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Envelopes of certain solvable groups

Tullia Dymarz

Abstract. A discrete subgroup F of a locally compact group H is called a uniform lattice if
the quotient H / V is compact. Such an H is called an envelope of T. In this paper we study the

problem of classifying envelopes of various solvable groups including the solvable Baumslag-
Solitar groups, lamplighter groups and certain abelian-by-cyclic groups. Our techniques are

geometric and quasi-isometric in nature. In particular we show that for every T we consider
there is a finite family of preferred model spaces X such that, up to compact groups, H is

a cocompact subgroup of lsom(X). We also answer problem 10.4 in [8] for a large class of
abelian-by-cyclic groups.

Mathematics Subject Classification (2010). 20F16, 20F69, 22D05.

Keywords. Lattices in locally compact groups, lamplighter groups, Baumslag-Solitar groups,
quasi-isometries.

1. Introduction

The problem of classifying envelopes of finitely generated groups was initiated

by Furstenberg in [9J where he coined the term envelope and proposed classifing
which Lie group envelopes can occur. Mostow, Margulis, and Prasad completed
this program in [15, 14, 13, 20]. There is also earlier work of Malcev on nilpotent
Lie groups [12]. In [10], Furman revisited the case of lattices in semisimple Lie

groups, but this time for arbitrary second countable envelopes. Recently Furman-

Bader-Sauer have announced classification of a wider class of envelopes of groups

extending Furman's previous results. Also in the same spirit, in [16] Mosher-

Sageev-Whyte classified all envelopes of virtually free groups. In this paper we

prove the first results of this kind for classes of solvable groups.

Theorem 1.1. Let H be an envelope of a finitely generated group F.

(1) // T is a lattice in the three dimensional solvable Lie group Sol then, up to

compact kernel, H embeds as a cocompact subgroup of Isom(Sol).

(2) IfV rm is the solvable Baumslag-Solitar group

BS(\,m) {a,b\ aba'1 bm)
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then, up to compact kernel, H embeds as a cocompact subgroup of the

isometry group Isom(Xp) where Xp is the standard model space for Yp.

(3) IfY Ym is a lamplighter group F I 7L (with \F\ m) then, up to compact
kernel, Fl embeds as a cocompact subgroup of the isometry group I som(Xp)
where Xp is the Diestel-Leader graph DL(p, p) a standard model space for
IV

The description of the model spaces Sol and Xm can be found in Section 6.

These three types of groups are treated together to emphasize their similar structure.
There are some notable differences however. For lattices in Sol there is only one
canonical model space into which H embeds, namely Sol itself, while for BS(\,m)
and F I Z, the model space Xp varies depending on m and |F| and H itself. In

Section 10 we show that for each group there are only finitely many possibilities for

p. Note also that a lamplighter group is only solvable as long as the defining finite

group F is itself solvable but our proof works for all lamplighters.

Theorem 1.2. Let T Ym be a finitely presented abelian-by-cyclic group given by

VM [a.b{ b„ | abiu~l bu b"i, bybj bjbj)

where M (/w,y) is an integral matrix. Let M be the absolute Jordan form of M
and let X^ be a standard model space for Ym- If M has either

(1) all eigenvalues offof the unit circle and det M 1 or

(2) all eigenvalues ofnorm greater than one

then any envelope of Tm embeds cocompactly in a locally compact group that is

isomorphic, up to compact groups, to Isom(X^k) for some k e Q.

The geometry of X^ and X^k are described in Section 6. Note that if
M e SL2CL) is a hyperbolic matrix then Ym is a lattice in Sol and if M [/«]
is a one by one matrix then Ym BS(\,m) so Theorem 1.2 covers the first two

cases of Theorem 1.1 but there is a subtle difference in the conclusions. Theorem 1.1

shows that there is a compact normal subgroup K such that H/K C Isom(X).
For Theorem 2 by "up to compact groups" we mean that T is contained in

H' c Isom(X/yk) where

!->//'-> H/K - K' - 1

with K, K' compact. The first case (det M 1 and all eigenvalues off the unit
circle) should be treated as a generalization of lattices in Sol. Indeed in this case we
can always take k 1 and the model spaces X^ are all solvable Lie groups. The
second case should be thought of as a generalization of BS(l.m) and in this case
in Section 10 we show that there are again finitely many choices for k depending on
the factoring of det M. These groups and spaces X^ were first studied in [8],
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There is another subclass of abelian-by-cyclic groups where we can prove a

partial result. This is the class where M has eigenvalues both of norm greater and

less than one and det M > 1. We state the theorem here but refer the reader to
Section 9.2 for definitions.

Theorem 1.3. Let Tm be a finitely presented abelian-by-cyclic group with d
det M > 1 and where M has some eigenvalues of norm greater than one and some

of norm less that one (and none of norm one). Then if Vm is a cocompact lattice in

a locally compact group H then H is a uniform subgroup of

Sim(R"1) x ASim^2(R"2 x Qdk)

where M\ is the matrix containing all eigenvalues of M with norm greater than one
and M2 contains the inverses ofall eigenvalues of M ofnorm less than one.

In fact this theorem applies to all Tm with no eigenvalues on the unit circle with
the understanding that if det M 1 then there is no Qj factor and AS im is replaced
with Sim. If all of the eigenvalues are greater than one then ASim^2(R"2 x Qd) is

replaced with Sim(Qdk). Theorem 1.3 is an intermediate technical step that is used

to prove Theorem 1.2.

2. Outline

The strategy for analyzing envelopes of the above mentioned groups follows the

strategy applied by Furman in [ 10] for analyzing cocompact envelopes of lattices in

rank one symmetric spaces.
First, if T C H is a cocompact lattice then using a construction of Furman (see

Construction 5.1 below) we get an embedding, up to compact kernel, of H into the

quasi-isometry group Ql(T) as a uniform subgroup. Since T and any model space
X for T are quasi-isometric Construction 5.1 also gives us a uniform embedding
of H into Ql(X). We use this embedding precisely because /som(X) also maps
naturally to QI(X) as a uniform subgroup. For all of our spaces Isom(X) actually
embeds into QI(X) up to compact kernel. (This is not the case, for example, for
X R). In order to show that the embedding of H into QI(X) has only compact
kernel we rely on a topology on uniform subgroups of QI(X) developed by Whyte
in [22], Since this paper has not appeared yet we reproduce parts of it in Section 4.

Furman's construction is explained in Section 5.

Next, to understand Isom(X) and QI(X) better we describe how all of the

above groups have model spaces that can be constructed from certain CAT(—\)
spaces using the so called horocyclic product. This process is described in Section 6.

By viewing these model geometries as horocyclic products we are able to interpret

Isom(X) as a product of similarities of the visual boundaries of these CAT(—\)
spaces. Then by appealing to various quasi-isometric rigidity theorems we can
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interpret Q/(X) as a product of bilipschitz maps of these boundaries. This viewpoint
has already been used in certain cases like lattices in Sol, BS(\,n), and F I Z but

has not been applied to its full extent to abelian-by-cyclic groups (notably for the

ones that are not lattices in solvable Lie groups).

Finally in Section 8 we study the analytic properties of bilipschitz maps on these

boundaries. This analysis leads us in Section 9 to conclude that the envelope H
must actually lie in the subgroup identified with Isom(X) C QI(X). In the case

of lattices in Sol, BS(\,n), F I Z this analysis is straightforward since there are

existing theorems that show that uniform subgroups of bilipschitz maps of their
boundaries can be conjugated to groups acting by similarities. For general abelian-

by-cyclic groups the analysis is more technical since the existing theorems only
give partial information. It is this analysis that makes the case of det M / 1 with
eigenvalues of norm greater or less than one intractable and leaves us only with the

partial results of Theorem 1.3.

3. Preliminaries

3.1. Analysis.

Definition 3.1 (Quasi-isometry). We say that f : X -s Y isa(A, C) qiuisi-isometry
if

-C + Kd(x,y) < d(f(x),f(y)) < Kd(x,y) + C

and the C neighborhood of f(X) is all of Y.

Definition 3.2. The quasi-isometry group QI{X) is the group of equivalence classes

of self quasi-isometries / : X ->• X where / ~ g if dsup( f,g) < oo. We
write [/] G QI(X) to denote the equivalence class of /. We say that a subgroup
U C QI(X) is uniform if there exists fixed (K, C) such that each equivalence class
in U has at least one representative that is a (K, C) quasi-isometry.

Definition 3.3 (Similarity). We say a map / : X Y is a similarity with similarity
constant s if

d(f(x),j{y)) sd{x,y).
Definition 3.4 (Bihpschitz/Quasi-similarity). We say that /' : X -» Y is a

bdipschitz map if

a d(x,y) < d(f(x), f(y)) < b d{x,y).

If we can chose a 1/ K and b K then we say / is a K-bilipschitz map. If we
can chose a s/K and b — sK then we say that / is a {K,s)-quasi-similarity.
We say that a group of bilipschitz maps/quasi-similarities is uniform if K is uniform
over all group elements.

Notation. We write Bihp(X) to denote the set of all bilipschitz (quasi-similarity)
maps of X, and Sim(X) to denote all similarities.
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3.2. Geometry.

Definition 3.5 (Model space). We say that a proper geodesic metric space X is a

model space for a finitely generated group T if T acts properly discontinuously and

cocompactly on X by isometries. In this case T is a cocompact lattice in Isom(X).
Most of the spaces we study in this paper will be constructed from CAT(— 1)

spaces so we recall here some basic properties of these spaces. For a CAT(— 1) space
X the usual visual boundary 3oo9f can be identified with all geodesic rays starting
at a fixed basepoint xo e X. We will use instead the parabolic visual boundary 3^

which is defined by choosing £0 £ dooX and setting

We can treat 3^ as the set of bi-infinite geodesies with one endpoint equal to £o-

Definition 3.6 (Horosphere). For a CAT(—\) metric space X, fix x X and

geodesic t that is parametrized by length. Define

h(x) lim d(x, i(l)) — t.
t—yoo

This limit exists by the triangle inequality. The function h is called a horofunction
and the level sets of h are called horospheres.

We think of h as assigning a height coordinate to points x e X and so we will
sometimes refer to h : X -» M as a height function. We call a geodesic l'(t) a

vertical geodesic if h(l'(t)) t. In a CAT(— 1) space X, each £ e dooX is either
I+ (the point on the boundary define by the ray defined by V) or there exists a unique
vertical geodesic connecting £ to i+. If we take £0 then each vertical geodesic
with respect to h gives a point on the parabolic visual boundary.

Example 3.7. The hyperbolic plane H2 in the upper half plane model with the

coordinates (x,y) has t lny as the height coordinate and each each vertical
geodesic is given by

l(t) (xo.e1).

Example 3.8. If Tn+1 is a regular 11 + 1 valent infinite tree and we assign an

orientation to edges so that each vertex has n incoming edges and one outgoing edge

(pointing "up") then, after picking a base point, this orientation induces a height
function equivalent to any horofunction given by any coherently oriented geodesic
in the tree. (Coherently oriented geodesies are geodesies whose orientation never

changes).

For some of the analysis appearing later we need the following definition.

Definition 3.9 (Radial point). Let U be a uniform group of quasi-isometries of X.
We say that £ d^X is a radial point for U if there exists a sequence of quasi-
isometries gn : X —» X with [g„] e U such that for any x X and any geodesic

ray i defining £ there exist an R > 0 such that dx(gnix)A) < R for all n and
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4. Topology on £>/(F)

Our standing assumption will be that A" is a path metric space of bounded geometry,
(i.e. quasi-isometric to a bounded valence graph). The following definition is due to

Whyte.

Definition 4.1 (QI-tame space). We say that X is a quasi-isometrically tame space

if for any (K,C) there exists a constant Rg.c such that for any quasi-isometry

f-.X^X
dsupi / Id) < 00 ^ dSUp(J, Id) < Rk<c

In (221 Whyte develops a topology of "coarse convergence" for QI-tame spaces.
We include some of the these details in this paper tor completeness.

4.1. Topology.

Definition 4.2 (Coarse convergence). A sequence of (K, C) quasi-isometries {/}
is said to coarsely converge to / if there exists an R such that

lim sup d( f, (.v), ./(*)) < R
i—*oO

in which case we say that { /,} R-coarsely converges to /.
Note that if X is discrete and /, coarsely converges to j then some subsequence

actually converges to a (K, C) quasi-isometry /' with dsup(f, f) < R.

Lemma 4.3. If X is a QI-tame space then coarse convergence /, -» / descends to
the quasi-isometry group and so we can write [/,] -> [/].

Proof. If (/,} and //} are two sequences of (K, C) quasi-isometries such that

f, ~ // then by the triangle inequality { /"/} coarsely converges to /.
lim sup d{ fix), f{x)) < liin sup </(/"/(*), f(x)) + limsupr/(/;(x), f(x))

I —>00 /— 00 l-*OQ

< Rk,c + R.

Likewise if f j coarsely converges to /' then

d(f(x), f'(x)) < lim supr/( f(x), f(x)) + lim supd( f] (x), f'(x)) < R + R'
I —>00 I— 00

(and so dsup(j, /') < Rk.c since X is QI-tame).

In this case we say that [/,] coarsely converges to [/] and refer only to (K.C)
quasi-isometry representatives for some fixed K and C.

Lemma 4.4. X is QI-tame iff there exists an R such that if a sequence of (K,C)
quasi-isometries /, coarsely converges to j then f R-coarsely converges to f.
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Proof. If X is QI-tame then first discretize X. If f] coarsely converges to / then the

set { ft (x)} is bounded for some (each) .v. Therefore some subsequence of fi actually
converges to a (K, C) quasi-isometry / which must be within distance Rk,c of /'
(since X is QI tame). So for each x and e we have that for large enough i

Conversely, if there exists an R such that every coarsely convergent sequence R-

coarsely converges then whenever /' ~ f by considering the sequence f /' we

Next, given a uniform subgroup G C Qf(X) we consider the set G of all

coarse limits of G. We define a topology on G by defining a closure operator cl(A)
that is the set of all coarse limits of nets of elements from A. Whyte verifies that

cl(cl(A)) cl(A) which is the main property that needs to be checked to ensure
that this closure operator does indeed define a topology [23J.

Definition 4.5 (Closed). A set A C G is closed if it contains all of its coarse limits.

Definition 4.6 (Open). A set U C G is open if for any (K.C) quasi-isometry g
with [g] e U and any s > 0 there exists a finite set FgtS such that if h is a (K, C)
quasi-isometry where d(h(x). g(x)) < .v for all .v e FgvS then [/)] e U.

Proposition 4.7. If A is closed then A c is open and if U is open then Uc is closed.

(And so the two definitions are compatible.)

Proof. Let A be closed. Then consider [//] 6 Ac. Suppose that there is some s

such that for all finite sets F there exists hp, a (K.C) quasi-isometry such that

d(h(x), hp(x)) < s but [hp] f Ac. Now let F, be the ball of radius i. Then

h, := hpj .v-coarsely converges to It. But since A is closed we should have [/z] 6 A.

Let U be an open set. Now suppose that [/;,] e Uc and that It, converges
coarsely to h with [/;] U. Let .v IRp.c and let Fjus be as in the definition. Now
since //, Rk.c -coarsely converges to h let N be large enough so that for / > N and

for each .v e F/,i S

d(fj(x), f(x)) < Rk.c + f-

see that dsup(f /') < R.

d(hi(x).h(x)) < 2Rk,c.

This shows that for i > N we must have [/;,] e U.

With this topology, Whyte proves the following in [22]:

Proposition 4.8 (Whyte). For a uniform subgroup G C QI(X) ofa QI-tame space
X, the group ofall coarse limits G is a locally compact topological group.
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Proof. First we will show that the topology on G is Flausdorff. For r > 0 large

enough, consider the sets

V(xl,x2.r) :={[/] | V/ e [/], d(f(xi),x2) > r}

U(xi..\2.r) cl(V(xi.x2,r))c.

Then U(x\. x2, r) is open by definition.
We will show that if [/] / [g] then there exist two disjoint sets Uy and U2

of the form above containing [ /] and [g] respectively. If [/'] ^ [g] then for each

N there exists an vyv such that t/(/ (.Vyv)- g(v)) > N (otherwise / would be a

bounded distance from g). Now given r pick x := xyy with N > 2r + Rk,c-
Then U\ U(x, f(x),r) and U2 U(x, g(x), r) are disjoint since if [/;] had

two representatives h[.h2 with d(hy(x), j (x)) < r and d(h2(x), g(x)) 5 r then

d(g(x). f(x)) < 2r + Rk.c-
Next we note that U(x. x. r) is an open neighborhood of the identity map. If we

let A cl(U(x.x. / then A is a compact neighborhood of the identity since any

sequence of quasi-isometries that fixes an .v up to a bounded distance has a coarsely

convergent subsequence. Finally we note that composition with a quasi-isometry

preserves open and closed sets. This shows that G is a locally compact topological

group.

5. Embedding uniform envelopes into QI{T)

In this section we show how, given a uniform lattice embedding T C H, we can
embed H continuously and with compact kernel as a uniform subgroup of QI(T) (or
equivalently onto a uniform subgroup of QI(X) if A' is a model space for T). Recall
that there is a standard embedding p : T -> QI(V) given by p(y) [Lr\ where Ly
is given by left multiplication by y. We use a construction of Furman's from [ 10J to
define a map front O : H -» QI(Y). Then we show, using our previous work from
Section 4 on the construction of topologies on uniform subgroups of QI{X), that 0
is a continuous map from H onto the uniform subgroup A?(H).

Construction 5.1. : H -> QI{Y)
• Let E C H be an open neighborhood of the identity e, with compact closure

such that

h U yR-

ye r

• Fix p : H -> T satisfying/; e p(h)E for each/; e H.
• For each /; 6 H, define r//, : V F by the rule <//,(y) := p(hy).
• Since e G E, we can choose p with p(y) - y, so that qY(y') yy'.
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Lemma 5.2 (3.3 in [ 101). Let E, p and [qh}heH be as above. Then

(a) Each q/, : V —> T is a quasi-isometry of y and its equivalence class

[c/h] Q 1(f depends only on h H (and not on the choice of E, p).

(b) The map <t> : H — (9/(1), given by 0(7/) [qh]< Is a homomorphism

of (abstract) groups, such <t>|r coincides with the standard homomorphism

p-.T^Ql(T).
(c) {c//, }heH tire (K,C)-quasi-isometries for some fixed K and C, depending just

on E, p, and independent of h e H.

(d) There exists a constant B with the following property: given any finite
set F C T there is a neighborhood of the identity V C H such that

tl(Ph (y). y) < B for all y e F and h e V.

Combining Lemma 5.2 with Whyte's coarse convergence topology we get the

following proposition. (Compare with Theorem 3.5 in [ 10].)

Proposition 5.3. Let T be a QI-tame finitely generated group. Suppose T is a

cocompact lattice in a locally compact topological group H. Then : // —> Q1(T)
(as defined in Construction 5.1) is a continuous homomorphism onto a uniform
subgroup of Q1(V) with compact kernel and locally compact, compactly generated
image.

Proof Let G be the uniform subgroup of 0/(T) which contains all the coarse

limits of p(H). To show that <t> is continuous, let U be any open subset in G

containing the equivalence class of the identity [/<:/]. Then by the definition of open
set (Definition 4.6) we have a finite set Fjj^. such that if a (K, C) quasi-isometry q

maps each element of Fjj>s at most distance s from itself then [q] U.
Let s B be as in part (d) of Lemma 5.2. Let V be the neighborhood of the

identity in H corresponding to the set Ftj ß. Then [q;,\ is in U for all h V since

by Lemma 5.2 d(qi,(.x),x) < B for all ,v e Euiji-
By Ql-tameness, the standard inclusion p : T —» 0/(T) has finite kernel and

T>(T) is discrete in <$>(H). Let E be as in Construction 5.1 above. Since «I1 is

continuous then $(£) is compact and therefore d>(//) 0(T)0(£)is compactly
generated and 0(F) is a cocompact lattice in <P(H). This also gives us that kerO is

compact.

6. The groups and their geometry

The model spaces for our solvable groups that appear in Theorems 1.1 and 1.2 are

built out of three primary CAT(— 1) space. Each of these will be endowed with
a preferred height function (horofunclion). We list them as examples below. See

Section 3 for basic definitions and properties of CAT(—1) spaces.
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Example 6.1. The regularin+ 1 valent tree Tm+l. (See Example 3.8 in Section 3.2).

Example 6.2. If M is a matrix with all eigenvalues of norm greater than one then

the solvable Lie group

GM x A/ R"

is a negatively curved homogenous space. Here R acts on M" by a one parameter
subgroup M' C G'L(ii.R). The height function h is given by h(t,x) 1. When M
is a scalar matrix the solvable Lie group Gm is n + 1 dimensional hyperbolic space.

We can combine the above two examples to get what was coined a millefeuille
space in [ 11. See also [41 for more details on its geometry.

Example 6.3 (millefeuille space). Let Zm^M — Tm+X x R" be the fibered product
of Tm+i and Gm- In other words for each oriented line £ e Tm+i we identify I x R"
isometrically with Gm in such a way that the height function on Gm coincides with
the height function on Tm+\. The height function on Z^m is then given by the

compatible height functions on Tm+i and Gm-

6.1. Geometric models for solvable groups. In this section we combine the

negatively curved spaces from above to construct model spaces for certain classes

of finitely generated solvable groups.

Definition 6.4 (Horocyclic product). Given CAT(—\) spaces X\. X2 with horolunctions

h i. h2 dehne their horocyclic product as

X\ xh X2 {(.Vi,.y2) I /lifti) + M-Y2) 0}.

We give X\ xh X2 the induced path metric from the L2 metric on X\ x X2 rescaled
by a factor of -Jl.

Example 6.5. If X,,X2 H2 viewed in the upper half space model with
£(/) (0, e') then X\ x/, X2 is the three dimensional Sol geometry.

Example 6.6. If Xi — Tn+\,X2 Tm-\-1 are 11 + 1 and in + 1 valent trees
respectively then X\ x/, X2 are the Diestel-Leader graphs DL(n,m). When 11 m
these are Cay ley graphs for any lamplighter group of the form F } 7L with |F| =11.

Example 6.7. When Xi M2 and 2f2 Tn+X then Xx xh X2 is the complex X„
described in [6], This complex is a model space for the solvable Baumslag-Solitar
group

ß5(l,ii) (a, b I aba~x h").
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Example 6.8. Model spaces for the finitely presented abelian-by-cyclic groups

where M has no eigenvalues on the unit circle can be written as horocyclic products
of CAT(—\) space as follows. Suppose the integral matrix M has absolute Jordan

form M that can be written as

• If det M 1 then a model space for Tm is x/, G^ This space
is equivalent to the solvable Lie group I x^, R" and can be viewed as a

generalized version of Sol.

• If det M d > 1 and all eigenvalues are greater than one in norm (i.e
M Mi) then a model space for Vm is given by G^ x/, 7j/+1. This space

can viewed as a generalization of the spaces that solvable Baumslag-Solitar

groups act on.

• If detM d > 1 and both M\ and M2 are nontrivial then has G^x *h
Zm2 rf as a m°del space.

See Section 9.2 for more details.

7. Height-respecting quasi-isometries and boundaries

In this section we describe height-respecting isometries and quasi-isometries of the

various CAT{—\) spaces and the horocyclic products we described in the previous
section.

Definition 7.1. A height respecting (quasi-)isometry of a CAT(— 1) space or
horocyclic product X with height function h : X R is a self (quasi-)isometry
that permutes level sets of h (up to bounded distance) in such a way that the induced

map on height is (bounded distance from) a translation.

It is easy to see that, up to finite index, the isometry groups of the model spaces

we consider consist of only height-respecting isometries. The key to our analysis
is that quasi-isometries of these model spaces are also all height-respecting. This is

a highly non-trivial fact which has been proved over a series of papers by many
authors. In section 7.4 we give detailed references to these results. Once we

are able to restrict to height-respecting quasi-isometries, we can show that quasi-
isometries of our model spaces induce height-respecting quasi-isometries of their

defining CAT(— 1) factors.

Note that in certain cases the CAT{— I) factors have more than just height

respecting (quasi-)isometries: for example Tn + \ or H" or any negatively curved

VM [a,hi h„ | ahta
1

<pM(bi),hihj hjbi)
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symmetric space have many non height-respecting isometries and quasi-isometries.
In other cases, such as X G^ when M is not a scalar matrix or all quasi-
isometries are height-respecting (see f241 and [4]).

7.1. Parabolic visual boundaries of CAT(-\) spaces. The interest in height-
respecting (quasi-)isometries of CAT{— 1) spaces comes from the fact that these

kinds of maps induce particularly nice maps on the parabolic visual boundaries of
these spaces. Recall from Section 3 that the parabolic visual boundary which we
denote d/X can be defined as the space of vertical geodesies with respect to a fixed

height function.

Definition 7.2. We equip the lower boundary with a horocyclic visual metric given
by

daAS-n)

where /0 is the smallest height at which the two geodesies £ and r] are less than or
equal to distance e apart.

Here e > 0 and for each space X there is an interval of admissible a which makes

da^ into a metric. In certain cases there are preferred values for« and e but note that

by changing e we get bilipschitz equivalent boundary metrics and by changing a

we get snowflake equivalent boundary metrics. Note also that by choosing different
but quasi-isometric metrics on X we get quasi-symmetrically equivalent metrics on

diX. The above metrics have been used and studied in [3, 2, 24, 4], The following
proposition can be found for example in [4] but we will also include a sketch of the

proof here.

Proposition 7.3. Height respecting (quasi-)isometries ofX induce (quasi-)similarities
of 'di X with respect to the horocyclic visual metric da,f-

Proof. Suppose <p : X ->• X is a quasi-isometry that induces a map on the height
factor that is a bounded distance from the translation t i-> t + c. Suppose /' is the
induced boundary map. Then for any two boundary points £ and q, if x £, e A" is
the first point at which geodesies £, and qt are distance e apart and y /'(£),„ e X
is the first point at which /(£), and f(q)t are distance e apart then —C'+lit(x)+c <
Itt(y) < C + ht(x) + c so that

a~c'ah,(x)ac < a'"{y) < ac'ah,^ac

where C' depends only on the quasi-isometry constants K,C. Therefore f is an
(ac, K') bilipschitz map:

< daA.f(AJ\h)) <AK'da^(l,q).

If (j> is an isometry then K' 1 and so the induced boundary map is a similarity
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Example 7.4. In the case of Tm+\ the lower boundary can be identified with the m-
adic numbers Qm and if we pick a in and e 0 then the parabolic visual metric

cla, coincides with the usual metric on Qm (see [61).

Example 7.5. In the case of H"+1, the lower boundary with respect to a visual

horocyclic metric tle,\ is just the usual metric on R".

Example 7.6. In the case of G^ where M is diagonal but not a scalar matrix the

lower boundary can be identified with IR" with a visual parabolic metric of the form

D^(v, w) max{|A.Vi|, |A.v2ri/a2 |Aa>P/ov}

where oq < a2 < < ar are the logarithms of the distinct eigenvalues of M and

a'i a> represent vectors in the corresponding eigenspaces. (The case where M is

in Jordan form but not diagonalizable is more cumbersome to write down and can be

found in [2]). We show in [3] that any bilipschitz map of (IR", D^) has to preserve
a flag of foliations defined by the a, 's. Specifically for v (a'i xr) e IR" we
have that

/(«) (,/l O'l Xr),f2(x2 Vr) fr(xr))

where /,• is bilipschitz in x, (but only Holder continuous in the other coordinates).
We denote the set of all such maps by Bilip^CR"). We also have that for any
k e IR, M and Mk induce snowflake equivalent metrics D^ and D^k and so we
have

Bilipü*(R") ^ BilipüW").

Example 7.7. If m
is the millefeuille space constructed from Tm+\ and G^

then

3/ZÄiWI ~ IR" x Qm

where the metric on IR" is D^ as given in Example 7.6. It is easy to see that if / is

a bilipschitz map of ihZ^ m
then

f(x,y) (./i(.v,y)../2(.v))

where f\ is a Bilimap of .v for each y and f2 e BiIip(Q„,). We denote the

set of all such maps by Bilip^{IR" x Q,„) and denote the parabolic visual metric

by D/ü m. (See [4] for more details).

Definition 7.8 (dilation). We call any map 8, in BiIip^(W) (or in Bilip^(M.n x
Qm)) a f-dilation (or just dilation) if 8, is a similarity with similarity constant 1 that

is simply multiplication by a constant along each eigenspace of M.
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7.2. Boundaries of horocyclic products. For X\j Xy X/, X2 we define two
boundaries 3| Xh and d2Xh as follows. Let

G {teXh}

be the set of all vertical geodesies and define two equivalence relations ~i and ~2
by

f-ifo lim d{t(t),t(t')) < 00
t —CO

I ~2 O linn d(i(t), t(t')) < oo.
—(->oo

Then we set

di Xh Q/ ~i, d2Xh Q/ ~2

Note that there are many isometric embeddings of X\ (and X2) into XIn particular,
if n, : Xy x/, X2 - Xt are the natural projections then for any ty a vertical

geodesic in Xy, the inverse image 7rj~'(f|) is isometric to X2 and similarly jr^~1 (^2)
is isometric to Xy for any vertical geodesic l2 in X2. Therefore we have that

9,Aj C d,Xh.

In fact for any two such embeddings ^(A',) C X\ and x'(X,) c X/j we have that

X(l) /(f) an<J s0 we can ma'ce l^e identification

diX, ~ d,Xf,.

7.3. Isometry groups of horocyclic products. In this section we describe the

isometry groups of horocyclic products in terms of their boundaries. Consider first
lsomhr(Xh), the group of height respecting isometries of Xh. (For the spaces we
consider this is all of /som(Xh) up to finite index.) By Proposition 7.3 we know
that height respecting isometries induce similarities of 3, X/, for / 1,2 so that we
have

Isomi,r(X/,) C Siin(diXy) x Sim(diX2).

Additionally, we know that if / Isomh{Xh) and the induced height translation is

c then the induced similarity boundary maps /) and J2 have similarity constants u\
and «2C where uy, u2 depend on the visual metric chosen. The following lemma will
be useful later when studying uniform groups of quasi-isometries but we include it
here because it relies on the structure of the isometry group.

Lemma 7.9. If U C Sim(<)/Xy) x Sim(diX2) is induced bv a uniform group of
height respecting quasi-isometries of X/, then U C Isoin/lr(X/,).

Proof. A uniform group of quasi-isometries U has the property that there exists an
R > 0 such that each / e U induces a map within distance R of a translation on
the height factor. So for any f e U we have / (/,, f2) where /, has similarity
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constant rq' and d(c\, —c2) < 2R. If we consider the iterates then fs (/,*, f£)
has similarity constants n^'. If c\ ^ —c2 then eventually d(sc\. —SC2) > 2R which
is a contradiction.

7.4. Quasi-isometry groups of horocyclic products. Of course the list of groups
we describe in Section 6 is not an exhaustive list of groups that arise as horocyclic
products but they are chosen precisely because for these groups we know that up
to finite index all quasi-isoinetries are height respecting. This allows us to compute
the quasi-isometry groups. The following list gives the quasi-isometry group up to

finite index and the reference for where it is proved that quasi-isometries are height-
respecting.

• QI(Sol) ~ Bilip(R) x Bilip(R) [5]

• QI{F IT) ~ (Bilip(QlF\) x Bilip(Q\F\)) |5]

• QI{BS(\,n)) ~ Bilip(R) x Bilip(Q„) |6|

• QH^m) — BiliPM\ (IK"1) x BiIipm2(^-"2) if tiet M 1 [5, 18, 19]

~ BilipM(R") x Bilip(Qj) or

BiUpMi (IK"1) x Bilipm1(R"2 x Qj) ifd>l [8],

The last case of QI(Tm) answers Question 10.4 in [8]. Farb and Mosher show

that all quasi-isometries are height-respecting but since they do not view their model

spaces as horocyclic products of CAT(—\) spaces they are not able to make the

identification of the quasi-isometry group with the group of products of bilipschitz

maps on both boundaries.

7.5. QI-tameness.

Proposition 7.10. The groups Sol, F I Z, BS( \. 11) and Tm we nil Ql-tame.

The results needed to show QI-tameness of the these groups can be found
in the papers where the respective quasi-isometry groups are calculated. They
amount to showing that a (K, C) quasi-isometry is distance Rk.c from a standard

quasi-isometry and that two different standard quasi-isometries are never a bounded

distance apart.

8. Conjugation Theorems

In this section we recall various theorems that prove that under certain conditions a

uniform subgroup of bilipschitz maps can be conjugated via a bilipschitz map into a

group of similarity maps.
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Theorem 8.1. (Theorem 7 in [17]) Given m > 2, suppose that U C Bili p(Qm)
is a uniform subgroup. Suppose in addition that the induced action of U on the

space of distinct pairs in ©,„ is cocompact. Then there exists p > 2 and a

bilipschitz homeomorphism Qm i-> Qp which conjugates H into the similarity group
Sim(Qp). Note that this also means that p and m are powers of a common base

(see the appendix in ]7[).

Theorem 8.2. (Theorem 3.2 in [7]) Let U C Bilip(R) be a uniform subgroup.
Then there exists f G Bili p(R) that conjugates U into Sim(R).
Theorem 8.3. (Proposition 9 in [3|) Let U C Bilip(Rn) for n > 2 be a uniform
separable subgroup that acts cocompactly on distinct pairs of points. Then there

exists f e Bilip(W) that conjugates U into Sim(R).

In the case of general 0; G ^ we have a slightly weaker theorem.

Definition 8.4. We write ASim^f(Rn) for the set of similarities Sim^iR")
composed with maps in Bi I ip^(R") ot the lorm

(JC1, AT2, • - W) !->• (Xi + B\ (x2. ,xr),x2 + B2(x3,--- ,xr),-- - ,xr + Br).

We call such maps almost translations.

Theorem 8.5. (Theorem 2 in [3| and [2]) Let U be a uniform separable subgroup

of Bili Pm (K") that acts cocompactly on the space ofdistinct pairs ofpoints ofR".
Then there exists a map f G Bilipyf(Rn) that conjugates U into ASim^(R").

We have a similar theorem for dZ^ m
~ R" xQm,

Definition 8.6. We write ASim^iR" x Qm) for the set of similarities Sim^(R" x
Qm) composed with maps in Bilip^(W x Qm) of the form

(xi, x2. • ,.1>, >') i-> (-Vi + B \ {x2, ,xr,y),--- Xf + Br(y),y)

which we also call almost translations.

Theorem 8.7. (Theorem 6 in [4]) Let U be a uniform separable subgroup of
Bi I ipAf(R" x Q,„) that acts cocompactly on the space ofdistinct pairs ofpoints of
IK" x Qm — 'hZiü Then <here exists « map in Bilip^iR" xQm) that conjugates
U into ASim^(R" x Qp) where p is a number such that p and m are powers of a
common base.

8.1. Uniform subgroups containing many similarities. In this section we show
how for certain X when a uniform subgroup U C Bilip(X) contains "sufficiently
many" elements of Sim(X) then the conjugating map from the previous theorems
(Theorems 8.2 to 8.7) can be chosen to be the identity map. In other words we don't
need to do a conjugation. We show that this is true for Theorems 8.2 and 8.5 while
for Theorem 8.7 we show that the conjugating map / : K" x Qw x Q can
be chosen to be the identity on the R" factor. We also explain why we cannot say
anything more about Theorem 8.1.
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8.1.1. On subgroups of Bilip{M").
Definition 8.8. We say that U C Bi Ii p(R") contains a dense group of translations

if U contains the translations T^.r) x + v for a dense set of v G M".

Lemma 8.9. Suppose U C Bi Ii p(R) contains a dense group of translations then

U C Sim(R).

Proof. This follows directly from 11 11. We will show that Ü C Sim(R).
Let Trans(R) be the group of all translations of M. If U contains a dense

set of translations then Trans(R) c U. By 1111 Lemma 7 this implies that
Ü Trans(R) and by [11 ] Lemma 9 we have that U C Si in (R).

For n > 1, on top of requiring U to contain a dense group of translations we also

require that each .v e M" is a radial point for U where the defining sequence can be

chosen to be a sequence of similarities (see Section 3). To satisfy this condition it is

sufficient for U to contain one sequence of similarities {a,} with similarity constants
A, -» oo such that the rr, all lix a common a*o e M" Then by composing a, with
the appropriate translations we have that every point is a radial point with a sequence
of similarities as its defining sequence.

Proposition 8.10. If U C Bi/ip(R") and each point in M" is a radial point for U

where the defining sequence can he chosen to he a sequence ofsimilarities {a,} C U

then U C Sim(R").

Proof The key here is that in this situation in the proof of Proposition 9 in [3]
(see also 1211) the conjugating map / can be chosen to be affine. Specifically / is

constructed as a limit

f lim 8,ag,
I —too

where g, e U, a e GL„(R) and 8, M is chosen so that 8,g, is 7f-bilipschitz. We

will not describe how a is chosen but g, can be chosen to be the sequence o, and 8,

depends on o,. Specifically we get

g, (x) a, (x) A, A, (x - v,)

where A, e 0(n,) and A, el since a, is a similarity and v, ->• 0 since x is a radial

point. We set 8, A"'. Then for some subsequence we get that

f(x) lim a A, (x - v,) äx
I —>00

where ä e GL„(R). Now since ciyci-1 is a similarity for each y & U we must have

that

y(.v) 8ä~^ A(äx + B)

where 8 R, A e O(n) and B e K". But if ä~l Aä £ O(n) then iterating

y contradicts the uniformity of U. Therefore y was already a similarity and no

conjugation was needed. D
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8.1.2. On subgroups of Bilip^(R"). We can adapt Lemmas 8.9, 8.10 above to

arrive with similar results for groups of Bilipj^(W) maps. The main difference
here is that the original conjugation theorem, Theorem 8.5 does not necessarily

conjugate into Sim R") hut only into ASim^(W). We will have to do additional
work to show that in fact U C Si m ^(W). (See Section 9.2 below). Here we will
only show that no conjugation is needed to get into ASim^(W).

Proposition 8.11. Let U be a uniform subgroup of BiIip^(W') where each point
in R" is a radial point where the defining sequences can always be chosen to be

sequences ofsimilarities with respect to D Then U C ASim^(R).

Proof We will only give an outline of the proof. Note that having each point be a

radial point is equivalent to having U act cocompactly on pairs. Therefore the proof
of this lemma can be derived from the proof of Theorem 8.5. Since in the proof
of Theorem 8.5 the conjugating map is constructed by induction on the number of
distinct eigenvalues of M where the base case is one of the cases covered in Lemmas

8.9, 8.10 we only need to consider the induction step. But in the induction step
either we are in the one dimensional case where we can use a density argument as in

Lemma 8.9 or we are in the higher dimensional case where the conjugating map is

constructed as in Lemma 8.10 so again no conjugation was needed.

8.1.3. On uniform subgroups of Bilip(Qm) and BiIip^(R" xQm). For uniform

subgroups of BiIip(Qm) the situation is different from the ones above. The main

difference is that certain uniform subgroups of Bilip(Qm) may only be conjugate
into Sim(Qp) for p yf in. For example, since T4 is quasi-isometric to T2 via a

height-respecting quasi-isometry we can view Sim(Q4) as a uniform subgroup of
quasi-similarities of Bilip(Q2) but Sim(Q4) cannot be conjugate into S7/?i(Q2).
In fact, for each i,j, we can view Sim(Qri) as a subset of quasi-similarities of
Bilip(Qrj but only as a subset of similarities if / j. (See Section 10 for more
details). Therefore we are forced to use Theorem 8.1.

For Bilip^(R'n x Q,„) we have a similar problem for the Qm coordinate so we
must do the base case conjugation of Theorem 8.7. We also need to redefine what
we mean when we say "a dense set of translations".

Definition 8.12. We say that U C Bilip^(K" x Qm) contains a dense set of
translations if for all (.v, y) R" x Qm and e > 0 we have some

Y U n / somm (R" x Qm)

with d(y(x, y). (0. 0)) < e such that y(x. y) (x + vr,aY(y)) where vY e R" and
Oy e fsorn(Qm).
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Proposition 8.13. IfU C Bilip^ (IE" x Q,„) contains a dense set of translations
and contains sequences ofsimilarities that make each (.v, y) 6 R" x Qm into radial
points then there exists a bilipschitz map

f : R" x Q,„ - R" x Qp

such that f conjugates U into AS im /qCR" x Q/;) and such that f is the identity on
R".

Proof. First we must do the base case conjugation of Theorem 8.7. Namely we
consider the action of U on Qm as given by the restriction of the action of U

on R" x Q,„. By Theorem 8.1 we can conjugate this restricted action by a map
v ' Qm Qp to get an action of U by similarities on <QP. Then the map

f(x.y) (x.a(y))

is a bilipschitz map from R" x Q,„ to R" x that conjugates U C BiIip^(W x
Q,„) to a subgroup U' C BiIip^(W x Q^) where the y U' has the form

y(x-y) (/i(*i xr.y) Mxr.y),ay(y))

where aY is now a similarity of Q^, and the /, are unchanged by the conjugation.
Note that if U contains a dense subgroup of translations then U' also contains

a dense subgroup of translations. This is because conjugation by the map / stretch

distances at most a fixed amount in the y coordinate and there is no conjugation on
the R" factors. Maps of the form y(.v, v) (.v + vY,aY(y)) are sent to maps
of the same form where now rry(y) is a similarity of Q^. Following the same

reasoning as in Proposition 8.11 in combination with Theorem 8.7 we see that no
further conjugation is needed. In particular U' consists of maps of the form

y(x.y) S,A(x, + ßi(.v2 xr.v) \> + Br(y).aY(y))

where 8, is a dilation, A e O(n), (x\ + B\(,\'2 .\>. y) .vr + Br{y). y) is an

almost translation (see Definition 8.6) and aY e Isom(Qp).

9. Rigidity

9.1. Rigidity of lattices in SOL, BS(\,n) and F I Z. In this section we describe

all envelopes of lattices in Sol Vm Z k m 1? for M 6 SL2CZ)), the solvable

Baumslag-Solitar groups (BS{ 1. /;) [a.h | aba~l /?")) and lamplighter groups

(F I Zj with \F\ n). These three classes of groups are related in that their model

spaces are horocyclic products of combinations of H2 and 7j, + i for appropriate n.
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Recall that

• the model space for Tm is SOL H2 x/, H2.

• the model space for BS(l,n) is Xn H2 X/j Tn+1

• the model space for F I Z is DL(n,n) Tn+\ x/, Tn+\

We now prove the three cases of Theorem 1.1.

Proofof Theorem 1.1 part 1. By Lemma 5.2 we have an embedding with compact
kernel and cocompact image

O : H -> U C QI(Sol) ~ BilipQS) x Bilip(W).

Since the image of Tm is dense in each factor, we see by Proposition 8.9 that we
must have actually had

U C Sim(R) x Sim(W).

Finally using uniformity of U and Lemma 7.9 we can see that U C Isom(Sol).

Proofof Theorem 1.1 part 2. By a similar argument to the previous theorem we have

an embedding with compact kernel and cocompact image

<£> : H ^ U c Ql{Xn) ~ Bilip{W) x Bilip(Qn).

Again since the projection of BS(\,n) is dense in BilipQR) we do not need to
conjugate in this factor. We do, however, have to use Theorem 8.1 to do a conjugation
of the Bilip(Qn) factor. This gives us

U C Sim(W) x Siin(Qm).

Again using Lemma 7.9 we conclude that U C Isom(Xm).

Proofof Theorem 1.1 part 3. In this case we have an embedding with compact
kernel and cocompact image

O : H -> U c QI(DL{n,n)) ~ BiIip(Qn) x Bilip(Qn)

After conjugation we have

U C Sim(Qm) x Sim(Qm>).

Since for m m' we have that DL(m.m') is not quasi-isometric to any finitely
generated group [5] we must have m m'. As before, using Lemma 7.9 we can

argue that U C Isom(DL(m,m)).
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9.2. Rigidity of abelian-by-cyclic groups. The goal of this section is to prove
Theorems 1.2 and 1.3. First we construct in more detail the model spaces for the

finitely presented abelian-by-cyclic groups

VM [a,bi bn | abjcr1 <pM{bi),bjbj - bjbi)

where M (/«,y) is an integral matrix with det M > 1 and <pM (b{) b'1 • • • b'".
This was first done in [8] but our construction and point of view is slightly different.
Also, we treat only the cases where M has eigenvalues that are strictly off of the

unit circle. Since det M > 1 we have that M lies on a one parameter subgroup of
GL(/j,R). In particular M eß for some n x /; matrix /r and the one parameter
subgroup can be given by M' e'fl. Each matrix /r can be put into real Jordan form

S~l /iS fi' S + v + ri

where 5 is diagonal v is superdiagonal and rj is skew symmetric. In this paper we
will focus on the cases when v is 0 but the construction is similar for v / 0. In this

case

M' e"L Se'^S^Se^S^ SM'P'S~\

where M' is diagonal and P' e 0(/i). We consider the solvable Lie group G^ ~
E x m M" defined (as before) by the action of M' on R". We endow G^ with a left
invariant metric such that the distance function at each height t is given by

dtM^x-y) ll^~'(-v _ JOII-

If all of the eigenvalues of M are greater than one then G^ is negatively curved (as

before). If not then we separate M into two matrices as before: M\ containing the

eigenvalues greater than one and M2 containing the inverses of eigenvalues less than

one (so that M2 also has all eigenvalues greater than one). Let d det M > 1 and

let

XM — ^M\ ZM2,il

be the horocyclic product of the negatively curved homogeneous spaces from

Example 6.2 and Z^2 d the millefeuille space from Example 6.3. We have two

degenerate cases, iI'd 1 then Z^2 (/ Gor if M M\ then Z^2d 7^+].
As mentioned in Example 6.8 this horocyclic product is a model space for the finitely
presented abelian-by-cyclic group Tm-

The space is the same one that was defined in [81 albeit in a different manner.

In [81, Xm is defined as a fibered product of G^ and 7^+1. While the construction
in [81 obscures the boundary structure it does make it easier to define the action of
rm on X^ and so to describe this action we use the construction from [8], To do

this we first define an action of Tm on G^ and then we combine it with the standard

action of Tm on 7j+1 (it is just the action of Tm on its Bass-Serre tree 7j/+1).
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Since M SM PS 1

where P £ 0(n) as above then the action of Tm on G^
is as follows.

a (v. t) (M Pv.t + 1)

bj • (v,t) (v + S~1ej,t)

where is the 7 th standard basis vector. These maps are indeed isometries of G^.
We check that these isometries are compatible with the relations abjU~l (f>M(bj )'

abjd~l (v. t) abj (P~l M~lv,t — 1) abj(S~l M~{ Sv.I — 1)

a(S~lM~lSv + S~lej,t — 1)

(S^MSlS^M^Sv + S~le,],t)

(v + S-1 Me,, t)

(pM(bj)- (v,t).

Coordinates on X^. We can put coordinates (v.t.y) on ^ where y £ and

(t. v) are the coordinates on Gm — Rix^R". Note that the coordinate t corresponds
to negative the height coordinate in 7j/+1. The action on X^ is given by

a • (v.t.y) (M Pv.t + l,<ra(y)),

bj (v.t.y) (v + S~lej,t,obj (y)).

Note that cra must be a similarity with similarity constant cl and ab/ £ Isom(Qd).
We now return to treating X^ as the horocyclic product Gmx x/, ~Xm24 Note

that the two boundaries of Gm\ x/i Zm2,cI are given by

a,^~Rn|. 32^ ~ R"2 x

where the metric on R"1 is given by and the metric on R"2 is given by
(See Section 7.2 for a definitions of boundaries of a horocyclic product). Consider
the action of the generators of on the two boundaries of X^. For g £ Vm we
write y^i, to denote the maps induced by g on these two boundaries.

Lemma 9.1. The group V m induces a dense set of translations ofd\X^ — R"1 und

'32Xm ~ R"2 x Qd

Proof. For i)\ X^ we note that the set

!S"lM'ej I t £ Z.j 1 //}

is dense in R". Translations by these elements are the maps induced on height level
sets by conjugates of the group elements b,. Projecting this set to any subspace also

gives a dense set. Since the lower boundary can be identified with E+, the span of
all eigenvectors with eigenvalues greater than one, we have that Tm induces a dense
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set of translations on 01X^. If del M 1 the upper boundary can be identified with
E-, the span of all eigenvectors of M with eigenvalues less than one, so the same

result holds for the upper boundary in this case.

When — ®""2 x we use l'ie *acl l'ial ^m acts cocompactly on
with fundamental domain a hypercube of height one (i.e. the projection of the

fundamental domain to the tree is a single edge containing only one vertex). In

particular this means that if we fix the fundamental domain to be at height to and

pick any other point s e X^ at height /0 then there exits g e Pm that acts as an

isometry on rl2 X^ that sends s into the fundamental domain. On the level of the

boundary, this means that if we pick the fundamental domain at a sufficiently large

height to and so that it contains a vertical geodesic defined by (0,0) e 82X^ then

if we let s X^ be a point at height to on a geodesic defining (,v, y) e 82X^ then

there exist g e T^ as above such that

r/((0,0).ys,2(.v,.y)) < e~'» <.
Since g e Tm we have that ygt2 must be of the form

y«,2(-v,.v) (a- + v,a(y))

as required by Definition 8.12.

Proofof Theorem 1.2 and Theorem 1.3. If Ym C H is a cocompact lattice then by
Lemma 5.2 we have a cocompact embedding of Tm up to compact kernel

VM C H U C QI(Xü) ~ BiIiPm(R'u) x Bilip^(R"2 x Qm).

Combining Theorems 8.5 and 8.7 we have that after conjugation U acts on the

horocyclic product

Xl>

where k e Q and det(M^) dk eZ, by maps of the form

y(.Vi,.\'2, y) [<)'f| A\(x11 + /? 1,i (a" 1.2 V|,„) ,vpr + B1 ,r),

^2^2(^*2,1 + ^2,1 (*2,2 v2,r-.v) V2,r + ß2,r (y Oy (j ))].

where 8,2 are dilations, A \ e 0(ii\).A2 e 0(n2), (,V|j + #i,i(*i,2 *t,n).

— A"i,r + B\_r) is an almost translation (as in Definition 8.4), (.v2,i + #2,1 (*2,2'

— *2,r. v) .v2,r + B2,r(y).y) is an almost translation (as in Definition 8.6)
and aY Isom(Qdk).

By iterating y and appealing to uniformity much like in Lemma 7.9 we see that

t] + t2 0. This finishes the proof of Theorem 1.3.
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We now continue the proof of Theorem 1.2. We will prove both cases 1 and 2

concurrently and only give indications where the proofs differ. The outline of the

proof is as follows:

Step 1: We define a homomorphism \jr \ U 0(n) x S1.

Step 2: We claim that kenjf consists of elements that act as similarities on both
and d2X and therefore by Lemma 7.9 we have that kenjf C

/som(Xj^k).
Step 3: We claim that the image of xj/ is compact.

In conclusion we have that up to a compact subgroup (the image of iJf) the group U
is a subgroup of the isometry group Isom(X^k)-

Step 1: First note that we can dehne a homomorphism

: U 0(n)

by

f[{y) A : [Ai,A2]

where [A i, A2] denotes the block matrix with A1 and A2 on the diagonal. (If we are
in case 2 then A A\). Since T^/, hence U, are amenable and the only amenable

subgroups of O(n) are abelian we have that xjf'x{U) is contained in a maximal torus.
This along with the fact that t\ + t2 0 allows us to dehne another homomorphism

1// \j/t x \j/2 : U — O(n) x S1

by
xj/(y) (AP-',e2K")

where t t\ -t2 and P e O(n) is given by M SM PS~l. The map 1^1 is

actually a homomorphism since P is in the image of 1(i\ (specifically it is f[ (ya) for
the generator a e Tm) and therefore commutes with all A in ^{Mi-

Step 2: The kernel ot i/r contains T^ and consists precisely of the elements that

up to composition with elements of TM have boundary maps y\, y2 of the form

Kl(-V|) (A-1,1 + — Ai>n), ,X\<r + B 1>r|)

K2<A2) (A2,| + B2 1 (A^^ A2>r), A2>r + B2j2).

Our goal is to show that ker \j/ consists only of maps in

Simük(R"l)x SimükiR"*)

(or Sim^fk (M"1) x Sim(Qdk) for case 2). In other words, we need all of the

B[,i, B2j to be constant maps. We call maps y with all Bj constant straight. To
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unclutter the notation we sometimes omit the subscripts 1 and 2. We will show that

the projection of the kernel onto each of the two boundaries consists of straight maps
and then conclude that then the kernel must also consist of straight maps.

The projection of the kernel of ij/ onto the lower boundary is precisely the

elements that, up to composition of powers of ya, \, have the form

y(u) (x, + B\{x2 xn) a> + Br).

The proof that shows that these maps are straight is by induction. We will only give
the first step.

Claim 1. Ify(u) (xi + ßi(v2 r„) x, +Br) is the boundary map induced

by an element in ker ijr then B, (v, + i xr) B, (0) for all (.v, + i,..., xr).

Proof. Since Tm induces a dense set of translations (by Lemma 9.1) then by

composing y with appropriate elements of Tm we can assume that \Br\ < We

refer to Br as the additive constant of y. By iterating y (and composing the iterates

with appropriate elements g, e Tm to keep the additive constant less that e) we

get that

YYgn YYg\(v) (•• Wr-1 + ßr-i(v) + Di + Br-](xr +e0
+ D2 • + Br-i{xr + en-i),xr + en)

where the D, are constants introduced by the elements gj e Tm and

I Br—\ (xr) Br—! (vr + f j) | < Ke? < Kea.

Now comparing y(0) with y(v) where v (0 0. \>) for some fixed xr we have

I Br-\{xr) + D\ + Br-1 (xr + \) + D2 • • • + ßr_i (.vr + e„_i)

— Br-\(0) — D\ — Br-\{e\) — D2 Br-\{£n~\)\ < ^|xr|a

so that

n- I

I/l Br-\(xr) - 11 Z?r_i (0)1 < ^ \Br-\ (\>) - Br-l{Xr + Ol
1 1

11-1

+ £|Z?,._1(0)-ßr_1(O)| + K|wr
i i

and finally for all n

|ßr_,(*,.) - ßr_,(())| < Kea + Kca +-\xr\a-
n
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When d 1 then the upper boundary is treated like the lower boundary. For

case 2 the upper boundary maps are already in Siin(Qäi<) for some k e Q so there

is no further analysis needed. Since Fm C ken/f the action of ken/f on X^k is

cocompact and hence Lemma 7.9 applies.

Step 3: We now return to analyze the image of ijr.

Claim 2. The image of \f/ yV| x \j/2 is compact.

Proof. Recall that the image of i/o lies in a maximal torus. If img(i/r) is discrete

then it is a finite subgroup of O(n) and hence compact. If it is not discrete then for

any A in the closure of img{ f) we have a sequence of maps y,- e U with rotation

constants Aj -> A. By composing with maps induced by elements of Ym we can

chose Yj so that

Yj(v) (Aj(8t;[x 1,1 + B[ x (-V1,2 JCl.r + B'l r],

&-ti[X2,\ + Bi,\(X2,2,...,X2,r),...,X2,r + B^r]))

or in case 2

Yj(v) (Aj{8ti[x\A + B[ x(x 1,2 xi ,„) x\<r + B{ r],(Tyj (y))

with 0 £ tj < 1 and with

!ßu(°)l-lß2./(°)l < 1 andt/(ay/(0),0) < L.

These y, in turn come from a uniform family of quasi-isometries of X, all of
which fix a base point up to bounded amount. (The base point is defined uniquely by
picking the origin in G^ and y 0 6 Qp.) Therefore some subsequence coarsely
converges to a quasi-isometry that induces the boundary maps y\. Y2- We must show
that y (y\. Y2) has rotation constant A. Note that if y has rotation constant A' / A
then there exists ß and v0 such that

d(A'v0. Av0) > /3||u0||.

We can actually pick v0 so that if vL is any vector with || vL || < L then for any .v > 1

d(A .wo. A.s'Uq) > ß||.vi)() + ul|| > jö(||.vw0|| — L).

Now since Aj -> A we have that for all e there exists Je such that if j > Je then
for any v

d(Ajv, Av) < f ||w||.
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Note also that

AJ (A\,, An,j-Ah ALJ)
and so

A (A\ Alrr A2t A%), A' {A'\...., < A'lA'2r2).
We apply the previous facts to each A'.Af in the decomposition. (We drop the

superscripts 1,2 to ease the notation). Suppose Ahl -> A, but A, ^ A\. Then as

before there exists v, and ß with d(A,v,, A^v,) > ß\\v, ||. Note that y} 7?-coarsely

converges to y so in particular for any s e R+ there is a Js such that if j > Js then

d(St, (A,,j (sv, + BtJ 8t(A',(sv, + fi,(0)))) < R.

Now since AU) ->• A, then for j > J£

d(Stj (AhJ (sv, + 5,,/ (0))), 8t/ {A, (.vu, + S.^fO)))) < + ßI>y(0)||

< A^e(||si;, || + L).

Combining these two we get

d{8tl(Msv, +B,,, 8t(A',(sv, + B,(0)))) < R + NeiWsv, || + L)

But

d(A,(sv, + ß,,;(())). A',(sv, + B, > |5(||xu,|| - L)

since |filt/(0)|, |ß,(0)| < L. So

~^ß(\\sv, || - L) < R + N{\\sv, || + L).

By choosing s large enough and 1 /s we see that this is impossible. This shows

that the image of 1//1 is compact.
If d > 1 then we are done since alter the conjugation the action on the tree factor

is by isometries which ensures that only integral powers of the stretch factors can

appear.

If d 1 we use a similar argument to the one above to show that if the image
of t/t2 is not discrete then it is all of S]. For any 0 < /0 < ' pick y} £ U with
dilation 8t where t, -» /0. Up to composition with maps induced by Ta/ we can

'tgain assume | Z?/ (0)| < e so that the quasi-isomelries inducing y, all fix the base

Point (this time is it just 0 Gup to a bounded amount. Again using coarse

convergence of quasi-isometries we have that some subsequence of these quasi-

isometries coarsely converge to a quasi-isometry whose boundary map we label y.
By looking at xr ^ 0 large enough we can conclude that y has dilation constant

K-

This claim finishes the proof of the theorem. O
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Remark. The main reason this approach does not work for the mixed eigenvalues

case is that Isom(Qm) does not split as a semi-direct product of Stab(0) and a

'translation' subgroup. This prevents the arguments from Claim 1 in the proof from

going through.

10. Finitely many model spaces

In this section we show that Tm can only act on finitely many of the model spaces
(and similarly for F IZ). This also implies that up to compact groups there is only a

finite list of locally compact groups in which Fm (and F I Z) can be a lattice.
First notice that TMk is a lattice in I som(X^i) for all i < k since TMk can be

realized as an index k — i + 1 subgroup of Vm- Similarly, the lamplighter group
Td F l TL has a finite index subgroup isomorphic to Tdk (®f=1F) I Z. (Note
however that not all lamplighters G I Z with |G| dk are index k in T„). We will
assume without loss of generality that M cannot be written as a power of another

matrix and that d is not a proper power.
Now we are left to show that TMi (or Td, cannot act cocompactly and properly

discontinuously on X^k (or DL(dk ,dk)) for k < i. To that end we note that if
TMi (or Tj, acts cocompactly on X^k (or DL(dk,dk)) then it acts cocompactly
on Tdk + \. Furthermore, this action fixes a point at infinity and preserves the

orientation of the tree. (In the lamplighter case this is true after passing to an index

two subgroup). This implies that the quotient graph of groups decomposition is an

(oriented) cycle of edges where each edge group includes isomorphically into the

initial vertex group and as an index k subgroup into the terminal vertex group. By
collapsing edges we can assume without loss of generality that the cycle has only
one edge and one vertex. (After collapsing we get an action of the group on 7^a.v+1
where 5 is the number of edges collapses; i.e. on a higher valence tree.)

Proposition 10.1. If G acts transitively on Td + X and on Te+X by orientation
preserving isometries such that there exists a quasi-conjugacy sending one action
to the other then d e.

Proof. Recall that a quasi-conjugacy is a quasi-isometry

<i0 ' Td+1 —» Te+l

such that ip(g x) is bounded distance from g • (p{x). In particular this implies
that vertex stabilizers of one action are contained in vertex stabilizers of the other
action. A transitive action on Td+l (resp. Te+X) implies that the quotient graph is
the graph with exactly one edge and one vertex and where one of the edge to vertex
group inclusions is as an index d (resp. index e) subgroup. If t is the generator
in G corresponding to the loop in the graph of groups decomposition of its action
on Td+1 then the subgroup generated by t must act transitively on height level sets
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of Te+1 (this follows from quasi-conjugacy of the actions). If we let s e G be the

generator of the loop in the graphs of groups decomposition of its action on Te+\
then s tp where p is in the kernel of the map to Z (i.e. the height map). Now

suppose H stah(v) for v £ Tj+l. Then tHt~x is an index d subgroup of H.
Furthermore

sHs~x tpHp~xt'x t stab(p v)t~x.

Since all of the vertex stabilizers are isomorphic we have that | H : sHs~l\ — d as

well.
Let v' ^ v be such that stab(v) C stah(v') and \stab(v') : stab(v)\ is smallest

overall possible v'. Label stctb(v') H'. Then

s~xH's C H c H' C sHs~x c sH's~l.

Note that \ H' : s~l H's\ e. If we let | // : s~l H's \ g and \ H' : H\ f then

e gf But we also have that d gf since \sHs~l : H'\ g and

d \sHs~x : H| \sHs~x : H'\\H' : H\ fg.
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