebra si C 38 such

that:

(a) T~xsi C si,
oo

(b) V T' si SB modulo p,
i =0

(c) Tail(^) {0, X} modulo pi.

Theorem 4.1 (Rokhlin & Sinai [46]). (X, SB, p, T) has the K property iff it has

completely positive entropy.

The K property is stronger than mixing. It implies continuous Lebesgue

spectrum [45], and the mixing property below, called K-mixing, see [13, §10.8],
Write 5-a.e. when a property holds for a set of atoms with total measure >1—5.

Theorem 4.2. Let (V, SB, p, T) be an automorphism with the K property, B e SB,

and ß a finite measurable partition of X. Then for every 8 > 0 there is No

No(B,8) such that for all N' > N > No and 8-a.e. A e Vjt=Ai Tkß it holds

\p(B\A) - p(B)\ < 8.

Now let T (X,SB, p,{T'}) be a flow. It is known that hß(Tl) \t\hß(Tx)
and 3*(T') S^iT1), Vt ^ 0 [2,17], The Pinsker o-algebra of T is defined as

SA(TX). T is said to have completely positive entropy if its Pinsker factor is trivial
ifF 3t 0 such that (X, SB, p, T') is an automorphism with completely positive
entropy. T is said to have the Kproperty if (X, SB, p,Tx) is an automorphism with
the K property iff ^ 0 such that (X, SB, p,T') is an automorphism with the K
property. T has the K property iff it has completely positive entropy, and is in this

case K-mixing [13]. The next theorem is a tool for proving the K property. Given
a d-algebra si with T~'si C si, Vr > 0, let Tail(si) := P) T~'si be the tail

t>o

o-algebra of si.

Theorem 4.3 (Rokhlin & Sinai [46]). Let T (X, SB, p, {T'}) be a flow, and let

si C SB be a o-algebra such that:

(a) T~'si C si, Vr > 0,

(b) V T'si SB modulo p.
t> o

Then SB(T c Tail (si) modulo p.
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An upper bound for the Pinsker factor of a TMF. We now construct a-algebras as

in Theorem 4.3 for a topologically transitive TMF. The construction follows [17,44],
Let or : Sr —> Er be a topologically transitive TMF. By Lemma 2.2,

ar : Er -> Er is isomorphic to a TMF ay.? : Sr? —» such that rs is independent
of the past. Let ds : be the isomorphism, o of. o'rS o &s, W e R.

Points in will be decorated by over bars as in (x, £).
Given (x, £) e Sr, let (x, £) := #s(x, f) and define

Wioc(x^) := e : y£° - xg°}.

Any two such sets are either equal or disjoint, hence {^"(x, £)} is a partition
of Er. Let be the a-algebra generated by {By" (*, £)}• is generated by
the countable collection of sets t?71{(y, f) e T.rs : y^_1 a, £ (cx, j0)} where

A N, a is an admissible word of length A, and a, ß e Q.

Using that rs is independent of the past and that bs ° o'r oj.s o ds, one shows:

(a) o-'W£]c*fä,Vt >0.
(b) Vf>0 CTr[^loc] ^ modulo 11.

Let 'Wss := Tail(#y). By Theorem 4.3, £?{or) C Wss modulo /x.
Next we work with an isomorphism du : Sr —>• Sr» where r" is independent

of the future and du o o'r o'rU o §u, Vf e R. Denoting points in Er« also as

(x, £) := &u(x, £), we can define for each (x, f) e XL the set

W£(x, I) := A-'{(y, f) : y^ x^}
and as the a-algebra generated by the partition {Wßf(x, £)}. Similarly,
o'r[Wf0ß] C #[, W > 0, and V^o^TC"] ^ modul° Let Wsu :=
Tail ('#[["). Applying Theorem 4.3 to the inverse flow {of'} and using that it has

the same Pinsker a-algebra as {a/}, we find that 3°(or) c Wsu modulo p.. We just
proved:

Theorem 4.4 ([17,44]). Let or : Sr -> Xr be a TMF, e/«xi let /x be a« ergodic
or—invariant probability measure, not supported on a single orbit. Then &{or) C
Wss n Wsu modulo /x.

Corollary 4.5. Let or : Xr —> Sr be a TMF, and let ji be an ergodic or-invariant
probability measure, not supported on a single orbit. If f : Xr —R is

fX (or )-measurable, then there is a set X offull pt-measure such that for every
(x,$),(y,rj) e X:

(1) If(y,ri) e Wss(x,%) then /(x,£) /(y,r?)-

(2) //(y,7) e W*"(x,£) /ben /(x,£) f{y,rß.

Proof. Recall the definitions of W"(x, £) and Wsu(x, tj) on page 71. We prove (1),
and leave (2) to the reader. It is enough to prove this for / 1 e where E e S»°{or
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Since £?(or) C 'IESS — Tai\(Wff), there is a sequence of sets £) e o~l CIEffi) such

that fi(EAEi) — 0. The set X := Er\[(U,->iis Ais,-)U{(x, £) : x is pre-periodic}]
has full /r-measure.

If (x,%),(y,ri) e X with (y, rj) e tV'"(x,£),then(7rf(}>, rj) e ^((^(x, £)) forf
large enough. In particular, this holds for some t i N. We want to show that

(x,£) e E $> (y,t]) e E. By symmetry, it is enough that (x,f) E => (y,t]) E.
Let (x,l)eE. Then (x,$)#EAEi =* (x^)eE, =y o'r(x,t)eolr(Ei)eW].

The atom of which contains olr(x, £) is ^"((ct^x, f)), so olr{y,rj) e

^ioc((CT/(•*>£)) c a'r(Ei) => (y,n) Ei => Obi) e E (=>• is because

(y.tieX).

The Pinsker factor in the non-arithmetic case. Let a : E ->• S be a TMS. A
Holder continuous r : S —» K is called arithmetic, if there are 0 6 R, 0 ^ 0, and

h : S ->• S1 Holder continuous such that eI0r fe/feocr[16].

Theorem 4.6. Let o> : Sr —* Sr fee a topologically transitive TMF, and let ß be an

equilibrium measure of a bounded Holder continuous function with finite pressure.
The following are equivalent:

(1) r is not arithmetic.

(2) ß is weak mixing.

(3) ß is mixing.

(4) ß has the K property, whence a trivial Pinsker factor.

In particular, ifone equilibrium measure of a bounded Holder continuous function
withfinite pressure satisfies one of(2)—(4), then all equilibrium measures ofbounded
Holder continuous functions with finite pressure satisfy all of {2)-(4).

If E is a subshift of finite type, then the equivalences of (2)—(4) are due to
Ratner [44] (a special case was done before by Gurevich [17]), and (1)4^ (2) is due

to Parry and Pollicott [37, Prop. 6.2].

Proof. (4) => (3) by general theory, and (3) => (2) is obvious. (2) => (1) because

if eldr h/h o o for some 0/0 and h : E —»• S1 continuous, then F(x, fj) :=
e~'e^h(x) satisfies F o o'r e~'et F, Vt e M. By the weak mixing assumption, F
is constant ß-a.e., whence everywhere (equilibrium measures of Holder potentials
on a topologically transitive TMF are globally supported). Thus 0 0.

It remains to show that (1) =y (4). We prove that if the Pinsker er-algebra is not
trivial then r is arithmetic. Assume that 0d(<jr) is not trivial, and fix a bounded

Pinsker-measurable function F that is not constant ß-a.e. Let Eg := | F o o'rdt.
Ll

Note that Fg > F, thus Fg is not constant ß-a.e for any 8 small enough. Fix

one such 8 and let H := Fg. H is a bounded Pinsker-measurable function that is not
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constant ji-a.e. for which the map m(//o cr^.)(x, £) is continuous, V(x, £) 6 Sr.
We will use H to prove that r is arithmetic. Let v be the induced measure of p..
Recall the dehnition of the cocycles Ps, Pu (see Lemma 2.3) and the measures vsx

on ILj^x) defined in (3.2).

Claim 1. There is a Borel set E C S offull v-measure such that:

(1) E is a-invariant and contains no pre-periodic points.

(2) For every (x, £), (y, t]) such that x, y G E:

(2.1) If(y,n) G WM(x,£) then H(y,rj)
(2.2) If(y,n) e Wsu(x,$) then H(y,r,) H(x,$).

(3) For every x G E, vx(Ec) — vx(Ec) 0.

Proofof Claim 1. Let Eq := {x £ : x is not pre-periodic}. £o has full
v-measure, since v is ergodic and globally supported. By Corollary 4.5, there is

X C £r of full /x-measure such that (2) holds for all (x, f), (y, r/) g 2f. Since p is

equivalent to v x dt-,

Ei := {x G £0 : (x, ()el for Lebesgue a.e. f G [0, r(x))}

has full v-measure. We claim that Ei satisfies (2).
We prove (2.1) and leave (2.2) to the reader. Since x, y G E\, there is an open

neighborhood U C R ofO such that (x,f+t), (y, rj+t) G for Lebesgue a.e. t G (/.
Findffc » 0 such that (x, %+tk), (y, t]+tk) £ By Lemma 2.3(1), (y,t]+tk)

k—*oo

Wss(x,%+tk), therefore by the definition of 2( we have //(x, f + fyt) H(y,rj+ tk)-
Passing to the limit, and using that b->(//o o'r)(x, f) and m (/I o o})(y, rj) are

continuous, we conclude that Z/(x, f) //(y,
Now consider £2 := f\ez °r"(^i)- The set £2 has full v-measure and satisfies

(l)-(2) but not necessarily (3). We define E3, £4,... by induction as

En := {x g En-! : ^(Z^) 0, Vk G Z}.

{£«} is a decreasing sequence of o-invariant sets of full v-measure each, by

Corollary 3.6, thus E := (~)n^4 En is o-invariant set of full v-measure. The set E
satisfies (l)-(2) of the claim, since E c £0 H £1. To see that it also satisfies (3), just
note that if x G £ and r s,u then vx(Ec) v*((Jn>3 ££) lim vx(Ef) 0.

Construction of the holonomy group: Recall the weak stable and weak unstable

manifolds of x G S:

o Wws(x) := {y : 3m, n such that x y£°}.

o Wwu(x) := {y :3m, n such thatx^ y",^}.
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The following constructions are motivated by [10]:

o su-path: A finite sequence of points y (x°,... ,xn) in E such that x' £
Wwr> (x'_1) for some rt e {s, u}. If x° xn x, then y is called an su-loop
at x.

o Lift of su-path: Suppose 0 < 6 < r(x°). The lift of y (x°,...,xn)
at zo'.= (x°,9) is {zq,...,z„) C T,r where z, of+t' (xl, 0), and

Z; e Wsx' (z;_i), i — 1 The parameters q are uniquely determined

by the Bowen-Marcus condition, see Lemma 2.3(1): to := 0, t, q_i +
P1' (x,_1, X').

o Weight ofsu-loop: P(y) := tn X)"=i PT'^')-
For x £ E, let G'x := (P(y) : y is an .su-loop at x}. We will show that there is

a closed subgroup G Cl such that Gx := G'x G, Vx e E.

Holonomy group: It is the closed subgroup G C R such that Gx G for some

(all) x e E.

We first show that Gx — cZ for some c f 0 independent of x e E, and then use
this to prove that exp[~r] is a multiplicative coboundary.

Claim 2. There exists c^O such that Gx cZ, Vx e E.

ProofofClaim 2. We divide the proof into few steps. Fix x e E.

Step 1. G'X,GX are additive subgroups o/R, and G'a^ G'x, GCT(X) Gx.

Proof. It is enough to prove the claims for G'x. G'x is an additive group:

o G'x + G'x C G'x, because P(yi) + P(Yt) P(yi v yf) where yj v y2 is the

concatenation of yi and y2.

o G'x B 0, because P((x,x)) 0.

o G'x —G'x, because P({x",... ,x0)) — P((x°,..., x")).

Now we show that G'a^ G'x. Let y (x°,..., x") be an xu-loop at x, and

leta(y) := (cr(x°),..., a(x")). By Lemma 2.3(2),

PT' (o-(x!_1), o(x')) - Px> (xl~l,xl) r(x!_1) - r(x').

Summing this over i gives P(a(y)) — P(y) r(x") — r(x°) 0.

Step 2. There is a closed subgroup Gel such that Gx G, Vx e E.
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Proof. We claim that x i-»- Gx is constant on E n [u], for every state v. Take

x,y e E n [v], and define nxy : W^ix) Wfoc(y) by nxy(f) [•,>']. nxy is

measure-preserving:

vx 0 nxy v ° (Px)~l ° nxy =vo ("xy ° Px)~l VO (psy)~l v*.

E has full vj-measure in Wfoc(x). Since nxy is measure-preserving, jtxy [E n W^x)]
has full v^-measure in WfQC(y). Thus nxy[E n W{soc(x)] n E 0, therefore
3z 6 E n W&(x) such that w := [z,y] £ E fl Wf^y). By the definition of
the Smale product, WJ"c(z) Wfc(w). In summary, we found z £ Wfoc(x) fl E,
w e w\Soc(y) n E such that Wfjz) W^c(w).

Every element of G'x equals P(y) for some .vu-loop y at x. Consider the

concatenation y' := (y,w,z,x) v y v (x,z,w,y). This is an su-loop at y with
P(y') P((y,w,z,x,z,w,y)) + P(y) P(y). Since y is arbitrary, this gives
the inclusion Gx C Gy. By symmetry, Gx Gy.

We see that for every v, there is a group Gv such that Gx Gv, Vx 6 £ fl [u].
Fix some state vo. Since a : S -> S is topologically transitive, for any state v there is

an admissible path vq ao ->•••—> an — v. The measure v is globally supported,
thus we can take z e E fl \a\. By Step 1, GVo Gz Ga(Z) — — Gan(zy Gv,
whence Gv GV() for all vertices v. This proves Step 2.

Step 3. G equals cZ for some c R.

Proof G is a closed additive subgroup of M, so either G R or G cZ for some

cel. We will show that if G K then H is constant /i-a.e., a contradiction.
We implement the classical Hopf argument. The key observation is that H is

constant on the intersection of the strong (un)stable manifolds of ar with E, thanks

to Claim 1(2). Suppose y (x°,..., x") is an su-path, fix some 0 < 9 < r(x°),
and let {zq, zn) C be the lift of y at z0 := (x°, 9). Since x' £ E, we have

H(zo) H{z\) H(zn). In particular, if x £ E and y is an xw-loop at x,
then El(x, 9) (H o af^)(x, 9).

If G R then the set of weights P(y) is dense in M. Since t y-r (H o af.)(x, 9)
is continuous, H{x, 9) (H oa'r)(x, 9) for all let. This proves that H oa'r H
on {(x,0) £ Yr : x £ E\. Using that fx is ergodic (Corollary 3.2), we conclude
that H is constant yu-a.e., a contradiction. Thus G cZ for some cel.
Step 4. c ^ 0.

Proof Suppose by contradiction that G — {0}. We will show that r U o a — U
for some U : S —> M continuous, and derive a contradiction. Recall the definitions
of Wws(x), Wfoc(x) on page 71. Fix x £ E and define U on Wws(x) n E by
U(y) Ps(y,x). By Lemma 2.3(3),

U(a(y)) - U(y) Ps(a(y), x) + Ps(x, y) Ps(a(y), y) r(y).
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Our plan is to show that Wws (x) D E is dense in E, and U is uniformly continuous on
Wws (x) n E. Thus the unique continuous extension to E satisfies U o a — U r.

Proof that Wws(x) fl E is dense in E. Let C := vn\ be a non-empty
cylinder in E. Since a : E — E is topologically transitive, there is an admissible

path vn -x vn+\ —> • -> vn+k -> xq. Now proceed as follows:

o Pick some w e C, and define y by yf^ y%+{ (vn+1,..., vn+k),

l'«+/t+i xo°- Then y e Wwx(x) D C, and there are integers l,m > n such

that am{y) e FK4(ct(x)) n am(C), whence om(C) 0 [xe] ± 0.
o Necessarily v£f{jc)(<rmC) v[{psal(x))-l(pmC)\ v(pm{C) 0 [xt\). Since

v is globally supported, v^e^(omC) > 0.

o Since E is n-invariant and x E, cr^(x) e E and

o vsl( is supported on Wf0C(oi{x)), thus IF^ct^x)) D am(C) 0 E 0.

o Therefore Wws(x) fl E fl C 2 o~m\W\oc(cr^(x)) fl om(C) fl E] 0.
We see that Wws(x) fl E intersects every non-empty cylinder C in E.

Proof that U is uniformly continuous on Wws(x) fl E. Fix y,z e Wws(x) fl E
such that y ^ z and >'o z0. We construct y1 e W{fK(y) fl E such that

(i) z1 := [y*,z] Wws(x) fl E,

(ii) d(z,zl) < d(y, z) and d{zx, y1) < d(z, y),

(hi) d(y,yl) < 3d(y,z).

Here is how to do this. First, find z1 W^iz) n E arbitrarily close to z such that

yl := [z\y] n E. Such points exist because vsz(Ec) 0, vsy(Ec) 0,
vsz has full support in lT^c(z), and vz — vsy o nzy for 7rz>,(-) [•, y], Automatically
z1 [y\z], and if z1 is close enough to z, then d(zl,z) < d(z, y) and d(zl, y)
d{z, y) (the first place where z1, y disagree is the first place where z, y disagree).
Since y1 [z1, y], d(z\ y1) < d(zl, y) d{z,y), proving (ii). Part (iii) follows
from (ii) and the triangle inequality.

x Wws(x)

C

Figure 1.
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Let y {y, zl, y1, y). Using that y e E and G {0}, we have

Ps(y,z1) + Pu(z\y1) + Ps(y1,y) 0. (4.1)

By Lemma 2.3(3), \U(y) - U{zx)\ IP^y.z1)! < \Pu{zl,yx)\ + |Ps(y1,y)|.
Since y1 e W^z1), \Pu{zx,yx)\ < Cd(y,z)a, where C,a are given by
Lemma 2.3(4). Similarly, |P's(y1,y)| < 3aCd(y, z)a. ^Thus \U(y) — U(zx)\ <
4Cd(y,z)a. Also by the^cocycle^ equation, \U(z) — U(zx)\ \Ps(z,zl)\ <
Cd(y,z)a. It follows that\U(y) — U{z)\ < 5Cd(y, z)a, proving that U is uniformly
continuous on Wws{x) n E.

Therefore U extends continuously to a function U : E —> E. Since r Uoa — U
on Wws(x) n E, r U o a — U on E. This cannot happen as it implies, by the

Poincare recurrence theorem, that lim inf r„ lim inf [U o<jn—U] < oo a.e., whereas

we know that inf r > 0, so lim inf rn oo. Thus G ^ {0}.

Claim 3. There exists h : £ — S1 Holder continuous such thatexp[^- r] h / ho<j.

Let 0 := fix x 6 E and let h : Wws(x) n E —>• S1 by h{y) \ —

exp[—i9Ps{y, jc)]. ^By Lemma 2.3(3), h/h o a exp[i0r] on Wws(x) fl E. The
idea is to show that h is Holder continuous on Wws(x) n E and then deduce as in the

previous proof that it extends Holder continuously to a function h : £ —»• S1. The

proof is the same as in the last step of Claim 2, except that one needs to replace (4.1)
by

exp [iOiP'&z1) + Pu(zx ,yx) + />V,T))] 1-

As before, this implies that

h(zl)
i^- eiEl with |ei| <4C|0|d(y,z)a,

and
h(zx)

with |e2| < C\9\d(y,z)a.
h{z)

So
_

eie with \e\ <5C\Q\d{y,z)a,
h(z)

whence the Holder continuity of h : Wws(x) PI E -> 51.

Claim 3 completes the proof that if the Pinsker a-algebra of oy is not trivial
then r is arithmetic. Equivalently, (1) => (4) in the statement of Theorem 4.6, and

this completes the proof of the theorem.
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The Pinsker factor in the arithmetic case. In the last section we saw that if the

roof function is arithmetic, then the Pinsker factor of every equilibrium measure of
a bounded Holder continuous potential with finite pressure is non-trivial. In this
section we show that in this case the Pinsker factor is isomorphic to a rotational flow.

In fact we will show more, that the flow is isomorphic to the direct product of a

Bernoulli flow and a rotational flow.

Theorem 4.7. Let oy : Sr —> Sr be a topologically transitive TMF such that
eiSr for some 0 ^ 0 and h : S —R continuous. There exists p e N such

thatfor every equilibrium measure p ofa bounded Holder continuous potential with

finite pressure, the following hold:

(1) CEr,ar, p) is isomorphic to a topologically transitive TMF with constant roof
function equal to In/9.

(2) (£r, oy, pi) is isomorphic to the product of a Bernoulli flow and a rotational
flow with period 2np/9.

(3) The Pinsker factor of fiZr,or,p) is isomorphic to a rotation with period
2np/6.

Before the proof of the theorem, let us prove that constant suspensions over
Bernoulli automorphisms are the same as the product of a Bernoulli flow and a

rotational flow.

Lemma 4.8. Let T (X, p {lt}) be a measurable flow. The following are
equivalent:

(1) T is isomorphic to a constant suspension over a Bernoulli automorphism.

(2) T is isomorphic to the product ofa Bernoulli flow and a rotational flow.

Proof. (1) =>• (2). Assume that the roof function is 1. Then we can write
T (Si, p, {Tr}), T'(x,s) (S^+i5J(x), t + s — [t + sj), where:

o (£, v, S) is a Bernoulli automorphism.

o S i is the suspension space over S with roof function 1.

o p, y1 8tdtdv(x).

By Ornstein Theory, (S, v, S) embeds into a Bernoulli flow (S, u, {Sl}), see [33],
Let {R'} be the rotational flow with period 1. We claim that T is isomorphic to

(S x T, v x dt, {Sl x R'}), the product of a Bernoulli flow and a rotational flow. The

conjugacy is the bijection p : Sx —» S x T, p(x, s) (Ss(x), s (mod 1)). First note
that p is well-defined since p(x, 1) (S1^),!)) (Sx,0) p(Sx, 0). Also:

(p o T')(x, s) p(5^+,s-'(x), t + 5— |7+'SJ) (5,(+'s(x), t + s (mod 1))

(S* x R{)(Ss(x),s (mod 1)) [(5' x S')op](x,i).
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For all measurable A c E and interval I C T not containing zero, (jiop~1)(Axl)
li(A x /) v(M) - |/1, hence p p~l v x dt, which completes the proof that p
is a conjugacy between T and {5f x R'}.

(2) => (1). With the same notation as above, assume that T (E x T, v x dt,
{S' x R'}). Then T is isomorphic to the suspension flow (Ei, pi, {T'}), where the

basis dynamics is the Bernoulli automorphism (E,v, S1). The conjugacy is the

same p as above, and the proof is analogous to (1) =4 (2).

ProofofTheorem 4.7. Part (1) is the content of [28, Theorem 7.2]. Denote this TMF
by Of : Sp —> Ef, withT 2n/Q.

Let p denote the period of E. Recall from page 69 that, using the

spectral decomposition of E [23], Of : Ef —»• Ef is topologically conjugate
to a TMF Of : Sf -> Ef where o : E —> E is topologically mixing, and

T TP 2np/6 =: a.

Let /x be the measure on E? corresponding to /x, and let "v be the induced measure
of pi. v is an equilibrium measure of a bounded Flölder continuous potential on E
with finite pressure. Since o : E —»• E is topologically mixing and E is not a

singleton, o : E —> E is Bernoulli [5,50]. By Lemma 4.8, o> : E? —> E? is

isomorphic to the product of a Bernoulli flow and a rotational flow with period a.
Since the Pinsker factor of a direct product is isomorphic to the direct product

of the Pinsker factors [52, Prop. 4.4], and since Bernoulli flows have trivial Pinsker

factor, it follows that the Pinsker factor of (Er,or,p,) is isomorphic to &(R')
ß4(Rl) R1, a rotation with period 2np/6.

5. The Bernoulli property

We have proved so far that if o> : Er —»• Er is a topologically transitive TMF
and p, is an equilibrium measure of a bounded Holder continuous potential with
finite pressure, then (Er, or, pi) is isomorphic to a Bernoulli flow times a rotational
flow when r is arithmetic, and (Er,or,jT) is a K flow when r is not arithmetic. The

purpose of this section is to complete the picture and prove the following result.

Theorem 5.1. Let or : Er —> Er be a topologically transitive TMF. If r is not
arithmetic, then for every equilibrium measure pi of a bounded Holder continuous

function with finite pressure (Er,or,pi) is a Bernoulli flow.

The theorem above strengthens Theorem 4.6 by saying that for equilibrium measures

of bounded Holder potentials with finite pressure, weak mixing is equivalent to the

Bernoulli property.
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Review of general theory. Let (A', 38, pi) be a non-atomic Lebesgue probability
space, and let a {A\,..., An) and ß (B i,.B^) be ordered partitions of
(X, 33, fx). Given x e X, define a(x) := i if x e A,.

x).Partition distance: d(a,ß) := XifLi l*-(Al Aß,) 2/ ha(x)^ß{x)\dll{

Let {cq}" be a finite sequence of ordered partitions of (X, 33, jx), and let {ßl}" be

a finite sequence of ordered partitions of another non-atomic Lebesgue probability
space (Y, c/3, u). Suppose that each partition has N elements, say cq (A\,..., A'N)
and ßt (B[,...,B'n).
Same distribution: We say that {cq }", {ß,}" have the same distribution, and write

{«,}?-(M?. if

ix[A\x n---n^j v[ß/l n-ns,"j, v(h,...,in)e{\,...,N}n.

This is equivalent to the existence of a measure preserving map

9 : (X, 33, ix) (Y, <3, v)

such that

modulo v, V (/ !,...,/„) e {1,..., N}". This notion can be weakened in the following
way.

6?—bar distance: The d-bar distance between {cq}", {/),}" is

Id m I a mi • r
1

J/- q \ {«ill are ordered partitions of
<!({«, Ip (Ah) — mfj-yj <<(«,, ft) :

(r, £ such that p,,» M<(iJ-

To understand how the d-bar distance weakens the notion of same distribution,
we first weaken the notion of measure preserving maps.

e-MEASURE preserving map: An invertible measurable map 6 : (X, 38, fi) —>

(Y, v) is called e—measure preserving if 3E e 38, jx(E) < e, such that
v(6(A))
p(A) < e for all A c X \ E measurable.

Lemma 5.2 ([36]). If 9 : (X, 33, /x) —> (Y, c, v) is e-measure preserving such that

1 "
-JZ («(*))] < e

1 1

on a set of measure > 1 — e, then c?({cq}j, {ßi}") < 16e.
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In other words, {al}", {ßt}" are close in d-bar distance if there exists an

e-measure preserving map 9 that matches ax (x) and ß, (9(x)) on the average, for
most points. That is why the d-bar distance weakens the notion of same distribution.

We now explain the property we will use to prove an automorphism is

Bernoulli. Let (X, AS, pt, T) be an automorphism. Given A £ AS with
3(A) > 0, let (A, 3da, 3a) be the induced non-atomic Lebesgue probability space,
i.e. S3a '= {B D A : B e 3$) and 3a(-) 3(~\S). Every partition a of (X, AS, pt)
defines a conditional partition a\A {C n A : C a} of (A, ASa, 3a)- Write
"s-a.e. A a" when refering to a property that holds for a collection of atoms of a
whose union has measure > 1 — e.

Very weak Bernoulli property1: a is called very weak Bernoulli (VWB) if for

every e > 0 there is Nq Nq(s) such that for all n > 0 and N' > N > No it holds

N'
d ({T-'a}1,{T'la\A}1) < e fore-a.e. A e \J Tka.

k=N

v denotes the joining of partitions. Taking A \J^n Tkot means that we are fixing
the far past of T.

Theorem 5.3 ([30,33,36]). Let T (X, AS, pt, {T'}) be a probability preserving
measurable flow. Iffor some t, (X, AS, 3, T') has an increasing sequence of VWB

partitions which generates AS, then T is a Bernoulli flow.

Construction of VWB partitions for equilibrium measures [36, 43]. Let

or : Er -> be a topologically transitive TMF. Throughout this section we assume
that r is not arithmetic, and independent of the past (which we can assume because

of Lemma 2.2). Fix an equilibrium measure pt of a bounded Holder continuous

potential with finite pressure, and let v be the induced measure of pi, i.e.

1 f frM
3 1 rdy J \x,,)dtdv{x).

Let 7t\,7t2 - ^ F be the projections on the first and second coordinates,

respectively. We now define three a-algebras:

o a partition of E into cylinders of length one at the zeroth position. \flßLQo~la
is the CT-algebra with information on the coordinates xg° of x e E.

o f'-n := nf] (\/ßf_n o la), the a-algebra with information on xfn of
(x, f) £ Sr.

o := Ttfl[AS(W)\, where AS(W) is the Borel a-algebra of M. is the

a-algebra with information on t of (x, t) e Er.

'This is the formulation in [36] and it implies the definition in [35] The two definitions are equivalent
for Bernoulli automorphisms, since in this case every partition is VWB
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We will abuse notation and write EM(-|x~ f) instead of EM(-|&-n v ,f/f)(x, t)
and p(E\x?fn,t) instead of E/X(l e \fP-n V ,f/f)(x, t). Since r is independent of past

coordinates, it can be easily checked that for all n > 0:

p(-\xn,t) l[r(*g°)>t]CM) • X &t] for /r-a.e. (x,t). (5.1)

Actually, there is a way to make sense of the right-hand-side for every (x,t): use

(3.1) to define v(-|x£°) for all x, and the identity v o a-" v to extend to other n:

v(£|x~) := v(a-"(E)\a-"(x)^). (5.2)

Given an admissible word a, let p(a) := inf{r(x) : x"„ a}. Let 0 < 8 < 1,

n > 0. Consider the following definitions.

(«, 5)-cube: A set C {(x, t) : x"„ a,t e [r, r + 5)}, where a is an admissible
word of length 2« + 1 and r > 0 such that [r, r + S) C [0, p(a)).

Canonical partition into (h, <5)-cubes: A finite or countable partition whose

atoms are (n, <5)-cubes, with the exception of an atom of the form {(x, t) : p(x"n) <
t < r(x)} with measure < 8.

Pseudo-canonical partition into (n, )')-cubes: A finite partition that can be

refined to a canonical partition into («, <5)-cubes.

Lemma 5.4 ([43]). If no > 0 and 0 < to < inf(r), then every pseudo-canonical
partition into {no, 8o)-cubes is very weak Bernoullifor (Er, o'r'\ ji).

Proof. This was proved (with different terminology and notation) in [36] for geodesic
flows, and in [43] for TMF built on subshifts of finite type. What follows is a detailed

exposition of the argument in [43], with some missing details added, and one (minor)
point clarified.

Let y be a pseudo-canonical partition into (no, <5o)~cubes, and take N' > N >

^ sup(r). Every A e V^=ai a'r°ky is a countable union of sets of the form

{(x,t) : x e Di,at(x) < t < bi(x)},

/«2(')where £>, are cylinders in V"=„,(;) a'a with

tpN
sup(r) -no - 1 < ni(i) < n2(i) < tpN'

inf(r) + no + 1, (5.3)

and ai, bt are independent of the past coordinates.
Fix e > 0, and let n >0,8 e (0,1) to be determined later. Partition into

finitely many (n, 5)-cubes Cn>,5 := {C\,... ,Cm} plus an additional "error set" with
measure < 8.

Step 1. 3Vo No(n,8) > 0 such thatfor all C Cn>s, for all N' > N > N0, and

for 8-a.e. A e \J„=N o'r°n y, it holds ~ 1 < 8.
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Proof. Since r is not arithmetic, (£,-, oy°, pt) is a K automorphism (Theorem 4.6).
Now use Theorem 4.2 and the finiteness of Cnj.

Step2. ForallA, C asinstep 1, thereis(z,s) e AC\C suchthatp.(ACiC\zn,s) > 0

and pt(-\zfn, s) is non-atomic. We choose one such pair for each A,C and write
(z,s) := {z{A,C),s{A,C)).

Proof. By Lemma 3.4 and (5.2), v(-|zff) is non-atomic for v-a.e. z, so

pL(-\zn,s) l[r(jc°°)>s][v(-|z~) x is non-atomic for pt-a.e. (z,s) e A n C.

Also |£<mc) ~ !l < S < 1 =>• P(A fl C) > 0 pt(A n C\zn,s) > 0 for a

subset (z, 5) e A n C of positive /i-measure. Therefore there is (z,s) e A D C

satisfying step 2.

Given 8 > 0, let us write a e±s whenever e~s < a < es.

Step 3. Given 8 > 0, the following holds for all n large enough. If (x,t), (z,s) 6
C e Cnys, then the map 0^'j : {C, p,{-\xff,t)) —>• (C,/r(-|z^, 5)), 0^'j(y,t)
(d(y),.?), where £>(y (yZ^1, z^),), has Radon-Nikodym derivative equal to e±s.

Proof. Write C 5x7, where B =_„ [/?_„,..., &„] contains x, z and I is an
interval of length 8 containing t,s. The Radon-Nikodym derivative of 0^'j equals
the Radon-Nikodym derivative of 1? : (B, v(-|x2^)) —> (B, v(-|z^)). To estimate
this latter derivative, let B' :=_(„+m) [b-(n+m),... ,b„] C B be a cylinder, and let

£« := E varfc(logg). By (3.1) and (5.2),
k>n

v{B'\x%) _gm(bn_(n+m),x+1)
e±En,

gm(b"_in+myz~+l)

thus v(B'\xf?n) e±En v{d{B')\z'^'n) for every cylinder B' C B. Since the cylinders
generate the o-algebra of Borel sets of B, v(E\xfn) — e±£n v{d(E)\zfn) for all
Borel sets E c B, hence the Radon-Nikodym derivative of ß equals e±e". Since

log g is Holder continuous, e„ > 0, thus sn < 8 for all n large enough.
«—>00

Step 4. For all A,C,(z,s) as in steps 1-2, there is an invertible bi-measurable

map 4* : (C, ii(-\z°°n,s)) —> (A n C, ji(-\zfn, s)) with constant Radon-Nikodym
derivative. Call the constant D(A, C).

Proof. Any two non-atomic Lebesgue probability spaces are measure theoretically
isomorphic. (C, pi(-\zfn,s)) and (A fl C, pb{-\z°fn, s)) are non-atomic Lebesgue
measure spaces, so instead of an isomorphism there is an invertible bi-measurable

map 4* : (C, p(-\z^fn,s)) {A fl C, p(-\zfn, s)) with constant Radon-Nikodym
derivative equal to D(A, C) := •
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Let ft := Ur=i C„/i(ft) >1-5.
Step 5. If 8 is sufficiently small, n is sufficiently large, and No No(n,8) as in

Step 1, then for all N' > N > No, for 8-a.e. A e \/k=N ar°kY> there is a map
3 : (Er, p) -¥ (A, p(-\A)) such that:

(1) 3 (x,t) (y,t) with yn xnfor (x,t) e ft,

(2) 3 is invertible and bi-measurable,

(3) 3 is 58-measure preserving.

Proof For each A, C, (z, s) as in steps 1-2, define 3 \c'- C A C by

3 (x,t) (®*fs o A? o ©*'j)(x, t).

Now define 3 on Sr \ ft to take values on A \ ft via a bijective measure preserving

map. Thus (1) holds2.
To prove (2), first note that C 6 fP-n V hence we can write

p. (c const j /x(-|xfn,t)dpfx,t).

By Steps 3-4, 3 |+: (C,pf \x^fn,t)) —> (^4 n C, t)) is an absolutely
continuous bijection, thus 3 fed (C,p,) —> {A fl C,p) is bijective a.e., which

gives (2).
Let us now prove (3). By steps 3-4, 3 (c: (C, p{-\x?fn, tf) —> {A fl C,

p(-\xf°n,t)) has Radon-Nikodym derivative e±2SD(A,C), thus if E C C is

measurable then

/r(3(£)) const J p(a(E)\x^°n,t)dp(x,t)

conste±2SD(A, C) j p(E\x°?n,t)dp,(x,t)

const e±2S D(A,C)p(E).

Therefore 3 : C -> A fl C is absolutely continuous with Radon-Nikodym
derivative equal to e±2S K for some constant K K(A,C). Since 3 is a

bijection a.e., K e±2S
• If 8 is so small that 1 — 8 > e~2S, Step 1 gives

that K e±4Sp.(A). Since C e Cn>s is arbitrary, 3 (ft, p) (A fl ft, p.) has

Radon-Nikodym derivative equal to e±4S p(A). After normalizing the measure of
A, we find that the Radon-Nikodym derivative of 3 : (Er, pt) —> (A, ji{-\A)) equals
e±4S on ft. If 8 is so small that e4S <1 + 55, we conclude that 3 is 55-measure

preserving.

2Our construction of E differs from [43], since it is not clear to us that her construction leads to a

measurable map. Instead, we follow the construction used in [36].
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Step 6. If 8 is sufficiently small and n is sufficiently large, then for all m > 0, for all
N' > N > No(n,S), andforS-a.e. A 6 Glrtoy,

—#{1 < i <m : al'0(x, t), a'to(a(x, t)) are in different y-atoms} < e
m

holds for a set (x, t) Er of measure >1—5.

Proof This follows, as in [36,43], from the fact that E(x, f) (y, t) with yfn x°fn
for (x, t) e Q,. Let us recall the argument.

Let y denote the (countable) canonical partition into (/?o, 5o)-cubes which
refines y, and assume that n > no- If a1/0 (x, t), alrto (y, s) belong to different

y-atoms, then they belong to different y-atoms. At least one of these atoms is an

(no, <5o)-cube of the form C := B x [a,a + 8o) with B e V"=-«0 °} a- Using that

n > no, that r is independent of the past, and that xffn y°°n, we get that a'/'fx, t)
belongs to d$(C) := (J|0|<gar(B x ia<a + ^o})- Let 3^(y) be the union of all

dg(C), C as above.

Defining Zm(x,t) := ^#{1 < i <m : o>'°(x, t), a^°(S(x, t)) are in different

y-atoms} and Ym(x, t) := YT=i ^3Ä(y)^'0(x' Previ°us paragraph and the
Markov inequality imply that

p[Zm > e] < yt[Ym > em] < — f Ymd/j, < e"1 yt[ds(y)\.
em J

If we choose 8 so small that iffdfff)] < e2, then ji[Zm > e] < e as required.

Completion of the proof of Lemma 5.4. Given e > 0, let 8 be sufficiently small
and n sufficiently large such that steps 1-6 hold, and 1005 < s. By Lemma 5.2, for
all m > 0, for all N' > N > No(n,8), and for 5-a.e. A e Vi^=jv artoy it holds

d({af"0y}f,{af"°y\A}f) < 16x55 < e. Since e > 0 is arbitrary, y is VWB.

Proof of Theorem 5.1. Fix to f 0, and construct an increasing sequence of pseudo-
canonical partitions into («£, 5fc)-cubes, with n^ oo and 8^ 0. This sequence
ofpartitions generates the full er-algebra of £r. Since each of these pseudo-canonical
partitions is VWB for oy° (Lemma 5.4), it follows from Ornstein Theory [30,33,36]
that (Xr ,or, pf is a Bernoulli flow.

Part II. Smooth flows in three dimensions

6. Proof of Theorem 1.1

Let M be a three dimensional compact C°° Riemannian manifold, let X : M TM
be a non-vanishing C1+£ vector field, and let {T'} be the flow on M generated
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by X. Let F : M R be a bounded Holder continuous function, and let v be

an equilibrium measure of F. Our task is to show that v has at most countably

many ergodic components v;- with positive entropy, and that {T1} is Bernoulli up to

a possible period with respect to each v,.
That v has at most countably many ergodic components with positive entropy

was proved in [28] in the special case F 0. The same proof works for general
bounded Holder continuous F almost verbatim. Let us recap the idea. For a

fixed / > 0> we prove that F has at most countably many /-hyperbolic3 ergodic
equilibrium measures. This happens because every ergodic equilibrium measure on
a TMS is carried by a topologically transitive TMS. If there were uncountably many
/-hyperbolic equilibrium measures for F, then some convex combination would

generate a /-hyperbolic equilibrium measure on a TMS with uncountably many
ergodic components. Taking the union over /„ 1 /n gives countability.

It remains to show that if v is ergodic with positive entropy, then v is Bernoulli

up to a possible period. Given a TMF ar : Xr —> Xr, let

X* := {(x, t e Xr : {x,},>o, {*/}/<o have constant subsequences}.

By the Poincare recurrence theorem, X* has full measure for every ar-invariant
probability measure.

Apply [28, Theorem 1.2] to the flow (M, v, {T'}) to get a TMF ar : Xr -> Xr
and a Holder continuous map nr : Xr —> M such that:

(1) nr o a\ T* o jtr, Wt e R.

(2) 7Tr [X*] has full v-measure.

(3) 7tr : X^ —> M is finite-to-one.

Notice that <F := F o nr is a bounded Holder continuous function. Arguing as

in [28, Theorem 6.2], one can prove that <f> has an ergodic equilibrium measure /i
such that ji o tt~1 v. By ergodicity, ji is carried by a topologically transitive
TMF of Xr. By Theorems 4.7 and 5.1, ji is Bernoulli up to a period. Therefore

(M, v, {T1}) is a finite-to-one factor of a flow which is Bernoulli up to a period, so it
is enough to prove the lemma below.

Lemma 6.1. Ifa measurable flow is Bernoulli up to a period, then so are its finite-
to-one factors.

Proof. Suppose n : X —> Y is a finite-to-one factor map between T (X, pt, {T'})
and S (Y, t], {S'}). Suppose T is Bernoulli up to a period.

If T is Bernoulli, then T1 is Bernoulli. Since factors of Bernoulli automorphisms
are Bernoulli automorphisms [31], S1 is a Bernoulli automorphism. By [33], S is a

Bernoulli flow.
Assume that T is isomorphic to a Bernoulli flow times a rotational flow. By

Lemma 4.8, it is enough to prove the claim below.

3v is /-hyperbolic if v-a.e. point has one Lyapunov exponent > / and another < —/.
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Claim. If T is a constant suspension over a Bernoulli automorphism, then S is a

constant suspension over a Bernoulli automorphism.

Proof. Assume without loss of generality that the roof function of T is 1,

i.e. T (Si,ix,{T'}) where T'(x,s) (r^+iJ(x),t + s — [t + sj),
F is fo &{x,t)dtd.pto{x), and (S, /xo, r) is a Bernoulli automorphism.

Let Lo := 7r(S x {0}). We claim that 70 is a Poincare section for S. For each

y e 7r(S!), let Iy := {t > 0 : S'(y) e Y0}.

o Iy 0: y n(x,s) => 1 — s e Iy.
o Iy n (0,1) is finite: if S'n (y) n(xn, 0) for infinitely many tn,xn, then y has

infinitely many pre-images (z~l(xn), 1 — /„).
o Iy is infinite: y n(x, t) =>• Sn~t{y) tt(t"(x), 0) =t- n — t e Iy, Wn > 0.

By symmetry, {t < 0 : S'(y) e 7o} is non-empty, infinite, and has no accumulation

points. Therefore Y0 is a Poincare section for S.

r(y) := min{t > 0 : Se(y) e To} is well-defined and positive rj-a.e. Using
that 7T commutes T and S, we have r o S1 r, thus r is constant rj-a.Q. Let
U : To —> To, U{y) and let rjo := (/xo x So) o n~l. S is a constant
suspension over (To, r?o, U). But (To, rjo, U) is a factor of (E, /x0, r), hence it is a

Bernoulli automorphism.

7. Reeb flows

Let M be a compact three dimensional smooth Riemannian manifold without
boundary, equipped with the following objects [15]:

A Contact form: A smooth 1-form a on M such that co := a A da is a volume
form. In this case, ker(da)x := {u e TXM : da(v, •) 0} is one-dimensional for
all x M.

The Reeb vector field (of a): The unique vector field X such that Xx e \&r(da)x
and a(Xx) 1 for all x e M. Necessarily ixco da.

The Reeb flow (of a): The flow \Tl} generated by the Reeb vector field of a. This
is a smooth flow with positive speed. {T'} preserves a, i.e. a(dTcv) a(v) for
all v, since yjy{T,)*u (T{)*Lxot {T')*[dixoi + ix(da)\ (T')*[0 + 0] 0.

This setup covers geodesic flows of surfaces, and Hamiltonian flows of a system with
two degrees of freedom restricted to regular energy surfaces [1].

We now add the assumption that {T'} has positive topological entropy. Let /x be

an ergodic equilibrium measure of a Holder continuous potential with positive metric

entropy. By Theorem 1.1, T (M, p,{T'}) is Bernoulli up to a period. We will
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show that T is Bernoulli. A similar result for absolutely continuous measures is due

to Katok [20, Theorem 3.6],

In dimension three, every ergodic invariant probability measure with positive
metric entropy is non-uniformly hyperbolic [47], hence there is a T-invariant set

M0 C M of full //.-measure such that for all x e Mo we have TXM Eu(x) ©
Es(x) © span(A(x)) where Eu(x), Es(x) are one-dimensional linear subspaces

satisfying:

o lim j log || dT'xv\\ < 0 for all non-zero v e Es(x),
t->± oo

O lim J log \\dT~' u|| < 0 for all non-zero v e E"(x),
t->-± oo

O dTxEs(x) Es(Tl(x)) and dT'xEu(x) Eu(T'(x)), Vt e R,

o There is an immersed smooth curve Ws(x) 3 x such that TyWs{x) Es(y)
and d(Tt(x),T'(y)) > 0, Vy Ws(x). An analogous result holds

t—>oo
for Wu(x).

See [4, §8.2],

Quadrilateral: A quadrilateral is a closed embedded curve y : [0, 1] -»• M such

that there are four distinct points xo, x\, xj, X3 e Mo with:

o Xj+i e Wr' (xj) for some r,• G {s, u} (here X4 xo),

o If y(ti) xi, then y [(»,,*,+,) is smooth with y'{t) e Er'(y(t)), Vt e (ti,ti+1).
Quadrilaterals are the four-legged geometrical version of 5M-loops considered

in page 83. Call xo,... ,X3 the vertices of the quadrilateral. The next lemma is
standard.

Lemma 7.1. Let T (M, fi, {T'}) be as above. Then Es(x) © Eu(x) ker(ax),
Vx e Mo- In particular, ify is a quadrilateral then f a 0.

Proof. Let v Es(x). By the T-invariance of a, a(u) lim^+ooa^T'u) 0,
hence Es(x) C ker(ax). Since contact forms are non-degenerate, dim ker(ax) 2

whence Es(x) © Eu(x) kcr(ax). If y is a quadrilateral then y'(f) e Es(y(tj) ©
Eu(y(t)) except at the vertices, therefore f a /0' a(y'(t))dt 0.

Proofof Theorem 1.2. Using the same notation of Section 6, there is a TMF o> :

£r —> £r and a Holder continuous map nr \Er—?M such that:

(1) nr o of. T' o jtr, V/ e R,

(2) 7rr[£*] has full//-measure,

(3) nr :£*—> M is finite-to-one,

(4) (Er, pi o nfl,or) is Bernoulli up to a period, and it has a period iff r
is arithmetic, iff the holonomy group equals cZ for some c > 0 (see

Theorem 4.6).



98 CMH

Assume by way of contradiction that there is a period.
Let v be the induced measure of /z o n~l, then v is globally supported on E and

has local product structure (Theorem 3.5). Let u£, vx be the projection measures
of v, as in (3.2). These are globally supported measures on W\0C(x), lLj"c(x).

Let E be the set constructed on page 82, then the holonomy group equals the

closure of the set of weights of .s'w-loops with vertices in E. The assumption that T
has a period translates to the holonomy group being equal to cZ with c > 0.

The Bowen-Marcus cocycle PT(-, •) is Holder continuous (Lemma 2.3(4)),
therefore 35 > 0 such that d(x,y) < 8 => Pz(x,y) < c/5 wherever defined.
We claim there exist four distinct points wq, ,w3 e E such that d(wl, Wj) < 8

for all i, j and yo (^o, wi, w2,w3, wo) is a sn-loop with P(yo) 0. This can
be done as follows:

o Fix x,y E such that d(x, y) < 8 and y <£ W^c(x).

o By Claim 1 of Theorem 4.6, vsx(Ec) vsy(Ec) 0, hence {w e E n ^^(x) :

[w, y] e E) has full ^-measure.

o vx is globally supported on W^.(x), thus there exist wo,w\ e {w e E fl
lT^c(x) : [w,y] e E} with d(w0, rui) < S. Take w2 [tui,y], w3 [tuo.y].

0 Vo {wo, w2, w3, w0) isasn-loopwith |B(yo)| < ^ < c =y P(yo) 0.

Let yo be the lifted sn-path of yo, and y := nr (yo). Since nr : E* ->• M is finite-
to-one and vsx, v" have global support, we can choose wo,wi so that diam(y) < 8.

We claim that if 8, s are small enough, then for every \t \ < s, the quadrilateral
T'y is the boundary of a piecewise smooth immersed surface T'U such that:

o T'U is the union of compact smooth embedded surfaces TlUt,i =0,1,2,3.
o T' Ul are uniformly transverse to the Reeb vector field.

o T'Ui have piecewise smooth boundaries and fT, — — Y^=o Ir'idU )•

Had y been a Euclidean rectangle, we could take U to be its interior, and U, the
four triangles described by the principal diagonals. The general case is similar. It is

enough to treat t 0, since the case of small t follows from uniform transversality.
Let wo,... ,w3 e _v [a_jv> • • • > ün\, where N is large to be chosen later. Let

uo,... ,u3 be the vertices of y. If 8 is small enough, then y is covered by a chart
of M and we can think of ut := ut, y(t) := y(t) as vectors in M3. If A is sufficiently
large, then y'(t) is nearly parallel to Eu(ito) or Es(uo) at all points. Therefore y
is made of four curves which are C1 close to the sides of a parallelogram such that
ü 1 — fio, ü2 — ü3 are nearly parallel to Es(uo) and ü2 — ü\, ü3 — üo are nearly parallel
to Eu(uo). There is no loss of generality in assuming that these vectors have norm
in (|, 2). Let £0 := C1 distance between y and a parallelogram with sides ü\ — üo
and Ü3 — wo - Then £0 —> 0 as N —00.

Let z := \(ü0 -\ 1- u3), then z - j(ü, + ül+x) |(m,_i - ü,) + O(e0),
where u, := n,(m0d4) (the approximation is an identity for real parallelograms). We
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define U, to be the cone with vertex z and base y,, where y, : [0,1] —> R3 is the

"leg" of y from m, to ul+\\

U, := {xt (s, t) := syt (t) + (1-j)z:j,/£ [0,1]}, i 0,..., 3.

Ul are embedded, and fy f3u Idu, • ^ ls perpendicular to

« (y«(0-2)xyt'(0 +2M,+1)x)?,'(*) + ("' +^l+l -ijxji,'(o.

The first summand is O(£o|y,'(0l)> being the product of vectors at angle O(eq).
The second summand is of size ~ |y[(t)| and £o-parallel to eu(uo) x es(uo). By
Lemma 7.1, Ut is almost parallel to ker(o;), whence uniformly transverse to the Reeb

flow.

Fix to > 0 so small that Dt := (Jte[o r0] TtUl is a flow box. So

0 ttfs - tfiL, *»)«-tf iL:
=[°{Lda)d'

But by the Stokes Theorem, this equals fo°(fTtY ot)dt 0, since the inner integral
is zero by Lemma 7.1. We obtain a contradiction.

8. Equilibrium states for the geometric potential

Let M be a three dimensional compact C°° Riemannian manifold, let X : M TM
be a non-vanishing C1+£ vector field, and let T be the flow on M generated by X.
Throughout this section we assume T has positive topological entropy.

The subset Mhyp C M: p e Mhyp if there are unit vectors esp, eup e TPM such that

lim -J-log || uf 7^, || <0 and lim ^-\og\\dTteu\\>0.
t-*±oo |f| y y t-*±oo |Z| y y

If e? exist, then they are unique up to a sign, hence Mhyp is T-invariant. By
the Oseledets theorem and the Ruelle entropy inequality, any T-invariant and ergodic
measure with positive metric entropy is carried by Mhyp.

The geometric potential of T [8]: J : Mhyp —» R given by

J(P) dt 1=0
l°g \\dTpeup\\ -lim^log\\dTtpeup\

J is bounded, since {T'} is C1+e.
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Some facts from [28]. We recall some facts from [28, §2], There exists a Poincare

section Ac M with return map / : A —> A and roof function R : A —> R such

(1) A is the union of disjoint discs transverse to X.

(2) inf R > 0 and sup R < oo.

(3) Let6 C A denote the singular set off : A -> A, consisting of points p which
do not have a (relative) neighborhood V C A \ 3A which is diffeomorphic to
a disc, such that f\y, f~l \y are diffeomorphisms onto their images. There
is a constant £ such that R,f,f~l are differentiable on A' := A\6 with

suP/>eA' \\dRp|| < C, suppgA, \\dfp\\ < C, suppgA, IK*//»-1!! < and

\\f\u\\c^ < £, II/"11 {/||ci+£ < £ for all open and connected U C A'.
See [28, Lemma 2.5],

(4) For all p e Ahyp := (A\\JneZ /"(©)) n Mhyp there are vsp,vup e TpA

See [28, Lemma 2.6] and its proof.

Suppose ß is a hyperbolic T-invariant probability measure on M, and /zA, the

"induced measure", is the measure on A such that

Then A can be chosen with the additional properties below.

(5) The induced measure ßA on A satisfies:

(5.1) ßA(&) 0.

(5.2) lim^oo £distA(/"(/>), 6) 0 /rA-a.e.

See [28, Thm 2.8],

(6) There are a TMF o> : Sr and Holder continuous maps n : S —>• A
and jtr : Sr —>• M such that:

(6.1) 7T o a f o 7i, jt[£#] has full ßa-measure, and every x e ?r[£#] has

finitely many pre-images in E#.

(6.2) 7xr{x, t) T{7t(x), 7tr o or T o nr, nr[Ef] has full /r-measure, and

every p nr [E,-] has finitely many pre-images in £*.

See [28, Thm 5.6]. Here E#, E* denote the regular parts of S, Er, see [28, §1].

that:

unitary such that

Jim, R lo§ WpVpW < 0 and
^ hrn^ ^ log ||rf/^0J|| > 0.
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Finally, if ß is ergodic with positive entropy then h/lA (/) > 0 and /XA(Ahyp) 1.

Geometric potential of / : A -> A: J f : Ahyp -* M, Jd(p) — — log

jf is bounded, since sup^A, \\dfp\\ < £, sup^A' ||(d/p)_1|| < Even though

J, J f are not globally defined, we can define their equilibrium measures.

Equilibrium measures of J and J f \ ß is called an equilibrium measure of J if
hß(Tl) + f Jdß PtoV(J), where

„ r. I. f v is T-invariant Borel probability
Ptop(J) := sup ME1) + JMJdv: measure with v(Mhyp) 1

J lllt>a.0Ul Willi F'^iK/Jiyp

PU)p(J) is called the topological pressure of J. Similar definitions hold for J d

with Tl, Mhyp replaced by /, Ahyp.

P*p(J), Piop(Jf) < oo, since are bounded. Similar definitions can also be

given for functions of the form aJ,bf,a,b £l.
Lemma 8.1. Assume that A, /, R and, ß satisfy conditions (l)-(6) above. Then ß is

an equilibrium measure of J iffßa is an equilibrium measure of J d — l\op(J) R.

Proof. Let J : Ahyp —> E, J (p) f,fP> J(TSp)ds. As in claim 1 of the proof
of Theorem 3.1, ß is an equilibrium measure of J iff ßA is an equilibrium measure

of J — Ptop(J)R. We will show that fAJdv fA Jddv for every /-invariant v
with u(Ahyp) 1, and deduce that ß is an equilibrium measure of J iff ßA is an

equilibrium measure of J f — Ptop(J)R.
A simple calculation4 shows that

_ fR(p)
J(P) -J f ^ogWdT'e'fspWds -log\\dTR(p)eup\\.

Since f(p) TR(-P\p), we have dfpv dTp^v + (VR(p), v)X/(p),
Vu G TpA. Write vup a(p)efp + ß(p)Xp (necessarily a(p) / 0). Then

dfvup dTR^vup + (VR(P),vup)Xfip)

a(p)dTR^e"p + ß(p)dTR^Xp + (VR(p), vup)Xf(p)

±a(p)\\dTRWe»\\e}ip) + \ß{p) + (VR(p), vup)]XAp).

Similarly

dfvup ±\\dfvup\\vunp) ±(a(f{p))\\dfvl\\eufip) + ß(f{p))\\dfvup\\Xnp)).

4Let/t(f) := — log ||dTfe ||, then/t(0) 0 and —log \\dT' efs h{t + s) — h(s), therefore

— ~3t\
o

'°§ WdT'efspW o[/t(f + j) — ft(s)] h'(s). By the fundamental theorem of

calculus,7(p) fR(p) h'(s)ds h{R(p)) -log \\dTR^eup\\.
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Comparing the e" ^ components, we get \a(p)\\\d TR{-p)efp || \a(f(p)) | || df vup

Hence U : Ahyp M, U(p) := —log |cr(p)| is a measurable function with

7 Jf + U of -U.

We use this to show that /x is an equilibrium measure for J iff /xa is an equilibrium
measure for jf — Plop(J)R. By (4) and (5), /x(Mhyp) /XA(Ahyp). Let v be an

ergodic /-invariant probability measure with v(Ahyp) 1. By the Birkhoff ergodic

theorem, lim^oo fA Jdv and lim^oo fA Jf dv v-a.e. By the

Poincare recurrence theorem, lim inf^-^ \ U(fn (p)) — U(p)\ < oo v-a.e., hence

for v-a.e. p e A we have fA Jdv liminf^oo „J(P) liminf,,-».«, ^J^(p)
fAJfdv. By the ergodic decomposition, fAJdv fA J f dv for every
/-invariant v such that v(Ahyp) 1. The lemma follows from the discussion

at the beginning of the proof.

Lemma 8.2. [/ f — Atop (J) f]°Jt is a Holder continuous potential on 2 with respect
to the symbolic metric.

Proof. R o n : 2 —> M is Holder by construction: Ron r and roof functions
of TMF are Holder. J f o n is Holder, because df is uniformly Holder on A' and

x £ 2 —> is Holder by [28, Lemma 5.7],

Proofof Theorem 1.4. Fix / > 0, and let /x be a ^-hyperbolic5 equilibrium measure
of J with hßfT1) > 0. Take A, f R satisfying (l)-(6) above. Since /x is carried

by Mhyp, Lemma 8.1 implies that /xa is an equilibrium measure of J^ — Plop(J)R.
Arguing as in [28, Theorem 6.2], the function [jf — Ptop(J)R] ° it ' 2 —» R has an

equilibrium measure/xa such that/XA°xr_1 /xa- The potential [/^—Atop(7) A]o7r
is Holder continuous. Since ergodic equilibrium measures of Holder potentials on a

TMS are carried by topologically transitive TMS, /xa has at most countably many
ergodic components. This shows that J has at most countably many ^-hyperbolic
ergodic equilibrium measures: if there were uncountably many, then some convex
combination would generate a /-hyperbolic equilibrium measure with uncountably

many ergodic components.
Assume now that /x is also ergodic. We can choose pf to be ergodic. The

measure ftf is the induced measure of some p, on 2r, hence p, o nf1 /x. By
Theorems 4.7 and 5.1 (2r, jix, oy) is Bernoulli up to a period. Since fi projects to /x,

(M, pi, {T1}) is also Bernoulli up to a period.
If additionally T is a Reeb flow, then it is Bernoulli and so is T.
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5XI is /-hyperbolic if /x-a.e. point has one Lyapunov exponent > / and another < —/.
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