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Abstract. We prove a new variant of the energy-capacity inequality for closed rational

symplectic manifolds (as well as certain open manifolds such as R2", cotangent bundle

of closed manifolds...) and we derive some consequences to C°-symplectic topology.
Namely, we prove that a continuous function which is a uniform limit of smooth normalized
Hamiltonians whose flows converge to the identity for the spectral (or Hofer's) distance

must vanish. This gives a new proof of uniqueness of continuous generating Hamiltonian for
hameomorphisms. This also allows us to improve a result by Cardin and Viterbo on the C°-
rigidity of the Poisson bracket.
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1. Introduction and results

Let (M,co) denote a closed and connected symplectic manifold. It is said to be

rational if for a non-negative e I. A rational symplectic
manifold is called monotone if there exists lei such that [co] Acq on ^(AT),
where c\ denotes the first Chern class of (M, co). We say that M is positively
monotone if A ^ 0 and negatively monotone if A < 0.

Recall that, because cd is non-degenerate, a smooth Hamiltonian, that is, a

smooth map H : S1 x M —>• R, generates a family of Hamiltonian vector fields
defined by dHt cd(X'h, and which in turn generates a 1-parameter family of
diffeomorphisms cp'H such that cj)^ is the identity and X'H(cj)'H).

The time-1 diffeomorphisms obtained as the end of a Hamiltonian flow form a

group called the Hamiltonian diffeomorphism group and usually denoted Ham(M. co).
Its universal cover, Ham(M.co), is naturally isomorphic to the set of equivalence
classes of normalized Hamiltonians. Recall that (on compact manifolds), a Hamiltonian

is said to be normalized if for all t, JM Ht con =0 and that two normalized
Hamiltonians H and K are equivalent if there exists a homotopy running from H to
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K, consisting of normalized Hamiltonians whose flows have fixed ends, namely Id

The universal cover Ham(M, tu) admits two natural "(pseudo-)norms". The first
one was introduced by Hofer in [ 11 ] (and is now called Hofer's norm). It is defined

where the infimum is taken over all Hamiltonians K whose flow is a representative
of the homotopy class <j>.

The second one arises as a consequence of the theory of spectral invariants. One

can associate to every smooth Hanultonian a real number called the spectral invariant
of H\ it is usually denoted by c(l, H). This is, roughly speaking, the action level
at which the neutral element 1 e QH*(M) appears in the Floer homology of H.
These invariants were introduced by Viterbo, Schwarz and Oh (See [28], [24], the

lecture notes [21] and references therein). They have been extensively studied and

have had many interesting applications to symplectic topology. For example, they
were used by Entov and Polterovich in their construction of Calabi quasimorphisms
[5], and by Ginzburg in his proof of the Conley conjecture [10],

Note that, even though the unit of the quantum cohomology ring is not necessarily
the only class to which one can associate such invariants, it is the only one used in
this article and thus c(l, H) will be denoted t(H).

Spectral invariants lead to a "spectral pseudo-norm" which is defined for an

element 0 e Ham(A/, co) generated by a Hanultonian H as

(H is explicitly defined in Section 2, it generates the Hamiltoman isotopy (4>'H)~l.)
One quite remarkable fact is that the spectral pseudo-norm is bounded from above

by Hofer's norm (see Section 2).

In this article, we are interested in limits of Hamiltoman flows for these

(pseudo-)norms, this is a central theme of what is now called "C°-symplectic
topology". This terminology refers to a family of problems in symplectic topology
that tries to define and study continuous analogs of the classical smooth objects
of the symplectic world. Such definitions are often made possible by symplectic
rigidity results. As an example, the famous Gromov-Eliashberg Theorem (the group
of symplectic diffeomorphisms is C°-closed in the full group of diffeomorphisms)
allows to define a symplectic homeomorphism as a homeomorphism which is a C°-
limit of symplectic diffeomorphisms.

One important motivation for C°-symplectic topology is to try to define
continuous Hamiltoman dynamics. As an example, this was the purpose of the

definition by Oh and Muller [22] of the notion of a "continuous Hamiltoman isotopy"
(we will contract this terminology to the shorter "hameotopy"), whose definition

and (f> := 4>XH <j>lK

by

y(<f>) c(H) + c{H)
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we now recall. Equip M with a distance d induced by any Riemannian metric.
We define the C°-distance between two homeomorphisms 0, x/r by dco((p, \jf) :=
max d(<p(x), \j/(x)). For two paths of homeomorphisms <//, \fr' (t e [0. 1]) define

dco((/>'. fl') := maxd(<p'(x), ifr'(x)). In Remark 4.1, we briefly discuss an
t,x

important property of this metric.
A path of homeomorphisms h' is a hameotopy if there exists a sequence of

smooth Hamiltonian functions {H] such that

* dCo(4>tHk<ht)-+0.
• the Hamiltonian functions converge uniformly to a continuous function

H : §' x M -* R.

Analogously to the smooth case, the function H is said to "generate" the isotopy
/?'. A continuous function H generates at most one hameotopy [22]. The set of all

time-independent functions H generating a hameotopy will be denoted by C^am. As
noticed in [22], every C1'1 function belongs to C,!Jam. One important result of the

theory is the uniqueness of the generating continuous Hamiltonian:

Theorem 1.1 (Viterbo [29], Buhovsky-Seyfaddini [3]). Let {H^}, {H'k} be two

sequences of normalized smooth Hamiltonians on a closed manifold M. Suppose
that their flows C°—converge to the same continuous isotopy and that — H'k

converges uniformly to some continuous function H. Then H vanishes identically. In
other words, given a hameotopy, the generating continuous Hamiltonian is unique.

The first major theorem of this article is a result analogous to the above with the

C°-distance replaced by the spectral pseudo-distance y. Since, in this generality,
Y is not defined on the Hamiltonian diffeomorphisms group itself but only on its
universal cover, we need to replace isotopies by their lift to the universal cover. We

will denote by {f'H} (or just <p'H) the unique lift of the isotopy {f'H) to Ham (M.co)
whose starting point, 0^, is the identity element. Said differently, for fixed t M,

<p'H is the element of Ham(M, co) represented by the path [0, 1] —> Ham(M, co),

s

Theorem 1.2. Let (M.co) denote a rational symplectic manifold, let U be a
nonempty open subset of M, I be a non-empty open interval in M and {H^), J H'k j be

two sequences of smooth Hamiltonians such that

(i) For any t e /, y(0'w 0'„,) converges to zero,
k "k

(ii) Hk and H'k converge uniformly on I x U respectively to continuous functions
H and H'.

Then, H — H' depends only on the time variable on I x U.

Note that, since the spectral pseudo-distance is bounded from above by Hofer's
distance, this theorem also holds with y replaced by || • ||. Note also that if U M
and if the sequences consist of normalized Hamiltonians, then H H'.
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Finally, let us emphasize the fact that if spectral invariants descend from
Ham(A/. co) to Ham(A/. co), then y also descends (as a genuine norm) and Theorem

1.2 holds if we replace (i) by the much weaker assumption:

(i') For any t e I, y(<ptHk. q) converges to zero.

For example, this is true if we assume the additional (rather strong) assumption that

(M, co) is weakly exact (that is, co(tz2(M)) 0). Another example comes from the

third author's [26]. Assume that (M, co) is negatively monotone and that there exists
a non-empty open set V such that for all k, Hk and H'k lie in (^(S1 x (M\V)),
then Theorem 1.2 holds under (i') and (ii).

Applications. Theorem 1.1, which proves that hameotopies have unique normalized

generating Hamiltonians, is one of the most foundational results in C°
Flamiltonian dynamics; see [3, 22, 29] for some of the consequences of this theorem.
In Section 4, we will show that Theorem 1.2 allows us to recover Theorem 1.1; to
the best of our knowledge, this is the first proof of Theorem 1.1 via Floer-theoretic
methods.

In addition to the above, Theorem 1.2 has other interesting consequences as well.
In [ 14] (see [ 13] for a better presentation though in French), the first author suggested
another attempt of defining continuous Hamiltonian dynamics. The idea is to
introduce the abstract completion of the group of Flamiltonian diffeomorphisms with

respect to the spectral metric. The paper is written in R2" but everything there can be

done on general, symplectically aspherical, closed manifolds (where, as mentioned

above, y descends to a non-degenerate norm on Ham(M, co)). On the level ot

Hamiltonian functions, one can introduce a distance between two Hamiltonians by

yu(H.K) sup y(0tf-</4)-
refo, 1]

and call a "generalized Hamiltonian" any element in the completion of the set of
smooth Hamiltonians with respect to the distance yu. The canonical map H i-> q

naturally extends to the completions, and we can speak of the "flow" generated by
a generalized Hamiltonian. These completions have applications to the study of
Hamilton-Jacobi equations ([14, 13]). They are also needed for Viterbo's symplectic

homogenization theory [30].
The main problem encountered with these completions is that their elements

are a priori very abstract objects, that is, equivalence classes of Cauchy sequences

for some abstract distance. However, some elements can be represented by honest

continuous functions: Indeed, the inequality yu < || • ||co induces a map t from
C®(§' x M) to the set of generalized Hamiltonians. It follows that continuous
Hamiltonians have a flow in the y-completion of the Hamiltonian group. Like in
the case of hameotopies, it is natural to wonder whether the generating continuous
Hamiltonian is unique. Theorem 1.2 answers this question positively. It says
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in particular that the map t is injective. In other words, the continuous function

representing a given generalized Hamiltonian is unique.
Note that since Theorem 1.2 holds for any open set U, the uniqueness of the

continuous generator is actually local. Therefore, the result can be applied to

generalized Hamiltonians that can be represented by not everywhere continuous
functions. Examples of such elements where provided in [14J.

Theorem 1.2 also has consequences in terms of C°-rigidity of the Poisson

bracket. Recall that the Poisson bracket of two differentiable functions F, G on

M, with Hamiltonian vector held Xp, Xq is given by

{F.G} co(XF,XG).

A function F is called a first integral of G £ C^im if F is constant along the flow of
G. When F and G are smooth, F is a first integral of G if and only if {F, G] 0.

As one can see, the Poisson bracket is defined only in terms of the differentials
of the involved functions. Nevertheless, it satisfies some rigidity with respect to the

C°-topology. This property was first discovered by Cardin and Viterbo [4J. Their
theorem has opened an active domain of research and has been improved in several

directions by many authors (see e.g., [1, 2, 6, 7, 15, 311 for some of the strongest
results).

Here, we improve the result of Cardin and Viterbo in a new direction.

Theorem 1.3. Let Ff, and G^ be two sequences of smooth functions on a closed,

rational symplectic manifold M such that:

• the sequence F^ converges uniformly to some continuous function F,

• the sequence Gf, converges uniformly to some function G e C|5im

• the sequence of Poisson brackets 1 l-f, G^} converges uniformly to 0.

Then, F is a first integral of G.

In particular, the theorem holds when F is C° and G is C1,1. The result of
Cardin and Viterbo was the same theorem but with both F and G of class Cx,x. In

our case where F is only C°, the proof is made more difficult by the fact that F does

not have any flow in general.
After the first version of this paper was written, we were informed by Buhovsky

that it is possible to prove Theorem 1.3 using the energy-capacity inequality.
Furthermore, Buhovsky's method allows him to remove the rationality assumption
in the statement of the theorem.

Theorem 1.3 allows us to relate two notions of Poisson commutativity for
continuous Hamiltonians. First recall the definition proposed by Cardin and
Viterbo [4]: Two continuous functions C°-commute if they are uniform limits of
functions whose Poisson bracket uniformly converges to 0. Another definition of
commutativity tor functions in C/jjm would simply be that their flows commute.
Theorem 1.3 has the following immediate corollary.
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Corollary 1.4. If two functions in C,(j.in| commute in the sense ofCardin and Viterbo,
then the hameotopies they generate commute.

Key technique involved in the proof of the main result. In order to prove
Theorem 1.2, we first establish a new variant of the energy-capacity inequality for
closed monotone symplectic manifolds.

We denote by c'hz the following version of the Hofer-Zehnder capacity (see [12]):
For an open set U,

chz(C) sup{max f \ f Cf°(U) slow and non-negative}.

Recall that H is called slow if its Hamiltonian flow {(p'H}t has no non-trivial orbits
of period at most 1. As an example, it is well known that for a symplectic ball B of
radius r, cHZ(B) nr2.

Since these types of capacities are defined in a very different fashion than the

action selector c—as well as other natural invariants like displacement energy—
comparison between them (energy-capacity-like inequalities) leads to interesting

consequences (see e.g., [8, Theorem 1] for such relations and further applications).
The key result toward our proof of Theorem 1.2 is the following set of energy-
capacity-like inequalities.

Theorem 1.5. Let (M. en) denote a monotone symplectic manifold. Suppose that U
is an open subset ofM and H is a smooth Hamiltonian such that V(t, x) G [0. 1 ] x U

we have H(t,x) C. Then, at least one of the following two possibilities holds:

(1) y{4>]1)=c(H) + c(H)^cwz(U),

(2) |c(H) - CK chz(K and \c(H) + CK cHZ(U).

We will prove Theorem 1.5 in Section 3. It is evident from our proof that if
(M. on) is positively monotone and the second of the above possibilities holds, then

the numbers (c(H) — C) and (c(H) + C) are always non-negative.
The above result, combined with the fact that c and y are both bounded by the

Hofer norm (see Section 2), has an immediate corollary.

Corollary 1.6. Let (M. on) denote a monotone symplectic manifold, U an open
subset of M, and H a normalized and smooth Hamiltonian such that for any
(t. x) G [0, 1] x U we have H(t,x) C ^ 2cHZ(C). Then ||^|| ^ cHZ(U).

Our proof of Theorem 1.5 relies on the discreteness of a>(jt2{M)) and hence it
does not extend to irrational manifolds. However, when (M.co) is rational, but not
monotone, we can prove a weaker version of Theorem 1.5 which is sufficient for the

applications considered in this article.
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Theorem 1.7. Let (M. co) denote a rational symplectic manifold. Suppose that U is

an open subset of M and H is a smooth Hamiltonian such that V(/, a) e [0, 1] x U
we have H(t, x) C. Then, at least one of the following two possibilities holds:

(') Y(4>1h) + C(H) ^ chz(U),

(2) there exist k and k G Z, depending on H, such that:
0 < c(H) — C — kQ < chz(00 and 0 < c(H) + C + k£2 < chz(D).

Moreover, if c'hz(O') < t/7en we may choose k k.

Theorem 1.7 will be proved in Section 3; note that it is trivially true if
chz(U) ^ £2.

Currently [16], we are in the process of proving energy-capacity-type inequalities,

in the spirit of those appearing in this section, for Lagrangian spectral invariants

as defined by Viterbo [28] for cotangent bundles or by Leclercq [18] for weakly
exact Lagrangians in compact manifolds. Such inequalities could be potentially very
helpful in obtaining new rigidity results for Lagrangian submanifolds.

Extension to non-closed manifolds. In this article, we have written our results for
closed manifolds only, but each of them can be adapted to non-closed manifolds as

soon as spectral invariants are properly defined and satisfy the standard properties
(see Proposition 2.1 below). Of course, in this case, we only consider compactly
supported Hamiltonians. (Note that in non-compact manifolds the requirement
for a Hamiltonian to have compact support is a natural—and commonly used—
normalization condition.)

Frauenfelder and Schlenk [9] defined the spectral invariant c on any weakly exact

convex at infinity symplectic manifold. This has been extended to more general
convex at infinity symplectic manifolds by Lanzat [17]. In the special case of
M2" spectral invariants can be defined using generating functions instead of Floer
homology following Viterbo [28]. Our results also extend to this setting.
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2. A review of spectral invariants

In this section we briefly review the theory of spectral invariants on closed symplectic
manifolds. For further details we refer the interested reader to [19, 21, 24].

7Z2(M)Denote by £20(M) the space of contractible loops in M and let T :=
ker(cj )nker([c«;])

It is the group of deck transformations of the Novikov covering of Q0(M), which is

defined by the following expression:

^ {[z,u] : z e Q0(M),u : D2 -» M,u\dDi z}
0

[z, u] [z', it'] if z z' and ft#u' 0 in T

where ü#u' denotes the sphere obtained by gluing u and u' along their common
boundary with the orientation on u reversed. The disc it, appearing in the above

definition, is referred to as the capping disc of z. Recall that the action functional of
a Hamiltonian H is a map from Qo (M) to M defined by

Ah([z.u]) I H(t,z(t))dt — f u*a>.
JS1 J D2

It is well known that the set of critical points of Ah, denoted by Crit(_4//), consists

of equivalence classes of pairs, [z,w] e Q0{M), such that z is a 1-periodic orbit
of the Hamiltonian flow tp'H. The set of critical values of Ah is called the action

spectrum of H and is denoted by Spec (//); it has Lebesgue measure zero. When

H is non-degenerate, the set Crit(„4//) can be indexed by the well known Conley-
Zehnder index, /rcz • Crit(_4//) —> Z, for every S G T, the Conley-Zehnder index

satisfies

Fez([z< m#2]) Fez([z. "]) - 2ei (S). (2.1)

Several conventions are used for defining this index. We fix our convention in the

following fashion: suppose that g is a C2-small Morse function. For every critical
point p of g, we require that

'Morse(p) — FCZ (\_P • "/?])'

where iuorAp) is the Morse index of p and up is a trivial capping disc. Notice
that the set of equivalence classes of pairs [p, u] consists of equivalence classes

[p, E], with E in jz2{M) (and [p, E] [p, E'] if cu(E) cu(E')) and that with
our convention Fcz([F- ^]) 'Morse(F) — 2fi(E). This observation will be useful

in the proofs of Theorems 1.5 and 1.7.

Spectral invariants, or action selectors, are defined via Hamiltonian Floer theory.
The procedure consists of filtering Floer homology by the values of the action
functional and then associating to quantum cohomology classes (seen as Floer
homology classes via the so-called PSS homomorphism [23]) the minimal action level
at which they appear in the filtration. As mentioned in the introduction, the specific
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spectral invariant used in this article, denoted by c(H) for H e C°°(§1 x M), is

the one associated to the neutral element 1 QH*(M). We will now list, without
proof, the basic properties of this spectral invariant. Recall that the composition
of two Hamiltonian flows, tf>{H o tp'G, and the inverse of a flow, are

Hamiltonian flows generated by H#G(t,x) H(t,x) + G(t,(tp'H)~l (x)) and

H(t.x) —H(t. <fi'H(x)), respectively.

Proposition 2.1 ([20, 21, 24, 27]). The spectral invariant c : C0O(S1 x M) -» M

has the following properties:

(1) (Shift) If r : S1 -» M is smooth then c(H + r) c(H) + fsl r(t)dt.

(2) (Triangle Inequality) c(H#G) f c(H) + c(G).

(3) (Continuity) \c(H) — o(G)| ^ /gi max^M \Ht — Gt\dt.

(4) (Spectrality) If(M,a>) is rational, then there exists [z.u] Crit(^4//) such

that c(H) .4//([r.»]), i.e. c(H) E Spec(//). Furthermore, if H is non-
degenerate then /xcz([^. w]) 2n.

(5) (Homotopy Invariant e) Suppose that H and G are normalized and generate

the same element of Ham(M). Then, c(H) c(G).

The spectral pseudo-norm y is defined on Ham(A7, to) by the expression

y(tp'H) c(H) + c(H)-

It induces a pseudo-distance (also denoted y) defined by

Y(<P'h-<I>'k) Y((<t>'Krl °<P'H) + c(H#K).

Note that c and y are both bounded by the Hofer distance || • ||. This easily follows
from a slightly different version of Property (3):

I min (H, — Gt)dt ^ c(H) — c(G) ^ I max(Ht—Gt)dt.
J§ i xeM Jgl xeM

It is well known [24] that if co\n2(M) 0, then y descends to a genuine distance
°n Ham(M, en).

Finally, we end this section with the following lemma which will be used in the

proof of Theorem 1.5.

Lemma 2.2. Suppose that H is a not necessarily non-degenerate Hamiltonian on a
sympiectic manifold (M.co). Let A {y : 3u s.t. c(H) A//([y. it})). Ifall the
orbits y 6 A are non-degenerate, then there exists a capped orbit [y, u] such that
C(H) An([y, w]) and Pcz([y• M]) 2».
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Proof. For each y e A, let Uy denote a neighborhood of y which contains

no other periodic orbits of H \ such neighborhoods exist because the orbits
contained in A are all isolated. Pick a sequence of non-degenerate Hamiltoni-
ans, {//,},, C3-approximating H such that for every i and every y A,

Hi\uy H\Uy For each i, let [y,.u,] denote a capped orbit of H, such that

c(H,) Ah, (bd.m,]) and flcz([Yi<ui]) 2n. Such [y,.u,] exists by spectrality
of the invariant c and non-degeneracy of H,.

By the Arzela-Ascoli theorem, a subsequence of the orbits y,, which we will
denote by y, as well, C '-converges to an orbit y' of H. Since the orbits y,
C'-converge to y', one can construct a capping disc u' for y' such that 00(11,)

converges to co(u'). It follows that c(H) Ah(\y' »']) and thus y' e A.

Now, y' is isolated and H, coincides with H on UY>. Hence, y, y' for large
/ and thus co(it,) a>(u') for large i. It then follows that the capped orbits [y'. m,],

for sufficiently large i, satisfy the conclusion of our lemma.

3. Proofs of the energy-capacity-type inequalities

The main goal of this section is to prove Theorems 1.5 and 1.7. We will also state
and prove two additional results which will be used in the proof of Theorem 1.2. Our

arguments will use the following notion:

Definition 3.1. (See [27, Definition 4.3]) Let f : M K be an autonomous
Hamiltonian. A critical point p of / is said to be flat if the linearized flow

((p'j-)* : TPM —» TpM has no non-constant periodic orbits of period at most 1.

The function /' is called flat if all of its critical points are flat.

The importance of the above notion stems from the fact that if p is a non-
degenerate and flat critical point of /, then the Morse index of p coincides with
the Conley-Zehnder index of [p, 11 p\. In Theorem 4.5 of [27], Usher proves that a

slow and autonomous Hamiltonian on a closed manifold can be C"-approximated,
up to any precision, by Hamiltonians which are slow, flat, and Morse. In our proof
of Theorem 1.5 we will need the following variant of Usher's theorem.

Theorem 3.2. (Usher [27, Theorem 4.5]) Let H : M —> R. denote a slow
Hamiltonian whose support is contained in U. For any S > 0 there exists a slow
Hamiltonian K : M M such that \\K — H H^o < 8, the support of K is contained
in U, and alt critical points of K that are contained in the interior of its support are
non-degenerate and flat.

We will not prove the above theorem as it can easily be extracted from the proof
of Theorem 4.5 in [27]. Theorems 1.5 and 1.7 are similar in nature and their proofs
have significant overlaps. Hence, we will provide a single argument proving both
theorems at once.
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Proofs of Theorems 7.5 and 1.7. Observe that by the shift property of spectral
invariants we may assume, without loss of generality, that C 0.

For any S > 0 pick a time independent Hamiltonian f e Cc°°(t/) such that f is

slow, 0 < /, and cHz(L) — 8 ^ max( f). Since f is slow we have c( f) max(/)
and c(— f) 0; for a proof of this fact see Proposition 4.1 of [27J. Note that the

conventions used in [27] are different from ours. By Theorem 3.2, we may assume
that the critical points of / that are contained in the interior of the support of / are

non-degenerate and flat. Consider the Hamiltonian Hs H + sf. Its 1-periodic
orbits consist of 1-periodic orbits of the flow of H together with the critical points
of /. Hence,

Spec(//,) Spec(77) U {sj(p) - w(E) : p £ Crit(/), E n2(M)\.

where Crit( / denotes the set of critical points of /. Similarly, define Hs — H+sJ.
We have:

Spec)//,) Spec(/7) U {sf(p) — co(E) : p e Crit(/), E £ jt2(M)}.

By the spectrality property we know that c{Hs) £ Spec(Hs) and c(Hs) £ Spec(Hs).
However, suppose that one of the following two situations holds:

c(Hs) Spec (77) for alii £ [0. 1] (3.1)

or c(Hs) Spec(/7) for all s £ [0, 1] (3.2)

If (3.1) holds, then it follows, from the continuity property of spectral invariants,
that r(77) c(77i) c(H + f). Using the triangle inequality we obtain

c(f) ^ c(H) + c(H + f). Combining these with the fact that c(f) max(/),
we get

Chz(U)~8 < max( f) < c(H) + c(H).
We arrive at the same conclusion if (3.2) holds.

We will next show that if the first possibility, in either of Theorems 1.5 and 1.7,

does not hold, then the second one must hold. Therefore, for the rest of the proof,
we will suppose that cHz(C) > c(H) + c(H). This implies that there exist 8 and

/ as in the first paragraph of this proof such that (3.1) and (3.2) do not hold. Let

s0 inf{v e [0, 1] : c(Hs) £ Spec(/7){. Note that this means c(H) c(HSo).
Pick a sequence of numbers s, £ {s £ [0, 1] : c(Hs) £ Spec(//)} such that

s, —> so. There exist critical points p, of / contained in the interior of the support
of f such that c(HSl) s, f(p,) — cu(E,), where E, n2(M). By passing to a

subsequence, we may assume that p, —» p. where p is a critical point of /; note
that p is not necessarily contained in the interior of the support of /. Now, the

sequence cu(E,) must converge because both c(HSi) and st f{pt) converge. Since

oo(ji2(M)) is discrete we conclude that ft»(E,) <w(E) for large ;. It then follows
that c(HSi) s, f (p,) — cu(E) for large i, and

c(77) c(HSa) soA/H-«(E). (3.3)
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Similarly, letro infjr e [0, 1] : c(Hs) Spec(Hs)}. Repeating the same argument
as above we find a capped orbit [q, E'] such that

c(H) c(Hro) r0f(q) - co( E'). (3.4)

We will prove Theorems 1.5 and 1.7 by carefully analyzing the numbers <w(E) and

<u(E').
Proof of Theorem 1.7: Since (M, u>) is rational, there exist integers k\ and k2 such

that <z>(£) k\Q and ftt(E') k2Q. From Equations (3.3) and (3.4) we get that

c(H) .v0 f(p) — k\Q and c(H) r0f(q)—k2£2 so that point (2) of Theorem 1.7

holds with k —k\ and k k2 since 0 ^ sof(p). r0 f(q) ^ c\\Z(U).
Moreover, we have the following chain of inequalities:

0 ^ c(H) + c(H) s0f(p) + r0f(q) + (k - k)Q ^ cHZ(U)

which implies, if chz(U) < that

-S2 < -2chz(U) < -sof(p) -r0 f(q) ^ (k - k)Q < cHZ(U) < ^£2

which can be satisfied only if k k.
Proof of Theorem 1.5: We now assume (M.co) to be monotone. We can apply
Lemma 2.2 to HS/ and assume that ßczÜPf £;]) 2n. On the other hand, HSi

coincides with s,f on a neighborhood of p, and thus

PCz([Pi • ]) 'Morse (Pi) — 2ci(E,).

where / Morse (/?i)'s the Morse index of pt with respect to /. Here, we have used the

assumption that the critical points pt of / are flat and non-degenerate, and hence

'Morse(Fi) Mcz([Pi^'p,])- Because/Morse (74) «S 2// we conclude that cq(E,) ^ 0.

Recall that for large/, <w(E,) <y(E), and thus, by monotonicity, ci(E,) ci(E).
Therefore,

c,(E) ^0.
Similarly, we have

c,(E') < 0.

Recall that co — Acq on n2(M). First, suppose that A > 0. Because

cq (E), ci (X/) ^ 0 we get that

c(H) so f(p) — Acq (E) > s0j(p),
and c(H) r0 f(q)~ Ac, (E') ^ r0f(q).

Combining these inequalities with the assumption that c(H) + c(H) < cHZ(U) we
conclude that

0 c(H) < chZ(U) and 0 ^c(H) ^ cHZ(U).
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This proves Theorem 1.5 for positively monotone symplectic manifolds. Next,

suppose that A ^ 0 and repeat the same argument as in the previous paragraph
to get that c(H) ^ s0 f(p) and c(H) ^ r0f(q). Thus, c(H), c(H) ^ c'hz(C).

Combining this with the fact that c(H) + c(H) ^ Owe obtain

|c(//)KcHZ(f/) and |c(77)KcHz(C)

which concludes the proof of Theorem 1.5.

We now focus on the rational case (proofs in the particular case of monotone
manifolds are quite similar only slightly easier). Theorem 1.7 has the following
straightforward corollary.

Corollary 3.3. Let U- and U+ denote non-empty open sublets of(M,co), and C_
and C+ real numbers such that > C± > chz(C±). Ifa Hamiltonian H satisfies

H\u± iC±, then y{<p'H) is greater than or equal to at least one ofcuz(U and

c'hz (£/+)•

Proof. Let H be as above. Apply Theorem 1.7 to H on both U- and £/+ and get
two integers k, / such that

y(4>'H) ^ cHZ(U+) or

y(4>'H) 7s chz(U-) or

C+ + k£l ^ c(H) ^ C+ + kLl + cHz(U+)

—C-f- — kLl ^ c(H) —C+ — kLl -T CHz(f^+)

-C_ + IQ ^ c(H) sC -C- + 1Q + cnz(U-)

C--IQ «C c(H) < C- - IQ + cH7(U-)

Thus, either we directly get yifi'fj) ^ c'hz(C.) for • being either + or —, or we
have:

c(H) + c(H) ^ —C- — C+ + (/ — k)Q, and

c(H) + c(H) ^ —C_ — C+ + (/ — k)Q + chz(C_) + chz(C+).

Since 0 ^ c (H) +1 (H) the second inequality forces I —k to be positive. Then from
the first inequality we obtain:

Y(4>'h) c(^0 + <-(H) ^ -Q. ^ c'Hz(f^-) + tHz(fA+)

which concludes the proof.

Now, using cut-off functions and this corollary, we can prove the following
lemma which will be the main ingredient of the proof of Theorem 1.2.
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Lemma 3.4. Let F and G be Hamiltonians. Let U± be non-empty, disjoint, open
subsets such that c'hz(U-) chz(U+) (we denote this common value by £'hz(G)j
and

(1) cHZ(U) < inf(F)-sup(G) <-Q. and symmetrically
u+ u+ 4

- < sup(F) - inf(G) <-cHZ(U),
4 u_ u~

(2) oseu±(F) + oscu±(G) < \cnz(U).
Then y(4)'F,4>'G) ^ ^Chz(G).

Proof. Fix e > 0. We choose disjoint open subsets V± such that U± C V± and

oscj/±(F) < oscj/± (/•") + £ and osck±(G) < osC[/±(G)+ £. We also choose cut-off
functions p± with support in V±, such that 0 < p± ^ 1 and p±\u± 1-

We define intermediate functions, / and g, by

f F — p+(F — a+) — p-(F — a_) with a+ inf(F) and a_ sup(F),
u+ U-

g G — p+(G — b+) — p-(G — b-) with b+ sup(G) and inf(G).
u+ u-

By triangle inequality, we get

z YÜ'f'fig) - - YÜG'&g) (3-5)

and we now bound the quantities appearing on the right-hand side.

Bounding yif'j.f'g). Define <p g# f, that is,

<p(t,x) -g(t, <j>'g(x)) + f(t,cp'g(x))

which generates (4>'g)~l ° 4>Xf Notice that <p is constant on both open sets U±:
<p\u± a± — b± and that, by assumption,

> C+ a+ — b+ inf(F) — sup(G) > c'hz(G).
4 u+ u+

-n > C_ -(a- - b-) -(sup(F) - tnf(G)) > cHZ(U).
4 u- V-

Thus, by applying Corollary 3.3 to tp we get: yif'j-.fg) y(0p > cHZ(U).

Bounding y(f'j, <pF) and ylf^.fg). By general property of y, and definition of f
y(<p'f,<j>'F) ^ osem(F - f) oscai(p+(F -a+) + p-(F - a-))

^ oseV+{p+(F -«+ + oseV-(p-(F - a-))
^ osck+(F) + osck_(F) < oseu+(F) + oseu-(F) + 2s.
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For the same reasons, we also have y(<p'g,<p'G) ^ osc{/+(G) + osec/_(G) + 2s and

(3 5) leads to

^ chz(G) - (oscr,+(F) + oseu+(G)) ~ (oseuSF) + osct/_(G)) - 4s

^ hz(G) — 4s

for any s > 0 This concludes the proof

4. Uniqueness of generators

In this section, we prove Theorems 1.2 and 1.1.

Proofof Theorem I 2. Assume that the conclusion of the theorem is false, le
H — H' is a function of time and space variables on I x U. Then there exist t0

and, up to a shift of (say) H' by a constant, x+ X- e U such that

A H(t0.x+) - H'(t0,x+) H'(t0,x_) - //(t0,x_) > 0

First, notice that there exist So e]0, 1] and ro > 0 such that for any 8 ^ So,

J [/0. t0 + <5] C / and for any / ^ >o, the balls B± — Br(x±) are disjoint,
included in U, and

/ 5 1 4 1 A / 5 1 4 1 \n ^0 (4 1)
V 4 M+ 3 M+ V 4 M_ 3 M-

with M+ supyxß+(//)-infyxß+(//') and M_ sup7xB_(//')-inf/Xß_(//)
(Even though J, B±, and M± depend on 8 and/or /, we omit them from the notation
for readability Indeed, let rj — ^ and choose 5o and ro small enough such that

suP/xß+(//) < H(t0.x+) + rj and infjxb+(H') > H'(t0, x+) - i]
I mf^ H(t0. x-) - rj and supyxS_(//') H'(t0. v_) + rj

Then A ^ M± ^ A + 2rj, so that |M+ — M_| ^ 2i] which in turn ensures
that (4 1) holds Next, notice that we can also assume <5o and r0 are small enough so

that, for any 8 ^ So and r ^ r0

4 4
inf (//)— sup (//') > -M+ and inf (//')— sup (H) > -M- (4 2)

JxB+ JxB+ 5 JxB- JxB- 5

(since these inequalities obviously hold for 8 0 and r 0 and H and H' are

continuous) We choose such a 8
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Recall that chz(^+) cHz(#-) nf2 (which we denote cHz(B)) so that we
can choose r small enough such that C\\Z(B) < A. This in particular implies that

chz(B) < 8^M±. Finally, we choose r small enough so that

f'Hz(ß) < —^ (4.3)
16

Now that r and 8 are fixed, we choose a such that

8a /5 1 4 1 \ /5 1 41
cwz(B) \4M+ 3 M+J \4M- 3 M.

Notice that, by definition, a < | CHZtfB> < 1. This implies that for all t e [0. 1],

to + a8t G J and we define L^, L'fc, L and V by: L*(f,x) o8H*(to + oSt.x)
(with • being either nothing or an integer and * being either nothing or ')•

In view of the constants we chose, we get that

inf (L) ^ 8a inf (H)^8a\-M+ + sup(//')| by (4.2)
[0,1]xZ?_|_ JxB+ y5 JxB+ J

4
^ 8a-M+ + sup (L')

5 [0, l]x5_|_

so that, by definition of a,

We also get:

so that

4
inf (L) — sup (L') ^ 8a-M+> chz(B) (4.4)

[0,l]xß+ [0,l]xß+ 5

sup (L) ^ 8a sup (H) 8a (M+ + inf (//'"
[0,l]xß+ JxB+ V JxB+

^ 8aM+ + inf (L')
[0,1 ]xß+

sup (L) — inf (L') < ^-chz(B)

[0,l]xß+ [o,i]xß+ 3

which (together with (4.4)) leads to

osc[0,i]xß+(^) + osc[0,i]xa+(Z/) < X~chz(B)

Since the quantity osc[0j]Xß+ (L) + osc[0,i]Xß+(^') is non-negative, the bound on
the capacity of B in terms of the rationality constant £2, (4.3), finally ensures that:

4 1

int (L) — sup (L ^ sup (L) — inf (L < -cHZ(B) < -ß
[0.1]xß+ [o,l]xfi+ [0,l]xB+ [0.11x5+ 3 4
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By collecting all the above results, we get

£hz(B) < inf (L) — sup (L') < -f2 and
[0,l]xB+ [0,l]xB+ ^

osc[0,l]xß+(^) + OSC[o,l]xß+(^') < -CHz(ß)

and since L^ and L'k converge uniformly on U to L and L' respectively, they also

satisfy all these inequalities as soon as k is large enough.
Now, by considering the situation on B-, we obtain the (symmetric) properties

required in order to apply Lemma 3.4 which allows us to conclude that y(4>',
k Lk

is bounded from below by |cHz(B) for k big enough.

However, by the definition of L£, for all t e [0. 1], <p'L <p'l]^S(Jt (<p'^k)~l so

that (p'Lk 4>'^Sat (<Phk )_1 • Similarly, we have <p'L, )_1 and thus

assumption (i) ensures that y(^'r ,<plT,) does go to 0 when k goes to infinity and we
* k

get a contradiction.

As promised in the introduction, we will explain how one can recover Theorem

1.1 from Theorem 1.2 But, before doing so, we make a short digression to
discuss an important property of C "-convergence

Remark 4.1. An important feature of C"-convergence, which will be used below,
is that if a sequence of homeomorphisms, (p,, C"-converges to a homeomorphism <p,

then the sequence of inverses, </>"'. C"-converges to (f>~x. We will sketch a proof of
this fact below

First, note that r/co(0,,0) —» 0 implies that dco(\l/<p,, \jrcf)) —»• 0 for any
uniformly continuous map i/r. Taking ip — <p~l, we get that dco(0-1^,, Id) -> 0.

Next, observe that dc<> is right-invariant and so we get that

Id) dco(<p-\<p^) -» 0

The above proof would fail without the assumption that (j>~x exists. In fact, it is

possible for a sequence of homeomorphisms to converge (with respect to the above

version of dco), to a map which is not a homeomorphism. In that case, the sequence
of inverses diverges. Some authors use a version of dco which avoids the above issue

by making it impossible for a sequence of homeomorphisms to converge to a map
which is not a homeomorphism For example, this is achieved in [22J by dehning

dCi)(<p, \j/) m&x(d((j)(x), if(x)) + d((p~l{x), ^-1(x)))
*

As pointed out by Mullei and Oh, the group of homeomorphisms equipped with dc<>

is a complete metric space
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Proof. First, note that Theorem 1.1 follows from the following simpler statement:
If Hk is a sequence of normalized smooth Hamiltonians which uniformly converges
to some continuous function H and if the flows (j)'Hk converge uniformly to Id, then

Then remark that if we knew that the spectral distance is continuous with respect
to the C°-topology then this statement would follow directly from Theorem 1.2

on rational symplectic manifolds. Unfortunately, this is only partially known and we
need a trick to get around this difficulty. We are going to show that for any connected
and sufficiently small open subset U C M, the function H only depends on the time
variable t. Since H is normalized, this will prove the statement. We use the same
trick as in [3, Theorem 11 ].

Let U be an open connected subset of M small enough to admit a symplectic
embedding to a closed rational symplectic manifold i : U <-»• W. Let \j/ be

a Hamiltonian difFeomorphism generated by a Hamiltonian function compactly
supported in U. Since (p'Hk C°-converges to Id, the isotopy xfr is

supported in U for k large enough. Moreover, by Remark 4.1, it converges to Id
in the C° sense. We may pushforward this isotopy using the embedding i and get a

Hamiltonian isotopy of W supported i{U). This isotopy also converges to Id in the

C° sense. Thus, according to [25, Theorem 1], its spectral pseudo-norm converges
to 0. In other words, y(if~i4>tHki/.4>'Hk) converges to 0. We may now apply our
Theorem 1.2 in W and get that H(t,\jr(x)) — H(t.x) only depends on the time
variable on [0, 1] x [/. Since this holds for any xj/, this proves our claim that H
depends only on the time variable on [0, 1] x (/.

5. C °-rigidity of the Poisson bracket

This section is devoted to the proof of Theorem 1.3

Proof. We use the notation of Theorem 1.3. The assumption G e means that
there exists a sequence of smooth functions G'k (a priori different from Gk), which

converges uniformly to G and such that the flows <p'r, converge in the C° sense to a
k

continuous isotopy also denoted <p'G. Let s be a real number. We want to prove that

F F o fsG. The sequence of functions F'k F^ o fsG, converges uniformly to

F o (psG. In view of Theorem 1.2, if we show that y(4>'Fk .4>'F>) converges to 0, then

F F o (psG follows.
Let us recall two identities. For any smooth functions //, K,

H 0.

— &K °4>'H °4>K' (5-1)

(5.2)
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The triangle inequality tor y and (5 1) gives

y(4>'Fk• 4>'fi) < Y(4>'Fk0^Gk•$,Fk) + r(4>Gk4>lFk<t>sGk• 4>&k<P*Fk<PsG'k)

The Lipschitz properties of y with respect to the C°-norm of Hamiltonians, the

bi-invanance of y and (5 2) yield

Y^f.^'F') ^ i{^.G*}||co + 2||G*-G;||co.

Hence y(<p'Fk. <p'F/) converges to 0 as wanted.
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