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Sur I’homologie des groupes d’automorphismes des groupes
libres a coeflicients polynomiaux

Aurélien Djament and Christine Vespa™

Résumé. Nous montrons que I’homologie stable des groupes d’automorphismes des groupes
libres a coeflicients tordus par un foncteur covariant polynomial est triviale. Pour le foncteur
d’abélianiation, qui est polynomial de degré 1, nous retrouvons par des méthodes algébriques
un résultat précédemment obtenu par Hatcher—Wahl, par des méthodes topologiques et
géométriques. Pour les coefficients donnés par un foncteur polynomial contravariant se
factorisant par I’abélianisation, nous calculons la valeur stable du premier groupe d’homologie
des groupes d’automorphismes des groupes libres, qui est généralement non nul.

Abstract. We prove that the stable homology of automorphism groups of free groups with
twisted coeflicients given by a polynomial covariant functor is trivial. For the abelianization
functor, which is polynomial of degree 1, we recover by algebraic methods a result previously
obtained by Hatcher—Wahl by topological and geometrical methods. For coeflicients given by a
contravariant polynomial functor factorizing through the abelianization, we compute the stable
value of the first homology group of automorphism groups of free groups, which is generally
nonzero.

Mathematics Subject Classification (2010). 20J06, 18G10, 18A25.

Keywords. Groupes d’automorphismes des groupes libres, homologie des groupes, homologie
des foncteurs, foncteurs polynomiaux.

1. Introduction

Tandis que I'étude de la structure des groupes d’automorphismes Aut (Z*")
des groupes libres commenga des les années 1920 (cf. par exemple I'article [25],
dans lequel Nielsen en donne une présentation par générateurs et relations), la
compréhension de leur homologie s’avéra nettement plus ardue : aucun résultat
significatif ne semble avoir été obtenu avant les années 1980. Dans les années
1990, la stabilité homologique a été démontrée pour ces groupes : dans [16]

*Cet auteur est partiellement soutenu par le projet ANR-11-BS01-0002 HOGT : Homotopie, Opérades
et Groupes de Grothendieck-Teichmiiller.
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Hatcher et Vogtmann établissent que pour tout entier /, le morphisme canonique
H;(Aut(Z*"): Z) — H;(Aut(Z*"*1):Z) est un isomorphisme pour n > 2i + 3.
Quant au calcul de H;(Aut(Z*");Z), hormis pour i ou n trés petit, il demeura
tres mystérieux jusqu’a ce que Galatius démontre dans [13] le résultat remarquable
suivant : I'inclusion évidente du groupe symétrique S,, dans Aut (Z*") induit stable-
ment un isomorphisme en homologie a coeflicients entiers—stablement signifiant :
lorsqu’on passe a la colimite sur n (ou pour n > 2i + 3, i désignant le degré
homologique). Rappelons que le calcul de I’homologie des groupes symétriques est
bien plus ancien ; il est di a Nakaoka (cf. [24]).

Le théoreme de Galatius ne traite que de I’homologie a coeflicients constants des
groupes Aut (Z*"). Il est également tres naturel de s’intéresser a I’homologie (ou a la
cohomologie) de ces groupes a coefficients dans des représentations remarquables,
comme I’abélianisation du groupe libre Z*" ou des représentations obtenues en
appliquant a celle-ci un foncteur ou un bifoncteur sur les groupes abéliens libres.

Le résultat principal du présent article est le suivant :

Théoreme 1. Soit F un foncteur polynomial réduit (i.e. nul sur le groupe trivial)
de la catégorie gr des groupes libres de rang fini vers la catégorie Ab des groupes
abéliens. Alors
coleién H.(Aut (Z™); F(Z*)) = 0.
n

(La notion de foncteur polynomial est introduite et étudiée dans ce contexte
de groupes libres en début d’article; des exemples typiques sont les puissances
tensorielles du foncteur d’abélianisation.)

Lorsque F est le foncteur d’abélianisation, ce résultat avait déja été¢ démontré,
par des méthodes totalement différentes, dans des travaux d’Hatcher et Wahl, ou ils
obtiennent également un résultat de stabilité (voir [18] et son erratum [19], ainsi que
(20]). En fait, on peut obtenir le théoréme 1 pour toutes les puissances tensorielles
de I’abélianiation comme conséquence de I’article [17] d’Hatcher et Vogtmann (voir
aussi son erratum [15] avec Wahl), comme 1’a observé Randal-Williams dans [29].
Tous ces travaux reposent sur des considérations de topologie différentielle. Par
une approche encore indépendante (purement algébrique), Satoh a également étudié
de tels groupes d’homologie, rendant certains d’entre eux accessibles au calcul (y
compris dans le cas instable) en degré homologique 1 ou 2 ; voir [30] et [31].

Alors que le théoreme de Galatius affirme que, stablement, I’homologie a
coefficients entiers des groupes Aut(Z*") est la méme que celle des groupes
symétriques, le théoréme 1 nous apprend que ceci n’est plus le cas pour I’homologie
a coefficients tordus. En effet, dans [3] Betley montre que 1’homologie stable des
groupes symétriques a coefficients dans un foncteur polynomial réduit est loin d’étre
nulle. Néanmoins, le théoréeme 1 peut étre congu comme un relévement aux groupes
d’automorphismes des groupes libres du théoreme di a Betley (cf. [1]) selon lequel
I’homologie des groupes linéaires sur Z (cela vaut d’ailleurs pour tout anneau) a
coeflicients tordus par un foncteur polynomial réduit est stablement nulle. Dans
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cette situation, considérer un foncteur covariant ou contravariant ne change rien,
puisque I'involution des groupes lin€aires donnée par la transposée de I’inverse
permet de passer d’une situation a 1’autre (en revanche, considérer des bifoncteurs
polynomiaux réduits donne lieu a une homologie généralement non nulle ; pour cette
généralisation remarquable des résultats de Betley, voir [2] ou I’appendice de [9] sur
un corps fini et [32] pour le cas général). Pour les groupes d’automorphismes des
groupes libres, il n’en est pas de méme, I'involution en question ne s’y relevant
pas; de fait, en s’appuyant sur le théoreme de Betley susmentionné, on parvient a
montrer :

Proposition 1. Soit F' un foncteur polynomial réduit contravariant de la catégorie
ab des groupes abéliens libres de rang fini vers Ab. Il existe un isomorphisme naturel

colim H; (Aut (Z*"); F(Z")) ~ F ® Id
neN ab

ot Aut (Z*") opere sur F(Z) via la projection sur GL,(Z) et Id : ab — Ab
désigne le foncteur d’inclusion.

Ce résultat est déja essentiellement présent dans le travail [22] de Kawazumi; il
montre que, des le degré homologique 1, la situation differe profondément entre
foncteurs polynomiaux contravariants et covariants pour I’homologie stable des
groupes d’automorphismes des groupes libres. Pour I'instant, nous ne savons pas
traiter le cas du grand degré homologique pour les foncteurs contravariants ; a plus
forte raison, la situation pour les bifoncteurs demeure tres mystérieuse. La pertinence
d’une telle généralisation aux bifoncteurs est illustrée par [22], o Kawazumi
introduit des classes de cohomologie reliées a la structure fine des groupes d’auto-
morphismes des groupes libres appartenant 2 H*(Aut (Z*"); Hom (A, A®'*1)), ou
A désigne 1’abélianisation du groupe Z*".

Venons-en aux méthodes que nous utilisons pour démontrer nos résultats.

La stratégie de la preuve du théoreme 1 est la suivante. On dispose d’une part
de la catégorie usuelle gr—Iles foncteurs définis sur cette catégorie se prétent a des
calculs d’algebre homologique—et d’autre part d’une catégorie de groupes libres
de rang fini auxiliaire G dont ’homologie calcule C(zlei&n H, (Aut (Z*™); F(Z*”)). La

catégorie G a les mémes objets que gr mais ses morphismes sont les injections de
facteurs libres avec un choix de complément. Pour obtenir le théoréme 1, on compare
I’homologie des catégories gr et G.

Plus précisément, la démonstration du théoreme 1 se décompose en trois étapes :

(1) On introduit a la section 4 la catégorie G et le foncteur d’oublii : G — gr.
Cette catégorie entre dans le cadre formel introduit dans I’article [6], dont
un des résultats généraux nous permet d’obtenir (dans la proposition 4.4) un
isomorphisme naturel

colim H.(Aut(Z*"); F(Z™)) 5 Ho(G X Goo: F)
ne
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pour tout foncteur £ défini sur G, ol le groupe Go = colim Aut (Z*") opere
nelN
trivialement sur F.

Cependant, les groupes d’homologie H.(G x G F') ne sont pas accessibles
par un calcul direct.

(2) L’étude homologique de la catégorie G repose sur des investigations prélimi-
naires dans la catégorie gr, qu’on peut scinder en deux principales étapes :

— dans la section 5, on observe que le foncteur d’abélianisation a : gr — Ab
possede une résolution projective explicite, que procure la résolution
barre sur un groupe libre. On en tire, par la considération d’une homotopie
explicite, un critere d’annulation de certains groupes d’homologie du type
Tor§" (F, a) (proposition 5.4).

— Pour déduire de cette propriété du foncteur d’abélianisation des propriétés
générales sur les foncteurs polynomiaux depuis la catégorie gr, nous
étudions, dans la section 3, la structure de ces foncteurs polynomiaux.
En particulier, nous montrons qu’un tel foncteur s’obtient par extensions
successives de foncteurs (polynomiaux) se factorisant par le foncteur
d’abélianisation. Ce résultat, dont la démonstration est indépendante des
considérations d’homologie des foncteurs précitées, possede également
un intérét intrinseque.

(3) Dans la section 6 nous comparons "homologie de G et celle de gr. Plus
précisément, on montre que le foncteur / : G — gr induit un isomorphisme

H(G:i*F) = H.(gr: F)

pour F un foncteur polynomial sur gr; I'homologie H(gr: F') est nulle si F
est réduit car la catégorie gr possede un objet nul.
On établit cet isomorphisme a partir de la suite spectrale de Grothendieck

dérivant I'extension de Kan a gauche du foncteur i et des considérations
d’algebre homologique sur gr susmentionnées.

Quant a la proposition 1, nous la démontrons d’une maniere différente, en
utilisant la structure de 1’abélianisation du noyau / A, de I’épimorphisme canonique
Aut (Z*") — GL,(Z), donnée par exemple dans [22], et les résultats précités
sur I’homologie stable des groupes GL,(Z) a coefficients dans un bifoncteur
polynomial. Comme I’homologie des /A, n’est pas connue au-dela du degré 1 (des
résultats partiels en degré 2 ont toutefois été obtenus par Pettet dans [26]), nous
ne pouvons pas encore aller plus loin par cette méthode. Cependant nous pensons
que I’approche fonctorielle devrait permettre d’aborder ces questions. Elle pourrait
notamment clarifier et aider a démontrer les calculs conjecturaux que donne Randal—
Williams dans [29].

Remerciements. Nous remercions Benoit Fresse dont les notes de groupe de travail
Applications polynomiales et foncteurs polynomiaux ont été une source d’inspiration
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avoir indiqué une difficulté qui nous avait échappé dans le diagramme de recollement
du théoreme 3.2 et qui donne lieu a la remarque 3.3.

Nous sommes aussi reconnaissants envers Manfred Hartl, Gaél Collinet et
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2. Notations et rappels

Si C est une catégorie pointée (i.e. possédant un objet nul) ayant des coproduits
finis, pour £ € ObC, on note (E)¢ la sous-catégorie pleine de C ayant pour objets
les sommes finies de copies de E.

Pour tout anneau A4, on désigne par A-Mod la catégorie des A-modules a gauche
et par A-mod la sous-catégorie pleine des modules projectifs de type fini.

Le symbole k désigne soit Z, soit un corps premier.

On note Gr (respectivement Ab) la catégorie des groupes (resp. des groupes
abéliens) et gr (resp. ab) la sous-catégorie pleine des groupes libres de type fini
(resp. des groupes abéliens libres de rang fini). Autrement dit, gr = (Z)gr et
ab = (Z)xp = Z-mod.

On désigne par a : gr — k-Mod le foncteur d’abélianisation tensorisée par k.

2.1. Catégories de foncteurs. Si C est une catégorie (essentiellement) petite et A
une catégorie, on note Fet(C. A) la catégorie des foncteurs de C vers A.

La catégorie Fet(C, k-Mod) est une catégorie abélienne avec limites et colimites
se calculant au but ; elle possede assez d’objets injectifs et projectifs. Précisément,
pour tout objet ¢ de C, le foncteur P¢ := k[C(c, —)] (on omettra souvent I’exposant
C s’il n’y a pas d’ambiguité possible) représente I’évaluation en ¢ grice au lemme de
Yoneda, il est donc projectif, et I'ensemble de ces foncteurs lorsque ¢ parcourt Ob(C
engendre la catégorie Fet(C. k-Mod). En particulier, tout foncteur de Fet(C, k-Mod)
posséde une résolution par des sommes directes de projectifs PS. On peut donc
faire de 1'algebre homologique dans cette catégorie comme dans les catégories
de modules ; on dispose notamment d’une notion d’homologie de C a coefficients
dans un foncteur F € ObFct(C,k-Mod) — cette homologie H.(C: F) n’est
autre que 1’évaluation en F des foncteurs dérivés a gauche du foncteur colcim

Fet(C.k-Mod) — k-Mod. On dispose également d’une notion de produit tensoriel
au-dessus de C, qui fournit un foncteur —®— : Fet(C??, k-Mod) xFct(C, k-Mod) —
g

k-Mod qui en chaque variable commute aux colimites et peut se dériver (2 gauche)
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pour donner des foncteurs Tor$ : Fet(C??, k-Mod) x Fet(C, k-Mod) — k-Mod. Le
k-module H,(C; F) s’identifie naturellement a Tor,c, (k, F) (ot I'on voit k comme
foncteur constant a gauche). L’ homologie de la catégorie C (sans plus de précision)
est le k-module gradué H,(C) := H.(C:k) ~ Tori (k, k). On pourra consulter par
exemple I’appendice A.l de [5] pour davantage de rappels a ce sujet.

Si C est pointée, tout objet F de Fet(C,k-Mod) possede une décomposition
canonique F ~ F(0) @& F ou F(0) désigne le foncteur constant en I'évaluation
de F sur I’objet nul et F(c) = Ker (F(¢) — F(0))( = Coker (F(0) — F(c))).
Le foncteur F est réduit, ¢’est-a-dire nul en O ; on I’appelle foncteur réduit associé a
F.

2.2. Foncteurs polynomiaux. Soit C une petite catégorie pointée avec coproduits
finis. On dispose d’une notion classique de foncteur polynomial dans Fet(C, k-Mod).
Celle-ci remonte a Eilenberg et Mac Lane (cf. [7], chap. II), au moins dans le cas ol
C est la catégorie des groupes abéliens (la définition générale étant la méme). On
pourra également se reporter a [14], § I, pour une exposition générale. Rappelons
qu'un foncteur polynomial de degré au plus n — 1 est un foncteur F dont le
n-eme effet croisé cr,(F), qui est un multifoncteur en n variables sur C, est nul.
Les foncteurs polynomiaux de degré au plus n de Fct(C, k-Mod) forment une sous-
catégorie épaisse stable par limites et colimites ; on la notera Pol, (C).

Fixons un objet £ de C : les foncteurs polynomiaux sur la catégorie (E)c
constituent un cas particulicrement important (cf. [14] et [21]).

Tout foncteur F : (E)c — k-Mod possede un plus grand quotient additif (i.e.
polynomial de degré au plus 1) et réduit, qu’on notera T, (F). Il est explicitement
donné par Ty (F)(V) = Coker (F(p1)+F(p2)—F(s): F(V+V) — F(V))ou +
désigne le coproduitde C et py, p2,s : V+V — V sont respectivement les premiere
projection, deuxiéme projection et somme. Le k-module A¢(E) := T1(Pg)(E) est
un quotient de k[Endc(E)]; on vérifie (cf. [14], § 3.2) que la structure de k-algebre
sur k[End¢ ( E)] définit par passage au quotient une structure de k-algebre sur A¢(E).
De plus, I’action naturelle a droite de k[End¢(E)] sur le foncteur Pg induit une
action (a droite) de A (FE) sur le foncteur T (PEg).

3. Foncteurs polynomiaux sur gr

Dans cette section, on donne un résultat de classification général sur les foncteurs
polynomiaux (nous restons dans le cadre d’une catégorie source du type (E)¢, ou C
est une catégorie pointée avec coproduits finis), avant de I’appliquer a la catégorie
Fet(gr, k-Mod). Ces résultats, qui présentent un intérét intrinséque, ne seront utilisés
que dans la démonstration de la proposition 6.3 (uniquement via le corollaire 3.4 et
la formule (3.1)).
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On rappelle la définition suivante :

Définition 3.1. Si R est un anneau muni d’une action (a gauche) d’un groupe G, on
définit 1’algébre tordue de G sur R comme le R-module R[G]| muni de la multiplica-
tion donnée par r[g].s[h] = (r &s).[gh] pour tout (r,s,g,h) € Rx Rx G x G (ou
&g désigne I’action de g sur s); dans le cas de I’action du groupe symétrique &,, sur
le produit tensoriel A®" de n copies d’un anneau A par permutation des facteurs, on
notera G, ¢! A I’anneau obtenu, appelé produit en couronne de A par G,,.

Ainsi, pour tout entier n, Tl(PE)@’” est un foncteur polynomial de degré (au
plus) n réduit muni d’une action de &,, 2 A¢(E). Pour tout foncteur F sur (E)c,
I’effet croisé cr, (F)(E, ..., E) est muni d’une action naturelle de &, ¢ A¢(FE), ou
le groupe symétrique opére par permutation des facteurs et ’action de A¢(E)®" est
induite par celle de k[End¢(E)]®" sur F(E™") (chacun des n facteurs du produit
tensoriel opérant par précomposition sur chacun des n facteurs de la somme). On
notera cry (F) le 6, ¢ A¢c(E)-module cr,(F)(E, ..., E).

Le résultat suivant est dii a Pirashvili ([27]) dans le cas ou C est une catégorie de
modules ; il doit beaucoup a [14] (qui étudie de fagon bien plus précise la structure
des foncteurs polynomiaux de degré 2) pour le passage au cas général.

Théoreéme 3.2. /] existe un diagramme de recollement

) Qn
Pol, 1 ((E)c) —inct> Pol, ({(E)¢) —en> (&, ¢ Ac(E))-Mod
F Bn

ou incl est 'inclusion et

an (M) =Ty(Pp)®"  ® M= (Ti(PE)®" ® Mg .
SniAc(E) Ac(E)®n n

Rappelons ce que signifie que le diagramme précédent de foncteurs entre
catégories abéliennes est un diagramme de recollement (cf. par exemple [23], § 2,
et [12] pour une présentation des diagrammes de recollement dans les catégories
abéliennes et une utilisation dans les catégories de foncteurs)

(1) le foncteur incl est adjoint a droite (resp. a gauche) au foncteur / (resp. r) ; de
plus, I'unité /d — r.incl est un isomorphisme ;

(2) le foncteur cry, est adjoint a droite (resp. a gauche) au foncteur o, (resp. ) ;
de plus, I'unité /d — cr,.a, est un isomorphisme ;

(3) le foncteur incl est pleinement fidele et son image essentielle est le noyau du
foncteur cry,.

Remarquons que la définition de diagramme de recollement donnée dans [23]
comporte des conditions redondantes. En effet, d’apres les propositions 3.4.1 et 3.4.2
de [4], 1a cotinité de I’adjonction entre cry, et B, est un isomorphisme si et seulement
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si I'unité de I’adjonction entre cry, et o, est un isomorphisme. De méme pour les
adjonctions entre incl, [ et r.

Rappelons également que ces propriétés impliquent formellement que le foncteur
cr, induit une équivalence de catégories

Pol, ((E)c)/Pol,_1((E)e) — &, 2 Ac(E)-Mod.

Démonstration. Pour le cas crucial du degré 1, voir [14], Théoréeme 3.12.

Pour le cas général : comme Pol,_;({E)c) est une catégorie de Grothendieck
et que Pol,_;({E)c) est stable par limites et colimites, on obtient 1’existence des
adjoints a droite et a gauche au foncteur incl et on montre facilement que I’unité
Id — r.ncl est un isomorphisme, ce qui démontre le point 1.

Le point 3. découle de la définition de Pol,_;((E)c) et du fait que c’est une
sous-catégorie pleine de Pol, ({E)¢).

Pour la partie droite du diagramme : pour F* € Pol,({E£)¢), on a un isomor-
phisme naturel &,-équivariant Hom(T;(Pg)®". F) ~ F(E™™) (qui est induit
par le lemme de Yoneda et I’isomorphisme T,,(P_E®n) ~ Ty(Pg)®" : voir [14]
pour une démonstration détaillée dans le cas n = 2). Cet isomorphisme induit un
isomorphisme naturel et &, ¢ Ac(E)-équivariant Hom(7, (Pg)®". F) =~ cr,(F).
On en déduit les isomorphismes naturels :

Home, 1A (E)Mod(M, ¢ty (F)) ~ Home a0 £y (M, Homp, ((£y0) (T1 (PE)®". F))

~ Hompy, ((£)e)(T1 (PE)®" ~ ® M. F)
SHZAC(E)

ou la derniere équivalence est I’adjonction usuelle entre le Hom externe et ®. Pour
M € G, Ac(E)-Mod on a les isomorphismes naturels :

crpon(M) = cro(T1(PE)®"  ®  M)e,) > Ti(PENE)® ® M~M.
Ac(E)®" Ac(E)®"

On en déduit que I'unité de 1’adjonction entre cry, et «, est un isomorphisme.

Enfin, comme les catégories Pol, ({E)c) et (S, ¢ Ac(E))-Mod sont des caté-
gories de Grothendieck et que le foncteur cr, commute aux colimites ce foncteur
possede un adjoint a droite.

U

Remarque 3.3. L’adjoint a droite 8, du foncteur cr, est isomorphe a

M (Ty(Pp)® ® M)
Ac(E)®n

lorsque la catégorie source est additive, mais ce n’est plus le cas en général
(notamment pour la catégorie gr qui nous intéresse).
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Corollaire 3.4. Soit F € ObPol, ((E)¢); notons M le S, Ac(E)-module cry, (F).
Les noyaux et conoyaux de la coiinité ay,(M) — F et de I'unité F — B, (M) sont
de degré inférieur ou égal an — 1.

Proposition 3.5. Soient F : C — D un foncteur entre catégories pointées avec
sommes finies qui commute aux sommes finies, E un objet de C et E' = F(E). On
suppose que F est plein et induit un isomorphisme C(E, E) — D(E', E'). Alors F

induit un isomorphisme Ac(E) — Ap(E') et une équivalence de catégories :

Pol, ({E)c)/Poly—1 ({E)c) — Pol,((E')p)/Poly_1({(E')p)
pour tout n € N.

Démonstration. On déduit directement le fait que F induit un isomorphisme

d’anneaux Ac(FE) 5 Ap(E’) de la définition, des hypothéses et du lemme des
cing. Le reste en découle par le théoreme précédent. U

Le critere de comparaison général qui précede s’applique aux groupes libres,
abéliens ou non :

Corollaire 3.6. Le foncteur d’abélianisation gr — ab induit des équivalences de
catégories :

Pol, (gr)/Pol,,_; (gr) ~ Pol, (ab)/Pol,_, (ab) ~ k[S,]-Mod.

Démonstration. Le foncteur d’abélianisation vérifie les conditions de la proposition
précédente. La derniere équivalence est classique et s’obtient a partir du théoreme 3.2
et du calcul 71 (P2") = a qui implique A,p(Z) = k. O

En particulier, on voit que le foncteur &, est donné, lorsque la catégorie source
est gr, par
an(M) =a%" @ M. (3.1)
6”
Le corollaire suivant montre que les foncteurs polynomiaux sur gr ne sont « pas
loin » de se factoriser par 1’abélianisation gr — ab : ils peuvent tous s’obtenir par
extensions successives de foncteurs possédant une telle factorisation.

Corollaire 3.7. Tout foncteur F € ObPol,, (gr) posséde une filtration
O=F, CFCFC---CF,_1CF,=F

telle que chaque sous-quotient F; [ Fi_y soit de degré au plus n — i et appartienne a
l'image essentielle du foncteur Fet(ab, k-Mod) — Fet(gr, k-Mod) de précomposi-
tion par ’abélianisation.
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Démonstration. On raisonne par récurrence sur le degré n du foncteur F. Pour
n = 0 le résultat est trivial. Pour n > 0, on note Fy I’image de la coiinité :

ap(cr,(F)) — F.

Par le corollaire 3.4, le quotient G = F/ Fy est dans Ob Pol,,_; (gr). Par I’hypothese
de récurrence, G possede une filtration

0=G_,CcGoCc G, C---CGp1=6G

telle que chaque sous-quotient G;/G;—y soit de degré au plus n — 1 — i et
appartienne a I'image essentielle du foncteur Fet(ab, k-Mod) — Fet(gr, k-Mod)
de précomposition par 1’abélianisation.

Soit w : F — G = F/F, la projection. Pour 1 < i < n, on note F; I'image
réciproque de G;_ par . Ceci fournit une filtration de F :

O=F,CFCcFHC--CF,_1CF,=F.

Pour | <i < n,lequotient F; / F;—; ~ G;—1/G;_, se factorise par I’abélianisation
et
deg(Fi/Fi—1) = deg(Gi—1/Gi2) =(n—1)—(—1)=n—i

ou deg(F) désigne le degré polynomial du foncteur F. De plus, comme «, (cr, (F))
se factorise par I’abélianisation d’apres (3.1), il en est de méme de Fy et deg(Fp) < n
puisque Fj est un sous-foncteur de F. O

4. La catégorie de groupes libres auxiliaire G

Dans [6], nous avons introduit des axiomes sur une petite catégorie C permettant
de relier, d’une part, I’homologie de groupes d’automorphismes d’objets de C,
a coefficients tordus par un foncteur F de Fet(C,k-Mod) (supposant connue
I’homologie des mémes groupes a coeflicients constants dans k), d’autre part
I’homologie H,(C; F) de la catégorie C a coeflicients dans F. La catégorie gr ne
satisfait toutefois pas a ces axiomes. Pour y remédier, nous introduisons une autre
catégorie de groupes libres G et tirons dans cette section les conclusions de [6] pour
celle-ci, avant d’étudier son lien homologique avec la catégorie gr.

Définition 4.1. On note G la catégorie dont les objets sont les groupes libres de
type fini et dans laquelle un morphisme A — B est un couple (v, H) formé d’un

monomorphisme de groupes u : A — B et d’un sous-groupe H de B tels que B soit

. 5 »” 2 (u.H) (v,K)
le produit libre de I'image de u et de H. La composée A B C est par

définition (v cu, v(H) * K).

Cette catégorie est reliée a la catégorie usuelle gr par les deux foncteurs
fondamentaux suivants.




Vol. 90 (2015) Sur I'homologie de Aut(F),) 43

Définition 4.2.

(1) Onnotei : G — gr le foncteur égal a I'identité sur les objets et associant a
un morphisme (v, H) : A — B de G le morphisme de groupesu : A — B.

(2) On note ¢ : G°? — gr le foncteur égal a I'identité sur les objets et

associant 2 un morphisme (4, H) : A — B de G le morphisme de groupes
-1
B =u(A)x H - u(A) SN composé de la projection canonique et de

I’isomorphisme inverse de I’isomorphisme qu’induit u entre A et son image.

Noter que ces foncteurs ne sont ni pleins ni fideles, mais qu’ils induisent des
isomorphismes entre les groupes d’automorphismes des objets.

Remarque 4.3. La catégorie G constitue un analogue non abélien de la catégorie S(Z)
des groupes abéliens libres de rang fini avec pour morphismes les monomorphismes
scindés, le scindage étant donné. Les foncteurs i et ¢ sont alors similaires aux
foncteurs covariant et contravariant tautologiques de S(Z) vers ab.

La catégorie S(Z) est utilisée dans [5] pour montrer les résultats de Scorichenko
([32]) sur I'homologie stable des groupes linéaires sur Z a coeflicients polynomiaux,
en simplifiant 1égerement la méthode de cet auteur (qui consiste a considérer
la catégorie des groupes abéliens libres de rang fini avec pour morphismes les
monomorphismes scindés, le scindage ne faisant pas partie de la structure).

Ici, contrairement a la situation pour les groupes linéaires, les foncteurs i et ¢ ne
jouent pas du tout le méme role ; on en verra une illustration spectaculaire a la fin de
cet article.

Le produit libre * fait de G, tout comme de gr, une catégorie monoidale
symétrique, et les foncteurs / et ¢ sont monoidaux. Le groupe trivial 0, unité de
cette structure, est également objet initial de G. En particulier, pour tous objets A
et B de G, on dispose d’un morphisme canonique 4 = A4 * 0 — A * B, qui est
équivariant relativement aux actions tautologiques de Aut (A) et Aut(A * B) et au
monomorphisme de groupes canonique Aut (A) — Aut (A * B). Par conséquent, si
F est un objet de Fct(G. k-Mod), on dispose de morphismes naturels

H.(Aut (Z*"); F(Z*)) = H.(Aut(Z*™); F(Z*™))

pour n < m (plonger Z*" dans Z*™ par I'inclusion des n premiers facteurs); la
colimite de ces groupes lorsque n parcourt N est appelée homologie stable des
groupes d’automorphismes des groupes libres a coefficients tordus par F. On dis-
pose par ailleurs de 1’homologie H,(G: F) de la catégorie G a coefficients dans F ;
les inclusions des sous-catégories pleines réduites a 1’objet Z*" dans G permettent
de définir un morphisme naturel de I’homologie stable définie précédemment vers
H,(G: F). Pour F constant, cette homologie est triviale car G a un objet initial. Par
conséquent, le morphisme naturel défini précédemment ne saurait étre, en général,
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un isomorphisme. Pour contourner cette difficulté, on considere plutét I’homologie

Hy(G X Gogi F), ol Gog i= coli&n Aut (Z*™), qui constitue en fait un abus de
ne

notation pour H,(G X Goo: IT*F) ot I1 : G x G4, — G est le foncteur de projection
(autrement dit, on fait agir le groupe G trivialement sur le foncteur F) : il existe
¢galement un morphisme naturel de I’homologie stable de groupes a coefficients
dans F vers H.(G x Goo: IT*F), obtenu cette fois-ci en prenant la colimite des
morphismes induits par les foncteurs Aut (Z™") — G x G, dont la composante vers
G est la méme que précédemment (inclusion pleinement fidéle d’image Z*") et la
composante Aut (Z*") — G est le morphisme canonique.

Des résultats généraux des deux premieres sections de [6] on tire la proposition
suivante :

Proposition 4.4. Pour tout foncteur I € ObFet(G, k-Mod), le morphisme naturel

coli&n Hy(Aut (Z*"): F(Z™)) = Hx(G x Go: F)
ne

de k-modules gradués, ou le groupe Goo = colim Aut (Z*") opére trivialement sur
nenN

F, est un isomorphisme.

Démonstration. On note les trois propriét€s suivantes :

(1) tout objet de G est isomorphe au produit libre d’un nombre fini de copies de
Z,

(2) pour tous objets A et B de G, le groupe d’automorphismes Aut (B) opere
transitivement sur G(A, B). En effet, si (u, H) et (v, K) sont deux mor-
phismes A — B de G, les isomorphismes de groupes B ~ A *x H ~ A x K
entrainent H ~ K et procurent donc un automorphisme ¢ de B tel que
w(H)y=Ketpou =wv,desorte que g o (u, H) = (v, K).

(3) Pour tous objets A et B de G, le morphisme canonique du groupe Aut(B)
vers le stabilisateur du morphisme canonique A — A x B de G sous I'action
de Aut (A * B) est un isomorphisme. Cela découle de ce que ce stabilisateur
est I’ensemble des automorphismes ¢ du groupe A * B qui coincident avec
I'identité sur A et tels que ¢(B) = B.

Ces conditions impliquent formellement, d’apres [6] (ou la proposition 1.4 de
[5], qui en reprend les résultats), la proposition. O

En utilisant les résultats remarquables de Galatius (cf. [13]) sur ['homologie de
G et la formule de Kiinneth, on en déduit par exemple :

Corollaire 4.5. Lorsque k est un corps, on dispose d’un isomorphisme naturel

Coleiri]n H,(Aut(Z*"); F(Z™)) ~ He(G; F) @ Hx(S oo k).
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Pour k = Q, le morphisme naturel

coli&n Hy(Aut (Z*"): F(Z™)) — H4(G: F)

est un isomorphisme.

5. Algebre homologique dans la catégorie gr

La catégorie Fet(gr, k-Mod) se préte a des calculs d’algebre homologique, et
ce de facon beaucoup plus aisée que les catégories Fet(A-mod, A-Mod), méme
lorsque A est I'anneau des entiers ou un corps fini, ou les premiers calculs non
triviaux s’averent déja délicats (cf. [11] et [10] respectivement). Cela tient au
fait remarquable, clef de voiite du présent travail, que le foncteur d’abélianisation
a € ObFect(gr,k-Mod) possede une résolution projective explicite, donnée par
la résolution barre. Ce fait apparait dans le travail [21] de Jibladze et Pirashvili.
Avant de donner explicitement cette résolution, introduisons une simplification de
notation. Pour tout entier naturel n, on désigne par P, le foncteur projectif Pzgin.
Ainsi, P, (G) ~ k[G"] canoniquement. Comme la catégorie gr posséde des sommes
finies, on dispose d’isomorphismes P; ® P; >~ P;4;,dou P, >~ P®"ou P = P,.

Proposition 5.1 (Cf. [21], proposition 5.1). Le foncteur a possede une résolution
projective :
dn dy
Py, — P, > - —> P, — P
ou la transformation naturelle dy, : Pn+\ — Py est donnée sur le groupe G par
Papplication linéaire k[G"T1] — k[G"] telle que

dn([g1.- ... gn+1]) = [g2.. ... gn+1]

n
+ > (=1)'[g1.-.- 81 8i&it1- Git2r - nrr] + (D" g1 ... gl

i=1

pour tout (g1.....gn+1) € G"TL.

Démonstration. La suite de foncteurs de 1’énoncé, évaluée sur un groupe G, n’est
autre que la résolution barre sur ce groupe (dont on a tronqué le degré 0). Elle calcule
donc fonctoriellement 1"homologie réduite de G a coefficients dans k. La conclusion
résulte donc de ce que I"’homologie réduite a coefficients dans k d’un groupe libre est
naturellement isomorphe & son abélianisation tensorisée par k concentrée en degré 1.

]
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En tensorisant cette résolution par un projectif Py, on en déduit :

Corollaire 5.2. Soient X € ObFect(gr®”,k-Mod) et r € N. Les groupes de torsion
Tor§ (X, a ® P,) sont isomorphes a I’homologie du complexe :

Sn 8
e X Hr+ D) DX +r) > o> X(r+2) = X(r + 1)

(on s autorise & noter X (i) pour X(Z*")) o

8p = X(@"") + ) (=1 XB]T) + (=) X (™),

i=1

les morphismes a"", b!"", ¢™" o ZXN — ZXTEEY Grant donnés, via Iidentifica-
tion gr(Z* 8, Zrrintly ~ (gErtn+yntr par;

a® = (e2.....entrt1)

n’r P— . .
b =(e1,....€i—1,€i€it+1,€i42,..., Eriil)
i

n,r _
C —((3[,....€n.€n+2 ..... €n+,—+1)

ot (€1, ... ,en1ri1) désigne la « base » tautologique de Z*" "1,

Remarque 5.3. Au lieu de la construction barre, on peut utiliser la construction barre
réduite (ou normalisée). Cela fournit une résolution projective de a de la forme
suivante :

L PO POt B

On en déduit en particulier Torfr(X, a) = 0 lorsque X est un foncteur polynomial
de degré inférieur ou égal a /. Une propriété analogue vaut pour les groupes
d’extensions ; notamment, on voit que Ext’g“r(a. a) est réduit a k concentré en degré
0. Ces groupes d’extensions sont des analogues pour la catégorie gr des auto-
extensions du foncteur d’inclusion de Fet(A-mod, A-Mod), qui s’identifie a la
cohomologie de Mac Lane de A. Celle-ci est difficile a calculer (cf. les références
[10] et [11] précitées), méme pour les corps, hormis dans le cas de la caractéristique
nulle, ot I'on peut également s’ appuyer sur la résolution barre.

Néanmoins, cette variante réduite n’est pas tres adaptée a nos considérations
ultérieures sur la catégorie gr.

Le corollaire 5.2 constitue la base du critére d’annulation homologique abstrait
suivant.
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Proposition 5.4. Soit X € ObFct(gr??,k-Mod) un foncteur tel qu’existe, pour tous
objets A et T de gr, une application linéaire E(A, T) : X(A) — X(T x A) vérifiant
les propriétés suivantes :

(1) pourtous ¢ : A — B et T dans gr, les composées

E(A, T
X(B) X(A) X(T *x A)
et
§(B,T) X(Tx¢p)
X(B) —/—— X(T'x B)—— X(T'x A)
coincident ;

(2) la composée

x(A4) 24T v w4y 2HEDL v g

est lidentité, ou u(A, T) : A — T x A est l'inclusion canonique ;

(3) étant donnés ¢ ©: A — B, T ett : T — T x B dans gr de sorte que le
morphisme 0 : T x B — T x B égal a 'identité sur B et a t sur T soit un

isomorphi sme, sil’onnote f : T A — T x B le morphisme de composantes

B,T
4% B u T+*BetT > T « B, alors les composées

X AT
x(8) 29 x(4) 220 x(7 « 4)
et
B,T
x(B) 2&, x(1 « By XY x(T « 4)
coincident.

r .
Alors Tors (X, a ® P,) = 0 pour tout entier r.
(Remarquer que la premiere propriété est un cas particulier de la troisiéme, mais
il nous est plus commode pour la suite de les différencier.)
Démonstration. Pour tout entier n > 0, posons

hy = 6@ Z): X(n+71)=> X(n 41+ 1).

Grace au corollaire 5.2, il suffit de prouver la relation d’homotopie §,h, +
hp_16p_1 = Idx(n+r) pour tout entier n > 0 (a lire §thy = Id pour n = 1).
Celle-ci découle des identités suivantes :

(1) X(@"")h, = 1dX(n+r)§

(2) X(bn'r)hn = h,,_]X(a"_l’r);

(3) X(b/5 )hn = hp 1X(b?_]’r) pour 1 <i <n-—1;
(4) X( ) r)hn — /’l 1X(Cnfl,r)

qu’on montre maintenant.
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La premiere égalité provient de la deuxieme hypothese sur les morphismes &, du
fait que a™" = u(Z*"*" 7).

La troisieme (resp. quatrieme) égalité provient de la premiere hypothese sur les
morphismes &, puisque b;"', = Z * b."" (resp. "' = Z x ¢"717).

1+1
Pour la deuxieme égalité, on applique la troisieme hypotheése sur les & avec
¢ =a" " =@t 7)) 2t 5 7T et T = Z, en prenant pour

T 7 — 7o T = 7*" T+ Je morphisme donné par 1’élément e, e, du but. La
condition d’inversibilité de € est clairement vérifiée (c’est un générateur canonique
du groupe des automorphismes de Z*" ™" 1) et y/ n’est autre que h}"". Cela termine
la démonstration. O]

6. Comportement homologique du foncteur / : G — gr sur les foncteurs
polynomiaux

La proposition 4.4 et le corollaire 4.5 montrent I'intérét de savoir calculer des
groupes d’homologie H.(G: F), mais ceux-ci ne sont pas accessibles directement.
La section précédente suggere de transiter par la catégorie plus usuelle gr pour mener
a bien certains de ces calculs.

D’un point de vue formel, le foncteur i : G — gr induit, pour tout F €
Ob Fet(gr, k-Mod), un morphisme naturel H.(G:i*F) — H.(gr: F). Ce dernier
groupe est réduit a F(0) concentré en degré nul, puisque le foncteur constant k
sur gr?, égal a Pé‘rup (puisque 0 est objet final de gr), est projectif et représente
I’évaluation en 0. On va voir que ce morphisme est en fait un isomorphisme lorsque
F est polynomial. Pour cela, on considére la suite spectrale de Grothendieck associée
a la composée

. —-®F
Fet(G?” k-Mod) — Fet(gr®”, k-Mod) —— k-Mod

ou 7y est I’extension de Kan a gauche du foncteur i, qui prend la forme suivante (cf.
par exemple [5], appendice A.1, Remarque A.2) :

E2, =Tor¥ (L. F) = Hpiq(G:i*F) (6.1)

ou L, : gr”? — k-Mod est le foncteur associant a I’objet A de gr le g-eme groupe
d’homologie de la catégorie G[A] définie comme suit :
Définition 6.1. Soit A € Obgr. On note G[A] la catégorie dont les objets sont les
couples (B, f) formés d’un objet B de G et d’un élément f de gr(A.i(B)), les
morphismes (B, /) — (B’. f’) étant les morphismes u : B — B’ de G tels que
f'=i()o f egr(A,i(B)).

Nous montrons, dans la suite de cette section, que la deuxieme page de cette suite
spectrale est nulle lorsque F est un foncteur polynomial réduit.
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Soit T € Obgr, i étant monoidal, on a un foncteur : 7 % — : § — G qui induit
un foncteur G[A] — G[T * A].

Lemme 6.2. Pour tout entier naturel r, on a :
Tor§ (Le,a ® P,) = 0.

Démonstration. Par la proposition 5.4 (dont on conserve les notations), il suffit de
vérifier que les applications linéaires

E(A,T): Le(A) = Lo(T % A)

; . ) Tx— g y
induites en homologie par les foncteurs G[A] —— G[T = A] satisfont les trois
propriétés de I’énoncé sus-cité.

La premiere propriété provient de ce que les morphismes

= AT
LoaB) 2% 1oca) 2241 1T « 4)

et

B,T Le(T*
LoB) 28D 1o« By 22 1o (T« 4)

sont induits par les foncteurs G[B] — G[T * A]

(G € ObG. f c gr(B.iG)) > (T+G. T+ (A% B i)

et

(GEObg.fegr(B,iG))H(T*G,T*AﬁT*BiT*iG)

respectivement, qui sont égaux.
Pour la deuxieme, on note que la composée

> Le(u(A,T
Lol ) 2T b el SN v ey

est induite par I’endofoncteur

(G cObG, f e gr(4,iG) > (TG, A " 1w 4 T T4 i6y)

de G[A]. Comme le diagramme

A AT T x A

1 I
: u(iG,T)

iG—— T #iG
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commute, le morphisme naturel G — 7 G de § induit une transformation naturelle
de I'identité de G[A] vers ce foncteur. Par conséquent (cf. [28]), celui-ci induit
I’identité en homologie.

Venons-en a la derniere propriété. Les composées

§(A,T)

Lo(BY 2 1) 2275 1T % A
et
Lo(B) S5, 1T + B) 22 LT * 4)

qui nous intéressent sont induites par les foncteurs G[B| — G[T * A]

(G €O0bG. f egr(B.iG)) > (T*G. T+ A% 7+ L TxiG)

et

(G €0bG. f egr(B.iG) > (T*G.T+A4%5 T+ B L T4iG)

respectivement Le morphisme de groupes 7" x G — T * G dont les composantes

T u(G,T)
sont T = T = B i> T x G etG —— T * G est un isomorphisme (son inverse

;

est le morphisme de composantes 7° S T*B —g T % G, ou t’ est la composante
T — T % B de I'inverse de 1’automorphisme 6, et u(G, T')), c’est donc aussi un
automorphisme de 7" x G dans la catégorie G, automorphisme que nous noterons
vG . La conclusion provient alors des deux observations suivantes :

(1) le morphisme yg est naturel en G € Ob( (il suffit pour le voir d’écrire ce
que sont les morphismes dans G[B)) ;

(2) il fait commuter le diagramme

T A o Bl T

NG

g Bt T %

de gr, de sorte qu’il définit une transformation naturelle entre nos deux
foncteurs G[B] — G[T * A], qui induisent donc la méme application en
homologie.

O

Nous avons également besoin du résultat suivant, totalement indépendant des
considérations précédentes (il n’utilise que les résultats de structure de la premiere
section sur les foncteurs polynomiaux).
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Proposition 6.3. Soit X € ObFet(gr?”,k-Mod) tel que
Tory (X,a ® P,) =0

pour tout n € N. Alors
Tor¥ (X, F®G) =0

pour tout F € ObFet(gr, k-Mod) polynomial réduit (i.e. tel que F(0) = 0) et tout
G € ObFcet(gr, k-Mod).

Démonstration. La formule des coeflicients universels (cf. par exemple [33], th. 3.6.1)
montre qu’il suffit de traiter le cas ol k est un corps, ce qu’on suppose désormais.
Ainsi, le produit tensoriel est exact en chaque variable.

On commence par montrer que

Tory (X.a® G) =0 (6.2)

pour tout G € ObFct(gr, k-Mod). Cela découle de I’hypothese, de ce que G
posséde une résolution par des sommes directes de projectifs P, et de la suite
spectrale d’hyperhomologie associée (on renvoie a [33], § 5.7 pour ce qui concerne
I’hyperhomologie).

On ¢tablit maintenant par récurrence sur d € N I’assertion suivante : pour tout
F € ObFet(gr, k-Mod) polynomial réduit de degré inférieur ou égal a d et tout
G € ObFet(gr,k-Mod), ona Tory (X, F ® G) = 0.

Pour d = 0 I’assertion est vide, on suppose donc d > 0 et le résultat démontré
Jusqu’en degré d — 1. Soit F polynomial réduit de degré au plus d, notons M le
k[S]-module cry(F) : d’apres le corollaire 3.4, le noyau N et le conoyau C du

morphisme naturel «g (M) = a® ® M — F sontde degré au plus d — 1. Ainsi,
Gu’

Tor{" (X, N ® G) et TorS (X, C ® G) sont nuls pour tout G, par I’hypothése de
récurrence. Il s’ensuit que la nullité de Tor§ (X, F ® G) est équivalente a celle de
Tor (X, aq(M) ® G).

Celle-ci est acquise lorsque M est un k[S4]-module libre, car alors ag (M) est
somme directe de copies de a®?, et

Tor¥ (X, 0%? @ G) = Tor¥ (X, a ® (a®" ' ® G)) =0

par (6.2).

Considérons, dans le cas général, une résolution libre Le — M du k[G4]-
module M et notons H, 1’homologie du complexe oy (Le) — ag(M) de Poly(gr).
Comme le foncteur canonique m,; : Poly(gr) — Poly(gr)/Pol,_;(gr) est exact,
I"homologie de I'image par 7, de ce complexe s’identifie & 74 (H,.). Mais comme
le foncteur

k(& 4]-Mod 2, Pol, (gr) d, Pol; (gr)/Pol,;_, (gr)
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est une équivalence de catégories d’apres le théoreme 3.2, donc en particulier un
foncteur exact, I’exactitude de Lo — M implique que 74 (H.) = 0. Autrement dit,
le foncteur gradué H, est de degré au plus d — 1. Comme il est également réduit,
I’hypothese de récurrence montre que

Tor (X. He® G) =0

pour tout G.
L
On en déduit que I’hyperhomologie X ® (¢y(Le) ® G) est isomorphe a
gr

Tory (X, aq(M) ® G), par 'une des suites spectrales d’hyperhomologie asso-
ciées. L'autre suite spectrale d’hyperhomologie associée a pour premiere page
Tor§ (X, ag(Le) ® G), qui est identiquement nul par ce qu’on a vu plus haut, parce
que les L; sont libres.
Par conséquent, Tor§ (X, ag(M)® G) et donc Tor§' (X. F ® G) sont nuls, ce qui
acheve la démonstration.
O

Nous pouvons désormais démontrer le résultat principal de ce travail.

Théoreme 6.4. Soient F et G des foncteurs de Fet(gr,k-Mod) ; on suppose F
polynomial et réduit. Alors

COli&“ H.(Aut (Z*"); (F ® GY(Z*")) = 0.
ne

Démonstration. Le lemme 6.2 et la proposition 6.3 montrent que
Tory (Le. F ® G) = 0.

La suite spectrale (6.1) permet d’en déduire la nullité de H.(G;i*(F ® G)), qui
entraine celle de Hyx (G X Goo: i *(F ® G)) par la formule de Kiinneth. On conclut
alors par la proposition 4.4. O

Rappelons que, dans le cas crucial ou les coefficients sont tordus par le foncteur
d’abélianisation a, ce résultat (c’est-a-dire CO]IIan Hy(Aut (Z*"); a(Z*)) = 0) a été

antérieurement obtenu par Hatcher—Wahl dans [18] (et son erratum [19]) par des
méthodes complétement différentes qui permettent également d’obtenir une borne
de stabilité homologique explicite. Dans le cas des degrés homologiques 1 et 2, ce
résultat a été aussi obtenu par Satoh dans [30] et [31] (avec une borne de stabilité
meilleure que celle de [18]), suivant une approche différente de celles d’Hatcher—
Wabhl et du présent article.

Rappelons également que le théoreme 6.4 peut s’obtenir pour toutes les puis-
sances tensorielles du foncteur d’abélianisation par des méthodes géométriques
analogues a celles du travail d’Hatcher—Wahl susmentionné : I’article [ 17] d’Hatcher
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et Vogtmann (et son erratum [15] avec Wahl) entraine facilement ce résultat (avec
de plus un résultat de stabilité homologique), comme I’a noté Randal-Williams
dans [29] (proposition 1.3). Rationnellement (i.e. pour k = @), on peut en
déduire facilement le résultat pour tous les foncteurs polynomiaux réduits (i.e. le
théoreme 6.4 pour G constant—Ie corollaire 1.4 de [29] en donne un cas particulier),
en utilisant la structure des foncteurs polynomiaux et le caractere semi-simple des
représentations rationnelles des groupes symétriques, mais (méme pour G constant)
le théoreme 6.4 ne semble pas pouvoir s’obtenir facilement par ces méthodes
lorsqu’on travaille sur k = Z.

7. Comportement homologique en degré 1 du foncteur : : G°” — gr sur les
foncteurs polynomiaux

La comparaison de 1’homologie de G et de gr°” via le foncteur ¢, a coefficients
dans un foncteur (méme polynomial) F' sur gr’”, ne fonctionne pas de la méme
fagon qu’avec le foncteur i : H.(gr’”; F) est toujours réduit a F(0) concentré
en degré nul (puisque 0 est objet initial de gr), mais I’annulation ne subsiste plus
pour I’homologie de H.(G: (™ F). Pour I'instant, les auteurs ne savent pas comment
calculer ces groupes d’homologie des foncteurs. Toutefois, on peut résoudre le
probleme d’une maniere différente, plus directe, pour le degré homologique 1 (en
degré homologique nul, le morphisme qu’induit ¢ est toujours un isomorphisme), au
moins pour un foncteur polynomial se factorisant par le foncteur d’abélianisation
gr — ab.

Remargue 7.1. Cette situation contraste avec celle qu’on rencontre pour les groupes
linéaires. Soit en effet un foncteur F : ab°” — Ab, notons G : ab — Ab le foncteur
obtenu en précomposant F par la dualit¢ Homz(—,Z) : ab — ab®”. Pour tout
entier n, I’automorphisme involutif g + ‘¢! de GL,(Z) induit un isomorphisme

H (GL,(Z); F(Z")) — H«(GL,(Z): G(Z")) (et ces isomorphismes, lorsque n
varie, sont compatibles aux applications de stabilisation), de sorte que 1’homologie
stable des groupes linéaires sur Z a coefficients dans F s’identifie a I'homologie
stable de ces groupes a coefficients dans G. On ne peut pas étendre ce raisonnement
aux groupes d’automorphismes des groupes libres parce que I’automorphisme
g g7l de GL,(Z) ne se releve pas en un automorphisme de Aut (Z*") pour
la projection canonique Aut (Z*") — GL,(7Z).

Le résultat qui suit est essentiellement présent dans le travail [22] de Kawazumi
(voir la fin de sa section 6), avec I’hypothése que les coefficients sont des Q-espaces
vectoriels (et sans le langage des catégories de foncteurs). Notre démonstration suit
celle de Kawazumi, hormis pour les arguments d’annulation pour lesquels nous
invoquons des résultats sur I’homologie des foncteurs.
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Proposition 7.2. Soit F' : ab®” — Ab un foncteur polynomial réduit. Il existe un
isomorphisme naturel

coli&n Hi(Aut(Z™); F(Z")) ~ F ® Id
ne ab

ot Aut(Z*") opere sur F(Z") via la projection sur GL,(Z) et Id : ab — Ab
désigne le foncteur d’inclusion.

Démonstration. Notons I A(G), pour G un groupe libre, le noyau de I’épimorphisme
Autg (G) — Autyp(Gg4p) induit par I’abélianisation. Le théoréme 6.1 de [22] procure
un isomorphisme Aut,,(G,p)-€quivariant

Hi(IA(G)) = Ab(Gap, A*(Gap))

ou A? désigne la deuxieéme puissance extérieure.
La suite exacte a cing termes (cf. par exemple [33], § 6.8.3) associée a I’extension
de groupes
1 = TA(G) = Auty(G) — Autap(Gap) — 1

fournit donc une suite exacte
coligl Hy(GLy(Z); F(Z")) — colirrwn Hy (GL,,(Z); F(Z") ® Ab(Z", AZ(Z”)))

ne ne

— colim H{(Aut (Z*); F(Z")) — colim H{(GL,(Z); F(Z")).
neN nelN
En effet, comme Aut(Z*") agit sur F(Z") via la projection sur GL,(7Z),

T A(Z*") agit trivialement sur F(Z"), d’ou HO(IA(Z*”): F(Z”)) = F(Z") et

Ho(GLn(Z); Hi(1A(Z*"); F(Z"))) = Ho(GLu(Z); Hi(1A(Z*")) ® F(Z")).

Par un théoréme de Betley (cf. [1], théoreme 4.2) et la remarque 7.1 on a :
colei&n Hy«(GL,(Z); F(Z")) = 0 quand F est un foncteur contravariant polynomial
rgduit.

Par ailleurs, d’aprés un cas particulier facile du théoréeme de Scorichenko!
étendant le résultat de Betley, on a, pour un bifoncteur B : ab”” x ab — Ab,
un isomorphisme naturel :

colirr\ln Ho(GLu(Z); B(Z",Z")) ~ Z[ab’’] ® B.
ne

ab(i[) X ab

En appliquant ce résultat au bifoncteur B défini par

B(U, V)= F(U) ® Ab(U, A*(V))

1. Cf. [32], ou [5] pour une reprise publiée de ce résultat. Mais le cas de degré nul dont on a seul
besoin ici est beaucoup plus simple : sa démonstration ne nécessite aucun résultat subtil d’annulation en
homologie des foncteurs.
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qui est naturellement isomorphe a (F ® Id¥) K A? (ot X désigne le produit tensoriel
extérieur et I'exposant Vv la dualité des groupes abéliens libres) et en utilisant
I’isomorphisme classique de groupes abéliens

Zlab?] ® (FQIWV)RA?) =~ (FId')®A®
ab

ab?” xab

on obtient un isomorphisme naturel
co]ilrwn Ho(GLA(Z): F(Z") ® AD(Z", A*(Z"))) ~ (F ® IdY) ® A* ;
ne ab

il s’agit donc de montrer que ce groupe est isomorphe a F ® Id.
ab

Le foncteur gradué puissance extérieure A®* = (A');en étant exponentiel (i.e.
il transforme sommes directes en produits tensoriels, au sens gradué), on a un
isomorphisme naturel de groupes abéliens gradués :

Tor.(F ®1d¥. A%) = €P Tor.(F.A") ® Tor.(1d", A”) (7.1)
i+j=2

(cf. par exemple [8], proposition 1.4.22). Comme Torg(F.A?) = F(0) = 0 et
Tory(Id¥, A%) = 0, on déduit de (7.1) I’isomorphisme :

(F®IdY) ® A% = Torg(F @ Id¥, A?) = Torg(F, Id) ® Torg(Id", Id)
ab
= (F®Id) ® (Id¥ ® Id).
ab ab

Or le groupe 1d¥ ® Id est isomorphe a Z. En effet, comme le foncteur Id est un
ab

quotient de PP, en appliquant le foncteur Id¥ ® —, exact i droite, on obtient une
ab

suite exacte :

1d¥® P2 - 1d¥ ®1d — 0.

ab ab
En utilisant I'isomorphisme Id¥ ® P2® ~ Z, on montre que Id" ® Id =~ Z. O
ab ab

Remarque 7.3. Alors qu’elle ne fournit qu’un résultat trés partiel, la démonstration
de la proposition précédente utilise beaucoup plus de résultats de théorie des groupes
que celle du théoreme 6.4 : I'identification de I’abélianisation des sous-groupes
1A des automorphismes des groupes libres nécessite par exemple (cf. [22]) la
connaissance d’un « bon » ensemble de générateurs de ces groupes. Celle-ci est
ancienne (elle remonte aux travaux de Magnus des années 1930), mais absolument
pas immédiate ; notre démonstration du théoréme 6.4 ne nécessite méme pas la

2. Cet article parle de groupes d’extensions ; la propriété analogue en termes de groupes de torsion
est encore plus facile, a fortiori le seul degré nul dont on a ici besoin.
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connaissance d’un ensemble de générateurs des automorphismes des groupes libres.
Cela illustre la puissance des méthodes d’homologie des foncteurs.

Satoh (cf. [30] et [31]) a utilisé€ la structure fine des groupes d’automorphismes
des groupes libres a des fins homologiques. Il montre notamment les résultats
suivants : H; (Aut(Z*"):Z") = Opouri = letn > 4, 0oui = 2etn > 6 (ce
qui redonne un cas particulier du théoréme | pour le foncteur d’abélianisation),
Hy(Aut(Z*"); (Z")Y) ~ Z pour n > 4 (ce qui redonne I’assertion de la proposi-
tion 7.2 pour le dual du foncteur d’abélianisation) et H,(Aut(Z*"); (Z")¥) = 0 pour
n > 6. Lavantage de ces méthodes est d’obtenir également des bornes de stabilité
et certains calculs instables (i.e. pour n petit), mais il semble tres difficile d’obtenir
de la sorte 1’annulation homologique stable en fout degré homologique, méme en se
cantonnant aux coefficients tordus par le foncteur d’abélianisation.

Outre étendre la proposition 7.2 au cas du degré homologique supérieur a 1 en
trouvant un cadre fonctoriel approprié, une question tres naturelle est de comprendre

la situation plus générale des bifoncteurs sur gr, i.e. d’étudier le comportement

) (Lr)p‘” . . .
homologique du foncteur G —— gr°” x gr a coefficients polynomiaux. En

effet, d’une part, la situation connue pour les groupes linéaires (cf. les travaux
de Scorichenko susmentionnés) conduit a cette question ; d’autre part, Kawazumi
a introduit dans [22] (section 4) des classes de cohomologie tordues par des
bifoncteurs—provenant en fait de bifoncteurs sur ab via 1’abélianisation.

Références

[1] Stanislaw Betley. Homology of GI(R) with coefficients in a functor of finite degree. J.
Algebra, 150(1) :73-86, 1992. Zbl 0808.20042 MR 1174889

(2] Stanislaw Betley. Stable K-theory of finite fields. K-Theory, 17(2) :103-111, 1999.
Zbl 0929.19002 MR 1696427

[3] Stanislaw Betley. Twisted homology of symmetric groups. Proc. Amer. Math. Soc.,
130(12) :3439-3445 (electronic), 2002. Zbl 1003.20046 MR 1918818

[4] Francis Borceux. Handbook of categorical algebra. 1, volume 50 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge, 1994. Basic
category theory. Zbl 0803.18001 MR 1291599

[5] Aurélien Djament. Sur I’homologie des groupes unitaires a coefficients polynomiaux. J.
K-Theory, 10(1) :87-139, 2012. Zbl 1281.19004 MR 2990563

[6] Aurélien Djament and Christine Vespa. Sur I’homologie des groupes orthogonaux et
symplectiques a coefficients tordus. Ann. Sci. Ec. Norm. Supér. (4), 43(3) :395-459,
2010. Zbl 1221.20036 MR 2667021

[7] Samuel Eilenberg and Saunders Mac Lane. On the groups H(I1,n). II. Methods of
computation. Ann. of Math. (2), 60 :49-139, 1954. Zbl 0055.41704 MR 65162

[8] Vincent Franjou. Extensions entre puissances extérieures et entre puissances symétriques.
J. Algebra, 179(2) :501-522, 1996. Zbl 0841.55012 MR 1367860



Vol. 90 (2015) Sur I'homologie de Aut(F,) 37

(9]

[10]
[11]
[12]
[13]
[14]

[15]

[16]
[17]

(18]

[19]

[20]

23]
[24]
125
[26]

[27]

Vincent Franjou, Eric M. Friedlander, Alexander Scorichenko, and Andrei Suslin.
General linear and functor cohomology over finite fields. Ann. of Math. (2), 150(2) :663—
728, 1999, Zbl 0952.20035 MR 1726705

Vincent Franjou, Jean Lannes, and Lionel Schwartz. Autour de la cohomologie de Mac
Lane des corps finis. Invent. Math., 115(3) :513-538, 1994. Zbl 0798.18009 MR 1262942

Vincent Franjou and Teimuraz Pirashvili. On the Mac Lane cohomology for the ring of
integers. Topology, 37(1) :109-114, 1998. Zbl 0889.16002 MR 1480880

Vincent Franjou and Teimuraz Pirashvili. Comparison of abelian categories recollements.
Doc. Math., 9 :41-56 (electronic), 2004. Zbl 1060.18008 MR 2054979

Sgren Galatius. Stable homology of automorphism groups of free groups. Ann. of Math.
(2). 173(2) :705-768, 2011. Zbl 1268.20057 MR 2784914

Manfred Hartl and Christine Vespa. Quadratic functors on pointed categories. Adv. Math.,
226(5) :3927-4010, 201 1. Zbl 1235.18002 MR 2770438

Allan Hatcher, Karen Vogtmann, and Natalie Wahl. Erratum to : “Homology stability for
outer automorphism groups of free groups [Algebr. Geom. Topol. 4 (2004), 1253-1272
(electronic)] by Hatcher and Vogtmann. Algebr. Geom. Topol., 6 :573-579 (electronic),
2006. Zbl 1093.20501 MR 2220689

Allen Hatcher and Karen Vogtmann. Cerf theory for graphs. J. London Math. Soc. (2),
58(3) :633-655, 1998. Zbl 0922.57001 MR 1678155

Allen Hatcher and Karen Vogtmann. Homology stability for outer automorphism groups
of free groups. Algebr. Geom. Topol., 4 :1253-1272,2004. Zbl 1093.20020 MR 2113904

Allen Hatcher and Nathalie Wahl. Stabilization for the automorphisms of free groups
with boundaries. Geom. Topol., 9 :1295-1336 (electronic), 2005. Zbl 1087.57003
MR 2174267

Allen Hatcher and Nathalie Wahl. Erratum to : “Stabilization for the automorphisms of
free groups with boundaries™ [Geom. Topol. 9 (2005), 1295-1336; 2174267]. Geom.
Topol., 12(2) :639-641, 2008. Zbl 1134.57300

Allen Hatcher and Nathalie Wahl. Stabilization for mapping class groups of 3-manifolds.
Duke Math. J., 155(2) :205-269, 2010. Zbl 1223.57004 MR 2736166

Mamuka Jibladze and Teimuraz Pirashvili. Cohomology of algebraic theories. J. Algebra,
137(2) :253-296, 1991. MR 1094244

Nariya Kawazumi. Cohomological aspects of magnus expansions. arXiv:math/0505497,
2006.

Nicholas J. Kuhn. Generic representations of the finite general linear groups and the
Steenrod algebra. II. K-Theory, 8(4) :395-428, 1994. Zbl 0830.20065 MR 1300547

Minoru Nakaoka. Decomposition theorem for homology groups of symmetric groups.
Ann. of Math. (2), 71 :16-42, 1960. Zbl 0090.39002 MR 112134

Jakob Nielsen. Die Isomorphismengruppe der freien Gruppen. Math. Ann., 91(3-4) :169—
209, 1924. Zbl 50.0078.04 MR 1512188

Alexandra Pettet. The Johnson homomorphism and the second cohomology of 1A,,.
Algebr. Geom. Topol., 5 :725-740, 2005. Zbl 1085.20016 MR 2153110

T. L. Pirashvili. Polynomial functors. Trudy Thiliss. Mat. Inst. Razmadze Akad. Nauk
Gruzin. SSR, 91 :55-66. 1988. Zbl 0705.18009 MR 1029007



58

[28]

(291

(30]

[31]

[32]

[33]

A. Djament and C. Vespa CMH

Daniel Quillen. Higher algebraic K-theory. 1. In Algebraic K-theory, I : Higher K-
theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pages 85-147.
Lecture Notes in Math., Vol. 341. Springer, Berlin, 1973. Zbl 0292.18004 MR 338129

Oscar Randal-Williams. The stable cohomology of automorphisms of free groups with
coefficients in the homology representation. arXiv:1012.1433, 2010.

Takao Satoh. Twisted first homology groups of the automorphism group of a free group.
J. Pure Appl. Algebra, 204(2) :334-348, 2006. Zbl 1108.20050 MR 2184815

Takao Satoh. Twisted second homology groups of the automorphism group of a free
group. J. Pure Appl. Algebra, 211(2) :547-565, 2007. Zbl 1130.20038 MR 2341270

Alexander Scorichenko. Stable K-theory and functor homology over a ring. PhD thesis,
Evanston, 2000. MR 2700820

Charles A. Weibel. An introduction to homological algebra, volume 38 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994.
Zbl1 0797.18001 MR 1269324

Received February 25, 2013

A. Djament, CNRS, laboratoire de mathématiques Jean Leray, Nantes, France

E-mail: aurelien.djament@univ-nantes.fr

C. Vespa, Institut de Recherche Mathématique Avancée, université de Strasbourg, France

E-mail: vespa@math.unistra.fr



	Sur l'homologie des groupes d'automorphismes des groupes libres à coefficients polynomiaux

