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On Schoen surfaces

Ciro Ciliberto} Margarida Mendes Lopes**and Xavier Roulleau

Abstract. We give a new construction of the irregular surfaces of general type with pg =5,
¥ = 2, K? = 8, recently discovered by C. Schoen in [24]. Our approach proves that, if S is
a general Schoen surface, its canonical map is a finite morphism of degree 2 onto a canonical
surface with invariants p, = 5, y = 6, K> = 8, a complete intersection of a quadric and a
quartic hypersurface in P4, with 40 even nodes.

Mathematics Subject Classification (2010). 14J29, 32G05; 14D06, 14J10.
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1. Introduction

Let S be a smooth projective irregular surface. Let
¢s : A2H?(S.Qs) - H%(S,Ks) (1.1)

be the natural map. We call the vectors of the space A2H (S, Q2g) the formal 2-
forms of S. The rank of a formal 2-form « is the minimum dimension of a subspace
V € HY(S, Q) such that @ € A%V ; it is an even integer.

A famous theorem by Castelnuovo and De Franchis says that there is a non—zero
formal 2—form w of rank 2 in ker(gys) if and only if there exists an irrational pencil
of genus b > 2 on S, i.e. a surjective morphism f : S — B, where B is a smooth
genus b curve and there exist w, w2 € H°(B,wpg) suchthatw = f*(wi)A f*(w2).

Existence of higher rank formal 2-forms in ker(¢s) are more rare and their
geometric interpretation more difficult (see [3]). E.g., the existence of such forms
is relevant in the study of the fundamental group of S (see [1, 2]).

With a completely different viewpoint in mind (i.e., Tate and Hodge conjectures),
C. Schoen discovered in [24] remarkable minimal irregular surfaces of general type

*The first author is a member of GNSAGA of INdAM, and this research was partially supported by
the MIUR-PRIN “Geometry of Algebraic Varieties”.
“*The second author is a member of the Center for Mathematical Analysis, Geometry and
Dynamical Systems (IST/UL). This research was partially supported by FCT (Portugal) through program
POCTI/FEDER, Project PTDC/MAT/099275/2008 and grant SFRH/BPD/72719/2010.
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with invariants p, =5, y = 2, K? = 16 (from now on called Schoen surfaces).
They enjoy the property that ker(¢s) is generated by a formal 2—form of rank 4
(hence they are Lagrangian surfaces in the sense of [3], i.e. they are Lagrangian
subvarieties of their Albanese variety A, for an appropriate symplectic structure on
A). Furthermore they also enjoy the property that p, = 2¢g — 3, i.e. pg is the
minimum possible with respect to ¢ for surfaces with no irrational pencils of genus
b > 2 (see[17, 19, 20] for the existence of surfaces with p, = 2g — 3).

Other interesting topological properties of Schoen surfaces are pointed out in §3
below.

Schoen’s construction is as follows. He finds a reducible surface V', the
transverse union of two irreducible components, inside the principally polarized
abelian variety A x A, where A = J(C) and C is a general smooth irreducible
genus 2 curve. He shows that V' smooths to the required surface. The smoothing
relies on two main tools: Bloch’s semiregularity (enjoyed by V in A x A) and an
explicit deformation of varieties of type A x A to simple principally polarized abelian
varieties in which the class of V' stays of Hodge type (2, 2).

The aim of this paper is to give a different, slightly more geometric, approach
to Schoen’s construction. It will give us some more information, namely (see
Theorem 4.1 below):

Theorem 1.1. Let S be a general Schoen surface. Its canonical map ¢k : S — P4
is a finite morphism of degree 2 onto a canonical surface with invariants pg = 5,
¥ = 6, K? = 8 and 40 even nodes, which is a complete intersection of a quadric
and a quartic hypersurface in P*. The ramification of gk takes place at the nodes.

When the canonical map of a surface of general type has degree n > 1 onto a
surface, that surface either has py, = 0 or is itself canonically embedded (see [4,
Th. 3.1]). Schoen surfaces provide one more example of the latter, rather rare, case
(see [11]; see also the recent preprint [5]).

Our construction, described in §4, starts from the same reducible surface V
considered by Schoen. It turns out that (a slight modification of) V' is the double
cover of a surface Z, which has 40 nodes and otherwise has normal crossing
singularities. The surface Z sits in the closure of the moduli space of complete
intersections of a quadric and a quartic hypersurface in P* and an easy count of
parameters shows that it deforms to a surface Y which is still a complete intersection
of a quadric and a quartic, and has 40 nodes and no other singularity. Then we show
that the 40 nodes are even. The double cover of Y branched at the 40 nodes are
Schoen surfaces, and counting parameters one sees that in this way one gets them
all.

These ideas can be applied to other similar situations in order to find more
examples of irregular surfaces, but we do not dwell on this here.

The paper is organized as follows. In §2 we recall a few useful know facts. In §3
we recall Schoen’s main result and, using of [1, 2], we discuss some properties of
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the fundamental group of Schoen surfaces. Finally, §4 is devoted to our alternative
construction.

Notation. We use standard notation in algebraic geometry. Specifically, if X is a
surface with locally Gorenstein singularities (so that the dualizing or canonical sheaf
wy is aline bundle), we denote by Ky the divisor class of [wx | and we set pg (X)) :=
(X . wx)., x(X) := x(Ox) = y(wx). K} = 0%, q¢(X) = h'(X.Ox). We may
drop the indication of X when this is clear from the context. We note that if X
has only Du Val singularities, then the above invariants for X and for a minimal
desingularization of X coincide.

2. Preliminaries

2.1. Surfaces with normal crossing singularities. We recall a few known facts
(see [7, 8] and references therein). Let V = V; U .-- U V}, be a reducible, projective
surface such that:
(1) the irreducible components V. .. .. V,, are smooth;
(i1) the double curves Ci; := V; NV are smooth and irreducible, and V;, V; intersect
transversally along C;;, for 1 <i < j < n;
(i1i) V' has a finite number of triple points Tjjx := V; NV; N Vi and V around T is
analytically isomorphic to the surface of equation xyz = 0 in A? around the origin,
for1 <i < j<k<n WesetTi; := 3 ; Tijk for the triple point divisor on
Cij,forl1 <i <j<n
(iv) V has no other singularity.
Given V' as above, one forms the graph Gy :
B> with vertices vy, ..., v, corresponding to the components Vi, ..., K
B> with edges c;; corresponding to the double curves C;;, with | <17 < j < n;
&> with faces t;;; corresponding to the triple points Tjji, with 1 < i < j <k < n.
In the above setting the dualizing sheaf wy is invertible and one has

wyly, = oy, ® Oy, (Y Cy). for 1<i<n, (2.1)
J#i
hence
Ky = (Ky, + ) _Cyj)”. (2.2)
i=1 J#i
Moreover
1Ov) =) xOv)— Y x(Oc;)+1(V) (2.3)
=1 1<i<j<n

Where 7(V) is the number of triple points of V, i.e. the number of faces of Gy .
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Let
oy P HV.Ov) > P HY(C;.Oc,)

i=1 1<i<j<n

be the natural map and let pg (V) = h®(V, wy). Then

pe(V) = b2(Gv) + ) _ pe (Vi) + dim(coker(®y)). (24)
=1

If V' = X is the central fiber of a projective, flat family of surfaces f : X' — D,
over a disc ID, with smooth total space X’ and smooth fibers X; = f~1(z), for
t € D— {0}, then these smooth fibres have invariants pg (X;) = pg(V), Ky, = Kj,
and y(Ox,) = x(Oy).

If V sits in a flat family f : X — D as above, one says that V' is smoothable and
that f : X — D is a smoothing of V. Then the triple point formula holds

Ne,iv; ® Neyiv, ® Oc,, (Ti) = O, for 1 <i < j <n.  (2.5)

We recall the following definition from [14]: V' is said to be d —semistable if

> ZIviv
Oc(=V) .= — >~ O¢

@ Iy, ivZcy
where C = Ujg;i<;<nCi; is the singular locus of V' and the tensor product is
taken as Oc-modules. If V is smoothable, then V is d-semistable (see [14,
Proposition (1.12)]), but the converse is in general false. In any event, Oc(—V) is a
line bundle on C (see [14, Proposition (1.10)]). One defines O¢ (V) := O¢ (—V)*,
and Oc,; (V) := Oc(V)l¢,,. Note that Oc(V) = Exty, (Qy,Oy) is the T}
sheaf of V (see [14, Proposition (2.3)]).

Lemma 2.1. In the above setting, one has
Oc;; (V) = Nc;;1v; ® N, 1v; ® Oc;; (Tij)- (2.6)

Hence (2.5) is necessary for d—semistability. If the dual graph of the singular locus
C of Visatree, ie.

pa(C) = Z pa(cij)»

1<i<j<n
then (2.5) is also sufficient for d—semistability.
Proof. Formula (2.6) is an immediate consequence of the definition of O¢ (V). If the

dual graph of C is a tree, then O¢ is the unique line bundle on C whose restriction
to each component of C 1s trivial. U
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2.2. Double covers. The contents of this section are well known. We recall them
to fix notation and terminology.

Let X be a projective scheme (over an algebraically closed field k& of characteris-
tic p # 2, though we work over C in this paper). A double cover of X is a scheme Y
and a finite morphism f : X — Y of degree 2. The datum of such a double cover is
equivalent to give two line bundles £, M on X such that M®2 = £ plus a section
s € H°(X.L). Let (U;)ies be a finite covering of X over which both £ and M
trivialize, let (§;;)i jer be the corresponding cocycle for M, let z; be the coordinate
in the fibre of M over U; and let (s;);es be the local functions defining s. Then we
have

zi = &jz;. and s; = E}s;j forall i, j € 1

and the locus Y

-2
Ly

=y;, foralli € 1

in the total space of M is well defined and, via the natural projection to X, is a
double cover f : Y — X. The zero locus B of s is the branch locus of the covering
and R := f~1(B) is the ramification locus. As schematic counter image of B, R
has a non-reduced scheme structure. Note that B is not necessarily a Cartier divisor
on X: e.g. if s is the zero section, then Y is a double structure on X . Similarly, if X
is reducible, s could be zero on some component of X.

Lemma 2.2. Let f : X — D be a flat projective family over a disc. Let L be a line
bundle on X and set Ly = L|x,. Assume there is a line bundle Mg on X¢ such

that M?z = Lo. Then, up to shrinking D, there is a line bundle M on X such that
M®2 = L and My = M|y,

Proof. LetU = (U;);er be a finite covering of A’ over which L trivializes and M,
trivializes on V = (V;)ier with V; = U; N X foralli € 1. Let (&), jer be the
cocycle for £ on i and let ()i, jer be the cocycle for Mg on V. Then

which encodes the choice of a suitable determination of the square root. Then we
may choose the same determination of the square root defining

Cij = /&y, foralli,j el
on Uj; forall i, j € I, and this gives the cocycle (¢ij)i, jer defining Mon X'. [
2.3. Hypernodes. An hypernode of an n dimensional variety X, with n > 2, is a
point p such that the analytic germ of (X, p) is isomorphic to the quotient singularity

(C" /o, 0), where
gixeC”—=>—xe "
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If n = 2 this is called a node, and it is an A;—singularity. A minimal resolution X
of X at p i1s gotten by a single blow—up. The exceptional divisor E is isomorphic to
IP)H—I and NEfX’ = Opn—l (—2)

If X is a projective variety with hypernodes py, ..., Ph» and no other singularity,
we can consider its minimal desingularization f : X — X. Then X has the
exceptional divisors Ny, ..., Nj contracted by f to the hypernodes pq, ..., py. Set

N := Y"'_, N;. One says that py, ..., pj are even, if O5(N) is divisible by 2 in
Pic(X). This happens if and only if there is a commutative diagram

y ~
]

=1
By — =
et

where Y, Y are smooth varieties, 7, 7 are finite morphisms of degree 2, and 7
is branched at N, whereas 7 is branched at py,..., pr- The counter images of
Plow s wa s ph are points ¢q, . . ., qn € Y and g is the blow—upof Y atgqy, ..., &«

3. Schoen surfaces

Let V7 = A be an abelian surface with C C A a smooth curve of genus g > 2. One
has Ncjg4 = wc. Let Vo = C x C and let A C V be the diagonal. Then A >~ C
and Najy, = wg. Let V be the reducible surface consisting of Vi U V5 glued along
C C V; and the diagonal A C V5.

Proposition 3.1. The invariants of V are
pe=1+g> x=g(g—1), K =8g(g—1).

Proof. This follows from (2.2), (2.3) and (2.4). The details can be left to the reader.
Only note that the map ®y is surjective, since h'(A, O4(—C)) = 0 because C is
ample on A. [

Schoen proves in [24] that:

Theorem 3.2. If g = 2, then V is smoothable to surfaces with a 4—dimensional
generically smooth moduli space.

Remark 3.3. In [24, Proposition 10.1, (i1)], it is stated that for the general Schoen
surface S one has rk(NS(S)) = 2. As one can directly see with an argument as in
[15], the right statement is instead that rk(NS(S)) = 1 (that was also pointed to us
in [25]).
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It is not known if V' is smoothable for g > 3. This is an intriguing question,
especially for g = 3 (see Remark 3.7 below).

Schoen surfaces verify K? = 8y. Surfaces whose universal cover is H x H,
where H = {z € C/Im(z) > 0} is the Siegel upper-half plane, also verify K?> = 8y
and have infinite fundamental group. Teicher and Moishezon constructed in [21, 22]
finitely many families of surfaces with K? = 8y and finite (even trivial) fundamental
group. The following proposition shows a remarkable property of Schoen surfaces:

Proposition 3.4. The universal cover of a Schoen surface S is not H x H. Since
q(S) = 4, 7,(S) is not finite and finite étale covers of Schoen surfaces give an
infinite number of families of surfaces with K* = 8y whose universal cover is not
H x H.

Proof. If S has universal cover H x H, then it is the quotient of H x H by a discrete
cocompact subgroup I' of Aut(H x H) acting freely. By [16], either I" is reducible,
and § is isogenous to the product of two curves (i.e. it is a quotient of a product of
two curves by a fixed—point free group action), or I' is irreducible and S is regular.
The latter case cannot happen, because ¢(S) = 4. Also the former case cannot
happen. Indeed, in [23, Proposition 6.1] Schoen proved that a surface dominated
by a map from a product of curves is Albanese standard, i.e. the class of its image
into its Albanese variety A sits in the subring of H*(A, Q) generated by the divisor
classes. By contrast, by [24, Theorem 1.1, (ii1)] Schoen surfaces are Albanese exotic,
i.e. not Albanese standard. ]

Note that, according to [13], Schoen surfaces do not possess any semi special
tensor.

If § is a Schoen surface, set G := m1(S5). We denote by {G, },en the lower
central series of GG, defined as

G, =0, Gn—H = [Gn.G], for n>1,

where [-,-] denotes the commutator subgroup. The group G, = G1/G> is the
abelianization of G, and in the present case G,, = H I(S,7Z) =~ 78.

By [1, Corollary 1.44], [2], the group G,/G3 ® C is isomorphic to the (dual of
the) kernel of the natural map

¥s : AZHY(S,C) - H?(S,C).

The Betti numbers of Schoen surfaces S are by = 8 and b, = 22, moreover
hh1(S) = b, — 2p, = 12. The space A2 H'(S.C) is 28-dimensional. The map s
respects the Hodge decomposition, hence it is the direct sum of the map ¢g in (1.1)
and of its conjugate, and of the map

¢s : HY0(S) @ HO1(S) — HV1(S).
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We see that dim(ker¢s) > 4. The general Schoen surface S has no irrational
pencil. This follows from Remark 3.3; alternatively, if f : § — B is an irrational
pencil, then the genus of B is at most 3 (because ¢(S) = 4 and § is of Albanese
general type) and this would imply that Alb(S) is non—simple, contradicting [24,
Theorem 6.1, (i)]. In particular S has no morphism f : § — B to a curve B of
genus b > 2. Since this is a deformation invariant property (see [9]), the same holds
for any Schoen surface. Hence, by Castelnuovo—De Franchis® Theorem, the map
s cannot have a kernel of dimension bigger than 1, hence it is surjective with a
I-dimensional kernel. Moreover dim(ker¢g) < 5 by [10, Proposition 2.2.5]. We
have (see [24, Proposition 9.1]):

Corollary 3.5. Let S be a Schoen surface. Then 6 < dim(ker(ys)) < 7, hence
6 < dim(G,/G3 ® C) < 7 and G is not abelian.

Remark 3.6. Schoen surfaces are such that both ¢g and ¢g have a non—trivial
kernel. As far as we know the only other surfaces with no irrational pencils enjoying
the same property and discovered so far are the L G—surfaces studied in [6].

Remark 3.7. Consider again the reducible surface V for g > 3. Suppose V is
smoothable and that S is a general surface in a smoothing of V. Since

. I
dim(A*HY(S.Q25)) = S+ 2+ 1) < pg. forg =4,

we cannot conclude directly that ¢ s has a non—trivial kernel if g > 4. Similarly, one
computes h''! = 2(g? + 2), hence we cannot conclude that ¢s has a non—trivial
kernel if g > 4. The borderline case g = 3 is attractive. If V' is smoothable to a
surface S, then ¢g has a non—trivial kernel of dimension at least 3, hence, as in the
Schoen surface case, the fundamental group m;(S) is not abelian and it would be
interesting to understand it. Moreover, either ¢g is an isomorphism, or ¢g would
have a non-trivial kernel. In the former case S would contradict a conjecture to the
effect that the Fano surface of lines of a smooth cubic threefold and the symmetric
product of curves are the only surfaces S with ¢ > 3 such that g5 is an isomorphism
(see [18] and also [12]). In the latter case, S would again be a generalized Lagrangian
surface in the sense of [3], and these surfaces are quite rare and interesting on their
own.

4. Different construction of Schoen surfaces

Here we propose an approach to the construction of Schoen surfaces different from
the original one. It provides the following additional bit of information:

Theorem 4.1. Let S be a general Schoen surface. The canonical map ¢g : S — P*
of S is a finite morphism of degree 2 onto a canonical surface with invariants
Pe =5, x = 6, K* = 8 and 40 even nodes, a complete intersection of a quadric
and a quartic hypersurface in P*. The ramification of ¢k takes place at the nodes.
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We start by looking at the dualizing sheaf wy, which, by (2.1), is the bundle
obtained by gluing O4(C) on A = V; and wy,(A) on Vo = C x C along C: this
1s possible since the two bundles both restrict to wc on C. Then we modify wy by
twisting by V,, which means considering the line bundle £ on V obtained by gluing
O4(2C) on A and wy, on V3, the two bundles both restricting to a)?z on C.

Remark 4.2. Suppose V = X is the central fiber of a projective family of surfaces
f:X — D, asin §2.1. Then wy = a)XIX“. Twisting by V;, as we did, is the
same as considering the line bundle £ = wx ® Ox(V2)ly, - Note that both wx and
wy ® Oy (V) restrict to the canonical bundle on the general surface of the family.
Hence L, as well as wy, is a limit of the canonical bundle of X, fort € D — {0}.

Lemma 4.3. We have h°(V.L) = pg(V) = 5 and the map ¢ -V — P*isa
morphism.

Proof. One has a cartesian diagram

HO(V, L) 5 HO(A,04(20))

ol [

HO(V2,0v,) = H(C.wc)®* ———— H%(C.w¢?)

where ry., r are restriction maps. One has h°(A, O 4(2C)) = 4, h®(Va, wy,) = 4,
r1 is surjective since 1' (A4, O 4(C)) = 0 and r is surjective by Noether’s theorem.
Since IIO(C.w?Z) = 3, we have h°(V. L) = 5. Moreover Pe (V) = 5 follows
from (2.4), because h'(A, O 4(—C)) = 0 implies ®y is surjective. Finally, the
surjectivity of ry; and r, implies the surjectivity of both sy, s2, and since |2C | and
lwy, | are base point free, also | L] is base point free. O

We note that ¢ : V — P*is composed with an involution ¢ of V, which restricts
to the involution £ on A and to i X i on V5, where i is the hyperelliptic involution on
C. Note that the canonical map of V2 = C x C is a Z3—cover of P! x P! given by
the action of i separately on each coordinate. The involution ¢ has 46 isolated fixed
points on V':

> the 16 points of order two on A, 6 of which lie on C and coincide with its Weier-
strass points (we assume C is stable by multiplication by the =+ involution on A);

> 36 points on V>, the ones having as coordinates the Weierstrass points on C, 6 of
them lie on A = C and coincide with the 6 Weierstrass points on C C A;

> in conclusion 40 isolated fixed points are in the smooth locus of V, the remaining
6 are on the double curve C = A.

Accordingly, W = V/u, is the union of two components:
> ¥ = A/, the Kummer surface of A, with 16 nodes, 6 on I" := C /i = P!;
>T =V,/ixi,with36nodes,6onI" = A/ixi=C/i~Pl;

B> ¥ and T are glued along the double curve R, which is I' on £ and [V on 7', in
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such a way that the 6 nodes located there coincide in the obvious way and the tangent
cones to two coinciding nodes have in common only the tangent line to R;
> W has 40 more nodes off R.

Next we modity W in order to make it with normal crossing singularities. To
do this, we minimally resolve the singularities of both ¥ and 7. This produces
two surfaces X', T’. We abuse notation and still denote by I and I'” the proper
transforms of these curves on X', 7”. Then we glue X/, 7" along I" and I"’, and call
again R the double curve of the reducible surface W’ = £’ U T" thus obtained. Note
that:

> X" has (—2)—curves Ny, ..., N1 and we may assume that Ny, ..., Nie intersect
I’

> T' has (—2)—curves My,..., M3 and we may assume that Msq,..., M3e
intersect I'';

> in conclusion W' has the (—2)—curves Ny,..., Nig, M1, ..., M3p, whereas the

curves Nig+i, M3p+i meet each other and the double curve R at a point x;, for
1 <i <6

Finally, in order to create a (potentially) smoothable surface, we need the triple
point formula (2.5) to be verified (which is not the case for W’). In order to
obtain this, we form a new surface Z' by sticking 6 planes P; =~ P? in W’ in
the following way: P; contains the two curves Nygy;, M3p+; as lines meeting
at x;, for 1 < i < 6. The surface Z' has normal crossing singularities and it
respects the triple point formula (2.5). We will also consider the surface Z with 40
nodes obtained from Z’ by contracting the (—2)—curves Ny, ..., Nyo. My,..., M3g
tonodes ny,...,n19,My,...,M3p.

Lemma 4.4. The surfaces Z, Z' have invariants
Pg =5, x =6, K? = 8.

Proof. It suffices to compute the invariants for Z’. The surface ¥’ is a K3. Moreover
HY(T, wr) is the space of invariants of H%(V5, wy,) = H%C, wc)®? under the
hyperelliptic involution i on C. Since i changes the sign of holomorphic 1-forms on
C, we have

HT,wr) = H°(C. K¢)®?,

hence T (and also T') has py = 4. The same argument shows that 7" has ¢ = 0.
The assertion pg(Z') = 5 follows from (2.4), by noticing that h,(Gz/) = 0 and
coker(®z/) = 0 because the double curves of Z” are all rational.

The computations of K2 and y follow in a similar way by (2.2) and (2.3). [

We could consider @z, but as above this is not quite the right thing to do,
because, among other things, this sheaf is negative on the planes P, for [ <i < 6.



Vol. 90 (2015) On Schoen surfaces 69

Rather we consider its twist N by 7", which restricts to:

> the line bundle Ox/(2T + Y°°_, Nig4i) on E;

> the canonical bundle w7 on T”;

> the trivial bundle on each of the planes P;, for 1 <i < 6.

One has:
> the linear system |2I" + Zle Nio+i| on X’ is base point free and birationally
maps X’ to the quartic Kummer surface ¥ C IP3, by contracting Ny..... Nje to the
nodes of 2;

> the canonical system |w7/| is base point free and we have a commutative diagram
of morphisms

= V2=CXC

—7 7.
h\T,A J'hT kh/‘/2

0 cP?

where Q = P! x P! is a smooth quadric, f is birational, iz, h7s and g have degree
2, and hy, has degree 4.

Lemma 4.5. We have h°(Z'.N') = pg(Z') = 5and the map ¢ : Z' — P*isa
morphism factoring through a morphism ¢ : Z — P*, whose image Z is the union
of a Kummer surface X lying in a hyperplane I1 and of a (double) quadric Q lying in
another hyperplane T1', and ¥ and Q meet along a conic I which is a plane section
of Q and passes through 6 nodes of X.

Proof. We have a cartesian diagram

H°(Z.N) — HO(Z . O 2T + 35_, Nioyi))

51

) [

HT'. o) —_ HYT,Or @ N) = H°(P!, 0;1(2))

r

Where ry, rp are restriction maps, both surjective. Note that the planes P;, with
I <i < 6. do not play any role in computing H°(Z, ) since the restriction of N/
on each of them is trivial, hence the corresponding constant value of the sections of
N on the P;’s is determined by the values of the sections on ¥’ and 7’ agreeing on
I". The proof goes as the one of Lemma 4.3. H

Lemma 4.6. Notation as in Lemma 4.5. Then Z is the complete intersection of the
quadric T1 U T1" and of a quartic hypersurface.

Proof. We may choose homogeneous coordinates (xp : ... : X4) in P* so that IT has
€quation xo = 0 and IT’ equation x; = 0. Suppose that the equation of X in IT is
Fxy,....; x4) = 0 and the equation of Q in IT" is G(xg, X2,...,x4) = 0. We may
write

2 _
G X0 H s w4 5.8 X4) = xg + Xoq1(x2, X3, X4) + g2(x2, X3, X4)
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where ¢1, g are homogeneous polynomials of degree given by the index. We may
assume that

F(0,x2,x3,X4) = G*(0, x2, X3, X4) = ¢5(x2, X3, X4).

Consider the homogeneous polynomial of degree 4

4
H(xo.....xq) = ) xg" filxio....xa)
=0

where
fo=1, fi =2q. f»=4q; +2q92, f3=2q1q2, fa=F.

The quartic H = 0 intersects IT in X and I’ in the quartic with equation
xg +2x591 + x5(q7 + 2g2) + 2x0q142 + 45 =0
which is the double quadric G2 = 0. The assertion follows. O

Lemma 4.6 shows that the 40-nodal (and otherwise normal crossings) surface Z
sits on the boundary of a partial compactification 9J1 of the moduli space of complete
intersections of a quadric and a quartic in P4, which are canonical surfaces with
invariants p, = 5, y = 6, K? = 8. One has dim(9N) = 10y — 2K? = 44.
In 91 each node imposes, as well known, one condition at most, and therefore
Z is contained in some irreducible, locally closed subset Z C 901 of dimension
dim(Z) > 4 of 40-nodal surfaces.

Lemma 4.7. The general surface in Z has 40 nodes and no other singularity.

Proof. The reducible surfaces Z depend on 3 moduli (i.e. the moduli of C). So they
fill up a proper subvariety Z’ of Z. The local to global Ext spectral sequence gives
the exact sequence

0> H'(Z,0z) = Ext},, (Q}.0z) - HYZ,Ext} ,(2z.0z)) = Ce C*.
(4.1)
To explain the last isomorphism, note that Ext(lgz (Rz,0Oz) is supported at the

singular locus of Z, which consists of the double curve D :=I" + Ziﬁ:l (Nio+i +
Mio+;) plus the 40 nodes ny, ..., no,my,...,m3o. By Lemma 2.1 (which clearly
applies to this case, though Z is singular off the double curve), one has

Exl‘(lgz(Qz, Oz) R Op = Op.
Moreover

Sxt(lgz(ﬁz,(’)z) 0O, =0,, for z=mny,...,010.M1,...,M3g.
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Recall that the vector spaces in (4.1) have the following meaning:

> HY(Z.0©z) is the tangent space to locally trivial deformations of Z;

> ExtéZ(QIZ. O7z) is the tangent space of all deformations of Z. Consider the
kernel K of the projection

10 30

Exty, (Y. Oz) > HY(Z.EP On, & @ Om,) = C*°

i=1 i=1

which is the tangent space to deformations of Z keeping the 40 nodes nq, ..., 110,
Misenis msp, i.e. it is the tangent space to Z in Z. The sequence (4.1) can be
replaced by

0> HY(Z.0z) > K— HD.Op)=C.

Let us take now a deformation f : X — D of Z inside Z parametrized by a disc
D, which is not tangent to Z’, in particular it is not a locally trivial deformation of Z.
Then the tangent vector to this deformation is an element in K not in H'(Z,072),
hence it maps to a non—zero element in H(D,Op). By a (suitable version of) [14,
Proposition (2.5)], one may assume (up to shrinking D) that X" is smooth off the
curve A described by the deformations of the 40 nodes. The assertion follows. [l

Let us consider the desingularization } — X, which is obtained by blowing-
up A" along the singular curve A (see proof of Lemma 4.7). By composing with
f X — D we have a new family g : V — D which is a smoothing of Z’. We
denote by E the exceptional divisor over A. It intersects the general surface Y, of
the family, for ¢ # 0, in the (—2)—curves deforming Ny, .. .. Nio, My, ..., M3p on
VA4S
Lemma 4.8. The 40 nodes on the general surface of Z are even.

Proof. Consider the divisor £ + P on ), where P = Zle P; (we abuse notation
here and denote by P; its strict transform on Y, for 1 < i < 6). We note that
Oz/(E + P) is divisible by 2 in Pic(Z’). Indeed:

(1) Op, (E + P) = Op2(=2),for 1 <i < 6;

(i) Os/(E 4+ P) = Os/(N; + ...+ Njg), which is divisible by two, because the
16 nodes of the Kummer surface are even;

(iii) Op/(E 4+ P) = Op/(My + ... + M3g), which is also divisible by two, because
the 36 nodes of T are even.

Moreover the halves of the bundles appearing in (i), (i1) and (ii1) above naturally
glue to give a line bundle Mg on Z’ such that M?z = Oz (E + P). Then, by
Lemma 2.2, up to shrinking ID, we may assume that there is a line bundle M on Y
such that M|, = My and M®? = Oy (E + P). Since Oy, (E + P) = Oy, (E)
for s 3 0, the assertion follows. ]
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We are now in position to finish the:

Proof of Theorem 4.1. If Y € Z is the general surface, we can consider the double
cover m : S — Y branched at the 40 nodes of Y. The surface S is smooth
and one computes its invariants to be the same as for Schoen surfaces. Moreover
7*(wy) = ws. Next we have to show that these surfaces are indeed Schoen surfaces,
i.e. they come from smoothings of surfaces of type V.

The proof of Lemma 4.8 shows that there is a commutative diagram

S y
\ l 2
D
where 7" is a double cover branched along E + P. One has that S’ is smooth,
because sois £ + P. Let £/ + P’ be the ramification divisor on &’. Note also that
the central fibre of &', which is a double cover of Z’, is nothing but V' plus 6 double
planes Pl-’ whose sum is P’, each covering one of the planes P;, for 1 <i < 6.

Next we simultaneously contract £ + P and E’ + P’, thus getting a new
commutative diagram

where:
> S’ — S is the contraction of £ 4+ P and S is smooth;
> Y — A’ is the contraction of £’ + P’ and X” has 6 hypernodes arising from the
contraction of the six components of P and a curve A of double points coming from
the contraction of F;
> S — X’ isramified along A and along the 6 hypernodes;
> the family 4 : & — D is a smoothing of the reducible surface V' as dictated by
3.2,

To finish our proof we have to show that in this way we do get all Schoen surfaces.
By Theorem 3.2, Schoen surfaces depend on 4 moduli. On the other hand, the double
covers we found here depend on dim(Z) > 4 moduli. This proves our assertion. []

Remark 4.9. It is worth stressing that our approach does give an alternative proof of
the existence of Schoen surfaces and of the computation of their number of moduli,
since we do not need to rely on Theorem 3.2. Indeed, the argument of the proof
of Theorem 4.1, shows that there are smoothings of V', depending on dim(Z) > 4
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moduli. It takes a few lines in [24, §2] to compute the cohomology of ®y and one
has 7' (V. ®y) = 3. Then we have the exact sequence

0 — H'(V.0y) — Extg, (), Oy)
— HO(V.Exty, (Qy,Oy)) = HY(C,O¢) = C

and we prove here that the rightmost map is non—zero. This shows that dim(ExtéV
(Q{,. Oy)) = 4 and that the deformations in Ext})V (Q),,Oy) are unobstructed.
In addition we have dim(Ext(lgi, (RL.0y)) > dim(Z) > 4, which proves that
dim(2) = 4.
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