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Livsic theorem for low-dimensional diffeomorphism cocycles

Alejandro Kocsard* and Rafael Potrie**

Abstract. We prove a Livsic type theorem for cocycles taking values in groups of
diffeomorphisms of low-dimensional manifolds. The results hold without any localization
assumption and in very low regularity. We also obtain a general result (in any dimension)
which gives necessary and sufficient conditions to be a coboundary.
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1. Introduction

In the study of hyperbolic dynamical systems there is a general (and vague) idea that

can be summarized with the following sentence:

Most of the dynamical interesting information on a hyperbolic system
is concentrated in its periodic orbits.

An archetypal example of a result supporting this idea is the celebrated Livsic's
theorem [16, 17] claiming that given a hyperbolic homeomorphism /: M O, a

Holder function O: M —> R is a coboundary, i.e. there exists a continuous function
u: M —> R satisfying

mo / — u — 4>,

if and only if
n-1

I>(/yo>)) °>

7=0

for every periodic point p e M, with fn{p) p.
Due to the interest this result has received since its appearance and the large

amount of consequences that follow from it, several generalizations have been studied.
Some of them consider more general dynamics on the base. For instance, in the

* A. K. was partially supported by CNPq and FAPERJ (Brasil), and Fondo Clemente Estable (Uruguay).
**R. P. was partially supported by CSIC group 618, FCE-3-2011-1-6749 and Balzan's research project

of J. Palis.
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works [13,23] the cohomology of real cocycles over partially hyperbolic systems is

analyzed.
In this paper, we consider a different kind of generalization: given a complete

metric group G, a G-cocycle is just a continuous map <f>: M —> G and one wants to
determine whether the condition

Hfn-\p))Hfn~2(p)) Hp) eo, Vp 6 Fix(/"), Vn > 1,

where <?g is the identity element of G, is not just necessary but also sufficient to

guarantee the existence of a "transfer function" u: M —» G satisfying

dXx) u{f{x))u{x)~x, Vi 6 M.

Livsic himself gave in [16] an affirmative answer to this question for cocycles
taking values on a topological group admitting a complete bi-invariant distance (e.g.
Abelian or compact groups). However, the general situation is considerably more
complicated.

So far, the main technique to handle this problem when the group G does not
admit a bi-invariant metric has consisted in considering a left-invariant metric on G
and to try to control the distortion produced by right translations to be able to apply
the very same scheme of proof used in the Abelian case.

In order to get such a control of distortion of the distance, some localization
hypotheses have been considered in the literature. For instance, in [17] Livsic gave a

positive answer to above question for linear cocycles (i.e. where G GL^ (R)) which
are not too far away from the identity constant cocycle. Improvements of this result

using weaker localization hypotheses have been obtained for cocycles taking values

in arbitrary finite-dimensional Lie groups (see [5,14] and references therein) until
the recent complete solution of the global Livsic problem for linear cocycles [10]
(see also the recent preprint [7]).

In the infinite dimensional case, particularly when G is a group of diffeomor-
phisms of a compact manifold, the study began with the seminal paper of Nijicä
and Török [20]. Diffeomorphism groups seem to be the most interesting infinite
dimensional groups for applications to rigidity theory (see [14] and references

therein).
In contrast with the finite dimensional case, all the results for groups of

diffeomorphisms obtained so far (see [5] for a survey with references) involve non-
sharp localization hypotheses (in the sense that not every coboundary satisfies them)
and require higher regularity for the diffeomorphism group (i.e. G Diffr(A),
with r ^ 4). Moreover, the control of distortion techniques used in [5,20] yield a

loss of regularity in the solution of the cohomological equation. A recent result for
infinite dimensional groups which does not fit in the previous description is due to
Navas and Ponce [19]. They prove a Livsic theorem for cocycles taking values in the

group of analytic germs at the origin of C.
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In this paper we use completely different techniques, with a more geometric
flavor, which allow us to deal with the low regularity case (cocycles can take

values in the group of C1 -diffeomorphisms). The main novelty of our approach
is Theorem 3.1 which can be of independent interest. Regarding this result within the

context of localization arguments, we could say that it is proven that our non-uniform
localization hypothesis (i.e. vanishing of fibered Lyapunov exponents) is equivalent
to be a coboundary.

In Section 4 we show that in the low-dimensional case the periodic orbit condition
implies the vanishing of fibered Lyapunov exponents, proving in such cases the

general (or global) Livsic theorem for groups of diffeomorphisms. We conjecture
that such a result holds in any dimension.

Since our result was announced, several new ones concerning the cohomology of
cocycles having equal periodic data have appeared. We refer the reader to [3] and

references therein for more information on this important problem.

1.1. Main results. The main results of this article are the following Livsic type
theorems which, to the best of our knowledge, are the first general (i.e. global) results

for cocycles taking values in groups of diffeomorphisms of compact manifolds:

Theorem A. Let f'.M O be a hyperbolic homeomorphism and <f>: M —*

Diff1 (R/Z) be an a-Hölder cocycle such that the so called periodic orbit obstructions
vanish; i.e.

0 ®(fn~2(p)) o • • o $(p) idR/z, fp e Fix(/"), Vn e N.

Then, there exists an a-Hölder map ur.M -> Diff1 (R/Z) satisfying

<f>(x) u(/(x)) o w(x)-1, Vx 6 M.

Remark 1.1. The very same argument we use to prove Theorem A works for cocycles
taking values in Diff1([0,1])

For higher regularity, invoking the main result of [6], one easily gets the following
consequence of Theorem A:

Corollary 1.2. Let f'.M O be a hyperbolic homeomorphism and <1>: M —
Diff" (R/Z), with r R 1, be an a-Hölder cocycle for which the periodic orbit
obstruction vanishes.

Then, there exists an a-Hölder map u: M—> Diff (R/Z) satisfying

<F(x) w(/(x)) o w(x)-1, Vx e M.

Assuming higher regularity on the dynamics of the base and the cocycle,
applying the results of [9,21] one can improve the regularity of the solution of
the cohomological equation. Since this kind of results is beyond the scope of this
article, we suggest the interested reader to consult [14,23] for further information.
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In dimension 2, we can obtain a similar result for the group of area-preserving
diffeomorphisms:

Theorem B. Let M be a smooth closed manifold and f'.M O be a C1+0 transitive
Anosov dijfeomorphism. Let S denote a compact surface, let vol be a Lebesgue

probability measure on S and let Diff£o;(S) be the group of Cr-diffeomorphisms
of S that leave vol invariant.

Let <f>: M —> Diff*^a(S) be a C]+a-cocycle1 for which the periodic orbit
obstruction vanishes.

Then, there exists an a-Hölder map u: M —> Diff(S) such that

$(r) ii(/(r))ow(x)"1, MxeM.

It should be noted that Theorem B, unlike Theorem A, is stated for Anosov

diffeomorphisms on the base (and in paricular, the base space M should be a manifold)
instead of a hyperbolic homeomorphisms. This restriction appears as a technical

simplification which will be explained in the proof, but the theorem should remain
true assuming weaker hypotheses.

Proofs of Theorems A and B consist in two steps. The first one concerns the

vanishing of Lyapunov exponents for cocycles satisfying the periodic orbit condition
and relies heavily in the low-dimensionality of the fibers. The second one holds in

any dimension and can be of independent interest (see Theorem 3.1).

To end the introduction, let us mention that as far as we know, the following
question is still open:

Question 1.3. Does there exist a complete metric group2 G such that a Livsic like
theorem does not hold for G-cocyles? More precisely, does there exist a hyperbolic
homeomorphism f'.M O and a Ca-cocycle 4>: M —* G with vanishing periodic
orbit obstructions but which is not a G-coboundary?

Acknowledgements. We are grateful to A. Navas and M. Ponce for useful
discussions and bringing these problems to our attention. This paper was finished

during a visit of A.K. to Universidad de la Repüblica (Uruguay).

We acknowledge several suggestions of the anonymous referee which allowed us

to improve this paper.

A. K. is very thankful to R. Markarian for his hospitality.

'This means that the induced map MxU(t,fin 4>(jf)(y) e S is C1+a.
2A topological group which admits a complete distance compatible with the topology of the group.
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2. Preliminaries and notations

2.1. Holder continuity. All along this paper, (M, d) will denote a compact metric

space. If (M', d') denotes another arbitrary metric space and 0 < a ^ 1, a map
M —> Ml is said to be a-Holder whenever

d'(f(x),f(y))
I*-35 <0°'

Most of the functions and maps we shall deal with in this paper will be at least

Holder because, as it was already observed in [15], in general C°-regularity is not

appropriate for dynamical cohomology.
When a < 1, the space of a-Höldcr maps from M to M' will be denoted by

Ca(M, M'). As usual, we use the term Lipschitz as a synonym of 1-Hölder, and to
avoid confusions with the differentiable case, we write CLip(M, M') for the space of
Lipschitz functions.

For such a real constant a, we can define a new distance on M by

da(x, y) := d(x, y)a, Vx,yeM. (2.1)

Observe that the topologies induced by d and da coincide and a map xjr: (M, d) —>

(M', d') is a-Hölder if and only if \fr\ (M, da) —> (M', d') is Lipschitz.

2.2. Borel probability measures. Given an arbitrary locally compact metric

space X, we write S0t(V) for the space of Borel probability measures on X and

we will always consider it endowed with (the restriction of) the weak-* topology.
If Y denotes another compact metric space, any continuous map h: X —> Y naturally
induces a linear map hp. 2R(A) — 9Jt(L) characterized by the following property:

J 0d(A*/i):=J <t>°hdp, \/<p e C°(Y), V/x e VJl(X).

In this way, if /: X O is a continuous map, one defines the space of /-invariant
measures by

9rt(/) := {fi e m{M) : ftli p}.

2.3. Hyperbolic homeomorphisms. Let (M, d) be a compact metric space and

f'.M O be a homeomorphism. Given any x e M and e > 0, one defines the local
stable and unstable sets by

We°(x, f):={yeM : d(fn(x), f"(y)) < e, V« ^ 0},
W£u(x, f):={yeM: d(f"(x), fn{y)) < e, Vn < 0},

respectively. Where there is no risk of ambiguity, we just write VF/(x) instead of
W£(x, /), and the same holds for local unstable sets.
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Following [2], we introduce the following definition.

Definition 2.1. A homeomorphism f:M O is said to be hyperbolic with local
product structure whenever there exist constants so,8o, ^o.A > 0 and functions

vs,vu: M —> (0, oo) such that the following conditions are satisfied:

(hi) d(f(yi),f(y2)) < vs{x)d{yi,y2),Vx e M,Vyx,y2 e !T/0(x);
(h2) d(f(yx),f(y2)) ^ vu(x)d(yx, y2), Vx e M,fiyx,y2 e W£"(x);

(h3) v^(x) := vs(fn~1(x))... vs(x) < Koe~Xn, Vx e M, V« ^ 1;

(h4) Vu"\x) := vu(fn~1(x))... vu(x) > KoeXn, Vx e M, Vn ^ 1;

(h5) If d(x, y) ^ 8o, then Wfi (x) and WfQ(y) intersect in a unique point which is

denoted by [x, y], and it depends continuously on x and y.
Remark 2.2. For the sake of simplicity of the exposition and to avoid unnecessary
repetitions, from now on we shall assume that all hyperbolic homeomorphisms are

transitive and exhibit local product structure.

For such homeomorphisms, one can define the stable and unstable sets by

Ws{xJ) := (J /-"(W(x))) and Wu(x,f) := [J fn(We»(f-"(x))),
0 n^zQ

respectively.
Notice that shifts of finite type and basic pieces of Axiom A diffeomorphisms

are particular examples of hyperbolic homeomorphisms with local product structure
(see for instance [18, Chapter IV, §9] for details).

Remark 2.3. For our purposes, it is important to notice that the notion of
hyperbolicity for homeomorphisms is invariant under Holder changes of metric. More
precisely, a homeomorphism /: (M, d) O is hyperbolic if and only /: (M, da) O
is hyperbolic, for any a e (0,1), where the distance da is defined by (2.1).

The following result is proven for locally maximal hyperbolic sets of smooth

diffeomorphisms in [12, Chapter 6]. However, by inspection on the proof (see

[12, Corollary 6.4.17 and Proposition 6.4.16]) it can be easily check that the very
same proof works for hyperbolic homeomorphisms with local product structure (see

also [10, p. 1026]):

Theorem 2.4 (Anosov closing lemma). Let f: (M, d) ZD be a hyperbolic
homeomorphism. Then, there exist constants c,8x > 0 such that for every x £ M
and any n > 0 satisfying d(x, /"(x)) < <5i, there exist unique points p e Fix(/")
and y e M such that:

(1) d(fi(x),fi(p)) < cd(x, fn(x))e"^min^'n~'\-
(2) d{f{p), f'(y)) < cd(x, fn(x))e-Xi;
(3) difixffiy)) ^ CJ(x,/«(x))e-^"'-);

for every i e {0,..., n — 1}, where A > 0 is the constant given in Definition 2.1.
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Remark 2.5. Notice that by uniqueness, we have that y [x,p\, where the

brackets [, ] are given by Definition 2.1.

2.4. Cocycles and coboundaries. Let G denote a topological group whose

topology is induced by a complete distance function do, and let f:(M,d) O
be a homeomorphism.

In this work all cocycles we consider will be at least continuous. In fact, a

G-cocycle (over /) is just a continuous map <E>:M — G. As usual, we use the

following notation

<J>(n)(x) :=
eG, if n — 0

<$>{fn-\x))&n~l\x), if « > 0

(<&(-») (fn(x)))~\ ifncO
where ec e G denotes the identity element of G. We say that 0 is a Holder cocycle
when <J>: (M, d) —» (G, do) is an a-Hölder map, for some a e (0,1],

A G-cocycle <t> is said to be a G-coboundary when there exists a continuous map
u: M —* G such that

O(x) u(f(x)) • (w(x))-1, Vx e M.

Notice this implies that <l>^(x) u(fn(x)) • (u(x))-1, for any n e Z and any
x g M.

The first family of natural obstructions one encounters for a G-cocycle to be a

G-coboundary is that over periodic orbits, the cocycle must vanish.

<&(»)(/>) eG, V« Sj 1, Vp e Fix(/"). (POO)

Equation (POO) implies the vanishing of the periodic orbit obstructions.
In this work we mainly concentrate in the case where G Diff1 (N). To deal

with such objects, we need a slight generalization of the concept of cocycle that we
introduce in the following paragraph.

2.5. Fiber bundle maps and cocycles. Let N denote a compact differentiate
manifold and (M, d) be compact metric space as above. Given any a e (0,1] and

r ^ 0, a Ca'r-fiber bundle over M with fiber N is an object N —> £ M, where 5
is a topological space and n is a surjective a-Hölder map such that there exists a

finite open cover {Uj}" of M with the following properties:

• For each j e {1there exists a homeomorphism <pj-. n~l (Uj) —
Uj x A;

• If U, n Uj f 0, there is an a-Holder map g,y: £/,• n U, Diffr(A) such

that

(p, o<p~x(x,y) (x,(gy(x))O0), V(x, y) e (Ut n Uj) x N.
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As usual, one defines thefiber over x by £x := n~1(x) cz £. Due to the nature of
maps (gij) involved in change of coordinates, each fiber can naturally endowed with
a Cr-differentiable structure turning it into a Cr-manifold Cr-diffeomorphic to N.

As usual, when N =~Rd and the maps gij are a-HÄulder and have their image

contained in GL^(R), we say that Rrf —» £ M is a Ca-vector bundle.

The total space of any Ca,r-fiber bundle N —> £ M can be endowed with a

distance function d£ constructed as follows:
Let d,N be a distance function compatible with the smooth structure of the fiber

manifold N, {Uj}" and {<Pj}" be a local trivialization atlas as above, L > 0 be the

Lebesgue number of the open covering {Uj}" and define

de(£, h) := mi" |*%(£). ^0?)) + j^v^pr2(<Pj(£)),pr2(^/(?7))^ j ; l|.
(2.2)

where pr2: M x N —» N denotes the projection on the second coordinate, and by

convention, we declare that djv(pr2(<p7(£)),pr2(<p7(r7))^ diam^N, whenever

either £ or r) does not belong to n~x(Uj).
A Riemannian structure on a Ca'r-fiber bundle £ consists of choosing a

Riemannian metric on each fiber £x which varies Hölder-continuously with x e M.
From now on, we will assume every fiber bundle is endowed with a fixed

Riemannian structure and a distance function constructed as above. All the concepts
we will consider about fiber bundles are completely independent of these chosen

structures.

In this setting, given another Ca'r-fiber bundle N —> £ M and a

C"-homeomorphism f:M O, a Ca'r-bundle map over / is a homeomorphism
F:£ —> £ satisfying if o F f o n and such that the map Fx := F\£\£x —»£/(*)
is a C-diffeomorphism, for every x e M.

As usual, the fiber bundle N —» £ M x N M, where prj: M x N —> M
denotes the projection on the first coordinate, is called the trivial fiber bundle.

Observe any Ca cocycle <t>: M —> Diff(A) naturally induces a Cffi,r-bundle

map on the trivial fiber bundle N —* M x N —» M and over any / e Homeo(M)
just defining F F$,/: MxJVOby

F(x, y) := 4>(x)(y)), V(x, y) e M x N. (2.3)

Inn such a case, Fx <b(x), for every x e M.
Such a particular bundle map is usually called the skew-product induced by <l>

and /. So, bundle maps can be considered as generalizations of cocycles taking
values in groups of diffeomorphisms.

2.6. POO and coboundaries for bundle maps. We can easily extend the notion
of vanishing of the periodic orbit obstructions to fiber bundle maps defined on non-
trivial fiber bundles.



Vol.91 (2016) Livsic theorem 47

Given a bundle map F: £ O over f'.M O, we say that the periodic orbit
obstruction vanishes whenever, for every n ^ 1, it holds

Fnptt) l Vp e Fix(/"), e £p. (POO)

Now we finish this paragraph extending the notion of coboundary for (ä priori
more general) fiber bundle maps: if N —> £ -^» M denotes a C^-fiber bundle, a

-bundle map F:£ O is said to be a Ca's-coboundary, with s ^ r, when there

exists a Ca's-bundle map H:£ —> M x N over the identity map id: M O such that
the following diagram commutes:

M x N f-^L—^ M x N (2.4)

Observe that with our definition, coboundaries just exist on tivial fiber bundles.
This definition is mainly motivated by Theorem 3.1.

2.7. Lyapunov exponents for bundle maps. Let jr. £ —> M be a Ca'r-fiber bundle

(endowed with a Riemannian structure) and consider a Ca'r-bundle map F:£ O
over f\M O. Given any point (ef and n e Z, we have the linear map

D (2.5)

between normed vector spaces, and hence it makes sense to talk about its norm. For
the sake of simplicity, such linear operator will be just denoted by <9fib-F" (£).

Then, one defines the extremal Lyapunov exponents of F along the fibers at £ e £
by

A+(F,£)= lim -log||5fibF"((;)||;
«-+00 n

1
- (dfibF"tt))_1A (F, £) lim - log

«-+00 n

-l

whenever these limits exist. As a consequence of the sub-additive ergodic theorem, it
is well known that these limits exist almost everywhere with respect to any F-invariant
probability measure.
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Given any fi e VJl(F), one defines the extremal Lyapunov exponents of F with

respect to fi by

A±(F,A):= J" A±(F,£) dm-
The topological version of the invariance principle of Avila and Viana [2] gives

strong consequences on certain invariant measures with vanishing extremal Lyapunov
exponents.

2.8. Dominated bundle maps. As above, let us suppose F: £ O is a Caj-bundle
map over a transitive hyperbolic homeomorphism f:M Q. Given ß > 0, we say
that F is (u, ß)-dominated whenever there exists I ^ 1 such that

(4^ (*(£)))*
dfibFl(0 ^Vfef, (2.6)

where vu is the (multiplicative) cocycle over / given in Definition 2.1.

Analogously, one says that F is (s, ß)-dominated when there exists I ^ 1 such

that
j ß

l^bF'G))-1! e £. (2.7)

And F is just said to be ß-dominated if it is simultaneously both (5, ß)- and (u, ßj-
dominated. The definition of domination implicitly assumes that the dynamics on
the base space is given by a hyperbolic homeomorphism f:M O.

The following result is a consequence of classical graph transform arguments used

in [8] (see [2, Proposition 5.1] for an indication of the proof in this exact context).

Proposition 2.6. If F is an (s, \)-dominated CUp'1 -fiber bundle over a hyperbolic
homeomorphism f'.M O, then there exists a unique partition of£

Ws {W(£) c £ : £ e £},

exhibiting the following properties:

(i) for every % e £, Ws (f) is the image of a Lipschitz section Ws (ic(fi), f) —>• £
whose Lipschitz constant is uniform, i.e. it can be chosen independently of £;

(ii) it is F-invariant, i.e.

F(WS(^)) W*(F(t)), e £.

Of course, if F is (u, \)-dominated, a completely analogous result holds and in
such a case the "unstable" partition is denoted by Wu.

The following result is a combination of Proposition 5.1 and Theorem D of [2]:

Theorem 2.7. Let F:£ O be a l-dominated CLip'1 -fiber bundle map over a

hyperbolic homeomorphism f'.M O and let fi be an F-invariant probability
measure whose projection jl := n+(fi) to M has local product structure and full
support. Then, ifX±(F, fi) 0, the support of fi is saturated by Ws and W".
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2.9. Solving the cohomological equation in Lie groups. We state in this section

two results due to Kalinin [10] which will play an important role in our proof of
Theorem 3.1. However, it is interesting to remark that our Theorem A is completely
independent of those results of Kalinin and, in fact, the classical Livsic theorems

[16,17] are enough to deal with the case where the fibers are one-dimensional.
The first result of Kalinin is the following one:

Theorem 2.8 (Theorem 1.4 in [10]). Let A: M —> GL^(R) be a Holder cocycle over
a transitive hyperbolic homeomorphism f. Assume that (POO) holds for A. Then
the cocycle A has zero Lyapunov exponents with respect to any f -invariant ergodic
measure on M.

We would like to remark that we can get another proof of Theorem 2.8 as a

consequence of our Theorem 4.1 below.

In order to show that the solution of cohomological equations are sufficiently
regular, we must show that the holonomy maps of certain foliations are smooth. We

will show this proving that certain linear cocycles are indeed coboundaries. As it was

already mentioned above, that can be done invoking "classical" Livsic theorem when
fibers are one-dimensional. In higher dimensions, we need the following Livsic type
theorem for linear cocycles due to Kalinin:

Theorem 2.9 (Theorem 1.1 in [ 10]). Let A: M —* GL</ (R) be a Holder cocycle over
a transitive hyperbolic homeomorphism f'.M Q. Assume that (POO) holds for A.
Then, for every Xq e M, there exists a unique Holder map U: M —> GL^(R) such

that

A(x) U(f(x))U(x)~\ Vx e M,

and U(x0) IdRd.
Moreover, there exists a constant C > 0 depending only on f such that

\U\a^C\A\a.

The following consequence of the previous result will be needed later:

Proposition 2.10. Let f'.M ZD be a hyperbolic homeomorphism and (Ap.M —>

GL^(R))tejv be a continuous family (parametrized on a topological manifold N)
of a-Hölder cocycles such that (POO) holds for every t e N. Then, there exists a

continuous family ofa-Holder transfer functions (Up. M —* GL^ (R))feyv satisfying

A,(x) U,(f(x))U,(x)-\ Vt e N,Vxe M.

Proof. Consider a point xo e M whose forward orbit by / is dense in M and
let Ut \ M —* GL^(R) be the unique solution of the cohomological equation
At(x) — Ut(f(x))Ut(x)~{ such that Ut(xo) Id, given by Theorem 2.9. Notice
that \ Ut\a is uniformly bounded on t e N.
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Now we have to show that Ut depends continuously on t e N. Let us fix to e N
and s > 0. Let n be sufficiently large so that the segment of orbit xq, fn(xo) is

5-dense, where

8 := s i 6C max \At\
V teN

and C is the positive constant given by Theorem 2.9.

By continuity of the family At with respect to t, and observing that Ut (fk (xo))
A^P(xo) for every k ^ 0, there exists a neighborhood V of t0 such that it holds

Ut(fk(x0))-Ut0(fk(x0))
s

^ -, for 0 ^ k ^ n, V? e V.

Invoking the uniform Holder estimates, we deduce that the C"-distance between
the functions Ut and Uto is smaller than e, for every t e V.

To end this section, let us explain the main difference between our approach
and Kalinin's. In [10], the author's strategy consists in estimating the distortion of
a left GL^(R)-invariant metric via the control of the Lyapunov exponents of the

cocycle, and then he can apply Livsic's classical argument (see for instance [12,
Theorem 19.2.1]). On the other hand, our approach is quite closer in spirit to the one
used by Wilkinson in [23], where one lifts the dynamics to a certain skew-product
and, using partial hyperbolicity theory, one is able to lift invariant foliations that are
used to construct the solution of the cohomological equation.

3. Domination, zero Lyapunov exponents and coboundaries

In this section we study the relation between domination, nullity of Lyapunov
exponents and cohomology of bundle maps. The main result we present here is
the following:

Theorem 3.1. Let N —> £ M be a Ca'l-fiber bundle and F:£ O be a
C1*'1 -bundle map over an a-Hölder hyperbolic homeomorphism f'.M O. Let
us assume that (POO) holds for F. Then, the following statements are equivalent:

(i) X±(F,fi) 0, for all ß e 911(F);

(ii) F is a-dominated;

(iii) F is a C01'1 -coboundary and, according to Section 2.6, the fiber bundle N —>

£ M admits a Ca'1 -trivialization.

The most relevant implication in this result is (ii) => (iii), while the other two are

rather classical. Moreover, condition (iii) automatically implies condition (POO),
while (i) implies (ii) regardless of this condition.



Vol.91 (2016) Livsic theorem 51

Remark 3.2. We shall use a rather classical trick (see for example [22]) which allows

us to reduce the general «-Holder case to the Lipschitz one: if N —» £ —> (M, d)
is a C0^1 -fiber bundle, /: (M, d) O is a hyperbolic homeomorphism and F\£ O
is a C*'1-fiber bundle map which is «-dominated, then changing the metric d by da

(see (2.1)) on M, we obtain a CL,p''-fiber bundle, / continues to be hyperbolic (see

Remark 2.3) and F turns to be a CLip,1-bundle map which is 1-dominated. Moreover,
F is a CUp'x-coboundary when M is endowed with the da metric if and only if it is

a C^'-coboundary when M is equipped with d.

In view of Theorem 3.1, it is natural to ask:

Question 3.3. Let N —> £ M be a C"'1-fiber bundle and F:£ O be a C"'1-
bundle map over a hyperbolic C01 -homeomorphism f'.M O. Suppose that (POO)
holds for F. Then, is it true that F is a-dominated?

By Remark 3.2, in order to simplify the notation from now on and until the end

of this section, we shall assume that « 1 Lip.
To start with the proof of Theorem 3.1, we first show that (i) implies (ii). This

result maybe belongs to the folklore, but since our context is slightly different from
usual ones, we decided to include an outline of the proof:

Proposition 3.4. Let us assume that

X±(F, fi) 0, VAeOR(F),

Then F is l-dominated.

Proof. Let us show that F is (u, l)-dominated. The (s, l)-domination follows from
completely analogous arguments. To prove that, we shall only use the hypothesis
A+(F, fi) 0, for every fi e 9Jl(F).

Then, let us consider the fiber bundle n-p'. P —» £, where the fiber over an arbitrary
£ e £ is given by the projectivized tangent space of the submanifold £K(X) cz £.

Now, the derivative-along-fiber operator d^F defined by (2.5) naturally induces

a bundle map [5fibF]: P O over F: £ O.
Then we consider the continuous real cocycle : P —» M over [cW, F] given by

HM) log l|gfib^'|i;|lf(j:), Vf e £, Vu e T£n{i)\{0},
|| u || j

where [u] denotes the element of P induced by v.
Now, let Ko, A be the constants and vu be the multiplicative cocycle associated

to / given by Definition 2.1, and suppose F is not (u, l)-dominated. Then, there

exists a sequence of points (t,n)n»\ in £ and a strictly increasing sequence of natural
numbers such that

dfibF*»(l;n)
Mn) (n(U))

> Vn ^ 1. (3.1)
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This implies that for each n e N we can find [vn\ e such that

in~ 1

^(£n)([w«]) Y1 ^([dfibf77]!^]) log

J= 0

Then, by Banach-Alaoglu theorem, there is no lost of generality assuming that
there exists rj e SQt(P) such that

j in — i

J- X -^rj, as n -> oo, (3.3)
" j=o

where the convergence is in the weak-* topology.

Putting together (3.1), (3.2) and (3.3), we can easily show that

r (\v l) l / \
\ f dfj lim -—— ^ lim — log K0 + Xin - 2) — X. (3.4)

Jp n^>co ln n—"-co ln \ /

Finally, defining ij := np+(fj), we get r] e %R(F) and from (3.4) it easily follows

X+(F, rj) ^ X > 0,

contradicting our hypothesis.

Next we show that (ii) implies (iii) in Theorem 3.1.

Since we are assuming F is 1-dominated, by Proposition 2.6 we know we can lift
the stable and unstable sets of / to 8. We shall need the following regularity result
about these lifts.

Lemma 3.5. IfWa denotes the lift of Wa (with a e {s,u}), then there exists a

constant K ^ I such that

ds(&, rj) ^ Kd(n^),n(r}j),

for every £ e 8, t] e Wa(£) and such that n(rj) e lT^(7r(£), /), where §o is the

constant associated to f by Definition 2.1.

Proof. This is a straightforward consequence of Proposition 2.6, i.e. the fact that the

elements of WCT are graphs of Lipschitz functions with uniformly bounded constant

over the stable and unstable sets of /.
Then we need the following result that plays a key role in the construction of

solutions for the cohomological equation. Given a homeomorphism g: X —> X and

a point x e X, we shall write Og(x) {gn(x)}n<=z for the g-orbit of x.

dmFe"^n) (3.2)
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Proposition 3.6. If F is 1 -dominated and (POO) holds, then the closure of every
F-orbit is the image of a Lipschitz section. More precisely, for every £ e £, there

exists a Lipschitz section : Of (jt('O) ci M —> £ such that

ÖHÖ fay) e £ : y e 0/(*(?))} •

Proof In order to show that the closure of any F-orbit coincides with the image of
a continuous section of the fiber bundle N —>£—> M, it is enough to show the

following

Claim 1. For every £ e £ and every e > 0, there exists 8 > 0 such that

de(t, Fn(0)<s,
whenever d{ji(t), /"(rr(£))) < 8.

Indeed, if the Claim is verified, it follows that the map from Öf(jr(f)) to £
which maps fk(n(f)) >—> Fk(f) is uniformly continuous and therefore extends

continuously to its closure.
To prove Claim 1, let £ e £ and e > 0 be arbitrary. Then, let us choose

8 := min (5o, Sj, £(4cF)_1), where constants 8\ and c are given by Theorem 2.4
and K is given by Lemma 3.5.

Then, suppose n e N is given such that d{n(t), fn{ir(£))) < 8. Since / is a

hyperbolic homeomorphism and 8 F 81, we can apply Theorem 2.4 to guarantee
the existence of p e Per(/) and y := [n(f), p] e M satisfying (1), (2) and (3) in
Theorem 2.4. Thus, taking into account that the fiber bundle projection it is one-
to-one on W"(£) cr £ and y e W"(tt(£), /) n(Wu(£)), there exists a unique
point ty e £y n W"(£). Analogously, n is one-to-one from Ws(i)y) onto Ws(y)
and hence, there exists a unique point tp e £p n W'ity).

Now, observing that tP e Ws(fy) and ty e W" if), we can combine Theorem 2.4
and Lemma 3.5 to guarantee that

deit, tP)<d£(t, Sy) +ds(Sy, SP)

^ K d{nit), y) + d(y, p)j < 2Kc8 <

and

ds{Fn(0, F"itP)) ^ de{Fnit), Fnity)) + d£{Fn(ty), F"(tP))

(3.5)

< K d(fn(n(t),fn(y)) + d{fn(y),fn(p)) (3.6)

< 2Kcd{fn(jt(t)),n(t)) < 2Kc8 sS

Finally observe that, since fn(p) p and (POO) holds, it follows that

F"itp) — tp- Then, putting together (3.5) and (3.6), we get d£{f, Fn(f)) < e,
and our claim is proven.
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To finish, notice that in the proof of Claim 1, the constant

S min{<5o,<5i,£(4cAO-1}

depends linearly on e (when s is small enough) and therefore, the map is indeed

Lipschitz.

It is interesting to notice that the exponential shadowing given by Anosov closing
lemma (Theorem 2.4) was not used in the proof of Proposition 3.6. In fact, the

classical Shadowing Lemma is enough because the Holder regularity (in this case

Lipschitz) was already used in Lemma 3.5.

Now, let us consider a point xq e M such that its forward and backward /-orbits
are dense. Then, by Proposition 3.6, assuming F is 1-dominated, for every £ e £x0
there exists a continuous section Lf: M —> £ such that Op(fi) coincides with the

image of Lf. To simplify the notation, the image of section Lf will be denoted by If,
i.e. we define If := {Lf (x) e £ : x e M}, for every £ e £Xo.

Then we will show that the family {If }fs£ determines a continuous lamination

in £. To do this, we first prove the following

Proposition 3.7. IfF is I-dominated, thenfor each f e SXQ the image ofthe section Lf
defined above is saturated by leaves of the lamination Ws (Wu, respectively.) More
precisely, for every f e £X() and any rj e If,

WCT(t/) ci If, foro e {s,u}.

Proof. We will prove the proposition for a s. One can recover the proof for o u

by considering F~l instead of F.
Let us suppose the assertion is not true. Then, there exists some £ 6 £Xo and

rf e If such that Ws(t]') <£. If. By continuity of the section Lf and the stable

lamination, we can choose a point t] e If such that the forward /-orbit of Jt(rj) is

dense in M and Ws(rj) (f_ If. Then, we take a point f e Ws(t])\:J^.
Observe that (tt(^)) is dense in M. Hence, the section Lf given by

Proposition 3.6 is defined on the whole space M. But, since £ e Ws(rf), the

set Op(fi) intersects the fiber £kq) at two different points: at f and at Lf (jr(£)),
contradicting Proposition 3.6.

Remark 3.8. A less elementary proof of Proposition 3.7 can be easily gotten by

invoking the topological version of the Invariance Principle of Avila and Viana (see

Theorem 2.7). In fact, assuming domination and condition (POO), using Theorem 2.8

it can be shown that condition (i) of Theorem 3.1 holds; and then the Invariance

Principle can be applied.

As a consequence of Proposition 3.7 we know the family {If }^e£x is a partition

of the total space £, and moreover, a continuous lamination whose leaves are

(topologically) transverse to the fibers of the fiber bundle Af —>• £ M. Thus,
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we can define the holonomy maps of this lamination as follows: given arbitrary
points x,y e M,the holonomy map from x to y is defined by

nx,y :£x3S->Vf(y)e£y, (3.7)

where £ is the unique point in £x0 such that £ e X^. Observe that, by Proposition 3.7,

holonomy maps are (at least) homeomorphisms. After some additional results, we
shall show they are indeed C1 -diffcomorphisms.

Then we get the following

Proposition 3.9. The fiber bundle map F\£ O is a CUp'°-coboundary. More

precisely, the fiber bundle N —» £ M admits a continuous trivialization H:£ —>

M x N that makes the diagram (2.4) commute.

Proof. To show that the fiber bundle is trivial, let us consider the map H\£ —» M xN
given by

"(?):= ^(f).pr2(0,(Ww(f),,„((:)))), e S, (3.8)

where <$>}'.U3 —»• M x N is a fixed trivializing chart of the fiber bundle N —*£—> M
such that Xo e Uj. Then, since holonomy maps are homeomorphisms, it is clear

that H itself is a homeomorphism, and since F(I^) 1^, for every £ e £xo, we
conclude that

xidN){H(S)), e £,

as desired.

At this point, it is worth mentioning that we took the effort of working on general
fiber bundles because we understood this more general setting might actually arise
in some cases (see for instance the vector bundle S constructed after Lemma 3.10).
However, as Proposition 3.9 shows, an a priori arbitrary fiber bundle supporting
a fiber bundle map with vanishing of the periodic orbit obstruction is a posteriori
trivial.

Finally, in order to show that F is a CLip'1-coboundary it remains to prove that
the map H:£ —> M x N constructed in the proof of Proposition 3.9 is indeed a
CLip'1 -bundle map.

To do this, it is necessary to show that the holonomy maps defined in (3.7) are
differentiable and this will be gotten by invoking Proposition 2.10. To use this result,
we first need the following

Lemma 3.10. For every K e £x0> the section V^.M —» £ (whose image is Zj) is

Lipschitz.

Proof. This is a straightforward consequence of the fact that the graph of Fj is

saturated by Ws and Wu, which are Lischitz themselves and have local product
structure (see (h5) in Definition 2.1).
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Now, for every £ e £Xo consider the set

3? := U TVt(x)£x,
xeM

where (J denotes the disjoint-union operator, and the "natural projection" map
jz$\ 3^ —> M given by (tt^)_1(x) Tyi(x)£x, for every x e M. By Lemma 3.10,

the set 3^ can naturally be endowed with an appropriate vector bundle structure

turning R'' —> 3^ —> M into a CLip-vector bundle, where d dim N.
On the other hand, since every leaf Xj is F-invariant and F\£ '-£x £f(x) is a

C1 -dilfeomorphism, our fiber bundle map F naturally induces a CLip-vector bundle

map DF^\ 3 ^ O over f:M O given by

DF^Vx) dRbF(Vs(x))(vx), Vx e M, Vu* e3^ Tv<{x)£x, (3.9)

where dbbF denotes the (partial) derivative along the fibers defined in Section 2.7.

Then we get the following

Proposition 3.11. For every £ e £Xo, the vector bundle Rrf —» 3^ M is trivial
and the vector bundle map DF% is a CLlp-coboundary, i.e. there exists a CLlp-vector
bundle map U^: 3^ —> M x satisfying

t/t o DF* (/ x %)o[/^.
Moreover, the family (U^)^e£Xo can be chosen to vary continuously on £.

Proof. Since (POO) holds for F, one know that it vanishes for DF*>, too. Hence,

by Theorem 2.8, DF% has zero Lyapunov exponents with respect to any /-invariant
probability measure. In particular, invoking Proposition 3.9 we conclude that the

vector bundle

af 3d m

is trivial and we can apply Proposition 2.10 to obtain a continuous family of
solutions, as desired.

Then we get the following

Corollary 3.12. If F is 1 -dominated and (POO) holds, then there exists C > 0 such

that

||dfibF»|| <C, V«e Z, e £, Vv e F?£L(x).

Proof. This is a straightforward consequence of Propositions 3.11 and 2.10.

Then we finally get

Proposition 3.13. The holonomy maps given by (3.7) are differentiable and

consequently, the map H:£ —> M x N defined by (3.8) is a CLlp'' -bundle map.
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Proof. Given arbitrary points x,y e M, we need to show that the holonomy

map PLx,y'-£x —> £y associated to the lamination {I}^e£xo, which is clearly a

homeomorphism, is indeed a C1 -diffeomorphism.
To do this, first observe that since each leaf of the lamination {I^}^ssXQ is

F-invariant, it holds

^/mG),/"G) m\£frnM' ^X 6 ^m'n 6 (3.10)

Consequently, holonomy maps between any two points of the same /-orbit are indeed
C1 -diffeomorphisms.

To deal with the general case, consider arbitrary points x,y e M and let

<Pi: 7r-1 (77,) —> U{ x N, with i 1,2, be two trivializing charts such that x e U\
and y e 1/2- Recalling we have chosen xo e M so that its forward /-orbit is

dense in M, we can find two sequences of natural numbers (m;) and («,) such that

U\ a fm' (xo) —» x and U2 3 /"' (xo) —» y, as i —> 00.

Then, for each i ^ 1, let us define Hi e Diff1 (N) by

H, (p) :=pr2o<p2o H/«, (x0),/"« Go) 0 (xo), p),

and PL e Homeo(V) by

U(p) pr2 0^0 Ux,y o
1

(x, p),

for every p e N. We want to show PL e Diff1 (V), too.

By continuity of the lamination when / — cc,PLi —> Tfpointwise. By
Corollary 3.12 and Arzelä-Ascoli theorem, we conclude the convergence PLi PL

is C°-uniform.
Now, Proposition 3.11 implies that the fiber bundle is trivial and the derivatives

of the cocycle provide a continuous family of linear cocycles for which (POO) holds.

Therefore, the hypotheses of Proposition 2.10 are verified and we get a continuous

family of solutions for the corresponding family of cohomological equations. These

solutions are indeed the derivatives of PL so we deduce that the sequence of derivatives
(DPLi (p));>i is also convergent, for each p e N. Consequently, PL is C1 and then,
PLx,y'- Px —> £y is a diffeomorphism, as desired.

Finally, it remains to show that (iii) implies (/) in Theorem 3.1. But this is obvious,
because a CLip,1-coboundary is, by the very same definition, conjugate to the map

(/ x idx): M x N O via a CLip,1-fiber bundle conjugacy, and therefore, every
Lyapunov exponent must vanish.

4. Domination as a consequence of vanishing of the periodic orbit obstruction

In this section we shall review some contexts where condition (POO) alone implies
that the cocycle is dominated, and as a consequence ofTheorem 3.1, it is a coboundary.
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We start proving Theorem B which follows from Theorem 3.1 and Katok closing
lemma [11],

Proofof Theorem B. Let S-+£ MxS^>M denote the trivial fiber bundle and

F'.M x S O be the C1+<* skew-product over / induced by <f> as in (2.3). Oberserve
that for F the (POO) holds.

Let us suppose there exists an /^-invariant ergodic probability measure ß such

that X+(F, ß) ^ 0.

Since O takes values in the group of area-preserving diffeomorphisms of S, by
Oseledets theorem we know that

X~(F, ß) + X+(F, A) 0.

So, we have

X~(F,ß) < 0 < X+(F,ß),

and since f'.M O is an Anosov diffeomorphism, this implies A is a hyperbolic
measure for F (i.e. all its Lyapunov exponents given by Oseledets theorem are

different from zero).
So, applying Katok closing lemma [11, Corollary 4.3], we conclude that F

exhibits a hyperbolic periodic point. But, invoking condition (POO), if £o £ £ is

periodic with Fn(£o) £o> then Fn(f) £, for every £ e £7TtAy So £0 is not an
isolated point of Fix(F"), and hence, it is not hyperbolic, getting a contradiction.

The amount of regularity required in the fiber direction is essential in our argument
and it is the usual one in Pesin's theory which allows to obtain a subexponential
neighborhoods of a regular orbit with good estimates on the bundles of the Oseledet's

splitting (see [12, Supplement]). The recent examples of [4] show that improving
this regularity requires new ideas, and we do not see how low-dimensionality nor
volume preservation would help.

On the other hand, the requirement on Theorem B that the base dynamics is smooth

might not be essential. Most likely, similar arguments to those we will perform to

prove Theorem A might allow to get the same result just requiring continuity for the
base dynamics, but the details would become significantly more involved. Since in
this case our result is partial, we have chosen to present it in this simplified context.

In order to prove Theorem A, we need the following result that should be

considered as the main one of this section:

Theorem 4.1. Let N —> £ M be a C"'1-fiber bundle and F:£ O be a
C"'1 -bundle map over an a-Hölder hyperbolic homeomorphism f'.M O. If
there exists an ergodic measure ß e V.71(F) with X+(F,fi) < 0, then there exists

A, e Per(F) which is uniformly contracting along the fiber, i.e. ifn > 0 denotes the

period offio, then all the eigenvalues of the linear map df^F" T^0£„^0) O have

modulus strictly smaller than 1.
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It is interesting to remark that applying Theorem 4.1 to the natural action induced

by a linear cocycle on a suitable Grasmannian fiber bundle (corresponding to the

dimension of the subspace with largest Lyapunov exponent), one can reprove part of
Kalinin's result on approximation3 of Lyapunov exponents [10, Theorem 1.4].

Now, we can prove Theorem A as a combination of Theorems 3.1 and 4.1:

Proofof Theorem A. Let M/Z — £ M x M/Z — M denote the trivial fiber
bundle and F: M x M/Z O be the skew-product over / induced by <J> as in (2.3).
Since (POO) holds for O, then it does for F, too.

Hence, for every £ e Per(F) such that Fn(f) — £, it clearly holds d^Fn
D$(") id and consequently, all the eigenvalues are equal to 1. So, applying
Theorem 4.1 to F and F_1 we get

-A+(F~\ß) A-(F,fi) ^ 0 < A+(F, A).

But since the fibers are one-dimensional, we can apply Birkhoff ergodic theorem to
conclude that X~(F, fi) A+ (F, fi). Therefore, A~(F,jl) \+{F, jx) 0 and by
Theorem 3.1, F is a C^'-coboundary, as desired.

4.1. Proof of Theorem 4.1. From the uniform continuity of d^F and /, it easily
follows.

Lemma 4.2. For every 8 > 0, there exists x > 0 such that for every t], £ e £
satisfying

d£(Fl(t]),Fl(l)) ^ x, far every i e {0, ...k},
it holds

k-1 k—1

fl |afibF(Fi(r?))|| ^ f[ ||öfibF(F'(f))||.
1=0 i=0

Along the proof we shall assume that A+ := A+(F, fi) < 0.

It is a classical fact that one can choose measurable adapted metrics which see

the contraction at each iterate (see for example Proposition 8.2 of [1]):

Lemma 4.3. For every e > 0 there exists an integer N > 0 and a measurable

function A : £ — [1, +co) such that:

• The sequence (A(F"((;))ngZ varies sub-exponentially (i.e. one has that for
jx-almost every £ e £ the sequence log \A(Fn(f))\ converges to 0 as

\n\ —> oo).

3The statement above implies, in particular, that if 0: M —> GL^(R) is a-Holder and the (POO)
holds, then every measure has zero Lyapunov exponents. To obtain that all Lyapunov exponents can be

approximated one can apply the arguments in this section to approximate the top Lyapunov exponent, and
then uses the same trick of exterior power as in Kalinin's paper to obtain the other estimates
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• If we define the metric || • || ^ in T^£n^) by

14 e~k(X++s)MFk(0)
O^k^N

then, for fi almost every £ e £ and every v e T^£n(^ one has

ll^fib^(t) ' wlli-«) < e(A++e) ||w||'f.

We shall fix £ < min{—^}, where a is the Holder exponent of F and A is
the hyperbolicity constant appearing in Theorem 2.4. Consider the function A and

the metric ||-||' given by the previous lemma and let us fix them from now on.

Using this metric, by standard arguments one can show that it is possible to define

sub-exponential neighborhoods (sometimes called Pesin charts) of typical points with
respect to fi such that the dynamics in those neighborhoods behaves similarly to the

derivative (see for example [12, Supplement]).
For £ e £ we shall consider the exponential map exp : T^£n^) —> £n(%) where

the distances in T^£n^) are measured with respect to the metric || • ||'^. We denote by

B'^ (r) the ball of radius r centered at 0 in T^£n^).
Lemma 4.4. There exists a measurable function p : £ —» (0, +co) such that if

exp|ß/(p(£)), thenfor jl-almost everypoint the map (pf^oFocp^ : ß£(p(£)) —>

B'f,-(^(p(Fif contracts vectors by a factor smaller than e(^++lE\ Moreover,

the sequence p{Fn(fi)) is sub-exponential and can be chosen so that e~ep(f) <
p(F(0) < e£p0-

It is relevant to remark here the fact that the sub-exponential growth of the

function p is essential in Pesin's theory and this is the precise point where the Holder
regularity of the cocycle is usually invoked. Here, since we are working with measures
whose Lyapunov exponents are all negative, C1 -regularity along the fibers is enough.

Remark 4.5. Notice there is a measurable function D which associates to each

£ e £ an isometry Dj : (T^£np^, ||-||^ —» (T^£n^), ||-||^ When this linear map is

considered as a transformation from (T^£„^), ||-||y to itself, the norm and co-norm
of Dj are bounded by a number depending only on A(f).

Using Luisin's Theorem on approximation of measurable functions by continuous

ones (see for example [12, Supplement]) one obtains a compact set X a £ of positive
/2-measure such that functions A and p are continuous on X and, thus, bounded (we
define Ax := sup?6jf A(£) and px := inf^* p(x)).

Consider a point e X which is recurrent inside X, i.e. there exists My —> co

such that FnJ (fo) —> £o and Fn' (£0) e X for every j > 0.

Let us write xq := 7r(£o) and, for each j > 0, let pj e Fix(f"J) be the periodic
point of / given by Anosov Closing Lemma (Theorem 2.4). One has that:

difixo), fipj)) ^ ce-Xmm{l>nJ-'}d(f"J (xo),x0), for / 0,..., My.

where c, A > 0 are the constants given in Theorem 2.4.

5fibFk(0-v
Fk(t)
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Notice that

dUni (*o), xo) < ds{Fnj (to), to) - 0.

Fix S < s and let j be the constant given by Lemma 4.2 for such a <5.

The main step in the proof is the following

Lemma 4.6. For n3 large enough, there exists a small open ball Bj c £Pj such that

F"J (Bj) c: Bj. (4.1)

Moreover, diam(F! (ß7)) < //2 and d£{Fl {B3), Fl {f0)) < x/2, for every
0 ^ i < n}.

Let us now conclude the proof of Theorem 4.1 assuming this lemma:

By (4.1), we know there exists e Bj such that FnJ (j-3) and it also holds

dg(Fl (£/), Fl (to)) < X' f°r a" 0<i ^ tij. Hence, applying Lemma 4.2 and the
fact that to, FnJ (to) £ X, we prove that fj is uniformly contracting along the fiber,
as desired.

So, it only remains to prove Lemma 4.6.

ProofofLemma 4.6. Since there exists a trivializing chart containing xo and p3,
there exists a point t, £ £Pj such that d£(f3, to) d(p3, x).

From the choice of xo and p}, if n3 is large enough, we can always assume that
both fl(xo) and f'(pj) lie in the same trivializing chart for 0 ^ i ^ n3. So, fixing a

trivializing chart containing fl (xo) and /' (p3), we have a projection pr2: £f, (Pj) —>

£fi(xoy Given two points f £ £f(x0) anc' h e ^p(P such that £, pr2 £

B'F>tf0-)(P(Fl(£o))), we can define 4(f,r?) := d(7t(£),7t(rj)) + d'(£, pr2(?/)),

where d' is the distance in B'pi ^(p(Fl (f0))) induced by the norm IMI'f'(f0)-
For 1 ^ k ^ n}, and assuming that

d'£(Fk-\f3),Fk-\^)) < mm{p{Fk-\^)),\},

we can invoke Lemma 4.2 to get

/'«»,) «('('-* <c,i). r[Fk

+ e° %*F{Fk-l(£Q)) d'e{Fk-\S3), Fk~l(i;o)),

(4.2)

where the constant c only depends on Ax and px- The factor ceemm^k'nJ ~k^ appears
to take into account the distortion in the new metric, which is bounded by c at the

points £o, FnJ (to) £ X and the change of the distortion at each iterate is bounded

byee.
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Now, let us define the sequences

ak := ceEmin{k>nJ-k)dci (Ffk-i(p), Ffk-i(jCo))

and bk := e d^FiFb-1^))

Observe that bk sc eU++3£) < ^ for every k ^ 1.

By induction and applying estimate (4.2), one gets

A, A. v ft

de{Fk(Sj),Fk(Z0)) < J2ai\ El
1=1 ^y=i+i ' i=i

k
(k-i)(k+ +3s) Vit ^ 1

(4.3)
One can estimate the size of a, as follows (here is where Holder continuity of F

is essential):

a. ^ geni.n{«,».7-.}c/e-«Amin{i,»y-.}rf(jC0j jnj ^ for Q ^ ,• ^ (4.4)

where c' > 0 depends on the constant c appearing in Anosov closing lemma

(Theorem 2.4), the Holder norm of the C"'1 -bundle map F and the constant c
which was defined above.

Choosing rij so that d(xo, f"J (xo)) is sufficiently small and recalling that
e < 4q<A, we can perform induction and thus ensure that the iterates Fk(^j) of
the point remain always close enough to Fk(t,o).

Using the estimate of Lemma 4.2, one concludes there is a ball B, with the
desired properties.
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