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On the rank one abelian Gross—Stark conjecture

Kevin Ventullo

Abstract. Let /' be a totally real number field, p a rational prime, and x a finite order totally odd
abelian character of Gal(F /F) such that x(p) = 1 for some p|p. Motivated by a conjecture of
Stark, Gross conjectured a relation between the derivative of the p-adic L-function associated
to y at its exceptional zero and the p-adic logarithm of a p-unit in the y component of F\*. In a
recent work, Dasgupta, Darmon, and Pollack have proven this conjecture in the rank one setting
assuming two conditions: that Leopoldt’s conjecture holds for " and p, and that if there is only
one prime of F' lying above p, a certain relation holds between the .Z-invariants of x and x L.
The main result of this paper removes both of these conditions, thus giving an unconditional

proof of the rank one conjecture.
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940 K. Ventullo CMH
1. Introduction

Let F be a totally real field of degree g > 1. Fix a prime p and embeddings @, —

Q < C. Letx : Gal(F/F) — Q" be atotally odd character of conductor n, and F,
the cyclic extension of F' cut out by . Let w : Gal(Q(pu2,)/Q) — (Z/2pZ)*
denote the Teichmiiller character. Let S be any finite set of primes of F' including all

archimedean primes. Associated to y and S is a complex analytic function Ls(y. $)
defined for Re(s) > 1 by

Ls(xs) = 3 x(@N(@) = [(1 - xo)Np~) .
(

a,9)=1 pes

that has a holomorphic continuation to all of C. By Siegel’s rationality theorem,
Ls(x,1 —k) € Q for k > 1. Using the functional equation and the fact that Y is
odd, one can show that the order of vanishing of Lg(x,s) at s = 0 is equal to the
number of v € S such that x(v) = 1.

Let us now assume the set S contains all places above p. Let F,_ be the
cyclotomic Z,-extension of F, and I' = Gal(F. /F), which is canonically
isomorphic to a subgroup of 1+ 2pZ,,. For use later, we fix a topological generator u
of I', which gives an isomorphism Z,[[I']] = Z,[[T]] =: Aviau — 1 +7T. We
will identify u with its image in 1 4+ 2pZ,. A character of Gal(F/F) is said to
be of type S, resp. type W, if the extension it cuts out is disjoint from F._, resp.
contained in .. Since I' is a direct summand of Gal(F“*/F'), any character can be
decomposed as a product of a type S character and a type W character, which we
write as X = XsXw-

By work of Deligne and Ribet [5], there is a pseudo-measure Lg,. €
Frac(Z,[[I']]) that interpolates classical L-values via the formula

Xff‘-ycw_kd)(ﬁs,xw) = LS(Q/)le_L.; 1-— A)

where 1) is any character of type W. We also use Lg ., to denote the corresponding
element of F)y := Frac(A) via the isomorphism above. Then the previous formula
can be written

Ls o(Cuf — 1) = Lg(xw'™*,1— k),

where { = ¥ (u). Taking = 1, we get a p-adic analytic function

L,s(xw):Z, = Q,
s+ Lo (u'™ = 1).

This is usually referred to as the p-adic L-function of the even character yw. We see
from the above properties that it satisfies

L, s(xw,—n) = Lg(xw™™,—n) foralln > 0.



Vol. 90 (2015) On the rank one abelian Gross—Stark conjecture 941

It follows that if Lg(x, s) vanishes at s = 0, then so does L, s(xw, s). In this
setting, Gross has formulated a conjecture that one can think of as comparing the
p-adic derivative of the left hand side with the archimedean derivative of the right
hand side. Suppose that ord,_oLs(x,s) = 1. Then there is a unique p € S such
that x(p) = 1. If p 1 p, there is a simple relation between the respective derivatives
coming from the relation between L, s\ (py(xw, s) and Lg\ (3 (xw,s). If pp, a
more sophisticated construction is required.

Let £ be a finite extension of (@, containing all values of x¢ and xyu . Let B
be a prime of I, lying over p. By our assumptions on x and S, the subspace U,
of Op ¢ @ E on which Gal(F /F) acts by x ' is one-dimensional over E. Let
0 # u, € U,. Define

((log,oNormpg,_, /q,) @ id)(uy)
Zug00) = = x
ordy & id)(u,)

In [6]. Gross conjectures, and proves for F' = (Q, the following

e L.

Conjecture 1. Let F' be a totally real number field, p a prime, x a totally odd finite
order character of F' such that x(p) = 1 for some p|p, S the set of primes of F'
dividing cond(x )poo, and R = S\ {p}. Then

i. If Lr(x,0) =0, then L, ;(xw,0) = 0.

ii. If Lr(x,0) # 0, then L}, ¢(xw,0) = Zu,(Xx)Lr(X,0).

The first part of this conjecture follows from the stronger statement that the
order of vanishing of the p-adic L-function at an exceptional zero is greater than or
equal to that of the archimedean L-function (it is widely believed that these orders
of vanishing are equal). In [4, Lemma 1.2], this stronger statement is shown to
follow from the Iwasawa Main Conjecture for the character x (they assume y is of
type S, but this is actually not necessary; see Lemma 1 below). Unfortunately, the
proof of the Main Conjecture is not quite complete when p = 2 (see [13, §11]).
However, the inequality between orders of vanishing has recently been shown for
all p by Speiss [11] and Charollois—Dasgupta [2], by entirely different methods.
Thus, Conjecture 1.7 is known in all cases.

In [4], Conjecture 1.47 is proven under the following assumptions:

* Leopoldt’s Conjecture is true for /' and p.

« If p is the unique prime above p, then

OT'dk;:l(ﬂmn(X: k:) + ‘ZH!(X_I'/ k)) - OTdA:ZlZIn(Xils k),

where
—L, s(xw,1 —k)
EZL’H 7k :: o ’
d
u(zﬁm,(X) = _D%rn,()ﬁ k),kzl'

dk
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In this paper we prove
Theorem 1. Conjecture I is true unconditionally.

In the above notation, Gross’s conjecture can be stated as %, (x) = -Z.1,(x).
Let d, denote the order of vanishing of .%,,(x.k) at k& = 1, and similarly
for d,-1. Then Dasgupta—Darmon—Pollack’s second condition is equivalent to
assuming d, > d,-1, and if they are equal, the leading terms of .Z,, (x. k) and
Zon(x ', k) at k = 1 shouldn’t cancel.

To remove Leopoldt’s conjecture, we construct in Section 4 a certain ordinary
family of parallel weight Hilbert modular forms with weight zero specialization
equal to the constant form 1 (see Theorem 2). In Section 2, we recall the conditional
proof of Conjecture 1 given in loc. cit., but assuming the existence of this family so
as to remove Leopoldt from the hypotheses. In Section 3, we remove the condition
on . -invariants by breaking into two cases: first assuming d, < d, -1, and second
assuming d, = d, -1 and the leading terms cancel. At the end of Section 4, we use
Theorem 2 to give a simplified proof of the “Leopoldt” part of the Iwasawa Main
Conjecture.

Acknowledgements. [ am grateful to Samit Dasgupta, Henri Darmon, and Rob
Pollack for their beautifully written paper to which this paper owes its existence. |
am especially grateful to Samit for several helpful conversations, encouragement,
and for suggesting the method by which we construct the A-adic form in Section 4.

I am also grateful to Haruzo Hida for answering my questions and providing
helpful comments.

Finally, I want to thank Chandrashekhar Khare for his guidance and support, as
well as suggesting a careful reading of Dasgupta—Darmon—Pollack’s work.

2. Dasgupta—Darmon-Pollack’s Proof

2.1. Conjecture 1.2. We begin by showing the Iwasawa Main Conjecture implies
part 7. of Conjecture 1.

Lemma 1. Let x be a finite order character of F. If IMC holds for (xs.p) (e.g. if
p > 2) then
ordy—oL, s(xw,s) > ord,—oLs(x,s).

Proof. We may assume S is minimal, i.e. consists only of the primes dividing
cond(x)poo. Letd = ord,—oLs(x, s); by minimality of .S, this is just the number
of primes p|p in I for which x(p) = 1. Let ( = yw (u). Then

()7'(1.4:OL1).5'(X“)7 “’,) = OT(]/TZ'H— I C\w = Ord’F:Cuf[E\_gw-
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Let I\ - be the maximal anticyclotomic Z,-extension of I, and F - ., the
maximal subextension that becomes unramified over I\ . := F, F’... The following
fact seems to be well known, but we include a proof here for completeness:

dimg(Gal(Fy oo ur/Fy) @z, E)X ' =d. (1)
To see this, note that by class field theory,

X

(Gal(Fy - /F) @z, B = [ | TI Up@sE

OrDplp \Or, DBp

where Uy denotes the units in the *B-adic completion of OF_, and the superscript
denotes the x ' component of this space as a Gal(F, /F)-module. The maximal
quotient of this group that becomes unramified over F) . is obtained by taking the
quotient of each Us; by the kernel of the norm map to Z.; . We can write this as

X71

I 1 -

OrDplp \Or, D'Blp

where Gal(F, /F') acts by permuting the factors inside the parentheses for each p.
Since y ' is by definition a faithful character of Gal(F,/F), it will appear as
a constituent of the expression inside the parentheses precisely when p splits
completely in I\ /F, i.e. x(p) = 1. This proves equation (1).

Now let L., be the maximal unramified abelian pro-p extension of F, ., X =
Gal(Lo/Fy,c), and V = X ®7 E. Let V(&Y be the eigenspace for the action
of Gal(F\ ~/F~) = Gal(F,,/F) by x5'. Since F, o~ . is certainly a subfield
of L., it follows that (Gal(F}, co— urFy,o00 /F\_x)@sz)f’(_1 is a quotient of V(x5 1),
Furthermore, Gal(F, . /F\.) = Gal(F,./F) acts on this quotient by Y, i.e. by
u— (L

Thus, if f -1 (7") denotes the characteristic polynomial of u— 1 acting on Vs,
we have by equation (1),

ordp_¢-11f, o (T) > d.

Finally, if G .,(T") denotes the power series defined in [13, Section 1], we have
that

d<ordpc-1 Gy +T) " = 1) = ordr—cu_1Gy 0 (T)

= OrdT:Cu—lﬁ\gw-

where the inequality follows from the previous inequality and [13, Theorem 1.2], the
first equality is formal, and the second equality essentially follows from the definition
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of G .(T) in loc. cit. and the fact that H, ., (T') never has a pole or zero at (u — 1.
Putting everything together, we have

ords—oL, s(xw,s) > d=ord,_oLs(x, s),

as desired. ]

2.2. Classical and A-adic Hilbert Modular Forms. Fix I p, nas above. Let 0 be
the different of F'. Let Ur denote the units of O, and U} the totally positive units.
Let ¢ be a representative of a strict ideal class in O, and ¢* the cone of positive

elements. Let o : (Ox/n)* — Q" be a character.

Definition. A complex c-Hilbert modular form of weight £, level n, and character ¢
is a holomorphic function f on the product of g upper half planes, indexed by the
embeddings of F'into IR, such that for every element of

Teln) i= {( i ; ) € GLy(F)la,d€ O,be 07 cencd,ad —be € U;}

d
(2)
we have
az+b

1—be) P (cz+d) * f
(ad — b)*/*(cz +d) ™ f(———

) = p(a)f(z).

Here we are using the same shorthand as in [10, §1]. The modularity condition
implies that f has a Fourier expansion

f(z) =a(0)+ > a(b)g’

bect

where qb == eQﬂ'iTT'F/Q(bZ).

The space of such forms is finite dimensional; we denote this space by
M, ¢ »(n,C). More generally, for any ring R C C, let M . ,(n, R) denote
the subset of forms with Fourier coefficients in /£. Shimura has shown that
M, ,(n,Q) ® C = My, ,(n,C); using the embedding Q — @, fixed at the
beginning, we can define M . .(n, R) for any subring of Q,,.

We define a Hilbert modular form (without the ¢) of weight k& and level n to
be a |Cl*(F)|-tuple of c-Hilbert modular forms, where ¢ ranges over a set of
representatives of the strict ideal classes. We will usually write this as f = (f)..
For a ray class character y of conductor dividing n, we will say f has character y if
S(a)f = x(a) for almost all prime ideals a of F' (see [10, p. 648]). We denote the
space of such forms by M (n, ).

Given a Hilbert modular form f in the latter sense, the normalized Fourier
expansion is defined as follows: for each nonzero integral ideal m, there is a unique ¢
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in our choice of strict ideal class representatives that we can write as me¢ = (b) for
some totally positive b € ¢. Then we let

c(m, f) = ac(b)Nc 2,
where a.(b) is the coefficient of ¢” in f.. Foreach A € CIT(F'), we also set
cx(0, f) = ac(0)N¢*/2,

As the notation suggests, neither of these expressions depend on our choice of b.

For each prime ¢ f n, and each prime q|n, there are Hecke operators T and
U, that act on the spaces M (n, x). Fix a rational prime p and suppose p|n for all
p|p. If R is a complete subring of @, then we say f is ordinary if ef = f, where
e := lim, lep U;“.

Let m, be the maximal ideal of A, A its localization at the prime ideal (T°),
and [, its field of fractions. For [ a finite extension of Q,., let Ap = £ ®7 A.
Fix an integral ideal n, and an odd ray class character y of conductor dividing n.
Following Wiles, we define ./ (" (n, ), the space of level n ordinary A-adic forms
of character Y, to be a collection of coeflicients

{ex(0,.7)}, {elm, 7)) € A

where A runs over C'I'" (F') and m runs over the nonzero integral ideals of O, such
that for almost all pairs & > 2,( € ji,~, the reduction of this system modulo the
ideal P;;, = (T + 1 — Cu*) gives the normalized Fourier coeflicients of an ordinary
parallel weight & Hilbert modular form of level n := lem(p-ord((), n) and character
Ve xw!' . We call the reduction mod P, := P, ; the weight k specialization. For
any subalgebra A C R C F), we define AZ5"(n,x) = A4 (n, x) @ R. We also
let Y (n, x), 72 (n, x), etc. denote the corresponding spaces of cusp forms.

Let T°"? denote the ordinary A-adic Hecke algebra of level n and character , i.e.
the A-algebra generated, for £ { np and q|np, by the Hecke operators 7}, U, acting
on .7 *(n, x). Formulae for this action in terms of g-expansions are given at the
top of page 537 in [12]. The following lemma is probably well known, but as far as
we know has not been written down.

Lemma 2. If the weight k specializations of a collection {c, (0, F)}, {c(m, . F)} €
A give a classical ordinary form for infinitely many k > 2, then they are classical
for all but finitely many k > 2.

Proof. Fix a weight k and let E be a finite extension of (,, containing all the Hecke
eigenvalues appearing in M™% (ng, Q,, xyw'™*). Wiles shows in [12, Thm. 1.4.1]
that the system of Hecke eigenvalues corresponding to any classical eigenform of
weight k can be realized as a quotient of the A-adic Hecke algebra T"/(1 +
T —u*) — E. If mis the corresponding maximal ideal of T @ F, the
space . (n, x)/m.#"*(n, x) is nonzero by Nakayama’s lemma. Therefore, any
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classical eigenform can be realized as the weight k specialization of some A ;-adic
form (i.e. we don’t need to take a finite extension of A : note that we are nor claiming
there is an eigenform defined over A ).

We claim that this implies that any ordinary form with coefficients in (0, can be
realized as the specialization of some Ag, -adic form. Indeed, on the weight £ fiber,
we can write the ordinary form as an F-linear combination of eigenforms. Lifting
this linear combination to A gives a form specializing to the one we need. but a
priori only has coefficients in A . However, by averaging over Gal(Az/Ag, ). and
observing that specialization intertwines this action with the action of Gal(£/Q,)),
we get a Ag -adic form with the desired specialization.

The claim implies that the map

./4_:g;f (n,x)/(1 +T —u"). /({’;Zf(n. x) = M (ng, Q,, xw!' ™)

is an isomorphism for almost all %, say & > k. In particular,

rd 1 rord (— A=k
rankA%.//fxép (n, x) = dimg, M7 (%, Q,, xw' ™)
for almost all £; call this dimension d. We can choose ideals a;.. ... a,; of Op so

that the map

p

i .///'\’_:"f(n, X) — (An.p)’[
F = (c(a;, F))

i
is injective. After inverting a finite set of primes & of Ag , 7 is an isomorphism.
Therefore, for P, ¢ &, we have

T+ MR, Qp, xw' %) = Q0
f = (C(ai- f)),

Now suppose we had a collection of coefficients {c)(0,.77)}. {c(m, #7)}
with infinitely many classical specializations. There is a unique element .# of
A%[é](n, x) such that ¢(a;, #) = c¢(a;, ) for all i. Moreover, at each weight
k with P, ¢ &,k > kg, and where .27 is classical, the reduction of .7’ must agree
with the reduction of .7 by the isomorphism 7. Thus, . and .# must be equal
since they agree on a Zariski dense set. This proves the lemma. [

A typical example of ordinary A-adic forms of tame level n and character y are
the A-adic Eisenstein series &' (1), ¢) attached to a pair of (not necessarily primitive)
narrow ray class characters 7),¢ such that niy» = v, cond(rn)cond(v)) = pn,
(p,cond(n)) = 1:

C/\(Oa éﬁ(na l/})) = (Sr127g7771(c/\)£{n‘p‘x}.lf Lpws
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e(m, &(n, ) = D n(TIENT) (L +T)
tjm
(v.p)=1

Here 6, = 1 if cond(n) = 1, and is zero otherwise.

We denote G; := Lppy.1, s0 that Ge(u® — 1) = (p,(1 — ). Let ¥ =
29G7 € (1,w "), so that the constant term of & at each infinite cusp is identically
one. It follows from a result of Colmez [3] that if Leopoldt’s Conjecture is true for
(F,p) then GG has a pole of order one at 7' = 0. In this case, the form ¢, which a
priorionly lies in .2 (1,w™"), actually lies in %X{;’) (1,w™ "), with specialization
equal to the constant form 1, i.e. ¢, (0,%(0)) = 1 and ¢(m, % (0)) = 0 for all A, m.
Theorem 2 in Section 4 below shows that even if Leopoldt fails, there is a suitable

cusp form ¢ suchthat ¢ — ¢ has all of these properties.

2.3. Conjecture 1.ii. We now recall the proof of Conjecture 1.7z given in [4,
Lemma 1.2], making a few of our own cosmetic changes, but also assuming the
existence of the form _# in order to remove Leopoldt from their hypotheses. To
prepare for Section 3, we will assume that there is a unique prime p above p in F', as
this will highlight how the . -invariant hypothesis comes into play. When there is
more than one prime above p, the arguments we give showing that one can replace ¢
by ¢ — _# in their proof go through unchanged.

Let F', p, x, S, R be as in Conjecture 1. The first step in their proof is to obtain a
Galois theoretic interpretation of .%,;,.

Let F/ be an extension of @@, containing the values of all characters of con-
ductor dividing cond(x)poo, and E(y ") the F|Gal(F /F)]-module that is one-
dimensional over E and that Galois acts on by y '. For ease of notation,
let A denote Ap (so p is invertible in A). Finally, let H,(F, E(x™")) be the
subspace of H'(F', E(x!)) consisting of elements that are unramified at all primes
away from p, and at p, lie in the E-linear span of x,,. and K.y, where x,, €
HY(F,, E(x™")) = Hom(Gal(F,/F,), E) is the unramified (additive!) character
Frob, — 1, and k.. is the restriction of the global character

— log
Gal(F/F) — Gal(Fx/F) < 1 + pZ, -5 Z, < E.

In the sequel, we will also use k., to denote the global character.

In [4, §1]. itis shown that dimg H (F, E(x ")) = 1, and that the unique class
(up to a scalar) is ramified at p. In other words, if we write its restriction to p as
Thyr + YKeye, then y 7 0. In fact we have

Proposition 1 (loc. cit., Prop. 1.6).

T
l

- _leg(X)-
Y
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The idea now is to use modular forms to explicitly construct a class in
H,(F, E(x ")) whose restriction to (i, can be shown to be equal (up to a scalar) to
_"ZL'II-(X)’%HT' + Keye-

Denote by xp the character of conductor R that has the same primitive as Y.
Consider the level R weight one Hilbert modular Eisenstein series £ (1, xr). We
have

ex(0, Ei(1, xr)) = 279Lr(x,0) + 8 x "(AN)Lr(x~".0),

where d, = 1 if cond(x) = 1, and is 0 otherwise. We also have
UpEi(1, xr) = Ei(1, xr) + E1(1, X5),

which implies that e = lim,,,(U];"!) acts by the identity on this form. Thus, the
ordinary A-adic form 2V := ¢[(4 — 7 )E\(1, xr)| has weight one specialization
equal to F/1(1, x r). Moreover, its constant terms satisfy

ex(0, %) = 279Lp(x,0) + oy x ™ (M) Lr(x~",0)

independent of the weight, since this is clearly true before taking the ordinary
projection, and the only Eisenstein series contributing to these cusps at the classical
higher weight specializations are already ordinary.

Over F, we can decompose 22" into a linear combination of a cusp form and
ordinary Eisenstein series. The coefficients a(1, x) and a(y, 1) of the Eisenstein
families &'(1, x) and &'(x, 1) in this decomposition are computed in loc. cit. §2,
using knowledge of the constant terms of ¢[4 E/ (1. yr)] at all unramified cusps,
not just the infinite cusps. The weight A specializations of these coefficients are
given respectively by

(1(1\()(’1‘) o LS.;J(XW, 1 — ]\) o ﬂ%}n(){. I\)
(e (k) = LoOCLON T —(Nn)

LS\P(X_lwﬂ 1= A) B ZMJ,(X_Iw ]‘) -

Note that these computations are unaffected if one replaces ¢ by ¢ — 7 since ¢
vanishes at all cusps.

The Eisenstein series other than &(1,Yy) and &(y,1) can be killed by an
appropriate application of Hecke operators away from p without affecting the
weight | specialization F(1, x ), simply by dividing each Hecke operator by its
eigenvalue on E(1, x). It follows that there is some f, a linear combination of
Hecke operators away from p, acting by the identity on E';(1, x), such that

t(2" —a(l,x)E(1,x) —alx, 1)E(x, 1)) (3)

is a cusp form. Note that a(1, x) and a(x, 1) have poles at weight one of order equal
to the order of vanishing of the corresponding p-adic L-functions; let us say they are
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of order d,, and d, -1, respectively. Since x(p) =1 = x~'(p) = 1, we will always
have d, ., d,-1 > 1. The additional assumption on .Z-invariants is equivalent to

ordi—a(l,x) = ordp=1(a(1,x) + a(x, 1)),

which implies in particular that d, > d, -
Let m € A be the umformlzer at welght one given by

IOgu(l + T — u). Then
the universal cyclotomic character x.,. can be written x.,. = 1 + Kcyem + O(7?).
Since the poles of a(1, x) and a(x, 1) do not cancel, we have

F = 2" —a(1,0)E(1,x) — alx, )E(x. 1) € 75l (n, ).
We want to consider the image of this form in
~ o (n, ) T2 ()
and compute the Hecke action. To do this, we will use the following identities
E(x,1) =&(1,x) = Ei(1, xs)(mod 7)
2° = B\ (1, xr)(mod )
T:&(x: 1) = (X(O) + Xy (0))E (X 1) UpE(x,1) = E(x,1)
(1 x) = (14 x(O)x0(0)E (LX) Up&(1,x) = &(1,x)
TeE\(1, xr) = (1 + x(0) Er(1, xr) UpyEi(1, xr) = Ei(L, xr) + Ei(1, x5)

We compute mod 7w~ X2 77 (n, x):

T.7 = (1+ x(0) 2" — (1 + x(O)X e (£))a(1, x)E(1, x)
— (Xeye(0) + x(0))alx. 1)E(x, 1))
= (L+ x(0)F = x(O)keye(O)ma(l, x)E(1, X) = Keyel(O)malx, 1)E(x, 1)
= (1 +x(0)-F — (x(O)cye(O)ma(l, x) + Keye(O)ma(x, 1)) Er(1, xs)
= (14+x(0)F + (x(O)keye(£)a(l, x)

+ h‘.(..!,,.(:”,)a,(x, 1))( )3;

a(l,x) +a(x, 1)
a(x,1)
( (1 T, x) +a(x, 1) H“"’"U}'))

a(l. x) o))
+ x(¢) (1 + Wa(l.x) ol l)h,.m.(f)) )./.

I

1
UyF =F+E(l,xs)=(1— F
p 1( Xb) ( (1(1~X)+U(X,1))
1,
=14~ a1, x) L) F .

a(l, x) +a(x,1)
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The calculation for the U, operators is similar. Thus we get a map

Tord — /\/7r2 o= E[ﬂ]/ﬂQ

a(x,1) , _a(lx)
a(l,X)-f—(L()(, l)h'(fo/rf(ﬁ)) —!—X(ﬁ)(l + a

T[/l—>(1—|—’/T

a(x,1)
U — 1 — Uy e
T+ al )
a(l,x)
U, —1+m .
P a(l, x) + a(x, 1)

Let / denote the kernel of this map, and m the maximal ideal containing /. Since
the image of ¢ from Equation (3) is a unit, this map factors through the cuspidal
quotient of T°"?. Let R denote the localization at m of this cuspidal quotient, and
think of I and m as being ideals of 2. Finally, let 'y := R @, F)\.

There is a Galois representation

p:Gp — GLy(Fg)
a, by
p(a):((:f, dﬂ>'

unramified at all £ t pn such that Trace(F'rob,) = T,. For some choice of complex

0

By a standard argument, the [?-submodule of F; generated by all a, is I, and
similarly for all d,. Moreover,

: . 1 0
conjugation ¢ € GG, we may assume p(c¢) = ( 1 )

s =1
‘ +ﬂdlx%+dxl)

a(l, x)

deg = xlo)(1+ Wa(l.,\') +a(y, 1)

A, By

C, D, ) with the

By a theorem of Wiles, there is a change-of-basis matrix (

property that

a, b, A, By \ _( A, By Xeyelly () *
¢y dy Co Dy ) \ Cy Dy 0 np(0)

forall o € G,. Here 1), is the unramified character Frob;’ > U’f.
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We note that in the basis with complex conjugation diagonalized, p(G,) is not
upper-triangular on any component of F. If it were, the function ¢, reduced
mod m would yield a non-trivial element of H'(Gp, F(x)) that is unramified
everywhere (recall that p is the unique prime above p). However, there are no
unramified elements in this H ', since e.g. there are no unramified Z,,-extensions
of F\,. Therefore, Cp is invertible in F'i. Hence, for o € Gp, we can write

A, _
bﬂ = C—p[Xr'ycnp 1(0) - a""f}'

If BB is the R-module generated by b, (or equivalently by | bo =) as o ranges
over (G -, then DB is finite over I by a standard compactness argument sothat B/mB
is nonzero. The composition of b/d with reduction mod m gives a cohomology class
in H'(Gp, B/mB(x ")) that is unramified outside p and nonzero. Indeed, if it were
a coboundary, one can check it would have to be identically zero by considering the
image of complex conjugation. Since there are no everywhere unramified elements
of this H'', the class must be ramified at p; in particular, it is nontrivial at p. This
argument, combined with Nakayama’s lemma, shows that B is in fact generated
by b, foro € G,,.

Reducing the above equation modulo (I?—‘: N B), we get for o € Gy,

o) = 22 ()15 (0) = alo)
= BBV ~ (o)
é_:m + el ) (1= T ;)(Ll)u Lt (7))
R b T L)
= ) Tl 1)) i T ATy G}

Since 7 € m and m* C I, the module B /(I = [2: N B) is m-torsion. Furthermore,
p
by our initial assumptions we can choose o so that the bracketed expression is a unit.
A : ; - A ;
It follows that B/(Iﬁ N B) is cyclic over R/m = F, generated by T Since

it is w-torsion, we must have b(o) = b/d(o). Thus, we may view b/d as a cocycle
with coefficients in £(x '), whose restriction to G, is given, after dividing by the

. 1 o,
unit m;gﬁ, by Keye — ZLynkur. By Proposition 1, £, = £, and the proof

is complete.
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3. Removing the .Z-invariant condition

Let £, denote the reciprocal of the leading term of a(l,x), and £, -1 the
reciprocal of the leading term of a(y, 1), with respect to the uniformizer 7. Then
L, = —%Lun(x) only if d,, = 1; otherwise .Z,,,(x) = 0 (similarly for xy1).

As explained in the introduction, we break into two cases.

3.1. d, < d,-:. Although this case is covered by [4, Theorem 2.2], only the final
few sentences of the paper allude to a proof, and details are omitted. For the sake of
completeness, we include a proof here, which in any case appears to take a different
approach from what the authors had in mind.

In this case, the form 22° — a(1, x)& (1, x) — a(x.1)&(x.1) has a pole of
order d, -+ coming from the third term, while the second term has a pole of order d, .
Consider the Hecke action on the image of this form in

ﬂ—d\q .//{K"“'(n, X)/W_'{Y+2./((("d(n. Y)

A similar analysis to the previous case shows that this form is an eigenform, giving
rise to a homomorphism

Tor(i SN E[T{']/?Td\‘*‘ 7rl>\+2‘.

as follows:
o a(l, x) ;
Ty — (chc(g) a(l,x) +a(x,1) «-:.,1-@))
a(l, x) oy
+x(6) (1 + T ol ) h.,_.yf-([.))

a(x,1) Seyekll)

1 —
e A0 on 8 & el T

U,—1-— .
’ a(x, 1)

As before, this homomorphism factors through R, the localization of the cuspidal
quotient at the maximal ideal corresponding to the FE(1,y)-system of Hecke
eigenvalues. Let / C R denote the kernel. There is a Galois representation
Gr — G Ly(Fg) with coefficients a,, b,, ¢,, d,, satisfying

= o)—m a(l, x) Feye(o)(mo
R 2 0s = chr( ) (L(la X) i ”‘(Xa 1) ’(“U(’( )( d I)
Ro>d,=x(o)1+n all, ) Keye(o))(mod T).

a(l,x) +alx,1)
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By

Finally, there is a transition matrix y that satisfies
Cp Dy

by = ‘é—:[xqﬂw;%w ~ (o)

for all ¢ € G,. Reducing this equation modulo [ . =N B, we getforo € Gy,

Ap
b/d(O') = l}(()‘) C_[Xrucnp ( )—H(O)]
_AP 1 . CL(I,X)
_6;[”(>Ql)h‘”( )+7T(L(X,1)h” ,/(-(O')]
Ap (. A1 —dy 1Ly
—?z[wivl(f/ﬂ(lm,,( )—|—7r"—l I+l Z\) Keye(T)].

Foro € I,\ ker(k.,.), the bracketed expression generates (7'~ *! '21—2) mod
I—‘. Hence, as before, B/(B N I—) is one-dimensional over R/m = FE, with a

(f 11— (1

) .
canomcal generator given by 7 ~*122 The composition
p

s A
b/d:Gp — B/(Bmc—") ~F
p

given by this generator yields a nonzero cocycle
k] € H,(F.E(x™"))

with the property that

L
[H”G = 5{1\:%29 — 1Ky + i_hru(
p X 20\
After multiplying by the nonzero scalar —-——, the right hand side equals

\

_D(Zu n (X) Rur + H'r'y(' .

This finishes the proof. L]

32. d, =dy-rand L, = —2Z, 1. Letd:=d, =d, .. Inthis case, although
the second and third term of 22" — a(1, y)&(1, \() - (I(X 1)&(x, 1) each have
poles of order d, the sum only has a pole of order d — 1. We consider the Hecke
action on the image of this form in 7“1 7" (n, x) /74247 (n, x). Unlike
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the previous cases, this form is not an eigenform. Nevertheless, we may compute
mod A (n, x):
T(2° — a(1, )8 (LX) - alx. DE(x, 1))
= (L+X(0)2° = (1 + x(O)(1 + Theye(6)))a(L, x)E (1, X)
— (L4 mheye(f) + x(6))alx, 1)E(x, 1)
= (1+x(O))[Z° - a(1,x)E(1,x) — alx,1)&(x, 1)]
= (Keye(OX(Oma(l, X) + Keye(O)ma(x, 1)) Er (1, X).

Ug(2" — a(l.x)E(1. x) — a(x, 1)E(x. 1))
= (2" —a(1,x)E(L, x) — alx, 1)E(x, 1)) = Thege(a)alx, 1) Er (1, x).

Up(2" — a(L,x)€(1, x) = a(x 1) (Y 1))

Thus, although the image of our form is not an eigenvector for the Hecke
operators, it is a generalized eigenvector for the F (1, x)-system of eigenvalues;
the Hecke stable subspace it generates is two-dimensional over £/, with a basis given
by (2" —a(l.x)&(1, x) —a(x,1)&(x. 1)) and 7=+ E (1. x). The Hecke action
can then be viewed as a homomorphism

Tod ( “(L) y ) C My(E).

The image is canonically isomorphic to F[s]/?. Under this identification, the map
T — Fl[e]/? is given explicitly by

Tw—>1+X(€)—5(H“ '

KRey (-(CI)
Uy — 1 — g(~22)
1 L

Up — 1 — E(dd:l).

Here 6,—; = 1if d = 1, and is zero otherwise. Following the same proof as before,
we get a Galois representation G — G Lo(F) such that

R3a,=1- 5h;(0) (mod 1)
R>d, = x(o)(1— Ethp( ))(mod I).
7 L

X
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However, in this case the image of the universal cyclotomic character x,.,,. in 12/
1s trivial, as we are working “purely in weight one.” Thus, reducing the equation

A, .
bo‘ - —C'TJ[X(‘U(‘U}J t— (1.0-}

Ag
Cp

modulo I =% gives for o € G,

b/d(o) = ﬁ[u;l ~ ]

Ch
Ap Byl )
= & _(sr: Rougr o Z E
c, (—a=16ur (o) 7 )
Just as before, we see that B/(B N[ %) is one-dimensional, generated by E?f‘ , and
S P . p
that the function b/d yields a class [x] € H(F, EE(x ")) such that
[HHGP = —5d:1h”,.,,,. + Kﬁj,.yr
1
- _(Sdzlh"ufr' — Z_m(:y{'-
X
Multiplying through by —.&,, the right hand side becomes
6{[:13)\ Ry 23 H‘('U(: - _-—an(X),{ur + H/(:y("
This finishes the proof. (]

4. A A-adic form passing through 1

We revert to letting A denote Z,[[T']]. In this section we prove the following

Theorem 2. There exists an Fy-adic cusp form g € (1, w™") such that 4 —
J e a3 (V,w™t) and (4 — 7 )(0) is the constant form 1.

4

The existence of this form is perhaps known to experts. As explained in
Section 2, this theorem removes the reliance on Leopoldt’s conjecture in the proof of
Conjecture 1.7¢. At the end of this section, we also explain how the form 7 gives
an easier and more direct construction of the Iwasawa extensions corresponding to
the “Leopoldt” zeros in Wiles” proof of the Main Conjecture.

4.1. Reductions and geometric A-adic forms. We begin with some reductions.
First, it is enough to find any ordinary A g )-adic form of level one with constant
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weight zero specialization, where E' is a finite extension of (0,. Rescaling, we may
assume the constant at weight zero is equal to one. Let .% be such a form, so that

%ord( ) @ %ord (].5)((,071)

X

where x ranges over all even ray class characters of conductor 1. It causes no
harm to assume [ contains sufficiently many roots of unity, so that there is a F-
linear combination of diamond operators projecting onto the w™' component above.
Specializing at weight 0, this acts by the identity on the constant form, so we may
assume .# has character w™'. We can wrlte F as an F _-linear combination of a
cusp form and Eisenstein series & (1, = 'w™"'), where 1) ranges over strict ray class
characters of conductor 1. For 77 # 1, the system of Hecke eigenvalues associated to
the Eisenstein series &'(n,n~ 'w™") at weight zero differs from that of the constant
form. Hence, there isa A E.(0)-linear combination of Hecke operators that will kill
all Eisenstein contributions except &' (1, w '), and act by the identity on the constant
form. Applying this to .7, we are left with an Fy _-linear combination of &' (1,w™")
and a cusp form. Since the constant terms of this form are identically one, it must
be equal to 4 — 7 for some F, -cuspform _#. Finally, we can average over
Gal(Fy,/Fy)sothat ¢ has coeflicients in F,.

_ Our next reduction requires a new definition. Let r > 0 be a natural number, and
A = Zp[[pz” For an integral ideal n and odd ray class character x of conductor

dividing n, we define an ordinary A-adic Hilbert modular form to be a collection of
coeflicients

{ex(0, 7)) fe(m, #)} € A

such that for infinitely many & € p"N, their image under the specialization T" =
u* — 1 are the coefficients of a classical ordinary Hilbert modular form of parallel
weight %, level lem(p,n), and character yw'=*. We will denote this module by
A (n, X)), for any ring A C RC Fy, weset .43 (n, x) = A (0, x) ®5 R
Using the constant dimensionality of the spaces of ordinary weight A forms, and an
argument similar to that used in Lemma 2, one can show that the space of F;-adic
forms has the same dimension as the space of Fy-adic forms, and hence is 1dent1ﬁed
with %/O’"d @p, F5x. Now suppose we can find an A(va') -adic form specializing

to 1 at weight zero (i.e. modulo pl) Then writing it as an /5 -linear combination of

elements of ./ {", we can replace the coefficients in F; with elements of Fy having
the same principal part and constant term at weight zero, to arrive at an F, -adic form
specializing to 1 at weight zero. Thus, it is enough to find an ordinary family with
coeflicients in [75.

To construct a family of level one, we first construct a tamily of some auxiliary
level q using powers of a certain theta series (Lemmas 3 and 4). We will then use the
Atkin—Lehner operators U, and W to project the form down to level one. In order to
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define these operators, we will make use of a geometric description of A-adic forms
(see Proposition 2).

Fix F', p asin Section 2 and let n be an integral ideal of O . Fix a strict ideal class,
and let ¢ be a prime-to-p representative of this class. Let I? be a p-adically complete
DVR. Following [1, Definition 3.2], we let T},, ,, = OMM(R/p™, pt,», T'o(n)) be the
moduli stack over R/p™ whose objects over S, for any R/p™-scheme S, are given
by isomorphism classes of tuples (A, ¢, A, ¢y, i, ) where

e« A — §'is an abelian scheme of relative dimension g;

t:Op < Endgr(A) is aring homomorphism;

o~

A (My, M7T) = (c,¢") is an Op-linear isomorphism of étale sheaves over
T between the module of symmetric O-linear homomorphisms from A to
its dual A to the ideal c, such that the polarizations M} map to ¢*;

¢n € Ais an Op-invariant closed subgroup scheme that is isomorphic to the
constant group scheme (O /n) étale locally on S;

© iyt fle @707 < Ads an inclusion of group schemes.

These are referred to as c-polarized Hilbert Blumenthal Abelian Varieties
(HBAV’s) with level structure. Following [1, Definition 11.4], we define a p-adic
c-Hilbert modular form (or ¢-HMF) of level I'y(n) over R to be an element of

Vao,oo ‘= @171@7111“(T"m\-n/(fi’,/p”‘) 3 OT.,,,,” )

Ifv:(Op®Z,)" — R* is a finite order character, we will say the form is of
(parallel) weight & € Z,, and character Y if for any o € (O ® Z,)*, we have

a*(f) = x(a)Nm(a)*f,

where a* f(A, t, A, Pn,ip=) = [(A, 1, A, Pn,ipx0a™ '), and Nm : (OpRZ,)* —
14-2pZ,, — R* is induced by the norm map followed by projection onto the 1-units.

Fix an isomorphism € : ¢ ® Z, = Op ® Z,. The g-expansion at oo of [ is an
element

flq) € RHQhHhEc+U{()}-

that generalizes the g-expansion of classical Hilbert modular forms. We refer to
[1, Definition 11.6] for the precise definition. In their notation, it is the evaluation
of f at the cusp (¢, Op, €, j.) where j, is induced from € as in [loc. cit., 6.5]. The
g-expansion principle states that a p-adic c-HMF of weight x is determined by its
g-expansion [loc. cit., 11.7].



058 K. Ventullo CMH

For every k > 2, there is a Hecke-equivariant inclusion
A[A'.C(F()(np)s R) — Vx.X/R

that preserves g-expansions and weights [9, Thm. 1.10.15]. In fact, in the quoted
theorem, the space of classical forms on the left hand side of the inclusion is more
general than the forms we considered in Section 2: it allows any power of p in
the level, and in the complex setting, it consists of those forms invariant under the
subgroup of I'.(n) consisting of matrices of determinant 1 (see [1, 6.11]). However,
this certainly contains the forms we want to consider, and this is all we will need.
We will call a form in the image of the above inclusion classical.

Let W be a finite flat DVR over Z,,. Let m, denote the maximal ideal of Ay We
now present two definitions of “p-adic” Ay -adic forms and prove that they are the
same. We also want similar statements to hold for A-adic forms, and will indicate
where changes need to be made.

Recall that u € 1 + 2pZ, is a generator of the image of Gal(F,./F). Define a
map ¢ : (Or ® Z,)* — Ay as the composition

(O ® Z,)% — Gal(F/F) "23" A%,

We may also consider ¢ as a Ay--valued character via the inclusion A C A.

Definition. A Wiles Ay -adic c-Hilbert modular form .7, of level I'g(n), is a multiset
of elements {c(t, #)}icc+uroy € Aw such that for every s € Z,, the sequence of
elements of IV obtained from the specialization 7" — w® — 1 is the g-expansion of
a p-adic c¢-Hilbert modular form of level I'4(n) and weight s over 1. We use the
same definition for Kw-adic c-Hilbert modular forms, except that we only require
the specialization condition to hold for s € p"Z,,.

Remark. Given a |[CIT(F)|-tuple of Wiles Ay -adic forms, one for each strict
ideal class with representative ¢, and with infinitely many specializations giving the
Fourier coeflicients of an ordinary classical Hilbert modular form, we can obtain
a A-adic form as in Section 2 as follows. Under the usual normalization for
weight & forms, one would set ¢(m,.Z (u* — 1)) = (N¢) %2 - a (b)(u* — 1),
where b is a totally positive generator of mc. However, this presents a problem
since (V¢)~*/? may not vary p-adically continuously with /. So instead, we simply
set ¢(m,.#) = ac(b), and ¢.(0, ) equal to the constant term. Since this is
independent of the choice of b at infinitely many weights, it must be independent
A-adically. This modification will not affect what we are ultimately interested in:
finding a family whose weight zero specialization is the constant form 1.

Definition. A Karz Ay -adic c-Hilbert modular form of level I'j(n) is an element of
the subspace of V¢ o,z ®z, Aw = va.x/z,, ®z, Aw /m} satisfying

o™ (f) = o(a)f. (%)

forevery a € (Op ® Z,,)*. We use the same definition for Ay, mutatis mutandis.



Vol. 90 (2015) On the rank one abelian Gross—Stark conjecture 959

This last property is equivalent to requiring that for every s € Z, (resp. p"Z,),
reducing the form modulo (1 + 7" — u*) yields a p-adic ¢-Hilbert modular form
of weight s defined over Ay, /(1 + T — u*). Note that neither of these definitions
require any of the specializations to be classical.

By definition, a Katz A-adic ¢-HMF is nothing but a compatible sequence of
p-adic ¢-HMFs over Ay, /my satisfying certain extra conditions. Thus, we may
define the g-expansion at oo of a Katz A-adic form to be the inverse limit of these
g-expansions; it is an element of A[[¢"]]sec+uyo)-

The following proposition is due to Hida when F' = Q [7, Thm. 3.2.16]. We
essentially follow his proof.

Proposition 2. The space of Katz Ay -adic c-Hilbert modular forms is identified
with the space of Wiles Ay -adic c-Hilbert modular forms via g-expansion at oo.
The same is true for Ay -adic forms.

Proof. We first explain the proof for Ay -adic forms. It follows from the definitions
that the g-expansion of a Katz form is a Wiles Ay -adic form, so we need only show
that all Wiles Ay-adic forms arise in this way. Let .% be a Wiles Ay -adic form. We
start by reinterpreting .% as a measure C(Z,,, Z,) — Vi, . w, defined by sending
the function (fL) to the coefficient of 7™ in .% (which is a p-adic ¢-HMF by virtue
of being a limit of p-adic ¢-HMF’s). By the binomial theorem, this measure has the
property that for s € Z,, the function x — u** is sent to .# (u® — 1), a p-adic c-HMF
of weight s.
Taking the completed tensor product with A of this measure gives a map

C(Zpy A) = Vi ooy ®A.

The image of the function 2 +— (1 + 7")" is easily seen to be a Katz Ay -adic form
(i.e. obeys the equation (*)), with g-expansion equal to .7 .

Now suppose .7 is a Wiles Ay -adic form. Define the submodule M C C(Z,,,Z,)
by demanding that if C(Z,, Z,) > f = 3y an(}). then

a a
feM N GZpand—N%OasN%oo.
p‘T‘N prN
Then we may consider .% as a measure M — Vi oo/w that sends p™™ (1) to the
coefficient of ( pl)N in .7 . Then just as before, we take the completed tensor product

with ]&W, and consider the image of the function = — (1 4+ T)*. This gives the
desired Katz Ay -adic form. m

The Katz definition gives us a geometric interpretation of A-adic forms as
follows:

Let M denote the functor from the category of m,-adically complete A-algebras
to Sets that takes an algebra /2 to the set of isomorphism classes tuples (A, ¢, A, ¢, @) )
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as above. Then we can view a A-adic ¢-HMF as a natural transformation from this
functor to the forgetful functor A, that further satisfies (x). For A-adic ¢-HMFs, the
same statement holds if we consider m3-adically complete A-algebras.

4.2. Construction of the form. We now construct the level one ordinary family
with constant weight zero specialization. We begin by quoting Lemma 1.4.2 of [12],
which is attributed to Hida:

Lemma 3. For some prime q { p, and some m > (, there is a Hilbert modular
form f of weight 2™ (p — 1) and level I'y(pq), with coefficients in Z,, such that
ex(0, f) = 1forall A, and f = 1(mod p).

P’

Remark. The quoted lemma has a power p’ in the level; however, we can apply the
operator U, := T,,,(p) j—1 times to decrease the level at p to I'y(p) without altering
any of the other properties. This lemma is proved using theta series coming from the
extension F'(f1,)/ F'(11,)". An alternative approach is to use lifts of suitable powers
of the Hasse invariant (see [1, Lemma 11.10]).

Write f = (fc)c. Since f. = 1(mod p), for any s € Z,, we can make sense
of f* as a p-adic ¢-Hilbert modular form of level q and weight 2 (p — 1)s (here we
are using the equivalence of Katz-type and Serre-type p-adic Hilbert modular forms
in parallel weight; see [1, Theorem 11.12]).

Let e be the p-adic valuation of u — 1. Let

_Je+m+1 ifp=2
]l e+1 ifp>2

and A = Z,[[Z]].

p"

Lemma 4. There is a A-adic c-HMF ., such that F.(u* — 1) = 27V for
all s € 27,

Proof. Write fo = 7\ 40y c,q”. Fix a positive integer &, and some b € ¢™.
Let IT be the set of all tuples {(k1.b1),. ... (kesbe)}, where k; € Nogand b; € ¢,
such that > k;b; = b. Note that the cardinality of II is finite and does not depend on
k. The ¢ coeflicient of f¥ is given explicitly by

k
bl pk __ k1 k¢
1= (lg], ek k= (k4 + k;)) o+ Ce

IT

where we have used that ¢; = 1, and we interpret a multinomial coefficient with
negative arguments to be zero.

As this sum is finite, it suffices to prove that each element of the above sum is
given by evaluating some element of A at u(?~"2"* —1. The multinomial coefficient
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P(k)
k

can be written as for some polynomial P. Since f. = 1(mod p), we have

vp(cp,) > 1,50 vp(%) > 0. Thus, it is enough to show P(k) can be expressed as
an element of A, and for this it is enough to show £ itself can be. The function £ is
nothing but the weight divided by 2" (p — 1), so it is given by
log, (1 +1T) 2
(p—1)2mlog, u

This concludes the proof. U

Note that the weight zero specialization of the tuple . % = (.%,), is the constant
form 1, and that this form has infinitely many classical specializations. To remove g
from the level, we make use of the Hecke operators 1, and Uy, interpreting .% as a
rule on c-polarized HBAV's for some c¢.

For (' a finite subgroup scheme of an HBAV A, we let 7 : A — A/C. We can

geometrically define the operators Uy and W, on Ay (or A p)-adic modular forms
of level I'y(q) in the usual way (see e.g. [8, pp. 320-321]):

. 1 ;
UgF (A, X ipe s ) = Na Z F(A]C T e 0, To0y)
CNgq={0}

‘«ngz(A.. )\, '1'/1)‘")6 s (bq) — rg/jz(A/qbq y 7Tq‘)q *Aj 'ﬂ—{/‘)q o 'l':p'x. s W(bl]*A[q]).

: W,+U. ; ; ; : :
The FL‘_‘-adlc form e (#) # is ordinary of level one, since its evaluation

at any tuple (A, \,4,=,¢,) does not depend on level q structure. It has infinitely
many classical specializations, and its weight zero specialization is the constant
form 1. By the remarks at the beginning of the section, this finishes the proof of
Theorem 1. [

4.3. Application to the Iwasawa Main Conjecture. Theorem 2 allows us to give
a direct construction of the Iwasawa extensions corresponding to the (conjecturally
nonexistent) zeroes of the p-adic zeta function at s = 1 [13]. We remark that
C. Khare has given a different simplification of this construction by allowing
ramification at an auxiliary prime. A separate proof is needed for these extensions,
as the general argument only constructs a space of extensions of rank ord,_;(r ,(s),
but the Main Conjecture predicts that this space has rank 0 = ord,_(p ,(s) + 1.
The proofs given in §§10, 11 of loc. cit. are somewhat indirect, using “patching”
arguments similar to what is needed in the weight one case. The proof we give here
is relatively straightforward with the help of Theorem 2.

Since the non-constant terms of the form 1 vanish, we have that for each nonzero
integral ideal m,

c(m¥ — 7)=cm2"G'E(L,w™ ) = 7)€ me.
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Thus, ‘
c(m,&(Lw ) —27"G: 7)€ My

Consider the action of the cuspidal Hecke algebra on 27" (/. 7. We have
27"G: ¥ = &(1,w™")(mod m?m)
away from the constant terms, so there is a map

that is just the &'(1,w™") system of Hecke eigenvalues (mod m{,, ). From here, the
usual argument by Ribet’s method constructs the desired extensions.
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