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Flexible bundles over rigid affine surfaces

Adrien Dubouloz*

Abstract. We construct a smooth rational affine surface S with finite automorphism group
but with the property that the group of automorphisms of the cylinder S x A? acts infinitely
transitively on the complement of a closed subset of codimension at least two. Such a surface
S is in particular rigid but not stably rigid with respect to the Makar-Limanov invariant.

Mathematics Subject Classification (2010). 14R20, 14R25, 14150, 14J60.

Keywords. Rigid and flexible varieties, stable rigidity, rational surfaces, Makar-Limanov
invariant.

1. Introduction

A complex affine variety X is called rigid if it does not admit non trivial algebraic
actions of the additive group G, = G, . This is the case for “most” affine varieties,
for instance for every affine curve different from the affine line A! and for every
affine variety whose normalization has non negative logarithmic Kodaira dimension.
The notion was actually introduced by Crachiola and Makar-Limanov in [4] under
the more algebraic equivalent formulation that the Makar-Limanov invariant ML(X')
of X', which is defined as the algebra consisting of regular functions on X invariant
under all algebraic G,-actions, is equal to the coordinate ring I'(X, Ox) of X.
Among many important questions concerning this invariant, the understanding
of its behavior under the operation consisting of taking cylinders X x A", n > 1,
over a given affine variety X has focused a lot of attention during the last decade,
in connexion with the Zariski Cancellation Problem. Of course, rigidity is lost
even when passing to the cylinder X x A! since these admit non trivial G-
actions by translations on the second factor. But one could expect that such
actions are essentially the unique possible ones in the sense that the projection
Pry : X x A' — X is invariant for every Gg-action on X x A', a property
which translates algebraically to the fact that ML(X x A') = T'(X,Oyx). This
property was indeed established by Makar-Limanov [14] and this led to wonder
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more generally whether a rigid variety is stably rigid in the sense that the equality
ML(X x A") = I'(X, Oy ) holds for arbitrary n > 1. Stable rigidity of smooth aftine
curves is easily confirmed as a consequence of the fact that a smooth rigid curve does
not admit any dominant morphism from the affine line, and more generally every
rigid affine curve is in fact stably rigid [4]. Stable rigidity is also known to hold for
smooth factorial rigid surfaces by virtue of a result of Crachiola [5], and without
any indication of a potential counter-example, it seems that the implicit working
conjecture so far has been that every rigid affine variety should be stably rigid.

In this article, we construct a smooth rigid surface S which fails stable rigidity
very badly, the cylinder S x A? being essentially as remote as possible from a rigid
variety in terms of richness of (G,-actions on it. Here “richness’ has to be interpreted
in the sense of a slight weakening of the notion of flexibility introduced recently in
[1, 2] that we call flexibility in codimension one: a normal affine variety X is said to
be flexible in codimension one if for every closed point x outside a possibly empty
closed subset of codimension at least two in X, the tangent space 7, X of X at x
is spanned by tangent vectors to orbits of (G;-actions on X. Clearly, the Makar-
Limanov invariant of a variety with this property is trivial, consisting of constant
functions only. Now our main result can be stated as follows:

Theorem 1.1. Let V. C P2 be smooth cubic surface and let D = V N H be a
hyperplane section of V' consisting of the union of a smooth conic and its tangent
line. Then S = V \ D is a smooth rigid affine surface whose cylinder S x A? is
flexible in codimension one.

A noteworthy by-product is that while the automorphism group Aut(S) of § is finite,
actually isomorphic to Z /27 if the cubic surface V' is chosen general, Theorem 0.1
in [1] implies that Aut(S x A?) acts infinitely transitively on the complement of a
closed subset of codimension at least two in S x AZ.

Our construction is inspired by earlier work of Bandman and Makar-Limanov
[3] which actually already contained the basic ingredients to construct a counter-
example to stable rigidity, in the form of a lifting lemma for G,-actions which
asserts that if q : Z — Y is a line bundle over a normal affine variety Y then
ML(Z) < ML(Y), and an example of a non trivial line bundle p : L — S over
a smooth rational rigid affine surface S for which ML(L) G ML(S) Indeed, with
these informations, the property that ML(S x A%)isa prOper sub-algebra of ML(S)
could have been already deduced as follows: letting p’ : L' — S be a line bundle
representing the class of the inverse of L in the Picard group of S, the lifting lemma
applied to the rank 2 vector bundle £ = L&®L" = LxgL' — S considered as a line
bundle over L via the first projection implies that ML(E) € ML(L) & ML(S). But
combined with a result of Pavaman Murthy [15] which asserts in particular that every
vector bundle on such a surface S is isomorphic to the direct sum of its determinant
and a trivial bundle, the construction of £ guarantees that it is isomorphic to the
trivial bundle S x A2 and hence that ML(S x A2) - ML(S).
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Noting that the aforementioned result of Pavaman Murthy also applies to surfaces
S as in Theorem 1.1 enables a similar construction as in the previous paragraph,
provided that such an § admits a line bundle p : L — S whose total space 1s flexible
in codimension one, and that flexibility in codimension one lifts to total spaces of
line bundles. The lifting property follows easily from the fact that every line bundle
admits (G,-linearizations, but the existence of a line bundle p : L — S with the
desired property is trickier to establish. To construct such a bundle, we exploit the
fact that S admits an Al-fibration 7 : S — P!, i.e. a faithfully flat morphism with
generic fiber isomorphic to affine line. The strategy then consists in constructing a
suitable A!-fibered affine surface wr : Sp — P! flexible in codimension one and to
which a variant of the famous Danielewski fiber product trick [6] can be applied to
derive the existence of an affine threefold flexible in codimension one and carrying
simultaneously the structure of a line bundle over S and Sf.

The article is organized as follows. In the first section we review basic results
about rigid and flexible affine varieties, with a particular focus on the case of affine
surfaces, and we establish that flexibility in codimension one does indeed lift to total
spaces of line bundles (see Lemma 2.3). Section two is devoted to the study of the
class of affine surfaces S considered in Theorem 1.1 and the construction of their
aforementioned flexible mates Sr. The appropriate variant of the Danielewski fiber
product trick needed to achieve the proof of Theorem 1.1 is discussed in the last
section.

2. Preliminaries on (stable) rigidity and flexibility

2.1. Rigid and flexible affine varieties.

Given a normal complex affine variety X = Spec(A4), we denote by Derc(Oyx) >~
’HomX(Q;UC. Ox) the sheaf of germs of C-derivations from Oy to itself. It is a
coherent sheaf of O y-modules whose global sections coincide with elements of the
A-module Derg(A) of C-derivations of A. We denote by MLND¢(A) the sub-A-
module of Derc(A) generated by locally nilpotent C-derivations, i.e. C-derivations
d : A — A for which every element of A is annihilated by a suitable power of
d. Recall that such derivations coincide precisely with velocity vector fields of G,-
actions on X (see e.g. [12]).

Definition 2.1. A normal affine variety X = Spec(A4) is called:

a) Rigid if MLND¢(A) = {0}, equivalently X does not admit non trivial G,-
actions,

b) Flexible in codimension 1, or 1-flexible for short, if the support of the co-kernel of

the natural homomorphism MLND¢(A)® 4 Oy — Dery(Ox) has codimension
atleast 2 in X.
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2.1.1. The above definition of 1-flexibility says equivalently that there exists a closed
subset Z C X of codimension at least 2 such that the restriction of Derc(Oyx) over
X \ Z is generated by elements of MLND¢(A). A closed point x € X at which the
natural homomorphism MLND¢(A4)® 4 Ox » — Derx(Ox)y is surjective is called
a flexible point of X, this property being equivalent by virtue of Nakayama Lemma
to the fact that the Zariski tangent space 7, X of X at x is spanned by the tangent
vectors to orbits of GG4-actions on X. The set Xy, of flexible points is contained in
the regular locus X, of X' and is invariant under the action of the automorphism
group Aut(X) of X. In particular, if there exists a flexible point x € X such that the
complement of the Aut(X )-orbit of x is contained in a closed subset of codimension
at least two, then X is flexible in codimension 1.

2.1.2. We warn the reader that our definition of flexibility for a normal affine variety
X 1s weaker than the one introduced earlier in [1, 2] which asks in addition that
Xfex = Xreg- Since for a 1-flexible variety the set X \ Xpex has codimension at least
two in X, this makes essentially no difference for global properties of X depending
on regular functions, for instance the Makar-Limanov invariant of a 1-flexible affine
variety is trivial. Furthermore, all the properties of the regular locus of a flexible
variety in the sense of loc. cit. hold for the open subset Xp., of a 1-flexible variety
X, for instance the sub-group of Aut(X) generated by its one-parameter unipotent
sub-groups acts infinitely transitively on Xfex.

Clearly, the only 1-flexible affine curve is the affine line A'. While the classification
of flexible affine surfaces in the stronger sense of [1, 2] is not known and most
probably quite intricate, 1-flexible surfaces coincide with the so-called Gizatullin
surfaces [13] with no non constant invertible functions. More precisely, we have the
following characterization (see also [1, Example 2.3]).

Theorem 2.2. For a normal affine surface S, the following are equivalent:
a) S is 1-flexible,
b) § admits two Al-ﬁbrations over A with distinct general fibers,

¢) I'(S,0%) = C* and S admits a normal projective completion S — 'V whose
boundary is a chain of proper smooth rational curves supported on the regular
locus of V.

Proof. 1t is well known that every A'-fibration q : § — C over a smooth
affine curve C arises as the algebraic quotient morphism ¢ : § — S/G, =
Spec(I'(S, Og)%) of anon trivial G,-action on S. In particular, the general fibers of
such fibrations coincide with the general orbits of a G,-action on S. Since a flexible
surface admits at least two (G,-actions with distinct general orbits, this provides two
Al-fibrations on S with distinct general fibers and whose respective base curves are
isomorphic to A! due to the fact that they are dominated by a general fiber of the
other fibration. Conversely, let ¢; : S — A', i = 1.2, be A'-fibrations on S
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associated with a pair of (G,-actions o7 and o, on S with distinct general orbits.
Since the morphism ¢; x ¢» : S — A? is quasi-finite [8, Lemma 2.21], it follows on
the one hand that general orbits of o, and o5 intersect each other transversally and
on the other hand that the intersection Sy of the fixed point loci of o7 and o5 1s finite.
This implies in turn that every point in S \ Sy can be mapped by an element of the
sub-group of Aut(S) generated by o; and o, to a point p € § at which a general
orbit of ¢, intersects a general orbit of o, transversally. Such a point p is certainly
flexible. Therefore every point outside the finite closed subset Sy is a flexible point
of S which proves the equivalence between a) and b). For the equivalence b) < ¢)
we refer the reader to [8] (in which the statement of Theorem 2.4 should actually be
corrected to read: A normal affine surface with no non constant invertible functions
is completable by a zigzag if and only if it admits two A!-fibrations whose general
fibers do not coincide). L]

2.2. Stable rigidity/stable flexibility.

Rigidity property for line bundles.

2.2.1. The total space of a line bundle p : L — X over an affine variety
X = Spec(A) always admits (G,-actions by generic translations along the fibers
of p, associated with locally nilpotent A-derivations of I'(L, Q). More precisely,
these derivations corresponds to (G, y-actions on L, i.e. (g-actions on L by
X -automorphisms, and are in one-to-one correspondence with global sections
s € H°(X.L) of L. Indeed, letting p : L = Spec(Sym(M")) — X, where
M ~ H%X,L) is a locally free A-module of rank 1, one has
Sym(M"Y) ® 4 MY and the isomorphism

1 ~
Sym(MV)/A —

Der 4 (Sym(M ")) ~ Homsym(MV)(Qéym(Mv)/A.Sym(MV)) ~ Sym(MY) @4 M

identifies A-derivations of T'(L, Op) ~ Sym(M ") with global sections of the pull-
back p*L of L toits total space. Since a G, y-action on L corresponding to a locally
nilpotent A-derivation d of Sym(M ") restricts on every fiberof p: L — X toa G,-
action which is either trivial or a translation, it follows that the corresponding section
of p* L is constant along the fibers of p : L — X whence is the pull-back by p of
a certain section s; € H°(X.L). Consersely, every global section s € H°(X, L)
gives rise to a G, y-action on L defined by og(t,¢) = € + ts(p({)) where the
fiberwise addition and multiplication are given by the vector space structure. More
formally, viewing p : L — X as a locally constant group scheme for the law
L xy L — L induced by the addition of germs of sections, global sections
s € HO(X. L) give rise to homomorphisms s : G, x — L of group schemes over
X whence to G,_y-actions o5y = (o (s xidz): Gax xx L — L on L.
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2.2.2. Even though they are no longer rigid, it is natural to wonder whether total
spaces of line bundles p : L — X over rigid varieties X stay “as rigid as possible” in
the sense that they do not admit any G,-actions besides the (&, _y-actions described
above. For the trivial line bundle pry : X x A! — X, the question was settled
affirmatively by Makar-Limanov [14] (see also [12, Proposition 9.23]). Let us briefly
recall the argument for the convenience of the reader: viewing I'(X x A!, Oy, 41) =
Alx] = @, A-x" as a graded A-algebra, every nonzero locally nilpotent derivation
d of A[x] associated with a non trivial G,-action on X x A! decomposes into a finite
sum d = ) ., d; of nonzero homogeneous derivations d; : A[x] — A[x] of degree
i € 7, the top homogeneous component d,, being itself locally nilpotent. Note that
m > —1 for a nonzero derivation and that derivations of the form ad, for a certain
a € A\ {0} correspond to the case m = —1. On the other hand, if m > 0 then
dm = x™, for a certain derivation of degree 0 and since 0,,(x) € x™ 1A C xA,
x must belong to the kernel of d,,. This implies that do is a locally nilpotent
derivation of degree 0 whose restriction to A = A - x° C A[x] is trivial as X is
rigid. But since x € Ker(ég) = Ker(dp,), do whence @ would be the zero derivation,
a contradiction.

2.2.3. In contrast, as mentioned in the introduction, it was discovered by Bandman
and Makar-Limanov [3] that the above property can fail for non trivial line bundles.
The fact that the rigid surfaces considered in Theorem 1.1 admit line bundles
p: L — S with 1-flexible total spaces (see §4.0.4 below) shows that such total
spaces can be in general very far from being rigid.

Lifting flexibility in codimension one to split vector bundles.

2.2.4. The total space of the trivial line bundle pry : X x A! — X over a
1-flexible (resp. flexible in the sense of [2]) affine variety X = Spec(A) is
again l-flexible (resp. flexible). Indeed, every locally nilpotent derivation d of A
canonically extends to a locally nilpotent derivation 3 of Alx] containing x in its
kernel in such way that the projection pry : X x A' — X is equivariant for the
corresponding G,-actions on X and X x A! respectively. It follows that for every
point p € X x A! dominating a flexible point x of X, say for which Derc(Ox),
is generated by the images of locally nilpotent derivations dy,...,d, of A, the
Oxxal p-module Derc(Oyxyu1)p s generated by the images of i T d, together
with the image of the locally nilpotent A-derivation dy of A[x]. This implies that
pry' (Xiex) C (X x A')gex and hence that the set of non flexible points in X x A
has codimension at least two. Furthermore, (X x A')ge, coincides with (X x Al)reg

in the case where Xgex = Xieg.

2.2.5. Even though different results related with lifts of G,-actions on an affine
variety X to G,-actions on total spaces of line bundles p : L — X over it exist
in the literature (in particular, [3, Lemma 9] and [1, Corollary 4.5]), it seems that the
question whether 1-flexibility or flexibility of X lifts to total spaces of arbitrary line
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bundles over it has not been clearly settled yet. This is fixed by the following cost
free generalization:

Lemma 2.3. Let X be a normal affine variety and letp : E — X be a vector bundle
which splits as a direct sum of line bundles. If X is 1-flexible (resp. flexible) then so
is the total space of E.

Proof. Since E is isomorphic to the fiber product L xx L ---xx L, of line bundles
pi : L; — X, we are reduced by induction to the case of a line bundlep : L — Y
over a 1-flexible (resp. flexible) affine variety. Recall that for a connected algebraic
group G acting on a normal variety Y, there exists an exact sequence of groups

0 — H) (G.T'(Y.0%)) = Pic®(Y) 5 Pic(Y) — Pic(G)

alg

where Pic®(Y) denotes the group of G-linearized line bundles on Y and where
Hn'lg(G. I'(Y, O} )) parametrizes isomorphy classes of G -linearizations of the trivial
line bundle over Y (see e.g. [7, Chap. 7]). In the case where G = (,, this
immediately implies that every line bundle p : L — Y admits a (G,-linearization
(note furthermore that such a linearization is unique up to isomorphism provided
that I" (Y, Oy) = C*).

It follows in particular that every G,-action on Y can be lifted to a G4-action
on L preserving the zero section Yy C L and for which the structure morphism
p : L — Y is Gg-invariant. So the 1-flexibility (resp. the flexibility) of L
follows from that of Y thanks to [1, Corollary 4.5]. But let us provide a self-
contained argument: the above property translates algebraically to the fact that every
locally nilpotent derivation d of I'(Y, Oy) extends to a locally nilpotent derivation
d of I'(L, Op) mapping the ideal Iy, of Y, into itself and such that the induced
derivation on I'(Yy, Oy,) = I'(L,O)/ Iy, coincides with d via the isomorphism

'Y, Oy) = I'(Yo. Oy, ) induced by the restriction of p. Since Y is affine, given
any point £ € L, we can find a global section s € H°(Y, L) which does not vanish
at y = p(f). Now if y is a flexible point of Y, say for which Derc(Oy), is
generated by the images of locally nilpotent derivations d, . . ., dr of I'(Y, Oy) then
to = p~'(¥) N Yy is a flexible point of L at which Derc(Op), is generated by
the lifts d;, ..., 3, of 3y,...,0, together with the locally nilpotent derivation d5 of
I'(L, Op) corresponding to the G, y -action o5 : G4y Xy L — L associated with s
(see §2.2.1 above). Furthermore, since s does vanish at y, the (4-action induced by
oy on p~!(y) is transitive, and so p~! () consists of flexible points of L. This shows
that p~!(¥ex) C Lpex and completes the proof. ]

3. Construction of rigid and 1-flexible A'-fibered surfaces over over P!

In this section, we first consider affine surfaces Sg which arise as complements of
well-chosen hyperplane sections of a smooth cubic surface in P>, We check that
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they are rigid by computing their automorphism groups and we exhibit certain A!-
fibrations mx : Sg — P! on them. We then construct auxiliary 1-flexible A!-fibered
surfaces g : S — P! which will be used later on in section 4 for the proof of
Theorem 1.1.

3.1. A family of rigid affine cubic surfaces . Most of the material of this sub-
section 1s borrowed from [10] to which we refer the reader for the details.

3.1.1. Given a smooth cubic surface V' C P3 and a line L on it, the restriction to
of the linear pencil H; = |Op3(1) ® Z1| on P? generated by planes containing L
can be decomposed as H;, |y = L + L where L is a base point free pencil defining
a conic bundle ®, : V — P! with five degenerate fibers each consisting of the
union of two lines. The restriction ® [;: L — P! is a double cover and for
every branch point x € P! of ®, |z, the intersection of V with the corresponding
hyperplane H, € H consists either of a smooth conic tangent to L or two distinct
lines intersecting L in a same point, which is then an Eckardt point of V. The second
case does not occur if V' is chosen general. We fix from now on a cubic surface V, a
line L on it and a hyperplane section D = H N V for which D = L + C where C
is a smooth conic tangent to L at a point p € L.

3.1.2. Given a pair (V, D) where D = L + C as above, the surface Sg = V \ D
is affine as D is a hyperplane section of V. It comes equipped with an A'-fibration
g : Sg — P! which is obtained as follows: we let it : V' — P? be the birational
morphism obtained by contracting a 6-tuple of disjoint lines L, Fy,.... F5 C V
with the property that each F;, i = 1,...,5, intersects C transversally. Since L is
tangent to C, the image 1.(C) of C in IP? is a cuspidal cubic. The rational pencil
on P? generated by pt4(C) and three times its tangent 7" at its unique singular point
w(p) lifts to a rational pencil g : V --» P! having the divisors C + Zle F;
and 37 + L as singular members. Letting 7 : V — V be a minimal resolution
of g, the induced morphism g o t : V — P! is a P!'-fibration whose restriction to
Sg=V\D~V\7r'Disan Al-fibration 7g : Sg — P' with two degenerate
fibers: one is irreducible of multiplicity three consisting of the intersection of the
proper transform of 7" with Sg and the other is reduced, consisting of the disjoint

union of the curves F; N Sg ~ A',i =1,...,5 (see Figure 3.1).

Remark 3.1. Choosing an alternative 6-tuple of disjoint lines Fy 1 Fo.2, Foo,1- - -
Foo4 such that Fo 1,..., Feo,4 intersect C transversally while Fy; and Fop»
intersects L but not C, we obtain another contraction morphism i : V — P? for
which the proper transforms of C and L are respectively a conic and its tangent line
at the point ji(p). One checks that the lift to V' of the rational pencil on P? generated
by ji+(C) and 2p4(L) restricts on Sg to an A'-fibration nh © Sg — P! with
two reducible degenerate fibers: one consisting of the disjoint union of the curves
Fou NS ~ Al i = 1,2, both occuring with multiplicity two and the other one
consisting of the disjoint union of the reduced curves Foo ; NSg ~ Al i =1,...,4.
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The description of the degenerate fibers shows that this second A!-fibration is not
isomorphic to the one 7g : Sp — P!, so that Sg carries at least two distinct types
of A!'-fibrations over P!,

Fs

-1
Fy

=5 -1
F3

C -1
F>

—1
Fi

-1

Figure 3.1. The total transform of pu4«(C)U T C P2 in the minimal resolution 7 : V — V of
g. The plain curves correspond to the irreducible components of (D) and the exceptional
divisors E; of T are numbered according to the order they are extracted.

3.1.3. To determine the automorphism group of Sgp = V \ D we first notice that
the subgroup Aut(V, D) of Aut(V') consisting of automorphisms of V' which leave D
globally invariant can be identified in a natural way with a subgroup of Aut(Sg). The
latter is always finite, and even trivial if the cubic surface V' is chosen general. On
the other hand, Sg admits at least another natural automorphism which is obtained
as follows: the projection P2 --» P2 from the point p = L N C induces a rational
map V --» P? with p as a unique proper base point and whose lift to the blow-
upa : W — V of V at p coincides with the morphism 6 : W — P? defined
by the anticanonical linear system | — Ky|. The latter factors into a birational
morphism W — Y contracting the proper transform of L followed by a Galois
double cover ¥ — P2 ramified over an irreducible quartic curve A with a unique
double point located at the image of L. The non trivial involution of the double
cover Y — P? induces an involution Gy : W — W fixing L and exchanging the
proper transform of C' with the exceptional divisor £ of «. The former descends to a
birational involution Gy, : V' --» V which restricts further to a biregular involution
JGy , of Sg =V \ D.

The following description of the automorphism group of Sk shows in particular that
these surfaces are rigid:

Lemma 3.2. For a surface Sg = V' \ D as above, there exists a split exact sequence

0 — Aut(V, D) — Aut(Sg) — {idsg, jG, ,} = Z2 — 0.
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Proof. We interpret every automorphism of Sg as a birational self-map f : V --» V
of V restricting to an isomorphism from Sg = V' \ D to itself. Since f € Aut(V, D)
in case it is biregular, it is enough to show that either f or Gy, , o f is biregular.
To establish this alternative, it suffices to check that the lift fiy = o ' fa :
W --» W of f to W is a biregular morphism, hence an automorphism of the
pair (W,a '(D).qg). Indeed if so, then fy preserves the union of E and the
proper transform of C as these are the only (—1)-curves contained in the support
of @ 1(D)q. Since by construction Gy exchanges E and the proper transform of
C, it follows that either fw or G o fw leaves E, the proper transform of C and
the proper transform of L invariant. This implies in turn that either / = afwa ™! or
aGwo fwa ' = (@Gwa Mo (afwa™) = Gy po f is a biregular automorphism
of V.

To show that fW is a biregular automorphism of W, we consider the lift
f =0 lofoo:V -V of f tothe variety @ : V — W obtained from W
by blowing-up further the intersection point of £ and of the proper transform of
C, say with exceptional divisor £. We identify Sg with the complement in V of
the SNC divisor D = L U C U E U E. Now suppose by contradiction that fis

strictly birational and consider its minimal resolution V <ﬁ— X i V'. Recall that the
minimality of the resolution implies in particular that there is no (—1)-curve in X
which is exceptional for B and B’ simultaneously. Furthermore, since V is smooth
and D is an SNC divisor, 8’ decomposes into a finite %equence of blow-downs of
successive (—1)-curves supported on the boundary B = ! D)red = ()" l(D)md
with the property that at each step, the proper transform of B is again an SNC divisor.
The structure of D implies that the only possible (—1)-curve in B which is not
exceptional for f is the proper transform of £, but after its contraction, the proper
transform of B would no longer be an SNC divisor, a contradiction. So f V>V
is a morphism and the same argument shows that it does not contract any curve in
the boundary D. Thus f is a biregular automorphism of V. in fact, an element
of Aut(V, D). Since E is the unique (—1)-curve contained in the support of D
it must be invariant by f which implies in turn that fir = & f& ! is a biregular
automorphism of the pair (W, a1 (D),q), as desired. (]

3.2. Flexible mates. In this subsection, we construct 1-flexible affine surfaces Sg
admitting A!-fibrations mr : SFg — P! whose degenerate fibers resemble the
ones of the fibrations 7g : Sg — P! described in §3.1.2 above. A more precise
interpretation of this resemblance, going beyond the bare fact that the number of
their irreducible components and their respective multiplicities are the same, will be
given in section 4 below.

3.2.1. For the construction, we start with a Hirzebruch surface r,, : F,, = P(Op1 &
Opi (—n)) — P!, n > 0, in which we fix an ample section C ~ P! of 7, and two
distinct fibers, say Fp = nn_l(po) and Foo = rrn_l(poo), where po, poo € P'. We let
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o : X — [, be the birational map obtained by the following sequence of blow-ups:

Step 1 consists of the blow-up of five distinct points pog.1,..., Poo,s 0N Foo \ C
with respective exceptional divisors G 1, . . - Goo,5:

Step 2 consists of the blow-up of a point po; € Fp \ C with exceptional divisor
E ., followed by the blow-up of the intersection point py» of the proper
transform of Fy with £, with exceptional divisor E», then followed by the
blow-up of the intersection point pg_ 3 of the proper transform of Fy with £,
with exceptional divisor E3. Finally, we blow-up a point pg 4 € E5 distinct
from the intersection points of E3 with the proper transforms of F and E;
respectively. We denote the last exceptional divisor produced by G ;.

The structure morphism 7, : F,, — P! lifts to aP!-fibrationp = m, 00 : X — P!
with two degenerate fibers ' (po) = Fo + E| + 2E> + 3E5 + 3Gy,1 and
ﬁ_l (Poo) = Foo + Zle Goo.i- The inverse image by o of the divisor Fo UC U Fy
is pictured in Figure 3.2. Letting SF be the open complement in X of the divisor
B =F,UCUFyUE3U E, U E,, the restriction of p to Sf is an A'-fibration
nr : Sg — P! with two degenerate fibers: the one n;l(pg) is irreducible of
multiplicity three consisting of the intersection of Gy ; with SF and the other one
7' (pso) is reduced, consisting of the disjoint union of the curves Goo ; NSF =~ A,

i = Lyiwes 5.

Foo -1

Figure 3.2. The total transform of Fy U C U Fsy C [y, in X. The plain curves correspond to
irreducible components of the boundary divisor B.

Lemma 3.3. A surface Sp = X \ B as above is affine and 1-flexible.

Proof. By construction, B is chain of smooth complete rational curves. So the
I-flexibility of Sg will follows from Theorem 2.2 provided that Sg is indeed
affine and has no non constant invertible functions. Since 7 : Sg — P! is an
Al'-fibration, an invertible function on S F 1S constant in restriction to every non
degenerate fiber of ¢ and hence has the form f o 7 for a certain global invertible
function f onP'. So such a function is certainly constant. To establish the affineness
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of Sr, we first observe that Sr does not contain a complete curve. Indeed, otherwise
since the points blown-up by 0 : X — [, are contained in [F,, \ C, the image by
o of such curve would be a complete curve in [, which does not intersect C, in
contradiction with the ampleness of C in [F,,. On the other hand, since C has positive
self-intersection in [,, whence in X, one checks by direct computation that for
doo. A, g, dy,dy, a3 € Zi~g such that ag > a3z > a, > a; and a > max(ag. daso),
the effective divisor B = doo Foo +aC +agFy +ay Ey +as E> + a3 E5 has positive
self-intersection and positive intersection which each of its irreducible components.
It then follows from the Nakai—Moishezon criterion that B is an ample effective
divisor supported on B, and hence that S = X \ B is affine. O

Remark 3.4. In the construction of §3.2.1, one can replace Step | and 2 by the
following alternative sequence of blow-ups ¢’ : X' — F,:

Step 1" consists of the blow-up of four distinct points p._..... Poos ON Foo \ C
with respective exceptional divisors G ... .. G s

Step 2" consists of the blow-up of a point p; | € Fo \ C with exceptional divisor
E7, followed by the blow-up of the intersection point pé,z of the proper
transform of Fy with E7, with exceptional divisor £}, then followed by the
blow-up of a pair of distinct points pg 5 and pg 5 on £} distinct from the
intersection points of EJ with the proper transforms of Fy and E|, with
respective exceptional divisors Gy, | and Gy, ,.

The morphism ' = 7, oo’ : X’ — P! is then a P!-fibration with two
degenerate fibers 7' ' (po) = Fo + E{ +2E} + 2Gy ; + 2Gy , and ﬁ’_l(poo) -
Feo + Z?:l Gl.;- The same argument as in the proof of Lemma 3.3 above
shows that the complement in X’ of the chain of smooth complete rational curves
B' = FooUC U FyU E{UE} is a 1-flexible affine surface, on which 7’ restricts to an
A'-fibration . : §%. — P! with two degenerate fibers consisting respectively of
the disjoint union of G(’]J. NSE =~ Al i = 1,2 both occurring with multiplicity 2
and of the disjoint union of the reduced curves G'_; N S =~ Bt =10, 4. So
nl o S — P! resembles the alternative A'-fibration j, : Sg — P! described in
Remark 3.1 above.

4. Rigidity lost

The last ingredient needed to derive Theorem 1.1 is the following result:

Proposition 4.1. Let mg : Sg — P and np : Sp — P! be a pair of A'-fibered
surfaces as constructed in §3.1.2 and 3.2.1 above. Then there exists an algebraic
space § : € — P! such that mg and ng factor respectively through étale locally
trivial A'-bundles pg : Sg — € and pr . SF — €.
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Let us first explain how to derive the 1-flexibility of the cylinder Sg x A? from this
Proposition.

4.0.2. Recall that since the automorphism group of Al is the affine group Aff; =
Gm x Gg, every étale locally trivial Al-bundle p : S — € is in fact an affine-
linear bundle. This means that there exists a line bundle p : L — € such that
p S — € has the structure of an étale L-torsor, that is, an étale locally trivial
principal homogeneous bundle under L, considered as a group space over € for
the group law induced by the addition of germs of sections. Isomorphy classes of
such principal homogeneous L-bundles are then classified by the cohomology group
Héll(Qi. L} (see-€.g. [9, §1.2]).

4.0.3. So Proposition 4.1 implies in particular that pg : Sg — Cand pr : SFp — €
can be equipped with the structure of principal homogeneous bundles under suitable
line bundles pg : L — € and pr : Lr — € respectively. As a consequence,
the fiber product Z = Sgr X¢ Sfg is simultaneously equipped via the first and
second projection with the structure of a principal homogeneous bundle under the
line bundles pp L F and pj. L g respectively. But since Sg and SF are both affine,
the vanishing of Héll(SR.p;LF) and Hé'l(SF.p*FLR) implies that pr; : Z — Sg
and pr, : Z — SF are the trivial pj L p-torsor and p7 L g-torsor respectively. In
other word, Z carries simultaneously the structure of a line bundle over Sg and Sr.

4.0.4. Now since Sg is I-flexible by virtue of Theorem 2.2, we deduce from
Lemma 2.3 that Z is 1-flexible. Furthermore, the same Lemma implies that given
any line bundle p : Z' — Sg, the total space of the rank 2 vector bundle
pryxp: E = Z'"xx Z — Sg over Sg is l-flexible. On the other hand, it
follows from [15, Theorem 3.2] that every rank 2 vector bundle £ — Sg splits off
a trivial factor, whence is isomorphic to the direct sum of its determinant det £ and
of the trivial line bundle. Choosing for Z’ a line bundle representing the inverse
of the class of pr; : Z — Sg in the Picard group Pic(Sg) of Sg yields a vector
bundle £ = Z' xy Z — Sg with trivial determinant, whence isomorphic to the
trivial bundle Sk x A2, and with 1-flexible total space.

4.1. Proof of Proposition 4.1.

4.1.1. To prove Proposition 4.1, we first observe that if it exists, an algebraic space
§ 1 € — P! with the property that a given A'-fibration 7 : § — P! on a smooth
surface S factors as § o p, where p : S — € is an étale locally trivial A'-bundle,
is unique up to isomorphism of spaces over P'. Indeed, suppose that §’ : € — P!
18 another such space for which we have 7 = § o p’ where p’ : §' — ¢’ is an
€tale locally trivial A'-bundle. The closed fibers of p and p’ being both in one-to-
one correspondence with irreducible components of closed fibers of 7, it follows
that for every closed point ¢ € € there exists a unique closed point ¢’ € €' such
that §(¢c) = §(¢’) and p~'(c) = (p')"'(¢’) € 71 (8(c)). So the correspondence
¢ + ¢’ defines a bijection ¥ : ¢ — ¢ such that p’ = Yy opand § = § o .
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Letting f : C — € be an étale cover over which p : § — € becomes trivial, say

with isomorphism 0 : § x¢ C — C x A!, and choosing a sectiono : C — C x Al
of prc : C x Al — C, the composition ¥ o f = ¥ o f opre o 0 is equal to
W opopr; o0 ! oo andhence to p’ o pr; o @~ o o by construction of 1.

1 f—! Pry
CxA'—— Sxe C— 8§

= X
pra 1Y
7 f v

C » & e

This implies that ¥ o f : C — ¢ is a morphism whence that ¥ : € — ¢ is
a morphism since being a morphism is a local property with respect to the étale
topology. The same argument on an étale cover f' : C' — € over which
p' : S’ — € becomes trivial implies that the set-theoretic inverse ¥~ of ¥ is also a
morphism, and so ¥ : € — ¢’ is an isomorphism of spaces over P!.

4.1.2. In what follows, given an A!-fibered surface 7 : § — P!, we use the
notation S/A! to refer to an algebraic space § : ¢ — P! with the property that
m factors through an étale locally trivial Al-bundle p : § — €. The previous
observation implies that its existence is a local problem with respect to the Zariski
topology on P!. More precisely, we may cover P! by finitely many affine open
subsets U;, i = 1.....,r over which the restriction of 7 : § — P! is an A'-
fibration with a most a degenerate fiber, say ol | pi) for some p; € U;. Since the
restriction of w over U; « = U; \ {p;} is then a Zariski locally trivial A'-bundle,
we see that if §; : ¢; = 771 (U;)/A' — U; exists then the restriction of §; over
U; \ { pi} is an isomorphism of schemes over U;. This implies that the isomorphisms
87108 s\, v, o 6T Wi NUj) = 87 Uik NUG), i j = L., 3
satisfy the usual cocyle condition on triple intersections whence that the algebraic
space § : € = S/A! — P! with the desired property is obtained by gluing the
local ones 6; : ¢; — U;,i = 1,..., r along their respective open sub-schemes
S (U 50) © &y § = Ly r via these isomorphisms.
4.1.3. Now we turn more specifically to the case of the Al-fibrations mg : Sg — P!
and 7 : Srp — P! constructed in §3.1.2 and §3.2.1 respectively. Both
have exactly two degenerate fibers, one irreducible of multiplicity three and the
other one consisting of the disjoint union of five reduced curves. So up to an
automorphism of P! we may choose a pair of distinct point pg. pao € P! such that
nz (po) = 3T N Sg, 1" (po) = 3Go,1 N Sk, 1" (pso) = LI;—, F; N Sg and
A Poa) = |_],-5=1 Gooi N SF. Letting Up = P' \ {poo} and Uss = P!\ {po},
the existence and isomorphy of the algebraic spaces 75! (Up)/A! and gt (Ug)/A!
(resp. 7! (Uso)/AY and ' (Uso)/A') hence of those Sg/A! and S /Al follows
from a reinterpretation of a description due to Fieseler [11]:

— Since the unique degenerate fiber of the restriction of mg (resp. mp) over
Uso is reduced, consisting of five irreducible components, 7j'(Us)/A' and
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75" (Uso)/A! are isomorphic to the scheme § : € — Usx obtained from
U~ by replacing the point po, by five copies poo.i, ..., Poo,s Of itself, one for
each irreducible component of n;l( Poo) (resp. n;l( Poo)). More explicitly, mg
restricts on SR oo,i = g (Uoo) \ [l j i (Fj N SR), i =1,...,5,to an Al-fibration
TR0 - SR.00.i — Us With no degenerate fiber over the factorial base Uy =~ Al
and hence is a trivial A'-bundle. So Sg oc,i/A' >~ Usx and nx' (Uss) /A is thus

isomorphic to the Ux-scheme obtained by gluing five copies o, @ Uno,i S Uso,
A — T S 5 of Ux by the identity along the open subsets Uxo,i \ {Poo.i }» Where
Papi i = OO,, 1 (Poo). The same description holds for nFl (Uso) /AL,

— The situation for the open subsets Sg o = HEI(UQ) and SFo = n;l(Ug) 1S
a little more complicated. Letting g : Uy — Uy be a Galois cover of order three
ramified over pg and étale everywhere else, the inverse image of n;l (p0)req 1n the
normalization §R,0 of the reduced fiber product (Sg Xy, 00)red is the disjoint union
of three curves £o,1, {0, and £, .2 (where £ € C* is a primitive cubic root of unity)
which are permuted by the action of the Galois group jt3 of cubic roots of unity.
The A'-fibration pr, : Sg.o xv, Up — U lifts to one g : Sgo — Up with a
unique, reduced, degenerate fiber (7t )R 0(p0) where pg = ¢ 1(po) which consists
of the union of the £y 4, ¢ = 1, ¢, ¢2. The same argument as in the prevnoue case
implies then that Co = SR O/A1 is 1somorphlc to the Up-scheme 80 Cp =

obtained by gluing three copies 50,0, K UO,a - UO, = 1,¢ €2, of (70 by the
identity outside the points pgo = (80,(,)_1( Po). Furthermore, the action of the
Galois group jt3 on S g o descends to a fixed point free action on €y defined locally
by Ug,a Spr>e-pEe Uo,m. A geometric quotient for this action on éo exists in
the category of algebraic spaces in the form of an étale u3-torsor ¢y — €o/ 3 over
a certain algebraic space ¢ /13 and we obtain a commutative diagram

Sro—— Sro/i3 = Sr.0

PR.0O J’pR.o

C() _— &0/#3

g()l j,&)

UO4>00//,L3 s U()

in which the top square is cartesian. It follows that the induced morphism
PR : SRo — é‘g/ug, is an étale locally trivial A'-bundle which factors the restric-
tion of g to Sg.9. So & : 5:0/,u3 — Up is the desired algebraic space Sg o/A".
Itis clear from the construction that the isomorphy type of Q~20/,UV3 as a space over
Uy depends only on the fact that Sg o is smooth and that g |s, ,: Sr,0 — Up is
an A'-fibration with a unique degenerate fiber of multiplicity three over po, and not
on the full isomorphy type of Sg.o as a scheme over Uy. In other words, the same
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construction applied nr |5 ,: SF0 — Up yields an algebraic space SF.o/A" which
is isomorphic to éo/u_g as spaces over Uj.

Finally, the desired algebraic space ¢ = Sg/A; = Sfg/A, is obtained by gluing
Coo and €5 = @0/,u3 by the identity along the open sub-schemes 80_01 (Uo NUpy) =~
UpNUgx = 56‘ (Up N Ux). This completes the proof of Proposition 4.1.

Remark 4.2. A similar construction applies to the A!-fibrations Th : SR — P!
and 7. : Sfp — P! considered in remarks 3.1 and 3.4 respectively. The desired
algebraic space Q" = Sg/A!' = Sp/A! is again obtained as the gluing by the
identity along 8’ "Up N Us) >~ Up N Usy = S’EI(UO N Us) of two algebraic
spaces 8. : €L — U and &, : €, — Uy which are constructed as follows:

— The algebraic space €/ is obtained from Us be replacing the point p by
four copies of itself, one for each irreducible component in the reduced degenerate
fiber 77" (Poo) (resp. 7% (Poo)).

— Corresponding to the fact that the degenerate fiber Tl’,}_zl (po) (resp. Jr’}l (po))
has two irreducible components, both occurring with multiplicity two, the algebraic
space & is now itself a compound object. First we let g : Uo — Uy be Galois
cover ot degree two ramified at py and étale elsewhere. Then we let D’ — U,
be the scheme obtained by gluing two copies UO + of UO by the identity outside
Po=2g '(po) The Galois group p5 acts freely on ’D byUp+3pr>—pE€ Up =
and we let y, : o/ 2 = Up =~ U/ 12 be the geometric quotient taken in
the category of algebraic spaces. Finally, §; : €, — Uy is obtained by gluing two
copies ¥ ; : Dy ; — Up, i = 1,2 of Dj by the identity along the open subschemes

vo ' (Uo \ {po}) = Uo \ {po}t = ¥5, " (Uo \ {po}).
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