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On the rank one abelian Gross-Stark conjecture

Kevin Ventullo

Abstract. Let F be a totally real number field, p a rational prime, and x a finite order totally odd
abelian character of Gal(F/F) such that x(p) 1 for some p|p. Motivated by a conjecture of
Stark, Gross conjectured a relation between the derivative of the p-adic L-function associated

to x at its exceptional zero and the p-adic logarithm of a p-unit in the x component of Fx. In a

recent work, Dasgupta, Darmon, and Pollack have proven this conjecture in the rank one setting
assuming two conditions: that Leopoldt's conjecture holds for F and p, and that if there is only
one prime of F lying above p, a certain relation holds between the _S?-invariants of x and x_1-
The main result of this paper removes both of these conditions, thus giving an unconditional

proof of the rank one conjecture.
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1. Introduction

Let F be a totally real field of degree g > 1. Fix a prime p and embeddings Q/;

Q C. Letx : Gal (F/F) —> Q* be a totally odd character of conductor n, and Fx
the cyclic extension of F cut out by X- Let uj : Gal(Q(//2p)/Q) —> (Z/2pZ)x
denote the Teichmiiller character. Let S be any finite set of primes of F including all
archimedean primes. Associated to x an<3 S is a complex analytic function Ls{\, s)
defined for Re(.s) > 1 by

Ls(x,s) x(a)N(a)~a JJ(1 - x(p)Np~s)~\
(a,S) l p£S

that has a holomorphic continuation to all of C. By Siegel's rationality theorem.

Ls(Xi 1 — k) G Q for k > 1. Using the functional equation and the fact that x is

odd, one can show that the order of vanishing of Ls(x, «) at s 0 is equal to the

number of v G S such that x(v) — L
Let us now assume the set S contains all places above p. Let be the

cyclotomic Zp-extension of F, and T Ga\(FiyD/F), which is canonically
isomorphic to a subgroup of 1 + 2pZp. For use later, we fix a topological generator u
of r, which gives an isomorphism Zp[[r]] ZP[[T]] =: A via u *—> 1 + T. We

will identify u with its image in 1 + 2pZp. A character of Gal(F/F) is said to
be of type S, resp. type W, if the extension it cuts out is disjoint from Fx, resp.
contained in Fx. Since T is a direct summand of Gal(F"h/F), any character can be

decomposed as a product of a type S character and a type W character, which we
write as x XsXw-

By work of Deligne and Ribet [ 5], there is a pseudo-measure F-s.xu £

Frac(Zp[[r]]) that interpolates classical F-values via the formula

XcyCu~kip(£s,xu) Ls(ipxu1~k', 1 - A').

where ip is any character of type W. We also use CS,XUJ to denote the corresponding
element of FA := Frac(A) via the isomorphism above. Then the previous formula
can be written

£s,Xuj{C,uk - 1) Lsiipxu1'1', 1 - A*),

where ip(u). Taking (" 1, we get ap-adic analytic function

Lp.six^) ' Q/j

s i y F-s,Xu('ul s ~ !)•

This is usually referred to as thep-adic F-function of the even character x^. We see

from the above properties that it satisfies

Lp,s(xu, ~n) Ls(xlü~t\ -n) for all n > 0.
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It follows that if Ls{Xi s) vanishes at s 0, then so does LPtS(x^, s). In this

setting, Gross has formulated a conjecture that one can think of as comparing the

p-adic derivative of the left hand side with the archimedean derivative of the right
hand side. Suppose that ords=0Ls(x, s) L Then there is a unique p G S such

that x(p) 1- If P f p, there is a simple relation between the respective derivatives

coming from the relation between Lp,s\{p} (xtu, ,s) and LS\{p}{x^i If p|/4 a

more sophisticated construction is required.
Let E be a finite extension of Qp containing all values of xs and Xw- Let

be a prime of Fx lying over p. By our assumptions on x and S, the subspace Ux
of Op s (g> E on which Gal(Fx/F) acts by x^1 is one-dimensional over E. Let
0 7^ ux e Ux. Define

s ((logp °NormFx V,Qp) 0 id){ux)
a'9 * (ordy ® id)(ux)

In [6], Gross conjectures, and proves for F Q, the following

Conjecture 1. Let F be a totally real number field, p a prime, x a totally odd finite
order character of F such that ;\-(p) 1 for some p|/r S the set of primes of F
dividing cond(x)poo, and R S \ {p}. Then

L IfLR(x, 0) 0, then L'pS(xut, 0) 0.

ii- IfLR(x, 0) 0, then L'p S(xu), 0) Jfalg(x)LR(x, 0).

The first part of this conjecture follows from the stronger statement that the

order of vanishing of the 77-adic L-function at an exceptional zero is greater than or
equal to that of the archimedean L-function (it is widely believed that these orders

of vanishing are equal). In [4, Lemma 1.2], this stronger statement is shown to
follow from the Iwasawa Main Conjecture for the character x (they assume x is of
type S, but this is actually not necessary; see Lemma 1 below). Unfortunately, the

proof of the Main Conjecture is not quite complete when p 2 (see [13, §11]).
However, the inequality between orders of vanishing has recently been shown for
all p by Speiss [11] and Charollois-Dasgupta [2], by entirely different methods.

Thus, Conjecture l.i is known in all cases.

In [4], Conjecture l.ii is proven under the following assumptions:

• Leopoldt's Conjecture is true for F and p.

• If p is the unique prime above p, then

orr4=1(2zfon(x, k) + Xmix'1, k)) ordk=lfi?an(x~\k),

where

-Lp.six^, 1 - k)
Xm(x,k) :=

LR(X, 0)

^nn(x) := -Jj-&an(x,k)\k=1-
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In this paper we prove

Theorem 1. Conjecture I is true unconditionally.

In the above notation, Gross's conjecture can be stated as J£an(x) Ffai;j(x)-
Let dx denote the order of vanishing of Jfan(x,k) at k — 1, and similarly
for dx-i. Then Dasgupta-Darmon-Pollack's second condition is equivalent to

assuming dx > dx-i, and if they are equal, the leading terms of f£an{x-b) and

(x 11 k) at k 1 shouldn't cancel.

To remove Leopoldt's conjecture, we construct in Section 4 a certain ordinary
family of parallel weight Hilbert modular forms with weight zero specialization
equal to the constant form 1 (see Theorem 2). In Section 2, we recall the conditional

proof of Conjecture 1 given in loc. cit., but assuming the existence of this family so

as to remove Leopoldt from the hypotheses. In Section 3, we remove the condition
on <5f-invariants by breaking into two cases: first assuming dx < dx-1, and second

assuming dx dx-1 and the leading terms cancel. At the end of Section 4, we use

Theorem 2 to give a simplified proof of the "Leopoldt" part of the Iwasawa Main
Conjecture.

Acknowledgements. I am grateful to Samit Dasgupta, Henri Darmon, and Rob
Pollack for their beautifully written paper to which this paper owes its existence. I

am especially grateful to Samit for several helpful conversations, encouragement,
and for suggesting the method by which we construct the A-adic form in Section 4.

I am also grateful to Haruzo Hida for answering my questions and providing
helpful comments.

Finally, I want to thank Chandrashekhar Khare for his guidance and support, as

well as suggesting a careful reading of Dasgupta-Darmon-Pollack's work.

2. Dasgupta-Darmon-Pollack's Proof

2.1. Conjecture l.i. We begin by showing the Iwasawa Main Conjecture implies
part i. of Conjecture 1.

Lemma 1. Let x be a finite order character of F. If IMC holds for (Xs-P) (e.g. if
p > 2) then

ords=l)LlhS{xu,s) > ords=0Ls{x,«).

Proof We may assume S is minimal, i.e. consists only of the primes dividing
cond(x)poo. Let d ords=()Ls(x, s); by minimality of S, this is just the number
of primes p|p in F for which x(p) 1- Let Xiv(u)- Then

oty(s=0Ap,s(xu;,.s') ordT=u_vCXUJ ordT=0l_iCxsw
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Let Fx-oo- be the maximal anticyclotomic Z;)-extension of Fx, and Fx^oc~^ur the

maximal subextension that becomes unramified over Fx-00 := FxFoc. The following
fact seems to be well known, but we include a proof here for completeness:

dimE{Ga\(FX:00-,ur/Fx) ®Zp E)x
1

d. (1)

To see this, note that by class field theory,

(Gal{FXt00-/Fx)®ZpE)x ]^[ f
U<$ ®zp E

OFDPI/) \0FjcD<P|P

where denotes the units in the *^3-adic completion of 0Fx, and the superscript
denotes the x_1 component of this space as a Gal(Fx/F)-module. The maximal

quotient of this group that becomes unramified over Fx>00 is obtained by taking the

quotient of each U<$ by the kernel of the norm map to Z*. We can write this as

n n e)'
OfDPIP \OFxD'VIP /

where Gal(Fx/F) acts by permuting the factors inside the parentheses for each p.

Since x
1 is by definition a faithful character of Gal(Fx/F), it will appear as

a constituent of the expression inside the parentheses precisely when p splits
completely in Fx/F, i.e. x(p) 1- This proves equation (1).

Now let Loo be the maximal unramified abelian pro-p extension of Fx>00, X
Gal(Loo/FXi00), and V X ®ip E. Let be the eigenspace for the action

of Gal(FXi00/F0C) Gal(Fxs/F) by x^1- Since Fx^oc-.uj is certainly a subfield

of Loo, it follows that (Gal(Fx-00- urFXiOC/Fx.x)<g)zpE)x
'

is a quotient of V^s1).
Furthermore, Gal(FXiOC/FXs) Ga\(Fx/F) acts on this quotient by Xu^ be. by
u C"1-

Thus, if/ -1 (T) denotes the characteristic polynomial of u — 1 acting on V^s \
we have by equation (1),

ordT=c-l-ifx^l(T) - (i-

Finally, if GXsU(T) denotes the power series defined in [13, Section 1 ], we have

that

d < ordT=£-\-\Gxsu(u{\ + T) 1
— 1) ordT^u_iGxsul(T)

ordF=^u—iL>XSUJ1

where the inequality follows from the previous inequality and [13, Theorem 1.21, the

first equality is formal, and the second equality essentially follows from the definition
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of GXsU(T) in loc. cit. and the fact that HXsbJ(T) never has a pole or zero at — 1.

Putting everything together, we have

ords=0Lp,s(xuj,s) >d ords=0Ls{x- «),

as desired.

2.2. Classical and A-adic Hilbert Modular Forms. Fix F, p, n as above. Let D be

the different of F. Let Up denote the units of Op, and Up the totally positive units.
Let c be a representative of a strict ideal class in Op, and c+ the cone of positive
elements. Let tp : {Op/n)x —> Q* be a character.

Definition. A complex c-Hilbert modular form of weight k, level n, and character tp

is a holomorphic function / on the product of g upper half planes, indexed by the

embeddings of F into R, such that for every element of

Fc(n) := | ^ "
d ^ GL,2(F)\a, d <E O, b G c-1ö-1, c 6 ncD. ad — be Up j

(2)
we have

{ad - bc)k/2{cz + d)~kf(aZ*b) tp{a)f{z).
cz + d

Here we are using the same shorthand as in [10, §1]. The modularity condition
implies that f has a Fourier expansion

f{z) a(0) + a(b)<lb

bec+

where qb e27riTrF/<^bz\

The space of such forms is finite dimensional; we denote this space by
More generally, for any ring R C C, let Mfc,c ^(n, R) denote

the subset of forms with Fourier coefficients in R. Shimura has shown that

Mk,c,ip{n, Q) ® C Mk,c.tp{n, C); using the embedding Q ^ Qp fixed at the

beginning, we can define MkiC^v{n, R) for any subring of Qp.
We define a Hilbert modular form (without the c) of weight k and level n to

be a |C/+(f7')|-tuple of c-Hilbert modular forms, where c ranges over a set of
representatives of the strict ideal classes. We will usually write this as / (/c)c-
For a ray class character x of conductor dividing n, we will say / has character x if
S{a)f x(o) for almost all prime ideals a of F (see [10, p. 648]). We denote the

space of such forms by Mk{n, x)-
Given a Hilbert modular form / in the latter sense, the normalized Fourier

expansion is defined as follows: for each nonzero integral ideal m, there is a unique c
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in our choice of strict ideal class representatives that we can write as mc (b) for
some totally positive b E c. Then we let

c(m,/) ac(b)Nc~k/2.

where ac(b) is the coefficient of qb in /c. For each A E Cl+(F), we also set

cA(0,/) =ac(0)iVc-fc/2.

As the notation suggests, neither of these expressions depend on our choice of b.

For each prime I \ n, and each prime q|n, there are Hecke operators Te and

Uq that act on the spaces Mk(n, x)- Fix a rational prime p and suppose p|n for all

p|p. If i? is a complete subring of Qp, then we say / is ordinary if ef /, where

e := lim,, IIp|p^'-
Let niA be the maximal ideal of A, A(0) its localization at the prime ideal (T),

and Fa its field of fractions. For E a finite extension of Qp, let AE E ®zp A.
Fix an integral ideal n, and an odd ray class character x of conductor dividing n.

Following Wiles, we define .fffr,i(n. x), the space of level n ordinary A-adic forms

of character x, to be a collection of coefficients

{cA(0,^)},{c(m, J^)} A

where A runs over Cl+(F) and m runs over the nonzero integral ideals of ÖF, such

that for almost all pairs k > 2, £ 6 ppthe reduction of this system modulo the

ideal k (T + 1 — (vk) gives the normalized Fourier coefficients of an ordinary
parallel weight k Hilbert modular form of level n := lcm(p-ord(^), n) and character

"4>(Xujl~k- We call the reduction mod Pk := Plk the weight k specialization. For

any subalgebra AcfiC FA, we define x) ^#A,rf(n, x) R- We also

let t9"frd(n, n, x)> ete- denote the corresponding spaces of cusp forms.
Let Tord denote the ordinary A-adic Hecke algebra of level n and character x, i.e.

the A-algebra generated, for I \ np and q J up, by the Hecke operators 7). Uq acting
on ./#^,d(n, x)- Formulae for this action in terms of q-expansions are given at the

top of page 537 in [12], The following lemma is probably well known, but as far as

we know has not been written down.

Lemma 2. If the weight k specializations ofa collection {cA (0, 2^")}, {c(m, &)} E

A give a classical ordinary form for infinitely many k > 2, then they are classical

for all butfinitely many k > 2.

Proof. Fix a weight k and let E be a finite extension of (Q>p containing all the Hecke

eigenvalues appearing in Mfrd(ns, Qp, xux~k). Wiles shows in [12, Thm. 1.4.1]
that the system of Hecke eigenvalues corresponding to any classical eigenform of
weight k can be realized as a quotient of the A-adic Hecke algebra T0,d/(1 +
T — vk) -P E. If m is the corresponding maximal ideal of Tord <g> E, the

space .//fffd(n,x)x) 's nonzero by Nakayama's lemma. Therefore, any
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classical eigenform can be realized as the weight k specialization of some A£-adic
form (i.e. we don't need to take a finite extension of AE\ note that we are not claiming
there is an eigenform defined over A£).

We claim that this implies that any ordinary form with coefficients in can be

realized as the specialization of some AQp-adic form. Indeed, on the weight k fiber,
we can write the ordinary form as an A'-linear combination of eigenforms. Lifting
this linear combination to AE gives a form specializing to the one we need, but a

priori only has coefficients in AE. However, by averaging over Ga^A^/A^J, and

observing that specialization intertwines this action with the action of Gal(£J/Q;)),
we get a AQp-adic form with the desired specialization.

The claim implies that the map

.//A^(n, X)/(l + T- uk). X) -> M£rd(ns, Qp. X'*1"*)

is an isomorphism for almost all k, say k > k0. In particular,

rankAQp.-#^(n, X) dimQpJ\/[!rd(n, Qpi X^~k)

for almost all k; call this dimension d. We can choose ideals cii ad of ÖF so

that the map

Qp)d

9 i—> (c(ai,ßr))l

is injective. After inverting a finite set of primes 6 of Aqp, it is an isomorphism.
Therefore, for Pk ^ 6, we have

TT, : Mr'in.Qp.xut1-') Qd,

f ^ {c{alJ))i

Now suppose we had a collection of coefficients {cA(0, )}. {c(m, -/P)}
with infinitely many classical specializations. There is a unique element 'P of

x) such that c(a;,,P) c(anJP) for all i. Moreover, at each weight
Qp 11? J

k with Pf. ^ &,k > k0, and where ,/P is classical, the reduction of .PP must agree
with the reduction of .P by the isomorphism 7rfc. Thus, .PP and P must be equal
since they agree on a Zariski dense set. This proves the lemma.

A typical example of ordinary A-adic forms of tame level n and character \ are

the A-adic Eisenstein series &(t), V;) attached to a pair of (not necessarily primitive)
narrow ray class characters such that ijip X< cond(?/)cond(t/>) pn,
(p,cond(//)) 1:

^A (Oj V'7)) ^r/2 ^Tj (ca)-^-{ npoo},?/-
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c{m,£{r),ip)) ^ r/{-)ip{x){Nx x)(l + T) 'oU5.
z' r
r|m

(r.p) —1

Here 5V 1 if cond(r/) 1, and is zero otherwise.

We denote Gc := so that ^(u4, — 1) Cf,p(1 — s). Let :

2gG~^1£'(l,u~1), so that the constant term of at each infinite cusp is identically
one. It follows from a result of Colmez [3] that if Leopoldt's Conjecture is true for
(F, p) then C'c has a pole of order one at /' =0. In this case, the form 2L which a

priori only lies in .^pAd( 1, uj_1), actually lies in ^ (1, cW1), with specialization

equal to the constant form 1, i.e. Ca(0, (0)) 1 and c(m, &(0)) 0 for all A, m.

Theorem 2 in Section 4 below shows that even if Leopoldt fails, there is a suitable

cusp form J? such that 'E f has all of these properties.

2.3. Conjecture l.ii. We now recall the proof of Conjecture l.ii given in [4,

Lemma 1.2], making a few of our own cosmetic changes, but also assuming the

existence of the form in order to remove Leopoldt from their hypotheses. To

prepare for Section 3, we will assume that there is a unique prime p above p in F, as

this will highlight how the _Sf-invariant hypothesis comes into play. When there is

more than one prime above p, the arguments we give showing that one can replace 4
by rf — J! in their proof go through unchanged.

Let F, p, Xi S, R be as in Conjecture 1. The first step in their proof is to obtain a

Galois theoretic interpretation of Jfatg-

Let E be an extension of Qp containing the values of all characters of
conductor dividing cond(x)7>oo, and E(\^1) the F[Ga/(F/F)]-module that is one-
dimensional over E and that Galois acts on by x~1- F°r ease °f notation,
let A denote AE (so p is invertible in A). Finally, let Hp (F, E(x^1)) be the

subspace of H1(F, F(x_1)) consisting of elements that are unramified at all primes

away from p, and at p, lie in the F-linear span of kut and Kryr, where n,ir £

H1(Fp, E(x~1)) Hom(Gal(Fp/Fp), E) is the unramified (additive!) character

Frobp i-4 1, and Kcyc is the restriction of the global character

loe
Gal{F/F) -» Ga^Foo/F) -4 1 + PZp -4' Zp -4 E.

In the sequel, we will also use Kcyc to denote the global character.

In [4, §1], it is shown that dimB Hp(F, E(x~1)) 1, and that the unique class

(up to a scalar) is ramified at p. In other words, if we write its restriction to p as

XKur + yKcyn then y ^ 0. In fact we have

Proposition 1 (loc. cit., Prop. 1.6).

-y -^s(x).
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The idea now is to use modular forms to explicitly construct a class in

Hp(F, Elx^1)) whose restriction to Gp can be shown to be equal (up to a scalar) to

"8an(x)^'ur + K'cyc-

Denote by Xr the character of conductor E that has the same primitive as x-
Consider the level E weight one Hilbert modular Eisenstein series E\(l. X/?)- We

have

cA(0, ^(1, **)) 2"»Mx, 0) + 8xx-l(X)LR(x~\0),
where Sx 1 if cond(x) 1, and is 0 otherwise. We also have

UvEi(l, XR) EI(1,XR) + .EI(1, xs)'

which implies that e \imn(U]) acts by the identity on this form. Thus, the

ordinary A-adic form := e[(W — yf)Ei(l,XR)\ has weight one specialization
equal to E\ (1, Xr)- Moreover, its constant terms satisfy

cA(0, ,^°) 2~aLR(x. 0) + 5xx-l(X)LR(x~l. 0)

independent of the weight, since this is clearly true before taking the ordinary
projection, and the only Eisenstein series contributing to these cusps at the classical

higher weight specializations are already ordinary.
Over Fa, we can decompose 8?® into a linear combination of a cusp form and

ordinary Eisenstein series. The coefficients o(l,x) and o(x.l) of the Eisenstein
families 8(1, x) and 8(x, 1) in this decomposition are computed in loc. cit. §2,

using knowledge of the constant terms of e[c.^E1(l. Xz?)] at all unramified cusps,
not just the infinite cusps. The weight k specializations of these coefficients are

given respectively by

o( 1, *)(*)

a(x,

Lr{x~ u)

Ls.pixu. 1 - *) F?an{x.k)

Mx^OKJVn)1'"1 —(Nn)k~1

LsAx'1^, 1 - k) Xin{x~\k)
Note that these computations are unaffected if one replaces W by c§ — ^ since /vanishes at all cusps.

The Eisenstein series other than 8(1. x) and 8(x~ 1) can be killed by an

appropriate application of Hecke operators away from p without affecting the

weight 1 specialization Ei(1,xr), simply by dividing each Hecke operator by its

eigenvalue on F^l^x)- It follows that there is some t, a linear combination of
Hecke operators away from p, acting by the identity on E\( 1, x), such that

t(X° - o(l, x)<?(l. X) " «(X- 1)^(X-1)) (3)

is a cusp form. Note that rt(l, x) and a(x, 1) have poles at weight one of order equal
to the order of vanishing of the corresponding p-adic L-functions; let us say they are
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of order dx and dx-i, respectively. Since x(p) 1 =>• X *(p) — 1, we wbl always
have dx, dx-1 > 1. The additional assumption on Jzf-invariants is equivalent to

which implies in particular that dx > dx-1.
Let 7T G A be the uniformizer at weight one given by

u ^ u
(1 + T — u). Then

the universal cyclotomic character xcyc can be written Xc.yc 1 + Kryc^ + 0(tt2).
Since the poles of a(l, x) and a(x, 1) do not cancel, we have

^ &>° - a(l, X)^(l, X) - a(x, 1)Ax, 1) e x).

and compute the Hecke action. To do this, we will use the following identities

r,Ax, 1) (xW + x^A))Ax, 1) up£(x, 1) Ax, 1)

r^(i,x) (i + x{t)xCttdZ)W,x) ups( i,x) Ai,x)
TeE^l, Xh) (1 + xW)£t(l, Xr) U.E^l, Xn) £i(l, Xr) + EX{1, Xs)

We compute mod Tr~dx+2.-^f£rd(n, x):

Tt& (i + xW)^° - (i + x(e)Xr.vMMi,x)Ai,x)

+ X(0)'^ - X(0«q,c(^)vra(l, xK(l, x) - Kq,A)(x, 1) Ax, 1)

+ XAA - (x(^)«cyc(^)7Tfl(l,X) + Kcuc(t)na(x, l))£l(l,Xs)
(1 + x(0)'^ + (x(^)KcyC(^)fl(l,X)

ordfc=ia(l,x) or4=1(a(l,x) + a(x, 1))

We want to consider the image of this form in

TT-^rV x)/^-"x+2.^Arrf(n, x)

Ax, 1) Al,x) E\(l, Xs)(m°d 7t)

E,(l,Xi?)(mod7r)

- (xcyA) + xAMx, i)Ax, 1))

+ Kryc(e)a(x, i))( a(l,x) +«(x, 1)^

c/p^- ^ + £;1(i,xs) (1
rt(l,x) +a(x,l)

(1 + 7T
V ' A) Cf «•

a(l,x) + a(x,l)' '"'j' '
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The calculation for the Uq operators is similar. Thus we get a map

T°rd -f A/7T2 ^ E[tt\/TT2

Te I—>- (1 + 7T
a(x,l)

KcycX?)) + X(^)(l + 71

a(l,X) + a(xA)Kcyc

Uq 1 — 7T

f/p i^ l ~t~ 7T

a(l,x) + a(x,
a(l,x)

Let / denote the kernel of this map, and m the maximal ideal containing I. Since

the image of t from Equation (3) is a unit, this map factors through the cuspidal
quotient of Tord. Let R denote the localization at m of this cuspidal quotient, and

think of I and m as being ideals of R. Finally, let FR := R F\.
There is a Galois representation

unramified at all £ \ pn such that Trace(F robg) Tg. For some choice of complex

conjugation c £ GF, we may assume p(c) ?> ^ •

By a standard argument, the i?-submodule of FR generated by all a„ is R, and

similarly for all da. Moreover,

p:GF^ GL2(FR)

Kt.yC(rr)(mod I)

Kcyc(a))(mod I).

for all a 6 Gp. Here r/p is the unramified character Frobp H- f7p.
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We note that in the basis with complex conjugation diagonalized, p(Gv) is not
upper-triangular on any component of FR. If it were, the function ca reduced
mod m would yield a non-trivial element of Hl(Gp, E(x)) that is unramified
everywhere (recall that p is the unique prime above p). However, there are no
unramified elements in this H1, since e.g. there are no unramified Z^-extensions
of Fy. Therefore, C„ is invertible in FR. Hence, for a E G„, we can write

K riXrycVp1{(T) ~ aa].

If B is the 7?-module generated by ba (or equivalently by ljf-) as er ranges
over Gp, then B is finite over R by a standard compactness argument, so that B/mß
is nonzero. The composition of b/d with reduction mod m gives a cohomology class

in H1(Gf, B/mB(x~1)) that is unramified outside p and nonzero. Indeed, if it were
a coboundary, one can check it would have to be identically zero by considering the

image of complex conjugation. Since there are no everywhere unramified elements

of this Hl, the class must be ramified at p; in particular, it is nontrivial at p. This

argument, combined with Nakayama's lemma, shows that B is in fact generated

by ba for a E Gp.

Reducing the above equation modulo {iff- n B), we get for o E Gp,

Ap

?p
-^riXryci^'k V) - «(<7)]
Gp

- a(<7)]
Gp

TT[(! + irKCyC(<T))(l - TT

Gp "(l,x) + "(x, 1)

n(x,l)
_^ (1 \ / -• \ ^cyc\^)\

^P r °(1, x) / \ _
Q-(l, X) c# / \I

/—f l /1 \ 1 /, \ i / 1 \ -Gill ^ ur(°jJ
Gv a(l, x) + a{x, 1) "(l,x) + «(X>1)

Since 7r E m and m2 C /, the module B/(lfr- fl B) is m-torsion. Furthermore,
by our initial assumptions we can choose a so that the bracketed expression is a unit.
It follows that B/(lff- n B) is cyclic over R/m E, generated by nff-. Since

it is 7r-torsion, we must have b{a) b/d(cr). Thus, we may view b/d as a cocycle
with coefficients in E{x~l), whose restriction to Gp is given, after dividing by the

unit
,i(i.x)+a(x,i)' by Kcvc ~ By Proposition -Sfan, and the proof

is complete.
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3. Removing the -invariant condition

Let _S?X denote the reciprocal of the leading term of a(l,x)? and 'x-1 the

reciprocal of the leading term of a(x, 1), with respect to the uniformizer n. Then

d£x —Jit?an(x) only if dx 1; otherwise ,5far,(x) 0 (similarly for x 1)-

As explained in the introduction, we break into two cases.

3.1. dx < dx-1. Although this case is covered by [4, Theorem 2.2], only the final
few sentences of the paper allude to a proof, and details are omitted. For the sake of
completeness, we include a proof here, which in any case appears to take a different

approach from what the authors had in mind.
In this case, the form d?0 — a(l, x)£{\, x) ~ a(Xi 1)<=(Xj 1) has a pole of

order dx-1 coming from the third term, while the second term has a pole of order dx.
Consider the Hecke action on the image of this form in

n-dx~\£°rd{n, X)/vr-rfx+2.<°rd(n, x).

A similar analysis to the previous case shows that this form is an eigenform, giving
rise to a homomorphism

Torii -> E[7r]/7rdx-1-^+'2,

as follows:

T" ^ " «(1, x) +* (x. 1)
K,"c{t))

+ X(C-) 1 + K-t- Kcyc{()
a(l,x)+a(xA)

Up i—» 1 —

q(x.i)
a( l,x) +a(x, 1)'

1

TT 1
V /a. 5 L) \

q(x> i)

As before, this homomorphism factors through R, the localization of the cuspidal
quotient at the maximal ideal corresponding to the £i(l, x)_system of Hecke

eigenvalues. Let / C R denote the kernel. There is a Galois representation

Gf —> GL2(Fr) with coefficients a„, c„,d„, satisfying

R 3 aa * (cr) - tt —-Kcyc(a)(mod I)

R 3 da x(cr)(l + TT —rr«cHc(q))(mod I).q(i,x) + q(x,i)
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Finally, there is a transition matrix ^,p nP that satisfies
V Vp JJp J

Ab
h" -TrlXcyc'b V) - a(a)

Cp

for all a G Gp. Reducing this equation modulo I^r- D B, we get for a G Gp,

A0
b/d(cr) b{a) ^r[xrj/c//p 1(a) - «(<r)]

Gp

Ap r
1 a(l,x) ^=-?r[—(—TT««r(<7) + TT——-nryc a

Gp «(x, 1) <HX, 1)

^r Wlx~' -^x-1 Kur (<T) + vr'V' ~B+1 ^2LA-Kcyc(a)\.
Gp ,xx

For a G Ip\ker(KC!/c), the bracketed expression generates (7rdx_1 _dx+1 mod

I^f~- Hence, as before, B/(B n I^r-) is one-dimensional over i?/m E, with a

canonical generator given by 7Td*_1 ~d*+1 The composition

b/d,:GF-G B/(BnI^)^ E
Gp

given by this generator yields a nonzero cocycle

Me/^F.^or1))
with the property that

.c£ -i
NIgp H ^~Kcyc-

.z:x

After multiplying by the nonzero scalar „ x the right hand side equals
^\-1

-Aan X. ^ u r T rye •

This finishes the proof.

3.2. dx dx-1 and f£x —Let d := dx dx-1. In this case, although
the second and third term of <^° — a(l, x)<^(l, x) ~~ a(x> 1)^(X; 1) each have

poles of order d, the sum only has a pole of order d — 1. We consider the Hecke
action on the image of this form in -K^d+l.^^rd(\\, x)/7r~'i+2.^£rd(n, x)- Unlike
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the previous cases, this form is not an eigenform. Nevertheless, we may compute
mod 7r~fi+2.-#"'d(n, x)'-

Te{&° - a(l, xK(l, X) - a(x, lK(x,
(1 + x(£))^° - (1 + XW(1 + vrKt.yc(f)))a(l, xK(l- X)

- (1 + itKcyc(i) + x(0MX: l)<?(x<

(1 + xM)[^° - "(1, xK(i, x) - a(x, iK(x, 1)]

- («C!/C(^)x(^)7r«(1>x) +«C2/cW7rn(X;l))£:i(l)x)-

t/q(.^° - a(l,x)^(l,x) - a(x, 1)^(X,
(,^>° - a(l,xK(l,x) - a(Xi 1)^(X, - 7r«CJ/c(q)a(x, l)£i(l,x)-

C/p(^° - a(l, x)^(l, X) - o(x, 1)<?(X, 1))

(,^° - a(l,x)<?(l,x) - a(x, ^(X: + £i(l,x)-
Thus, although the image of our form is not an eigenvector for the Hecke

operators, it is a generalized eigenvector for the £^(1, x)-system of eigenvalues;
the Hecke stable subspace it generates is two-dimensional over E, with a basis given
by — «(1. x)<^(l, x) — a(Xi l)^(x-1)) ar,d it~d+1Ei (1. x)- The Hecke action

can then be viewed as a homomorphism

Torrf -»• X0 C M2(E).

The image is canonically isomorphic to E[e]/e2. Under this identification, the map
Tord —> E[e\/£2 is given explicitly by

TW 1 + x(£) - "

CA
t^cyc(q)

Uq H-> 1 -
Up 1 y 1 T e(Sd=i).

Here <$,/=] 1 if d 1, and is zero otherwise. Following the same proof as before,

we get a Galois representation Gp —> GL2{Fp) such that

R 3 a„ 1 — e
^ ^

(mod I)
,Zx-i

R3(l„ X(C)(1 - e^g^)(mod I).
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However, in this case the image of the universal cyclotomic character x in R/I
is trivial, as we are working "purely in weight one." Thus, reducing the equation

b<7 -prlXcucVp1 -cp

modulo Igives for a E Gp

A0
b/d{a) ^[t/p

1 - oa\
Op

Op

Just as before, we see that B/(Bf] is one-dimensional, generated by e^r-, and

that the function b/d yields a class [k] H^(F, E{x~1)) such that

dfl—\Knr T KCyc
•A"1

- -A _ J_ •l^ur tt(yr.
j£x

Multiplying through by —F£x, the right hand side becomes

^ ur ~i~ ^cyc FFali (x) ttur + t^cyc

This finishes the proof.

4. A A-adic form passing through 1

We revert to letting A denote ZP[[T]]. In this section we prove the following

Theorem 2. There exists an FA-adic cusp form JF G -F'{f'' (k o' 1) such that F —

J? G and [F — is the constant form 1.

The existence of this form is perhaps known to experts. As explained in

Section 2, this theorem removes the reliance on Leopoldt's conjecture in the proof of
Conjecture l.iL At the end of this section, we also explain how the form ^ gives
an easier and more direct construction of the Iwasawa extensions corresponding to
the "Leopoldt" zeros in Wiles' proof of the Main Conjecture.

4.1. Reductions and geometric A-adic forms. We begin with some reductions.

First, it is enough to find any ordinary Aß (0)-adic form of level one with constant
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weight zero specialization, where E is a hnite extension of Rescaling, we may
assume the constant at weight zero is equal to one. Let JF be such a form, so that

x

where \ ranges over all even ray class characters of conductor 1. It causes no
harm to assume E contains sufficiently many roots of unity, so that there is a Li-
linear combination of diamond operators projecting onto the oj ~ 1

component above.

Specializing at weight 0, this acts by the identity on the constant form, so we may
assume JF has character cu_1. We can write JF as an FAe-linear combination of a

cusp form and Eisenstein series <?(?/, /7-1cu-1), where q ranges over strict ray class

characters of conductor 1. For rj / 1, the system of Hecke eigenvalues associated to
the Eisenstein series £(q, q^^uj^1) at weight zero differs from that of the constant
form. Hence, there is a AE (0)-linear combination of Hecke operators that will kill
all Eisenstein contributions except ^(l, cu-1), and act by the identity on the constant
form. Applying this to &, we are left with an FAE-linear combination of <f(l, tu-1)
and a cusp form. Since the constant terms of this form are identically one, it must
be equal to ß for some F\,,-cuspform Finally, we can average over

Gal(FAE/FA) so that has coefficients in FA.
Our next reduction requires a new definition. Let r > 0 be a natural number, and

A := Zp[[^r]]. For an integral ideal n and odd ray class character x of conductor

dividing n, we define an ordinary A-adic Hilbert modular form to be a collection of
coefficients

{cA(0,^)|, {c(m, JF)} g A

such that for infinitely many k £ prN, their image under the specialization T
uk — 1 are the coefficients of a classical ordinary Hilbert modular form of parallel
weight k, level lcm(p, n), and character xlu1-A:. We will denote this module by

„#~rd(n, x), for any ring Acifc F^, we set ,-#jjrd(n, x) ."^~rd(n, x)
Using the constant dimensionality of the spaces of ordinary weight k forms, and an

argument similar to that used in Lemma 2, one can show that the space of F^-adic
forms has the same dimension as the space of FA-adic forms, and hence is identified
with Fx- Now suppose we can find an A^jr ^-adic form specializing

to 1 at weight zero (i.e. modulo F). Then writing it as an F^-linear combination of
elements of ^#A"\ we can replace the coefficients in F^ with elements of FA having
the same principal part and constant term at weight zero, to arrive at an FA-adic form

specializing to 1 at weight zero. Thus, it is enough to find an ordinary family with
coefficients in F^.

To construct a family of level one, we first construct a family of some auxiliary
level q using powers of a certain theta series (Lemmas 3 and 4). We will then use the

Atkin-Lehner operators Uq and !Lq to project the form down to level one. In order to
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define these operators, we will make use of a geometric description of A-adic forms

(see Proposition 2).

Fix F, p as in Section 2 and let n be an integral ideal of ÖF. Fix a strict ideal class,

and let c be a prime-to-/; representative of this class. Let R be a p-adically complete
DVR. Following [1, Definition 3.2], we let Tmjl 9Jt(i?/pm,/ip*, r0(n)) be the

moduli stack over R/pm whose objects over S, for any R/pn-scheme S, are given
by isomorphism classes of tuples (A, A, <j)n, ip„) where

• A —> S is an abelian scheme of relative dimension g;

• i : Of c—y Endn(A) is a ring homomorphism;

• A : (AIa,AIa) (c, c+) is an CV-linear isomorphism of etale sheaves over
T between the module of symmetric öF-linear homomorphisms from A to
its dual Av to the ideal c, such that the polarizations AIa map to c+;

• 4>n kk A is an ©^-invariant closed subgroup scheme that is isomorphic to the

constant group scheme (0Fjn) etale locally on 5;

• ipn : fip„ (g>z ö"1 » A is an inclusion of group schemes.

These are referred to as c-polarized Hilbert Blumenthal Abelian Varieties

(FIBAV's) with level structure. Following [1, Definition 11.4], we define a p-adic
c-Hilbert modular form (or c-HMF) of level T0(n) over R to be an element of

^00,00 j &Tm,„ •

If X : (0F ® Z;,)x —> Rx is a finite order character, we will say the form is of
(parallel) weight k £ Zp and character x if for any a £ [Of <8> ZP)x> we have

"*(/) x(«)Nm(cv)fr/,

where a*/(A,/,, A, </)„, tj,oo) f(A, t, A, </>n, ip orr^1), and Nm : (0F<g)Z,p)x —>

l+2pZj; —> Rx is induced by the norm map followed by projection onto the 1-units.

Fix an isomorphism e : c 0 Zp ÖF (g> The q-expansion at 00 of / is an

element

f(q) £ 7?[[</'']]bec+u{0}-

that generalizes the q-expansion of classical Hilbert modular forms. We refer to

fl, Definition 1 1.6] for the precise definition. In their notation, it is the evaluation
of / at the cusp (c, ÖF, e, je) where je is induced from e as in \loc. cit., 6.5]. The

q-expansion principle states that a p-adic c-HMF of weight n is determined by its

q-expansion \loc. cit., 11.7],
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For every k > 2, there is a Hecke-equivariant inclusion

il/t.c(r„(np),i?) Voo.x/r

that preserves (/-expansions and weights [9, Thm. 1.10.15]. In fact, in the quoted
theorem, the space of classical forms on the left hand side of the inclusion is more
general than the forms we considered in Section 2: it allows any power of p in
the level, and in the complex setting, it consists of those forms invariant under the

subgroup of Tc(n) consisting of matrices of determinant 1 (see [1, 6.11]). However,
this certainly contains the forms we want to consider, and this is all we will need.

We will call a form in the image of the above inclusion classical.

Let W be a finite flat DVR over Zp. Let mA denote the maximal ideal of A»-. We

now present two definitions of "p-adic" Au -adic forms and prove that they are the

same. We also want similar statements to hold for A-adic forms, and will indicate
where changes need to be made.

Recall that u 1 + 2pZp is a generator of the image of Gal(Fx/F). Define a

map 4> : (Of ® Zp)x —> Axr as the composition

(Of ® Zp)x - Gal(Fx/F) U^T Ax-

We may also consider </> as a AH-valued character via the inclusion A C A.

Definition. A Wiles AM/-adic c-Hilbert modular form 2?, of level r0(n), is a multiset
of elements {c(t, ^)}tec+u{o} C Aw such that for every s £ Zp, the sequence of
elements of W obtained from the specialization T h->• us — 1 is the (/-expansion of
a p-adic c-Hilbert modular form of level r0(n) and weight s over IL. We use the

same definition for A^-adic c-Hilbert modular forms, except that we only require
the specialization condition to hold for s prZp.
Remark. Given a |C7+(F)(-tuple of Wiles Au -adic forms, one for each strict
ideal class with representative c, and with infinitely many specializations giving the

Fourier coefficients of an ordinary classical Hilbert modular form, we can obtain

a A-adic form as in Section 2 as follows. Under the usual normalization for
weight k forms, one would set c(m,.^r(uk — 1)) (Nc)~k ac(b)(uk — 1),
where b is a totally positive generator of inc. However, this presents a problem
since (Nc)~kmay not vary p-adically continuously with k. So instead, we simply
set c(m,,J£") ac(b), and cc((), equal to the constant term. Since this is

independent of the choice of b at infinitely many weights, it must be independent
A-adically. This modification will not affect what we are ultimately interested in:

finding a family whose weight zero specialization is the constant form 1.

Definition. A Katz A^-adic c-Hilbert modular form of level r0(n) is an element of
the subspace of V^oo/Zp^ZpAw := ^mV^oo/z,, <8>zp AH-/m" satisfying

«*(/) (*)

for every cv (Of (g> Zp)x. We use the same definition for Au- mutatis mutandis.
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This last property is equivalent to requiring that for every s £ Zp (resp. prZp),
reducing the form modulo (1 + T — us) yields a p-adic c-Hilbert modular form
of weight s defined over kw/(\ + T — us). Note that neither of these definitions

require any of the specializations to be classical.

By definition, a Katz A-adic c-HMF is nothing but a compatible sequence of
p-adic c-HMFs over kw/m\ satisfying certain extra conditions. Thus, we may
define the (/-expansion at oo of a Katz A-adic form to be the inverse limit of these

(/-expansions; it is an element of A[[qb]]bec+u{o}-
The following proposition is due to Hida when F Q [7, Thm. 3.2.16]. We

essentially follow his proof.

Proposition 2. The space of Katz kw-adic c-Hilbert modular forms is identified
with the space of Wiles kw-adic c-Hilbert modular forms via q-expansion at oo.

The same is true for kw-adic forms.

Proof. We first explain the proof for AH--adic forms. It follows from the definitions
that the q-expansion of a Katz form is a Wiles A^-adic form, so we need only show

that all Wiles Aw-adic forms arise in this way. Let # be a Wiles A^-adic form. We

start by reinterpreting # as a measure C(ZP, Zp) —> )QO/w, defined by sending
the function (x) to the coefficient of Tn in #" (which is a p-adic c-HMF by virtue
of being a limit of p-adic c-HMF's). By the binomial theorem, this measure has the

property that for s Zp, the function x usx is sent to #"(us — 1), a p-adic c-HMF
of weight s.

Taking the completed tensor product with A of this measure gives a map

C(Zp,k) —> Voo^oo/W®k.

The image of the function x (1 + T)x is easily seen to be a Katz A^-adic form
(i.e. obeys the equation (*)), with q-expansion equal to #".

Now suppose #" is a Wiles A^-adic form. Define the submodule M C C(ZP, Zp)
by demanding that if C(ZP, Zp) B f Z/v>o <Lv(^), then

/ e M e Zp and > 0 as iV —> oo.

Then we may consider JF as a measure M —^ Ko.oo/w that sends prN to the

coefficient of (^?)N in#". Then just as before, we take the completed tensor product

with Avu, and consider the image of the function cc i—(1 + T)x. This gives the

desired Katz A^-adic form.

The Katz definition gives us a geometric interpretation of A-adic forms as

follows:
Let Mc denote the functor from the category of mA-adically complete A-algebras

to Sets that takes an algebra R to the set of isomorphism classes tuples (A, i, ip=°)
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as above. Then we can view a A-adic c-HMF as a natural transformation from this
functor to the forgetful functor A1, that further satisfies (*). For A-adic c-FIMFs, the

same statement holds if we consider m^-adically complete A-algebras.

4.2. Construction of the form. We now construct the level one ordinary family
with constant weight zero specialization. We begin by quoting Lemma 1.4.2 of [12],
which is attributed to Hida:

Lemma 3. For some prime q { p, and some rn > 0, there is a Hilbert modular
form f of weight 2m(p — 1) and level ru(pq), with coefficients in Zp, such that
ca(0, /) 1 for all A, and f 1 (mod p).

Remark. The quoted lemma has a power fo in the level; however, we can apply the

operator Up := Tnp(p) j — 1 times to decrease the level at p to r0(p) without altering

any of the other properties. This lemma is proved using theta series coming from the

extension F(pp)/F(pp) +. An alternative approach is to use lifts of suitable powers
of the Hasse invariant (see [ 1, Lemma 11.10]).

Write / (/c)c- Since fc l(modp), for any s E Zp, we can make sense

of/® as ap-adic c-Hilbert modular form of level q and weight 2m(p — l)s (here we

are using the equivalence of Katz-type and Serre-type p-adic Hilbert modular forms
in parallel weight; see [ 1, Theorem 11.12]).

Let e be the p-adic valuation of u — 1. Let

_ e + rn + 1 if p 2
r ~ \ e + 1 if p > 2

and Ä Zp[[Jr]].

Lemma 4. There is a A-adic c-HMF such that .Fc(iT — 1) fsJ2 {,'~[) for
all s G 2mZp.

Proof Write fc ffhc+u{o}
cb'lh- F'x a positive integer A\ and some b E c+.

Let n be the set of all tuples {(Aq, l>i),.... (ke. be)}, where Aq E N>0 and b, E c+,

such that kibi b. Note that the cardinality of II is finite and does not depend on
k. The qb coefficient of /cfc is given explicitly by

[qh]f' ¥ ^' • *'' ~ (ki + + kt)) "

where we have used that c0 1, and we interpret a multinomial coefficient with

negative arguments to be zero.
As this sum is finite, it suffices to prove that each element of the above sum is

given by evaluating some element of A at k — 1. The multinomial coefficient
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can be written as I for some polynomial P. Since f( l(modp), we have

vp{cbi) > 1, so vp(jj) > 0. Thus, it is enough to show P(k) can be expressed as

an element of A, and for this it is enough to show A; itself can be. The function k is

nothing but the weight divided by 27,l(p — 1), so it is given by

logpU + T) ~

(p ~ l)2m logp u

This concludes the proof.

Note that the weight zero specialization of the tuple & (^c)c is the constant
form 1, and that this form has infinitely many classical specializations. To remove q

from the level, we make use of the Hecke operators and Uq, interpreting - J- as a

rule on c-polarized HBAV's for some c.

For C a finite subgroup scheme of an HBAV A, we let 7Tc : A —> A/C. We can

geometrically define the operators Uq and \Vq on A£ (or AF)-adic modular forms
of level T0(q) in the usual way (see e.g. [8, pp. 320-321]):

Uq.(F(A, A, v>o, </>,) — ^2 ^(A/C,7rc.A,7rc o Lp~,Ttc,4>q)
^

cn</>, {0}

\Vq.9(A, A,ip~,0q) ,^{A/(f)q, tt0ii^A, 7r0ii o i!)Oc,7T0qtA[q]),

The F^E-adic form e & is ordinary of level one, since its evaluation

at any tuple (A, A, ip°o, <^>?) does not depend on level q structure. It has infinitely
many classical specializations, and its weight zero specialization is the constant
form 1. By the remarks at the beginning of the section, this finishes the proof of
Theorem 1.

4.3. Application to the Iwasawa Main Conjecture. Theorem 2 allows us to give
a direct construction of the Iwasawa extensions corresponding to the (conjecturally
nonexistent) zeroes of the /t-adic zeta function at s 1 [13]. We remark that
C. Khare has given a different simplification of this construction by allowing
ramification at an auxiliary prime. A separate proof is needed for these extensions,
as the general argument only constructs a space of extensions of rank ords=1£F p(s),
but the Main Conjecture predicts that this space has rank S ord,s=1(jFp(ts) + 1.

The proofs given in §§10,11 of loc. cit. are somewhat indirect, using "patching"
arguments similar to what is needed in the weight one case. The proof we give here
is relatively straightforward with the help of Theorem 2.

Since the non-constant terms of the form 1 vanish, we have that for each nonzero
integral ideal m,

c(m,5f - f) c(m.2"Gc 1£(l,u ') - f) G m(0).
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Thus,

c(m,<r(l,w_1) - 2~nGc/) G iri(0)-

Consider the action of the cuspidal Hecke algebra on2. We have

2~nGcf ^(^"^(mod ms{0))

away from the constant terms, so there is a map

Tcusp ^ A/m«o)

that is just the tf(l, rc_1) system of Hecke eigenvalues (mod m^). From here, the

usual argument by Ribet's method constructs the desired extensions.
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