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Periodic billiard trajectories and Morse theory on loop spaces

Kei Irie

Abstract. We study periodic billiard trajectories on a compact Riemannian manifold with
boundary by applying Morse theory to Lagrangian action functionals on the loop space of
the manifold. Based on the approximation method proposed by Benci—Giannoni, we prove that
nonvanishing of relative homology of a certain pair of loop spaces implies the existence of
a periodic billiard trajectory. We also prove a parallel result for path spaces. We apply those
results to show the existence of short billiard trajectories and short geodesic loops. Further,
we recover two known results on the length of a shortest periodic billiard trajectory in a
convex body: Ghomi’s inequality, and Brunn—Minkowski type inequality proposed by Artstein-
Avidan—Ostrover.

Mathematics Subject Classification (2010). 37J45, 70H12, 52A20.
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1. Introduction and results

In this section, we describe our main results and the structure of this paper.

1.1. Definitions of periodic and brake billiard trajectories. First, let us fix the
definition of a periodic billiard trajectory. We also introduce the notion of a brake
billiard trajectory, which is a relative version of the periodic trajectory.

Let Q be a Riemannian manifold with C° boundary. We set S! := R/Z. A
nonconstant, continuous, and piecewise C® map y : S' — Q is called a periodic
billiard trajectory if there exists a finite set B, C S' such that j = 0on ST\ By,
and every 1 € B, satisfies the following conditions:

B-(i): y(r) € 00.
B-(ii): yT(r) 1= limy_ox 7 (1 + h) satisfies the following equation:

y ) +77(0) € TyydQ, (1) =y~ (1) € (TyndQ)*H \ {0},

This equation is called the law of reflection.
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Remark 1.1. Here, we state some remarks on the above definition.

* A periodic billiard trajectory y might be a closed geodesic on Q. In that case,

By:

o If y is tangent to 0 at (), B-(ii) does not hold since y () — y~(¢t) = 0.
Therefore, y ' (1Q) might be strictly larger than B, .

* The law of reflection implies that || is constant on S\ B,. Moreover, |y| #
0 since y is a nonconstant map.

A nonconstant, continuous, and piecewise C* map y : [0,1] — Q is called a
brake billiard trajectory if it satisties the following conditions:

* There exists a finite set B, C (0, 1) such that = 0 on [0, 1] \ By, and every

t € B, satisfies B-(i), B-(ii).

s ¥(0).y(1) € Q. yT(0), y~ (1) are perpendicular to dQ.
The name “brake” billiard trajectory is derived from the notion of a brake orbit in
classical mechanics (see [11] pp.131). In both (periodic and brake) cases, elements
of B, are called bounce times of y.

For any brake billiard trajectory y : [0,1] — @, we have a periodic billiard
trajectory I' : S — Q, which is defined as

[ = y(2t) 0<t=<1/2)
w2 —21) (/2=1r= 1)

This is a genuine billiard trajectory, i.e., Br # @. If y satisfies B, = @, I is called
a bouncing ball orbit.

1.2. Billiard trajectory and topology of path/loop spaces. We state our first
result, Theorem 1.2, which claims that the nonvanishing of the relative homology
of a certain pair of loop spaces implies the existence of a periodic billiard trajectory.
We also prove a parallel result for brake billiard trajectories.

First, we fix some notations. A continuous map y : S' — 0 is of class W12, if
it is absolutely continuous and its first derivative is square-integrable. W 2(S', Q)
denotes the space of W' %-maps S' — 0. W2([0, 1], Q) is defined in the same
manner. We use the following notations:

AMQ) = Wh([0.1],0), Q(Q):=W'2(S!, 0).
These spaces are equipped with natural topologies. For any subset § C Q, we set
AS) =1y e MQ) [y(0.1) C S} Q) =1y € Q(Q) | y(S") C S.

They are equipped with induced topologies as subsets of A(Q), Q(0).
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We define £ : A(Q) — Rby E(y) := [ PO 41 £ : Q(Q) — Ris defined
in the same manner. For any ¢ € R, we define

AY(Q) =1y e MQ) | E(y) <a}. QUQ):={y € QQ)|E(y) <al.

When a < b, one has obvious inclusions A?(Q) C A?(Q) and Q4(Q) C Q2(0).
Let § be any positive number. We denote the distance on Q by dist, and define

Q(8) :=1{q € Q | dist(g,00) > 8},
As(Q) := A(Q)\ A(Q(8)) = {y € A(Q) | dist(y([0, 1]), 0Q) < 8},
Qs(0) :=Q(0Q)\ Q(Q(8)) = {y € QQ) | dist(y(S"), Q) < 8}.

When 8’ < §, one has obvious inclusions Ag/(Q) C As(Q) and Q4 (Q) C Q5(0).

Theorem 1.2. Let Q be a compact Riemannian manifold with C*° boundary, a < b
be positive real numbers, and | be a non-negative integer.

(: [flim, Hi(AP(Q)U Ag(Q), A“(Q) U Ag(Q)) # 0, there exists a brake
billiard trajectory y on Q such that {B, < j—2and length(y) € [v2a, v2b].
(i1): 1fl<iLn6_>0 H; (Qb(Q) UQs(Q), Q4(Q)UQs(Q)) # O, there exists a periodic
billiard trajectory y on Q such that §B, < j and length(y) € [v2a, v2b].
Remark 1.3. Let us verify Theorem 1.2 when Q is a closed manifold. In this case,
H (AP(Q), A%(Q)) = 0 always holds, and therefore, the assumption of (i) is never
satisfied. On the other hand, (ii) claims that if H,(Q22(Q), 2%(Q)) # 0, then there
exists a closed geodesic y on Q such that length(y) € [v/2a, v/2b]. This is a well-
known fact in the study of closed geodesics (see e.g., [13]). Thus, the main point
of Theorem 1.2 is when Q has a nonempty boundary, and one can think of it as the
billiard version of the above-mentioned classical fact.
We explain the idea of the proof of Theorem 1.2. For simplicity, we only discuss
case (i). We take a “potential function” U : intQ — R which diverges to oo near
dQ. We also take ¢ > 0, and study the following equation for y : [0, 1] — intQ.

y(0)=yp() =0, p@)+eVU{YQ)) =0. (1.1)

As is well-known, the solutions of this equation are critical points of the Lagrangian
functional £, on the path space A(intQ), which is defined as

1 1. 2
Le(y) :=f I)/(;)I —eU(y(t)) dt.
0

Proposition 2.2, which is proved in Section 2, shows that one can prove the existence
of a solution of (1.1) using Morse theory for the functional L.

Suppose that we have a solution y, of (1.1) for any sufficiently small ¢ > 0,
which satisfies certain estimates on L.(ye) and the Morse index. Proposition 3.1,
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which is proved in Section 3, claims that we can get a billiard trajectory y as a
limit of ¥, as ¢ — 0, which satisfies corresponding estimates on length(y) and §5,.
Combining the results in Sections 2 and 3, we will complete the proof of Theorem 1.2
in Section 4.

The above strategy of the proof is significantly influenced by [7]. In particular,
our arguments in Sections 2 and 3 closely follow the arguments in [7]. Nevertheless,
we explain most details for the reader’s convenience.

1.3. Short billiard trajectory. As an application of Theorem 1.2, we prove the
existence of short billiard trajectories. First, we state the result. Let Q be a compact,
connected Riemannian manifold with a nonempty C*° boundary. r(Q) denotes the
inradius of Q,i.e., r(Q) := maxgep dist(q. Q). It is easy to see that r(Q) < oo.

Theorem 1.4. Let | be a positive integer such that H;(Q,00Q : 7Z) # 0. Then, there
exist the following billiard trajectories on Q:

o A brake billiard trajectory yg, such that §B,, < j — 1 and
length(yg) < 2jr(Q).

o A periodic billiard trajectory yp, such that {8, < j + 1 and
length(yp) < 2(j + Dr(Q).

Remark 1.5. To the best of the author’s knowledge, there are very few examples in
which the above estimates are sharp. It is easy to see that the estimates are sharp for
j = 1, considering the case Q is a line segment. For j = 2, the estimates 8, , < |
and fB,, < 3 are sharp, since there exists a planar domain that does not contain any
bouncing ball orbits, see Figure 1-(b) in [10].

Theorem 1.4 is proved in Section 5. In this subsection, we explain some
consequences of Theorem 1.4. Let us introduce the following notations.

jp(Q) = infilength(y) | y : brake billiard trajectory on Q},
pp(Q) = inf{length(y) | y : periodic billiard trajectory on Q}.

As an immediate consequence of Theorem 1.4, we obtain the following estimate.

Corollary 1.6. Let n denote the dimension of Q. Then, there holds g (Q) < 2nr(Q)
and pup(Q) < 2(n + )r(Q).

The above estimate of ¢ p was already proved in [5] for convex domains in R”,
and in [12] for arbitrary domains in R". For other previous results on short periodic
billiard trajectories, see [S] Section 1, and the references therein.

Another consequence of Theorem 1.4 is a new proof of the following result on
short geodesic loops, which is proved in [14]. The original proof in [14] is based on
the Birkhoft curve shortening process, and it seems considerably different from our
arguments.
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Corollary 1.7 (Rotman [14]). Let M be a closed Riemannian manifold, p € M,
and j be a positive integer. If w;(M, p) # 0, there exists a nonconstant geodesic
loop y at p (i.e., a geodesic path y : [0, 1] — M such that y(0),y(1) = p) such
that length(y) < 2jdiam(M).

We prove Corollary 1.7 by considering a short brake billiard trajectory on
{x € M | dist(x, p) > ¢} and letting ¢ — 0. The details will be explained in
Section 5.3.

1.4. Length of the shortest periodic billiard trajectory in a convex body. A
convex set K C R” is called a convex body if K is compact and intK # @. It
is possible to show that, for any convex body K with C* boundary, there exists a
periodic billiard trajectory in K of length pt p (K) (see Remark 6.5).

Let us recall two remarkable geometric inequalities on pp of convex bodies,
which are proved in [5] and [10]. In Section 6, we recover these results as
applications of our method. A recent paper [3] obtained similar proofs based on
the results in [8] in a more general setting of Finsler billiards.

The first inequality is the Brunn—Minkowski type inequality [5]. For any two
convex bodies Ky, K, C R", their Minkowski sum K| + K, = {x1 + x2 |
X1 € Ky, x2 € Ky} is aconvex body. The following result is proved in [5], based on
their Brunn—-Minkowski type inequality for symplectic capacity [4].

Theorem 1.8 (Artstein-Avidan—Ostrover |5]). Let K, K5 be convex bodies in R".
Suppose that K, K, and K| + K, have C° boundaries. Then,

pp(Ky + K2) = up(Ky) + pp(Kz).

Equality holds if and only if there exists a closed curve which, up to parallel
displacement and scaling, is the shortest periodic billiard trajectory of both K| and
K,.

The second inequality is a lower bound of j¢ p by inradius, which is proved in [10]
by beautiful elementary arguments. width(K) denotes the thickness of the narrowest
slab that contains K.

Theorem 1.9 (Ghomi [10]). For any convex body K C R" with C® boundary, there
holds jip(K) > 4r(K). Equality holds if and only if 2r(K) = width(K). In this

case, every shortest periodic billiard trajectory in K is a bouncing ball orbit.

Remark 1.10. We only partially recover the original results in [5] and [10]. In [5],
the authors prove Theorem 1.8 in a more general setting of Minkowski billiards,
Whereas we discuss only Euclidean billiards. On the other hand, [10] does not
assume the smoothness of 0K .
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2. Approximating problem

In this section, we study an approximating problem for the billiard problem, which
was introduced in [7]. In Section 2.1, we fix the setting and state Proposition 2.2,
which is the main result in this section. Section 2.2 is devoted to its proof.

Throughout Sections 2 and 3, @ denotes a compact, connected Riemannian
manifold with a nonempty boundary. We abbreviate A(intQ), Q(intQ) as A, .
These spaces have natural structures of smooth Hilbert manifolds. For any yp € A
and yq € €, tangent spaces at ya and yg are described as

Tynh = W2(0.1].yA(TQ)).  TyoQ = WhA(S! y4(T0)).

2.1. Setting. We take and fix p € C*°(Rx>) such that
e p(t)y=tforany0 <r < 1.
e 0<p(t)<2,0<p(r) <Iforanyt =0,
e p(t) =2foranyt > 3.

We define d € C(Q) by d(q) := dist(q. Q). Recall the notation Q(8§) :=
{g € Q|d(g) > 8}inSection 1.2. When § > 0 is sufficiently small, d is of C*°
and satisfies |[Vd| = 1 on Q \ Q(35). For such §, we define hy € C°°(Q) and

Us € C*>(intQ) by

hs(q) := 8p(d(q)/8). Us(q) == hs(q)™* — (28)2.
Notice that Us = 0 on Q(35). In Sections 2 and 3, we fix § and abbreviate hg, Us as
h, U. The following lemma is easy to prove, and we will use it a few times.

Lemma 2.1.

(i): Let v be a smooth vector field on Q such thatv = —=Nd on Q \ Q(38). Then,
IVU(q)| = (VU(q).v(q)) for any q € intQ.

(ii): There holds limy,_50 U(q)/|VU(gq)| = 0.

First, we consider the approximating problem for brake billiard trajectories.
Suppose that V' € C*([0. 1] x intQ) satisfies the following property.

V-(i): There exists ¢ > 0 and a compact set K C intQ such that V(t,q) = eU(q)
forany r € [0,1],q ¢ K.

We define L € C*([0, 1] x T(intQ)) and LY A - Rby

|v|? . 1
L{)(t,q.v) — T—V(I,q) (C[ € th.v S TqQ), [,{}(y) — [ L{)(;' Y, }';)(jf_
0

ﬁ{} is a C functional on A, and its differential is computed as

|
LB ()(0) = fo (. Vi) —dViQdt (¢ € TyA),



Vol. 90 (2015) Periodic billiard trajectories and Morse theory on loop spaces 231

where V, denotes the Levi-Civita covariant derivative, and V; € C*®(intQ) is
defined by Vi(q) := V(t.q). y € A satisfies dﬁ{}()/) = 0 if and only if it is of
class C® and satisfies

y0)=p) =0, p@)+VVy@) =0 2.1)

For any y satisfying (2.1), the Hessian of £ at y is given by the following
formula, where R denotes the curvature tensor.

[
PL0.8) = [ T T (RG DA~ IVL O dt (0 € TyA).
’ (2.2)
ind(y) denotes the Morse index of y, which is the number of negative eigenvalues
ofdzﬁﬁ(y). As is well known, ind(y) < oo (see e.g., [2] Proposition 3.1 (ii1)). y is
called nondegenerate if 0 is not an eigenvalue of d2£]‘>(y).
Next, we consider the approximating problem for periodic billiard trajectories.
Suppose that V € C®(S! x intQ) satisfies the following property.

V-(ii): There exists ¢ > 0 and a compact set K C intQ such that V(¢,q) = ¢U(q)
foranyr € S',q ¢ K.

We define L§} € C°(S! x T(intQ)) and L3} : @ — R by
v]?

g =0 —vea. o) = [ 1ferpar

y € Q satisfies d[,g(y) = 0 if and only if it is of class C* and satisfies
Y(t) + VVi(y(r)) = 0. The goal of this section is to prove the following proposition.

Proposition 2.2. Let a < b be real numbers, and | be a non-negative integer.

(): ForanyV € C*([0,1] x intQ) that satisfies V-(i) and
H;({Lh < b} {LD <a}) #0,

there exists y € A such that dﬁ{}()/) =1, E{)(y) € a.b], and ind(y) < J.
(ii): Forany V € C®(S! x intQ) that satisfies V-(ii) and

Hi(1LE < b} ALY < a}) #0.

there exists y € S such that (/E%()/) = Lk ﬁ{}(y) € [a,b), and ind(y) < j.

2.2. Proof of Proposition 2.2. We only prove (i), since (ii) can be proved by
Parallel arguments. In this subsection, we abbreviate L{} and EV as Ly and Ly,
respectively. As a first step, we need the following result.



232 K. Irie CMH

Lemma 2.3. Let (y;); be asequence in A, such that lim; -, dist(y; ([0, 1]),00Q) = 0
and sup; |y 2 < oo. Then, there holds limj_, o /OI h(y;)~2dt = cc.

Proof. See Lemma 3.6 in [7]. L]

Forany y € A and 5. ¢ € T, A, we define a Riemannian metric (-, -) A on A as

1
1/2
(n.O)a ::f (0.0) + (Ven Vi&yde,lnlla = ()% (2.3)
0
|| - la defines a distance function da on A in the obvious manner. This metric
structure on A = A(intQ) naturally extends to A(Q), and this makes A(Q) a
complete metric space. (Notice that A(Q) is not a Hilbert manifold, even with
boundary.)
Lemma 2.4. For any interval J C R, which is closed and bounded from below,
(E;l (J).dp) is a complete metric space.

Proof. Let (y;); be a Cauchy sequence on (EI_/I (J),da). There exists Yoo € A(Q)
such that lim; o dA (Y}, Yoo) = 0. It is sufficient to show that yso ([0, 1]) C intQ.
Suppose that yoo ([0, 1]) intersects dQ. Then, lim;_, dist(y; ([0, 1]), 9Q) = 0.
On the other hand, sup; |[y;[l,2 < oo, since the convergence in da implies a
convergence in W 2-topology. Hence Lemma 2.3 implies limj o0 Ly (y;) = —o0,
contradicting the assumption that Ly (y;) € J forall ;. OJ

Next, we discuss the Palais—Smale (PS) condition for Ly. For each y € A, we
define VLy (y) € T\, A, the gradient vector of Ly at y, as

(VLy(y).ma =dLy(n) (YneT,A).

Definition 2.5. Let X be a (possibly infinite-dimensional) Riemannian manifold and
f X — R be asmooth function. A sequence (x;);=1.2,... is a PS-sequence of f,
it (f(x;)); is bounded and lim; o [V f(x;)|| = 0. f is said to satisfy the PS-
condition, if any PS-sequence of / contains a convergent subsequence.

We will show that Ly satisfies the PS-condition. Our argument is based on the
following result.

Lemma 2.6. Let M be a closed Riemannian manifold, and suppose that A(M)
is equipped with a Riemannian metric in the same manner as (2.3). For any

W e C*®([0.1] x M),

Lp(n)?
2

Lw:AM)—>R; ny —Wi(t,y(t)) dt
0

satisfies the PS-condition.

Proof. The claim follows from Proposition 3.3 in [2] (see also [6]). L]
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Since our base manifold intQ is open and V' diverges to oo near the boundary,
we cannot apply Lemma 2.6 directly. Thus, we need the following lemma.

Lemma 2.7. If (y;); is a PS-sequence of Ly, then inf; dist(y; ([0, 1]),9Q) > 0.
Proof. Since V satisfies V-(i), there exists ¢ > 0 such that V(t,q) — €U(q) is

compactly supported. Then, L,y (y;). |VLeu (y;)]|a are both bounded on j, since
(y;); is a PS-sequence of Ly. Let us take v as in Lemma 2.1 (i). Then, there holds

1 1
f |8VU(}/‘,-)|(11=[ (EVU(y)), v(y))) di
0 0

1

= —(VLeu (yj).v(yj)a +f (vj-Vi(v(y,)))dt.

0

We can bound RHS using the following obvious inequalities.
Iyl = max|v(g)l.  [IV:(w(yi)lL2 < max|[Vu(g)]- [yl 2.
qeQ qeQ

Thus, there exists a constant My > 0, which is independent on j, such that

1
f VUG di < Mo(l + 17125,
0

By Lemma 2.1 (ii), there exists M| > 0 such that U(g) < |VU(q)|/4My + M, for
any ¢ € intQ. Thus,

l L+ 1y, ”iz

1
l

f eU(y;)dt < —— eVU(y) | dt +eM, < + eM,
0 4My Jo '

1

| |
= F(ﬁeU(}’j)JFf F,U(y_,-)df) + — 4+ eM,.
2 0 4

Therefore, we obtain

1

' 1 1
ifo eU(yj)dr = EEEU(V,i)+ T +eM;.

Since L,y (y,) is bounded on j, we obtain sup ./;,I eU(yj)dt < ooandsup; ||y .2

< 0. Since U(g) = h(g)~2—(28) 2, Lemma 2.3 implies inf ; dist(y; ([0, 1]), Q) >
0. O

Lemma 2.8. Ly satisfies the PS-condition.

Proof. Let (y;); be a PS-sequence of Ly. By Lemma 2.7, there exists a compact
Submanifold Q' C intQ. such that y;([0. 1]) € Q' forall ;.

Itis easy to show that there exists a closed Riemannian manifold M, an isometric
embedding ¢ : Q' — M, and W € C([0, 1] x M), such that V(1,¢q) = W(1, e(q))
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forall t € [0.1], ¢ € Q'. Then, {e(y,)}; is a PS-sequence of L. Hence, by
Lemma 2.6, it has a convergent subsequence. Thus, (y;); also has a convergent
subsequence. U

We define the spectrum of Ly as
Spec(Ly) :={Ly(y) | dLy(y) =0} CR.
Lemma 2.9. Spec(Ly ) is closed in R and has a zero measure.

Proof. Closedness is immediate since Ly satisfies the PS-condition. To show that
Spec(Ly) has a zero measure, we modify the arguments in [15] pp.436.

For each x € intQ, we define yx : [0, 1] = intQ by y,(0) = x, y,(0) = 0, and
Vo) + VVi(ye(t)) = 0. Then, f(x) := Ly (yx) is a C* function on intQ, and
Spec(Ly ) is contained in the set of critical values of f. Hence, our claim follows
from the Sard theorem for finite-dimensional manifolds. (]

Remark 2.10. The above proof is based on the fact that any critical point y of
Ly is determined by y(0) € intQ. This argument does not apply directly to the
periodic case, since any solution y of the Euler-Lagrange equation with the periodic
boundary condition is determined by y(0) and y(0). To prove that Spec(CSIE) has a
zero measure for any V' € Co(S! x T'Q), we may apply Lemma 3.8 in [15] directly
to a Hamiltonian H € COO(S;l W T* Q), which is the Legendre transform of V.

The following lemma is a key step in the proof of Proposition 2.2.

Lemma 2.11. Let ¢ < ¢ be real numbers such that cy+ ¢ Spec(Ly ). We set
Cie_ep) =1y €A Ly(y) € (c—,c4), dLy(y) = 0}.

IfH;({Ly <cy} ALy < c—}) # 0and all elements ()]FC(C—,C+) are nondegenerate
critical points of Ly, there exists y € Cc_ ¢ ) such that ind(y) = ;.

Proof. We use the theory developed in [1], Section 2. Let us set

M — {[,V < ('+}-, M = {C_ < EV < C+}. f = EV]M

We take a smooth vector field X on M, which is a negative scalar multiple of V f
and satisfies the following properties:

IVl <1 = X(p)=-Vip). IV/P|>1 = | <|X(p| <2.

Let us examine whether M, M, /., and X satisfy conditions (A1)—~(A7)in[1], pp-22-
23. (Al) follows from Lemma 2.4, (A6) follows from Lemma 2.8, and (A2)—~(A5)
are immediate. Since X is smooth, (A7) is also achieved by a small perturbation of
X, without violating (A1)-(A6) (See Remark 2.1 [2]). Now our claim follows from
Theorem 2.8 in [1]. B
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V' is said to be regular if all critical points of Ly are nondegenerate. The next

Lemma 2.12 shows that regularness can be achieved by compactly supported small
perturbations.
Lemma 2.12. For any V satisfying V-(i), there exists a sequence (Vi) m=1.2,... such
that all Vi, are regular and satisfy V-(i), and (Vi) m converges to 'V in C*°-topology,
te, forany k = 0, limpy oo |V = Vinllck (0.11x0) = 0 holds (notice that V — Vyy,
extends to a C*°-function on [0, 1] x Q).

Lemma 2.12 can be proved in a similar manner as Theorem 1.1 in [16]. The
setting in [16] is slightly different from ours: in [16], the base Riemannian manifold
is closed, and the Lagrangian is parametrized by S'. However, these differences do
not affect the proof. Now, we can finish the proof of Proposition 2.2 (i). As explained
at the beginning of this subsection, the proof of (ii) is parallel and omitted.

Proof of Proposition 2.2 (i). First, we consider the case when a,b ¢ Spec(Ly).
Since Spec(Ly ) is closed, there exists ¢ > 0 such that [a—¢,a+c¢] and [b—c, b+ ]
are disjoint from Spec(Ly ). By Lemma 2.11, inclusions

{Ly <a—c}C{Ly <a}C{Ly <a+c},
{Ly <b—cyC{Ly <b)C{Ly <b+c}

induce isomorphisms on homologies. In particular, the homomorphism
Hi{Ly <b—-c}{Ly <a—-c}) > Hi{Ly <b+c}.{Ly <a+c})

induced by inclusion is an isomorphism, and the homologies on both sides are
isomorphic to H; ({Ly < b}, {Ly < a}), which is nonzero by our assumption.
Take a sequence (V) as in Lemma 2.12. For sufficiently large m, we have

{Ly <a—c}C{Ly, <a} C{Ly <a+c},
Ly <b—c}C{Ly, <b}C{Ly <b+c}.

Hence, there holds H;({Ly,, < b}.{Ly,, < a}) # 0. By Lemma 2.11, there exists
Ym € A such that d Ly, (ym) = 0, Ly,, (ym) € [a.b], and ind(yy) = J.

Since limy, o0 | Vin = Vet = 0, (¥m)m is a PS-sequence of Ly . Hence, (Ym)m
has a convergent subsequence, and its limit y satisfies d Ly (y) = O and Ly (y) €
[a, b]. ind(y) < j follows fromind(y) < liminf,,;, s ind(y, ), which easily follows
from (2.2).

Finally, we consider the general case, i.e., @ and b may be in Spec(Ly). Since
SPGC(EV) has a zero measure, there exist increasing sequences (¢m)m, (bm)m such
that a,,, b,,, ¢ Spec(Ly) for every m, and a = limy, dp, b = limyy, by, Then, for
sufficiently large m, Hi({Ly < by} {Ly < am}) # 0. Therefore, there exists
Ym such that d Ly (ym) = 0, Ly (ym) € lam.bm], and ind(ym) < j. (Ym)m 1s a
PS-sequence of Ly, and therefore, it has a convergent subsequence. Then, its limit
Y satisfies d Ly (y) = 0, Ly (y) € [a,b], and ind(y) < j. O
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Remark 2.13. From the above proof, it is easy to see that y satisfies ind(y) +
null(y) > j, where null(y) denotes the dimension of the kernel of d2Ly (y). The
referee suggested that this inequality can be used to provide a lower bound of the
number of bounce times of billiard trajectories.

3. Billiard trajectory as a limit

As in the previous section, we fix § > 0 and use abbreviations h := hg, U = Us.
The goal of this section is to prove Proposition 3.1, which enables us to get a billiard
trajectory as a limit of solutions of the approximating problem.

Proposition 3.1. Let a < b be positive real numbers, and j be a non-negative
integer.

(1): Suppose that for any sufficiently small ¢ > 0, there exists y, € A such that
dCé‘U(yg) = (), Eé\U(ye) € [a.b], and ind(y.) < j. Then, there exists a brake
billiard trajectory y such that 1B, < j — 2 and length(y) € [v2a, v2b].

(i1): Suppose that for any sufficiently small € > 0, there exists y. € 2 such

that dﬁfU(yg) = E?U(yg) € [a,b), and ind(y,) < j. Then, there
exists a periodic billiard trajectory y such that §8, < j and length(y) €

[V2a. v2b].

We only prove (i), since (ii) can be proved by parallel arguments. In the following
arguments, we fix y, for each ¢, and abbreviate ﬁé\u as L.

Lemma 3.2. lim,_. [, eU(y.)dt = 0.
Proof. Let us take v as in Lemma 2.1 (i). By ¥ + eVU(y:) = 0 and y,(0) =
Ye(1) = 0, we have

I

1 1
[ e|lVU(ye)| dt :] <8VU(V€)-V(VE))‘I[ =f (V.E*Vt(l)(ye))) dr.
0 0 0

Setting My := maxyep |Vv(q)|, there holds

1 1
f8|VU(V5)|JIEM0||)}5||iz:2M0(£s()/e)+[ EU(yg)tlt). @3.1)
0 0

By Lemma 2.1 (ii), there exists M; > O such that U(g) < |VU(q)|/4My + M, for
any g € intQ. By the same arguments as in the proof of Lemma 2.7, we get

1

1
|
_[ eU(ye)dt < _Ee(ys) +eM,.
2 Jo 2
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Since sup, L¢(ye) < b, the above estimate implies sup, '/-01 eU(ys)dt < o0. By

(3.1), we get sup, _/;)1 e|VU(ye)| dt < oo. The following identity is clear from the
definition of U.

1 1
f e|VU(ye)| dt = f 28|Vh()4,;)lh()/g)_3 dt.
0 0

Since |Vh(g)| = 1 for any ¢ such that i(g) < J, we get sup, fol eh(ye) 2 dt < oo.
Finally, by the Holder inequality, we obtain

1 1 2/3
lim supf eh(ye) % dt < lim sup(f eh(ye)™> dr) .elf3 =,
0 0

e—>0 e—0

Since 0 < eU(g) < eh(q) 2 forany ¢ € intQ, we obtain lim,_¢ ./'01 eU(y.)dt = 0.
|

Corollary 3.3. The following quantities are bounded on ¢.
1 1 1
[ |Ve(t)| dt = f e|VU(ye)| dt, [ eh(ye) 2 dt,  E(ye) = |ye|?/2+eU(ye).
0 0 0

Proof. In the course of the proof of Lemma 3.2, we have shown that the first two
quantities are bounded. sup, E£(y,) < oo follows from the identity

11 12 1
E(y:) = / ly;‘ + eU(ye) dt = Ee()’e) = 2/ eU(ye) dt
0 0

and estimates sup, L¢(y:) < b, sup, fol eU(ye) dt < o0. O

By Corollary 3.3, J; is L'-bounded. Since W2-1(]0, 1]) is compactly embedded
to W12(]0, 1]), a certain subsequence of (y;), is convergent in W 2([0. 1]. Q) as
e — 0. We denote the limit as yo. Moreover, since 2eh(y,) > is L!-bounded, up to
subsequence it converges to a certain Borel measure ;0 > 0 on [0, 1] in a weak sense,
i.e., forany f € C([0, 1]) there holds

1 1
lim f F(0)2eh(ye(1) " di = f S duo).
E—> 0 0
Forany r € [0,1] and ¢ > 0, we set B.(t) := {s € [0.1] | |[s —t| < c}. The

support of p is defined as suppu ;= {t € [0. 1] | Ve > 0, u(B.(1)) > 0},
Lemma 3.4. There holds suppp C v, '(3Q) and fisuppu < J.

Proof. 1f t € [0, 1] satisfies yo(t) ¢ 0. eh(y:(1))> converges uniformly to 0 in a
neighborhood of 7, and thus, © ¢ suppu. Therefore, suppp C v, ' (00).
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We show that fisuppye < j. Forany t € suppu, we have shown that yo(7) € 0Q.
Hence, d(yp(t)) = 0. We take ¢ > 0 so that d(yo(t)) < é forany t € B.(t).

We take v € C ([0, 1]) so that 0 < () < | for any ¢, suppyr C B.(7), and
Y = lon B.ja(t). Let vg(t) := Y (£)Vh(ye(r)). Our aim is to show that

lim d? L (ve) (vg, V) = —00. (3.2)

Obviously, suppv, C B.(t), and we may take ¢ > 0 arbitrarily small. Hence, once
we prove (3.2), it is easy to show that liminf,_¢ ind(ys) > fsuppu. On the other
hand, by our assumption in Proposition 3.1, ind(y,) < j for any ¢ > 0. Hence,

fsuppp = /.
Now, we show (3.2). By (2.2), there holds

|
dZﬁs(V&)(”&”e) =f |VIUS|2—(R()-/s'vs)(vs)~)}s)‘“
0

1 |
= 28/ (VL'FVII(VS)~ Ue)h(ye)_3 dr — 68[ {dh(ye)(ve)}zh(ys)_4 dt.
0 0

By Corollary 3.3, sup, || Ve[ Lo~ < oo. Thus, it is easy to check that the first integral
is bounded on &. Corollary 3.3 also shows sup, j'ol eh(ye) 3 dt < 0o, and thus, the
second integral is bounded on &.

Recall that d(yo(r)) < & forany t € B.(t). Hence, when & > 0 is sufficiently
small, d(ye(1)) < & for any t € Bcja(t). For such & > 0, dh(y:)(ve) =
|Vh(ye)|? = 1 on B.j2(7). Therefore,

1
8/ {cl/l(ys)(vg)}211()15)’4 dt > ef h(y,g)_4 dt
0 Beya(7)

4/3
> (cs)“”([ s/v(yg)_3c1t) .
B(‘/2(r)

The second inequality follows from the Holder inequality. Since t € SuUppp,

£—0

lim inf f eh(ye) " di > p(Boj(1))/2 > 0.
B(~/2(T)

. 3 _
Hence, limg—o & [y td/(ye)(ve)}2h(ye)~* dt = oo, and therefore, we have proved

(3.2). O]

Forg € 90, let v(q) denote the unit vector that is outer normal to dQ at ¢.
Lemma 3.5. Forany v e W'2([0, 1], y5(TQ)), there holds

| |
/0 (vo. Viv) dt =[ (v(y0). v) du(r).
0

Notice that the RHS is well-defined, since suppit C y,1(3Q).
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Proof. One can take v, € Ty, A so that v; — vase — 0, in W12 norm. By
Ve +eVU(ye) = 0 and y.(0) = y.(1) = 0, we get

1 1

1
f(EVU(Ve)~Ug(f))df:_f (if'g(r).vg(f))df:f (Pe(t), Vi(ve(2))) dt.
0 0

0

As ¢ — 0, RHS goes to /01 (0, Viv) dt. On the other hand, since VU(q) =
—2Vh(g)h(g)~3, LHS goes to fol (v(yo).v)ydu(t) ase — 0. O

Lemma 3.5 shows that iy = 0 on [0, 1] \ supppe. Lemma 3.4 shows that suppjt
is discrete. Hence, y, (f) = limj,_o— yo(r + h) exists for any r > 0, and )'/6" (1) =
limy, 04 Yo(r +h) exists for any 1 < 1. Now, we show that y satisfies the following
properties:

« length(yo) € [v2a. /2b)].

* {0.1} C suppu. Moreover, )}(;r(()), Yo (1) are perpendicular to dQ.
* ) satisfies the law of reflection at every point on suppu \ {0, 1}.

Once these properties are confirmed, yq is a brake billiard trajectory with B, =
suppu \ 10. 1}, and Proposition 3.1 (i) is proved.
Let / be any interval on [0, 1]. By Lemma 3.2,

f|)‘/(,|2dr = Iim/h)Eszr = limZ(IIIE(yE)—[sU(yE)dt)
I e—=>0 Jy e—0 1
= 21| im E(y:).
e—0

Hence, E := limg_o E(ye) exists, and [yo(1)| = V2E holds for any t ¢ supppt.
Then, length(yy) € [v2a, v/2b] follows from

1

E = lim E(y:) = FIE}}) Le(ye) + 2[ eU(ye) dt = &!ER) Le(ye) € |a,b].

g0 0

Let us prove that 0 € suppy. If not, there exists ¢ > 0 such that u = 0

on [0,¢]. Take f € C®°([0.1]) such that f(0) = I and suppf C [0,c]. Let
v(t) := f(1)y0(t). Then, Lemma 3.5 implies

| |
0=/ (Yo, Viv) dt :] 'Oy dt = =2E.
0 0

This contradicts £ € [a.b] and ¢ > 0, hence 0 € suppjt. We can show that
I'€ suppp by the same arguments.

‘ Let us prove that y,"(0) is perpendicular to dQ. Let o be any tangent vector of
90 at Y0(0). Take ¢ > 0 sufficiently small so that [0, ¢] N suppu = {0}, and define
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{(t) € Tyy(rhQ forany 0 <t < ¢ by (0) = {o and V,{ = 0. Take f € C°°([0, 1])
as above, and set v(t) := f(¢){(¢). Then, Lemma 3.5 implies

1
(v(yo).v) dp(t) = f (yo. Vyu)dt = —(Co,)}(T(O)).

0

I
10D (v (70(0)). {o) :fo
Since ¢ is tangent to dQ, LHS is zero, and therefore, (p. y,"(0)) = 0. This shows
that )'/J’(O) is perpendicular to Q. By the same arguments, we can show that y; (1)
is perpendicular to dQ.

Finally, let us prove that y, satisfies the law of reflection at any ¢ € suppu\{0, 1}.
Similar arguments as above show that )JJ([) — ¥, () is nonzero and perpendicular
to dQ. On the other hand, |)J(T(t)| = |y, (t)], since both are equal to V2E. Then, it
is immediate that y, satisfies the law of reflection at ¢.

We have now finished the proof of Proposition 3.1 (i). As we explained at the
beginning of this section, (ii) can be proved by parallel arguments.

4. Proof of Theorem 1.2

In this section, we complete the proof of Theorem 1.2. We only prove (i), since
(ii) can be proved by parallel arguments. We may assume that Q is connected and
dQ # @ (see Remark 1.3). First, we need the following technical lemma. Let us

denote
AC(intQ) ;= AS(Q) N A(intQ), As(intQ) := As(Q) N A(intQ).
Lemma 4.1. Forany ¢ € Rand § > 0, there holds
Ho(AC(Q)U Ag(Q), A€(intQ) U Ag(intQ)) = 0.
Proof. It is sufficient to show that the inclusion
AC(intQ) U Ag(intQ) — A°(Q) U As(Q) (4.1)

is a homotopy equivalence. Let Z be a smooth vector field on Q, which points
strictly inwards on dQ, and Z = 0 on Q(8). Let ('), be the isotopy generated
by Z. ie. itsatisfies ' = idp and 9,9" = Z(4"). Then, it is easy to show that

A(Q)UAs(Q) — A(intQ) U Ag(intQ); yeyloy
is a homotopy inverse of (4.1). ]
By Lemma 4.1, the assumption of Theorem 1.2 (i) is equivalent to

lim H (AP (intQ) U Ay (intQ). A*(intQ) U As(intQ)) # 0.
§—0
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In this section, we abbreviate Ab(intQ) as A?, Ag(intQ) as Ag, and so on. There
exists 8o > 0 such that

lim H;(A® U Ag ACU Ag) = Hj (A" U Mgy A% U Agy) (4.2)
§—0

is nonzero. We take 6; > 0 so that 35; < dy. We are going to prove
(1A VA
HJ(‘EEUa, < b}, 'EeUa-l <a}) #0

for any € > (. Once we prove this, Proposition 2.2 and Proposition 3.1 show that
there exists a brake billiard trajectory y such that {8, < j — 2 and length(y) €

[v2a, V2b).

We fix ¢ > 0. For any ¢ > 0, there holds {‘Cé\U‘s <cf C A“UAg, since Us, =0
1

on Q(8p). On the other hand, Lemma 2.3 shows that, for sufficiently small §, > 0,
there holds A N Ag, C {E?Ufs < ay. Thus, we have the following commutative
- |

diagram, where all homomorphisms are induced by inclusions.

Hj(AP,A® U (AP N Agy)) — Hi({LYy, <bhALy, <al)

| |

H;(A® U Ag,, AU Ag,) H; (AU Ag,. AU Ag,).

Since (4.2) is nonzero, the bottom arrow is nonzero. On the other hand, the excision
property shows that the left vertical arrow is an isomorphism. By commutativity of
the diagram, we have H.i({‘cé\Ug, < b}, {Cé\Ua, < a}) # 0, and this completes the

proof.

S. Short billiard trajectory

In this section, we prove Theorem 1.4. In Section 5.1, we introduce the notion of
Capacity for Riemannian manifolds with boundaries, and show that the capacity is
cequal to the length of a billiard trajectory (Lemma 5.4). In Section 5.2, we bound the
Capacity by the inradius, and complete the proof of Theorem [.4. In Section 5.3, we
prove Corollary 1.7 as a consequence of Theorem 1.4,

S.1. Capacity. First, we introduce some notations.
* Wedefine Ay(Q) C A(Q), 25(Q) C Q(Q) as

Aa(Q) =1y € A(Q) | y([0, 1)) NAQ # 3},
Qa(Q) :={y € Q) | y(SHNIQ # 0}
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* Foreachq € Q, p, denotes the constant path at ¢, and /, denotes the constant
loop at g.
We often identify ¢ € Q with p, and /;, and thus, we have inclusions Q0 — A(Q),
Q — Q(Q). For each a > 0, we consider the following homomorphisms, all
induced by inclusions.

I8 Ho(0.00) — Ho(A(Q) U Ay(0). Ay(0Q)).
17D Ho(Q.00) — lim Hu(A“(Q) U A5(Q). A5(Q)).

§—0

L Ho(0.00) = lim Hu(intQ.intQ \ Q(8))

§—0
— lﬂ H.(A(intQ) U Ag(intQ), As(intQ))
§—0
One can define I(fz o IIQ"', and 12Q " in the same manner.
Lemma 5.1. Foranya € Ho(Q.0Q) and j = 0, 1,2, let us define

Ma) = infle > 0] 18(@) = 0},
Then, c'(‘)\(a) = cf\(oz) = (2 ().
Proof. cl a) = ¢ (a) i1s immediate from Lemma 4.1. ('lA(a) < ('6\(01) is also

clear, since there exists a natural homomorphism

H (A"(Q) U Ap(Q), Ap(Q)) — lim Hu(AU(Q) U As(Q). As(Q)).

6—0

which is induced by inclusions. Hence, it is sufficient to prove ('IA () > c(‘)\ (o).

Let a > a’ be any positive real numbers. When § > 0 is sufficiently small, there
existsaC® mapy : Q x [0, 1] = Q:(x.t) + Y, (x) such that

* Yo =1idg. Y |pp = idyp forany 0 <1 < 1.

* (@ \ Q5) =90.

* |dy1(§)| = Va/d'E| forany § € TQ.

Then, we have the commutative diagram

H.(Q.00) H. (A (Q) U As(Q). As(0))
Hy (A(Q) U Ay(Q),Ay(0Q))

If &' = ef(a)* /2 @ e H.(Q. dQ) vanishes by the top arrow, hence 1 “Ua) = 0,
and therefore, a B (0 («)?/2. Since we may take @ > a’ arbitrarily, we have shown
thdtcl a)>c (). []
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Forany @ € H,(Q,Q), we denote ¢ (@) = ¢ (a) = ¢ () in Lemma 5.1 by
M (0 : ). On the other hand, for j = 0, 1.2, we define

F(a) i=infle > 0| 19 (@) = 0},

By the same arguments as in Lemma 5.1, we can show that ng (@) = C,Q(a) =
c$t(a). We denote itby ¢®(Q : ). Wecall c2(Q : @) and c®(Q : @) the capacities
of Q.

Remark 5.2. The above definition of ¢ and ¢ imitate the definition of the Floer—
Hofer—Wysocki (FHW) capacity, which is defined in [9] (see also [12], Section 2.4).
In fact, when Q is a domain in the Euclidean space and [Q, dQ] denotes its relative
fundamental class, ¢®(Q : [Q.d0Q]) is equal to the FHW capacity of its disc
cotangent bundle. See Corollary 1.4 in [12].

Lemma 5.3. Foranya € Ho(Q.90)\ {0}, ¢*(Q : a).c%*(Q : a) > 0.

Proof. We only prove ¢®(Q : «) > 0, since ¢®(Q : «) > 0 can be proved
by parallel arguments. In this proof, we use abbreviations A¢ = A“(intQ),
As := As(intQ). For any positive a and 8, the excision property shows that

H*(Aa, Aa ﬂ AS) —> H*(Aa U Aé‘. AS)
is an isomorphism. Therefore, it is sufficient to show that for sufficiently small ¢ > 0

5]‘2:) H.(intQ.intQ \ Q(4)) — (:‘E:) Hyo (A AN Ag)

is injective. For any y € A N Ay, there holds
y(0) € intQ \ Q(6 + length(y)) C intQ \ Q(§ + V2a).
Define ev : A¢ — intQ by ev(y) := y(0), and consider the commutative diagram

= 3 : S : a a
l<1_m5_>0H*(th. intQ \ (%)) ————— hms-»oH*(A CAYN Ag)

«—

lim,  Hi(intQ.intQ \ (8 + V2a)).

When a > 0 is sufficiently small, the diagonal arrow is an isomorphism. Therefore,
the horizontal arrow is injective. O
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The next lemma shows that the capacity i1s equal to the length of a billiard
trajectory.
Lemma54. Leta € H;j(Q.00) \ {0}.
() If ™ (O : &) < o0, there exists a brake billiard trajectory y on Q such that
1B, < j — 1 and length(y) = ¢*(Q : «
(n): If CQ(Q s @) < oo, there exists a periodic billiard trajectory y on Q such that
8B, < j + 1 and length(y) = ¢ (Q : a).

Proof. We only prove (i), since (i1) can be proved by parallel arguments. We
set a := ¢ (Q : @)%/2. Then, for any & > 0, there holds /;*“ *(a) # 0 and
IOA’aH(a) = (. In this proof, we use the notations A¢ := A4(Q). As := As(Q),
Ay := Ay(Q), and so on.

For any § > 0, we have a commutative diagram

d
Hjp (AT U Ay, A%5 U Ay) —— H,;(A“"F U Ay, Ay)

| |

Hj+|(/\u+€ U Az, A2 U Ag) —— H;(A°% U Ag, Ag),
s

where vertical arrows are induced by inclusions, and horizontal arrows are connect-
ing homomorphisms. Since [A ATE(y) = 0, we have IA @ () € Imdy. Letting
d — 0 of the above diagram, we have the following commulutive diagram.

0
Hi 1 (ATEU Ay, A“° U Ay) = H;(A“"¢ U Ay, Ay)

l l

lim, Hji (AU A5 AT U Ag) —=lim, H; (A7 U A Ay).

—0

Let us denote the right vertical arrow as . Then, t([(f\‘"_s(a)) = [lA’a_E(oz) £ 0.
Since IOA'““E(O() € Imdy, we get liﬂg_,o Hj 1 (A*TF U Ag, A% U Ag) # 0. By
Theorem 1.2, there exists a brake billiard trajectory y, on Q such that §5, < j —1
and length(y,) € [\/Z(a — E), \/2((1 + ¢€)]. Ase — 0, acertain subsequence of ().
converges to a brake billiard trajectory y such that {8, =< j — I and length(y) =

V2a = c2(0 : ). O

5.2. Capacity and inradius. By Lemma 5.4, Theorem 1.4 follows at once from
the following proposition. Recall that r(Q) denotes the inradius of Q.

Proposition 5.5. Let Q be a compact, connected Riemannian manifold with
nonempty boundary, and a € H;(Q,dQ). Then, there holds ('A(Q cw) <2jr(0Q),

SHQ ia) <2(j + Dr(Q).
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Proposition 5.5 is proved in this subsection. We will give a proof that stems from
arguments in our paper [12], Section 7. First, we need some preliminary results:
Lemma 5.6, Lemma 5.7.

Let P be a finite simplicial complex and o be a simplex on P. Star(o) C P
denotes the union of interiors of all simplices of P which contain ¢ as a facet, i.e.,
Star(o) := |

Lemma 5.6. Let P be a finite simplicial complex. There exist continuous functions
We : P — [0, 1] where o runs over all simplices of P, such that the following holds.

oCT Intr.

(1): For any simplex o, suppw, C Star(o).
(i1): For any distinct simplices o, ¢’ of same dimensions, suppw, N suppwys = @.

(111): Ug w;' (1) = P, where o runs over all simplices of P.

Proof. We prove the lemma by induction on dimP. The claim is obvious when
dimP = 0. Suppose that we have proved the claim for finite simplicial complexes
of dimension < d — 1, and let P be a finite simplicial complex of dimension d .

Let oy,..., o, be all simplices on P of dimension d, and P“=1 denote the
union of all simplices on P of dimension < d — 1. Take x; € into; for every
I = liaius m. There exists a continuous retraction r : P\ {xy,...,. Xm} = PW@-1)
such that there holds r(o; \ {x;}) = do; forany j =1,.... m.

We define a continuous function w, : P — [0, 1] for each simplex o of P.
When dimo = d, i.e., 0 = o forsome j = 1,..., m, we define u?o_,. so that
suppig; C intoj, and ws; = 1 on some neighborhood of x;. Then, there exists
a continuous function v : P — [0, 1] such that xy...... Ym € suppuv and 11);11(1) U
U ueTi(l) = P,

Next, we define w, when dimo < d — 1. By induction hypothesis, one can take
we : P™D - [0.1] for each o ¢ P@=1 5o that our requirements (i)—(iii) hold
for (Wg)yc pa—1y. We define w, : P — [0, 1] by

=3 B . O (\‘ E {.\‘] ...... \.n;})-
Wy (Xx) =

V(X)we (r(x))  (x ¢ {x...... Xm}).

Let us check that (ws)s satisfies our requirements (i)—(iii). By definition, if
dimo = d, then suppw, C into. Then, (i), (ii) are obvious when dimo = d. If
dimo < d — 1, then suppiy, C r~'(suppwy). This is because {10y, # 0} is
contained in suppv N r~!(suppwy), which is closed in P. Then, one can prove
(i) fordimo < d — 1 by

suppwy C r_l(suppwa) C r_l(Star(o) N P(d_”) C Star(o).

The second inclusion holds since (w4 ), satisfies (i), and the third inclusion holds
since r(0; \ {x,}) = do; forany j = 1,....m. (ii) for dimo < d — 1 is proved as
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follows (notice that suppw, N suppwy = @, since (wq ) satisfies (ii)):
SUppWg M suppwgr C r_’(suppwCr N suppwg’) = @.

(iii) follows from (J, ¢ pr—1 wy ' (1) = PU7Y (since (wq), satisfies (iii)) and
wy (DU Uuw gl (huv™i(l) = P, O
Lemma 5.7. For any R > r(0)?/2 and g € Q, there exists an open neighborhood
V of ¢ and a continuous map A @V — AR(Q) such that there holds A(v)(0) = v

and A(v)(1) € 90 foranyv € V.

Proof. Since R > r(Q)%/2 > dist(q, dQ)?/2, there exists y € AR(Q) such that
y(0) = ¢ and y(1) € dQ. Then, there exigts an open neighborhood V of ¢ and a
continuous map A : V — A(Q) such that A(g) = y and A(v)(0) = v, A()(1) €
00 (Yv € V). Then, V := A" (AR(Q)) and A := A|y satisfy our requirements.

O

Before starting the proof of Proposition 5.5, we introduce some operations on
A(Q).
» Forany a € [0, 1] and y € A(Q), we define ay € A(Q) by ay(¢) := y(at).
The map [0, 1] x A(Q) — A(Q): (a,y) + ay is continuous.

e Forany y € A(Q), we define y € A(Q) by y(t) := y(1 —t). The map
A(Q) — A(Q):y > y is continuous.

e Foranyy..... ym € A(Q) such that y (1) =y (0) fork = 1,... . m—1,
We define con(yy., ..., Ym) € A(Q) by
con{(y1y « -« Ym)(t) = Yk41(m(t —k/m))
(k/m=t=(k+1)/m k=0,..., m—1).
This is called the concatenation of yy,..., Ym. The following map is
continuous:
L Ym) | v1...0s Ym € A(Q),
V(1) =y (0) (k = 1,....m = 1)} > A(Q):
(Y1o-o . ¥m) & con(y,..., Vm).

Proofoj;\Proposition 5.5. First, we prove ('A(Q L @) < 2jr(Q). It is sufficient to
show fy “(@) = 0 forany a > (2jr(Q))?/2. Let us take a j -dimensional finite
simplicial complex P, a subcomplex P" C P, and a continuous map f : (P, P') —
(Q,00) suchthata € fu(H;(P, P)). _
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Suppose that there exists a continuous map F : P x[0, 1] — A%(Q) that satisfies
the following properties.
F-(1): Forany x € P, F(x,0) = pr).
F-(ii): Forany (x,1) € P":= P' x[0,1]U P x {1}, F(x.t) € A3(Q).

We obtain the following commutative diagram, where i* : (P, P') — (P x
[0, 1], P") is defined by i ¥ (x) := (x.0).

H,(P. P') g H,(0.90)

1/‘\...::
(f]’)*l l \

Hj (P[0, 1]. P") —— H;j(A“(Q). A“(Q) N Ay(Q)) — H;(A%(Q) U Ay(Q). Aa(C

It is easy to see that (i*), =0, thus l(f\’“ o fx = 0. Since a € fi(H;(P, P")), we
have I({\'a (o) = 0. Hence, it is sufficient to define F that satisfies F-(i) and F-(ii).

By our assumption, a/(2/)?> > r(Q)?/2. By Lemma 5.7, for any ¢ € Q
there exists a neighborhood V, of ¢ and A, : V, — A“/(2f)2(Q) that satisfies
Aq(v)(0) = vand A, (v)(1) € dQ forany v € V.

By replacing P with its subdivison if necessary, we may assume that the follow-
ing holds: for any simplex o of P, there exists ¢ € Q such that f(Star(c)) C V.
We choose such ¢, and denote it by ¢(o). Moreover, we take (wy)g, a family of
continuous functions on P as in Lemma 5.6.

We define F, : P — A(Q) foreach k = 0,..., Jj. Since (wq)s satisfies
Lemma 5.6 (ii), foreachx € P andk =0, ..., j, either (a) or (b) holds.

(a): There exists a unique k-dimensional simplex o of P such that x € suppwy.
(b): x ¢ suppw, for any k-dimensional simplex o of P.
In case (a), f(x) € f(Star(0)) C V(o). Then, we define Fi(x) € A(Q) by
Fie(x) := wo (x) - Aoy (f (X)), ie.,
Fr(x) [0, 1] = Qi 1= Ay (S (X)) (wg(x) - 1).

In case (b), we define Fj(x) := Preo- Then, it is easy to check that Fi is a
continuous map, which satisfies the following properties.

* Forany x € P, E(F(x)) <a/(2))>.

* Forany x € P, Fi(x)(0) = f(x).

* If x € P satisfies wy(x) = 1 for some k-dimensional simplex o of P,

Fie(x)(1) = A4(o) (f(x))(1) € 9Q.
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Now, we define F : P x [0, 1] — A(Q) by
Fix,1) = conlt Fo(%): Fi{x): tFL0E)s ;s oo s 8 Fp1(20), 1.F ey (%), 1 F (X))

The above concatenation is well-defined, since Fo(x)(0) = -+ = F;(x)(0).
For any x € P, £(Fy(x))..... E(Fj(x)) < a/(2j)%. Thus, E(F(x,1)) < a.
Therefore, F(P x [0, 1]) € A4(Q). Forany x € P and k = 0,..., J, there holds
0- Fi(x) = pr(x), and therefore, F(x,0) = pr(x). This shows that F satisfies
F-(i).

We check that F satisfies F-(ii). There holds F(x,t) € Ay(Q) for any
(x,t) € P’ x[0,1], since F(x,t)(1/2j) = Fo(x)(0) = f(x) € dQ. Hence,
it is sufficient to show that F(x,1) € Ay(Q) for any x € P. By Lemma 5.6
(iii), there exists a simplex o of P such that ws(x) = 1. Let k := dimo. Then,
F(x,1)(k/j) = Fr(x)(1) € 3Q. Hence, F(x,1) € Ay(Q). This completes the
proof of ¢ (Q : «) < 2jr(0).

The proof of cQ(Q ca) < 2(j + Dr(Q) is similar. Let us take P’ C P and
f (P, Py — (Q.00)sothata € f«(Hj(P, P")). Itis sufficient to show that, if
a/(2j +2)? > r(Q)?/2, there exists a continuous map F’ : P x [0, 1] — Q4(Q)
such that

F'-(i): Forany x € P, F'(x,0) =l r(x).
F'-(ii): Forany (x.t) € P" = P’ x[0,1]U P x {1}, F'(x,1) € Q3(Q).

Foreach k = 0,..., j, we define F| : P — AR+ (0) as in the proof of
cA(Q ) <2/r(Q). Then, we define F’ by

F'(x.t) := con(t Fy(x), tFg(x), ..., tFi(x), LF(x)).

Since F'(x,1)(0) = f(x) = F’(x,t)(1), one can consider F'(x, ) as an element in
Q(Q). Itis easy to verify that E(F'(x,t)) < a forany (x,t) € P x[0, 1]. Therefore,
F'(P x [0,1]) € Q4(Q). Itis also easy to verify that F’ satisfies F’-(i), (i), in a
similar manner as in the proof of ¢*(Q : @) < 2jr(Q). 0

5.3. Proof of Corollary 1.7. We conclude this section with a proof of Corollary 1.7.

Proof. The case j = 1 is easy, and therefore, omitted (see [14], pp.501-502).
Hence, we may assume that M is simply connected. By the Hurewicz theorem,
it is sufficient to show that if H;(M) # 0, then there exists a nontrivial geodesic
loop at p of length < 2jdiam(M).

Let p(M) be the injectivity radius of M. For any ¢ < p(M), let Q, := {x €
M | dist(x, p) > &}. Then, it is clear that r(Q,) < diam(M) — & < diam(M).
Moreover, H;(Q:.00Q,) = H,;(M) # 0.
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We apply Theorem 1.4 for Q.. Then, there exists a brake billiard trajectory y,
on Q. such that length(y,) < 2jr(Q.) < 2jdiam(M). We set t, := min{t >
0 | ye(t) € 90Q¢}, and define Iy @ [0,1] — Qg by I'c(f) := ye(tet). Since
[:(0), (1) € 00, and length(Iy) < length(y,) < 2jdiam(M), a certain
subsequence of (I'y), converges to a geodesic loop I" : [0,1] — M at p such that
length(I") < 2jdiam(M).

We have to check that I" is nonconstant. Since f; (0) is perpendicular to dQ,
and nonzero, I'¢([0, 1]) intersects S := {x € M | dist(x, p) = p(M)}. Hence
I’([0, 1]) also intersects S. Since p ¢ S, I' is nonconstant. 0

6. Shortest periodic billiard trajectory in a convex body

In this section, we prove Theorem 1.8 and Theorem 1.9 using our method. A recent
paper [3] obtained similar proofs based on the results in [8]. Several results in this
section were already obtained in [8] in a more general setting. We include proofs
of these results for the sake of completeness, although some arguments overlap with
the arguments in [8].

First, let us introduce some notations. Let K C R" be a convex body with C*®
boundary.

» We abbreviate ¢ (K : [K, 0K]) as ¢ (K).
* P(K) denotes the set of periodic billiard trajectories in K.

» PT(K) denotes the set consisting of piecewise geodesic curves y : S — R”
such that y(S!') + x ¢ intK for any x € R",

* Forany v € R" and a compact set S C R", A(S : v) :=max{s-v |s € S}.
» Forany g € dK, v(g) denotes the unit vector that is outer normal to dK at q.

Lemma 6.1. Let K be a convex body with C™ boundary, and y : S' — R" be a
piecewise geodesic curve. If there exists N C R"\{(0, ...,0)} such that (0, ...,0) €
conv(N) and h(K : v) < h(y(SY) : v) forany v € N, then y € PT(K).

Proof. Take x € R" arbitrarily. Since (0,..., 0) € conv(N), there exists v € N
such that x - v > 0. Thus, A(y(S") + x : v) > h(y(S") : v) > (K : v). Since
v # 0, this shows that y(S!) + x ¢ intK. OJ

Lemma 6.2. Any y € P(K) satisfies the assumption in Lemma 6.1 with N' ;=
{v(y(®) | t € By}. Inparticular, P(K) C PH(K).

Proof. For any t € B,, there holds 1(K : v(y(t))) = y() - v(y(t)) since K is
convex. Hence #(K : v) = h(y(S!) : v) forany v € N.

Suppose that (0, ..., 0) ¢ conv(N). Since N is a finite set, there exists x € R"
such that x - v > 0 for any v € N. Since jy = 0 on S' \ B,, there exists ¢t € B,
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such that x - (y~(r) — yT(r)) < 0. On the other hand, it is easy to see that
v(y(t)) =y~ (1) —yT(t)/|y~(t) — yT(1)|. Thus, we have x - v(y(¢)) < 0. This is
a contradiction, thus (0, . . ., 0) € conv(N). O

The following proposition is a key step in the proof.
Proposition 6.3. For any y € PT(K), there holds ¢®(K) < length(y).

Proof. 1t is sufficient to show that, for any @ > length(y)?/2 and § > 0, the
homomorphism

Hy (intK, intK \ K(8)) = Hp(2%(intK), Q°(intK) N Qg (intK))
1s zero. By the excision property, this is equivalent to show that
Hy (R",R" \ K(8)) — Hn(Q*(R"), Q%(R") \ Q(K(9)))

is zero. By changing parameters of y if necessary, we may assume that £(y) =
length(y)? /2. Therefore, £(y) < a.

Let us set Bg := {x € R" | |x|] < R} forany R > 0. We define
F : Brx[0,1] = Q(R") by F(w, s)(t) := w+sy(t). When R is sufficiently large,
w+sy(S!) ¢ K(8) forany w € dBg and 0 < s < 1. Moreover, w+y(S!) ¢ K(8)
for any w € Bpg, since y € P1(K). Thus, setting P := Bg x [0,1] and
P’ :=09Br x [0, 1] U Bg x {1}, we have

F: (P, P) — (QUR"), Q*(R") \ Q(K(8)))-

Setting i : (Bg, dBRr) — (P, P'); x — (x,0), we have the commutative diagram

H,(Bg.dBg) = Hy(P, P')

| -

Hp (R, R\ K(8)) — Hn(Q4(R"), Q4(R") \ 2(K(8))).

Since K(§) is also convex, the left vertical arrow is an isomorphism. On the other
hand, ix = 0. Thus, the bottom homomorphism is zero. O

Corollary 6.4. Let us d(fme /,LP(K) := inf{length(y) | y € P (K)}. Then,
c*(K) = up(K) = nh(K).

Proof Lemma 5.4 shows ¢®(K) > up(K). P(K) € PT(K) shows up(K) >
113 (K). Proposition 6.3 shows 11} (K) > ¢%(K). O

Remark 6.5. The identity ¢*(K) = up(K) implies that there exists a shortest

periodic billiard trajectory in K, since Lemma 5.4 shows that there exists a periodic
billiard trajectory y in K such that length(y) = ¢%(K).
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The identity pp(K) = u,;(K ) can be considered as a variational characteriza-
tion of pp. The same result is established in [8] (see also [3], Theorem 2.1). As
an immediate consequence, we can recover the following result, which was already
obtained in Proposition 1.4 [5] (see also [3] Section 2.2).

Corollary 6.6 ([5]). Let K1 C K3 be convex bodies with C*> boundaries. Then,
up(Ky) = pup(Kz).

Proof. 1t is obvious that P+ (K,) C P+ (K;). Then, we have

pp(Ky) = uh(Ky) < uh(Kz) = pp(Ka).

O

We also need Lemma 6.7 to determine when equality holds in Theorem 1.8 and
Theorem 1.9.

Lemma 6.7. Suppose that y € Pt (K) satisfies length(y) = ,Uu';(K), and |y(t)| is
constant for all t such that y(t) exists. Then, up to parallel displacement, y € P(K).

Proof. For any ¢ > 0, we set y.(t) := (1 — g)y(t). Since length(y,) <
length(y) = MF(K), there holds y, ¢ P*(K). There exists x, € R” such that
xe + ¥e(S1) CintK for any € > 0, thus by parallel displacement, we may assume
that y(S!) C K. We show that y € P(K).

Take 0 = tg < t; < -+ < 1,, = 1 so that V|[tj_1,tj] are geodesics and
Y ) Ayt foralll < j <m. WesetJ :={1 <j <m]|y() € dK}.
For each j € J, let us abbreviate v(y(f;)) as v;. By convexity of K, h(K : v;) =
y(t;) v, foreach j € J.

Let N :={v; | j € J}. If(0,...,0) ¢ conv(N), there exists x € R” such that
x-v; <O0forany j € J. Thus, y(S') + cx C intK for sufficiently small ¢ > 0.
This is impossible since y € P1(K). Thus, we have shown (0, ..., 0) € conv(N).

We show that J = {I,..., my. IfJ C{l1,..., m}, there exists ' : §' — K
such that length(y’) < length(y) and y'(S') D {y(¢t;) | j € J}. Foreach j € J,
one has

WK :v;)=y(t;)-v; <h(y'(S"):v)).
Then, Lemma 6.1 implies y’ € PT(K). This is impossible since y has the shortest
length in P*(K).
To prove y € P(K), it is sufficient to check that y satisfies the law of reflection

at every ;. If this is not the case, i.e., yT(¢;) — y~(¢;) is not a multiple of v; for
some j, there exists v € Ty ;)dK such that

[y @)=y @ i-DI+ 1y i) =y > [y Fo—yEi-Dl+ |y i) —y;) =l
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Define y' : S' — R” so that

Y=+ E=0
y(t) (i # )

and y'|p; | 4] are geodesics for all 1 < i < m. Then, length(y’) < length(y).

It is easy to check A(y’(S') : v;) > h(K : v;) forany | < i < m, and thus,

Lemma 6.1 implies ' € P (K). This is impossible since y has the shortest length

in PT(K). O

For any two curves y; : S' — R” (i = 1,2), we define y; + y, : S' — R”
by y1 + ya(t) := y1(t) + y2(t). The following lemma would be clear from the
definition of P.

Lemma 6.8. Ify;(S') ¢ PY(K;) fori = 1,2, one has y, + y2 ¢ PT (K, + K>).

Now, we can prove Theorem 1.8.

Proof of Theorem 1.8. Let a; := up(ll(L:;ErI::iirz(Kz)' If length(y) < pp(Ky) +

1p(K2), we have the following inequality for each j = 1,2.

length(a;y) = a;j - length(y) < up(K;) = /,L‘It(Kj).

Then,a;y ¢ PY(K;). By Lemma 6.8,y = a1y + a2y ¢ PT(K| + K3). Thus, we
have shown that ,uﬁ(K, + K3) > up(Ky) + up(K3). By Corollary 6.4, we get

ip(Ki + Ka) = uh(Ky + Ka) = pp (K1) + pp(Ka). (6.1)

We have to show that the following two conditions are equivalent.

(D): wp(Ki + Kz2) = pp(Ky) + pp(Ka).

(ii): There exists a closed curve y which, up to parallel displacement and scaling,
is the shortest periodic billiard trajectory in both Ky and K>.

(1) = (ii): There exists y € P(K |+ K3) such that length(y) = pup(K; + K>).
Ifayy ¢ PT(K)), one has (a; + €)y ¢ PT(K,) for sufficiently small & > 0.
On the other hand, (a; — e)y ¢ P*(K,) since (az — €)length(y) < pp(Ks).
Thus, y ¢ PH(K, + K>), which is a contradiction. Therefore, a1y € PT(K,).
Since length(a1y) = pp(K;), Lemma 6.7 implies a;y € P(K,) up to parallel
displacement. We can prove a2y € P(K53) in the same manner, and thus, (ii) holds.

(i) = (i): Take y : S' — R” as in (ii). For j = 1,2, let y; be a shortest
periodic billiard trajectory on K ;, which is obtained by parallel displacement and
scaling of y. We may assume that y = y, + y,. Then, length(y) = length(y;) +
length(y2) = pp (K1) + jup(Ky).

It is easy to see that By, = B,,. Let us denote it as B. For each t € B,
v(t) ==y () =yT()/|y~ (€)= y* (1) is outer normal to 3K ; at y;(¢) for j = 1,2.
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Letus set N := {v(¢) | t € B}. By Lemma 6.2, we have (0, ..., 0) € conv(N) and
h(K;:v)=h(y;(S') :v)forany v € N, j = 1,2. Then, forany v € N

WKy + Ky v) =h(Ky 2 v)+ (K v) =h(yp(SY) 1 v) + h(ya(SY) 1 v)
= h(y(S") : v).

By Lemma 6.1,y € P*(K, + K»). Hence,
pwp(Ki+ Ka2) = pp(Ki + Ka) < length(y) = pp (K1) + pp(Ka).
Combined with (6.1), (i) is proved. l

To prove Theorem 1.9, we need the following lemma.

Lemma 6.9. Let B be a ball in R™ with radius r > 0. Then, any y € P(B) satisfies
length(y) > 4r, and equality holds if and only if y is a bouncing ball orbit. In
particular, up(B) = 4r.

Proof. Let k := #B,. Then, one has length(y) = 2krsin(rwj/k) for some
1 < j <k — 1. Then, the lemma follows from short computations. |

Proof of Theorem 1.9. Let K be a convex body, and B be the largest ball contained
in K. Since the radius of B is r(K), Corollary 6.6 and Lemma 6.9 imply
wp(K) > pup(B) = 4r(K).

Suppose that pp (K) = 4r(K), and let y be the shortest periodic billiard trajec-
tory in K. Then, y € P(K) C PT(K) C PT(B),andlength(y) = 4r(K) = up(B).
Then, Lemma 6.7 shows that y € P(B) up to parallel displacement. By Lemma
6.9, ¥ is a bouncing ball orbit. In particualr, y is orthogonal to dK at bouncing
points. Thus, K is contained in a slab of thickness length(y)/2 = 2r(K). Hence
width(K) = 2r(K).

Suppose that width(K) = 2r(K). Then, K is contained in a slab S of
thickness 2r(K). Let y be a bouncing ball orbit on §, i.e., y is the shortest
orbit that touches both connected components of d5. Then, it is easy to see that
y € PH(S) c PY(K). Thus, up(K) = ,u,;(K) < length(y) = 4r(K). O
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