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On Welschinger invariants of symplectic 4-manifolds

4%, kxk

Erwan Brugallé and Nicolas Puignau™

Abstract. We prove the vanishing of many Welschinger invariants of real symplectic 4-
manifolds. In some particular instances, we also determine their sign and show that they are
divisible by a large power of 2. Those results are a consequence of several relations among
Welschinger invariants obtained by a real version of symplectic sum formula. In particular, this
note contains proofs of results announced in [4].

Mathematics Subject Classification (2010). 14P05, 14N10; 14N35, 14P25.

Keywords. Real enumerative geometry, Welschinger invariants, Gromov—Witten invariants,
symplectic sum formula, symplectic field theory.

1. Introduction

A real symplectic manifold (X, w. t) is a symplectic manifold (X. w) equipped with
an antisymplectic involution t. The real part of (X, w, t), denoted by RX, is by
definition the fixed point set of 7. We say that an almost complex structure J tamed
by w is T-compatible if 7 is J-antiholomorphic, i.e. J odt = —dt o J.

Let Xp = (X.w, 1) be a real symplectic manifold of dimension 4. Let C
be an immersed real rational J-holomorphic curve in X for some t-compatible
almost complex structure J, and denote by L the connected component of RX
containing the I-dimensional part RC of RC. Fix also a t-invariant class F in
Hy(X \ L:7Z/27Z). Any half of C \I@E defines a class C in H, (X, L:7Z/27) whose
intersection number modulo 2 with F, denoted by C - F, is well defined and does not
depend on the chosen half. We further denote by m(C') the number of nodes of C
in L with two t-conjugated branches, and we define the F-mass of C as

mp p(C)y=m(C)+C - F.

*Both authors were supported by the Brazilian-French Network in Mathematics. Part of this work was
accomplished at the Centre Interfacultaire Bernoulli (CIB) in Lausanne, Switzerland, during the semester
program “Tropical geometry in its complex and symplectic aspects”.

**E. B. was also partially supported by the ANR-09-BLAN-0039-01.
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Choose a connected component L of RX,aclass d € H>(X:Z),and r,s € Zxg
such that

c1(X)-d—1=r+2s.

Choose a configuration x made of r points in L and s pairs of r-conjugated
points in X \ RX. Given a t-compatible almost complex structure J, we denote
by C(d. x, J) the set of real rational J -holomorphic curves in X realizing the class d,
passing through x, and such that L contains RC. Fora generic choice of J, the set

C(d.x.J) is finite, and the integer

WXg,L,F(d..\‘) = Z(_])mL.F(c)
cec(d,x,J)

depends neither on x, J, nor on the deformation class of X (see [14,25])!. We call
these numbers the Welschinger invariants of Xg. When F = [RX \ L], we simply
denote Wy, 1.(d.s) instead of Wy, ;1 rx\r](d.s). Note that Welschinger invariants
are non-trivial to compute only in the case of rational manifolds.

A real Lagrangian sphere of Xp is a Lagrangian sphere globally invariant
under z. Two disjoint surfaces S and S’ in X are said to be connected by a chain
of real Lagrangian spheres if there exists real Lagrangian spheres Sy..... Sk in X
suchthat S; N'§; =0 if |i — j| = 2, and S; and S;4; intersect transversely in a
single point, as well as S and Sy, and S” and S.

The next two theorems are the main results of this note.

Theorem 1.1. Let Xy be a real symplectic 4-manifold, and suppose that F has a
T-invariant representative connected to L by a chain of real Lagrangian spheres.

(1) If r = 2, then
Wxe.L.F(d.s) =0.

2) Ifr=1land c\(X)-d = 2, then

c1(X)d—4

2 2 | Wx,.L.F(d,s).

If in addition F = [RX \ L], then

d2—c)(X)-d+2

(=) 2 Wx,r(d.s)=0.

'Welschinger originally considered in [25] only the case when F = [RX \ L]. In this case m ;. r(C)
is the number of solitary nodes of RC. Later, Itenberg, Kharlamov, and Shustin observed in [14] that
Welschinger’s proof extends literally to arbitrary z-invariant classes in H>(X \ L:Z/2Z). See also [9]
for a related discussion.

Note that our convention differs slightly from [14], where the sign of a curve in C(d, x, J) depends
on the parity of m(C) + C - (F + [RX \ L]) instead of m(C) + C - (F).
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Theorem 1.1 is an immediate consequence of Theorem 2.3 and Corollary 2.6
respectively given in Sections 2.3 and 2.4. The invariant Wy, 1 o(d.s) does not
seem to satisfy a vanishing statement analogous to Theorem 1.1(1) (see [5,11,14]),
implying that the set C(d.x,J) is usually non-empty. Theorem 1.1(2) partially
generalizes [24, Theorems 1.1, 2.1, 2.2, and 2.3] and [5, Proposition 8.2].

Theorem 1.1 can be specialized to real algebraic rational surfaces, whose
classification is well known (see [17,21] for example). A real algebraic rational
surface is always implicitly assumed to be equipped with some Kiihler form.

Let G be the subgroup of the r-invariant classes in Hy(X \ L;7Z/27Z) generated
by the kernel of the natural map H,(X \ L:Z/27Z) — H,(X:.Z/27Z), and by the
classes realized by smooth real symplectic curves with either positive genus or self-
intersection at least —1. We show in Propositions 4.2 and 4.3 that Wy, ; r and
Wy, 1.F’ are equal in absolute value if /' — F’ € G. We denote by H(Xg, L)
the group of t-invariant classes in Hy(X \ L:;Z/27Z) quotiented by G. All groups
H(Xg. L) are computed in the case of real algebraic rational surfaces in Section 4.
In particular, we prove in Proposition 4.8 that they only depend on a minimal model
of Xr and on the choice of L.

Theorem 1.2. Let X be a real symplectic 4-manifold equal, up to deformation and
equivariant symplectomorphism, to a real algebraic rational surface, and suppose
that F is non-zero in H(Xgr, L). Then the conclusions of Theorem 1.1 hold in the
following cases:

* X Is obtained from a minimal model by blowing up pairs of complex
conjugated points and real points on at most two connected components of
RX, one of them being L;

* Xp is a Del Pezzo surface;
e F=[RX\L].

Remark. In a burst of enthusiasm, we forgot in [4, Proposition 3.3] the assumption
that X has to be symplectomorphic/deformation equivalent to a real algebraic
rational surface.

Theorem 1.2 follows from the classification of real algebraic rational surfaces
and Theorem 1.1, which in its turn is a direct consequence of Theorem 2.3 and
Corollary 2.6 below. Our strategy to prove these latters is to degenerate X into a
reducible real symplectic manifold Xy k. and to relate enumeration of curves in Xy r
and in Xp. This degeneration can be thought as a degeneration of X to a real nodal
symplectic manifold, and can be described by the contraction of a real Lagrangian
sphere Sy by stretching the neck of a r-compatible almost complex structure in a
neighborhood of Sy (see [8,24]). In this note we use an equivalent description in
terms of symplectic sum ( [10, 15]), see section 2.2 for more details.
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In particular, Corollary 2.6 follows from Theorem 2.5, which can be seen
as a real version of the Abramovich—Bertram—Vakil formula [1, Theorem 3.1.1],
[23, Theorem 4.5]. Another but related treatment of contraction of Lagrangian
spheres contained in R X has previously been proposed by Welschinger in [24].

The paper is organized as follows. We state Theorems 2.3 and 2.5 in Section 2,
and give their proof in Section 3 using a real version of the symplectic sum formula.
We end this paper by explicit computations in the case of real algebraic rational
surfaces in Section 4.

Acknowledgements. We are grateful to Simone Diverio, Penka Georgieva, Um-
berto Hryniewicz, Ilia Itenberg, Viatcheslav Kharlamov, L.eonardo Macarini, Frédéric
Mangolte, Brett Parker, Christian Peskine, Patrick Popescu, Jean-Yves Welschinger,
and Aleksey Zinger for many useful conversations. We are also indebted to the
anonymous referee for many valuable comments on the first version of this paper.

2. Auxiliary results

2.1. Preliminaries. In the whole text, we denote by Xo = CP! x CP!, by wrs
the Fubini—Study form on CP", and by /; and /; respectively the homology classes
[CP!x{0}] and [{0} x CP']in H,(X¢;Z). Recall that H,(Xy: Z) is the free abelian
group generated by [, and /;. Up to conjugation by an automorphism, there exist
four different real structures on (CP! x CP', wrs ® wrs), and the class [ + [, is
invariant for exactly three of them, see for example [17,21]. These latter are given
in coordinate by:

o Ty(z,w) = EZ, W), RXpy, = S x S

® rel(zi w) = (wv ?)a RX@I = SZ;

¢ Tem(zow) = (—1 —L), RXem = 0.

Note that 14, and Tep, act trivially on H(Xo; Z/27Z), while 7., exchanges the
classes /1 and /,. Note also, with the convention that y (@) = 0, that

F(RXpy) = y(RXep) =0, and  y(RX,) = 2.

Lemma 2.1. Let E be a smooth symplectic curve in (Xo,wrs @ wrs) realizing
the class 1y + 1 in Hy(Xo:7Z). The group Hy(Xo \ E.7/27) is isomorphic to
Z./27, and is generated by any representative disjoint from E of the class [y + [ in
H>(Xo; Z)27.).

Proof. The first Chern class of (Xo, wrs ® wFrs) is dual to [ + [>. Hence it follows
from the adjunction formula [19, Chapter 2| that £ is an embedded sphere. The
lemma can be proved exactly as Lemma 4.1, nevertheless we provide an alternate
proof.
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Let J be an almost complex structure on Xy tamed by wrs @ wrs such that E is
J-holomorphic. Since both classes /; and /; have the same symplectic area, a class
aly+bl; has positive symplectic area if and only if a+b > 0. As a consequence, any
J-holomorphic curve realizing the class /; is an embedded sphere. The Gromov—
Witten invariant of (Xo, wrs @ wrs) for the class /; is equal to 1, and 12 =0, so
there exists a unique J -holomorphic sphere realizing the class /; and passing through
any given point of X,. Recall that any intersection of two distinct J-holomorphic
curves is positive. Since [E]-/; = 1, we deduce a S?-fibration X, — E whose fiber
over a point p € E is the J-holomorphic sphere realizing the class /; and passing
through p. In its turn, this induces a R2-fibration Xy \ £ — E, and so X, \ E has
the same homotopy type than E. This proves that H>(X \ E:7Z/27) >~ 7Z/27.

Since [E]> = 2 in X, there exists a representative F of the class /| + [»
in H,(Xo:Z/27Z) disjoint from E. The class [F] is obviously non-zero in
H>(Xo \ E:Z/27), and so generates the group. |

Lemma 2.2. Suppose that E is a smooth real symplectic curve in (Xo,wrs @
wrs, Tep) realizing the class 11 + [» in Hy(Xo:7Z), and that D is an embedded
T -invariant disk with 0D C E. Then the group H, (X, E.7Z/27) is isomorphic to
Z /27 and generated by D.

Proof. Recall that E is an embedded sphere. The long exact sequence of pairs gives
the exact sequence

Hy(E:7.)27) <> Hy(Xo:Z./27) 2> Ho(Xo. E:7./27) — 0.

The map i is clearly injective, so Ha2(Xo, E:7Z/27) is isomorphic to Z /27 and
generated by j(/1) = j(/2).

Denote by D and D, the two halves of £ \ dD. Since E is a real symplectic
curve, the involution z,; exchanges Dy and D,. The surface D; U D realizes a class
in H,(Xy:7Z/27), and we have

11+[2:[D]UDz]:[D1UD]+[D2UD] in H2(XgZ/2Z)

Since 7,; exchanges the classes [P U D] and [D, U D], both of them are non-null,
i.e. [DyUD] = [; and [D, UD] = I5_;. Hence by the long exact sequence of pairs,
the class realized by Dy U D in H,(Xy, E;7Z/27), which equals the class realized
by D, generates the group. 0

Example. In the case when X\ E is the affine quadric with equation x? 4+ y2 +z% =1
in C3, the sphere Xy N R? is an example of generator of Ho(Xo \ E:7/27), and
the disk Xo N (iR x iR x R~¢) is an example of generator of H,(Xo, E:7/27Z), see
Figure 2c.



910 E. Brugallé and N. Puignau CMH

2.2. Vanishing Lagrangian spheres. Let Xp = (X,w, 1) be a real symplectic
manifold of dimension 4. A class V in Hy(X:7Z/27) is called a real vanishing
cycle if it can be represented by a real Lagrangian sphere Sy. By stretching the
neck of a r-compatible almost complex structure in a neighborhood of Sy, one
decomposes X into the union of X \ Sy and T*Sy. This operation can be thought
as a degeneration of Xp to a real nodal symplectic manifold for which V' is precisely
the vanishing cycle. Equivalently, the class V' is a real vanishing cycle if and only
if, up to deformation, X can be represented as the real symplectic sum of two real
symplectic manifolds (Xi.w;.71) and (Xo.wrs & wfrs. 19) along an embedded
symplectic sphere E of self-intersection —2 in X; (hence of self-intersection 2 in X))
where:

e F isreal and realizes the class /1 + [» in H2(Xo: Z);

» V isrepresented by the deformation in X of a representative of the non-trivial
class in Ha(Xo \ E; Z/27Z).

By abuse, we still denote by V' the non-trivial class in Hy(Xo \ E:Z/27Z). We refer
to Section 3.2 for more details about the symplectic sum operation. We denote by Xy
the union of (X1, wy, 71) and (Xp. wrs ® wFs. 19) along £, by Ly the degeneration
of L as Xg degenerates to Xy, and by L; the intersection Ly M X;. Note that by
construction we have 0L; C RE.

RXy
R Xo

Sy . A A

SV = RX[) Sl'

: 3 23 (N

a) 1o = Tpy b)to=tand RE #9 c¢)tp =1, andRE =0 d) 10 = Tem
Figure 1. Possibilities for (X¢. 79) and Sy

Recall that 7*S? is equivariantly symplectomorphic to the complement of a
smooth real hyperplane section E of a smooth real quadric in C P3. This real quadric
is precisely the summand (Xo.wrs @ wrs.19) of Xy. We depicted in Figure 1
all possibilities for RX, and Sy. Choose a diffeomorphism W between T7*S?
and the line bundle Oy p1(—2) of degree —2 over £ = CP!, which restricts to
a symplectomorphism between the complements of the zero sections (note that W
does not preserve the fibration). The summand (X;.w.7;) of Xy 1s obtained by
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removing from X a small tubular neighborhood of Sy, and by gluing back via W
a small neighborhood of the zero section of Oyp1(—2). The homology groups
H>(X,:7Z) and H,(X:Z) are canonically identified, the class [E] being identified
with the class W, 1 ([E]). We implicitly use this identification throughout the text.

Let F be a r-invariant class in Hy(Xy \ Ly;7Z/27Z) having a t-invariant
representative F, and define /; = F N X;. Note that by construction we have
dF; C E. Throughout the text, we always assume that F satisfies the following
conditions:

» either F N RE = 0, or there exists a neighborhood U of RE in X} such that
F NU C RXy (i.e. F is either disjoint from RE, or is locally contained in
R Xy around RE);

* one of the two following assumptions hold:
(Hy) Fo U Ly is a cycle representing a multiple of V' in Hy(Xo:Z/27);

(Hy) t9 = te,and Fo U Lg = Dor FoU Ly = DU Sy, where D is a
r-invariant embedded disk with 0D C FE (all possibilities are depicted
in Figure 2).

D:LU DC.FU

ISV . ) _:: SV '

Sy = RX,

a)RE # @ and Fy C Sy b)RE # @and Lg =9 ¢RE =@and Ly =0

Figure 2. Possibilities for 7y U L under the assumption (H>)

2.3. Vanishing Welschinger invariants. Next theorem is a key ingredient in the
proof of Theorem 1.1, and will be proved in Section 3.4.

Theorem 2.3. Suppose that Fo U Ly satisfies assumption (Hy) and contains R X,
and that Ly is a disk.

(1) If r = 2, then
Wx,.L.r(d,s)=0.
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(2) Ifr=1landc(X)-d —1 > 2, then

c1(X)d—4 d2—cy(X)d+2

2 2 | Wy, L.r(d,s) and (—1) 2 Wy, p(d.s) > 0.

Note that the assumptions of Theorem 2.3 imply that 7p = 1,; and RE # 0.
In the Lagrangian sphere contraction presentation, the condition that Lg is a disk
translates to the condition that L N Sy is reduced to a single intersection point.

24. From X; to X. Here we reduce the computation of Welschinger invari-
ants of Xp to enumeration of real J-holomorphic curves in (X;.w;,1;) for a
T1-compatible almost complex structure J for which £ is J-holomorphic.

Definition 2.4. Let J be a r;-compatible almost complex structure on (X, w;. 71)
for which the curve E is J-holomorphic, and let C; be an immersed real rational
J-holomorphic curve intersecting E transversely. We denote by a the number of
points in RCy N RE, by b the number of pairs of t;-conjugated points in C; N E,
and by my,, r (Cy) the number of intersection points of a half of C; \ RC; with
L, U F,. Finally, let k > 0 be an integer.

(1) If Fo satisfies assumption ( /), then we define

a b
Y (e B S e ) ( )(bk)

k=ag+2be \°F
and
Miﬁfokﬂl)=={ g—nerfNC”+Vbzb ifa::gandk::b:
P otherwise.
where y = 0, 1 is such that [Fo U Lo] = yV in Hy(X¢:Z/27Z).
(2) If Fy satisfies assumption (H>), then we define

(=)™ 7€) ik =q=h = 0:

Cy) = :
KLy 70k (Ch) {0 otherwise

As above let d € Hy(X:7Z) and r, s € Zx( such that
c(X)-d—1=r+2s.

Choose a configuration x made of r points in L; and s pairs of r-conjugated points
in Xy \ RX;. Let J be a r;-compatible almost complex structure for which E is
J-holomorphic.

For each integer k > 0, we denote by Cy x(d. x, J) the set of all irreducible
rational real J-holomorphic curves in (X, ;. 7y) passing through all points in x.
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realizing the class d — k[E], and such that L; contains the I-dimensional part
of RC;. For a generic choice of J satisfying the above conditions, it follows from
Lemma 3.1 and Proposition 3.3 that the set Cy x(d, x, J) is finite, and that any curve
in Cy x(d, x.J) is nodal and intersects £ transversely. Moreover Cy 4 (d, x. J) is
non-empty only for finitely many values of k.

We prove next theorem in Section 3.3. Recall that notations have been introduced
in Section 2.2.

Theorem 2.5. Suppose that Ly # @ if r > 0. Then for a generic choice of J, the
two following claims hold.

(1) If Fo satisfies assumption (H), then, with the convention that y(9) = 0, one

has
RX.
Wxer.r(d.s) =) 2 : ﬂﬁ, fooi
k>0 CieCy x(d.x,J)

(2) If Fo satisfies assumption (H»), then one has

WyoLr(d.s) = Y pr, 7.0(Ch).
CieCyold.x.J)

Applying Theorem 2.5(1) with F = [RX \ L], one obtains [4, Theorem 2.2].
Some instances of Theorem 2.5(1) when RXy = S! x S! have been known for
sometimes, e.g. [6,7,16,20]. Since the publication of [4], an algebro-geometric
proof of Theorem 2.5(1) appeared in [S] and in [11] in the particular cases when X
is a Del Pezzo surface of degree two or more. Theorem 2.5(2) immediately implies
the following corollary.

Corollary 2.6. Suppose that V. € H(X \ L:7Z/27) and that Fo satisfies
assumption (H»). Then

WX.‘.va,F(d-S) = WX;&:,L,F-}-V(d.S).

2.5. Applications of Theorem 2.5(1). We do not explicitly use Theorem 2.5(1) in
the proof of Theorem 1.1, nevertheless its proof is almost contained in the proof of
Theorem 2.5(2). Theorem 2.5(1) has many interesting applications, in particular in
explicit computations of Welschinger invariants, see [5, 11]. We present two other
consequences.

We first relate some tropical Welschinger invariants to genuine Welschinger
invariants of the quadric ellipsoid. We refer to [13] for the definition of tropical
Welschinger invariants. The only homology classes of (Xo, wrs@wFs. 1.;) realized
by real curves are of the form d(/; + [) with d € Z~. We say that a tropical curve
in R? is of class (a.b) in the tropical second Hirzebruch surface TIF5 if its Newton
polygon has vertices (0,0), (0.a), (b.a), and (2a + b.0). We denote by Wrp, (d)
the irreducible tropical Welschinger invariant of TIF, for curves of class (d. 0).
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Proposition 2.7. For any d € Z~, we have
WX().‘,,,SZ (dly +dl>,0) = Wrg, (d).

Proof. We consider the second Hirzebruch surface [, equipped with its real
structure induced by the blow up at the origin of the real quadratic cone with equation
x2 + y2 — z2 = 0. We denote respectively by i and f the class in H,(F,:7Z) of
a hyperplane section and of a fiber. According to [18], if x” is a tropically generic
configuration of 4d — 1 points in R?, then any rational tropical curve in TF, of
class (d — k.2k) and containing x” has 4d unbounded edges of weight 1. Still
by [18], this implies the existence of a generic configuration x of 4d — 1 points
in RIF, such that any real algebraic rational curve in [F, of class (d —k)h + 2k f and
containing x intersect the (—2)-curve only in real points. Now the corollary follows
from Theorem 2.5(1) applied with RX, = S2. L]

It is proved in [12] that given a real toric Del Pezzo surface X equipped with its
tautological real toric structure and a class d € H,(X:7Z), we have

Wy, rx(d.0) > Wy, rx(d.1).

The same idea we used in the proof of Proposition 2.7 combined with Theorem 2.5
and [5, Theorem 3.12] provide a natural generalization of this formula in the
particular cases when X is a Del Pezzo surface of degree at least three.

Proposition 2.8. Let (X, w) be a symplectic 4-manifold symplectomorphic/deformation
equivalent to a Del Pezzo surface of degree at least three. If X = (X.w. 1) and
X[f% = (X, w, 12) are two real structures on (X, w), then for any d € H>(X:Z) one
has

WL, (d.0) = Wy: 1,(d.0) 20 if y(RX) < y(RX').

Proof. We first prove the proposition in the case when (X, w®) is deformation
equivalent to CP? blown up at six points. We consider CP? and its blown up
equipped with the standard complex structure J5,. Let us denote by CPZ2(x) the
blow up of CP? in 6 — 2« real points and k pairs of conjugated points, such that
these 6 blown-up points do not lye on a conic, and no 3 of them lye on the same line.
We further denote by CP %(K) the blow up of C P2 in 6—2« real points and k pairs of
conjugated points, such that this 6 blown-up points lye on a smooth real conic with a
non-empty real part, but no 3 of them lye on the same line. We denote by £ the strict
transform of this conic in @%(K). We also denote by CP62(4) the real structure on
the blow up CP%in6 points with a disconnected real part (see [17,21]). We have

x(RPZ(k)) = -5+ 2« forallx € {0.1.2,3,4}.

Note that CP2 (k) contains no complex algebraic curves C with C? < —2, and that

the curve £ and its multiples are the only algebraic curves in @Fé(x) with self-
intersection strictly less that —1. Hence it follows from [19, Lemma 3.3.1] that J,
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is generic enough for our purposes, as long as we consider generic configuration
of points in CPZ(k). Theorem 2.5(1) applied to E in X; = CPZ(k) allows one
to compute W(:P(z(x),Ll(d,S) (when RXy = S! x S') and WCP(z(KH)!L?(d.s)
(when RXy = S?) out of the sets Cix(d,x,Jg). When s = 0, it follows from

[5, Theorem 3.12] that there exists a configuration of real points x in (E‘ﬁg(x) such
that for any k > 0, any curve in Cy x(d, x, Js;) intersects E only in real points

{i.e. b =1}, and
Z (—l)mL].]RX]\LI (C]) 2 O.
CieCy xd.x,Js1)
Hence by Theorem 2.5(1) we obtain

d-[E .
Wepzin, (@00 = Wepagesn 1, (d.0) = 3 ( k[ ]) Y (=1 rxng ()

kz‘ C e
C' Kk (d,ia-]sf)

> 0.

The proof in the case of CP! x CP! is analogous using floor diagrams from [3].
O

Note that Proposition 2.8 does not generalize immediately to any symplectic 4-
manifold. Indeed, according to [2, Section 7.3] one has

WCPQ,]RPQ(g' 12) < W(CPZ,]R‘PZ(9~ 13).

i.e. Proposition 2.8 does not hold in the case of C P2 blown up in 26 points.

3. Real symplectic sums and enumeration of real curves

This section is devoted to the proof of Theorems 2.3 and 2.5. We start by performing
some preliminary computations in Section 3.1. We recall the symplectic sum
construction in Section 3.2, as well as a basic application to complex enumerative
problems. We prove Theorems 2.3 and 2.5 in Sections 3.3 and 3.4, by adapting
results from Section 3.2 to the real setting.

An isomorphism between two J-holomorphic maps f; : C; — X and
J2 1 C2 — X is a biholomorphism ¢ : C; — C, such that f; = f; o ¢. Maps
are always considered up to isomorphisms.

Given o = (@;)i>1 € ZZ5, we use the following notation:

+o0 +00
la| = Za,-, and la = Zia,-.

i=1 i=1
The vector in ZZ5, whose all coordinates are equal to 0, except the i th one which is
equal to 1, is denoted by ¢;.
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3.1. Curves with tangency conditions. Let (X, w) be a compact and connected 4-
dimensional symplectic manifold, and let £ C X be an embedded symplectic curve
in X.Letd € Hy(X;Z)and o, 8 € Zg% such that

la+ I8 =d-[E].

Choose a configuration x = x° U x5 of points in X, with x° a configuration of
c1(X)-d — 1 —d - [E] + || points in X \ E, and x = {pi,;}o<)<aiz1 &
configuration of |«| points in £. Given J an almost complex structure on X tamed
by w and for which E is J-holomorphic, we denote by C*#(d. x.J) the set of
rational J-holomorphic maps f : CP! — X such that

« fx[CP' =d;

x C f(CPY);

E does not contain f(CP);

S(CP) has order of contact i with E at each points p; ;:

f(CP?') has order of contact i with E at exactly ; distinct points on E \ X .

For a generic choice of J, the set of simple maps in C%P(d, x., J) is O-dimensional.
However C*P(d,x.J) might contain components of positive dimension corre-
sponding to non-simple maps.

Lemma 3.1. Suppose that B = (d - [E]) and « = 0, or B = (d - [E] — 1) and
a = (1). Then for a generic choice of J, the set C*P(d. x. J) only contains simple
maps.

Proof. Suppose on the contrary that C*P(d, x, J) contains a non-simple map which
factors through a non-trivial ramified covering of degree & of a simple map fo :
CP' — X. Let dy denotes the homology class ( fo)«[CP!]. Since fo(CP!) passes
through éc¢; (X) - dp — 1 points, we have

c1(X)-do—1=6c1(X)-do—1=0,
which is impossible. O

Next proposition shows that the set of images of non-simple maps in C%# (d, x, J)
is O-dimensional.

Proposition 3.2. Suppose that C*P(d. x, J) contains a non-simple map f which
factors through a non-trivial ramified covering of a simple map f, : CP! — X.
Denote by dy the homology class (fo)«[CP'], and let o', B’ € Ly such that

fo € C¥PF (dy, x, J). Then for a generic choice of J, we have
ci(X) do—1—do-[E]+|p'| = |x°| = k1 and || =kz

with (ki,kz) = (1,0),(0, 1), or (0,0). Moreover in the first two cases, the set of
such ramified coverings f is finite, and |o'| + |B'| = 2.
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Proof. Let § > 2 be the degree of the covering map through which f factors. In
particular we have d = ddy. By Riemann—-Hurwitz Formula, we have

8(le| + D) — lee| — 1] <28 —2.
Combining the latter identity with |a’| = ||, we get
1B =18’ = ¢ — D(e’| + |8 - 2). 3.1)
Since fo(CP') contains all points in x°, we have
c1(X)do—1—do-[E] +|B| = |x°| = 8c1(X)-do — 1 —8do - [E] + |BI,

and so
(8 — D(do - [E] = c1(X) - do) = |B] = |B'].
Combining this identity with (3.1), we obtain

0> (8§ —1)(c1(X)-do—do-[E]+ || +|B'| = 2).
Since we have
§>2, ci(X)-do—do-[E]+||—1=0, and |[o'|>0,
we deduce that
c1(X)-do—1—dy-[E]+ || =k and |a'| =k,

with (k1,k2) = (1,0),(0,1), or (0,0). Moreover in the first two cases, all
inequalities above are in fact equalities. In particular there exists finitely many
coverings m : CP' — CP! of degree § such that fo o w € C*P(d.x.J). Since
|B| — |B’| = 0, we also deduce from (3.1) that |a’| + |B’| > 2. O

Remark. The three cases from Proposition 3.2 show up, even in simple situations.
Let us consider for example X to be CP? blown up at a point ¢. Denote by / the
homology class of a line, by /.y, the class of the exceptional divisor, and by E
the pull back of a conic not passing through ¢g. Then for any choice of J, the sets
CO2es (O = lexe) A}, ), C4(8(1 — lexe), D, J), and CO€28 (§(I — lexe). 9, J)
with § > 2 contain a non-trivial ramified covering of a line, the third set being of
dimension § — 1.

Proposition 3.3. Suppose that E is an embedded symplectic sphere with [E]* > =2,
and that |B| = [E]-d — 1. Then for a generic choice of J, the set C*P(d, x,J)
contains finitely many simple maps. As a consequence, the set

C2P(d.x.J) = | FCP) | (f : CP' > X) e C*F(d.x. ])}

is also finite.
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Proof. Suppose that C*#(d.x,J) contains infinitely many simple maps. By
Gromov compactness Theorem, there exists a sequence (fn),,>0 of 51mple maps
in C%#(d. x, J) which converges to some J-holomorphic map f : — X. By
genericity of J, the set of simple maps in C*# (d, x. J) is dlscrete Hence either C

is reducible, or f is non-simple. Let C. ..., CM.E’] ..... C . be the irreducible
components of C, labeled in such a way that
« f(C) ¢ E;

- 7(C)) C E.and 1,[C;] = ki[E).
Define k = Z:";] ki. The restriction of f to [/, C; is subject to
e (X)-d —1—d-[E] + ||
points conditions, so we have
c1(X)-(d —k[E])—m = e1(X)-d —1—d -[E] + |B].

Since E is an embedded sphere, the adjunction formula implies that ¢;(X) - [E] =
[E]? + 2. Hence we get

ci(X)-d =2k —k[EP-m>c1(X)-d=1—d-[E]+ |BI.
that is
0>—d-[E]+|Bl+m—1+2k +k[E]*.
Since d - [E] = |B|, we are in one of the following situations:
(1) d - [E] = |B]| (in particular ¢ = 0):
@ k=0,andm = 1;
(b) [E]? = =2,k >0,andm = I;

(2) d - [E] = |B| + | (in particular either 8 = (d - [E] — 1) and @ = (1), or
B=(d-[E]-21)):
(@ k=0,andm=1;
(b) k =0,and m = 2;
) [E=1,k=1,andm = 1;
(d) [E)? = -2,k >0,and m = I;
(e) [E]? =2,k >0,and m = 2.

We end the proof of the proposition by ruling out all these cases one by one.
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()(a)

(1)(b)

(2)(a)

(2)(b)

(2)(c)

d-[E]=|Bl.k =0,andm = 1:
As explained above, the map f has to factorize through a non-trivial ramified
covering of a simple map fo : CP! — X. Butthen fj is subject to more point

constraints that the dimension of its space of deformation, which provides a
contradiction.

d-[E]=|Bl.[E]* = -2,k >0,and m = I:

By genericity, the curve f(C ) is fixed by the ¢;(X) -d — | point constraints
and intersect E transversely. Any intersection point ofT(El\(E’I U...U E;n,))
and E deforms to an intersection point of f,(CP') and E forn >> 1. Since
(d—k[E])-[E] = d-[E]+2k, atleast d -[E]+k intersection points of f(C )
and E deform to an intersection point of f,(CP!) and E for n >> 1. But
this contradicts the fact that two J-holomorphic curves intersect positively.

d-[El=|B|+ 1,k =0,and m = 1:
Since f is a non-simple map, it factorizes through a non-trivial ramified

covering of degree § > 2 of a simple map fo : CP! — X. If
do = (f0)«[CP'], the adjunction formula implies that the image of f, has

dg—('l(X)-d0+2
2

nodes. Each of this node deforms to 2§ intersection point of f,(CP') and
fo(CPY) forn >> 1. Since x C f(CP) N fo(CP'), we get

di —c1(X) do+2

+('1(X)'d—2: dd0+2(5—-]) > dd()

which is a contradiction.

d-[E]=|Bl+ 1,k =0,and m = 2:

By genericity, the curve f(C, U C») is fixed by the ¢;(X) - d —2 point
constraints, and intersect E transversely at non-prescribed points. This
contradicts the fact that either a # 0 or B, # 0.

d-[El=|Bl+ L[EP=1Lk=1andm = 1:

By genericity, the curve 7(61) is fixed by the ¢ (X) - d — 2 point constraints,
and intersect E transversely in d - [E] + 1 non-prescribed points. Any such
intersection point distinct from 7(?1 N Efl) deforms to an intersection point
of fu(CP'y and E for n >> 1. Moreover since all intersection points of
f(fl) and E are transverse and non-prescribed, the component E’, contains
the limit of the point corresponding to the extra constraint «y or ;. Therefore

fw(CPY)yand E forn >> | must have at least d - [E] + 1 intersection points
for n >> 1, which is a contradiction.
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Q2)d) d-[E]=|B|+ 1,[E]? = =2,k > 0,and m = I:
Suppose first that 7151 factorizes through a non-trivial ramified covering of

degree § > 2 of a simple map fy : CP! — X. Since fo(CP') satisfies
¢1(X) - d — 2 point conditions, we have that

c1(X)-do—1>c1(X)-d—2=26c1(X)-do—2>0,

where dy = (f5)«[CP']. Hence we obtain that ¢;(X)-dy = 1 and § = 2. In
particular the curve fo(CP!) is rigid, and intersect E at smooth points. Now
the same arguments used in the case (2)(a) provide a contradiction.

Hence 7151 i1s a simple map. Since ?151 satisfies ¢1(X) - d — 2 point
constraints, it has at most one tangency point with £. The same argument
used in the case (1)(b) implies that k = 1 and 7(61) 1s tangent to E
at f(Cy N Ell). Hence 7@1 is fixed by this tangency condition and the
c1(X) - d — 2 other point conditions, and the component 6’1 contains the
limit of the point corresponding to the extra constraint oy or f,. Thus we

obtain again a contradiction with the positivity of intersection points of £ and
fa(CPY forn >> 1.

(2)e) d-[E]=|B] + 1, [E]? = =2,k > 0,and m = 2:

By genericity, the curve f(C; U C») is fixed by the ¢1(X) - d — 2 point
constraints, and intersect £ transversely at non-prescribed points. Hence
the same argument used in the case (1)(b) implies that k = 1. Thus the
component E:/l contains the limit of the point corresponding to the extra
constraint @ or B, which gives a contradiction as in the case (2)(d).

The finiteness of the set Cff’ﬂ(d.l. J) follows from Proposition 3.2 and the
finiteness of simple maps in C*#'(dy. x. J) for all possible o’. ', and dy with
d = ddy. O

In the case when X = CP' x CP!, [E] = I} + I3, and |x°] < 1, the set
C%P(d,x,J) is always finite and made of simple maps.

Proposition 3.4. Suppose that X = CP' x CP' and [E] = I, + lo. Then the
set C*B(d,x.,J) with |x°| < 1 is empty for a generic choice of J, except in the
following situations where it contains a unique element:

. CON BT, 0 = 1.2

« C¥ (i iph )i = 1,2
o C?°00l + 1 {p}. J);

o C2y + b, {p}, J).

Moreover, this unique element is an embedding.
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Proof. The first Chern class of X is dual to 2(/y + [3), so
('1(X)'(al] +b12)— 1 —(6111 +b[2) [E] + |,8| =da +b— | + |}3l

Suppose that a + b — 1 + || = 0 and that C*8 (al, + bl»,9,J) # . Since
(aly + bly) - [E] = a + b = |B], and since two J-holomorphic curves intersect
positively, we obtain « + b = 1 and |B| = 0. By genericity of J, we have that
(aly + bl5)? > —1,1i.e. 2ab > —1. Froma + b = 1, we deduce thata = 0 or 1.

Inthe case a + b — 1 + |B] = 1 and C*P(aly + bly.{p}.J) # B, we prove
analogously that we are in one of the following situations:

* (a.b) =(1,0)or (0,1),and |B]| = 1;
e (a,b) = (1,1),(2,0), or (0,2), and | 8] = 0.

If X is equipped with the symplectic form wrs @ wps and its standard complex
structure Jg,, it is easy to check that the sets C'-°(1;. 0. Js,). CO€ (l;. {p}. Js1).
C?0(ly + L. {p}. Jsr), and C€2°(1y + 1. {p}. Js) consists of a unique element.
This implies that when we vary both @ and J, the corresponding sets still contain
at least one element. Moreover they cannot contain more than one element, since
the imposed constraints imply that two distinct curves would have an intersection
number strictly bigger than the one imposed by their homology class. Finally, all
J-holomorphic maps under consideration are embeddings thanks to the adjunction
formula.

Suppose now that C*°(2/;.{p}. J) contains an element / : CP! — X. We
proved in the previous paragraph that there exists a map fo : CP! — X in
Coe1(l;,{p}. J). Since we have fi[CP']- (fo)«[CP'] = 2/7 = 0, we deduce
that f factors through fy and a degree 2 ramified covering of CP!. This contradicts
Proposition 3.2. O

3.2. Symplectic sums. Here we describe a very particular case of the symplectic
sum formula from [15]. Recall that (X;,®;) is a compact and connected sym-
plectic manifold of dimension 4, containing an embedded symplectic sphere £
with [E]? = —2.  We furthermore assume the existence of a symplectomor-
phism ¢ from E to a symplectic curve realizing the class /1 + [ in (Xg,wp) =
(CP' xCP',wrs ® wrs). By abuse, we still denote by E the image ¢ (E) in X|.
Since the self-intersection of E in X and X, are opposite, there exists a symplectic
bundle isomorphism ¥ between the normal bundle of £ in Xy and the dual of the
normal bundle of £ in X;. Out of these data, one produces a family of symplectic
4-manifolds (Y;,w,) parametrized by a small complex number 7 in C*, see [10].
All those manifolds are deformation equivalent, and are called symplectic sums of
(Xo,wp) and (X1, wp) along E. Next theorem says that this family can be seen
as a symplectic deformation of the singular symplectic manifold Xy = Xo Ug X,
obtained by gluing (Xo, @wp) and (X, w,) along E.
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Proposition 3.5 ([15, Theorem 2.1]). There exists a symplectic 6-manifold (Y, wy)
and a symplectic fibration v : Y — D over a disk D C C such that the central fiber
71 (0) is the singular symplectic manifold Xy, and =" (1) = (Y, ;) fort # 0.

Topologically, Y; is obtained by removing a tubular neighborhood of £ in X,
and gluing back Xy \ E via ¥. Note that the symplectomorphism ¢ induces
a diffeomorphism W from the normal bundle of £ in X; and Xo \ £. Hence
the homology groups H>(X1:Z) and H,(Y;;Z) are identified, the class [E] being
identified with the class W, [E]. Without loss of generality we may assume that
\p*[E] = 11 — 12 in HQ(X()IZ).

Let d € Hy(Y;:Z), and choose x(t) a set of ¢{(X) -d — 1 symplectic sections
D — Y such that x(0) N £ = @. Choose an almost complex structure J on Y
tamed by wy, which restrict to an almost complex structure J; tamed by w, on each
fiber Y;, and generic with respect to all choices we made.

Define C(d. x(0), Jy) to be the set {7 2~ Xﬁ} of limits, as stable maps,

of maps in C(d.x(t),J;) as t goes to 0. Recall (see [15, Section 3]) that Cisa
connected nodal rational curve such that:

* x(0) C f(O):;

* any point p € T_I(E) is a node of C which is the intersection of two
irreducible components C andC” of C, with 7(6’) C Xpand f(fﬁ) C Xq;

 if in addition neither 7(6') nor 7(6”) is entirely mapped to E, then the
multiplicity of intersection of both f (5/) and T(E”) with E are equal.

Given an element 7 :C —>_Xﬁ of C(d, x(0), Jy), we denote by C; the union of
the irreducible components of C mapped to X;.

Lemma 3.6. Given an element 7 <\ — Xy of C(d. x(0), Jy), there exists k € Zxq
such that

f.JCil=d —k[E] and f,[Col=kli+(d-[E]+ k).

Moreover ¢ (Xy) - f,[C1] = c1(Y;) - d.

Proof. Let k such that f,[C] = d — k[E], and let fi[Cy] = aly + bl,. Using the
above identification of H,(X:Z) and H,(Y,;Z), we have

d-[E] = f,[Col- (i — 1) =b—a.

On the other hand, by considering a representative of £ in X and another in Xy, we
obtain

a+b=F.[Col- (I + 1) = (d — k[E)) - [E] = d - [E] + 2.

which givesa =k and b = d - [E] + k.
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By [15, Lemma 2.2], we have

c1(Ye)-d = ci1(Xy) - £.[C1] + c1(Xo) - [ [Col — 2 .[Col - [E].
Since ¢;(Xg) is dual to 2(/; + [2), we deduce that ('1(X1)'7*[C1] =ci(Y)-d. O

Proposition 3.7. Assume that the set x(0) N X contains at most one point, and that
x(0)N Xy # @ if x(0) N Xog # O. Then for a generic Jy, the set C(d, x(0), Jo)
is finite, and only depends on x(0) and Jy. Given f : C — X g an element of
C(d, x(0). Jo), the restriction of 7 10 any component of C is a simple map, and no
irreducible component of C is entirely mapped to E. Moreover the following are

true.

() If x(0) N Xo = @, then the curve Cy is irreducible, and the image of any
irreducible component of Cy realizes a class ;. The map f is the limit of a
unique element of C(d ., x(t), J;) as t goes to 0.

o . o . . _’
(2) If x(0) N Xo = {po}, then the image of the irreducible component C of Cy
whose image contains pq realizes either a class 1 or the class | + [,, while
any other irreducible component of Cy realizes a class ;.

(a) If_T(E,) realizes the class l;, then the curve Cy is irreducible and 7|Cl
is an element of C¢V(@EIH2k=Der (g _ k[E]. x(0) U x . Jo), where
Xp = 7(6’) N E. The map f is the limit of a unique element of
C(d,x(t),J;) as t goes to 0.

(b) If 7(5,) realizes the class |y + 15, then ?,51 is an element of

C*O(l, + 15, {po} UXxg,Jo), where xp C T(Cl) NE, and a = 2e;
or « = e3. In the former case, the curve Ci has two irreducible
components, and 7 is the limit of a unique element of C(d.l(t)._J,)
as t goes to 0; in the latter case, the curve Cy is irreducible, and f is
the limit of exactly two elements of C(d, x(t), J;) as t goes to 0.

Proof. The fact that no component of C is entirely mapped to E follows from
[15, Example 11.4 and Lemma 14.6]. By assumption we have [E]2 =_—2 in Xy, so
the adjunction formula implies that ¢{ (X;) - [E] = 0. Since the curve f(C)) passes
through all the points in x(0) N X and realizes the class d —k[E]in H2(X:Z), the
following hold.

() If x(0) N Xg = @, then the map _7|C| is constrained by ¢;(X) -d — 1 =
c1(X1) - (d — k[E]) — 1 points in X;. Hence the curve C; is irreducible,
the map 71(;] is simple, and f(C)) intersects E transversely in d - [E] + 2k
distinct points. The curve C is rational, and any Jo-holomorphic curve in X,
intersects E, so we deduce that the curve Cy has exactly d-[ E]+2k irreducible
components. Furthermore the image of any of them realizes a class /;.
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(2) If x(0)NXo = {po}, then the map 71C1 is constrained by ¢1(X) - (d — k[E])
—2 points in X;. Hence we are in one of the following situations.

(a)

(b)

(c)

The curve C; is irreducible, and 7-1(E) consists in d - [E] + 2k
distinct points. As above, the curve Cy must have exactly d - [E] + 2k
irreducible components, and the image of any of them realizes a class /;.
Since T(E’) contains pg, the map 7|C| is also constrained by the point

7(6’) N E. Hence 7IC1 is a simple map by Lemma 3.1.

The curve C; has two connected components, the map 7IC1 is simple
and fixed by x(0) N X;, and T(Cl) intersects E transversely in
d - [E] + 2k distinct points. Hence the curve Cy must have exactly
d - [E] + 2k — 1 irreducible components, one of them, say C”, inter-
secting the two components of C'y. The curve Y(E”) has to realize the
class Iy + /5, and the image of any other irreducible component of Cy
realizes a class /;. Since all these latter components are constrained by

Y(Cl) N E, we deduce that Cc =C.

The curve C, is irreducible, and 7 (E) consists in d - [E] + 2k — 1
distinct points. Again, the curve Cy must have exactly d - [E] + 2k — 1
irreducible components, the image of one of them being tangent to E.
As in the case (2)(b), we deduce that this component must be E’, that
its image must realize the class /; + /5, and that the image of any other
irreducible component of Cy realizes a class [;.

Suppose that f restricts to a non-simple map on Cy, and let p : CP! —
CP' be the ramified covering through which T\CI factors.  Since
x(0) N X; # @, Proposition 3.2 implies that at least two ramification
points of p should be mapped to E. Hence there should exist an
irreducible component C’ of Cy distinct from C’ and intersecting £
non-transversely. This contradicts the fact that 7*[6”] = 5.

The statement about the number of elements of C(d. x(r). J;) converging to 7 as [
goes to 0 follows from [15]. Let us recall briefly the behavior, close to a smoothing of
an intersection point p of C and Cy, of an elements f;:C, — Y; of C(d.x(t), Jy)
converging to f. In local coordinates (¢, x,y) at f(p), the manifold Y is given
by the equation xy = ¢, the manifold Xy (resp. X;) being locally given by
{t =0and y = 0} (resp. {t = 0 and x = 0}). If the order of intersection of TC”

and E£ at f(p) is equal to s, then the maps .TC., and .TC] have expansions

x(z) =az’ +o0(z°) and y(w)=bw'® + o(w?).

where z and w are local coordinates at p of Cy and C; respectively.
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For 0 < |t| << 1. there exists a solution u(r) € C* of

e !
u(t) = —.
ab
such that the smoothing of C at p is locally given by zw = p(r), and the map f; is
approximated by the map

{zw = u@t)} C C?> > (t,az*, bw®)

close to the smoothing of p (see [15, Section 6], and also [22, Section 6.2] for
details). Furthermore, such maps f; € C(d.x(t).J;) converging to f are in one
to one correspondence with a choice of such y(r) for each point of Cy N C;. ]

Next Corollary generalizes Abramovich—-Bertram—Vakil formula.

Corollary 3.8. Suppose that x(0) N\ Xo = @, and let _f :C — Xy be an element of
C(d. x(0), Jy). Define C7 to be the set of elements Tl T = Xy in C(d. x(0), Jo)

such that 7|C| = TIC{- If £,IC1] = d — k[E), then Cs has exactly (d'[E,1+2k)
elements.

Proof. 1t follows from Proposition 3.7 and Lemma 3.6 that f,[C,] = d — k[E] if
and only if the image of exactly k irreducible components of Cy realize the class /;.
Since (d — k[E)) - [E] = d - [E] + 2k, the result follows. O

3.3. Proof of Theorem 2.5. Theorems 2.3 and 2.5 are obtained by considering a
real version of the symplectic sum described in Section 3.2. We first provide the
proof of Theorem 2.5 since it is a immediate adaptation of Proposition 3.7 to the
real setting. We equip the disc D from Proposition 3.5 with the standard complex
conjugation, the symplectic manifold (X;, w;) with a real structure 7;, and (Y. wy)
with a real structure ty such that the map 7 : ¥ — D isreal. Furthermore we choose
the set of sections x : D — Y to be real. Note that each fiber Y; comes naturally
equipped with a real structure r, when ¢t € R. If F N RE = ¢, then by perturbing F
if necessary, we may assume that 7(6—) NFNE =@ forall 7 € C(d.x(0), Jy).
Theorem 2.5 is obtained by choosing x such that x(0) N X, = 0.

Proof of Theorem 2.5(1). Assume that x(0)N Xy = @ and x(0)NRX,; C L,, and let
us choose a real element 7 C — Xy of C(d, x(0), Jo). Denote by a (resp. b) the
number of real (resp. pairs of 7o-conjugated) points of intersections of E and f(C).
The map f : C — X is real, and by Corollary 3.8 the set CT has exactly

¢ Zkza,'ﬂb,- (;)(f) real elements if 7o acts trivially on H,(X(:Z);

« 2¥ifa = 0 and b = k, and 0O otherwise, real elements if 7y exchanges /;
and /5.
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By assumption (H), we have that FoU L represents acycle yV in Hz(XO Z/27)
with y = 0, 1, so in both cases above we have m ., 7, f(C)) =mr, fJCJ ) +

y(a + b). By Proposition 3.7, any element [ of C(d.x(0).Jy) is the limit of a
unique element of C(d, x(r), J;), so this latter has to be real when f is real and
t € R*. Hence to end the proof of Theorem 2.5(1), it remains to show that no
node appears in a neighborhood of £ N f(C) when deforming f. This follows
from the description provided at the end of the proof of Proposition 3.7 of the local
deformation of f (since s = 1 in the present case). An alternative proof is to observe
that 7(6) has as many nodes as any of its deformation:

— 2 _ . . _ 2. .
(d — k[E]) 61();1) (d —Kk[E]) + 2 +k(d - [E] + k) _d (1();) d+2
since [E]?> = —2and ¢;(X,) - [E] = 0. O

Proof of Theorem 2.5(2). Assume again that x(0) N Xp = @ and x(0) NRX,; C L;.
Recall that by assumption (H,) we have tp = 1., which implie% in particular
that a = 0. Suppose that b # 0, and chooqe a palr {p.t0(p)} of ro-conjugated
intersection pomts of E with f(C). Let f . C — Xy be an element of C—
and denote by C , (resp. Cm( p)) the 1rreduc1ble component of Cy whose lmdge
contains p (resp. 7o(p)). Define the map f . C - Xy as follows: f (.\ =f (,x)
if x ¢ Ep U Em(p), and 7,/(,\') = Tp Do T(x) if x € Ep U ?T()(P)' The

map Tf_ﬂ is also an element of CT’ and it follows from Lemma 3.9 below that

ML, Fy (7,(6,)) = —MLy,Fy (Tﬂ(?’)). Hence

3 m(F () =0

7’6C7
and Theorem 2.5(2) is proved. L

Given a point p € £, we denote by C, the (unique) Jy|x,-holomorphic curve in
the class /; passing through p.

Lemma3.9. Let D C CP!'xCP! be an embedded t,;-invariant disk with 0D C E.
Then if p € E \ 0D, the parity of the number of intersection points of D with C),
and Cy,,(p) are different.

Proof. Denote by D and D, the two halves of E \ dD. According to the proof of
Lemma 2.2, up to exchanging D and D, we have [D;UD] = [y and [D,UD] = [,
in Ho(CP'xCP';Z/27Z). Any Jy|x,-holomorphic curve in the class /; intersects £
in exactly one point, so the result follows from the fact that both C, and C¢ ()
intersect Dy U D in an even number of points. O
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3.4. Proof of Theorem 2.3. We prove Theorem 2.3 by choosing the set of
sections x so that x(0) N X is reduced to a single point. In this case, it follows from
Proposition 3.7 that an element 7ofC(d. x(0). Jo) might be the limit of two distinct
elements of C(d.x(t), J;). Next proposition is a real version of Proposition 3.7 in
this case.

Proposition 3.10. Suppose that x(0) N Xo = {po} and x(0) N RX, # @. Lert
7 - C — Xy be a real element of C(d. x(0), Jo), with a point p € Cy such that
£(Cy) has a tangency with E at f(p). Given t £ 0, let fi : CP! = Y, and
fo i CPY = Y, be the two deformations of f inC(d, x(1), J,) (see Proposition 3.7).

Then p is a real point of C, and both fi{(CP") and f2(CPY) have a unique
node g arising from the smoothing of C at p. Moreover, there exists € = x1 such
that neither fy nor f> are real when et < 0, and both f\ and f> are real when
et > 0. In this latter case, up to exchanging fi and f>, we have (see Figure 3):

* .f]_l(q) ERP["

. _f‘2—1 (q) ¢ RPY and fL(RPY)YNU = O, where U is the connected component
that contains q of the intersection of Y, with a small neighborhood in RY of

f(p).
q V
| %
P = — \12 (RP 1 )
A\
et < 0, no real deformation et > 0, two real deformations

Figure 3. Real deformations of a real map f : C — Xg which is the limit of two maps

Proof. 1t follows from Proposition 3.7 that the point p is unique, and hence real.
Since f(C) has one node less that any of its deformation, we deduce that both
f1(CPY) and f>(CP") have a unique node ¢ arising from the smoothing of C at p.
Since ¢ is unique, it has to be real if the deformation is real.

Recall from the end of the proof of Proposition 3.7 how looks like a deformation
of f ina neighborhood of the smoothing of p. The manifold Y is given in local
coordinates (¢, x. y) at f(p) by the equation xy = ¢, the manifold X, (resp. Xp)
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being locally given by {# = 0 and y = 0} (resp. { = 0 and x = 0}). Furthermore
the maps f ¢, and f ¢, have expansions

x(z) =az* +0(z?) and y(w) = bw? + o(w?).

where a,b € R*, and z and w are local coordinates at p of Cy and C; respectively.
For0 < |f| << 1, the two maps f and f5 correspond to the two solutions u(t) € C*
of
2 4

ab’
For each solution, the smoothing of C at p is locally given by zw = u(r), and the
corresponding deformation is approximated by the map

p(r)

g {zw = pu@)} C C? + (t,az2, bw?)

close to the smoothing of p.

If tab < 0, then the two solutions of u(1)? = a’—b are complex conjugated, and
neither f1 nor f, are real. On the opposite, if rab > 0, then the two solutions of
p(1)* = = are real, and both f) and f; are real. Moreover the arcs of RCy \ {p|
and RC \ { p} are glued in a different way for f and f5 (see Figure 4). In particular
one of them, say f;, satisfies fl"l(q) e RP!, while f; satisfies £, '(q) ¢ RP!.

Approximation by g,

Figure 4. Real deformations of f : C — X, intermediate step

Let U be the connected component that contains ¢ of the intersection of Y; with
a small neighborhood in RY of f(p). We have to prove that /2(RP) N U = 0.
Suppose that this is not the case, and let S C Y, be a topological surface passing
through ¢, and locally a cylinder in the variable r at g. Then the set f, '(S)
would contain four points in a neighborhood of a smoothing of p. However the
set g, 1(S) has only two points in {zw = p(r)}, which contradicts the fact that f5 is
approximated by g; close to the smoothing of p. O

Now we are ready to prove Theorem 2.3. Recall that by assumption L is a disk,
which in particular implies that 7y = 7,;.
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Proof of Theorem 2.3(1). Suppose that x(0) N X9 = {po}, and x(0) N RX; is
non-empty and contained in L. Without loss of generality, we may assume that
x(t) NRY, € L whent > 0 (and so x(1) NRY;, ¢ L whent < 0, since L’ contains
the deformation of pg). A schematic picture of the degeneration of RY; to RX}y is
provided in Figure 5. Denote by L the connected component of RX | containing L ;.
Since Ly is a disk, we necessarily have L # L, and L \ RE is disconnected.

L Sy o
RX, RXo RX,

RY;, 1 >0 RX;

Figure 5. Degeneration of RY; to RX;

Let 7 "0 —% Xy be areal element of C(d, x(0), Jy). Recall that C’ denotes the
irreducible component of Cyp whose image passes through the point pyo.

Suppose first that j_'*[fl] = I;. Since t,; exchanges /; and /3, there exists an
irreducible component C of Cy such that o_}‘_'(fﬂ) = T(E,). However f (E”) N
f(E’) = { po}, which contradicts that Jy is generic.

T o< =

Figure 6. f(C) and its two real deformations

Hence _7*[6,] = Iy + I, for any choice of f. Since 19 = 71, and
any other component of Cy realizes a class /;, the curve C' is the only real
component of Cy, and T_I(RE) consists of at most 2 points. Suppose that
Jie € C2v 91y + 1. {po} U xg, Jo). In particular, Cy has two irreducible com-
ponents C and C». Since x(0) N RX; # @, both C, and C> must be real with
a non-empty real part. Since C has arithmetic genus 0, we deduce that f - (RE)
consists of precisely 2 points, which are the intersection points of C’ with C. Hence
both f(RC)and f(RC,) intersect R £ in exactly one point, where this intersection
is transverse. But this contradicts the fact that L \ RE is disconnected.

Hence 7\?’ e C2% + L.{po} U xg.Jo) for any choice of f, and
Theorem 2.3(1) is now a consequence of Proposition 3.10 (see Figure 6). L]
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Proof of Theorem 2.3(2). Assume now that that x (0)N X ={pojand x(0) N RX,=4.
According to the proof of Theorem 2.3(1), the only maps f € C(d, x(0), Jo) with a
non-trivial contribution to Wy, 1 r(d.s) satisfy f T € C2e00(l1 +1p. {po} U x . Jo).

In particular, the curve C; has two irreducible components, which are exchanged
— ('I(XJ-(I——'l . . . . .
by the real structure on C. There are 2~ 2 ways of distributing the points in

x(0) N X; among these two components, which proves the result about divisibility
of WXR,L,F (d S).

Moreover C_ is the only real irreducible component of C and the map 7|E’ 1S an
embedding. The adjunction formula implies that the number of real solitary nodes

of £(C) has the same parity than d_z%)"”é_ o

4. Real algebraic rational surfaces

Here we deduce Theorem 1.2 from Theorem 1.1 and the classification of real
rational algebraic surfaces (see for example [17,21]). The proof goes by explicit
computations of homology groups and direct application of Theorem 1.1. Recall that
any real algebraic minimal rational surface with a non empty real part corresponds
to exactly one of the following cases:

e CP! x CP! equipped with the real structure 7,;;

« CP? equipped with the complex conjugation;

* minimal conic bundles;

» covering of degree 2 of C P2 ramified along a maximal real quartic;

* covering of degree 2 of the quadratic cone in CP? ramified along a maximal
real cubic section.

We treat all these cases in Sections 4.2, 4.3, 4.4, and 4.5, and prove Theorem 1.2 in
Section 4.6.

4.1. Generalities. In this section, we fix once for all a real rational symplectic 4-
manifold Xp = (X,w, 1) and L a connected component of RX. Since (X,w) is
diffeomorphic to either CP! x CP! or to CP? blown-up at finitely many points,
all homology groups of X are known, and the intersection form on H>(X:7Z/27Z) is
non-degenerate.

Lemma 4.1. The following hold:
 bro(X\ L;Z/27Z) = by(X:Z/2Z) + b1 (L) + by (X \ L) — 1;

* the group Hy(L;7Z/27) is naturally isomorphic to the kernel of the natural
mapt: Hy(X \ L;Z/27) — Hy(X;Z/27),

* hi(X\L)=0if[L] #0in Hy(X:Z/2Z), and b; (X \ L) = | otherwise.
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Proof. Let U be a tubular neighborhood of L in X (in particular U retracts
to L). Since X is simply connected, the Mayer—Vietoris sequence applied to
X = (X \ L)UU gives the exact sequence

(i2.J2)

0— Ho(U\ L;Z/27) 2272 H,(L:2/27) @ Ha(X \ L:Z)2Z) — Ha(X:Z)2Z) >

(r.J1)

% HW\L:z/22) LY H(L:Z/27) @ H) (X \ L:Z/2Z) — 0. @.1)

The space U \ L retracts to an S'-bundle ¥ : M — L over L, hence it follows from
Poincaré duality that bo(U \ L: Z/27Z) = by (U \ L:7Z/2Z). Together with the exact
sequence (4.1), this implies that

ba(X \ L:Z/27) = by(X:Z/2Z) + by (L) + by (X \ L) — 1.

Each loop y in L produces a surface ¥ ~1(y) in M. By the Gysin sequence,
this induces an injective map « : H\(L:Z/27Z) — H,(M:Z/2Z), and we have
(intersection numbers are in Z/27,)

by(M:Z/27) = by (L:Z/2Z) + 1 — L.

The map Vv, : H2(M:7Z/27Z) — H>(L:7Z/27) admits a section if and only if
L? = 0. In this case the extra generator of Ho(M:Z/27) is precisely given by
the image of such a section. By definition of the Mayer—Vietoris sequence (4.1), we
obtain that

Ker: >~ Keri, =Imkx >~ H{(L:Z/27Z).

Analogously, the natural map V. : H{(M:7Z/27) — H,(L:Z/27Z) is surjective
with kernel generated by the class v realized by a fiber of ¥, and v = 0 if and only
if L? = 1. By definition of the Mayer—Vietoris sequence (4.1), the same holds for
the map 7y. We deduce that by (X \ L) = 1 —rank d. If § is a closed surface in X
intersecting L transversely in finitely many points py,.... px. we have

IS) = [y~ (p] + ... + ¥ (p)] = (ST [L]v.

Hence the map d is null if and only if [L] is in the kernel of the intersection form on
H,(X;7Z/27). This intersection form in non-degenerate, hence the map d is null if
and only if [L] = 0. O

The consideration of the group H(Xp. L) is justified by the next two proposi-
tions.

Proposition 4.2. Let § be a t-invariant class in Hy(X \ L:7Z/27) realized by a
smooth real symplectic curve E. Assume in addition that §* > —1 if E is a sphere.
Then for any d € H»(X:;7), we have

d-8
Wxp . r(d,s)=(=1)2 Wx, 1 F+s(d,s).
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Proof. Choose a configuration x made of ¢1(X)-d — 1 — 25 points in L and s pairs
of 7-conjugated points in X \ RX. Let J, be a generic t-compatible almost complex
structure on X such that £ is Jo-holomorphic. By the same arguments used in the
proof of Proposition 3.3, if f : C — X is a Jp-holomorphic map from a nodal
curve of arithmetic genus 0, and such that fx[C] = d and x C f(C), then C is
actually smooth and irreducible. Furthermore all intersection points of f(C) and E
are positive, so the intersection £N f(C) is made of ¢ -§ distinct points if f(C) ¢ E.
If f is in addition real and such that L contains f(RC), since both curves E and
f(C) are real with disjoint real parts, we have that f(C)-6 = % and this equality
is preserved modulo 2 under deformation of both f and J. O

Assume now that Xp is a real algebraic rational surface. The real part of a real
symplectic curve C in X defines a class I¢c in H{(X:Z/27Z). 1t follows from the
classification of real rational algebraic surfaces that any class in H{(RX:Z/27)
is realizable by a real deformation of a real algebraic curve. If two real cycles in X
intersect in finitely many points, the parity of this number only depends on the classes
realized by these cycles in H,(X;Z/27Z). Moreover the intersection form modulo 2
is non-degenerated on H(RX:Z/27Z). Hence the class /¢ only depends on [C] €
H>(X:Z/2Z), and we denote it by /|-

Proposition 4.3. Let § an element of Ker « ~ Hy(L:7/27). Then for any d €
H>(X:7Z), we have

Wy, r(d.s) = (=D Wy 1 pis(d.s).

Proof. Let C be a real symplectic curve in X. Recall that § can be represented by
the restriction over a loop y of the boundary of a tubular neighborhood of L in X.
We denote by y’ this representative of §. Without loss of generality, we may further
assume that y intersect RC transversely and in finitely many points. Note that the
tubular neighborhood of L in X can be chosen as small as needed. In particular, all
intersection points of ¥’ and C are located in a neighborhood of RC N y, and each
such point corresponds to a pair of t-conjugated points of y' N C. O

4.2. Surfaces with H(Xg, L) = 0. We start by giving the list of real algebraic
minimal rational surfaces whose group H(Xg. L) vanishes. There are exactly four
of them.

Lemma 4.4. If Xy is either (CP! xCP'.t,;), or (CP?.conj), or aminimal conic
bundle with a connected real part, then H(Xr, L) = 0.

Proof. One computes easily that H>((CP'xCP")\S?:7Z/27) (resp. Hy(CP? \ RP?;
Z,/27)) is generated by the class realized by a real algebraic curve in the class
[y + I (resp. a real conic) with an empty real part. There exist two minimal
conic bundles with a connected real part, namely Xp = (CP' x CPI.T/,y),
and a minimal conic bundle with RX = S2. This latter case is covered by
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Section 4.3, so assume that Xz = (CP!' x CP', 7,). By Lemma 4.1, we have that
bo(X \ RX:;Z/27) = by(X;7Z/2Z) + 2, and that the kernel of the natural map ¢ :
Hy(X\RX:Z/27Z) — H>(X:;Z/27Z) is of dimension 2. Hence H>(X \RX ;Z/27)
is isomorphic to Ker ¢ x H(X;7Z/27). Any class in H,(X;7Z/27) is realized by
a non-singular real rational algebraic curve with a non-empty real part, and has
intersection number 1 with some other class in H,(X:7Z/27). This implies that
Ker ¢ is the set of 13, ,-invariant classes in Hy(X \ RX:Z/27), and the lemma is
proved. O

4.3. Minimal conic bundles. Let (X, t) be a minimal conic bundle whose real part
is made of n > 2 spheres. Up to real deformation, we may assume that X has the
following affine equation in C3:

2n

V4= —a)

i=1

where a; < a;... < ay, are distinct real numbers, and t is the restriction of
the complex conjugation on C3. Forgetting the (y, z)-coordinates provides a real
projection p : X — CP'. Giveni = 1,...n, we denote by S»;—; (resp. S»;) the
Lagrangian sphere p~! ([a2i _2;a2i—1]) N R? (resp. p~ 1 ([a2i—1:a2:]) N R x (iR)?),
with the obvious convention that 3,41 = agp, see Figure 7. We also denote by F
a generic fiber, by E; an irreducible component of the singular fiber p~'(a»), and
by B a (non-real) section of p which does not intersect the curve E5. The real Picard
group of X is the free abelian group generated by F" and ¢ (X) (see [17,21]).

e

Saia S_z_a_ Soi+1

Agier
Figure 7. Real vanishing cycles of Conic bundles
Lemma 4.5. A basis of H(Xg, S1) is given by ([S3], .. ., [S2n—1]).

Proof. We have the following intersection products in H,(X:; 7Z/27):
(S0, =03 i = jI £ 1. [Si]-[Siaa] = 1.
[Si]-[E2] =0if i # 2,3, [57]: [E2] =1ifi =2,3,
a(X)-[Ea) =1,  c(X)>=[B]-c1(X) = [F]-ci(X) = [Si] - c1(X) = 0,
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and

[FI? = [F]-[Si] = [F] - [E2] = [B] - [E2] = [B] -[Si] = [B* = 0.
[Eaf =1, [B]-[F]=1.

In particular (¢1(X), [B]. [F].[E2]. [S2] .- .. [S2n—1]) is a free family of H2(X:Z/27Z),
and hence is a basis since b (X;Z/27) = 2n + 2.

From the intersection [S;] - [S2] = 1, we deduce that [S1] # 0in H2(X:Z/27Z),
and Lemma 4.1 implies that bo(X \ L;Z/27Z) = by(X:7Z/27Z) — 1. A basis of
H>(X \ L;Z/27Z) is then given by

(c1(X). [B].[F].[£2]. [S5]. - . .. [S2n—1]).
since its rank in Ho(X:7Z/27) is at most its rank in Hy(X \ L:Z/2Z). The classes
c1(X).[F], and [S;] are r-invariant, and we have:
[B] = [B] + n[F]+ c1(X). and <t[E>] =[E2] + F.

It follows that (¢1 (X)), [F].[S3]..... [S2,—1]) is a basis of the subspace of r-invariant
classes of Hy(X \ L;Z/27Z), and the lemma is proved. O

4.4. Minimal real Del Pezzo surface of degree 2. Let Q be the real quartic in C P2
whose real part together its position with respect to a bitangent H is depicted in
Figure 8a. We denote by (X. r) the real double covering p : X — CP? ramified
along Q, whose real part consists of four spheres. The real Picard group of X is the
free abelian group generated by ¢ (X) (see [17,21]).

a) b)

Figure 8. Real vanishing cycles of a minimal real Del Pezzo surface of degree 2

There exists a (—1)-curve E such that p(F) = H. Let S;. 853,55, and S7 by
the four spheres of RX. By the rigid isotopy classification of real plane quartics,
each pair of real spheres is connected by a r-invariant vanishing Lagrangian sphere.
Let Sy (resp. S4, Se) such a sphere connecting S; and S3 (resp. S3 and Ss, S5
and S~) as depicted in Figure 8b.
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Lemma 4.6. A basis of H(Xr. S1) is given by ([S3].....[S7]).

Proof. We have the following intersection products in H,(X:Z/27Z):
S-S0 =0if i —jl# 1, [S)-[Sisl =1, [S]-[E]=0if i #2,
[S2] - [E] = L.
ca(X)-[El=1,  a(X)’=[S]-ci(X) =0, and [E]*= 1.

In particular (¢, (X),[E]. [S2]....,[S7]) isabasis of H,(X:Z/27Z),and (¢1(X), [E].
[S3]. ..., [S7]) is a basis of H>(X \ L:Z/2Z). The classes ¢;(X) and [S;] are
t-invariant, and t«[E] = c¢1(X) + [E]. Hence (c1(X).[S3]..... [S2,-1]) 1s a

basis of the subspace of t-invariant classes of H,(X \ L:Z/27Z), and the lemma
is proved. O

4.5. Minimal real Del Pezzo surface of degree 1. Let Q be the real cubic section
of the quadratic cone X in C P3 whose real part together with its position with respect
to a tritangent hyperplane section H is depicted in figure 9a. We denote by (X, 7) the
real double covering p : X — X ramified along Q whose real part consists of four
spheres and a real projective plane. The real Picard group of X is the free abelian
group generated by ¢; (X) (see [17,21]).

H

%

a) b)

Figure 9. Real vanishing cycles of a minimal real Del Pezzo surface of degree 1

There exists a (—1)-curve E such that p(£) = H. Let Sy, S3,S55.57 and N
be respectively the four spheres and the real projective plane of RX. By the rigid
isotopy classification of real cubic sections of X, there exist r-invariant vanishing
Lagrangian spheres Sz, S4. S¢. Sg. So as depicted in Figure 9b. Note that 7 acts
trivially on Hy (X ; Z/27).

Lemma 4.7.
A basis of H(Xr. S1) is given by ([S5]. ..., [S7], [So]. [N]).
A basis of H(Xwr, S7) is given by ([S1].....[Ss].[Sg].[N]).
A basis of H(Xr., N) is given by ([S1]. ..., [S7]).
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Proof. All intersection products of [S;] with [S;], [N], and [E], can be read on
Figure 9b. The other intersection products in H,(X:7Z/27Z) are:

c1(X)? = [E]* = [N]? = [E]-c1(X) = [N]-c1(X) =1, [N]-[E]=0.
Hence (¢1(X).[S1]..... [Sg]) is a basis of H»(X:Z/27Z), and we have
[N] = c1(C) + [S1] + [S3] + [Ss] + [S7] and  [So] = [Ss] + [S2] + [S4].

The result about H(Xg, S1) and H(Xg. S7) follows immediately.

The generator of Ker ¢ can be represented by B = p~!(A), where A
is a hyperplane section of X. Hence ([B].[E].[Si]..... [S7]) is a basis of
Hy(X \ N;Z/2Z). Since [E] + t«[E] = B, we get that ([B],[S1].-.., [S7]) is
a basis of the subspace of t-invariant classes of Ho(X \ N:7Z/27Z), and the lemma
is proved. [

4.6. Proof of Theorem 1.2. Lemmas4.4,4.5,4.6, and 4.7 and Theorem 1.1 provide
a proof of Theorem 1.2 in the case of minimal real algebraic rational surfaces, and
when F = [RX \ L]. To end the proof, we start with the following remark:
if (Y,?) is a blow up of (X, r) at a real point or at a pair of t-conjugated points,
and if L is the component of RX corresponding to L, then there is a natural injective
group homomorphism ¢ : H(Xg,L) — H(E(’R.Z). Theorem 1.2 now follows
immediately from next proposition.

Proposition 4.8. The map ¢ is an isomorphism.

Proof. This is clearly true when (55,?) is a blow up of (X, ) at a real point in
RX \ L or at a pair of 7-conjugated points. Hence let us now assume that (X.7)isa
blow up of (X, ) ata point p € L. Since [Z] # 0in Hy(X;Z/27Z), by Lemma 4.1
we have

by(X \L;:Z/2Z) = by(X \ L;Z/2Z) + |

if (X,7) =(CP'xCP', 13,), and
bay(X \ L;Z/27) = by(X \ L;Z/27Z) + 2

otherwise. In both cases, an extra generator of Hy(X \ L: Z/27) is given by the
extra generator of H(L;7Z/27Z). In particular this proves the proposition in the case
(X.7) = (CP' xCP!', 13,), and implies

dimH(Xp. L) < dimH(Xp. L) + 1

otherwise. In this latter case, from the classification of minimal real algebraic
surfaces up to deformation, we may assume that there exists an algebraic curve C
in X such that C N L = {p} and that this intersection is transverse. Hence the strict
transform of C in X is a second extra  generator of H »(X \ L:Z/2Z). which is either
not r-invariant or mapped to 0 in #(Xg. L). O
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