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On Schoen surfaces

Ciro Ciliberto* Margarida Mendes Lopes** and Xavier Roulleau

Abstract. We give a new construction of the irregular surfaces of general type with pg 5,

X — 2, K2 8, recently discovered by C. Schoen in [24|. Our approach proves that, if S is

a general Schoen surface, its canonical map is a finite morphism of degree 2 onto a canonical

surface with invariants pg 5, / 6, K2 8, a complete intersection of a quadric and a

quartic hypersurface in P4, with 40 even nodes.

Mathematics Subject Classification (2010). 14J29, 32G05; 14D06, 14J10.

Keywords. Irregular surfaces, Lagrangian surfaces, deformations of surfaces, canonical maps.

1. Introduction

Let 5 be a smooth projective irregular surface. Let

be the natural map. We call the vectors of the space A2H°(S, £2s) the formal 2-

forms of S. The rank of a formal 2-form to is the minimum dimension of a subspace
V c H°(S, £2s) such that to e A2 V ; it is an even integer.

A famous theorem by Castelnuovo and De Franchis says that there is a non-zero
formal 2-form to of rank 2 in ker(^.s if and only if there exists an irrational pencil
of genus h > 2 on S, i.e. a surjective morphism / : S —» B, where B is a smooth

genus b curve and there exist cl>i u>2 e H°(B, cob) such that to f*(to\)Af*{a>2).
Existence of higher rank formal 2-forms in ker(<ps) are more rare and their

geometric interpretation more difficult (see [3]). E.g., the existence of such forms
is relevant in the study of the fundamental group of S (see [1, 2]).

With a completely different viewpoint in mind (i.e., Tate and Hodge conjectures),
C. Schoen discovered in [24] remarkable minimal irregular surfaces of general type

*The hrst author is a member of GNSAGA ot INdAM, and this research was partially supported by
the MIUR-PRIN "Geometry of Algebraic Varieties"

*The second author is a member of the Center for Mathematical Analysis, Geometry and

Dynamical Systems (IST/UL) This research was partially supported by FCT (Portugal) through program
POCTI/FEDER, Pro|ect PTDC/MAT/099275/2008 and grant SFRH/BPD/72719/2010.

CPS : A2H°(S,Qs) - H°(S,Ks) (1.1)
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with invariants pg 5, / 2, K2 16 (from now on called Schoen surfaces).

They enjoy the property that ker(^s) is generated by a formal 2-form of rank 4

(hence they are Lcigrangian surfaces in the sense of [3], l e. they are Lagrangian
subvaneties of their Albanese variety A, for an appropriate symplectic structure on

A). Furthermore they also enjoy the property that pg =2q — 3, i.e. pg is the

minimum possible with respect to q for surfaces with no irrational pencils of genus
b > 2 (see [17, 19, 20] for the existence of surfaces with pg 2q — 3).

Other interesting topological properties of Schoen surfaces are pointed out in §3

below.

Schoen's construction is as follows. He finds a reducible surface V, the

transverse union of two irreducible components, inside the principally polarized
abelian variety A x A, where A — J(C) and C is a general smooth irreducible

genus 2 curve. He shows that V smooths to the required surface. The smoothing
relies on two main tools: Bloch's semiregularity (enjoyed by V in A x A) and an

explicit deformation of varieties of type Ax A to simple principally polarized abelian

varieties in which the class of V stays of Hodge type (2, 2).
The aim of this paper is to give a different, slightly more geometric, approach

to Schoen's construction. It will give us some more information, namely (see

Theorem 4.1 below):

Theorem 1.1. Let S be a general Schoen surface. Its canonical map ipK : S P4

is a frnite morphism of degree 2 onto a canonical surface with invariants pg 5,

X 6. K2 8 and 40 even nodes, which is a complete intersection of a quadric
and a quartic hypersurface in P4. The ramification of pK takes place at the nodes.

When the canonical map of a surface of general type has degree n > 1 onto a

surface, that surface either has pg 0 or is itself canonically embedded (see [4,
Th. 3.1]). Schoen surfaces provide one more example of the latter, rather rare, case

(see [11]; see also the recent preprint [5]).
Our construction, described in §4, starts from the same reducible surface V

considered by Schoen. It turns out that (a slight modification of) V is the double

cover of a surface Z, which has 40 nodes and otherwise has normal crossing

singularities. The surface Z sits in the closure of the moduli space of complete
intersections of a quadric and a quartic hypersurface in P4 and an easy count of
parameters shows that it deforms to a surface Y which is still a complete intersection
of a quadric and a quartic, and has 40 nodes and no other singularity. Then we show

that the 40 nodes are even. The double cover of Y branched at the 40 nodes are

Schoen surfaces, and counting parameters one sees that in this way one gets them

all.
These ideas can be applied to other similar situations in order to find more

examples of irregular surfaces, but we do not dwell on this here.

The paper is organized as follows. In §2 we recall a few useful know facts. In §3

we recall Schoen's main result and, using of [1, 2], we discuss some properties of
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the fundamental group of Schoen surfaces. Finally, §4 is devoted to our alternative
construction.

Notation. We use standard notation in algebraic geometry. Specifically, if A" is a

surface with locally Gorenstein singularities (so that the dualizing or canonical sheaf

tox is a line bundle), we denote by Kx the divisor class of \a>x\ and we set pg{X) :=
h°(X.ajx), x(X) X(£>x) X(vx). := a>\, q(X) hl(X, Ox). We may
drop the indication of X when this is clear from the context. We note that if X
has only Du Val singularities, then the above invariants for X and for a minimal
desingularization of X coincide.

2. Preliminaries

2.1. Surfaces with normal crossing singularities. We recall a few known facts

(see [7, 8] and references therein). Let V h) U • • • U Vn be a reducible, projective
surface such that:

(i) the irreducible components V\,.... Vn are smooth;
(ii) the double curves Cl} := V, D Vt are smooth and irreducible, and V,, Vt intersect

transversally along C, }, for 1 < /' < j < n-

(iii) V has a finite number of triple points Tuk := V, n V} n Vk and V around Tt]k is

analytically isomorphic to the surface of equation xyz 0 in A3 around the origin,
for l ^ i < j < k ^ n. We set T,, := j TtJk for the triple point divisor on

C,j, for I sj / < y ^ /?;

(iv) V has no other singularity.
Given V as above, one forms the graph Gy.

t> with vertices i>i..... vn corresponding to the components V\,..., Vn\
t> with edges c,j corresponding to the double curves C,7, with l ^ / < j ^
O with faces tt]k corresponding to the triple points T,jk, with l ^ / < j < k ^ n.

In the above setting the dualizing sheaf coy is invertible and one has

u>v\Vi (oyt (8) Oy^Y^Ctj), for l (2.1)

hence
n

K2v Yj(Kv,+YjCo)2- (2-2)
1=\ JXI

Moreover
n

x(Oy) J2x(Ovl)- J2 X(0ClJ) + t(V) (2.3)
1=1

where t(V) is the number of triple points of V, i.e. the number of faces of Gy.
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Let
n

ov:© © HHQj.OC,,)
1=1 1^i<j^n

be the natural map and let pg(V) h°(V, coy)- Then

n

Pg(V) b2(Gv) + ^Pg(V,) + dim(coker(<bF)). (2.4)

i=i

If V X0 is the central fiber of a projective, flat family of surfaces / : X D,

over a disc B, with smooth total space X and smooth fibers Xt for
t e ID> — {0}, then these smooth fibres have invariants pg(Xt) pg(V), K2Xi Ky
and xiPx,) xiPv)-

If V sits in a flat family / : X —> B as above, one says that V is smoothable and

that / : X B is a smoothing of V. Then the triple point formula holds

NC,j\vl ® Nc,,\v, <8) Oc,j (Tij) s Ocu - for 1 < i < j < n. (2.5)

We recall the following definition from [14]: V is said to be d-semistable if

Oc(-V) := (9) ^
XVlZ Oc

iz[xv,\v^c\v

where C is the singular locus of V and the tensor product is

taken as öc-modules. If V is smoothable, then V is d-semistable (see [14,

Proposition (1.12)]), but the converse is in general false. In any event, Oc(—V) is a

line bundle on C (see [14, Proposition (1.10)]). One defines öc(V) := Oc(—V)*,
and 0ClJ(V) := Oc{V)\c Note that Oc(V) £xt^v(Qv,Ov) is the T2

sheaf of V (see [14, Proposition (2.3)]).

Lemma 2.1. In the above setting, one has

Ocu (I7) Ncu\v, ® NCi/\v, ® Oc,j (Tij). (2.6)

Hence (2.5) is necessary for d-semistability. If the dual graph of the singular locus

C of V is a tree, i.e.

Pa(C)= J2 Pa(Q}),

then (2.5) is also sufficient for d-semistability.

Proof Formula (2.6) is an immediate consequence of the definition of Oc(V). If the

dual graph of C is a tree, then Oc is the unique line bundle on C whose restriction
to each component of C is trivial.
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2.2. Double covers. The contents of this section are well known. We recall them

to fix notation and terminology.
Let X be a projective scheme (over an algebraically closed field k of characteristic

p yk 2, though we work over C in this paper). A double cover of X is a scheme Y

and a finite morphism / : X ->• Y of degree 2. The datum of such a double cover is

equivalent to give two line bundles £, A4 on X such that Ad®2 £ plus a section

j e H°(X,£). Let (U,)ieI be a finite covering of X over which both £ and Ad
trivialize, let (£I;), J6/ be the corresponding cocycle for Ad, let z, be the coordinate
in the fibre of A4 over Ul and let {sAiei be the local functions defining s. Then we
have

z, ^jZj, and s, £2,v7 for all ij e /
and the locus Y

zf s,, for all / e I
in the total space of A4 is well defined and, via the natural projection to A, is a

double cover / : Y —> X. The zero locus B of s is the branch locus of the covering
and R := f~i(B) is the ramification locus. As schematic counter image of B, R
has a non-reduced scheme structure. Note that B is not necessarily a Cartier divisor
on X: e.g. if 5 is the zero section, then Y is a double structure on X. Similarly, if X
is reducible, v could be zero on some component of X.

Lemma 2.2. Let f : X —* B be a flat projective family over a disc. Let £ be a line
bundle on X and set £q £\xu- Assume there is a line bundle Ado on Xo such

that Ad®2 £(). Then, up to shrinking ID), there is a line bundle Ad on X such that
Ad®2 £ and Ado AA\Xo.

Proof. Let U (U,)iei be a finite covering of X over which £ trivializes and Ado
trivializes on V (V, ),e/ with V, Ul n Xo for all i e I. Let be the

cocycle for £ on U and let {r}lJ)lJ£i be the cocycle for Ado on V. Then

Vv Itv fora11 ''i e 1

which encodes the choice of a suitable determination of the square root. Then we
may choose the same determination of the square root defining

to y[$i~J- fora11 <J e 1

°n U,j for all j e I, and this gives the cocycle (tjij)ijei defining Ad on A".

2.3. Hypernodes. An hypernode of an n dimensional variety X, with n > 2, is a

point p such that the analytic germ of (X, p) is isomorphic to the quotient singularity
(C/cr, 0), where

ct : x G C" — -x e C.
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If n — 2 this is called a node, and it is an A\-singularity. A minimal resolution X
of X at p is gotten by a single blow-up. The exceptional divisor E is isomorphic to
Pn_1 and NE\x ^ öw-\ (—2).

If X is a projective variety with hypernodes p\,.... ph, and no other singularity,
we can consider its minimal desingularization /' : X — X. Then X has the

exceptional divisors N\..... contracted by f to the hypernodes p\,.... ph- Set

N : — Y^= l One says that p\,..., ph are even, if O^(N) is divisible by 2 in

Pic(X). This happens if and only if there is a commutative diagram

Y — Y

X > X/
where Y, Y are smooth varieties, n, tt are hnite morphisms of degree 2, and if
is branched at N, whereas tt is branched at p\,..., p^. The counter images of

P\,..., Ph are points q\ c{h e Y and g is the blow-up of Y alq\ <7/,.

3. Schoen surfaces

Let V\ A be an abelian surface with C C A a smooth curve of genus g >2. One
has Nc\a o>c- Let V2 C x C and let A C V2 be the diagonal. Then A ~ C

and N&\y2 ^ Let V be the reducible surface consisting of bj U L2 glued along
C C V\ and the diagonal A C L2-

Proposition 3.1. The invariants of V are

Pg 1 + g2> X gig ~ 1)- K2 8g(g - 1).

Proof. This follows from (2.2), (2.3) and (2.4). The details can be left to the reader.

Only note that the map Op is surjective, since If (A. Oa(—0)) 0 because C is

ample on A.

Schoen proves in [24] that:

Theorem 3.2. If g 2, then V is smoothable to surfaces with a 4-dimensional
generically smooth moduli space.

Remark 3.3. In L24, Proposition 10.1, (ii)J, it is stated that for the general Schoen

surface S one has rk(A'S'(S')) 2. As one can directly see with an argument as in

[15], the right statement is instead that rk(NS(S)) 1 (that was also pointed to us

in [25]).
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It is not known if V is smoothable for g > 3. This is an intriguing question,
especially for g 3 (see Remark 3.7 below).

Schoen surfaces verify K2 8/. Surfaces whose universal cover is HI x H,
where i={ze C/7sm(z) > 0} is the Siegel upper-halfplane, also verify K2 8^
and have infinite fundamental group. Teicher and Moishezon constructed in [21, 22]

finitely many families of surfaces with K2 8^ and finite (even trivial) fundamental

group. The following proposition shows a remarkable property of Schoen surfaces:

Proposition 3.4. The universal cover of a Schoen surface S is not ixl Since

q(S) — 4, 7t\(S) is not finite and finite etale covers of Schoen surfaces give an

infinite number offamilies of surfaces with K2 8/ whose universal cover is not

Ixi.
Proof. If S has universal cover BxB, then it is the quotient of H x H by a discrete

cocompact subgroup T of Aut(H x H) acting freely. By [16], either T is reducible,
and S is isogenous to the product of two curves (i.e. it is a quotient of a product of
two curves by a fixed-point free group action), or T is irreducible and S is regular.

The latter case cannot happen, because q(S) 4. Also the former case cannot
happen. Indeed, in [23, Proposition 6.1] Schoen proved that a surface dominated
by a map from a product of curves is Albanese standard, i.e. the class of its image
into its Albanese variety A sits in the subring of H'(A, Q) generated by the divisor
classes. By contrast, by [24, Theorem 1.1, (iii)] Schoen surfaces are Albanese exotic,
i.e. not Albanese standard.

Note that, according to [13], Schoen surfaces do not possess any semi special
tensor.

If S is a Schoen surface, set G := n\(S). We denote by {G„}wero the lower
central series of G, defined as

Gi — G, Gn+\ — [Gn, G], for n > 1,

where denotes the commutator subgroup. The group Gab G\jG2 is the

abelianization of G, and in the present case Gab H1 (S, Z) Z8.

By [1, Corollary 1.44], [2], the group G2/G3 (g) C is isomorphic to the (dual of
the) kernel of the natural map

fs a2// 1

(S, C) -> H2(S,C).

The Betti numbers of Schoen surfaces S are b\ =8 and b2 22, moreover
h '4 (S) b2 — 2pg 12. The space A2HX(S, C) is 28-dimensional. The map 1fs
respects the Hodge decomposition, hence it is the direct sum of the map tps in (1.1)
and of its conjugate, and of the map

<ps HX'°(S) ® H°'X(S) -> HX'X(S).



66 C. Ciliberto, M. Mendes Lopes, X. Roulleau CMH

We see that dim(ker (/>,$) > 4. The general Schoen surface S has no irrational
pencil. This follows from Remark 3.3; alternatively, if / : S -> B is an irrational
pencil, then the genus of B is at most 3 (because q(S) 4 and S is of Albanese

general type) and this would imply that Alb(S) is non-simple, contradicting [24,
Theorem 6.1, (i)]. In particular S has no morphism f : S —»• B to a curve B of
genus b >2. Since this is a deformation invariant property (see [9]), the same holds
for any Schoen surface. Hence, by Castelnuovo-De Franchis' Theorem, the map
ips cannot have a kernel of dimension bigger than 1, hence it is surjective with a

1-dimensional kernel. Moreover dim(ker^s) < 5 by [10, Proposition 2.2.5], We
have (see [24, Proposition 9.1]):

Corollary 3.5. Let S be a Schoen surface. Then 6 < dim(ker(i/kv)) £ 7, hence
6 5 dim(G2/(/3 ® C) < 7 and G is not abelicin.

Remark 3.6. Schoen surfaces are such that both cps and (ps have a non-trivial
kernel. As far as we know the only other surfaces with no irrational pencils enjoying
the same property and discovered so far are the LG-surfaces studied in [6],

Remark 3.7. Consider again the reducible surface V for g > 3. Suppose V is

smoothable and that S is a general surface in a smoothing of V. Since

dim(A27/°(5, fi5)) ^(g + 2)(g + 1) < pg, for g > 4,

we cannot conclude directly that cps has a non-trivial kernel if g > 4. Similarly, one

computes A1,1 2(g2 + 2), hence we cannot conclude that (ps has a non-trivial
kernel if g > 4. The borderline case g 3 is attractive. If V is smoothable to a

surface S, then (ps has a non-trivial kernel of dimension at least 3, hence, as in the

Schoen surface case, the fundamental group 7ri(S) is not abelian and it would be

interesting to understand it. Moreover, either cps is an isomorphism, or <ps would
have a non-trivial kernel. In the former case S would contradict a conjecture to the

effect that the Fano surface of lines of a smooth cubic threefold and the symmetric
product of curves are the only surfaces S with q > 3 such that (ps is an isomorphism
(see [ 18] and also [12]). In the latter case, S would again be a generalized Lagrangian
surface in the sense of [3], and these surfaces are quite rare and interesting on their

own.

4. Different construction of Schoen surfaces

Here we propose an approach to the construction of Schoen surfaces different from
the original one. It provides the following additional bit of information:

Theorem 4.1. Let S be a general Schoen surface. The canonical map (pK : S —r P4

of S is a finite morphism of degree 2 onto a canonical surface with invariants

pg 5, x 6, K2 8 and 40 even nodes, a complete intersection of a quadric
and a quartic hypersurface in P4. The ramification of <Pk takes place at the nodes.
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We start by looking at the dualizing sheaf coy, which, by (2.1), is the bundle
obtained by gluing Öa(C) on A V\ and coy2{A) on V2 C x C along C: this
is possible since the two bundles both restrict to coc on C. Then we modify coy by

twisting by V2, which means considering the line bundle C on V obtained by gluing
Oa(2C) on A and coy2 on V2, the two bundles both restricting to cu®2 on C.

Remark 4.2. Suppose V X0 is the central fiber of a projective family of surfaces

/ : X —» ED, as in §2.1. Then coy coxTwisting by V2, as we did, is the

same as considering the line bundle C cox ® Ox(V2)\X[)- Note that both 00x and

cox <S> Ox(V2) restrict to the canonical bundle on the general surface of the family.
Hence C, as well as coy, is a limit of the canonical bundle of Xt for t e D — {0}.

Lemma 4.3. We have h°(V,C) pg(V) 5 and the map cpc ' V —> P4 is a

morphism.

Proof. One has a cartesian diagram

H°(V, £) > H°{A, Oa(2C))

H°(V2.coy2) ^ H°(C,coc)m- >H°(C,co®2)

where n, r2 are restriction maps. One has h°(A, Oa(2C)) 4, h°(V2,coy2) — 4,

/*! is surjective since /^(A. Oa(C)) 0 and r2 is surjective by Noether's theorem.
Since h°(C.co®2) 3, we have h°(V,C) — 5. Moreover pg(V) 5 follows
from (2.4), because hl(A, Oa(—C)) 0 implies <£>y is surjective. Finally, the

surjectivity of r\ and r2 implies the surjectivity of both si, s2, and since |2C| and

Icoy21 are base point free, also \C\ is base point free.

We note that cf>c : V —> P4 is composed with an involution t of V, which restricts
to the involution ± on A and to i x i on V2, where i is the hyperelliptic involution on
C. Note that the canonical map of V2 C x C is a Z^-cover of P1 x P1 given by
the action of i separately on each coordinate. The involution 1 has 46 isolated fixed
points on V:
l> the 16 points of order two on A, 6 of which lie on C and coincide with its Weier-

strass points (we assume C is stable by multiplication by the ± involution on H);
[> 36 points on V2, the ones having as coordinates the Weierstrass points on C, 6 of

them lie on A C and coincide with the 6 Weierstrass points on C c A;
t> in conclusion 40 isolated fixed points are in the smooth locus of V, the remaining

6 are on the double curve C ^ A.

Accordingly, W V/i, is the union of two components:
t> E A/±, the Kummer surface of A, with 16 nodes, 6 on T := C/i ^ P1;
t> T V2/\ x i, with 36 nodes, 6 on T' A/i x i C/i P1;
O S and T are glued along the double curve R, which is T on S and f on T, in
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such a way that the 6 nodes located there coincide in the obvious way and the tangent
cones to two coinciding nodes have in common only the tangent line to P;
> W has 40 more nodes off R.

Next we modify W in order to make it with normal crossing singularities. To

do this, we minimally resolve the singularities of both E and T. This produces
two surfaces E', 7 '. We abuse notation and still denote by T and T' the proper
transforms of these curves on E', T'. Then we glue E', T' along T and T', and call

again R the double curve of the reducible surface W' E' U T' thus obtained. Note
that:
D> E' has (—2)-curves Ni,..., Ni6 and we may assume that Nu,..., intersect

r;
> T' has (—2)-curves 36 and we may assume that M3i,...,M36
intersect T';
> in conclusion W' has the (—2)-curves Ni,..., Ni0, M\,..., M30, whereas the

curves Nio+;, meet each other and the double curve R at a point x,, for
1 < i < 6.

Finally, in order to create a (potentially) smoothable surface, we need the triple
point formula (2.5) to be verified (which is not the case for W'). In order to
obtain this, we form a new surface Z' by sticking 6 planes Pt ^ P2 in W' in
the following way: P, contains the two curves N10+,. M20+l as lines meeting
at x,, for 1 ^ i ^ 6. The surface Z' has normal crossing singularities and it
respects the triple point formula (2.5). We will also consider the surface Z with 40
nodes obtained from Z' by contracting the (—2)-curves N\ Afo, Mi,, M30

to nodes ti\,..., «10, m\,..., m3o-

Lemma 4.4. The surfaces Z, Z' have invariants

Pg 5, X 6, K2 8.

Proof. It suffices to compute the invariants for Z'. The surface E' is a K3. Moreover
H°(T,cot) is the space of invariants of H°(V2, coy2) H°(C. cue)®2 under the

hyperelliptic involution i on C. Since i changes the sign of holomorphic 1-forms on

C, we have

H°(T, coT) S H°(C, Kcf2,

hence T (and also T') has pg 4. The same argument shows that T has q 0.

The assertion pg{Z') 5 follows from (2.4), by noticing that b2(Gz') 0 and

coker(<I>z') 0 because the double curves of Z' are all rational.

The computations of K2 and / follow in a similar way by (2.2) and (2.3).

We could consider a>z>, but as above this is not quite the right thing to do,

because, among other things, this sheaf is negative on the planes P,, for Ifi f 6.
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Rather we consider its twist M by T', which restricts to:
t> the line bundle O^flT + X!f=i Nio+i) on E';
C> the canonical bundle ooj' on T'\
l> the trivial bundle on each of the planes P,, for 1 ^ i ^ 6.

One has:

t> the linear system |2T + i Aio+J on E' is base point free and birationally
maps E' to the quartic Kummer surface E C P3, by contracting Ni,.... N\ß to the

nodes of E;
t> the canonical system \cot> \ is base point free and we have a commutative diagram
of morphisms

f ^ s
V2 C xC

where Q ^ P1 x P1 is a smooth quadric, / is birational, hj. Ar' and g have degree
2, and hy2 has degree 4.

Lemma 4.5. We have h°(Z'.Af) pg(Z') 5 and the map <fj^ Z' —> P4 is a

morphism factoring through a morphism (p : Z ^ P4, whose image Z is the union

ofa Kummer surface E lying in a hyperplane n and ofa (double) quadric Q lying in
another hyperplane IT, and E and Q meet along a conic V which is a plane section

of Q and passes through 6 nodes of E.

Proof. We have a cartesian diagram

S]
//°(E'.CV(2r + £f=i JVio+,))

4 !ri
H°(T'.(ot>) — H°(r.Or ®Äf) =s //°(P,,Opi(2))

where /q, r2 are restriction maps, both surjective. Note that the planes Pt, with
1 ^ < 6, do not play any role in computing H°(Z,Af) since the restriction of M
on each of them is trivial, hence the corresponding constant value of the sections of
Af on the P, 's is determined by the values of the sections on E' and T' agreeing on
L. The proof goes as the one of Lemma 4.3.

Lemma 4.6. Notation as in Lemma 4.5. Then Z is the complete intersection of the

quadric FI U IT and ofa quartic hypersurface.

Proof. We may choose homogeneous coordinates (x0 : : Jt4) in P4 so that n has

equation x0 0 and IT equation xq 0. Suppose that the equation of E in n is
F(-Xi x4) 0 and the equation of Q in IT is G(xo.x2 x4) 0. We may
write

G(x0. x2 x4) Xq + x0^i (x2, x3, x4) + q2(x2, x3, x4)
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where q\, q2 are homogeneous polynomials of degree given by the index. We may
assume that

F(0, x2, X3, X4) G2(0, X2, Xj, X4) q\{x2, *3, *4).

Consider the homogeneous polynomial of degree 4

4

H(x0, JC4) ^ x%~1 x4)
1=0

where

/o 1, fi 2qi, f2 q\ + 2q2, h Zqiqi, U F-

The quartic H 0 intersects n in E and IT in the quartic with equation

Xq + 2x^qi + x%(q2 + 2q2) + 2x0qiq2 + ql 0

which is the double quadric G2 0. The assertion follows.

Lemma 4.6 shows that the 40-nodal (and otherwise normal crossings) surface Z
sits on the boundary of a partial compactification 9JT of the moduli space of complete
intersections of a quadric and a quartic in P4, which are canonical surfaces with
invariants pg 5, / 6, K2 8. One has dim(9Jf) 10/ — 2K2 44.

In SUl each node imposes, as well known, one condition at most, and therefore
Z is contained in some irreducible, locally closed subset Z C 9ft of dimension

dim(Z) > 4 of 40-nodal surfaces.

Lemma 4.7. The general surface in Z has 40 nodes and no other singularity.

Proof. The reducible surfaces Z depend on 3 moduli (i.e. the moduli of C). So they
fill up a proper subvariety Z' of Z. The local to global Ext spectral sequence gives
the exact sequence

0^ ff1(Z,@z)->Ext10z(S21z,Oz) -> H°(Z.£xtl0z(Qz,Oz)) C©C40.
(4.1)

To explain the last isomorphism, note that £xt@z (flz, Oz) is supported at the

singular locus of Z, which consists of the double curve D F + ^f=i (N10+1 +
M10+1) plus the 40 nodes n\,..., «10, mi,..., m30- By Lemma 2.1 (which clearly
applies to this case, though Z is singular off the double curve), one has

£xt^z(Flz, Oz) ® OD OD-

Moreover

£xtbz(S2z,Oz) <8> Oz s Oz, for z nx, n10.ffli,...,m30.
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Recall that the vector spaces in (4.1) have the following meaning:
l> H1 (Z. 0z) is the tangent space to locally trivial deformations of Z;
O Extqz(Q1z, Oz) is the tangent space of all deformations of Z. Consider the

kernel K of the projection

10 30

Extl0z(Qlz.Oz)^ H°(Z,Qon, ©®öm,) C40

i=t i=i

which is the tangent space to deformations of Z keeping the 40 nodes n\ rt\0,
mi,... .m^o, i e. it is the tangent space to Z in Z. The sequence (4.1) can be

replaced by

0 Hl(Z.®z) K -* H°(D.Od) s C.

Let us take now a deformation / : X —»• O of Z inside Z parametrized by a disc
D, which is not tangent to Z', in particular it is not a locally trivial deformation of Z.
Then the tangent vector to this deformation is an element in K not in Hl(Z, ©z),
hence it maps to a non-zero element in H°(D, Od)- By a (suitable version of) [14,
Proposition (2.5)], one may assume (up to shrinking P) that X is smooth off the

curve A described by the deformations of the 40 nodes. The assertion follows.

Let us consider the desingularization y —> X, which is obtained by blowing-
up X along the singular curve A (see proof of Lemma 4.7). By composing with

/ : X —> B we have a new family g : y —»• B which is a smoothing of Z'. We
denote by E the exceptional divisor over A. It intersects the general surface Yt of
the family, for t ^ 0, in the (—2)-curves deforming N\,..., N\o, M\ M30 on
Z'.

Lemma 4.8. The 40 nodes on the general surface of Z are even.

Proof. Consider the divisor E + P on 3^, where P X^f=i (we abuse notation
here and denote by P, its strict transform on y, for 1 ^ i ^ 6). We note that

®Z'(E + P) is divisible by 2 in Pic(Z'). Indeed:
(') Op, (E + P) ss e>P2(—2), for 1 ^ ^ 6;
(ii) öz'(E + P) ^ Oy.'{N\ + + A^i6), which is divisible by two, because the
16 nodes of the Kummer surface are even;
(iii) Öt'(E + P) s + + M36), which is also divisible by two, because
the 36 nodes of T' are even.
Moreover the halves of the bundles appearing in (i), (ii) and (iii) above naturally
glue to give a line bundle Mo on Z' such that M.®2 — OzfE + P). Then, by
Lemma 2.2, up to shrinking B, we may assume that there is a line bundle A4 on y
such that M\z, Mo and M®2 öy(E + P). Since ÖY,(E + P) Oy,(E)
for t ^ 0, the assertion follows.
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We are now in position to finish the:

Proofof Theorem 4.1. If Y Z is the general surface, we can consider the double

cover 7t : S —> Y branched at the 40 nodes of Y. The surface S is smooth
and one computes its invariants to be the same as for Schoen surfaces. Moreover
jt*(coy cos - Next we have to show that these surfaces are indeed Schoen surfaces,

i.e. they come from smoothings of surfaces of type V.

The proof of Lemma 4.8 shows that there is a commutative diagram

y

where n' is a double cover branched along E + P One has that S' is smooth,
because so is E + P. Let E' + P' be the ramification divisor on S'. Note also that
the central fibre of S', which is a double cover of Z', is nothing but V plus 6 double

planes P[ whose sum is P', each covering one of the planes Pt, for 1 ^ ^ 6.

Next we simultaneously contract E + P and E' + P', thus getting a new
commutative diagram

5'

where:

O S' —» S is the contraction of E + P and S is smooth,
O y —> X' is the contraction of E' + P' and X' has 6 hypernodes arising from the

contraction of the six components of P and a curve A of double points coming from
the contraction of E\
> Ti : S —> X' is ramified along A and along the 6 hypernodes;
[> the family h : S —> B is a smoothing of the reducible surface V as dictated by
3.2.

To finish our proof we have to show that in this way we do get all Schoen surfaces.

By Theorem 3.2, Schoen surfaces depend on 4 moduli. On the other hand, the double

covers we found here depend on dim(Z) > 4 moduli. This proves our assertion.

Remark 4.9. It is worth stressing that our approach does give an alternative proof of
the existence of Schoen surfaces and of the computation of their number of moduli,
since we do not need to rely on Theorem 3.2. Indeed, the argument of the proof
of Theorem 4 1, shows that there are smoothings of V, depending on dim(Z) > 4
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moduli. It takes a few lines in [24, §2] to compute the cohomology of 0j/ and one
has /71 [V. (M)y) 3. Then we have the exact sequence

0-> Hl(V,&v) -»ExtJ^n^CV)

- H\V,Sxtx0v{Qv,Ov)) //°(C,Oc)sC

and we prove here that the rightmost map is non-zero. This shows that dim(Ext^,

(flxv,Oy)) — 4 and that the deformations in Extx0 (Sly, Oy) are unobstructed.

In addition we have dimCExt^ (Sly, Oy)) > dim(Z) > 4, which proves that

dim(Z) 4.
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