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New energy-capacity-type inequalities and uniqueness of
continuous Hamiltonians

Vincent Humiliere, Rémi Leclercq and Sobhan Seyfaddini

Abstract. We prove a new variant of the energy-capacity inequality for closed rational
symplectic manifolds (as well as certain open manifolds such as R?”, cotangent bundle
of closed manifolds...) and we derive some consequences to C“—symplectic topology.
Namely, we prove that a continuous function which is a uniform limit of smooth normalized
Hamiltonians whose flows converge to the identity for the spectral (or Hofer’s) distance
must vanish. This gives a new proof of uniqueness of continuous generating Hamiltonian for
hameomorphisms. This also allows us to improve a result by Cardin and Viterbo on the C%-
rigidity of the Poisson bracket.

Mathematics Subject Classification (2010). 53D40; 37J05.

Keywords. Symplectic manifolds, Hamiltonian diffeomorphism group, CY—symplectic topol-
ogy, Hofer’s distance, spectral invariants.

1. Introduction and results

Let (M, w) denote a closed and connected symplectic manifold. It is said to be
rational if w(ma(M)) = QZ for a non-negative 2 € R. A rational symplectic
manifold is called monotone if there exists A € R such that [w] = Acy on 1 (M),
where ¢; denotes the first Chern class of (M,w). We say that M is positively
monotone if A > 0 and negatively monotone if A < 0.

Recall that, because w is non-degenerate, a smooth Hamiltonian, that is, a
smooth map H : S' x M — R, generates a family of Hamiltonian vector fields
defined by dH, = w(X},,-) and which in turn generates a 1-parameter family of
diffeomorphisms ¢*; such that ¢¥, is the identity and 9,¢%, = XL, (¢%)).

The time-1 diffeomorphisms obtained as the end of a Hamiltonian flow form a
group called the Hamiltonian diffeomorphism group and usually denoted Ham(M, w).
Its universal cover, %(M , ), 1s naturally isomorphic to the set of equivalence
classes of normalized Hamiltonians. Recall that (on compact manifolds), a Hamil-
tonian is said to be normalized if for all ¢, f y Hi " = 0 and that two normalized
Hamiltonians A and K are equivalent if there exists a homotopy running from H to
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K, consisting of normalized Hamiltonians whose flows have fixed ends, namely Id
and ¢ := ¢y, = Py
The universal cover %(M , ) admits two natural “(pseudo-)norms”. The first

one was introduced by Hofer in [11] (and is now called Hofer’s norm). It is defined
by

1
bl = i .x)— min K(t, dt
18] = inf [0 (g%m ¥) — min K(i x>)

where the infimum is taken over all Hamiltonians K whose flow is a representative
of the homotopy class <;3

The second one arises as a consequence of the theory of spectral invariants. One
can associate to every smooth Hamiltonian a real number called the spectral invariant
of H; it is usually denoted by c¢(1, H). This is, roughly speaking, the action level
at which the neutral element 1 € QH™(M) appears in the Floer homology of H.
These invariants were introduced by Viterbo, Schwarz and Oh (See [28], [24], the
lecture notes [21] and references therein). They have been extensively studied and
have had many interesting applications to symplectic topology. For example, they
were used by Entov and Polterovich in their construction of Calabi quasimorphisms
[5], and by Ginzburg in his proof of the Conley conjecture [10].

Note that, even though the unit of the quantum cohomology ring is not necessarily
the only class to which one can associate such invariants, it is the only one used in
this article and thus ¢ (1, H) will be denoted ¢ ().

Spectral invariants lead to a “spectral pseudo-norm” which is defined for an
element ¢ € Ham(M, o) generated by a Hamiltonian H as

(@) = c(H)+ c(H)

(H is explicitly defined in Section 2, it generates the Hamiltonian isotopy (qb;{)‘l.)
One quite remarkable fact is that the spectral pseudo-norm is bounded from above
by Hofer’s norm (see Section 2).

In this article, we are interested in limits of Hamiltonian flows for these
(pseudo-)norms; this is a central theme of what is now called “C°%-symplectic
topology”. This terminology refers to a family of problems in symplectic topology
that tries to define and study continuous analogs of the classical smooth objects
of the symplectic world. Such definitions are often made possible by symplectic
rigidity results. As an example, the famous Gromov—Eliashberg Theorem (the group
of symplectic diffeomorphisms is C°—closed in the full group of diffeomorphisms)
allows to define a symplectic homeomorphism as a homeomorphism which is a C -
limit of symplectic diffeomorphisms.

One important motivation for C°—symplectic topology is to try to define
continuous Hamiltonian dynamics. As an example, this was the purpose of the
definition by Oh and Miiller [22] of the notion of a “continuous Hamiltonian isotopy”™
(we will contract this terminology to the shorter “hameotopy”), whose definition
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we now recall. Equip M with a distance d induced by any Riemannian metric.

We define the C°—distance between two homeomorphisms ¢, ¥ by dco(p, V) =

max d(¢(x), ¥ (x)). For two paths of homeomorphisms ¢’, ¢’ (r € [0, 1]) define
X

deo(¢p' ¥y = r?ixd(qb'(x),l/f’(x)). In Remark 4.1, we briefly discuss an

important property of this metric.
A path of homeomorphisms A" is a hameotopy if there exists a sequence of
smooth Hamiltonian functions { Hg } such that

. dco(qﬁ;{k.h’) — 0,

* the Hamiltonian functions Hj converge uniformly to a continuous function
H:S'xM - R.

Analogously to the smooth case, the function H is said to “generate” the isotopy
h'. A continuous function H generates at most one hameotopy [22]. The set of all
time-independent functions H generating a hameotopy will be denoted by C,gam. As
noticed in [22], every C ! function belongs to CJ, .. One important result of the

theory is the uniqueness of the generating continuous Hamiltonian:
Theorem 1.1 (Viterbo [29], Buhovsky—Seyfaddini [3]). Let {Hy}, {H,i} be two

sequences of normalized smooth Hamiltonians on a closed manifold M. Suppose
that their flows C%—converge to the same continuous isotopy and that Hy — H,i
converges uniformly to some continuous function H. Then H vanishes identically. In
other words, given a hameotopy, the generating continuous Hamiltonian is unique.

The first major theorem of this article is a result analogous to the above with the
C —distance replaced by the spectral pseudo-distance y. Since, in this generality,
y is not defined on the Hamiltonian diffeomorphisms group itself but only on its
universal cover, we need to replace isotopies by their lift to the universal cover. We
will denote by {¢",} (or just ¢%,) the unique lift of the isotopy {¢', } to Ham(M. w)
whose starting point, q?)?{ is the identity element. Said differently, for fixed 1 € R,
gﬂ}_, is the element of Ham(M., ) represented by the path [0,1] — Ham(M.w),
S = ¢y
Theorem 1.2. Let (M, w) denote a rational symplectic manifold, let U be a non-
empty open subset of M, I be a non-empty open interval in R and { Hy}, {H} } be
wo sequences of smooth Hamiltonians such that

(i) Foranyt € I, ]/(q;}{k . J)IH’ ) converges to zero,
2

(i) Hy and H ',é converge uniformly on I x U respectively to continuous functions
H and H'.

Then, H — H' depends only on the time variable on [ x U.

Note that, since the spectral pseudo-distance is bounded from above by Hofer’s
distance, this theorem also holds with y replaced by || - ||. Note also that if U = M
and if the sequences consist of normalized Hamiltonians, then H = H'.
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__Finally, let us emphasize the fact that if spectral invariants descend from
Ham(M, w) to Ham(M. w), then y also descends (as a genuine norm) and Theo-
rem 1.2 holds if we replace (1) by the much weaker assumption:

(i’) Foranyt € /, y(gb}lk . ¢);[li ) converges to zero.

For example, this is true if we assume the additional (rather strong) assumption that
(M, w) is weakly exact (that is, w(mo(M)) = 0). Another example comes from the
third author’s [26]. Assume that (M, w) is negatively monotone and that there exists
a non-empty open set V' such that for all k, Hy and H] lie in C2(S' x (M\V)),
then Theorem 1.2 holds under (i) and (ii).

Applications. Theorem 1.1, which proves that hameotopies have unique normal-
ized generating Hamiltonians, is one of the most foundational results in C°
Hamiltonian dynamics; see [3, 22, 29] for some of the consequences of this theorem.
In Section 4, we will show that Theorem 1.2 allows us to recover Theorem 1.1; to
the best of our knowledge, this is the first proof of Theorem 1.1 via Floer-theoretic
methods.

In addition to the above, Theorem 1.2 has other interesting consequences as well.
In [14] (see [13] for a better presentation though in French), the first author suggested
another attempt of defining continuous Hamiltonian dynamics. The idea is to
introduce the abstract completion of the group of Hamiltonian diffeomorphisms with
respect to the spectral metric. The paper is written in R*” but everything there can be
done on general, symplectically aspherical, closed manifolds (where, as mentioned
above, y descends to a non-degenerate norm on Ham(M.w)). On the level of
Hamiltonian functions, one can introduce a distance between two Hamiltonians by

Yu(H.K) = sup )/(qﬁ;{.fbtK),
tel0,1]

and call a “generalized Hamiltonian” any element in the completion of the set of
smooth Hamiltonians with respect to the distance y,. The canonical map H +— ¢,
naturally extends to the completions, and we can speak of the “flow” generated by
a generalized Hamiltonian. These completions have applications to the study of
Hamilton—Jacobi equations ([ 14, 13]). They are also needed for Viterbo’s symplectic
homogenization theory [30].

The main problem encountered with these completions is that their elements
are a priori very abstract objects, that is, equivalence classes of Cauchy sequences
for some abstract distance. However, some elements can be represented by honest
continuous functions: Indeed, the inequality y, < || - ||co induces a map ¢ from
C2(S' x M) to the set of generalized Hamiltonians. It follows that continuous
Hamiltonians have a flow in the y—completion of the Hamiltonian group. Like in
the case of hameotopies, it is natural to wonder whether the generating continuous
Hamiltonian is unique. Theorem 1.2 answers this question positively. It says
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in particular that the map ¢ 1s injective. In other words, the continuous function
representing a given generalized Hamiltonian is unique.

Note that since Theorem 1.2 holds for any open set U, the uniqueness of the
continuous generator is actually local. Therefore, the result can be applied to
generalized Hamiltonians that can be represented by not everywhere continuous
functions. Examples of such elements where provided in [14].

Theorem 1.2 also has consequences in terms of C%-rigidity of the Poisson
bracket. Recall that the Poisson bracket of two differentiable functions £, G on
M , with Hamiltonian vector field X g, X¢ is given by

(F.G) = w(XFr.Xg).

A function F is called a first integral of G € C_ if F is constant along the flow of
G. When F and G are smooth, F is a first integral of G if and only if { F, G} = 0.

As one can see, the Poisson bracket is defined only in terms of the differentials
of the involved functions. Nevertheless, it satisfies some rigidity with respect to the
C°—topology. This property was first discovered by Cardin and Viterbo [4]. Their
theorem has opened an active domain of research and has been improved in several
directions by many authors (see e.g., [1, 2, 6, 7, 15, 31] for some of the strongest
results).

Here, we improve the result of Cardin and Viterbo in a new direction.

Theorem 1.3. Let Fj, and Gy be two sequences of smooth functions on a closed,
rational symplectic manifold M such that:

* the sequence Fy converges uniformly to some continuous function F,

0

* the sequence Gy converges uniformly to some function G € Cy, .

» the sequence of Poisson brackets { Fy, Gy} converges uniformly to 0.
Then, F is a first integral of G.

In particular, the theorem holds when F is C? and G is C'!'. The result of
Cardin and Viterbo was the same theorem but with both F and G of class C!*!. In
our case where F is only C?, the proof is made more difficult by the fact that F does
not have any flow in general.

After the first version of this paper was written, we were informed by Buhovsky
that it is possible to prove Theorem 1.3 using the energy-capacity inequality.
Furthermore, Buhovsky’s method allows him to remove the rationality assumption
in the statement of the theorem.

Theorem 1.3 allows us to relate two notions of Poisson commutativity for
continuous Hamiltonians.  First recall the definition proposed by Cardin and
Viterbo [4]: Two continuous functions C°—commute if they are uniform limits of
functions whose Poisson bracket uniformly converges to 0. Another definition of
commutativity for functions in Cgum would simply be that their flows commute.
Theorem 1.3 has the following immediate corollary.
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Corollary 1.4. If two functions in CJJ

then the hameotopies they generate commute.

commute in the sense of Cardin and Viterbo,

Key technique involved in the proof of the main result. In order to prove
Theorem 1.2, we first establish a new variant of the energy-capacity inequality for
closed monotone symplectic manifolds.

We denote by cyyz the following version of the Hofer—Zehnder capacity (see [12]):
For an open set U,

cnz(U) = sup{max f | f € C°(U) slow and non-negative}.

Recall that H is called slow if its Hamiltonian flow {¢’, }, has no non-trivial orbits
of period at most 1. As an example, it is well known that for a symplectic ball B of
radius r, cyz(B) = mr2.

Since these types of capacities are defined in a very different fashion than the
action selector c—as well as other natural invariants like displacement energy—
comparison between them (energy-capacity-like inequalities) leads to interesting
consequences (see e.g., [8, Theorem 1] for such relations and further applications).
The key result toward our proof of Theorem 1.2 is the following set of energy-

capacity-like inequalities.

Theorem 1.5. Let (M, w) denote a monotone symplectic manifold. Suppose that U
is an open subset of M and H is a smooth Hamiltonian such that ¥ (¢, x) € [0, 1]x U
we have H(t,x) = C. Then, at least one of the following two possibilities holds:

(1) y(@p) = c(H) + c(H) = cuz(U),
(2) |c(H) = C| < cuz(U) and |e(H) + C| < cuz(U).

We will prove Theorem 1.5 in Section 3. It is evident from our proof that if
(M, w) is positively monotone and the second of the above possibilities holds, then
the numbers (c(H) — C) and (c(H ) + C) are always non-negative.

The above result, combined with the fact that ¢ and y are both bounded by the
Hofer norm (see Section 2), has an immediate corollary.

Corollary 1.6. Let (M.w) denote a monotone symplectic manifold, U an open
subset of M, and H a normalized and smooth Hamiltonian such that for any
(t,x) € [0,1] x U we have H(t,x) = C = 2cuz(U). Then ||¢pg|| = cnz(U).

Our proof of Theorem 1.5 relies on the discreteness of w(m2(M)) and hence it
does not extend to irrational manifolds. However, when (M. w) is rational, but not
monotone, we can prove a weaker version of Theorem 1.5 which is sufficient for the
applications considered in this article.
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Theorem 1.7. Let (M. w) denote a rational symplectic manifold. Suppose that U is
an open subset of M and H is a smooth Hamiltonian such that ¥V (¢, x) € [0, 1] x U
we have H(t,x) = C. Then, at least one of the following two possibilities holds:

(1) y(@k) = c(H) +c(H) = enz(U),

(2) there exist k and k e Z, depending on H, su£h that: B
0<c(H)—C —kQ <eyz(U)and 0 < c(H) + C + kQ < epz(U).

Moreover, if cyz(U) < %Q then we may choose k = k.

Theorem 1.7 will be proved in Section 3; note that it is trivially true if
cuz(U) = 2.

Currently [16], we are in the process of proving energy-capacity-type inequali-
ties, in the spirit of those appearing in this section, for Lagrangian spectral invariants
as defined by Viterbo [28] for cotangent bundles or by Leclercq [18] for weakly
exact Lagrangians in compact manifolds. Such inequalities could be potentially very
helpful in obtaining new rigidity results for Lagrangian submanifolds.

Extension to non-closed manifolds. In this article, we have written our results for
closed manifolds only, but each of them can be adapted to non-closed manifolds as
soon as spectral invariants are properly defined and satisfy the standard properties
(see Proposition 2.1 below). Of course, in this case, we only consider compactly
supported Hamiltonians. (Note that in non-compact manifolds the requirement
for a Hamiltonian to have compact support is a natural-—and commonly used—
normalization condition.)

Frauenfelder and Schlenk [9] defined the spectral invariant ¢ on any weakly exact
convex at infinity symplectic manifold. This has been extended to more general
convex at infinity symplectic manifolds by Lanzat [17]. In the special case of
[R2" spectral invariants can be defined using generating functions instead of Floer
homology following Viterbo [28]. Our results also extend to this setting.
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2. A review of spectral invariants

In this section we briefly review the theory of spectral invariants on closed symplectic
manifolds. For further details we refer the interested reader to [19, 21, 24].

2 (M)
ker(cy)Nker([w])
It is the group of deck transformations of the Novikov covering of £2¢(M ), which is
defined by the following expression:

Denote by 2o (M ) the space of contractible loops in M and let I :=

3 (M) = {lz.u] 1z € Qo(M),u: D> - M, u|gp2 = 2}
’  [zou]=[z w]ifz=zandu#tw’ =0in[ ’

where u#u’ denotes the sphere obtained by gluing u and u" along their common
boundary with the orientation on u reversed. The disc u, appearing in the above
definition, is referred to as the capping disc of z. Recall that the action functional of
a Hamiltonian H is a map from S:ZO(M) to R defined by

Apn ([z,u]) =/ H(t,z(1))dt —f utw.
st £

It is well known that the set of critical points of A g, denoted by Crit(Ag ), consists
of equivalence classes of pairs, [z.u] € Q¢(M), such that z is a 1-periodic orbit
of the Hamiltonian flow ¢},. The set of critical values of Ap is called the action
spectrum of H and is denoted by Spec(H); it has Lebesgue measure zero. When
H is non-degenerate, the set Crit(Ag) can be indexed by the well known Conley—
Zehnder index, ey : Crit(Agy) — Z, for every X € I', the Conley—Zehnder index
satisfies

pez[z. u#Z]) = pcz([z, u]) —2c1(2). (2.1)

Several conventions are used for defining this index. We fix our convention in the
following fashion: suppose that g is a C2—small Morse function. For every critical
point p of g, we require that

iMorse(p) = MCZ([p* up])-

where iyore(p) is the Morse index of p and u, is a trivial capping disc. Notice
that the set of equivalence classes of pairs [p,u] consists of equivalence classes
[p.X], with ¥ in 72(M) (and [p. Z] = [p. Z] if o(¥) = w(¥’)) and that with
our convention fcz([p, Z]) = imorse(P) — 2¢1(Z). This observation will be useful
in the proofs of Theorems 1.5 and 1.7.

Spectral invariants, or action selectors, are defined via Hamiltonian Floer theory.
The procedure consists of filtering Floer homology by the values of the action
functional and then associating to quantum cohomology classes (seen as Floer ho-
mology classes via the so-called PSS homomorphism [23]) the minimal action level
at which they appear in the filtration. As mentioned in the introduction, the specific
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spectral invariant used in this article, denoted by ¢(H) for H € C®(S! x M), is
the one associated to the neutral element 1 € QH*(M ). We will now list, without
proof, the basic properties of this spectral invariant. Recall that the composition
of two Hamiltonian flows, ¢}, o ¢L. and the inverse of a flow, (¢4)~". are
Hamiltonian flows generated by H#G(f,x) = H(t,x) + G(r,(qbiq)_'(x)) and
H(t.x) = —H(t. ¢}, (x)), respectively.

Proposition 2.1 (|20, 21, 24, 27]). The spectral invariant ¢ : C*®°(S' x M) — R
has the following properties:

(1) (Shift) If r : S' — R is smooth then c(H +r) = c(H) + fS' r(t)dt.
(2) (Triangle Inequality) c(H#G) < c(H) 4 ¢(G).
(3) (Continuity) [c(H) — c¢(G)| < [o1 maxyenm |H; — G,|dt.

(4) (Spectrality) If (M, w) is rational, then there exists [z,u] € Crit(Ag) such
that c(H) = Ag([z.u]), i.e. ¢(H) € Spec(H). Furthermore, if H is non-
degenerate then ez ([z.u]) = 2n.

(5) (Homotopy Invariance) Suppose that H and G are normalized and generate
the same element of I:I_'Ziﬁ](M). Then, c(H) = c(G).

The spectral pseudo-norm y is defined on P’I-z;n(M. ) by the expression

y(9h) = c(H) + c(H).

It induces a pseudo-distance (also denoted y) defined by
y(@hy. dh) = y((9h) o @ly) = c(K#H) + c(H#K).

Note that ¢ and y are both bounded by the Hofer distance || - ||. This easily follows
from a slightly different version of Property (3):

f min(H, — G;)dt < c(H) —¢c(G) < [ max(H, — G,)dt.
gl xeM gl xeM

It is well known [24] that if w|,,ar) = 0, then y descends to a genuine distance
on Ham(M, w).

Finally, we end this section with the following lemma which will be used in the
proof of Theorem 1.5.

Lemma 2.2. Suppose that H is a not necessarily non-degenerate Hamiltonian on a
symplectic manifold (M, w). Let A = {y : Ju s.t. ¢«(H) = Ag [y, u])}. If all the
orbits y € A are non-degenerate, then there exists a capped orbit [y, u] such that
c(H) = Ax([y.u]) and pez([y. u]) = 2n.
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Proof. For each y € A, let U, denote a neighborhood of y which contains
no other periodic orbits of H; such neighborhoods exist because the orbits con-
tained in A are all isolated. Pick a sequence of non-degenerate Hamiltoni-
ans, {H;};, C3-approximating H such that for every i and every y € A,
Hi|ly, = H|y,. For each i, let [y;.u;] denote a capped orbit of H; such that
c(Hi) = An, ([yi,u;]) and ez ([yi.ui]) = 2n. Such [y;. u;] exists by spectrality
of the invariant ¢ and non-degeneracy of H;.

By the Arzela—Ascoli theorem, a subsequence of the orbits y;, which we will
denote by y; as well, C'—converges to an orbit ¥’ of H. Since the orbits y;
C'—converge to y’, one can construct a capping disc u’ for y’ such that w(u;)
converges to w(u'). It follows that ¢(H) = Ag ([y',u’]) and thus y’ € A.

Now, y’ is isolated and H; coincides with /{ on U,. Hence, y; = y’ for large
i and thus w(u;) = w(u') for large i. It then follows that the capped orbits [y, u;].
for sufficiently large i, satisfy the conclusion of our lemma. ]

3. Proofs of the energy-capacity-type inequalities

The main goal of this section is to prove Theorems 1.5 and 1.7. We will also state
and prove two additional results which will be used in the proof of Theorem 1.2. Our
arguments will use the following notion:

Definition 3.1. (See [27, Definition 4.3]) Let f : M — R be an autonomous
Hamiltonian. A critical point p of f is said to be flat if the linearized flow
(q’)})* : TyM — T, M has no non-constant periodic orbits of period at most 1.
The function f is called flat if all of its critical points are flat.

The importance of the above notion stems from the fact that if p is a non-
degenerate and flat critical point of f, then the Morse index of p coincides with
the Conley—Zehnder index of [p.,up]. In Theorem 4.5 of [27], Usher proves that a
slow and autonomous Hamiltonian on a closed manifold can be C"—approximated,
up to any precision, by Hamiltonians which are slow, flat, and Morse. In our proof
of Theorem 1.5 we will need the following variant of Usher’s theorem.

Theorem 3.2. (Usher |27, Theorem 4.5]) Let H : M — R denote a slow
Hamiltonian whose support is contained in U. For any § > 0 there exists a slow
Hamiltonian K : M — R such that |K — H||co < &, the support of K is contained
in U, and all critical points of K that are contained in the interior of its support are
non-degenerate and flat.

We will not prove the above theorem as it can easily be extracted from the proof
of Theorem 4.5 in [27]. Theorems 1.5 and 1.7 are similar in nature and their proofs
have significant overlaps. Hence, we will provide a single argument proving both
theorems at once.
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Proofs of Theorems 1.5 and 1.7. Observe that by the shift property of spectral in-
variants we may assume, without loss of generality, that C = 0.

For any § > 0 pick a time independent Hamiltonian f/ € C°(U) such that f is
slow,0 < f,and cyz(U) —§ < max(f). Since f is slow we have ¢( f) = max([f)
and c¢(—f) = 0; for a proof of this fact see Proposition 4.1 of [27]. Note that the
conventions used in [27] are different from ours. By Theorem 3.2, we may assume
that the critical points of f that are contained in the interior of the support of f are
non-degenerate and flat. Consider the Hamiltonian H; = H + sf. Its 1-periodic
orbits consist of 1—periodic orbits of the flow of H together with the critical points
of /. Hence,

Spec(Hg) = Spec(H) U {sf(p) —w(X) : p € Crit( f), X € mp(M)},

where Crit( f') denotes the set of critical points of f. Similarly, define Hy = H+sf.
We have:

Spec(Hs) = Spec(H) U {sf(p) —w(2) : p € Crit(f), T € m2(M)}.

By the spectrality property we know that ¢(Hy) € Spec(Hy) and c(ﬁs) S Spec(ﬁs).
However, suppose that one of the following two situations holds:

c(Hy) € Spec(H ) forall s € [0, 1] (3.1)
or ¢(Hy) € Spec(H) forall s € [0, 1] (3.2)

If (3.1) holds, then it follows, from the continuity property of spectral invariants,
that ¢(H) = c¢(H;) = c¢(H + f). Using the triangle inequality we obtain
c(f)<c(H)+c(H + f). Combining these with the fact that ¢( /) = max(f),
we get

ciz(U) =8 < max(f) < c(H) + c(H).

We arrive at the same conclusion if (3.2) holds.

We will next show that if the first possibility, in either of Theorems 1.5 and 1.7,
does not hold, then the second one must hold. Therefore, for the rest of the proof,
we will suppose that cyz(U) > c¢(H) + ¢(H). This implies that there exist 4 and
/ as in the first paragraph of this proof such that (3.1) and (3.2) do not hold. Let
so = inf{s € [0.1] : ¢(Hy) ¢ Spec(H)}. Note that this means c(H) = c(Hy,).
Pick a sequence of numbers s; € {s € [0,1] : c¢(Hs) ¢ Spec(H)} such that
si — so. There exist critical points p; of f contained in the interior of the support
of f such that c(Hy,) = s; f(pi) — w(X;), where X; € m2(M). By passing to a
subsequence, we may assume that p; — p, where p is a critical point of f; note
that p is not necessarily contained in the interior of the support of f. Now, the
sequence w(X;) must converge because both ¢(Hy,) and s; f(p;) converge. Since
w(ma(M)) is discrete we conclude that w(X;) = w(X) for large i. It then follows
that c(Hy, ) = s; f(pi) — w(Z) for large i, and

c(H) = ¢(Hy,) = 50 f(p) — (). (3.3)
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Similarly, let ro = inf{r € [0, 1] : c(Hy) ¢ Spec(H,)}. Repeating the same argument
as above we find a capped orbit [¢. £'] such that

c(H) = c(Hp,) = ro f(g) — o(X). (3.4)

We will prove Theorems 1.5 and 1.7 by carefully analyzing the numbers (%) and
w(X).
Proof of Theorem 1.7: Since (M, w) is rational, there exist integers k; and k> such
that (X) = k1 and w(X’) = k,Q. From Equations (3.3) and (3.4) we get that
c(H)=sof(p)—kiQand c(H) = ro f(q) — k22 so that point (2) of Theorem 1.7
holds with k = —k; and k = k5 since 0 < s f(p). 70 f(q) < cuz(U).

Moreover, we have the following chain of inequalities:

0<c(H)+c(H)=sof(p)+rof(q) + (k—k)Q < epz(U)

which implies, if cyz(U) < %Q that
. —~ |
—Q < 2ez(U) < =sof(p)—rof(q@) <k —k)Q < cpz(U) < EQ

which can be satisfied only if k = k.

Proof of Theorem 1.5: We now assume (M, ®) to be monotone. We can apply
Lemma 2.2 to Hy; and assume that pcz([pi. X;]) = 2n. On the other hand, H,
coincides with s; f on a neighborhood of p; and thus

pez([pi, Zi]) = iMorse(Pi) — 2¢1(Z5).

where iporse (pi) 1s the Morse index of p; with respect to f. Here, we have used the
assumption that the critical points p; of f are flat and non-degenerate, and hence
IMorse (Pi) = pez([pi.up;]). Because ivorse (pi) < 2n we conclude that ¢ (%;) < 0.
Recall that for large i, w(X;) = w(X), and thus, by monotonicity, ¢ (%;) = ¢;(Z).
Therefore,

c1(X) <0.
Similarly, we have
c1(Z) 0.
Recall that @ = Acy; on ma(M). First, suppose that A > 0. Because

c1(X). c1(X') < 0 we get that

c(H) =s0f(p)—Ac1(Z) = sof(p),
and ¢(H) = ro f(q) = Aei(Z') = ro f(q).
Combining these inequalities with the assumption that ¢(H') + c(H) < cyz(U) we

conclude that

0<c(H) <ceyz(U) and 0 < c(H) < cnz(U).
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This proves Theorem 1.5 for positively monotone symplectic manifolds. Next,
suppose that A < 0 and repeat the same argument as in the previous paragraph
to get that ¢(H) < 5o f(p) and c(H) < ro f(g). Thus, c¢(H), c(H) < enz(U).
Combining this with the fact that ¢(H) + ¢(H) > 0 we obtain

lc(H)| < enz(U) and |e(H)| < cuz(U)
which concludes the proof of Theorem 1.5. L]

We now focus on the rational case (proofs in the particular case of monotone
manifolds are quite similar only slightly easier). Theorem 1.7 has the following
straightforward corollary.

Corollary 3.3. Let U_ and Uy denote non-empty open subsets of (M, w), and C_
and Cy real numbers such that %Q > Cq > cyz(Ux). If a Hamiltonian H satisfies

H|y, = xCy, then )/((f)’H) is greater than or equal to at least one of cyz(U-) and
cuz(Uy).

Proof. Let H be as above. Apply Theorem 1.7 to H on both U_ and U4 and get
two integers k, [ such that

Ci+kQ<c(H)SCtr +kQ + cuz(Uy)

U
Yi) 2 culls) o {C+-kQ < c(H) < —Cy —kQ + cuz(Uy)

5 —C_+IQ < e(H) s —C_+1Q U_
y(dhy) = enz(U-)  or % T c(H) + + cuz(U-)

C_—IQ <c(H)<C_—1Q+ ez (U2)

Thus, either we directly get y(rf)h) > cpz(U,) for e being either 4+ or —, or we
have:

c(HY+c(H)>—C_ —Cy + (I — k)2, and
c(H)+ c(H) < —=C- — C4 + (I = k)Q + cuz(U-) + enz(Uy).

Since 0 < ¢(H )+ ¢(H) the second inequality forces [ —k to be positive. Then from
the first inequality we obtain:

- — 1
Y(dy) = c(H) +c(H) > 59 2 cyz(U-) + cepz(U4)
which concludes the proof. O

Now, using cut-off functions and this corollary, we can prove the following
lemma which will be the main ingredient of the proof of Theorem 1.2.
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Lemma 3.4. Let F and G be Hamiltonians. Let Uy be non-empty, disjoint, open
subsets such that cyz(U-) = cuyz(U4) (we denote this common value by cyz(U))
and

1
(1) cuz(U) < inf(F) —sup(G) <-=Q. and symmetrically
Uy Uy 4

1
——Q <sup(F) —inf(G) < —cuz(U),
4 U_ U_

(2) oscy, (F) + oscy (G) < %CHz(U).
Then y(&}.q%) > %cHz(U).

Proof. Fix & > 0. We choose disjoint open subsets V. such that U+ C Vi and
oscy, (F) < oscy, (F)+eandoscy, (G) < oscy,. (G) + €. We also choose cut-off
functions p+ with support in V4, such that 0 < p+ < land p4 |y, = 1.

We define intermediate functions, / and g, by

f=F—py(F—ay)—p_(F—a-) withay = g]f(F) and a_ = sup(F),
. U_

g=G—p4(G—by)—p_(G—b-) withby =sup(G)and b_ = i&lf(G).
Uy ~

By triangle inequality, we get
V(. 05) = v(@y . dy) — V(@ dl) — V(. BL) (3.5)

and we now bgunq the quantities appearing on the right-hand side.
Bounding )/(qb’f. % ). Define ¢ = g# /. that s,

o(t.x) = —g(t. ¢ (X)) + f(1.¢5(x))

which generates (¢})' o ¢}(-- Notice that ¢ is constant on both open sets Ux:
¢luy = at+ — b+ and that, by assumption,
1

-Q>Cy=ay — by = inf(F) —sup(G) > cpz(U),
4 Ut Uy

lQ >C_=—(a_—b_) = —(up(F) —inf(G)) > cyz(U).
4 U_ U_

Thus, by applying Corollary 3.3 to ¢ we get: y(cf;’f, J)é) = y(q}é) = cuz(U).
Bounding y(qS}, ¢'.) and y (gL, gf)é). By general property of y, and definition of f

y(q;jquz%) < OSCM(F _/) — ()SCM(p+(F _a+) +pV(F —(1_))

< oscy, (p+(F —ay)) + oscy_(p—(F —a-))
< oscy, (F) +oscy_(F) < oscyy (F) + oscy_(F) + 2.
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For the same reasons, we also have y gbg qu) oscy, (G) + oscy_(G) + 2¢ and
(3.5) leads to

y (@, d5) = cnz(U) — (oscy (F) + oscy, (G)) — (oscy_(F) + oscy_(G)) — 4e

1
Z ECHZ(U) —de

for any ¢ > 0. This concludes the proof. 0

4. Uniqueness of generators

In this section, we prove Theorems 1.2 and 1.1.

Proof of Theorem 1.2. Assume that the conclusion of the theorem is false; i.e.
H — H' is a function of time and space variables on / x U. Then there exist tg
and, up to a shift of (say) H' by a constant, x; # x_ € U such that

A= H(tg,x4+) — Hl(l(),x_}.) = H’([O,X_) — H(tg,x_) > 0.

First, notice that there exist dp €]0, 1] and ro > 0 such that for any § < &y,
J = [tg.to + 8] € I and for any r < rg, the balls B+ = B,(x) are disjoint,

included in U, and
51 4 1 51 41
(——.—— N ——,——)#ﬂ 4.1)
4 M, 3M, 4 M_ 3IM_

with M, = supij+(H)—ianxB+(H’) and M_ =sup;,p (H')—inf;xp_(H).
(Even though J, By, and M4 depend on 6 and/or r, we omit them from the notation
for readability.) Indeed, let n = and choose §y and ry small enough such that

{ supyyp, (H) < H(to.x4) +n and infyxp, (H') =2 H'(to. x1) — 1
1anX3_(H) > H(tg,x-)—n and sup,.p (H') < H'(to.x-) + 17

Then A < My < A+ 2n,sothat | My — M_| < 2n = & whlch in turn ensures
that (4.1) holds. Next, notice that we can also assume & and ro are small enough so
that, for any § < dg and r < rg

4 4
inf (H)— sup (H')> ZMyand inf (H')— sup (H)> M- (42)
JxBy JxB.y 3 JxB_ 5

(since these inequalities obviously hold for § = 0 and r = 0 and H and H' are
continuous). We choose such a §.
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Recall that cyz(By) = cuz(B-) = mr? (which we denote cyz(B)) so that we
can choose r small enough such that cyz(B) < S%A. This in particular implies that

cyz(B) < S%Mi. Finally, we choose r small enough so that

3
CHz(B) < EQ p (43)

Now that r and § are fixed, we choose o such that

So 51 41 ﬂ 51 41
cin(B) © (4 M+‘3M+) (4M_‘ 3M_)'
Notice that, by definition, o < %ﬁ%@) < 1. This implies that for all r € [0, 1],
to + o8t € J and we define Ly, L}, L and L' by: L{(t,x) = odHJ (to + 0ét.x)
(with e being either nothing or an integer and * being either nothing or ).
In view of the constants we chose, we get that

4
inf (L)>=680 inf (H)>=680|=-My+ sup (H')| by 4.2
[O,I]XB+( JxBy ) (5 * ng_'_ ) y

4
>80-My + sup (L)
2 [0,1]xB4

so that, by definition of o,

4
inf (L)— sup (L) >=80-My > cuz(B) (4.4)
[0,1]x B [0,1]xB | 5
We also get:
sup (L) <do sup (H) = do (M+ + inf (H'))
[0,1]x B4 JxBy IxBy

<SoM, + inf (L))
[0,1]x B4

so that

4
sup (L)— inf (L") < =cpz(B)
[0,1]1xB4 [0,1]xB4 3

which (together with (4.4)) leads to
0sco,1]x B (L) + 0scpo,11x8, (L") < gC'HZ(B) :

Since the quantity oscpo,1]x g, (L) + 0sC[o,1)x B, (L) is non-negative, the bound on
the capacity of B in terms of the rationality constant €2, (4.3), finally ensures that:

4 1
inf (L)— sup (L)< sup (L)— inf (L) < —cyz(B) < -9
[0,1]xB4 [0,1]xB 4 [0,1]xBL [0,1]xB4+ 3 4



Vol. 90 (2015) Energy-capacity inequalities and continuous Hamiltonians 17

By collecting all the above results, we get

1
cnz(B) < inf (L)— sup (L)< -, and
[0,1]xB + [0,1]1x B 4

1
05C[o,1]x B, (L) + 0s¢fo11x B, (L) < ECHZ(B)

and since Ly and L} converge uniformly on U to L and L’ respectively, they also
satisfy all these inequalities as soon as k is large enough.

Now, by considering the situation on B_, we obtain the (symmetric) properties
required in order to apply Lemma 3.4 which allows us to conclude that V(‘i;.th , (;E’L;)

is bounded from below by %(‘Hz(B) for k big enough.
However, by the definition of Ly, for all ¢ € [0, 1], qbik = ¢1t[(}:50t(¢?{)k)—1 SO

% _ Jtotdat Tt \—1 Q- iy _ Jtotbéat  Fto \—1 .,
that d’ik = ¢y, (¢g,)" - Similarly, we have ¢}Ji— = c,b;};:_ ((‘b;;i») and thus
assumption (i) ensures that y(qb’Lk . qﬁ’L, ) does go to 0 when k goes to infinity and we
k

get a contradiction. []

As promised in the introduction, we will explain how one can recover Theo-
rem 1.1 from Theorem 1.2. But, before doing so, we make a short digression to
discuss an important property of C °—convergence.

Remark 4.1. An important feature of C O—convergence, which will be used below,
is that if a sequence of homeomorphisms, ¢;, C °~converges to a homeomorphism ¢,
then the sequence of inverses, ¢!, C O_converges to ¢~!. We will sketch a proof of
this fact below.

First, note that dco(¢;i,¢) — 0O implies that dco(Y i, ¥¢) — 0 for any
uniformly continuous map . Taking ¥ = ¢!, we get that do(¢p~ ', Id) — 0.
Next, observe that do is right-invariant and so we get that

deo(@p i 1d) = deo(p™ ' ¢ 1) — 0.

The above proof would fail without the assumption that ¢! exists. In fact, it is
possible for a sequence of homeomorphisms to converge (with respect to the above
version of d o), to a map which is not a homeomorphism. In that case, the sequence
of inverses diverges. Some authors use a version of d-o which avoids the above issue
by making it impossible for a sequence of homeomorphisms to converge to a map
which is not a homeomorphism. For example, this is achieved in [22] by defining

deolp,yr) = max(d(g(x). Y (x) +d(¢~" (). ¥~ (1)),

As pointed out by Miiller and Oh, the group of homeomorphisms equipped with a_fcu
is a complete metric space.
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Proof. First, note that Theorem 1.1 follows from the following simpler statement:
If Hy 1s a sequence of normalized smooth Hamiltonians which uniformly converges
to some continuous function A and if the flows (,b}lk converge uniformly to Id, then
H =0,

Then remark that if we knew that the spectral distance is continuous with respect
to the C°—topology then this statement would follow directly from Theorem 1.2
on rational symplectic manifolds. Unfortunately, this is only partially known and we
need a trick to get around this difficulty. We are going to show that for any connected
and sufficiently small open subset U C M, the function H only depends on the time
variable 7. Since H is normalized, this will prove the statement. We use the same
trick as in [3, Theorem 11].

Let U be an open connected subset of M small enough to admit a symplectic
embedding to a closed rational symplectic manifold ¢ : U < W. Let ¥ be
a Hamiltonian diffeomorphism generated by a Hamiltonian function compactly
supported in U. Since (Mﬂ— C%—converges to Id, the isotopy q’)[}i w_1¢}1kw is
supported in U for k large enough. Moreover, by Remark 4.1, it converges to Id
in the C? sense. We may pushforward this isotopy using the embedding ¢ and get a
Hamiltonian isotopy of W supported ((U). This isotopy also converges to Id in the
CY sense. Thus, according to [25, Theorem 1], its spectral pseudo-norm converges
to 0. In other words, y(yﬁ_lcﬁgk&. qgj,{k) converges to 0. We may now apply our
Theorem 1.2 in W and get that H(¢,y(x)) — H(t, x) only depends on the time
variable on [0, [] x U. Since this holds for any , this proves our claim that H
depends only on the time variable on [0, 1] x U. g

5. C'-rigidity of the Poisson bracket

This section is devoted to the proof of Theorem 1.3

Proof. We use the notation of Theorem 1.3. The assumption G € C,J,  means that

there exists a sequence of smooth functions G,’( (a priori different from Gy ), which
converges uniformly to G and such that the flows ¢’0, converge in the CY sense to a
Kk

continuous isotopy also denoted ¢y.. Let s be a real number. We want to prove that

F = F o ¢g. The sequence of functions F; = Fj o qbé/,( converges uniformly to

F o ¢f.. In view of Theorem 1.2, if we show that y(qb}k. T, converges to 0, then
k

F = F o ¢, follows.
Let us recall two identities. For any smooth functions H, K,

Prrops, = DK’ © Pl © Pk (5.1)
H°¢§<—H=[O{H-K}o¢?<da. (5.2)
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The triangle inequality for y and (5.1) gives
V(P ) < V(P s, Or) + ¥ (PG, P PG, DG, Pr bG)-

The Lipschitz properties of ¥ with respect to the C%-norm of Hamiltonians, the
bi-invariance of y and (5.2) yield

V(@ @) < sIFi Getlico + 21Gi — Gl co.

Hence y(¢’. .¢".,) converges to 0 as wanted. O
y Fk Fk
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