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LivSic theorem for low-dimensional diffeomorphism cocycles

Alejandro Kocsard® and Rafael Potrie™*

Abstract. We prove a LivSic type theorem for cocycles taking values in groups of
diffeomorphisms of low-dimensional manifolds. The results hold without any localization
assumption and in very low regularity. We also obtain a general result (in any dimension)
which gives necessary and sufficient conditions to be a coboundary.

Mathematics Subject Classification (2010). 37C15, 37D20; 53C24.
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1. Introduction

In the study of hyperbolic dynamical systems there is a general (and vague) idea that
can be summarized with the following sentence:

Most of the dynamical interesting information on a hyperbolic system
is concentrated in its periodic orbits.

An archetypal example of a result supporting this idea is the celebrated LivSic’s
theorem [16, 17] claiming that given a hyperbolic homeomorphism f: M O, a
Hoélder function ®: M — R is a coboundary, i.e. there exists a continuous function
u: M — R satisfying

uo f —u=49a,

if and only if
Z (f7 () =

for every periodic point p € M, with f*(p) = p.

Due to the interest this result has received since its appearance and the large
amount of consequences that follow from it, several generalizations have been studied.
Some of them consider more general dynamics on the base. For instance, in the

* A. K. was partially supported by CNPq and FAPERIJ (Brasil), and Fondo Clemente Estable (Uruguay).
**R. P. was partially supported by CSIC group 618, FCE-3-2011-1-6749 and Balzan’s research project
of J. Palis.
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works [13,23] the cohomology of real cocycles over partially hyperbolic systems is
analyzed.

In this paper, we consider a different kind of generalization: given a complete
metric group G, a G-cocycle is just a continuous map ®: M — G and one wants to
determine whether the condition

("N (p)@(f"2(p) - ®(p) = e, VpeFix(f"), ¥n > 1,

where eg is the identity element of G, is not just necessary but also sufficient to
guarantee the existence of a “transfer function” u: M — G satisfying

O(x) =u(f(x)u(x)"!, VxeM.

LivSic himself gave in [16] an affirmative answer to this question for cocycles
taking values on a topological group admitting a complete bi-invariant distance (e.g.
Abelian or compact groups). However, the general situation is considerably more
complicated.

So far, the main technique to handle this problem when the group G does not
admit a bi-invariant metric has consisted in considering a left-invariant metric on G
and to try to control the distortion produced by right translations to be able to apply
the very same scheme of proof used in the Abelian case.

In order to get such a control of distortion of the distance, some localization
hypotheses have been considered in the literature. For instance, in [17] LivSic gave a
positive answer to above question for linear cocycles (i.e. where G = GL;(IR)) which
are not too far away from the identity constant cocycle. Improvements of this result
using weaker localization hypotheses have been obtained for cocycles taking values
in arbitrary finite-dimensional Lie groups (see [5, 14] and references therein) until
the recent complete solution of the global LivSic problem for linear cocycles [10]
(see also the recent preprint [7]).

In the infinite dimensional case, particularly when G is a group of diffeomor-
phisms of a compact manifold, the study began with the seminal paper of Niticd
and Torok [20]. Diffeomorphism groups seem to be the most interesting infinite
dimensional groups for applications to rigidity theory (see [14] and references
therein).

In contrast with the finite dimensional case, all the results for groups of
diffeomorphisms obtained so far (see [5] for a survey with references) involve non-
sharp localization hypotheses (in the sense that not every coboundary satisfies them)
and require higher regularity for the diffeomorphism group (i.e. G = Diff" (N),
with r = 4). Moreover, the control of distortion techniques used in [5,20] yield a
loss of regularity in the solution of the cohomological equation. A recent result for
infinite dimensional groups which does not fit in the previous description is due to
Navas and Ponce [19]. They prove a Livsic theorem for cocycles taking values in the
group of analytic germs at the origin of C.
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In this paper we use completely different techniques, with a more geometric
flavor, which allow us to deal with the low regularity case (cocycles can take
values in the group of C!-diffeomorphisms). The main novelty of our approach
is Theorem 3.1 which can be of independent interest. Regarding this result within the
context of localization arguments, we could say that it is proven that our non-uniform
localization hypothesis (i.e. vanishing of fibered Lyapunov exponents) is equivalent
to be a coboundary.

In Section 4 we show that in the low-dimensional case the periodic orbit condition
implies the vanishing of fibered Lyapunov exponents, proving in such cases the
general (or global) Livsic theorem for groups of diffeomorphisms. We conjecture
that such a result holds in any dimension.

Since our result was announced, several new ones concerning the cohomology of
cocycles having equal periodic data have appeared. We refer the reader to [3] and
references therein for more information on this important problem.

1.1. Main results. The main results of this article are the following LivSic type
theorems which, to the best of our knowledge, are the first general (i.e. global) results
for cocycles taking values in groups of diffeomorphisms of compact manifolds:

Theorem A. Let f:M O be a hyperbolic homeomorphism and ®: M —
Diff! (R/Z) be an a-Hélder cocycle such that the so called periodic orbit obstructions
vanish; i.e.

O(f"(p)) o ®(f"2(p))o---0o®(p) =idgsz, VpeFix(f"), VneN.
Then, there exists an o-Hélder map u: M — DiffL(R/Z) satisfying
O(x) =u(f(x)ou(x)"!, VxeM.

Remark 1.1. The very same argument we use to prove Theorem A works for cocycles
taking values in Diff! ([0, 1])

For higher regularity, invoking the main result of [6], one easily gets the following
consequence of Theorem A:

Corollary 1.2. Let f:M *D be a hyperbolic homeomorphism and ®: M —
Diff" (R/Z), with r = 1, be an «a-Holder cocycle for which the periodic orbit
obstruction vanishes.

Then, there exists an c-Holder map u: M — Dift" (R/Z) satisfying

O(x) = u(f(x)ou(x)"!, Vxe M.

Assuming higher regularity on the dynamics of the base and the cocycle,
applying the results of [9,21] one can improve the regularity of the solution of
the cohomological equation. Since this kind of results is beyond the scope of this
article, we suggest the interested reader to consult [14, 23] for further information.
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In dimension 2, we can obtain a similar result for the group of area-preserving
diffeomorphisms:

Theorem B. Let M be a smooth closed manifold and f: M O be a C'+9 transitive
Anosov diffeomorphism. Let S denote a compact surface, let vol be a Lebesgue
probability measure on S and let Diff; ,(S) be the group of C”-diffeomorphisms
of S that leave vol invariant.

Let &: M — Diff!t*(S) be a C'**-cocycle! for which the periodic orbit

vol
obstruction vanishes.

Then, there exists an a-Hdélder map u: M — Diﬂ“zl) o1 (S) such that
O(x) =u(f(x)ou(x)"!, VxeM.

It should be noted that Theorem B, unlike Theorem A, is stated for Anosov
diffeomorphisms on the base (and in paricular, the base space M should be a manifold)
instead of a hyperbolic homeomorphisms. This restriction appears as a technical
simplification which will be explained in the proof, but the theorem should remain
true assuming weaker hypotheses.

Proofs of Theorems A and B consist in two steps. The first one concerns the
vanishing of Lyapunov exponents for cocycles satisfying the periodic orbit condition
and relies heavily in the low-dimensionality of the fibers. The second one holds in
any dimension and can be of independent interest (see Theorem 3.1).

To end the introduction, let us mention that as far as we know, the following
question is still open:

Question 1.3. Does there exist a complete metric group? G such that a Livsic like
theorem does not hold for G-cocyles? More precisely, does there exist a hyperbolic
homeomorphism f: M O and a C%-cocycle ®: M — G with vanishing periodic
orbit obstructions but which is not a G-coboundary?

Acknowledgements. We are grateful to A. Navas and M. Ponce for useful
discussions and bringing these problems to our attention. This paper was finished
during a visit of A.K. to Universidad de la Republica (Uruguay).

We acknowledge several suggestions of the anonymous referee which allowed us
to improve this paper.

A. K. is very thankful to R. Markarian for his hospitality.

I'This means that the induced map M x S 3 (x, y) — ®(x)(y) € S is C'1 T2,
2A topological group which admits a complete distance compatible with the topology of the group.
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2. Preliminaries and notations

2.1. Holder continuity. All along this paper, (M, d) will denote a compact metric
space. If (M',d") denotes another arbitrary metric space and 0 < o < 1, a map
v: M — M’ is said to be a-Hélder whenever

di
%o = sup (ﬁ(x)’wa(y)) < .
xF#y (x Y )
Most of the functions and maps we shall deal with in this paper will be at least
Holder because, as it was already observed in [15], in general C°-regularity is not
appropriate for dynamical cohomology.

When o < 1, the space of w-Holder maps from M to M’ will be denoted by
C*(M,M'"). As usual, we use the term Lipschitz as a synonym of 1-Holder, and to
avoid confusions with the differentiable case, we write C¥P(M, M) for the space of
Lipschitz functions.

For such a real constant &, we can define a new distance on M by

dy(x,y) :=d(x,y)*, Vx,yeM. (2.1)

Observe that the topologies induced by d and d,, coincide and a map v: (M, d) —
(M’,d") is a-Holder if and only if ¥: (M, dy) — (M',d’) is Lipschitz.

2.2. Borel probability measures. Given an arbitrary locally compact metric
space X, we write 9J1(X) for the space of Borel probability measures on X and
we will always consider it endowed with (the restriction of) the weak-* topology.
If Y denotes another compact metric space, any continuous map 4: X — Y naturally
induces a linear map /,: D(X) — 9M(Y) characterized by the following property:

J ¢ d(h, ) := f pohdu, VeeCOY), VueMX).
Y X

In this way, if f: X D is a continuous map, one defines the space of f-invariant
measures by

M(f) = {pn e MM) : fup = pu}.

2.3. Hyperbolic homeomorphisms. Let (M, d) be a compact metric space and
f: M O be a homeomorphism. Given any x € M and € > 0, one defines the local
stable and unstable sets by

Wex, f):={yeM :d(f"(x), f"(y)) <& Vn =0},
Wex, f):=={yeM:d(f*(x), f"(y)) <& Vn <0

respectively. Where there is no risk of ambiguity, we just write W7’ (x) instead of
W2 (x, f), and the same holds for local unstable sets.
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Following [2], we introduce the following definition.

Definition 2.1. A homeomorphism f: M O is said to be hyperbolic with local
product structure whenever there exist constants &g, 89, Ko, A > 0 and functions
Vs, Uyt M — (0, 00) such that the following conditions are satisfied:

(h1) d(f(y1), f(¥2)) S vs(x)d(y1,¥2), Vx € M, Vy1, y2 € W (x);
(h2) d(f(¥1), f(¥2)) Z vu(x)d(y1, y2), Vx € M, Vyy1, y2 € W (x);
(3) v (x) 1= v (f71(x)) ... v5(x) < Koe=*",Yx € M, ¥n > 1;
(h4) v (x) = v (F7 1 (%)) ... vu(x) > Koe*", ¥x € M, ¥n > 1;
(hS) If d(x, y) < do, then W (x) and W (y) intersect in a unique point which is
denoted by [x, y], and it depends continuously on x and y.
Remark 2.2. For the sake of simplicity of the exposition and to avoid unnecessary

repetitions, from now on we shall assume that all hyperbolic homeomorphisms are
transitive and exhibit local product structure.

For such homeomorphisms, one can define the stable and unstable sets by

Wo, )= W) and WH(x, f) = | £HWE ),
n=0 n=0
respectively.
Notice that shifts of finite type and basic pieces of Axiom A diffeomorphisms
are particular examples of hyperbolic homeomorphisms with local product structure
(see for instance [18, Chapter IV, §9] for details).

Remark 2.3. For our purposes, it is important to notice that the notion of
hyperbolicity for homeomorphisms is invariant under Hélder changes of metric. More
precisely, a homeomorphism f: (M, d) < is hyperbolic if and only f:(M.dy) O
is hyperbolic, for any « € (0, 1), where the distance d is defined by (2.1).

The following result is proven for locally maximal hyperbolic sets of smooth
diffeomorphisms in [12, Chapter 6]. However, by inspection on the proof (see
[12, Corollary 6.4.17 and Proposition 6.4.16]) it can be easily check that the very
same proof works for hyperbolic homeomorphisms with local product structure (see
also [10, p. 1026]):

Theorem 2.4 (Anosov closing lemma). Let f:(M,d) O be a hyperbolic
homeomorphism. Then, there exist constants c¢,61 > 0 such that for every x € M
and any n > 0 satisfying d(x, f"(x)) < 8y, there exist unique points p € Fix(f")
and y € M such that:

() d(f1(x), f1(p) < cd(x, f(x))e~rminttn=i;

) d(f'(p), [1(9) < cd(x, f(x))e s

(3) d(f1(x), f1(») < ed(x, fr(x))e 0=D;

foreveryi € {0,...,n — 1}, where A > 0 is the constant given in Definition 2.1.
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Remark 2.5. Notice that by uniqueness, we have that y = [x, p], where the
brackets [-, -] are given by Definition 2.1.

2.4. Cocycles and coboundaries. Let G denote a topological group whose
topology is induced by a complete distance function dg, and let f:(M,d) O
be a homeomorphism.

In this work all cocycles we consider will be at least continuous. In fact, a
G-cocycle (over f) is just a continuous map ®: M — G. As usual, we use the
following notation

eG, ifn =0;
d™(x) 1= { d(f* 1 (x))d"D(x), ifn > 0;
(@M (fm(x)) ", ifn < 0;

where eg € G denotes the identity element of G. We say that ® is a Holder cocycle
when ®: (M, d) — (G, dg) is an a-Holder map, for some « € (0, 1].

A G-cocycle @ is said to be a G-coboundary when there exists a continuous map
u: M — G such that

®(x) = u(f(x)) - (u(x))™', VxeM.

Notice this implies that ®" (x) = u(f"(x)) - (u(x))~', for any n € Z and any
xXeM.

The first family of natural obstructions one encounters for a G-cocycle to be a
G-coboundary is that over periodic orbits, the cocycle must vanish.

M (p)=eg, Yn=1, VpeFix(f"). (POO)

Equation (POQO) implies the vanishing of the periodic orbit obstructions.

In this work we mainly concentrate in the case where G = Diff' (V). To deal
with such objects, we need a slight generalization of the concept of cocycle that we
introduce in the following paragraph.

2.5. Fiber bundle maps and cocycles. Let N denote a compact differentiable
manifold and (M, d) be compact metric space as above. Given any « € (0, 1] and
r = 0,a C%"-fiber bundle over M with fiber N is an object N — & = M, where £
is a topological space and = is a surjective -HoOlder map such that there exists a
finite open cover {U;}| of M with the following properties:

e For each j € {1,...,n}, there exists a homeomorphism ¢;:7~'(U;) —
UJ' X N;

« If U; nU; # &, there is an o-Holder map g;;: U; n U; — Diff’ (N) such
that

gi 097 (x,y) = (x,(g; (X)), V(x.y)e (Ui nUj) x N.
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As usual, one defines the fiber over x by £, := m~1(x) < £. Due to the nature of
maps (g;;) involved in change of coordinates, each fiber can naturally endowed with
a CT"-differentiable structure turning it into a C"-manifold C”-diffeomorphic to N.

As usual, when N = R4 and the maps g; j are a-HAflder and have their image
contained in GLy (R), we say that R? — £ 5 M is a C%-vector bundle.

The total space of any C%"-fiber bundle N — £ > M can be endowed with a
distance function d¢ constructed as follows:

Let dy be a distance function compatible with the smooth structure of the fiber
manifold N, {U;}} and {¢;}] be a local trivialization atlas as above, L > 0 be the
Lebesgue number of the open covering {U; }] and define

de(C,n) := min{ (x(@).7(m) +  inf {dN (prz((pj (C)),prz(wj(n)))} ;L}.
(2.2)
where pr,: M x N — N denotes the projection on the second coordinate, and by

convention, we declare that dy (pr2 (qo i€ )), pr, (go J- (n))) = diamy, N, whenever

either ¢ or n does not belong to 7~ 1(U;).

A Riemannian structure on a C%”"-fiber bundle £ consists of choosing a
Riemannian metric on each fiber £, which varies Holder-continuously with x € M.

From now on, we will assume every fiber bundle is endowed with a fixed
Riemannian structure and a distance function constructed as above. All the concepts
we will consider about fiber bundles are completely independent of these chosen
structures. )

In this setting, given another C%’-fiber bundle N — E L M and a
C%-homeomorphism f: M O, a C*"-bundle map over f is a homeomorphism
F:& — & satisfying 7 o F = f o and such that the map Fy := Flg, &y — E fx)
is a C"-diffeomorphism, for every x € M.

As usual, the fiberbundle N - £ =M x N — M, wherepri:M x N - M
denotes the projection on the first coordinate, is called the trivial fiber bundle.

Observe any C% cocycle ®: M — Diff" (N) naturally induces a C*”-bundle
map on the trivial fiber bundle N — M x N — M and over any f € Homeo (M)
just defining ' = Fg s: M x N O by

F(x,y):= (f(x), ®(x)(»)), VY(x,y)eM x N. (2.3)

Inn such a case, Fy = ®(x), forevery x € M.

Such a particular bundle map is usually called the skew-product induced by ®
and f. So, bundle maps can be considered as generalizations of cocycles taking
values in groups of diffeomorphisms.

2.6. POO and coboundaries for bundle maps. We can easily extend the notion
of vanishing of the periodic orbit obstructions to fiber bundle maps defined on non-
trivial fiber bundles.
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Given a bundle map F:& O over f: M O, we say that the periodic orbit
obstruction vanishes whenever, for every n = 1, it holds

F'(Q) =¢ VpeFix(f"), V¢ € &p. (POO)

Now we finish this paragraph extending the notion of coboundary for (a priori
more general) fiber bundle maps: if N — £ -> M denotes a C*"-fiber bundle, a
C%"-bundle map F: & O is said to be a C**-coboundary, with s < r, when there
exists a C**-bundle map H:£ — M x N over the identity map id: M “O such that
the following diagram commutes:

xid
MxN—2"9% _MxN (2.4)
/ %
5 = 5 pry
Pri
T
x M A M
id id
M 4 M

Observe that with our definition, coboundaries just exist on tivial fiber bundles.
This definition is mainly motivated by Theorem 3.1.

2.7. Lyapunov exponents for bundle maps. Letw:& — M be a C*”-fiber bundle
(endowed with a Riemannian structure) and consider a C*”"-bundle map F:& O
over f: M . Given any point { € £ and n € Z, we have the linear map

D (F "lg,,m) ¢ Teen@) = T @E @@y (2.5)

between normed vector spaces, and hence it makes sense to talk about its norm. For
the sake of simplicity, such linear operator will be just denoted by g, F” ().

Then, one defines the extremal Lyapunov exponents of F along the fibersat{ € £
by

1
AT(F,0) = HETOO - log || F" ()| ;

-1

1 _
A(F.O = lim —log| (0 F"(©)

?

whenever these limits exist. As a consequence of the sub-additive ergodic theorem, it
is well known that these limits exist almost everywhere with respect to any F-invariant
probability measure.
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Given any 1 € MM(F), one defines the extremal Lyapunov exponents of F with
respect to L by

AE(F, ) = f AE(F, ) di(2).

£

The topological version of the invariance principle of Avila and Viana [2] gives
strong consequences on certain invariant measures with vanishing extremal Lyapunov
exponents.

2.8. Dominated bundle maps. As above, let us suppose F: & < is a C*"-bundle
map over a transitive hyperbolic homeomorphism f: M . Given B > 0, we say
that F is (u, B)-dominated whenever there exists £ > 1 such that

N0 i
lowFi©) < C (z;(c))) ,

where vy, is the (multiplicative) cocycle over f given in Definition 2.1.
Analogously, one says that F is (s, 8)-dominated when there exists £ = 1 such
that

Ve e €, (2.6)

lewrten | 52000 @) veee. )

And F is just said to be f-dominated if it is simultaneously both (s, 8)- and (u, B)-
dominated. The definition of domination implicitly assumes that the dynamics on
the base space is given by a hyperbolic homeomorphism f: M “O.

The following result is a consequence of classical graph transform arguments used
in [8] (see [2, Proposition 5.1] for an indication of the proof in this exact context).

Proposition 2.6. If F is an (s, 1)-dominated C"“P'-fiber bundle over a hyperbolic
homeomorphism f: M ‘O, then there exists a unique partition of £

W =W () c&:¢eéy,

exhibiting the following properties:

(i) for every { € £, W5({) is the image of a Lipschitz section W3 (r(¢), f) — &
whose Lipschitz constant is uniform, i.e. it can be chosen independently of C;

(ii) it is F-invariant, i.e.
F(Ws(é')) = WS(F(C)), Vi el.

Of course, if F is (u, 1)-dominated, a completely analogous result holds and in
such a case the “unstable” partition is denoted by YW".

The following result is a combination of Proposition 5.1 and Theorem D of [2]:
Theorem 2.7. Let F:£ O be a 1-dominated CYP'-fiber bundle map over a
hyperbolic homeomorphism f: M O and let i be an F-invariant probability

measure whose projection |1 = 1,(f1) to M has local product structure and full
support. Then, if A\ (F, i) = 0, the support of [L is saturated by W* and YW".
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2.9. Solving the cohomological equation in Lie groups. We state in this section
two results due to Kalinin [10] which will play an important role in our proof of
Theorem 3.1. However, it is interesting to remark that our Theorem A is completely
independent of those results of Kalinin and, in fact, the classical LivSic theorems
[16, 17] are enough to deal with the case where the fibers are one-dimensional.

The first result of Kalinin is the following one:

Theorem 2.8 (Theorem 1.4 in [10]). Let A: M — GL4(R) be a Hélder cocycle over
a transitive hyperbolic homeomorphism f. Assume that (POO) holds for A. Then
the cocycle A has zero Lyapunov exponents with respect to any f -invariant ergodic
measure on M.

We would like to remark that we can get another proof of Theorem 2.8 as a
consequence of our Theorem 4.1 below.

In order to show that the solution of cohomological equations are sufficiently
regular, we must show that the holonomy maps of certain foliations are smooth. We
will show this proving that certain linear cocycles are indeed coboundaries. As it was
already mentioned above, that can be done invoking *“classical” LivSic theorem when
fibers are one-dimensional. In higher dimensions, we need the following Liv§ic type
theorem for linear cocycles due to Kalinin:

Theorem 2.9 (Theorem 1.1 in [10]). Let A: M — GL4 (R) be a Hélder cocycle over
a transitive hyperbolic homeomorphism f: M “O. Assume that (POO) holds for A.
Then, for every xo € M, there exists a unique Holder map U: M — GL;(R) such
that

A@x) =U(f))UX) ™, Vxe M,

and U(xg) = Idga.
Moreover, there exists a constant C > 0 depending only on f such that

Ule < €[4y -

The following consequence of the previous result will be needed later:

Proposition 2.10. Let f: M “O be a hyperbolic homeomorphism and (A;: M —
GL;(R))ten be a continuous family (parametrized on a topological manifold N )
of a-Holder cocycles such that (POO) holds for every t € N. Then, there exists a
continuous family of a-Holder transfer functions (U;: M — GLg (R))en satisfying

A (x) = U (f(x)U: ()L, VteN, Vxe M.

Proof. Consider a point xo € M whose forward orbit by f is dense in M and
let Uy : M — GLg4z(R) be the unique solution of the cohomological equation
A (x) = Uy (f(x))U;(x)~! such that U, (x¢) = Id, given by Theorem 2.9. Notice
that |U; |, is uniformly bounded on ¢ € N.
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Now we have to show that U; depends continuously on7 € N. Letus fix tp € N
and ¢ > 0. Let n be sufficiently large so that the segment of orbit xg, ..., f"(xp) is
d-dense, where

R~

d:=¢|6C A .
+(oc mia.

and C is the positive constant given by Theorem 2.9.
By continuity of the family A, with respect to , and observing that U, ( f ¥ (xq)) =
Agk)(xo) for every k = 0, there exists a neighborhood V' of #y such that it holds

Invoking the uniform Holder estimates, we deduce that the C °-distance between
the functions U; and Uy, is smaller than ¢, for every f € V. |

for0O<k <n, VeeV.

U (¥ (0)) = Un (¥ (x0) | < 5.

To end this section, let us explain the main difference between our approach
and Kalinin’s. In [10], the author’s strategy consists in estimating the distortion of
a left GL;(IR)-invariant metric via the control of the Lyapunov exponents of the
cocycle, and then he can apply LivSic’s classical argument (see for instance [12,
Theorem 19.2.1]). On the other hand, our approach is quite closer in spirit to the one
used by Wilkinson in [23], where one lifts the dynamics to a certain skew-product
and, using partial hyperbolicity theory, one is able to lift invariant foliations that are
used to construct the solution of the cohomological equation.

3. Domination, zero Lyapunov exponents and coboundaries

In this section we study the relation between domination, nullity of Lyapunov
exponents and cohomology of bundle maps. The main result we present here is
the following:

Theorem 3.1. Let N — £ 5 M be a C%'-fiber bundle and F:E O be a
C*-bundle map over an a-Hélder hyperbolic homeomorphism f:M ‘O. Let
us assume that (POO) holds for F. Then, the following statements are equivalent:

(i) AX(F, 1) =0, for all i1 € M(F);
(ii) F is a-dominated;

(iii) F is a C%'-coboundary and, according to Section 2.6, the fiber bundle N —
E 5 M admits a C%-trivialization.

The most relevant implication in this result is (ii) = (iii), while the other two are
rather classical. Moreover, condition (7ii) automatically implies condition (POQO),
while (i) implies (ii) regardless of this condition.
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Remark 3.2. We shall use a rather classical trick (see for example [22]) which allows
us to reduce the general a-Holder case to the Lipschitz one: if N — & 5 (M, d)
is a C*%!-fiber bundle, f:(M,d) O is a hyperbolic homeomorphism and F: & ©
is a C*!-fiber bundle map which is a-dominated, then changing the metric d by d
(see (2.1)) on M, we obtain a C1P:!-fiber bundle, f continues to be hyperbolic (see
Remark 2.3) and F turns to be a C“"P!-bundle map which is 1-dominated. Moreover,
F is a CUYP-1_coboundary when M is endowed with the d,, metric if and only if it is
a C*!-coboundary when M is equipped with d.

In view of Theorem 3.1, it is natural to ask:

Question 3.3. Let N — € 55 M be a C%'~fiber bundle and F:E < be a C%-
bundle map over a hyperbolic C*-homeomorphism f: M *O. Suppose that (POO)
holds for F. Then, is it true that F is «-dominated?

By Remark 3.2, in order to simplify the notation from now on and until the end
of this section, we shall assume that @ = 1 = Lip.

To start with the proof of Theorem 3.1, we first show that (i) implies (ii). This
result maybe belongs to the folklore, but since our context is slightly different from
usual ones, we decided to include an outline of the proof:

Proposition 3.4. Let us assume that
AE(F, 1) =0, VjieM(F),
Then F is 1-dominated.

Proof. Let us show that F is (u, 1)-dominated. The (s, 1)-domination follows from
completely analogous arguments. To prove that, we shall only use the hypothesis
AT(F, i) = 0, for every ji € M(F).

Then, let us consider the fiber bundle p: P — £, where the fiber over an arbitrary
¢ € € is given by the projectivized tangent space of the submanifold £, ) < £.

Now, the derivative-along-fiber operator g, F' defined by (2.5) naturally induces
a bundle map [0, F]: P D over F: € .

Then we consider the continuous real cocycle ¥: P — R over [dg, F'] given by

| O F - UHF(;)
vl

where [v] denotes the element of P induced by v.
Now, let Ko, A be the constants and v,, be the multiplicative cocycle associated
to f given by Definition 2.1, and suppose F is not (u, 1)-dominated. Then, there

exists a sequence of points (¢, ),>1 in £ and a strictly increasing sequence of natural
numbers (£,,),>1 such that

¥ ([v]) := log , VYCe&, YveTEn\{0}

€n)
> M, Vn = 1. (3.1)

HaﬁbFe" (Cn) 5
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This implies that for each n € N we can find [v,] € P¢, such that

. (3.2)

¥ ([wal) = 3 ¥ (10 F1[vn]) = log |0 F* ()
j=0

Then, by Banach—Alaoglu theorem, there is no lost of generality assuming that
there exists 77 € M(P) such that

ln—1

1 y -
- Z [0ibF 7]+ (B[v,]) — 7, asn — 00, (3.3)
n ]=0

where the convergence is in the weak-* topology.
Putting together (3.1), (3.2) and (3.3), we can easily show that

“£n) 1
il = i ) o —(logKo-i—an—Z):A. (3.4)
P

n—w 4, n—c £,
Finally, defining n := np,(77), we get n € 9N(F) and from (3.4) it easily follows
AT(F,m) =2 1>0,
contradicting our hypothesis. 1

Next we show that (ii) implies (7ii) in Theorem 3.1.

Since we are assuming F is 1-dominated, by Proposition 2.6 we know we can lift
the stable and unstable sets of f to £. We shall need the following regularity result
about these lifts.

Lemma 3.5. If W? denotes the lift of W (with o € {s,u}), then there exists a
constant K = 1 such that

de(§.n) < Kd (7 (£), 7 (1),

for every ¢ € €, n € W9 ({) and such that w(n) € Wg‘(’)(n(é'), f), where 8¢ is the
constant associated to f by Definition 2.1.

Proof. This is a straightforward consequence of Proposition 2.6, i.e. the fact that the
elements of W7 are graphs of Lipschitz functions with uniformly bounded constant
over the stable and unstable sets of f. ]

Then we need the following result that plays a key role in the construction of
solutions for the cohomological equation. Given a homeomorphism g: X — X and
a point x € X, we shall write Og(x) = {g"(x)}nez for the g-orbit of x.



Vol. 91 (2016) Livsic theorem 93

Proposition 3.6. If F is 1-dominated and (POO) holds, then the closure of every
F-orbit is the image of a Lipschitz section. More precisely, for every { € £, there

exists a Lipschitz section Ve: O ¢ (T[ (¢ )) c M — & such that

Or@ = {Vs(») e €:y e Os (@)}

Proof. In order to show that the closure of any F-orbit coincides with the image of

a continuous section of the fiber bundle N — £ ©> M, it is enough to show the
following

Claim 1. For every ¢ € £ and every ¢ > 0, there exists § > 0 such that

de(2, F"() <,

whenever d (7(2), f™(7(£))) < 6.

Indeed, if the Claim is verified, it follows that the map from Oz (7 ({)) to €

which maps f¥(x(¢)) — F k() is uniformly continuous and therefore extends
continuously to its closure.

To prove Claim 1, let { € £ and & > 0 be arbitrary. Then, let us choose
§ := min (80, 81, s(4cK)‘1), where constants §; and ¢ are given by Theorem 2.4
and K is given by Lemma 3.5.

Then, suppose n € N is given such that d (7 (Z). /™ ((£))) < §. Since f is a
hyperbolic homeomorphism and § < §;, we can apply Theorem 2.4 to guarantee
the existence of p € Per(f) and y := [JT(C), p] € M satisfying (1), (2) and (3) in
Theorem 2.4. Thus, taking into account that the fiber bundle projection 7 is one-
to-one on W¥(¢) < £ and y € W¥(w(0), f) = n(W”(é’)), there exists a unique
point ¢, € £, n W¥({). Analogously, 7 is one-to-one from WW*({,) onto W*(y)
and hence, there exists a unique point {, € £, N W¥({y).

Now, observing that {, € W*¥({,) and {,, € W¥({), we can combine Theorem 2.4
and Lemma 3.5 to guarantee that

de(8.8p) < de(l.8y) + de(Cy. 0p)

< K[d (7). y) +d(y, p)} < 2K¢$ < =)

g
2 9
and

d(F"(©), F"(¢p)) < de(F"(§), F"(§y)) + de(F" (5)), F™(5))
< K[d (" (@), ") +d ("), f”(p))] (3.6)
< 2Ked (f"(x(6). 7(0)) < 2Keb < 2,

Finally observe that, since f"(p) = p and (POO) holds, it follows that
F"({p) = {p. Then, putting together (3.5) and (3.6), we get de({, F"({)) < e,
and our claim is proven.
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To finish, notice that in the proof of Claim 1, the constant
§ = min{8y, 81, (4cK) ™!}

depends linearly on ¢ (when ¢ is small enough) and therefore, the map is indeed
Lipschitz. O

It is interesting to notice that the exponential shadowing given by Anosov closing
lemma (Theorem 2.4) was not used in the proof of Proposition 3.6. In fact, the
classical Shadowing Lemma is enough because the Holder regularity (in this case
Lipschitz) was already used in Lemma 3.5.

Now, let us consider a point xo € M such that its forward and backward f -orbits
are dense. Then, by Proposition 3.6, assuming F' is 1-dominated, for every { € &y,
there exists a continuous section Ve: M — £ such that OF ({) coincides with the
image of V. To simplify the notation, the image of section V; will be denoted by Z¢,
i.e. we define Z; := {V¢(x) € £ : x € M}, for every { € &y,.

Then we will show that the family {Ig} tety, determines a continuous lamination

in £. To do this, we first prove the following

Proposition 3.7. If F is 1-dominated, then for each { € Ex, the image of the section V
defined above is saturated by leaves of the lamination YW* (WY, respectively.) More
precisely, for every { € Ex, and any n € L,

W?(n) cZ¢, foro e{s,u}.

Proof. We will prove the proposition for o = s. One can recover the proof foro = u
by considering F~! instead of F.

Let us suppose the assertion is not true. Then, there exists some { € &y, and
n' € Zg such that W*(n') ¢ Z;. By continuity of the section V; and the stable
lamination, we can choose a point n € Z; such that the forward f-orbit of 7 (n) is
dense in M and W*(n) ¢ Z;. Then, we take a point £ € W*(n)\Z.

Observe that (’)Jt(yr(é)) is dense in M. Hence, the section V¢ given by
Proposition 3.6 is defined on the whole space M. But, since £ € W?*(n), the
set OF (§) intersects the fiber ;) at two different points: at § and at Vi (7 (§)),
contradicting Proposition 3.6. O

Remark 3.8. A less elementary proof of Proposition 3.7 can be easily gotten by
invoking the topological version of the Invariance Principle of Avila and Viana (see
Theorem 2.7). In fact, assuming domination and condition (POO), using Theorem 2.8
it can be shown that condition (i) of Theorem 3.1 holds; and then the Invariance
Principle can be applied.

As a consequence of Proposition 3.7 we know the family {Z } tee, 1S @ partition
0

of the total space £, and moreover, a continuous lamination whose leaves are
(topologically) transverse to the fibers of the fiber bundle N — &£ %, M. Thus,
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we can define the holonomy maps of this lamination as follows: given arbitrary
points x, y € M ,the holonomy map from x to y is defined by

Hxy:Ex30— Vf(y) €&y, (3.7)

where f is the unique point in £, such that { € If- Observe that, by Proposition 3.7,
holonomy maps are (at least) homeomorphisms. After some additional results, we
shall show they are indeed C !-diffeomorphisms.

Then we get the following

Proposition 3.9. The fiber bundle map F:E O is a CYP°-coboundary. More

precisely, the fiber bundle N — £ = M admits a continuous trivialization H: € —
M x N that makes the diagram (2.4) commute.

Proof. To show that the fiber bundle is trivial, let us consider themap H: £ — M x N
given by

H({) := (N(C),prz(fbj (Hn(c),xo(t)))), V(e &, (3.8)

where ¢p;: U; — M x N is afixed trivializing chart of the fiber bundle N — & M
such that xo € U;. Then, since holonomy maps are homeomorphisms, it is clear

that H itself is a homeomorphism, and since F (If) = If’ for every E € Exyy WE
conclude that

H(F©) = (f xidny)(H({)), Ve,

as desired. ]

At this point, it is worth mentioning that we took the effort of working on general
fiber bundles because we understood this more general setting might actually arise
in some cases (see for instance the vector bundle = constructed after Lemma 3.10).
However, as Proposition 3.9 shows, an a priori arbitrary fiber bundle supporting
a fiber bundle map with vanishing of the periodic orbit obstruction is a posteriori
trivial.

Finally, in order to show that F is a CYP'!-coboundary it remains to prove that
the map H: £ — M x N constructed in the proof of Proposition 3.9 is indeed a
CUP-1_bundle map.

To do this, it is necessary to show that the holonomy maps defined in (3.7) are
differentiable and this will be gotten by invoking Proposition 2.10. To use this result,
we first need the following

Lemma 3.10. For every { € Ex,, the section Vi: M — & (whose image is L) is
Lipschitz.

Proof. This is a straightforward consequence of the fact that the graph of V; is
saturated by YW and W*, which are Lischitz themselves and have local product
structure (see (h5) in Definition 2.1). O
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Now, for every { € &, consider the set

Ci= || Tvewéx
xeM

]

where | | denotes the disjoint-union operator, and the “natural projection” map
7¢: 8% — M given by (%) 1(x) = Ty, (x)Ex, for every x € M. By Lemma 3.10,
the set 2% can naturally be endowed with an appropriate vector bundle structure

¢ .
turning RY — 2% X5 M into a CHP-vector bundle, where d = dim N.
On the other hand, since every leaf Z; is F-invariantand F|, :&x — Efx) isa

C !-diffeomorphism, our fiber bundle map F naturally induces a C"P-vector bundle
map DF*: E% < over f: M “ given by

DF%(vy) = 0w F (Ve(x))(vx), Vx € M, Yux € BS = Ty, (x&x. (3.9)

where O, F denotes the (partial) derivative along the fibers defined in Section 2.7.
Then we get the following

¢
Proposition 3.11. For every { € Exo, the vector bundle R — 2% 25 M is trivial
and the vector bundle map DF* is a CY?P-coboundary, i.e. there exists a C“P-vector

bundle map U%: 2% — M x R? satisfying
U o DF® = (f x Idga) o US.
Moreover, the family (U g)é-egx() can be chosen to vary continuously on (.

Proof. Since (POO) holds for F, one know that it vanishes for DF ¢ too. Hence,
by Theorem 2.8, DF¢ has zero Lyapunov exponents with respect to any f -invariant
probability measure. In particular, invoking Proposition 3.9 we conclude that the
vector bundle

¢
R? - B T M

is trivial and we can apply Proposition 2.10 to obtain a continuous family U?¢ of
solutions, as desired. O

Then we get the following
Corollary 3.12. If F is 1-dominated and (POQO) holds, then there exists C > 0 such

that
HaﬁbF”(v)H <C, VnelZ,V{e&, Vve ngg(x).
Proof. This is a straightforward consequence of Propositions 3.11 and 2.10. O
Then we finally get

Proposition 3.13. The holonomy maps given by (3.7) are differentiable and
consequently, the map H: £ — M x N defined by (3.8) is a C"-bundle map.
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Proof. Given arbitrary points x,y € M, we need to show that the holonomy
map Hy,y:Ex — &, associated to the lamination {Z}¢cg, . which is clearly a
homeomorphism, is indeed a C !-diffeomorphism.

To do this, first observe that since each leaf of the lamination {Z¢}sce, is
F-invariant, it holds

H pm(x), fn(x) = Fn_mlgfm(x)’ Vxe&, Vm,n € Z. (3.10)

Consequently, holonomy maps between any two points of the same f-orbit are indeed
C!-diffeomorphisms.

To deal with the general case, consider arbitrary points x,y € M and let
¢i:t Y (U;) — U; x N, withi = 1,2, be two trivializing charts such that x € U,
and y € U,. Recalling we have chosen xo € M so that its forward f-orbit is
dense in M, we can find two sequences of natural numbers (m2;) and (7;) such that
Uy 3 fMi(xg) = xand Uy 3 f"(x9) — y,asi — 0.

Then, for each i > 1, let us define H; € Diff' (N) by

H;(p) := Pry 0 92 0 H rmi (xg). f7i (xg) © 01 (™ (X0), P),
and H € Homeo(N) by

H(p) = pry 0 92 0 My 0 97 ' (%, p),

for every p € N. We want to show H € Diff} (N), too.

By continuity of the lamination {I;}gegxo, wheni — o0, H; — H pointwise. By
Corollary 3.12 and Arzela—Ascoli theorem, we conclude the convergence H; — H
is C%-uniform.

Now, Proposition 3.11 implies that the fiber bundle is trivial and the derivatives
of the cocycle provide a continuous family of linear cocycles for which (POO) holds.
Therefore, the hypotheses of Proposition 2.10 are verified and we get a continuous
family of solutions for the corresponding family of cohomological equations. These
solutions are indeed the derivatives of H so we deduce that the sequence of derivatives
(DH;(p))i=1 is also convergent, for each p € N. Consequently, 7 is C! and then,
Hx,y: Ex — &, is a diffeomorphism, as desired. O

Finally, it remains to show that (iii) implies (i) in Theorem 3.1. But this is obvious,
because a CP:!_coboundary is, by the very same definition, conjugate to the map
(f xidy):M x N © via a CHP:1fiber bundle conjugacy, and therefore, every
Lyapunov exponent must vanish.

4. Domination as a consequence of vanishing of the periodic orbit obstruction

In this section we shall review some contexts where condition (POO) alone implies
that the cocycle is dominated, and as a consequence of Theorem 3.1, it is a coboundary.
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We start proving Theorem B which follows from Theorem 3.1 and Katok closing
lemma [11].

Proof of Theorem B. Let S — & = M x S > M denote the trivial fiber bundle and
F: M x S O be the C'*% skew-product over f induced by ® as in (2.3). Oberserve
that for F' the (POO) holds.

Let us suppose there exists an F-invariant ergodic probability measure fi such
that AT (F, 1) # 0.

Since @ takes values in the group of area-preserving diffeomorphisms of S, by
Oseledets theorem we know that

AT(F,2) + AT(F, p) = 0.

So, we have
A=(F, @) <0 < AT(F, i),

and since f: M *O is an Anosov diffeomorphism, this implies fi is a hyperbolic
measure for F (i.e. all its Lyapunov exponents given by Oseledets theorem are
different from zero).

So, applying Katok closing lemma [11, Corollary 4.3], we conclude that F
exhibits a hyperbolic periodic point. But, invoking condition (POO), if ¢y € £ is
periodic with F"(§o) = &o, then F"({) = ¢, for every { € Er¢,. So {o is not an
isolated point of Fix(F™), and hence, it is not hyperbolic, getting a contradiction. [J

The amount of regularity required in the fiber direction is essential in our argument
and it is the usual one in Pesin’s theory which allows to obtain a subexponential
neighborhoods of a regular orbit with good estimates on the bundles of the Oseledet’s
splitting (see [12, Supplement]). The recent examples of [4] show that improving
this regularity requires new ideas, and we do not see how low-dimensionality nor
volume preservation would help.

On the other hand, the requirement on Theorem B that the base dynamics is smooth
might not be essential. Most likely, similar arguments to those we will perform to
prove Theorem A might allow to get the same result just requiring continuity for the
base dynamics, but the details would become significantly more involved. Since in
this case our result is partial, we have chosen to present it in this simplified context.

In order to prove Theorem A, we need the following result that should be
considered as the main one of this section:

Theorem 4.1. Let N — & 55 M be a C%'-fiber bundle and F:£ O be a
C%'-bundle map over an «a-Hélder hyperbolic homeomorphism f:M . If
there exists an ergodic measure I € M(F) with AT (F, i) < 0, then there exists
Co € Per(F) which is uniformly contracting along the fiber, i.e. if n > 0 denotes the
period of §o, then all the eigenvalues of the linear map Op F" ($o): Tty Ex(zy) O have
modulus strictly smaller than 1.



Vol. 91 (2016) Liv§ic theorem 59

It is interesting to remark that applying Theorem 4.1 to the natural action induced
by a linear cocycle on a suitable Grasmannian fiber bundle (corresponding to the
dimension of the subspace with largest Lyapunov exponent), one can reprove part of
Kalinin’s result on approximation?® of Lyapunov exponents [10, Theorem 1.4].

Now, we can prove Theorem A as a combination of Theorems 3.1 and 4.1:

Proof of Theorem A. Let R/Z — €& = M x R/Z 5 M denote the trivial fiber
bundle and F: M x R/Z “O be the skew-product over f induced by @ as in (2.3).
Since (POO) holds for @, then it does for F, too.

Hence, for every ¢ € Per(F) such that F"({) = ¢, it clearly holds Jg, F"* =
D®™ = id and consequently, all the eigenvalues are equal to 1. So, applying
Theorem 4.1 to F and F~! we get

_A+(F_l?ﬁ‘) = A_(F’ ,Ll,) <0< l+(F’/:\(')

But since the fibers are one-dimensional, we can apply Birkhoff ergodic theorem to
conclude that A= (F, ji) = A1 (F, ji). Therefore, A= (F, 1) = AT (F, i) = 0 and by
Theorem 3.1, F is a C%!-coboundary, as desired. O

4.1. Proof of Theorem 4.1. From the uniform continuity of dg, F and f, it easily
follows.

Lemma 4.2. For every 6 > 0, there exists y > 0 such that for every n,& € &£
satisfying

de(F'(n), F'(§)) < x, foreveryi €{0,...k},
it holds

H”aﬁbF F (77) kal—[”aﬁbF F! (’é))”

Along the proof we shall assume that AT := A7 (F, i) < 0.
It is a classical fact that one can choose measurable adapted metrics which see
the contraction at each iterate (see for example Proposition 8.2 of [1]):

Lemma 4.3. For every ¢ > 0 there exists an integer N > 0 and a measurable
function A : £ — [1, +0) such that:

» The sequence (A(F = (é’))nEZ varies sub -exponentially (i.e. one has that for
ji-almost every ¢ € & the sequence |n| log |A(F"(2))| converges to 0 as
|n| — o).

3The statement above implies, in particular, that if ®: M — GL4 (R) is a-Hélder and the (POO)
holds, then every measure has zero Lyapunov exponents. To obtain that all Lyapunov exponents can be
approximated one can apply the arguments in this section to approximate the top Lyapunov exponent, and
then uses the same trick of exterior power as in Kalinin’s paper to obtain the other estimates.
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* If we define the metric |- in T¢Exn(z) by

ol = 3" e ETHOAE @) [amFr Q) o)

0<k<N

Fk@)’
then, for ji almost every ¢ € £ and every v € T¢Ey(¢) one has

At
106 F (&) - vl pey < @77 o -
We shall fix ¢ < min{—%, %}, where « is the Holder exponent of F and A is
the hyperbolicity constant appearing in Theorem 2.4. Consider the function A and
the metric ||-|" given by the previous lemma and let us fix them from now on.

Using this metric, by standard arguments one can show that it is possible to define
sub-exponential neighborhoods (sometimes called Pesin charts) of typical points with
respect to /i such that the dynamics in those neighborhoods behaves similarly to the
derivative (see for example [12, Supplement]).

For { € £ we shall consider the exponential map exp : Tz Ex) — Ex(¢) Where

the distances in T¢ Ex(¢) are measured with respect to the metric | - ;. We denote by
By (r) the ball of radius r centered at 0 in T¢ Ex(z).

Lemma 4.4. There exists a measurable function p : £ — (0, +400) such that if
— s . -1 Y

Yr = exp\Bé(p(g)), then for ji-almost every point the map ¢ - © F oy © By (p(8)) —

B’F(g)(p(F(é'))) contracts vectors by a factor smaller than eGT 429 Moreover,

the sequence p(F™ (L)) is sub-exponential and can be chosen so that e °p({) <

p(F(0)) < e*p(0).

It is relevant to remark here the fact that the sub-exponential growth of the
function p is essential in Pesin’s theory and this is the precise point where the Holder
regularity of the cocycle is usually invoked. Here, since we are working with measures
whose Lyapunov exponents are all negative, C !-regularity along the fibers is enough.

Remark 4.5. Notice there is a measurable function D which associates to each

i ! . . .
¢ € &anisometry Dg : (TeExe)s e ) = (Te€xce)s | )- When this linear map is
considered as a transformation from (7 Ex(e). ||| ¢ ) to itself, the norm and co-norm
of D¢ are bounded by a number depending only on A({).

Using Luisin’s Theorem on approximation of measurable functions by continuous
ones (see for example [12, Supplement]) one obtains a compact set X < &£ of positive
ft-measure such that functions A and p are continuous on X and, thus, bounded (we
define Ax := sups.xy A({) and px := infzex p(x)).

Consider a point {y € X which is recurrent inside X, i.e. there exists n; — o0
such that F"7 ({y) — Cp and F"/({o) € X forevery j > 0.

Let us write xo := 7({o) and, for each j > 0, let p; € Fix(f"/) be the periodic
point of / given by Anosov Closing Lemma (Theorem 2.4). One has that:

d(fi(x0), fi(p;)) < ce minlbni=g(f1i(x0),x9), fori =0,...,n;.

where ¢, A > 0 are the constants given in Theorem 2.4.
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Notice that
d(f" (x0),x0) < dg(F"7 ($o), $o) — 0.

Fix § < e and let y be the constant given by Lemma 4.2 for such a §.
The main step in the proof is the following

Lemma 4.6. Forn; large enough, there exists a small open ball B; < Spj such that
an(B_j)C Bj. 4.1)

Moreover, diam(F'(B;)) < x/2 and dg(F'(B;), F'(¢o)) < yx/2, for every
O S [ S I’lj.

Let us now conclude the proof of Theorem 4.1 assuming this lemma:

By (4.1), we know there exists §; € B; such that F"*/ (§;) = §;, and it also holds
de(F'(€;), F'(¢o)) < x, forall 0 < i < nj. Hence, applying Lemma 4.2 and the

fact that §o, F"/ ({o) € X, we prove that £; is uniformly contracting along the fiber,
as desired.

So, it only remains to prove Lemma 4.6.

Proof of Lemma 4.6. Since there exists a trivializing chart containing xo and p;,
there exists a point {; € £, such that d¢(L;, o) = d(p;, x).

From the choice of xg and pj, if n; is large enough, we can always assume that
both f*(x¢) and f'(p;) liein the same trivializing chart for0 < i < n;. So, fixinga
trivializing chart containing f* (xo) and f*(p;), we have a projection pry: & ri o
E fi(x0)- Giyen two points § € iy and n € Exri(, y such that § pry(n) €
Blyi o) (0(F (C0))), we can define d2(5,1) = d(m(§).7(n) + d'(§. pry(n).
where d’ is the distance in B’F,-(go)(p(F" (Zo))) induced by the norm I"l‘;’i(i'o)'

For 1 < k < nj, and assuming that

AL(F¥=1@5), F¥= G0)) < minfp(F*~' (o)), 23,

we can invoke Lemma 4.2 to get

de(FE (). F* (o)) = dg(F(F* ¢)). F(F*'(60)))

< Eesnlin{k’nj _k}dcl (ka_l(Pj)’ ka—l(xO))

+ &8 o PP @) d2(FF ), F¥ o)),
(4.2)

where the constant ¢ only depends on Ay and px. The factor ée®™in{k:nj =k} qppears
to take into account the distortion in the new metric, which is bounded by ¢ at the

points (o, F"/ (o) € X and the change of the distortion at each iterate is bounded
by e®.
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Now, let us define the sequences
ag = Eet™MNN T 1 (F iy, Friei(xy)

and by :=¢® HaﬁbF(Fk~1(§0))H' .

Observe that by < G438 1 for every k > 1.
By induction and applying estimate (4.2), one gets

k k k

dL(F*(¢;), F¥ (L)) < Zai( I1 bj) < Zaie(k_i)(ﬁﬁs), Vi > 1.
=1 j=i+1 =1
(4.3)
One can estimate the size of a; as follows (here is where Holder continuity of F

is essential):
a; < eemin{i,nj—i}Cle—aAmin{i,nj—i}d(xo’ f‘nj (XO))a, for0 <i < nj, (4.4)

where ¢’ > 0 depends on the constant ¢ appearing in Anosov closing lemma
(Theorem 2.4), the Holder norm of the C%!-bundle map F and the constant ¢
which was defined above.

Choosing n; so that d(xq, f"/(xo)) is sufficiently small and recalling that
e < %ae)u, we can perform induction and thus ensure that the iterates FX(¢ j) of
the point {; remain always close enough to F SEE:

Using the estimate of Lemma 4.2, one concludes there is a ball B; with the
desired properties. O
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