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Triangulation of refined families

R. Liu

Abstract. We prove the global triangulation conjecture lor families ol rehned /t-adic
representations under a mild condition. That is, for a rehned family, the associated family of
(tp. r)-moduIes admits a global triangulation on a Zanski open and dense subspace of the base

that contains all regular non-critical points. We also determine a large class of points which
belongs to the locus of global triangulation Furthermore, we prove that all the specializations
of a rehned family are tnanguline. In the case of the Coleman-Mazur eigencurve, our results

provide the key ingredient tor showing its properness in a subsequent work [15].
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1. Introduction

In the seminal work [25], Kisin proved the Fontaine-Mazur conjecture for Galois

representations attached to finite slope, overconvergent cuspidal eigenforms. The

most significant part of his proof is showing that the dual of these representations

satisfy the property that their restrictions on a decomposition group of p have

nonzero crystalline periods on which the crystalline Frobenius acts via multiplication
with the (/p-eigenvalue. Furthermore, he conjectured that this property should
characterize the Galois representations coming from finite slope overconvergent
/7-adic modular forms. This beautiful result inspired many important subsequent

developments. In p-adic Hodge theory, Colmez introduced the notion of trianguline
representations reformulating this property in the framework of (cp, r(-modules over
the Robba ring [13]; the notion of trianguline representations plays a key role
in his construction of the p-adic local Langlands correspondence for GL2(Q^).
In the direction of Bloch-Kato conjecture, Bellaiche-Chenevier [1] and Skinner-
Urban [33] applied some (different) variants of Kisin's result to construct elements

of Selmer groups by deforming certain p-adic representations on eigenvarieties.
More recently, Emerton [16] established the local-global compatibility of /7-adic

Langlands for GL2/Q. As an application, he confirmed the conjecture of Kisin.

Nowadays, it is widely assumed that the condition of being trianguline at the

places above p characterizes the Galois representations coming from finite slope

overconvergent /7-adic automorphic forms. In addition, it is conjectured1 that for a

family of /7-adic representations arising on eigenvarieties, the associated family of
(</>, r)-modules admits a global triangulation on a Zariski open and dense subspace

of the base that contains all non-critical points.
The main objects of this paper arefamilies of refined p-adic representations. This

notion was first introduced by Bellaiche-Chenevier [1] for /7-adic representations of
Ga^Q^/Qp) to encode the properties of families of Galois representations carried

'See for instance 11, §4],
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by eigenvaneties In this paper, we first generalize this notion to Gal(Qp/Af)-
repiesentations where A' is a finite extension over For technical reasons, we
will assume throughout that our refined families are arithmetic families of p-adic
representations, not just pseudocharacters as in Bellaiche-Chenevier's original
definition The main goal of this paper is to prove the global tnangulation conjecture
for such families under a mild condition Namely, we will prove that a family of
refined p-adic representations admits a global tnangulation on a Zanski open and

dense subspace of the base that contains all regular non-critical points We also

determine a large class of points which belongs to the locus of global tnangulation
Furthermore, we will show that the specializations of refined families are all

tnanguhne Finally, as an application, we explicitly determine the local behavior
ot the family of /?-adic representations carried by the Coleman-Mazur eigencurve

Our approach is largely inspired by Kisin's method of interpolating crystalline
periods [25] The first major step is to show that for a weakly refined family, the de

Rham penods always coincide with the crystalline penods on which the Frobenius

acts via multiplication with the prescribed eigenvalue. Furthermore, both ot them
form coherent sheaves on the base To this end, we significantly refine Kisin's
construction of finite slope subspaces by removing the "T-small" assumption The
value of this refinement is that it allows us to interpolate periods over all afhnoid
subdomains of the base, not only, as in the case of Kisin's onginal constiuction, over
T-small afhnoid subdomains

The second major step is to show that for a given rehned family, the crystalline
periods of its exterior powers give rise to the desired global tnangulation Firstly,
it is not difficult to see that the set of points by which the crystalline penods of
exterior powers of the family give use to a tnangulation of the specialization, which
is named as the tnangulation locus of the family, is an analytic subspace of a Zanski

open subspace of the base Therefore, to prove the global tnangulation conjecture, it
reduces to show that the tnangulation locus contains all regular non-cntical points
We achieve this by combining the results of the first step and a result ot Bellaiche-
Chenevier on descent [ 1 ]

Indeed, by the recent works of Bellovin [6] and Kedlaya-Pottharst-Xiao [24],
one knows that for an arithmetic family of p-adic representations ovei a ligid
analytic space, the de Rham periods and crystalline periods on which the Fiobenius
acts via multiplication with an invertible function always form coherent sheaves

on the base respectively On the othei hand, as mentioned above, we prove in
this papei that for a weakly refined family, the de Rham periods always coincide
with the crystalline periods on which the Frobenius acts via multiplication with the

prescribed eigenvalue. This fact is a special feature foi the eigen-families of /j-adic
representations, and turns out to be important for applications to eigenvaneties For

example, it follows that for the dual ot the family ot Galois representations carried by
the Coleman-Mazur eigencurve, the de Rham periods coincide with the crystalline
periods on which the Frobenius acts via multiplication with the [/^-eigenvalue
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This fact plays a key role in our subsequent work with Hansheng Diao proving the

properness of the Coleman-Mazur eigencurve 115].

Last but not least, we should point out that after the work of this paper was

finished, some of our results were also obtained by other authors. In [18], Hellmann

proves that the families of Gal(Qp/Qp)-representations carried by eigenvarieties for
definite unitary groups over imaginary quadratic fields admit global triangulations as

in our case. His strategy is to construct a map from the eigenvariety to the moduli

space of (rigidified) trianguline (<p, T)-modules. In [24], Kedlaya-Pottharst-Xiao
establish the finiteness of cohomology for arithmetic families of (<p. T[-modules. As

an application, they show that an arithmetic family of p-adic representations that
is densely pointwise refined in the sense of Mazur admits a global triangulation
over a large subspace of the base. More recently, in his thesis [7], John Bergdall
applies the techniques of [24] to refined families and gives a new proof of our result
that the triangulation locus contains all regular non-critical points in the case of
GaUQ^/Q^ [-representations.

In the following we will explain the main results of the paper and the idea of
proofs in more detail.

1.1. Finite slope subspaces. We fix a finite extension K of Qp in Qp, and fix a

uniformizer tik of K. Let Gk Gal(Qp/A"). Let K0 be the maximal unramified
extension of Qp contained in K, and let / [Kq : Qp]. Let E be the Galois closure

of K in Qp, and let H^ be the set of Qp-embeddings of K into Qp (hence into E).
For a K ®qp £-module M, set

Mx M <S>k®qpE (K <8)k.T E)

for any r e H/f. We may identify M with ®TeHKMT. For any m e M, let mT
denote the projection of m onto Mr.

We now assume that X is a rigid analytic space over E, and let Vx be a family of
p-adic representations of Gk of dimension d over X. Suppose the Sen polynomial2
for Vx is TQ(T) for some Q(T) e (K <g>qp 0{X))[T}. For r H^, following
the notation introduced above, Q(T)r denotes the projection of Q(T) onto the

r-isotypic component of (A" <2>qp Ö{X))[T] K ®qp 0(X){T}. Let a e 0(X)X
be an invertible rigid analytic function on X. We define finite slope subspaces of X
with respect to the pair (a. Vx) as follows.

Definition 1.1. For such a triple (A\ a, Vx), we call an analytic subspace3 Xfs c X
a finite slope subspace of X with respect to the pair (a. Vx) if it satisfies the

following conditions.

(1) For every integer j < Oandr e H^, the subspace (Xfs)Q(l)r, which denotes

the complement of the vanishing locus of Q(j)r on Xfs, is Zariski open and

dense in Xfs.

2See Definition 2.24 tor the definition of Sen polynomial
3In this paper, the terminology "analytic subspaces" refers to Zariski closed rigid analytic subspaces
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(2) For any morphism g : M(R) -» X, where R is an A-affinoid algebra, if g
factors through Xq(j^t for every integer j < 0 and r e Ha:, then it factors

through Xfs if and only if the natural map

in.K : K (Dl6(g*{yx))*'=**w'r=x -* D+/n{g*(Vx))v (1.1)

is an isomoiphism for all sufficiently large n (indeed for all n > >i(Vr))4.

The above definition is a (<p. r)-module theoretical interpretation of Kisin's
original definition of finite slope subspaces except that we relax the assumption
on g. That is, we do not require that g is a-small in the sense of [25, (5.2)]. It
is not difficult to see that our finite slope subspace Xfs (assuming its existence and

uniqueness) coincides with the one introduced by Nakamura [31] which generalizes
of Kisin's finite slope subspaces to finite extensions of Qp (see Remark 4.14).

The idea for introducing finite slope subspaces is to cut out the maximal analytic
subspace Xfs of X such that Q(j)r is not identically 0 on any component of Xfs
for any j < 0 and r e H/f, and for any affinoid subdomain M{S) of X, the natural

maps

X <8>A:0 D^lg(l/A'|A/(S)nA'/i),;P ~a'r_1 -> n(VX\M(S)hx,s )/Uk))T
(1.2)

are isomorphisms for all sufficiently large k. As it was already pointed out by Kisin
[25, (5.5)(5)], the "T-small" assumption in [25, Proposition 5.4] is due to some
technical obstacle to solve a certain Frobenius equation over the relative crystalline
period ring. We get over this difficulty by using the relative extended Robba ring
which is much bigger than the relative crystalline period ring and sufficient to solve
this equation.

Theorem 1.2 (Theorem 4.10). The rigid analytic space X has a unique finite slope
subspace with respect to the pair (a, V\

More importantly, we will prove that if A" is bigger than the valuation of a in S,
then (1.2) is an isomorphism. This result is crucial for later applications to refined
families.

Theorem 1.3 (Theorem 4.12). Let M(S) be an affinoid subdomain of Xjs. Then for
any n > n(Vs) and k > log:-1 |a_1 |sp where the spectral norm is taken in S, the

' K '

natural map

X <8>aTo Dng(Kv|M(S))V (DX'/"(Vx\M(S))/(tk))T

t -J- /
is an isomorphism. As a consequence, the presheafM(R) D (Vx\m(R))>p _

>

where M( R) runs through all affinoid subdomains of M(S), is indeed a coherent

sheaf on M(S).

4See §2.3 for the definition ot the functor D^'".
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We denote by sY' "'r 1 this coherent sheaf, and by (Vx/s )<p> a~r 1

^ f P --1the coherent sheaf on Xfs obtained by gluing the sheaves S^,g(I/s)(t> ~ — f°r all
affinoid subdomains M(S) of Xfs.

1.2. Rank 1 (tp. r)-modules and trianguline representations. For a K0 <S)qp K0-
module M, set

Ma M <S>K0 (Ko ®K0,o Ko)

for any a G Gal(AT0/Qp). We may identify M with ®aeGi\(K0/Qp)^a Then for

any m e M, let ma denote the Ma -component of it. Now let S be an affinoid algebra

over K0, set Sk0 S <8>q K0. Let (p e Gal^o/Q/?) be the arithmetic Frobenius.

Using the canonical isomorphism

sko n V
0<1</-1

for any a S we equip Sk0 with a 1 <8> </>-semilinear action <p by setting

<p(xi,x2 Xf-i) (a.Xf-i, x\ -t/_2).

Let Da denote this ^-module. The ^-action on Da satisfies <pf a ® 1.

Let K'0 be the maximal unramified extension of Qp contained in K(ßp°o). Recall

that one may identify ßj]g K with the Robba ring 7ZK^ over (see [2, §2.6]).

Equip 7ZK' with the induced actions of <p and T. Let &(S) be the set of

continuous characters 8 : Kx —> Sx. For any 8 G 'F(S), we attach to it a

rank 1 (</?, r)-module 7Zs(8) over 1ZK^®qpS as follows. If <5|0x is trivial, we

set 1ZS(8) Ds(nk) ®SK„ (R-K'0®QnS)'' here dS(tzk) is equipped with the trivial
T-action. For general 8, we may write 8 8'8" so that S'(tik) 1 and 8"|0x is

the trivial character. By local class field theory, 8' can be viewed as an Sx-valued
continuous character of the Weil group of K\ it extends to a character of Gk by

continuity. We set 7^5(5) D"L(<5')®„ „7Zs(S"). Forany (cp. r)-module Ds
"e K'

over 1Zk'o®qpS, set Ds(8) Ds S1Zs{8).
A'(,

Definition 1.4. For 8 e .9~(S), a rank 1 (cp. F)-module over TZk'0®QpS is called
of type 8 if it is isomorphic to M <8>sA Tls(S) for some locally free rank 1

S/fy-module M equipped with trivial <p- and T-actions. We call a (<p, D-module Ds
over 1ZK' (8>q/; S triangulable if it admits a filtration

0 Filo(Ds) c Fili(Ds) c C Fil^_[(Ds) c Fil</(Ds) Ds

by ((p, r)-submodules over TZ^^S such that each successive quotient

Fil,(Ds)/Fil,-i(Ds)

is of type <5, for some 8t ^T(S); any such a filtration (Fil,(Ds))\<i<d is

called a triangulation of Ds, and (8, )\<l<d are called the parameters of this
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triangulation. We call a locally free S-linear representation Vs of Gk trianguline
if the corresponding (p. T)-module D^lg(ks) is triangulable.

1.3. Refined and weakly refined families. From now on, let A be reduced.
For any x X, let Vx denote the specialization of Vx at x. The following
definitions generalize Bellaiche-Chenevier's notions of refined and weakly refined
families [1, §4.2.3] to /?-adic representations of Gk5- As previously mentioned,
we will define our refined and weakly refined families to be arithmetic families
of p-adic representations, not just pseudocharacters as in Bellaiche-Chenevier's
original definitions.

Definition 1.5. A family of weakly refined p-adic representations of Gr of
dimension d over A is a family of p-adic representations Vx of Gk of dimension d
over X together with the following data

(1) d analytic functions K\ ,Kd K ®qp O(X),

(2) an analytic function F O(X),

(3) a Zariski-dense subset Z of A,

subject to the following requirements.

(a) For every x A, the generalized Hodge-Tate weights6 of Vx are, with
multiplicity, kt(jc), Kd(x)-

(b) If r e Z, Vz is crystalline.

(c) If z e Z, Ki(z)z is the biggest Hodge-Tate weight of Djv.(Vz)z for every
r eHK.

(d) For each z e Z, Dcrys(Fz) has a ^-submodule over K0 ®qp k(x) which is

isomorphic to DF(z) x(7lK)-«p--u

(e) For any non-negative integer C, let Zc be the set

{z Z, ati(z)r — Kn(z)r > C.Vn e {2,..., d), z e H/f}.

Then Zc accumulates at any z e Z for all C.

(f) There exists a continuous character x 0\ —> 0( A)x whose derivative at 1

is —ki and whose evaluation at any : e Z is the character

Yl t(X)-K]{z)t.
T6HA

5Notc that the Hodge-Tate weight of />-adic cyclotomotie character is normalized to be —1 in [1],
this is opposite to our normalization

6We set the generalized Hodge-Tate weights to be the roots of the Sen polynomial.
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We may also view / as a continuous character from Kx to Ö(X)X by setting

X(nK) 1- By twisting Vx with x~l, we may suppose K\ — 0. In this case, we
have the following result.

Theorem 1.6 (Theorem 5.3). The finite slope subspace of X with respect to the pair
(F,VX) is X itself.

Definition 1.7. A family of refined p-adic representations of G x of dimension d

over X is a family of p-adic representations Vx of Gx of dimension d over X
together with the following data

(1) d analytic functions Kq,... g K 0q ö(X),
(2) d analytic functions F\ Fj G O(X),

(3) a Zariski-dense subset Z of X,

subject to the following requirements.

(a) For every x X, the generalized Hodge-Tate weights of Vx are, with

multiplicity, ki (x) kj (.v).

(b) If z G Z, Vz is crystalline.

(c) If z e Z, then Ki(z)r > K2(z)z > • • • > k,j(z)t for any r e

(d) For each z G Z, there exists a refinement of Vz such that the associated

ordering of the ^-eigenvalues are

n^r^FrC) U^r^hFd(zX
VreH^ teH*- /

(e) For any non-negative integer C, let Zc be the set

{= G Z.\k,(z)t-kj(z)tI > C.VFJ c {1 d},

|/| |/| > 0, / ^ J. r G H* {,

where kj ^ieI k,. Then Zc accumulates at any : G Z for all C.

(0 For each 1 < i < d, there exists a continuous character Xi • —* 0(X)X
whose derivative at 1 is —k1 and whose evaluation at any z G Z is the

character

T6H A'

For each 1 < i < d, let a, I~[/ i Fj ar|d hi Y\'j \ Zc Bet S, be the

continuous character S, : Kx —> 0(X)X defined by 8, (ttfc) <*i and#, |0x, t},.

It is straightforward to see that a' Vx is weakly refined with F — a, and X hi-
Thus by Theorem 1.6 and Theorem 1.2, for each 1 < i < d, we get a coherent sheaf
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of crystalline periods ((a' Vx)(hfl))'p' =a"r=1 on X. The main result of this

paper is the following theorem (see Theorem 5.42 for a more precise version). Here

for any ö(V)x-valued character 4* and x X, we denote by 4>(x) the evaluation
of at x.

Theorem 1.8. The families of (ip, T)-modules

^g((^Vx)(f1))'p/=a"r=l ®Ko®Ox <(/?,)

for all \ < i < d give rise to a global triangidation of Vx on a Zariski open and
dense subspace of X with parameters (<5,/<)',_ i )\<l<d- Furthermore, the locus of
global triangidation contains all x e X such that D*g( Vx) admits a triangidation
with parameters ((5;/i5|-i)(x))i<,<j and satisfies

dimQ/,Djlg((A!H;s)(t?r1U)))^=0!'(x)'r=1 1

for ever}' 1 < / < d — 1 and a e Gal(/(o/Q/>). In particular, the locus ofglobal
triangidation contains all regular non-critical points.

1.4. Triangulation loci of refined families.

Definition 1.9. Let Vx be a weakly refined family. For x e I, we say x is saturated
for the family Vx if the following two conditions hold.

(1) Foranyo e Gal( Aio/Qp)Hhe coherent Ox-module &Jlg(Vx(x~l ))t -F'r_1
is locally free of rank 1 around x.

(2) The image of @ls(Vx{x~1))'p/ =F,r=l in Dj]g(Kx(^_1 (x))) generates a

rank 1 saturated (<p, r)-submodule.

We denote by Xs the set of saturated points, and call it the saturated locus of Vx.

Using Theorem 1.3, it is not difficult to show that Xs is a Zariski open and

dense subspace of X. For a refined family Vx, the saturated locus Xs is defined

to the intersections of the saturated loci of the weakly refined families a' Vx for all
1 < i < d. It follows that Xs is a Zariski open and dense subspace of X.

Definition 1.10. Let Vx be a refined family. The triangidation locus of Vx is defined

to be the set of x e Xs such that the (<p, r)-modules

<((AlVx)(rJ;1)f/=a"r=l ®k0»Qpox Dlg(%(x))

for all 1 < i < d give rise to a triangidation of D^g(F*). That is, there exists a

triangulation (Fil, (D^F^)))i<,<,/ ofDj|g(Fr) such that

0„V(A'Vx){r)Tl))v,=a''r=l D= a'(Fil,(D^fK,)))

for all 1 < / < d.
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It is obvious that the locus of global triangulation is contained in the triangulation
locus. In fact, it turns out that they actually coincide. That is, a refined family admits

a global triangulation on the triangulation locus.

Proposition 1.11 (Proposition 5.40). The triangulation locus forms a reduced

Zariski closed subspace of Xs. Furthermore, for any affinoid subdomain M(S) of
the triangulation locus, the sequence of((p, r)-modules

(Dr,g((A'KyI M(S))(ir1))'p/-<*"r-1 ®QrS Dng(li 1 <' <4

gives rise to a triangulation of D*„(Vx \m(S)) with parameters (f/f-i
To cut out the triangulation locus, we view the associated family of (<p, T)-

modules as a family of vector bundles over the relative half-open annulus X x
{0 < vp(T) < r} for some r > 0. For a general base X, it is difficult to deal with
vector bundles over such a relative annulus. We get over this difficulty by restricting
the family of vector bundles on a closed annulus vp(T) [r/p^.r], where r is

sufficiently small, over X. We then cut out the triangulation locus and construct the

global triangulation over this closed annulus. Finally, we use the Frobenius action to

extend the global triangulation over the closed annulus to a global triangulation of
the original family of (tp, r)-modules.

Therefore, to prove the global triangulation conjecture, it finally reduces to show

that all regular non-critical points belong to the triangulation locus. As mentioned

before, we prove this using a result of Bellaiche-Chenevier on descent |1, §3.2].
On the other hand, although the global triangulation can not be extended to the

whole base (because of the existence of critical points as pointed out by Bellaiche-
Chenevier [1, Remark 2.5.9]), it turns out that the specializations of refined families

are all trianguline.

Theorem 1.12 (Theorem 5.45). For any x X, Vx is trianguline.

1.5. Application to the eigencurve. Let C be the eigencurve associated with an

absolutely irreducible 2-dimensional residual representation of Gal(Q/Q) which is

/^-modular in the sense of 111]. Let a e 0(C)X be the function of (/^-eigenvalues,
and let k : C —> W be the map to the weight space. We normalize k in such a way
that if x is a classical eigenform of weight k, then k(x) — k — 1. Let

e : (Z/jVZ)x xZ^ 0(C)X

be the nebentypus-weight character (cf. [11, §3.1]). That is, the diamond operators
act on overconvergent eigenforms parametrized by C through e.

Following [25], let Vc be the dual of the family of p-adic representations of Gq
on C interpolating the Galois representations attached to classical eigenforms. That

is, for any x e C and prime / not dividing pN, the characteristic polynomial of the
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geometric Frobenius at / on Vx is

X2-a,(x)X + e(.v) 0.

where ai denotes the /-th coefficient of the (/-expansion. Let Z be the set of
classical points ; e C such that Vz is crystalline with distinct crystalline Frobenius

eigenvalues. Coleman's classicality theorem then ensures that Vc is a weakly refined

family together with /ci 0, K2 —k, F a and Z. The following theorem

completely determines the local behavior of Vc.

Theorem 1.13 (Theorem 5.48). For any x C, the coherent sheaf (Vc)v=F-r= i

is locally free of rank 1 around x unless k(x) 0 and dim -DCrys(Cvss)v=/r(*' 2.

In particular, is crystalline in this case. Ifx is not of this form, it is not saturated

ifand only if it satisfies one of the following two disjoint conditions.

(1) The weight k(x) is a positive integer and vp(F(x)) > fc(.v). As a

consequence, Vx belongs to H <Z*HT in the sense of [14]; hence Vx

is irreducible, Hodge-Tate and non-de Rlram. Furthermore, the image of
t-K{x\®lg(vc)r='FX i generates a rank 1 saturated (jp, T)-submoduIe in

D-g (Vx).

(2) The weight k(x) is a positive integer and vp(F(x)) k(x), and Vx has

a rank I subrepresentation Vx which is crystalline with Hodge-Tate weight

—k(x). Furthermore, in this case, the image of S>llg{Vc)v=F'r=x in dJ]u( Vx)

is k(x) tK(xle' where e' is a canonical basis of\T\ (Vx).

In case (2), if x G Z, then it is critical. Hence it is decomposable. Suppose

Vx V\ © V2 where V\ has Hodge-Tate weight 0 and V2 has Hodge-Tate weight
—k(x). Then the image of ^\sfVc)'p=F'r=x in D^K*) is k(x) tK^e2 where ('2 is

a canonical basis ofD^j If).r,c
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Notation and conventions. Let vp denote the p-adic valuation on Cp normalized as

vp(p)= 1. Let I I be the corresponding norm defined by |.vI p~v/Ax) Fix a finite
extension K of Qp in Cp. Let Ok be the ring of integers of K, and let jtk be a fixed

uniformizer. Let vk denote the /r-adic valuation on Cp normalized as vk(itk) L
For any valuation v (norm | • |) and a matrix A (Aq), we use v(A) (resp. |4|) to
denote the minimal valuation (resp. maximal norm) among the entries.
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We may view any continuous character of as a continuous character of Kx
by pulling back via the projection Kx -> OxK determined by tik- We may further

view it as a continuous character of Wr, which denotes the Weil group of K, via
the local reciprocity isomorphism W$f Kx where a geometric Frobenius element

maps to 71r
We choose a compatible sequence of primitive /»-powers roots of unity (£n)n>o,

i.e each s„ e Qp is a primitive pn-th root of 1, and they satisfy £%+1 £n f°r
all n > 0. Fix £ (£q,£\, to be Fontaine's p-adic exp(27ri). For a finite
extension L of Qp in Cp, let Ln L(e„) for/t > 1, and let Une^L„. Let L'0

be the maximal unramified extension of Qp in Loo- Let Hr Gal(Qp/Loo), and

let Tt Gal(Loo/L). Denote T^ by T for simplicity.
We normalize the Hodge-Tate weight in a way that the p-adic cyclotomic

character has Hodge-Tate weight 1.

Let Kq be the maximal unramified extension of K in Cp, and let / [A"o : Qp].
For any a e Gal(L"0/Qp), let HCT be the set of r e such that its restriction on Ko
is CT.

For r > 0, put p(r) ^0- For n > 0, let rn pn~l(p— 1). For s > 0. let ii(s)
be the maximal integer n such that >n < s.

For an affinoid algebra S, we denote by Os the unit ball of S. For a topological
group G and a rigid analytic space X over Qp, by a. family of p-aclic representations
ofG of dimension d on X we mean a locally free coherent Ox-module Vx of rank d

equipped with a continuous ö^-hnear G-action. When X M(S) is an affinoid

space over Qp, we also call a family of p-adic representations of G on X an S-linear
G-representation If M(R) C M(S) is an affinoid subdomain and V$ is a family of
representation on M{S), write Vr for the base change of V$ from S to R Finally,
for every M(S), we write Vx to denote the specialization V$ h(x).

2. Preliminaries

2.1. The (<p, r)-module functor. Let S be an afhnoid algebra over Qp, and let V$

be a finite locally free S-linear representation of Gjc- The (ip. r)-module functors

D^(Ks) and K(Vs) are constructed in [4] and [22], However, both of these

works do not really verify that and Dr^g K(Vs) are <p-modules in the sense

that they are isomorphic to their <p-pullbacks respectively. This small gap will be

filled in this subsection. We follow the notations of [4] and [22], and refer the

reader to them for more details. Recall that Berger-Colmez show that the ring
A^°'^(8)zpOs together with the cyclotomic character / : Gk —> ^p satisfy the Tate-
Sen axioms (see [6, APPENDIX D] for a detailed exposition about Tate-Sen axioms)
for any cq > 0, c'2 > 0 and C3 > [4, Proposition 4.2.1, Proposition 3.1.4],
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t SFor any finite extension L of Q^, n Z and s > 0, let A^' n
denote the subring

<p~n(A^p s) of A^'s (see [2, §1.3] for the definitions of Ajf5 and A"f'i). The

following result then follows from [4, Proposition 3.3.1],

Proposition 2.1. Let Ts be a free Os-linear representation of G k of rank d. Let L
be a finite Galois extension of K so that Gl acts trivially on Ts/pkTs, where k is

an integer such that val<0'^(pk) > Ci + 2c2 + 2c3. Then there exists an integer
—'f T>~1

n(L) > 0 such that for any n > n(L), Ts (A p ®zpOs) has a unique sub-

t^ t.77-1
Al n'' ®%pOs-module DL (Ts) which is free of rank d, fixed by Hl, stable
under Gk, and has a basis which is ('3-fixed by T/ (that is, for each y e T^, the

matrix Wy ofy with respect to this basis satisfies val^°'^( Wy — 1) > ("3), and satisfies

dly (7s) g7 0v (A^%zpOs) Ts ®os (At>£^®zPOs). (2.1)
' L.n

Corollary 2.2. Keep notations as above.

(1) We have (Ts) D (Ts) ® t ^_ (AJ,'% §z„Os).
A/.'.i,"

(2) By enlarging L and n(L), we may have

DI',ä(7s) (7s) ® t.V- (ALPn~l®zPVs)l
AZ../

Proof Let D\ and D2 denote the right hand sides of (1) and (2) respectively.
By (2.1), we first see that

Dl ® t £=1^ (A'''' ~p ®zpOs) Ts ®os (A1"' p ®zpOs).
*l.h + i®zP°S

Moreover, it is straightforward to see that D\ satisfies all the properties ofD^' np+l (Ts)

t,^given by Proposition 2.1. We therefore conclude D\ DLnP+l(Ts) by the

t S

uniqueness of D^' n+1(7s). This proves (1).
To prove (2), we enlarge L and n(L) so that Proposition 2.1 holds both for

(ci - c2, c3) and for (cT.c2.C3 pcfj. We first see that

<P(D2) ®A^-'®Zp0s. (A*'p~l®zpOs) Ts ®os (ATP~1®ZpOs).

It follows that

D2 18) t (A*' p ®zpOs) Ts ®os (A*' p ®zpOs)-
al.«+1 ®z,,o.v
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Let e be a c'3-fixed basis of D^' np (Ts). It is then straightforward to see that the basis

I. /'—'
<p~x(e) of D2 is at least c'3-fixed. We therefore conclude that D2 DL n''+](Ts) by

the uniqueness of nP+x (Ts).

In the rest of the paper, following the convention of [4], we fix some constants

cj > 0,c2 > 0 and C3 > such that cq + 2c2 + 2C3 < vp(\2p). Now let Ks
be a free S-linear G^-representation of rank d. Choose a free C?s-lattice Ts in Ks.
Since the G^-action is continuous, there exists a finite Galois extension L of K such

that Gi carries Ts into itself; hence Ts is G^-stable. We may enlarge L so that Gl
acts trivially on Ts/\2pTs. We also assume that Corollary 2.2(2) holds by further

enlarging L and n(L).
For any g e G/f, it follows that gTs is also a Gl-stable Os-lattice of Ks.

Moreover, Gl acts trivially on gTs/\2p(gTs) as well. By the uniqueness of
DfLP„~i/P(STs), we get

DfP-llp(gTs) gDfLp-l/p(Ts).

Using the fact that Ts and gTs are commensurable, we therefore deduce that

D\)p~^p(Ts) and gD^pfJ~1^p(Ts) are commensurable. This implies that the sub-

S-module D^p~1^p(Ts) <8>os $ °f Ks <8>os (A^"r" <8>zpOs) is independent of the

choice ol 7$ and G^-stable for any n > n(L). For s > /"„(l), we set

D^(Ks) (^pn(L)(^LP~(L)P(Ts)) ®At '»(Z.)gz^0s ^l®^s)Hk
which is equipped with a T^-action. By [4, Proposition 2.2.1 ] and [4, Lemme 4.2.5],
there exists an s(L/K) > 0 such that if s > s(L/K), then D^(Ks) is a locally
free (giQ^S-module of rank d. Let/?(Ks) max{/;(L), n(s(L/K))}, and put
s(Ks) r„(Vs).

Remark 2.3. By Corollary 2.2(2), we see that for any integers »i.n2 such that

n(L) <n\.n2 < n(s),

v"l(DL,;l"'(rs))®4;,„l8iii0sBp§Q,x

v"HD^-p'{Ts)) ®A> Bp§Q„S. (2.2)

Thus one can replace n(L) with any integer n such that n(L) < n < n(s) in the
i" sconstruction of (Ks).

If 5 —> R is a map of affinoid algebras over Qp, we set K# Ks R-

The following theorem slightly refines |4, Theoreme 4.2.9] in the case of affinoid
algebras.
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Theorem 2.4. For any s > s (Ks), the locally free B^s ®qpS-module D^s (Vs)
is well-defined, i.e. its construction is independent of the choices of Is and L.
Furthermore, it satisfies the following properties.

(1) The natural map D^(Ks) s B^ig^S Ks®q„b]^ is an

isomorphism.

(2) The construction is compatible with base change in S.

(3) The construction is compatible with passage from K to a finite extension L,
i.e. D[-'(KS) D'/CKs)

(4) For any s' > s. D'/(Ks) Doll's) U*

Proof. The statements (1) and (3) are already proved in [22, Theorem 3.11] (which
in turn is an easy consequence of [4, Theoreme 4.2.9]). The assertion (2) follows
easily from the construction. For (4), let Ts and L be as above. It follows that

Dp(rs) Bp®Q„S

for any s > s(Vs). This implies

Dp'lKs) Dp(Ks) Bp ®Q„S.

By (3), we get

DkS (Ks) D+/(F-s) ®b^®q„s Bl' ®Q/>5-

We conclude by taking the //^-invariants on both sides.

From now on, we assume s > ä'(Ks') unless specified otherwise.

Proposition 2.5. We have <^(D^S (Vs)) C (1's-) and the natural map

^/(Ks)) ®B>.^QpS,v -> dYs(Vs)

is an isomorphism.
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Proof. Let Ts be a free C^-lattice of S, and let L be a finite Galois extension

of K such that Ts is Gl-stable, and Gl acts trivially on Ts/\2pTs. By
Corollary (2.2)(1), we get

=»#"<«(D^ra) ®A'L'"<"SIpOs

En.i

zPos,ip

\^Qps,v*TlPS®®ES

VlPS®QeS

^"(L)+1(D\fL)iTs)) ®Al,gIi>c,s, (Air-^+1Sz^5)

'A,
1+ 'n<L)-Ha BL ®QpS

=«,"<0+,(DS)+1(7il) ® +,St 0„
b»'";

AL'-^'0ZpOs L S

=DtL'/"(Ks).

The last step follows from Remark 2.3. By Theorem 2.4(3), we may rewrite the

above equality as

«•(Doll's)) Bp"§Q„s d'/Vs) B1"'§q„S.

We conclude by taking //^-invariants on both sides.

We set V];1K{VS) D^(VS) %^pS (KU®QPS)- We put

Bi-®Q/>5 u^>oB^§Q/,5, B \®QPS U,>0B^§Q/,5

and

^rig.K^Qp^ — Ui>°BngBng,A:®Qp^ ~ ^s>0BIg,A:

We then set

D*r(^) ^k(Vs) ®B^QpS BK®QPS Us>S(VS)D'kS(VS)

and

^rig.Ä'^^) — Dj,gjA-(Ks) ~ u-s>-«(i/.s')Dng,A:(Ks)-
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By Proposition 2.5, we see that Dj^Ks) and D„g£(Ks) are stable under <p and

isomorphic to their <p-pullbacks respectively. That is, the natural morphisms
<P*(D^(Ks)) D^(K5) and <p*(D^g K(Ks)) D^fKs) are isomorphisms.

Thus Dj^Ks) is a (<p, T)-module over b]^®q/,5 in the sense of [22]. (See

Remark 5.21 for the relevant discussion about D^ig K(Vs).)

Remark 2.6. In the case when V$ admits a G/r-stable free ö^-lattice Ts, we further
have that the (<p, T)-module Dj^(Vs) is globally etale in the sense of [27]. In fact,

if L is a finite Galois extension of K so that Gl acts trivially on Ts/\2pTs,

A^(T*) Uj>j(vs)(^(l)(D^)(7S)) ®s.r„lL)$Zp0s ^L®zpOs)Hh

is a locally free A^L<8)zpOs-lattice of D^(ks) which satisfies

¥>*(At(7s)) A]r(7s).

Corollary 2.7. Let a DlgpsK(Vs). If<p(a) e D^'K(VS), then a e D^(Ks).

Proof. Let Ts be a free Os-lattice of Ks, and let L be a finite Galois extension
of K so that Gl acts trivially on Ts/\2pTs. By its construction D^(Ks) is a free

B^g^S-module of rank d. Let e\, ej be a basis, and write a i a'ei
with a, 6 B^®Qy,S. Since D*'*^(Ks) (D^5l{Vs))Hk, it reduces to show

that a e D„g l(Ks)- By Proposition 2.5, <p(ei) <p(ed) form a B^^igiQ^S-basis

of D^fKy). Hence ip(a) Y^=i tpU'i)<p(ei) belongs to D^(K?) if and only if
(pia,) e ^ngL^tipS f°r a" ' The latter is equivalent to a, e ßjig L®QPS for all i.
This yields the desired result.

2.2. Sheafification of the (<p, T)-module functor. Following [22], we extend the

(<p, T)-module functors to finite locally free S-linear representations as follows.
From now on, let Vs be a locally free S-linear representation of Gk of rank d. We

choose a finite covering of M(S) by affinoid subdomains M(S\) M(Sm) such

that Vsl is free over 5, for each/. Let .to maxi<,<m{.y(F,s()}. By [22, Lemma 3.3]
t Sand Theorem 2.4, for any s > to and 1 < / < in, the presheaf (Ks,) : Ri i-»

"I" S

D£ (Fß(), where M(R,) runs through all affinoid subdomains of M(St), is indeed

a sheaf for the weak G-topology of M(Sl) (hence extends uniquely to the strong

G-topology). We glue the sheaves ^^s(VS/) for all 1 < / < m to form a sheaf

^fs(Vs) on M(S), which is independent of the choice of the covering. It turns

out that &£S(Vs) is the sheaf associated to a finite locally free B^g^S-module
Dj^(Ks) [22, Proposition 3.6]. It is straightforward to see that D^Ks) is equipped
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t Swith a natural T-action, and the construction Vs V>f (F^) satisfies the analogues
of the assertions of Theorem 2.4.

We then define the functors Djig^(Ks), and D^jg ^(Ks) as in §2.1. The

sheaf property for (Vs) and Proposition 2.5 ensure that D^(Ks) is isomorphic
+ + -J- -»-v

to its ip-pullback. Hence (Ks) and K(Vs) are (tp, T)-modules over B^C^q^S
and Bjg>JP®QPS respectively.

Note that for any affinoid subdomain M(S') of M(S), one may proceed the above

constructions for Vs> using the covering M(Si) n M(S') M(Sm) fl M(S'). In
"I" S

particular, one can define K(Vs') for any s > so-

1" S 1"

Definition 2.8. For any s > so, define the presheaves 5?ri<\ ^(Ks) and k^s) on
the weak G-topology of M(S) by setting

®ZkWs)W(S')) D^k{VS>). ®1%,k(VS)(M(S')) D^(FSG

for any affinoid subdomain M(S') of M(S).

Proposition 2.9. Both (Vs) and K(Vs) are sheaves for the weak G-
topology of M(S), and hence extend uniquely to the strong G-topology.

Proof. We first show that ^{^(Vs) is a sheaf. This amounts to checking the sheaf

condition for finite coverings of affinoid subdomains by affinoids. Recall that

»,Ü<rs)W(S')). ®B>;KsQrs *%JC*9,S"

for any affinoid subdomain M(S') of M(S). Since is a finite locally free

B^^igiQ^S-module, it reduces to show that the presheaf M(S') ßjjg k®qpS'
1" Sis a sheaf on the weak G-topology of M(S). By definition, Blg K is the Frechet

completion of B^ with respect to the set of valuations {val(0'ri}r>s- F°r > s* let

B^'^ be the completion of B^ with respect to max{val^°'ri. val(0'fi}. It follows that

BngV ]B£r].
r

Using a Schauder basis of S, we deduce

Bng,^S hm<'r]gQ/,S. (2.3)

r

Therefore, it suffices to show that the presheaf defined by M(S') S' is

a sheaf on the weak G-topology of AF(S); this follows from [22, Lemma 3.3].
a. 4- £Note that the presheaf K(Vs) is the direct limit of the sheaves 5Lg ^(Fs)

in the category of presheaves. In general, the direct limit of sheaves in the category
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of presheaves is not necessarily a sheaf. However, using the facts that the coverings

are all finite and the connecting maps are injective for all

,S'| < .s'2. it is straightforward to check that the direct limit of the sheaves

in the category of presheaves is indeed a sheaf.

t S tTheorem 2.10. The constructions Dng K (V's) and Dng K (V's) for finite locally free
S-linear representations Vs have the same properties as for finite free S-linear
representations given in §2.1.

Proof. We choose a finite covering of M(S) by affinoid subdomains such that
the restriction of Vs on each piece is free. The theorem then follows from
Proposition 2.9.

The following lemma will be used in §4.

Lemma 2.11. Let a e Djig ^-(Ks) and a e S. If <pm(a) — oia e then

a G DIgV^)-

Proof. Put h (pm(a) — aa. Suppose that a e D„g ^-(Ks) for some s'. If s' > s, we

get (pm{a) b + aa e
s

k(Vs). It follows from Corollary 2.7 and Theorem 2.10

that a e for max{s'/pm,s}. We then conclude a e by
iterating this argument.

Definition 2.12. Let A" be a rigid analytic space over and let Vx be a locally
free coherent C^-module equipped with a continuous Ox-linear G^-action. We

choose an admissible covering of X by affinoid subdomains {M(S, )},6/. We then

define the sheaf K{Vx) by gluing the sheaves ^(Fs,) for all / e /; this
construction is independent of the choice of the covering {M(St)

2.3. Localization maps. Recall that Fontaine's p-adic27r; is defined as t log[e].
We equip A"„[[t]] with the induced Frechet topology via the natural identification
Ä"„[[f]] KWe define K„{(t))®QpS as the inductive limit of (t~' Kn[|/]])®Q/,S-
Recall that for any n > n(s), there is a continuous T-equivariant injective map

i„ Kn [[/]].

which extends to a continuous T-equivariant injective map

in : Kn [[/]].

It is defined as the composite

C B1 * BCB+C B+.
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and it factors through Kn [[/]] (see [2, §2) for more details about Ln). In particular we
have in+1 o (p i„. The map in induces a continuous T-equivariant map

We dehne

and

Df;' (Ks) dJ^K,) (KMimapS):

it is clear that D^" (Ks) D^,'K" (Ks) [1 /1\. We denote by in the natural map

D^Ks) - Dj/»(Ks),

and call it the localization map. It is straightforward to see that <p : B^'/ K —>• B^^
induces a Kn [[f]]-linear morphism D^^'tKs) —» (Ks) which induces an

isomorphism

D+^"(Ks) ®Kn[[t]] Kn+l[[t}\ ^ D+^"+1(Ks).

We dehne D^(VS) D+;K" (Vs)/(t). Finally, we dehne

Dd"/"(Ks) U„>„(j)D+^"(Ks), D*(Ks) U„>„(,)D^'(Ks).

Ds(Ks) U„>„(j)D^(Ks).

Convention 2.13. When the base Held K is clear, we omit K in all of these functors
for simplicity.

By their constructions and the base change properties of ((p. V(-module functors,
the following proposition is obvious.

Proposition 2.14. The functors D^'" and D"e|] are compatible with base change.

Let q ip([e\ — 1)/([e] — 1). The following proposition is a generalization of
[26, Theorem 4.3],

Proposition 2.15. Let k be a positive integer. The following are true.

(1) The localization map in : D^|gv (\ 's) D^'" (Ks) induces an isomorphism

Dt4(Vs)/(cpn~l(q))k ^ D+f(Vs)/(tk).

(2) The natural map \~[n>n(s) tn Dj£(Ks) -* n«>«(,) dm"(Ks) induces an

isomorphism

D^(Ks)/(ffc)s n D+f(Vs)/{tk).
n>n(s)
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(3) The natural map tp : D}^{Vs)/(tk) —> (Vs)/(tk) is given by

((an)n>n(s)) ((«n-i)«>n(j)+i) under the isomorphism of (2),

+ "f" iS ""***

Proof. For (1) and (2), since (Fs) is a finite locally free K®qrS-module, it
reduces to show that

iKilK®QrS)/(<Ptt~lW)k (^^]]®Qr5)/(^) (2-4)

and

(Blg.Ä/'W*) n (2.5)

n>n(s)

We first show them for S Qp. By [2, Proposition 4.8], for / e bJ^^-, t\in( f) if
and only if (pn~l(q)\f. Note that t\\i„(<pn~x {q)). We thus deduce that the map

«»M/V")
is injective. Furthermore, it is an isomorphism for k 1 by [2, lemme 4.9]. It
follows that it is an isomorphism for any k. Since t Wn>n(s)Wl~x (q)/p) in

B „, we further get
ng, A c

BIgV^) FK-gV^1^ - ]~[ Kn[[t]]/(tk).
n>n(s) n>n(s)

We claim that the exact sequence

0 -* (<p"~l (q))k^nl^K -> -> B^/f<p"-\q))k -+ 0

splits as complete Frechet spaces over Q^. Note that the quotient B^^/(<pn~l (q))k
is a finite dimensional Q^-vector space. We choose a section of the Qp-linear

map B^'/^. —> B^jfK/(<p"~x (q))k, and denote its image by U. Note that for any

r > s, val'0-ri is indeed a norm on B^ Since every finite dimensional normed

Qp-vector space is complete, we deduce that U is a closed Frechet subspace of
t 5

ng K- By °Pen "tapping theorem for Frechet spaces [32, Proposition 8.6], the map

(<p"_1 (c/))^Bj|'g K © U — B^ is an isomorphism of Qp-Frechet spaces. This

proves the claim.
The claim yields the following exact sequence

0 -> (<?"-'(^B^gg^S b;^®Q/,5 -> (Bl£K/(<pn-l(q))k)®QpS - 0;

hence

(*lU®QnSVlVn~l{1))k ^liK/(Tn-l(q))kmrS
Kn[[t]]/(tk) ®qp s ^ (Kn[[t]]®QpS)/{tk).

yielding (2.4). We get (2.5) by a similar argument. We get (3) immediately from the

fact that in+1 o <p i„ for all n > n(s).
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Note that tpf acts /fo-linearly on DJ (Ks). We extend the <p^-action to K

D„g(Ks) A)-linearly. For 5 > s(Ks) and n > max{;;(Ks), n(s)/f}, we set

in.K : K ®K0 D^(Vs) D+/"(Vs)

j1 ^
as the /f-linear extension of i/„. Recall that every closed ideal of Bng K is principal

t S
[20, Theorem 2.9.6). It follows that every closed ideal of K <S>k0 B K is principal.

1 F ^Thus the closed ideal l~ K{(t)) of K k is principal; we fix a generator

qn,K of it. It follows that in,x induces an isomorphism (K <S>k0 Bng K K)
Kn[[']]/Uk)- Again, the closed ideal nn(t]n,K) is principal; we fix a generator tx of
it.

Proposition 2.16. The following are true.

(1) The ideal (qn.x) is a prime factor of((pf"~l (q)).

(2) The map L„tx induces an isomorphism

(K ®Ko D^(VS))/(q^K) D+/n(Vs)/(t*)

for any k > 1 and s < r
(3) We have (pf ((qn,K)) (qn + hK).

(4) For any k > 1, the natural map

ntn,K : K ®Ko D^(Vs) - nDdV"(^)
fn>n(s) fn>n(s)

induces an isomorphism

(K ®*() D];sg{Vs))/{tkK) ^Y\Dä/n^s)/(tk).
fn>n(s)

"f i"
(5) The valuation of (p(t x)/1K, which is viewed as an element of K <8>^0 B^,

is 1; here we put the valuation of nx in K ®x{) B^- to be 1.

Proof By Proposition 2.15(1), t/„ induces an isomorphism

(K ®*o DH(Vs))K<pfn-Hq)k) K D+'/n(Fs)/(^).

The map K ®x{) D„g (Ks) ^>X/"^s)/(lk) is then just the composite

K ®Ko D^(Ks) -> (K ®Kq D^(Vs))/(cpfn~\q)k)

K ®Ko DdWs)/(tk) D+/"(Vs)/(tk).
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This implies the first two statements. We deduce (3) from Proposition 2.15(3). Note
that the ideal (t/() is the product of all (qn,K) which are mutually prime by (1).
We then deduce (4) using a similar argument as in the proof of Proposition 2.15(2).
For (5), we choose a generator tf £ ®ng Jf cl°sed ideal Hn{(p^n~l (q)). By
Proposition 2.15(1), (2), it is straightforward to see that

/-i
n ?'(('/))=(').
(=0

This yields that <pf{tf)/tf belongs to (B^'^ >x c b; and has valuation 1 as

cp(t) pt\ hence its valuation in K <8>k0 B^- is equal to the ramification index
e [K : Qp]/f After a suitable base change, we may assume that K is Galois

over Ko. A short computation shows that

PJo'U'a:)) (tf)
oeGal(K/K0)

as ideals of K ®a"0 It follows that

<pf (o(tK.))/o(tK) £ (K ®K0 KB,k)X C K

for each a e Gal( K/Ko), and their product is <pf (tf)/1 f up to a unit of K <S>k0 B^ •

Since they all have the same valuation, we conclude (5) by the fact that (pf(tj)/tf
has valuation e in K <8>a:0 B^..

2.4. The sheaf ($>?/(Vs)/(tk))r.

Definition 2.17. Define the presheaves f'"(Vs) and (Vs)/(tk) on the weak

G-topology of M(S) by setting

(@kn(Vs))(M(S')) D+>"(VS'), (®&n(Vs)/(tk))(M(S')) D+'"(KS')/(tk)

for any affinoid subdomain M(S') of M(S). Define the presheaves

9+(Vs) lim @+in(Vs) and ®+(Vs)/(tk) lim (Vs)/(tk),
n—>oo n—*oo

where the transition maps on any affinoid subdomain M(S') of M(S) are the natural

K„[[f]]-linear morphisms D+'"(Ks') D+'"+1(Ks") and D^t'"(KS')/(f*) ->
^df"+1(Ks'')/(tk) introduced in §2.3.

Proposition 2.18. The presheaves 54^'" (Vs) and @£{(Vs) are sheaves for the weak

G-topology ofM(S), and hence extend uniquely to the strong G-topology.
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Proof. As in the proof of Proposition 2.9, by the base change property of the functor

^dif"' d reduces to show that the presheaf

is a sheaf. The latter is clear.

Lemma 2.19. Let G be a topologically finitely generated group. Let A be a
commutative Hausdoff topological ring, and let M be a finite A-module equipped
with a continuous A-linear action of G. Suppose B is a commutative Hausdoff
topological ring with a continuous flat morphism A —> B. Then (M (g>/4 B)G
Mg B.

Proof. Choose a finite set of topological generators g\ gn of G. Consider the

exact sequence
0 —> MG —> M —> ®"=1M

where the last map is m ®"=1(gi — \)m. Since B is flat over A, tensoring up
with B, we get

0 —> Mg ®aB —> M ®aB —> ®f=lM ®A B.

This yields the lemma.

Convention 2.20. Let X be a rigid analytic space over Qp. Let G be a group, and

let M be a presheaf on X equipped with a G-action. We denote by MG the presheaf
on X defined by MG(U) M(U)G for any admissible open subset U of X.

Proposition 2.21. The following are true.

(1) The presheaf (Vs )/(tk) is a locally free coherent sheaf.

(2) The presheaf 3>^~ü(Vs)/(tk) is a sheaf.

(3) The presheaf (Vs)/(tk))r is a coherent sheaf.

(4) The presheaf ((Vs)/(tk))r is a sheaf

Proof By the previous lemma, (1) implies (3). By the same argument as in the proof
of Proposition 2.9, (1) implies (2) and (3) implies (4) respectively. Thus it suffices

to prove (1). Note that D^l'"(Vs>)/(tk) is a locally free ^'-module of finite rank for

any affinoid subdomain M(S') of M(S). We only need to show that &^ü'n(Vs)/(tk)
satisfies the sheaf properties. The latter follows from the fact that the presheaf

M(S')»(K„[[t]]®Q/,S')/(tk)

is a sheaf as in the proof of Proposition 2.9.
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We also denote the sheaf f^"f(Fs)/(0 by f^sen(Ks).

Definition 2.22. Let X be a rigid analytic space over Qp, and let Vx be a locally free
coherent Ox-module equipped with a continuous Ox-linear Gk-action. We choose

an admissible covering of X by affinoid subdomains {M(S,)}je/. We then define

the sheaf 9^Ü{VX) (resp. ^(Vx)/(tk), @sen(Vx)) by gluing the sheaves ®djf(FS|)
(resp. @faf(Vsl)/(tk), ^sen(Ks,)) for all i e /; this construction is independent of
the choice of the covering {M(5,)}ie/.

We need the following result in §5.

Proposition 2.23. If S is torsion-free, then both

(D^"(Ks)/(ffc))r and (T>t?{Vs)/(tk))/{Dlf{Vs)/(tk))T

are torsion-free S-modules.

Proof. Since D{Vs)/(tk) is a finitely generated locally free S-module, it is

torsion-free by the assumption on 5. So (Dd^|'"(F5')/(r'c))r is torsion-free as well.

On the other hand, for s e S. a e (Vs)/(tk) and y e T, if y(sa) sa, then

y(a) a because y acts trivially on S and is torsion-free. This

yields that (D^t'"(Ks)/(ffc))/(D^"(F5)/(ffc))r is a torison-free S-module.

2.5. Sen operator. Let Vs be a free S-linear representation of Gk of rank d.
Let Ts and L be as in the construction of D^(Fs), and let n > n(Ks). By its

construction, the module is free of rank d over Ln ®qp S. Furthermore,
for any y Tl satisfying n(y) > /?, we may choose some Ln ®qp 5-basis of

D^Ls) so that the matrix My of y under this basis satisfies \My — 11 < 1. We then

define logy e End^g^sfD^Ks)) by setting

log y - > •

L—' m
m> 1

The convergence of the right hand side follows from the condition \My — 11 < 1.

Since Tl is a 1-dimensional p-adic Lie group, the operator

0 logy/log/, x(y) e EndL„9Qps(D^(Vs))

is independent of the choice of y; hence it is well-defined. Note that

D.t(^) Dst(L5)^„ Ln,

is
and y carries DSen(Ks) into itself. Hence we may view 0 as an element of

End^;i<g,Q^5(D^(Ls)). Furthermore, since T is commutative, 0 commutes with T;
hence its characteristic polynomial has coefficients in (K„ <g>Qp S)r K ®qp S.
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Definition 2.24. Let X be a rigid analytic space over Qp, and let Vx be a locally free

coherent O^-module equipped with a continuous Ox -linear G^-action. We choose

an admissible covering of X by aftinoid subdomains {M(St )}iel such that Vs, is

free for each / e /. We glue the operators 0 e Lnd^ §3 -ip s, (^Scn (Ks,)) for all
/ e / to obtain an operator 0 e End^gj o^.(@Sen(Vx))', this is independent of
the choice of the covering. We call 0 the Sen operator for Vx-

We also glue the characteristic polynomials of 0 e End/^g^s, (^sen(Ks,)) for
all e / to get an element of (K ®q 0(X))[T]\ this is independent of the choice

of the covering, and it is called the Sen polynomial for Vx-

Remark 2.25. By their constructions and base change property of Dsen. it is clear
that the notions of Sen operator and Sen polynomial compatible with base change.
That is, given a morphism f : X' -> X of Q^-rigid analytic spaces, the Sen operator
and Sen polynomial of f*Vx are naturally isomorphic to the pullback of the Sen

operator and Sen polynomial of Vx via / respectively.

The rest of this subsection is a (<p, T)-module theoretical interpretation of
[25, (2.3M2.6)].

Proposition 2.26. Let Vs be a finite free S-linear representation. Then for any
>1 > n{Vs), both H°(T.DnSen(Vs)) and H1 (T, D^CKs)) are killed by det(0).

Proof. Let L,y be as above. Since H°(Ti, Dsen(Ks)) and H1 (Vl. Dsen(Vs)) are

computed by the complex

0 Dsen(Ks) ^ Dgen(Ks) 0.

both of them are killed by y — 1. Thus both of them are killed by 0; hence both of
them are killed by det(0). This yields the desired result since //°(T. Dsen(Ks)) c
H°(rL- D£en(Vs)) and H1 (T. D£en(Ks)) is a quotient of H1 (TL, D£en(Ks)).

From now on, let Vs be only locally free over S.

Corollary 2.27. For any k > 1 and n > n(Vs), the natural map

(Vif(Vs)/(tk)f ->{D"Sen(Vs))r

has kernel and cokernel killed by I~[f=i det(0 + iI).

Proof. Since (&^f"(Vs)/(tlc))r and (f^sen(Ks))r are coherent sheaves, by restricting

on a finite covering of M{S), it suffices to treat the case that Vs is free over S.

It then suffices to show that the natural map

(Ddy (Ks)/(!, + 1))r - (DdY(L5)/(t'))r

has kernel and cokernel killed by det(0 + il) for each / > 1. By the short exact

sequence

0 — D"Sen(Ks(0) —> DdY(ES)/(f! + 1) —v DdV(Es)/(f') 0.
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we get the exact sequence

0 (DL(Ks(/)))r -» (Dtf(Vs)/{t' + x))r

- (DtC(Vs)/(tl))r H\T,Dlen(Vs(i))).

We thus conclude from Proposition 2.26 and the fact that Sen operator for Vs(i) is

0 + //.

Proposition 2.28. Keep notations as above. Then there exists a finite Galois
extension L' of K containing L such that 0/(y' — 1) is invertible on D"cn(Vs) for
am y' £ Pi'-

Proof. It suffices to treat the case that Vs is free. Let y e Tl such that /(y) e
1 + pnhp. It follows that y acts Ln <8)qp S-hnearly on D^^Ls). Thus for any

positive integer k, the matrix M ,k of ypk is just My Therefore we may choose a

sufficiently large k so that | M p 1. Let L' be a finite Galois extension of K

so that Tu c (ypk). Then for any y' T/,/, we have \MY> — \\ < \MvPk-\\<p~\
It follows that

-.—m

\{MY>-\)m/(rn + 1)1 <
P ^ „-1

\m + 11

for any m > 1. Let u — y')m/(m + 1). It follows that the matrix of
w — 1, which is

£(1 -My,)m/{m + 1).

m> 1

has positive valuation. This yields that u is invertible. Hence 0/(y' —1) x(y') 1u

is invertible.

In the following, we further suppose det(0) 0, and write det(7Y — 0)
v;:TQ(T) for some Q(T) e (K ®Qp 5)[T], Put P(i) ]T=o Q(~j) for every

integer / > 1.

Proposition 2.29. If f : S R is a map of affinoid algebras over Qp. for each

n > n(Vs), the natural map

(Dsen(Ks))r ®sR (D£en(L«))r (2.6)

has kernel and cokernel killed by a power of f (Q(0)). In particular, if f(Q(0)) is a

unit, this map is an isomorphism.

Proof. Write Q(T) X]f=o aiT' First note that (7(0)0 0 in End(Dscn(Ks))
by Cayley's theorem. Hence

W(D"en(Ps)) c ker(0(0)|DSen(Ps)) and 0(0)(DSen(Ks)) c ker(0|D'^en(L5)).
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By the equality üq Q(@) — 0(^f=/ © BI_1), we deduce that both the kernel and

cokernel of the natural map

ker(0|Dgen(Ks)) © ktr(Q(B)\Dln(Vs)) — D£en(Ls)

are killed by ao Q(0). Hence the natural map

(ker(0|Dgen(Ks)))flo 0 (ker(0(0)|D£en(K5)))ao —* (Dgen(L5))ao (2.7)

is an isomorphism. By the same reasoning, the natural map

(ker(0|D2cn(KÄ)))/(oo) © (ker(Q(0)|D"Scn(L«)))/(aü) — (Dgen(KÄ))y(fl(>)

is also an isomorphism. Consider the following commutative diagram

ker(0|D£en(Ls)) */(„„) © ker(0(0)|D^en(L5)) R/{an) D£en(Ls) R f(aa)

(ker(0|D^n(L«)))/(ao) © (ker(0(0)|Dgen(f*)))/(ao) (^„(Kr)) f(a„)

where the upper map, which is obtained by tensoring up (2.7) with R over S, is an

isomorphism. Note that the right map is an isomorphism because Dgen(-) is functorial
in V$. We thus deduce that both the natural maps

ker(0|D£en(K5)) Rf(aa) -> (ker(0|D^en(K«)))/(ao)

and

ker(0(0)|Dgen(Ls)) RHan) - (ker(0(0)|Dgen(KR)))/(flo)

are isomorphisms. Let L' be a finite Galois extension of A' given by Proposition 2.28.

It then follows from Proposition 2.28 that

ker(0|Dgcn(fs)) (D£en(L5))r^

and

ker(0|D"Sen(L«)) (D3en(K*))r4..

Note that (Dg^ILs))1, (resp. (Dsen(I^))r) is the image of the endomorphism

" ^ J2ga
ger/rL,L;/

on (DsenC^))^" (resP- (Dgen( k'w ))r' " )• We therefore conclude immediately that
the natural map

(DsentKs))^' Rf(a0) (^en(^»/(.„)
is an isomorphism.
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Corollary 2.30. If f : S —> R is a map of affinoid algebras over Qp, for each

n > n (Vs). the natural map

(D+f"(l/s)/(^))r ®SR^ (DdY(V«)/(/*))r

has kernel and cokernel killed by a power of f (P(k)). In particular, if f (P(k)) is a

unit, this map is an isomorphism.

Proof Consider the following commutative diagram

(D£"(Ks)/('*))r R/iPm —- (dt;"(vR)/(tk))rf{Pm

(D£en(Ks))r RfiPm (Dsen(^))V(*)r

The bottom map is an isomorphism by Proposition 2.29. The left map and right map
are isomorphisms by Corollary 2.27. Hence the upper map is an isomorphism; this

yields the desired result.

3. The extended Robba ring

3.1. Definitions. Let B be a Q^-Banach algebra with \B\ discrete. Set v(x)
~\ogp(\x\) for any jc e B.

Definition 3.1. For any interval / c (0, oo), let 1ZB be the ring of Laurent series

./ =£»<r
ieZ

for which a, e B and v(a,) + si oo as / ±oo for all s e I. For any sei,
define ws : 7ZB —> M as

ws{f) min{t;(ö,) + .v/}
i gZ

and the norm | • |5 on 1ZB as

\f\s m*A\al\p-s,) p~w^f).
16Z

We denote TZ^'^ by 1ZrB for simplicity. Let TZhB'r be the subring of lZrB consisting

of elements with {v(a,)}iez bounded below. Define w : IZbB'r —> M as

w(f) min{u(r/,)}.
I GZ

Let 7VB'r be the subring of fZbB'r consisting of / with w{f) > 0. We call 7Zb

ldr>oTZrB the Robba ring over B, and call lZhB — Ur>o7ZrB the bounded Robba ring
over B.
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Definition 3.2. For any interval I c (0. oo), let 7ZB be the set of formal sums

/
ieQ

with at B satisfying the following conditions.

(1) For any c > 0, the set of i e Q so that \a, \ > c is well-ordered (i.e. has no
infinite decreasing subsequence).

(2) For all s e I, v(a,) + si ->• oo as i —> ±oo, and inf,6Q{u(ö,) + si j > —oo.

These series form a ring under formal series addition and multiplication. For any

sei, set ws : 7VB —> R as

ws(f) inf{u(a,) + si}
ieQ

and the norm | f\s on 7Z!B as

|/|J Sup[|fll|p-s,} ^^.ieQ

We denote IZ^'r^ by lZrB for simplicity. Let 7ZbB'r be the subring of IZrB consisting

of elements / with {u(a,)},SQ bounded below. Define w : 7Z^'r —* M as

w(f) min{u(«,)}.
ie Q

We call 7Zg Ur>07ZB the extended Robba ring over B, and call TZbB — Ur>oIZrB
the extended bounded Robba ring over B.

We refer the reader to §3.3 for more discussion of the extended Robba ring.

Remark3.3. Since |fi| is discrete, it follows from condition (1) that inf,eQ{u(a,) + si)
(hence also sup,6q{|ö, |p~sl}) is attained at some / e Q.

We equip TZB (resp. 7ZB) with the Frechet topology defined by then

IZB (resp. 1ZB) is a complete Frechet algebra over Qp. Furthermore, in the case that

/ [a, b] is a closed interval, 7ZB (resp. 7ZB) is a Banach algebra over Qp with the

norm max{u;a, w/,}. We equip 7ZbB'r (resp. IZbB'r) with the norm max|w, wr} \ then

7ZhB'r (resp. 7ZbB'r) is a Banach algebra over Qp.

Definition 3.4. Let £g be the ring of formal sums / YheQaiu' with a, e B

satisfying the following conditions.

(1) For each c > 0, the set of / e Q such that |a, | > c is well-ordered.

(2) The set {u(«,)},eQ's bounded below and v(at) —> oo as i — —oo.

Set w : £b —>• M as

w(f) min{u(r7,)}.
ieQ
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We equip Eb with the topology defined by w; then Eb is complete for this

topoology.
In the following, let L be a p-adic field in the sense that it is a complete discretely

valued field equipped with the structure of an Qp-algebra in such a way that the map
Qp —>• L is continuous. Put Bl L®^pB.
Proposition 3.5. For R e {1Zbd'r .1Z1} or R 1Zr, where I C (0,oo) is a closed

interval, the natural map Rl ®qp B -> Rbl induces an isometric isomorphism

Rl®qpB Rb,

of L-Banach algebras or Frecliet algebras. For R {£, 'JZM,r. IZ1} or R — 7Zr, the

natural map R l B —>• Rbl induces an isometric embedding

Rl®qpB Rß/

of L-Banach algebras or Frechet algebras.

Proof. This follows from [27, Lemma 2.1.6].

Proposition 3.6. If B is of countable type, then

(£l®Qpb) n pb.

Proof. This follows from [27, Lemma 2.1.8] by taking S El-

Lemma 3.7. Let S be an affinoid algebra over Qp. Then for any x e M(S), the

natural map lZrs <S>s k(x) TZrk(x) ,v an isomnrphism.

Proof. It reduces to show that the natural map px : 7Zrs —> 's surjective and

its kernel is mxTZrs. By [6, Proposition A.2.2], the exact sequence

0 —> m* —> S —> k(x) —> 0

induces the exact sequence

0 — — Rqp®qpS —»• —> 0.

Using Proposition 3.5, we get that px is surjective. Choose a finite set of generators
bi bm of m*. By the open mapping theorem for Banach spaces over discretely
valued fields, the surjective map of Qp-Banach spaces Sm -» defined by
(ßi,... ,am) a,b, is open. Hence there exists c > 0 such that for any
a e m*, there exist ai am e S with \a, | < c\a \ such that a aibi- Now
let / JflQa,u' belongs to kernel of px\ so a, e m* for all /. For each / e Q,
choose au £ S with \atJ\ £ c\at \ for 1 < j < m such that a, Yl=ia'jbj
Let J2ieQaiiU' for 1 < j < m. It is then clear that fj e 1Zrs and

f Y^=i btf];hence / e D
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3.2. Key lemma. From now on, suppose that L is equipped with an isometric

automorphism tpi_ such that its restriction on Qp is the identity. Let S be an affinoid
algebra over and let tp be the continuous extension of <pi, <g> id to Sl We fix
a positive integer q > 1, and we extend cp to automorphisms on 7ZsL and £sL by
setting

cp[ ^2a,u' J <p(a,)uqi.
\ieQ / ;eQ

It is obvious that tp restricts to automorphisms on 1Zl®qpS and £l®qpS-
Let a £ Sx. Consider the following Frobenius equation

ip(b) — ab — a. (3.1)

The following is a variant of [27, Lemma 2.3.5(3)].

Lemma 3.8. Suppose |a-1| < 1. Then for a YheQ a'lt' e ^sL' the following
are true.

(1) (3.1) admits at most one solution b £ Rs,
(2) (3.1) has a solution b £ IZs, ifand only if

YJOt-(m+xym(aiq-,n) 0 (3.2)
msZ

for all i < 0. Furthermore, in this case the unique solution b is given by

b -J2 \
£a-(m+V(^-»')V

; sQ VmeN /
and belongs to 77^7 and it satisfies wr(b) > wr(a) — C(r, a) where C(r, a)
is some constant only depending on r, a.

(3) Suppose a e Wl®qpS. If b £ lZsr is a solution of (3.8), then b

Proof. Suppose that b J2ie®b,u' £ is a solution of (3.1). By comparing
coefficients, we get

<p{b,/q) - ab, a,.

yielding
b, =a~l(p(bl/q)-a~la, (3.3)

for every i £ Q. Since |a_1 |sp < 1 and {\a,q-m |}mgN bounded, we get

b, =-J2<x~(m+1)<Pm(«m-»')
meN

by iterating (3.3). Thus b, is uniquely determined by a and a. This proves (1).
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Furthermore, for any k e N,

(oo
\ oo

E +VK-'») <*k E "«*V
m=—k / m=0

Hence

u( E + v(cckbiqk) > kv(a) + u(6(?a)
V m=—k J

> kv(a) + Wr'(b) - r'iqk.

It follows that if i < 0, then v(%2=_k a~(-m+x\m{aiq~m)) —>• oo as k —>• oo; this

yields (3.2), proving the "only if" part of (2).
To prove the "if" part of (2), for f ttt ul e 7Zrs and c e M, we set

wc/~(f) min{u(a,) + ri).
1<C

It is clear that wcr~( f) -> oo as c -» —oo. Now suppose that (3.2) holds for all
i < 0. If / < — 1, then for each m < — 1,

v(a~(m+l)<pm(aiq-m)) > v(alq-m)~ (m + l)u(a)
(v(aiq-m) + riq~m) - riq~m - (m + l)v(a)

> (wlr~(a) — ri) + ri(1 - q~m) — (m + l)u(a)
> (w'r~(a) - ri) + r(q~m - 1) - (m + l)v(a)
> w'r~(a) — ri — C\ (r, a),

where C\ (r, a) is some constant depending on r, a. Hence

OO \ / —OO

w,
m=0 / \ m=— 1

j,-
r((Ea_(",+V(fl.9-'»))",)=^- E a-(m+l)Vm(a,q-m)j+ri

> wlr~(a) — C\(r, a)
(3.4)

for each i < — I. Note that u(cr_1) > 0 by assumption. Thus if —1 < / <0, for any
in > 0,

v{a~(m + X)(pm{aiq-m j) > wr(a) — riq~m + v{a~x)(m + 1)

>wr(a) — riq~m (3.5)

> wr{a) — ri.
Hence

oo

W,

m=0
for all /' > — 1.

r((E > M«) (3.6)
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Now put
a+ ^a, ul, a~ y^ a,u'

i> o i<0
and

b+ -£ (£ a~(ffl+V^-'-oV.
;>0 \m=0 /

6" -I] £ a"(m+V))u'.
i <0 \m=0 /

Since |a_I | < 1 it is straightforward to see that the series a~(m+1 V"(fl+)
is convergent in and

utr( J] a"(m+l)<pm(a+) > Wr(a+) > utr(a).
V m=0 /

We then deduce
OO

^ cT(m+1Vm("+) -/,+
m=0

by comparing the coefficients. We claim that b~ also belongs to T?.^ We first
deduce from (3.4) and (3.6) that b~ satisfies Definition 3.2(2). On the other hand,
since |a-1| < 1, the series X^=o ce~t-m+1^(pm(a~) is convergent to — b~ in Sst
Hence b~~ also satisfies Definition 3.2(1), yielding the claim.

Now put b b+ + b~ 7ZrS[ It is then clear that b is the solution of (3.1).

By (3.4) and (3.6), we get

wr(b~) > iur(a) — C(r,a).

where C(r,a) max{0, Ci (r, a)}. It then follows wr(b) > wr(a) — C(r,a).
Furthermore, since <p(b) a — ab Ürs we get b e 7Zqsr

It remains to prove (3). If a e lZrL®QpS, then a+ e TZrL®QpS and a~

Ufr®QpS. We thus deduce b+ e 7lrL®<QpS and b~ e £l®qpS. Since b~ e

by Proposition 3.6, we conclude that

b~ g (£l®qpS) n K'r®qpS.

Hence b b+ + b~ 1ZrL®QpS.

Remark 3.9. One can reformulate the above lemma using the notion of cohomology
of <p-modules. For any a 5X, we define the rank 1 yj-module IZs^ia) over TZs,

by setting <p(u) a~lv for a generator u; we set H1(1Zsl (a)) 7ZsL (a)/(cp — 1).

Then Lemma 3.8 says that if \a~l \ < 1, then av is a coboundary if and only if a
satisfies (3.2).
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3.3. Relations between different rings. Recall that there exists a natural
identification ßjlg ^ Taig which identifies B^lgp^ with for any r > 0 (see for

instance [3, §1.1 ]); here Tan8 and rjnfr are relative extended Robba rings7 associated

to the residue field Fp((w))dlg8 introduced by Kedlaya (see [20, §2] for more details).
On the other hand, 77^ and 77C.r (together with the (^-action for q p) are

relative extended Robba rings with residue field F^g((ulQ)); here F^8((nQ)) is the

Hahn-Mal'cev-Neumann algebra with coefficients in F^s (see for instance [20,

Definition 4.5.4]). By [19, Theorem 8], F/)((w))jlg is a closed subfield of
This leads to natural closed embeddings of Q^-Frechet algebras

rifan,r
£p

for all r > 0. By the above identifications, we therefore get closed embeddings

SLp(r) ^ 77 ~ (3.7)
Qur

which respect the «»-action. Henceforth we regard B^'p'r^ as a subring of ; weng qu;
it.io(r)

aü> a auuiinu ui />
Ku

We will need the following results in §4.

therefore regard K <S>k() Biigp as a subring of 77C

Lemma 3.10. For any a e St, there exists an analytic subspace M(S(a)) of M(S)
such that for any map g : S R of affinoid algebras over Qp, gt(u) 0 if and

only if the map M{R) —> M(S) factors through M(S(a)).

Proof. Choose an orthonormal basis {ej}jej of L over Qp; then it is also

an orthonormal basis of St as an S-Banach module. Let 1(a) be the ideal
of S generated by the coefficients of a. It is then clear that one can take

S(a) S/I(a).

Lemma 3.11. Let a e 770-^(8iqpS. Then there exists cm analytic subspace

M(S(a,r)) of M(S) such that for any map g : S —> R of Qp-affinoid algebras,

g(a) (K SyKt, ^ngPA'')C)Q/, R if and only if the map M(R) —> M(S) factors
through M(S(a,r)).

Proof. Note that ßjigp^ may be identified with the intersections of all B^(r)'p(5^'s

with 0 < s < r (one way to see this fact is to use the identification of ßjigp^ with

7See [23, §5] tor a uniform treatment about relative extended Robba rings associated to analytic fields
of characteristic p.

8The completion is taken with respect to the w-adic topology
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the Robba ring 1Zrv,). To prove the lemma, it then suffices to show that for any
Ao

0 < s < r, there exists an analytic subspace M(S(a,s. r)) of M(S) such that for

any map g : S -> R of Q^-affinoid algebras, g(a) e (K <g)j^0 Bjj£^'p^)®Q/,/?
if and only if the map M(R) —> M(S) factors through M(S(a,s. ;•)); we then take

M(S(a, r)) to be the intersections of all M(S(a, s, r)Ys.
Let be the completion of ßj]gp^r' with respect to max (val^0"p*r^,

vaj(o,p(.s)] j Qne may therefore identify B^r)'p^ as aclosed subspace of B^r^'p^^.
On the other hand, the closed embedding ß!'p^ <-+ 7Zr^ of Q„-Frechet algebras

^ng QUT

induces a closed embedding Btp(^'p^ ^ of Qn-Banach spaces. Therefore,
^P

by Hahn-Banach theorem for Banach spaces over discretely valued fields, we deduce

that there exists a closed Qp-subspace V of 7^^ so that 7?.^ K ®k0
Blp(r),p(j)] e y Hence we have

n[^®Qps s (K ®Ko Bf)Ms)])®QpS © L§Q/)S
K

and

TZ[^®QpR ss (K ®K() B[^r)'p{s)]}®QpR® V®QpR.

Write a u\ + a2 with a\ e (K ®Ko B^r)'p(-s^)®qpS and a2 e Fig^S.
It is then obvious that g(a) e (K ®x0 B^r^p' )®qpR if and only if g(a2) 0.

~ rs rlBy Proposition 3.5, we may regard a2 as an element of 7ZsYL\ then g(a2) 0

^ Km

in R if and only if g(a2) 0 in 7^'^. Write a2 with
Km A-ur

c, e S—r. Let

I(a.s, r) J^!(c,)
ieQ

where I(c,) is the ideal defined in the proof of Lemma 3.10. It is then clear that one

can take S(a, s, r) S/I(a, s, r).

4. Construction of finite slope subspaces

Throughout this section, let X, Vx and a be as in § 1.1. For any morphism X' — X

of rigid analytic spaces over Qp, we denote by Vx> the pullback of Vx on X' which
is a locally free coherent O^'-module of rank d with a continuous (9x'-linear Gr-
action. In the case when X M(S) is an affinoid space, we denote Vx by Vs

instead. We have defined finite slope subspaces of X with respect to (a. Vx) in
Definition 1.1. The goal of this section is to prove that X has a unique finite slope
subspace (which may well be empty).
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4.1. Prelude.

Proposition 4.1. The formation of Xfs commutes with flat base change. Namely,

if h : X' -» X is a flat morphism of separated and reduced rigid analytic spaces

over Qp, and if Xfs is a finite slope subspace of X with respect to (a, Vx), then

the base change X'j-s of Xfs via h is a finite slope subspace of X' with respect to

(h*(a),VX').

Proof. Note that the Sen polynomial for Vx' is Th*(Q(T)). By Definition 1.1(1),

we have that Q(j)r is a nonzero divisor in Xfs for every integer j < 0 and r G H^.
The flatness of h then implies that h*(Q(j)r) is a nonzero divisor in Xys. Hence

X'ys satisfies (1) of Definition 1.1. Now let g : M(R) —X' be a map of rigid spaces

over which factors through X'q^ ^ for every integer j < 0 and r e H^. Then

hog factors through Xq(})t for every integer j < 0 and r G H^. By the universal

property of Xfs, we know that for n sufficiently large, the natural map

(K ®K{) vig(VR)r'=g*(h*{a))'r=1 (D+/"(L«))r

is an isomorphism if and only if h og factors through Xfs, i.e. if and only if g factors

through X'ys. This implies that X'ys satisfies (2) of Definition 1.1.

Proposition 4.2. There exists at most one finite slope subspace ofX.

Proof. Suppose that X\, X2 are two finite slope subspaces of X. Let {Uj }j£j be an

admissible affinoid covering of X by affinoid subdomains. It suffices to show that

for any j e J, the restrictions of X\, X2 on U j coincide. By Proposition 4.1, we
see that the restrictions of X\. X2 on U, are finite slope subspaces of Ut. Thus it
reduces to the case that X M(S) is an affinoid space. We prove this by using
Kisin's argument ([25, (5.8)]). Let f, I2 C S be the ideals corresponding to X,. X2

respectively. Let W be the support of (/1 + If)/h in X\ (with its reduced structure).
Let x G X\ be a closed point. If x G Xqq)t for every integer j < 0 and r G H^,
applying (2) of Definition 1.1 to any finite length quotient R of Ox,,x, we get that

x X2 and Ox, <x — &x2,x- This implies that x fW. Hence, for any w G W there

exists integer j < 0 and r G Hx such that Q(j)r(w) 0. If ILb is an irreducible

component of W, by [25, Lemma (5.7)], we deduce that there exists jV0 5 0 and

Tw„ e Ha: such that Q{jw„)xw0 vanishes in Wo. It follows that X,\W contains

^Wo<^w{X\)q(]w )t The latter is Zariski open and dense in X, since W has

only finitely many components. A fortiori we see that Xi\W, which is contained
in X2, is Zariski open and dense in X\, yielding X\ C X2. Thus X2 X\.

Remark 4.3. The proof of Proposition 4.2 actually implies that there exists at most
one analytic subspace of X which satisfies Definition 1.1(1) and Definition 1.1(2)
for all finite Q^-algebras R.



868 R. Liu CMH

Proposition 4.4. Let {U, \ jej be an admissible covering of X by affinoid sub-

domains. Suppose that each Uj has the finite slope subspace (Uj) fs. Then

{(Uj) fs}jeJ glues to form the finite slope subspace of X.

Proof. By the uniqueness of finite slope subspaces, we see that {(Uj)fs}j&j glues
to form an analytic subspace Xfs of X. It is then clear that Xfs satisfies (1) of
Definition 1.1. Now let g : M(R) —» X be a morphism of rigid analytic spaces

over Qp which factors through X'q(j) for each integer j < 0. The pullback
{g-1 ([//)} forms an admissible covering of M(R). We choose a finite covering
{M(Rj)}iei of M(R) by affinoid subdomains which refines {g~1(Uj)\. It then

follows that for each i e I, the natural map

(* ®AT0 D;ig(KÄ/)f/=^(a)'r=1 -* Ddyn(K*,)r

is an isomorphism for all sufficiently large n. We deduce from Propositions 2.18

and 2.9 that the natural map

(K ®at0 Dng(VR))"'- D+:/n(^)r

is an isomorphism for all sufficiently large n. This yields that Xfs is the finite slope

subspace of X.

4.2. Techniques. We start by introducing some notations. For an affinoid algebra

S,a e Sx, and a as in Lemma 3.8, using Lemma 3.10, we denote by M(S(a. a))
the intersection of

for all rational numbers i < 0. From now on, let Vs be a locally free ^-linear
representations of Gk of rank d.

Proposition 4.5. Let a Sx, and let ß e (K B^)x satisfying \ß\ > \a '|
"t" 5

(here \ß\ denotes the p-adic norm of ß in K <g> k0 Then for any a e K ® k(>

t S

Drig (Ks) there exists an E-analytic subspace M(S(a. ß.a)) ofM(S) such that for
any morphism g : S —> R ofaffinoid algebras over E, the equation

tpf (b) - ßg(a)b g(a) (4.1)

t Shas a solution b K (Vr) ifand only if the map M(R) M(S) factors
through M(S(a. ß. a)). Furthermore, the solution b is unique in this case.

Proof. Granting the assertion of the proposition, it is then clear that the construction
of M(S(a. ß.a)) is compatible with base change. Thus it suffices to prove the

proposition for each affinoid subdomain of an affinoid covering of M(S). Therefore
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it reduces to the case that Vs is free over S. Choose an S-basis <?i ed of Ks,
and write a Y^=\aiei whh at K <S>k0 (B^tgtQ^S). Since <p acts trivially

on Vr, (4.1) admits a solution in Vr ®r (TZpJ^)(8>q R) if and only if each Frobenius
KUT

equation
(pf (b,) - ßg(a)bl g(a,) (4.2)

admits a solution b, in TZ^jiS>QpR. By [20, Proposition 3.3.2J9, we may choose

some

x {K®Ko B^)x

such that y ß<pf(x)/x belongs to K. Using Frobenius, we see that x actually lies
in (A' B+"y)x. We thus rewrite (4.2) as

(pf (xb,) - yg(a)xb, (pf {x)g(al).

Note that |v| \ß\- Thus |y_1g(a)-11 — lß_1|la_1| < '• We deduce from

Lemma 3.8 that (4.1) admits a solution in Vr <S>r (TZ.^^qp R) if and only if
M(R) —> M(S) factors through

M(S') M{ya,(pf (x)a,).
1 <i<d

Furthermore, in this case, the solution is unique. Let b be the solution of (4.1) in

Ks' <8>s' (TZ^ ®<QpS')- Let A be a finite extension of K so that D^/JUs) is free
ATur

overB^^QpS. Choose aB^^^Q^S'-basis {fx fd\of D^l(FsU- Since

'K («'-§«,, *') VS, ®s, <R'|>§Q(,S').

we may write b ^ G 1ZPJ^ <S>qpS'. Let S" be the Qp-affinoid
KW

algebra defined by

Af(S") f|M(S'(c„s))
1 <i<d

(see Lemma 3.11 for the definition of M(S'(c,, s))). By Lemma 3.11, g(b) belongs

to K <S>x„ dJ^l(Vr) if and only if the map M(R) —> M(S') factors through M(S").
Furthermore, by the uniqueness of the solution of (4.1), the image of b in K <8>Kq

D^,g i(Ks'") is ///^-invariant; hence it is in K D„g ^-(Ks") by Theorem 2.4(4).
Therefore we can take S{a, ß, a) S".

By Lemma 2.11, (Djlg(Us))¥''=a is contained in (Ks) for any a £ S and

s > 5(Us). Thus for any n > n(Ks), we have a natural map

Dfng(Vsr/=a ^D+/"(Us)
via the localization map l„.

9By the dehnition of T^n, one may identity it with K ® a;,, B+
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Proposition 4.6. Let a e Sx. Then for any k > log^-ij |a_1| and n > »(Ks), the

natural map

tn.K •• K ®Ko Dlg(Vsr,=a -> D+;fn(Vs)/(tk)

is injective.

Proof. Let a e (K ®Ko D^Ks))^' =a, and let am be its image in D^/m(Ls)/(f':)
via im£ for any m > «(Ks). The relation tpf (a) aa and Proposition 2.15(3)
imply

"m tx an.

Thus if an 0, then am 0 for all m > «(Ks). This implies t^\a by
Proposition 2.16. Now suppose that a lies in the kernel of the map, and write

a tkKa' for some a' e D^g(Ks). It follows that

tpf {a') (tK/(pf {tK))kaa'. (4.3)

By Proposition 2.16 and assumption,

\(tK /<Pf (t K))k \ \^Kl\k > la_1|-

Hence a' 0 is the unique solution of (4.3) by Proposition 4.5.

Proposition 4.7. For any n > «(Ks), k > log^-q |a-I| and a D^t'^"(Ks)/(tk),
there exists an E-analytic suhspace M(S(k. a. a)) of M(S) such that for any map

g : S —>• R ofaffinoid algebras over E, g(a) e 0^'^"(Vft)/(tk) is contained in the

image of
i„,K : K <g>*() Dle(VRf'=gia) -+ D+;Jtt(VR)/(tk)

ifand only if the map M(R) —> M(S) factors through M(S(k. a.a)).

Proof As in the proof of Proposition 4.5, it suffices to treat the case that Ks is free.
J.

y.

Using Proposition 2.16, we choose ä e Dng '"(Ks) such that the image of im,A-(d)

in D^"!(Ks)/(tk) is am~na for each m > n. If g(a) can be lifted to b e (K
D^ig(K/?))^' =&(a\ it then follows that the image of im,K(b) in D^m (VR)/(tk)
is g(a)m~ng(a). Then by Proposition 2.16, we see that tkK divides b — g(ci) in

K®k0 Dng/n(K/{). Hence

b (b — g(d))/tkK

is a solution of the equation

(<PJ -g(a))(g(a) + tkKb) 0. (4.4)
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Conversely, any solution b e K (8>a:() '" VR of (4.4) gives rise to the desired

lift g(a) + t^b of g(a). Therefore, we conclude that g(a) can be lifted to (K ®R()

Dng(Vß))<p' =s(a) if and only if (4.4) has a solution b e K 8»a*,, D^Igr/" (T^).
A short computation shows that (4.4) can be rewritten as

<Pf (tK)k(<Pf ~ ('K/<Pf (tK))kg(oi))b (g(a) - <pf)(g(a)).

By the construction of a, divides ip? (ä) — aä 'mK / n (Ks)- Note that

(,tK) (<PfVn))

in K <8>/f0 Bjigr^.("+I) by Proposition 2.16(3). Hence ip? {tR)k divides (g(a) —

(pf (a))(g(a)) in K <S>k0 Dr^gr/<"+l)(K^). We therefore deduce that (4.4) has a

solution in Dngr/" (Ur) if and only if the equation

Wf - (tK/yf {tK))kg(a))b (pf(tKyk(g(a) - (pf){g(a)). (4.5)

1" fhas a solution in K Dng /<"+"(VR). In fact, if b is such a solution, we have

b e K <8>at0 D^'"(K*)

by Lemma 2.11. The assumption implies that \(tk/Uk))k\ WKX\k > \a 11.

Using Proposition 4.5, g(a) can be lifted to (K <8>/c0 D^lg(l/R))<''/-sM jf an(j oniy
if the map M( R) —» M(S) factors through

M(S(a, (tK/(Pf (tK))k.<Pf (tK)~k(oi - (pf)(a))-

Thus we can take S(k. a, a) to be S(a, {tk / (tK.))k • <p^(tK)~k(& — (p^)(a)).

Corollary 4.8. For any integer n > n(Vs) and positive integer k > log.^-i Jcf-11.

there exists an E-analytic subspace M(S{k. a. n)) of M (5) such that for any map

g : S R ofafjinoid algebras over E, the R-submodule g((D^'(Vs)/ (tk))r) of
{VR)f (tk))r is contained in the image of

(K ®k0 Dlg(VR)f' =g(a)'r=x -+ (D+/"(VR)/(tk))r

ifand only if the map M(R) —> M(S) factors through M(S(k, a, n)).

Proof. Recall that by Proposition 4.6, the map

K ®K(> ^ls(VRy'=g(a) -+ Dl/n(VR)/(tk)

is injective. Since it is also T-equivariant, we deduce that for any a e (E)^n(Vr)/
(tk))r, if g(a) can be lifted to K <8>a:0 D^„( Vr)v ' then the lift is also
T-invariant. Thus we can take M(S(k,a, /?)) to be the intersection of M(S(k,a.a))
for alio (D+;fn(Vs)/(tk)f.
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Corollary 4.9. Keep notations as in Corollary 4.8. Then there exists an E-analytic
subspace M(S(k.a)) of M(S) such that for any map g : S —> R of affinoid

algebras over E, the R-submodule g((D+lfn(Vs)/{tk))r) of (D^/"(VR)/(tk))r
is contained in the image of

(K DJg(KR)r/=*(a)-r=1 -> (Dl;fn(VR)/(tk)f (4.6)

for all sufficiently large n if and only if the map M(R) —> M(S) factors through
M(S(k,ct)).

Proof. It is clear that we can take M(S(k. a)) to be the intersection of M(S(k. a, n))
for all n > n(Vs).

4.3. Finite slope subspaces.

Theorem 4.10. The rigid analytic space X has a unique finite slope subspace Xfs.

Proof. By Proposition 4.4, it suffices to treat the case that X M(S) is an affinoid

space. Let

X' p| M(S(k.a)).
k>log -i |a-11

\nK I

Now for each i > 1 and r e H^, let X[ be the Zariski closure of

n*= n
i6HA' 0<J<1 — I,

r6HA

We claim that

xfs r\x;
i> i

is the finite slope subspace of X. First note that the decreasing sequence of closed

subspaces X\ 5 X'2 2 • • becomes constant eventually because S is Noetherian.
We fix an such that X[ X'H) for all / > /o- Hence Xjs X[ for all / > /'o- Thus

for any / > 'o and r e H^, we have

(Xfs)p(i)T 5 Xfs n ^fp(,)r xH) n x3 P xp^t.
TSHa

Therefore the Zariski closure of (X fs)/>(,)r contains the Zariski closure of nr(=HA ^p,)r'
which is X[ — Xfs; this yields that Xfs satisfies (1) of Definition 1.1.

Now suppose that g : M(R) M(S) is a map of affinoid spaces over E which
factors through Xq(,) for every j < 0. It follows from Corollary 2.27 that for each

k > 1 and n > n{Vs), the natural map

(D+'/B(KÄ))r (Dyn(VR)/(tk)f
is an isomorphism.
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Hence (1.1) is an isomorphism if and only if the natural map

(K <8>a:0 Dtg(V*)r/=*"'(a)>r=1 (D+/"(I^)/(tk)f (4.7)

is surjective for some (hence any) k > 1. By Corollary 2.27, the natural map

(V+/n{Vs)/(tk)f ®SR^ (D+/n(VR)/{tk)f
is an isomorphism. Hence by Corollary 4.8, the map (4.7) is surjective if and

only if the map g : M(R) —>• M(S) factors through M(S(k,a,n)) for each

k > log[jr-i| fcf-11 by Corollary 4.9. We thus conclude that (1.1) is an isomorphism
for all sufficiently large n if and only if g : M(R) -> M(S) factors through Xfs.
This yields that Xfs satisfies (2) of Definition 1.1.

Proposition 4.11. For any affinoid subdomain M(S) ofXfs and k > log, — i. |a_11,
' K '

we have S(k,a) — S. As a consequence, for such k, the natural map

(K <8>k0 D!ig(Vs)r/=a>r=l (D+/n(Vs)/(tk))r

is an isomorphism for all n > n(Vs).

Proof. It is obvious that the finite slope subspace of Xfs is Xfs itself. We then
deduce that (M(S))/s — M(S) since the formation of finite slope subspaces

commutes with flat base change by Proposition 4.1. This yields that M(S) c
M(S(k, a)) following the construction of the finite slope subspace in Theorem 4.10;
hence M(S) M(S(k,a)). This yields the surjectivity of the map. The injectivity
follows from Proposition 4.6.

Theorem 4.12. Let M(S) be an affinoid subdomain ofXfs. Then for any n > n (Vf)
and k > log^-i |

|a-1 |sp where the norm is taken in S, the natural map of sheaves

(K S>l%{Vs))v,=a'T=1 -* (^fn(Vs)/(tk)f

is an isomorphism. a consequence, (0jg(Vx/f))v' =£*'r=1 is a coherent sheaf
on Xfs.

Proof. It follows from Proposition 4.11 that the map of sheaves

(K ®Ko %>l(vs)r'=a'r=l (9+;fn(vs)i(tk))T

is an isomorphism. By Proposition 2.21, we therefore deduce that (Vs))<p> =aT=i
is a coherent sheaf.
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Theorem 4.13. For any E-affinoid algebra R and morphism g : M(R) -» Xfs
which factors through XQ(j)for every integer j < 0, the natural map

(K ®*0 'r=1 -y (®+/n(VR)/(tk)f

is an isomorphism for all sufficiently large k. As a consequence, 0{VR))(p
' ~g h*)'r=i

is a coherent sheaf.

Proof. We choose an admissible affinoid covering {M{St )},6/ of Xfs by affinoid
subdomains. Let {M(Rj)}jj be a finite covering of M(R) which refines the

pullback of the covering {M(5,)J,e/ on M(R). Suppose that M(Rj) maps to

M(S(/) for each j e J. Let k be a positive integer such that

k > logj^-ij max] Ice-11 inS,).

Now for any affinoid subdomain M{R') of some M(Rj),

(Ddy"(^)/^))r=1 =(Ddy"(Ls,/)/(rÄ:))r=1®s,/ R'

by Corollary 2.30 because M(R') maps to Xp(g). On the other hand, by Proposition

4.11, we have M(Slf (k. a)) M(St/), yielding that

(K ®at0 Dj,g(fV)r/=^(a0'r=1 (Dt/"(VR')/(tk)f

is surjective. Furthermore, it is injective by Proposition 4.6; so it is an isomorphism.
Hence

(K®Ko ®lg(VR/)f'=g*M>r=l -* (®+/n(VRj)/(tk))v

is an isomorphism. This yields the theorem.

Remark 4.14. Our finite slope subspace Xfs coincides with Nakamura's generalization

of Kisin's finite slope subspace 131]. In fact, as noted in Remark 4.3, to
characterize our finite slope subspaces, it suffices to test only finite -algebras R

in Definition 1.1(2). By the argument in [25, (5.8)], the same thing holds for
Nakamura's finite slope subspaces as well. For such R, we have the comparisons

(Dng(^))r D+ys(VR) and (D+ (Kfi))r D+R(VR)

by 12, Theoreme 3.61 and [17, Theoreme 3.9] respectively. Thus our Definition

1.1(2) coincides with the counterpart of Nakamura's in this case; hence the

claim.
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5. Global triangulation of refined families

In this section, we prove the main results of this paper.

5.1. Weakly refined families. From now on, let A' be a reduced rigid analytic space
over E, and let Vx be a family of weakly refined p-adic representations of Gr of
dimension d on X as in §1.3. We further suppose K\ 0. Therefore the Sen

polynomial for Vx is of the form TQ(T) with Q(T) £ K (giQ^ Ö(X)[T], As in §4,

we put P(i) nr=o Q(~j) fori > 1.

Convention 5.1. For c £ M, 1 < i < d, x £ X and £ {>, <, <. >}, we say
Ki(x)?c if Kj(x)T?c for any r £ H/f.

The first goal of this subsection is to show that the finite slope subspace of X
with respect to the pair (F, Vx) is X itself (Theorem 5.3). We start by collecting
some basic properties about the /»-adic representations Vz for z £ Z.
Lemma 5.2. The following are true.

(1) Ifx £ Xp(k) for some k > 1, then

dimfc(jc)(D^"(Kx)/(fM)r < '

for any r £ H/^.

(2) For any : e Z and a £ Gal(tf0/Q„). dim*(r)(Dtg(K2))?' =Fi(z)'r=1 > 1.

(3) For any z £ Z, ifvK(F(z)) < (z) for all i > 2, then D}ig(Vz)f ='F(z)'r=1

has dimension 1 over k(z). Furthermore, for any k > 1 satisfying
vk(F(z)) < k < —Ki(z) for all i > 2, the natural map

(K D\SVz)oY'=F{Z)X=X -+ ©reHfT(D+/n(Vz)/{tk))Tz (5.1)

is an isomorphism.

Proof. By Corollary 2.27, the map

(D^(Vx)/(tk))T (DL(K,))r
is an isomorphism. On the other hand, since x e X/>(£), we see that K\(,v) 0 is a

multiplicity-one root of the Sen polynomial for Vx. This implies

dim/tw(D^en(F,))rr < 1

for any r £ H^. Hence dimfcW(D+'"(Fx)/(t':))^ < 1, yielding (1). For (2), note
that the Hodge-Tate weights of Vz are all nonpositive. Hence by Berger's dictionary
(12, Theoreme 3.6]),

dim/t(z)(Dr+ig(Fz))£/=F(z)'r=l dimfc(z)(Dcrys(Fz))^/=^(z)

> dimk(z)(DF(z))o _/r(z)

where the inequality follows from Definition 1.5(d).
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For (3), since k > vk(F(z)), we get the injectivity of (5.1) by Proposition 4.6. On
the other hand, note that z e Xp(p) since k < —k,(z) for 2 < ; < d. It follows

by (1) that d\m(D^n{Vz)/(tk))\ < 1. Hence the dimension of right hand side of
(5.1) over k(x) is at most [/C : Qp\/j On the other hand, by (2), the left hand side

of (5.1) has A'(.v)-dimension at least [K : Q^]/f. Putting everything together, we
conclude (5.1) is an isomorphism, and

dimjfc(z)(D\g(Vz))l'=F^T=l 1.

Theorem 5.3. The finite slope siibspace of X with respect to (F, If) is X itself.

Proof. Since Z is Zariski dense in X, it suffices to prove Z C Xfs. Now let z e Z,
and let M(S) be an affinoid subdomain containing z. Let k be an integer such that

k > logk-i, \F~l\.

where | • | means the sup norm on M(S), i.e. the spectral norm of S. It follows that

k > log|jr-i||f(.t)-,|

for any x e M(S). Now for z' £ Zp n M(S), we hrst have

-ki(z') > k > vk(F(z')) logj^-i, |F(z')~l |

for i > 2 by the definition of Zp. We then deduce that the natural map

(K ®K{) Dlg(Vz,)f' =f(z')-r=1 ^ (D+/n(Vz,)/(tk)f

is an isomorphism by Lemma 5.2(3). Hence z' M(S(k. F)) by Corollary 4.8.
Since Zp fl M(S) is Zariski dense in M(S) by Definition 1.5(e) and M(S(k. F))
is Zariski closed by its construction, we conclude S(k. F) S for all k >
log 11 |F_1|. Furthermore, for any i > 1, since Z, n M(S) is Zariski dense

in M(S), we deduce that M(S)p^) D Z, fl M(S) is also Zariski dense in M(S).
We therefore conclude M(S) fs M(S) following the construction of finite slope
subspace. Hence z e M(S) fs C Xfs.

The following theorem follows immediately from Theorem 5.3 and Theorem

4.12.

Theorem 5.4. Let M(S) be an affinoid subdomain of X. Then for any k >

(K ®Ko &l(Vs)r/=F'r=1 -+ (®yn(Vs)/(tk))r

is an isomorphism. As a consequence, =F,r=1 is a coherent sheaf
on X.
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Our next goal is to show that the saturated locus Xs of Vx (see Definition 1.9) is

Zariski open and dense. To do this, we need to investigate the specialization maps

®l%(Vx)*'=F>T=l ®ox k{x) -* D+g(^r/=fW'r=1

for x e X.

Proposition 5.5. Let M(S) be an affinoid subdomain of X, and let k be a positive
integer satisfying k > log^-ij I/7"1!- Then the following are true.

(1) For any x G M(S)p(/c), the natural map

(K ®Ko Dlg(FI)f,=fW'r=1 -> (D+/n(Vx)/(tk)f (5.2)

is an isomorphism.

(2) For any x G M(S) the natural map

vlg(Vs)v'=F'r=l ®s k(x) Dlg(Vxr'=FM'r=x (5.3)

is an isomorphism.

(3) For any x G M{S),

dimyt(x)(Drig(f/s)^/=F'r=1 k(x)) > 1.

(4) For any x M(S)p(k)>

dmMx)(Dlg(Vx)ro'=F(x)'r=i d\mk{x)(D+/n (Vx)/(tk)fT 1.

Proof. Let .v G M(S)p(k). Consider the following commutative diagram

(ft DJigdW7 =F'r=1 05 k(x) (D+/n(Ks)/(/*))r ®>5 k(x)

(K ®*o Djg(Px))*,/=FW'r=1 (Dlf"(Vx)/(tk))T.

The upper horizontal map is an isomorphism by Theorem 5.4. The right vertical

map is an isomorphism by Corollary 2.30. The lower horizontal map is injective by
Proposition 4.6. We thus deduce that the lower horizontal map and left vertical map
are all isomorphisms. This yields (1) and (2).
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We first prove (3) for .t e Z. In fact, by (2) and Lemma 5.2(3), we have

dimifc(r)(Dtg(Ks)?,=F'r=1 k(z)) 1

for any z 6 fl M(S). Since Z^ D M(S) is Zariski dense in M(S) and

Drig(Ks){T
_ir'r_1 is a finitely generated S-module, we therefore deduce that

dim(t(x)(Djig(Ks)^/='F'r=1 <g)S k(x)) > 1

for any x e M(S). For (4), on one hand, we have

dimfcW(D+/"(Fx)/(r^))Tr < 1

by Lemma 5.2(1). On the other hand, we have

d\mHx)(Vlg(Vx)fa'=Fix)'r=l > 1

by (2) and (3). We then deduce (4) from (1).

Proposition 5.6. The subset ofsaturated points Xs is Zariski open in X.

Proof. For each r Ftk, let Yz be the set of x e X such that the image of the

composite

0lg(W/=F'r=1 -* Djig(L,r/=^r=1 -> D{£(VX) -+ VfZ(Vx)z

is zero for some (hence all sufficiently large) n. It is clear that each Yz is a Zariski
closed subset of X. By Proposition 5.5(3), the condition (1) of Definition 1.9 cuts
out a Zariski open subset X' of X. For x e X', by Lemma 5.27 (this is not circular!)
we see that x satisfies Definition 1.9(2) if and only if x £ Yz for any r e H^-
Therefore, we conclude

Z, X' \ Ur6HA- Yz

is a Zariski open subspace of X.

Proposition 5.7. For x e X and k > vk(F(.x)), ifx e Xp(tt). then x e Xs and

dim^)(D+ig(Kt))^/=FW'r=1 1.

Proof. Since k > vk(P(x)), we may choose an affinoid neighborhood M(S) of x
such that k > log^-ij |F_11 in S. By Proposition 5.5 (2) and (4), we first deduce

that x satisfies Definition 1.9( 1), and

dimifcw(Dtg(KJ()^/=^W.r=1 1.
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Note that

(D;Mfn(Vx)/(tk)f -* (D{?n(Vx)f

is an isomorphism by Corollary 2.30. Thus by Proposition 5.5 (1) and (2), we deduce
that

®*o D^Ls))^^1 k(x) -+ (Di"n(Vx)f

is an isomorphism. Hence x satisfies Definition 1.9(2).

Corollary 5.8. The subset of saturated points Xs is a Zariski open and dense

subspace of X.

Proof. By Proposition 5.6, Xs is Zariski open in A". It remains to show that it
is Zariski dense. Now for any affinoid subdomain M(S) of X, it follows from
Proposition 5.7 that M(S)p^) C Xs oneek is sufficiently large. Since M(S)p^) is

Zariski dense in M(S), the corollary follows.

In the rest of this subsection, we will determine a large class of points x e X
which is contained in the saturated locus Xs (Proposition 5.13). To do this, we need

to employ the following flatification result. Let

jt :Y' ->Y

be a proper and birational morphism of separated and reduced rigid analytic spaces
over E. Here birational means that for some coherent sheaf of ideals //, the

complement U of the closed subset V(H), which is defined by H, is Zariski dense

in Y, the restriction of n to n~l(U) is an isomorphism, and ji~1(U) is Zariski
dense in Y'. Let N be a coherent sheaf of ö^-modules. if H' is the coherent sheaf

of ideal defining the closed subset n~l(V(H)) of X', then the strict transform N'
of N by 7T is the quotient of n*N by its //,0°-torsion. In particular, for any
morphism jt*N M of coherent sheaves over A", if M is torsion-free, then the

morphism tt*N —> M factors through N'. The following lemma follows from
[1, Lemma 3.4.2].

Lemma 5.9. Let Y be a separated and reduced rigid analytic space over E. If M
is a torsion-free coherent sheaf of modules over Y, then there exists a proper and
birational morphism Y' —» Y of rigid analytic spaces with Y' reduced such that the

strict transform of M by n is a locally free coherent sheaf of modules N over Y'.
More precisely, we may choose jt to be the blow-up along a nowhere dense Zariski
closed subspace of the normalization ofY.

In the rest of this subsection let Vy be a locally free coherent öy-module of
rank d equipped with a continuous Oy-linear G^-action. We denote by dn the rank
of S>+fiVY)x/Uk) as a locally free CV-module for any r e Ha: (it is independent
of r).
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Lemma 5.10. Let Vy be a locally free coherent Oy -module of rank d equipped with

a continuous Oy-linear Gic-action. Suppose for some n > 0, the coherent sheaf
^dir" (Vy)/(tk) is well-defined. Now let jt : Y' —» Y be as in Lemma 5.9, and

supposefor some r eHj;, the strict transforms of {Vy) / (tk))z / (Vy)z / (tk))\
and (Vy)/(tk))[ by tc are locally free over Oy of ranks c and d„ — c

respectively. Then {Vy)/(tk))z/(^n(Vy)/(tk))^ and (9^ {Vy)/(tk))rz
are locally free over Oy of ranks c and dn — c respectively as well.

Proof. We denote by 3>i the strict transform of (5/>^fn (Vy)/ (tk))\. and by the

strict transform of (S>^t'n(VY)/(tk))z/(S>^i'n(VY)/(tk))J/. Since Y' is normal by
Lemma 5.9, it is a disjoint union of irreducible components. By Proposition 2.23,

we see both (Vy)/(tk)fr and (0+'n(VY')/{tk))T/(^/{Vy)/(tk))^ are

torsion-free on each irreducible component of Y'. Hence the natural maps

n*((^/(VY)/(tk)fT) (®+-n(Vy)/(tk))rr

and

n * (($>+'" Vy )/(tk))T/($>+'n Vy )/(tk))^)

W r'7/O ttz/V(^"(Vy)/{tk))r/{$>^n(Vy)/('k))rT

factor through and £^2 respectively. Similarly, since {Vy)/(tk))z is

torsion-free, the natural map

n* (($>+>" (Vy)/(tk)fT) 7l*{@+f(VY)/(tk))T s (®+'"(Vy)/(tk))z

factors through Q>\. To conclude, consider the following commutative diagram

^1 *x'(@f/(VY)/(tk)h

0—*PJf;n(Vy.)/(ik))r -(3£f"(Kr)/(f*)) r ~(9f;"(VY,)/(tk))TH9f;"{Vr)H<k)fz —-0
where the top sequence satisfies that the second map is surjective and the composite

map is zero. By diagram chasing, we see that the right vertical map is surjective,
and its kernel is isomorphic to the cokernel of the left vertical map. Since it is an

isomorphism on n~l(U), the map -> (&>^fn(Vy)/{tk))\ is an isomorphism on
7T_1 (U) by Proposition 2.21. It follows that the kernel of

^2 - (^t'"(Vy)/(tk))z/(^ün(Vy)/(tk))rr
is supported on Y' \ ti~x(U), which is a nowhere dense Zariski closed subspace

of Y'. Therefore the kernel is zero because £^2 is locally free and Y' is reduced.

Hence the right vertical map is an isomorphism. Thus

(^/(Vy)/(tk))z/(9+/(Vy)/(tk))rr
is locally free of rank dn—c. This implies that (Vy)/(tk))\ is locally free of
rank c.
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Lemma 5.11. Keep notations as above. Suppose that the Sen polynomial for Vy

has no constant term, and that Yfs Y with respect to the pair (Vy. a) for some

a e 0(Y)X. If jt : Y' — Y is a proper birational morphism with Y' reduced, the

finite slope subspace ofY' with respect to (n*a, Vy) is Y' itself.

Proof. It is clear that Y' satisfies Definition 1.1 (2). Furthermore, since n is birational
and Y' is reduced, we also deduce that Y' satisfies Definition 1.1(1).

Lemma 5.12. Keep assumptions as in Lemma 5.11. Moreover, suppose there exists

an integer k satisfying
k > logk-i| loT'l.

IfY' —> Y is a proper and birational morphism as in Lemma 5.9 such that for any
r £ Hjf, the strict transforms of

irf/" (yr )/('* ))r d i^J"( Vy )/(tk))r/(^f" (Vy )/(tk)fx

by 7i are locally free of rank c and d„ — c respectively, then (i^|g(Vy))f ~n <*T-l

is locally free of rank c and

^rig(Vy)lf=n*aS=X ®k(y) Djig(K,)a

is infective for any a G'ä\(Ko/Qp) and y Y'.

Proof. By Lemma 5.11, Y'ys Y'. Since k > log^—11 \a~x |, the natural map

(K ®*„ 9lg(VY,)a)"'="*aS=l - ®reHn(®t/"(Vy)/(lk)fT

is an isomorphism by Theorem 4.12. By Lemma 5.10, (5?j[(Vy)/(tk))^ is

locally free of rank c, so (&xlo(Vy))f a-r_1
as well. Furthermore, since

(&^t:^"(Vy)/(tk))T(Vy)/(tk))x is also locally free by Lemma 5.10, we
deduce that

(K;f"(Vy)l(tk))Tz®k(y) (&>+/" (Vy)/(tk))T®k(y) (^fn(Vy)/(tk))r

is injective for any y e Y'\ the isomorphism follows from the fact that the functor
Djif:" is compatible with base change (Proposition 2.14). This implies that the map

(K ^(Vy))*'=*'a>r=l ® k(y) -» ®rcHn(^f"(Vy)/«k))r

is injective. Note that this map factors through (K <S>k0 Dlls(Vy)a)>pl =aljr0y9-r=i

The lemma follows.
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Proposition 5.13. For any x £ X and o e Gal(Ko/Qp), if

dim,wDtg(p;x/=F(x)X=1 i-

then (f\vX Vx )a ~F,F~l is locally free of rank 1 around x, and

\g(VX)f=F'r=1 ®k(x) -+ Dlg(Vxfaf=FM'r=l

is an isomorphism

Proof. We may suppose X M(S) is an affinoid space. Let X be the normalization
of X. It follows that X is the disjoint union of finitely many irreducible components.
By Proposition 2.23, both

(^dtf'"(Wfe))r and (V7)/(tk))r/(®c"(Vj)/{,k))\

are torsion-free on each irreducible component of X. Using Lemmas 5.9, 5.10
and 5.12, there exists a proper birational map n : X' —» X such that

(<e(VV))S/=7r*f'r=1

is locally free of rank 1, and

=*•"=' ®H*') "+ Dlg(Vx>)a

is injective for any x' X'. In particular, the map is nonzero. Therefore for any
ideal / of cofinite length of öX\x', the composite

(@riS(Vx'))o F'T~l ®ox, (@x',x'/n

-> wle(vx> ®ox, (ox>,x>/n)ra/=ir*F'r=l

- (viä(vX')fo>={7T*F){x%r=l

is nonzero.
Now let n be the composite X' X — X, which is also birational. If

x e 7r_1U).

applying [1, Lemma 3.3.9] to the functor D^Tys{-)„ ~n f,we deduce

D+ys(VX> ®Ox, (Oxyx,/I)fa'=**F

is free of rank 1 over öX\x'/1. Therefore, by [1, Proposition 3.2.3], for all ideals /
/ rof cofinite length of Ox x, DFys(VX ®>ox (Ox x/I))Z ~ is ffee °f rank 1 over

Ox,x/I.
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Furthermore, we claim that if I' D / is another ideal of Ox, the natural map

D+y,(Vx ®0x (Ox,x/I))l'=F -+ D+ys(Vx ®ox {Ox,xll'))l'=F (5.4)

is surjective. In fact, since D^s is left exact, we first have the following exact

sequence

0 -* D+y,(Vx ®ox (r/I))*'=F -> D+ys{Vx ®ox (Ox,x/nra'=F

^D+ySVx®ox (Ox,x/l'))l'=F.
This implies that

l(D+^(Vx®ox (I'/I)fa/=F)
> l(D^(Vx ®0x (Ox,x/I))l'=F)-l(D+ys(Vx ®ox (Ox,x/I')fa'=F)

I(Ox,x/I)-I(Ox,x/l')
/(/'//)•

On the other hand, we deduce from the assumption that

I(D^(VX ®ox (I'/I))l'=F) < 1(1'/l).

This forces /(D+ys(Vx ®ox (l'/D)a ~F) /(/'//). Hence (5.4) is surjective.

Now choose a positive integer k >
|

I ^_11- By Theorem 5.4, the map

(K ®K„ ^(Vs)ar' =F'V=X "* ©rEHa(DXf(Vs)/(tk))rT

is an isomorphism. Since Ox,x is flat over S, we deduce from Lemma 2.19 that

(DF;fn(VS)/(tk)fx 05 Ox,x ((DMf"(VS)/(tk))r 05 dx,xf.
Since (D^j^"(Vs)/(f*))T is finite locally free over S, we get

(DF/n(Vs)/(tk))r ®s dx,x \\m(Dl/n(Vs)/(tk))z ®s S/m'x)
l

^\\m(Vlifn(Vs/\v!xVs)/(tk))x,
l

where the last isomorphism follows from the base change property of the functor

Hence

«Det/"(vs)/Uk))r 05 Ox,xf \nn((DF/"(Vs)/(tk))T 05 5/m^)r
/

^limlD+Z^Ks/m^Ks)/)^)),1'.
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Now consider the following commutative diagram

®*<> DL(^)af' =F'r=1 Ox,x ®r6H„(D^/n(Ks)r/(rt))r Ox.x

w

®*„ Drig(KsMKs)a)",=F'r=I ^lim®T6H<r(D+/"(Ks/miV's)r/(rt))r.
/ /

By the previous paragraph we see that lim /mlx Vs)%' =F'r=1 is a free Ox,x~
l

module of rank 1. Since both the top horizontal and right vertical maps are

isomorphisms, we deduce that the left vertical map embeds

(K ®Ko Drtlg(Ks)ffr/=F'r=1 Ox,x

as a direct summand of

Dlg(Vs/m'xVs)af,=F'r=1 K ®Ko lim Dlg(Vs/mlxVs)f =F'r=1.
l i

It follows that the map

(K ®*0 Djig(Ks))S/=F'r=1 <8>s k(x) (K ®Ko Dfng(Vx))f=FM'r=l

is injective. On the other hand, we have

dim(Drtig(K5)^/=/r'r=1 (8)5 k(x)) > 1

by Proposition 5.5(3). Thus the left hand side is at least [A" : Qp]//'-dimensional
whereas the right hand side is exactly [K : Q/]//-dimensional. Hence

dim*(jc)(Dtg(Ks)S/=/r'r=1 «8>s k(x)) 1

and

Dng(Vs)f=F'r=i ®s k(x) -* Dl$(Vx)f=FM'r=1

is an isomorphism.

5.2. Vector bundles and (<p, r)-modules. In this subsection, we will recall some
basic notions and properties of the theory of families (<p, T)-modules. Recall that we
denote by K'0 the maximal unramified extension of contained in K«j. Let S be

an affinoid algebra over Qp.
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Definition 5.14. Let / be a subinterval of (0, oo). By a vector bundle over
TZ'k, (8>qpS of rank d we mean a locally free coherent sheaf M!s of rank d over the

product of the annulus vp(T) e I within the affine T-line over K'0 with M(S) in the

category of rigid analytic spaces over Qp. We call M!s free if it is freely generated

by its global sections. By a vector bundle Ms over 71k'0®QpS we mean an object

in the direct limit as r -> 0 of the categories of vector bundles over 1ZrK, <g)qpS.

For a subinterval /' of I, denote by M$ the base change of M's to TZ1^, ®qpS.

If S —» R is a map of affinoid algebras over Qp, we set M^ and Mr as the

base changes of M$ and Ms to VJK, ®qpR and qpR respectively. For any

x G M(S), we denote M^x^ and M^^ by Mx and Mx respectively instead.

Remark 5.15. By Lemma 3.7, Mrx Mrs ®s k(x). Hence the map Mrs —» Mrx is

surjective.

Remark 5.16. A locally free 1Z.L, <8>o„ S-module of rank d naturally gives rise to
0 2.

a vector bundle of rank d over TZ1^ ®qpS. The converse is also true when / is a

closed interval.

We need the following result, which is originally due to Liitkebohmert [28],
in §5.3.

Lemma 5.17. Let M$ be a vector bundle over TZ^, <8>q pS. If I is closed, then there

exists afinite covering of M (S) by affinoid subdomains M(S\),..., M (S,) such that

M's^ M's are all free.

Recall that there exists an isomorphism Br^g K ^ 7Zk^ which identifies

with TZr„, for all sufficiently small r. We henceforth identify ^(8>q„S with

TZ-k' ®qpS, and equip the latter with the induced (p- and T-actions.

Definition 5.18. By a (ip, T)-module over TZk'0 ®qP S of rank d we mean a vector

bundle Ds over IZfC ®QpS of rank d equipped with commuting semilinear <p- and

T-actions such that the induced map <p* Ds —» Ds is an isomorphism as vector
bundles over TZk'0®QpS We say Ds free if the underlying vector bundle is free.

The morphisms of {(p, r)-modules over TZk'0 ®Qp $ are morphisms of the underlying
vector bundles which respect <p- and T-actions.

Definition 5.19. Let Ds be a (tp, T)-module over 7ZK>)§>qpS. It is clear from
Definition 5.18 that for r sufficiently small, Ds is represented by a vector bundle

Drs c Ds over 7ZrK,<g>qpS such that tp maps Drs to DrJp, and the induced map

<P*{Drs) —> DrJp is an isomorphism as vector bundles over TZr^f ®qpS. We call

such Drs representative vector bundles of Ds-
Remark 5.20. Our definition of (cp, Tj-modules over TZK^<S>qpS is the same as the

notion offamilies of (cp. r)-modules over 1ZsK, defined in [22].
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Remark 5.21. If Vs is a locally free S-linear representation of rank d of G/c,

Djig(Ls) is naturally a (ip. r)-module of rank d over TIk' <8>q„S with representative

vector bundles D^^Fs) for r sufficiently small.

Remark 5.22. If S is a finite extension of Qp, then Ds is free over TZk^QpS
7ZK^ ®qp S by the Bezout property of 7ZK^ <8>qp S. Thus our definition of
(<p, r)-modules is compatible with the definition of classical (<p. T)-modules.

Remark 5.23. In fact, one can also define a ((p. T)-module over 7^k^QpS of
rank d to be a finite presented projective module over 7Zr> §)qp S of rank d equipped
with commuting semilinear <p- and T-actions such the induce map <p*(Ds) —» Ds is

an isomorphism. The equivalence between this definition and ours are proved in [24]
and [6] independently.

Lemma 5.24. Let L be a finite extension ofQp, and put L' L K'0. Let D
be a ((p, T)-module over 7ZK'0 L T2-L' of rank n, and let E be a (<p, T)-
submodule of D of rank m. Then there exists an /"q > 0 such that if Dr and Er are

representative vector bundles of D and E for some r < r0, then Er C Dr. Asa
consequence, D has at most one representative vector bundle over 7ZrL, when r is

sufficiently small.

Proof. Fix some r0 > 0 such that for any a 6 1ZK*, if <p(a) G TZr„, for some
0 "(|

0 < r < r0, then a e 7£^. Now let d (di...., dn) and e (ei em)
be 1ZrL,-bases of Dr and Er respectively. Since Dr and Er are representative

vector bundles, there exist invertible matrices A and B defined over Vj[F such that

ip(d) — dA and <p(e) eB. Write e dC for some n x m matrix C defined

over TZf. It follows

dCB eB <p(e) <p(d)<p(C) dAtp(C),

yielding CB Atp(C). Hence <p(C) A~XCB. Now suppose C is defined

over 1ZSL, for some s > 0. If s < r/p, then tp(C) A~lCB is over 7ZSL,, yielding
that C is defined over 7Z^S,. Iterating this argument, we conclude that C is defined

over 7Zr/,p. Thus w(C) is defined over 7ZrJ,p, yielding C is defined over 1Zr,,. This

implies Er C Dr.

Lemma 5.25. Keep notations as in the Lemma 5.24. Then E is saturated in D if
and only if Er is saturated in Dr. Furthermore, in this case, we have

Er Dr H E.

and Dr/ E' is the representative vector bundle of D/E over 7ZrL,.

Proof. It is obvious that if Er is saturated in Dr, then E is saturated in D. Now

suppose E is saturated in D. First note that Dr/(E D Dr) is a submodule of D/E.
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Hence Dr/(E n Dr) is finitely generated and torsion-free over 1ZrL,. This yields
that it is finite free over 1ZrL, by the Bezout property of lZrL,. Furthermore, since it
generates D/E over TZf, we deduce

rank^ (Dr/(E D Dr)) > rank-^,, (D/E) d — s.
L' L

On the other hand, E (1 Dr is a closed 7^-submodule of Dr. Hence it is also finite
free over 1ZrL,. Since £rc£nflr,we deduce

rankTC^;(£ P Dr) > rankK^, Er s.

Since

rank(£ P Dr) + rank(Dr/(E P Dr)) rank Dr d,

we deduce

rank(£ P Dr) s and rank(Dr/(E P Dr)) — d — s.

We claim that £PDr and Dr/(E P Dr) are representative vector bundles of E
and D/E respectively. First note that the natural map

(Dr/(E P Dr)) ®n>-L, KL> -> D/E

is an isomorphism because it is surjective, and both sides are finite free over TZy of
the same rank. It follows that

(E P Dr) ®nrLf 7Zu -+ E

is also an isomorphism. Now consider the following commutative diagram

0 ^ <p*(E n Dr) ^<P*(Dr) > (p*(Dr/(E n Dr)) ^0

0 *(E n Dr) ®RrLf nr[F D'tP Dr'"/((E n Dr) ®nrLt Kr/,p) ^0.

The middle vertical map is an isomorphism as Dr is a representative vector bundle.
Thus the right vertical map is surjective. Hence it is an isomorphism because both

the source and target are finite free of the same rank over This yields that the

left vertical map is also an isomorphism. The claim now follows, and we deduce the

lemma from Lemma 5.24.

Proposition 5.26. Keep notations as above. Let Ds be a (tp,Y)-modiile over

of rank d, and let Es be a {(p. V)-submodule of Ds of rank s. Suppose

Ers c Drs are representative vector bundles of Es and Ds respectively. If Ex is a

saturated (tp, T)-submodule of Dx for every x e M(S), Drs/Ers is a vector bundle

overlZf, of rank d — s. As a consequence, Ds/Es is a ((p. T)-module over
^

<)

TZ-K'^QpS of rank d — s.
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Proof. It suffices to show that Erx is saturated in Drx for every x e M(S). The latter
follows from Lemma 5.25.

The following lemma has been used in the proof of Proposition 5.6.

Lemma 5.27. Keep notations as above. Suppose L is a finite extension of E. Let V
be a L-linear representation of Gk of dimension d. Let D\ be a rank 1 ((p. T)-
submodule over TLy of D Djlg(F). Fix an integer n so that the degree offield
extensions [Km : Qp(em)] are constant for all in > n, and D^r"^ C Dp^r"\

Then D\ is saturated in D if and only if Dp^r"^ has nonzero image in h)"cn( V)r
via the composite

tn : D^"(V) - D+'"(P) - D£en(U) - D£en(U)T

for any r e H/f.

Proof. The "only if" part is obvious. It remains to prove the "if" part. To do this,

we apply induction for (cp, T)-modules defined in [26]. Using the set up of [261,

Indp®p Di and Indp^ D are (<p, TQp)-modules over 7Zqp <S)qp L — 7Zl of ranks

[K : Q^] and d[K : Qp] respectively. Furthermore,

lud?" D DL n (IndSA V)rk ng.Qp v Gqp >

since inductions for p-adic representations are compatible with inductions for the

associated ((p. F)-modules [26, Proposition 2.1]. Then it suffices to show that

Indp^f D\ is a saturated ((p. TQ^l-submodule of rank h [L : Qp] of Indp^p D.
Suppose the contrary is true. Using [26, Proposition 3.1], we first deduce that

as an L ®qp Qp(p„)-module, the image of Ind^ Dp(r"^ in D'^flndp^'' V) can
be generated by h — 1 elements. This implies that the image has L-dimension
< (h — l)[Qp(e„) : Qp]. On the other hand, since F^ acts transitively on the set

of components (L <S>k K„)r, the image of Dp^r"^ in has L-dimension at

least [Kn : A!]. Now by the assumption on n, we have

Dsendnd^" V) Indp«"(D^en(l/)) ©r6H* Ind^(D^en(F)r).

It follows that the image of Ind^ in Dsen(Indp®p V) has L-dimension at

least

MFq, : TK\[Kn : K] h(h/[Kn : Q, („)])[*„ : K]

— h[Kn : Qp]/[AT„ : Qp(n)] /t[Qp(Ln) • Qp]-

This yields a contradiction!
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Remark 5.28. In the case when S L is a finite extension of for any
8 e S), Nakamura constructs a rank 1 ß-pair VF((S) [30], A short computation
shows that 1Zl(8) is isomorphic to the (<p, r)-module corresponding to W(8).
Therefore, for an L-linear representation of G k, being trianguline with parameters
(&i )i<i<d in the sense of Definition 1.4 is the same as being split trianguline in the

sense of Nakamura with the same set of parameters.

5.3. Refined families. The main goal of this subsection is prove the main result
of this paper. That is, a family of refined p-adic representations of G k admits a

global triangulation on a Zariski open and dense subspace of the base that contains

all regular non-critical points. In what follows, we first give the definition of regular
non-critical refined p-adic representations.

Definition 5.29. Let L be a finite extension of E, and let V be a (/-dimensional

crystalline L-linear representation of Gk such that <pf acting on Dcrys(V) has all its

eigenvalues in Lx.

(1) By a refinement of V we mean a <p-stable Jo<8>qp L-filtration J — (J)i<,<</
of Dcrys(L):

0 Jo C J"i • C Td DCIy^(V).

In particular, dim J /.

(2) For r e H/f, suppose the Hodge-Tate weights of DdR(D)r are

£i,t > k2,z-- - > kd>T.

We say the refinement J is r-non-critical if

DdR{V)T (K ®Ko J)r ® FiIA:'+1-r(£>dR(K)r) (5.5)

for all 1 < i < d. The refinement J is said to be non-critical if it is r-non-
critical for every r e H/f.

(3) We denote by the eigenvalue of <pf on J, /J,_i. We say the refinement J
is regular if for any 1 < /' < d, <p\ <p, is an eigenvalue of <pf on Dcrys( a' V)
of multiplicity one.

The refinement J gives rise to an ordering (<pi,..., cpd) of the -eigenvalues
on DcryAV). If all these eigenvalues are distinct, any ordering of them uniquely
gives rise to a refinement. For any r H/^, the refinement J also gives rise to an

ordering (x]jT sd^) of \k\^ kd,r}> defined by the property that the jumps
of the Hodge filtration of DilR(V)T induced on (K J,)r are (.?i,r, • • N',r)- It is

straightforward to see that J is r-non-critical if and only if the associated ordering
of the Hodge-Tate weights is {k\a kd,T).

From now on, let J be a reduced rigid analytic space over E, and let £ be a

family of refined /»-adic representations of Gk of dimension d over X as in § 1.3. In
the following, we retain the notations in § 1.3 and § 1.4.
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Remark 5.30. Recall that in §1.3 we define a, n'/ i Fj anc^ hi — FI/=i Xj
for 1 < i < d. If Vx is a refined family of rank d, then for each 1 < / < d, the

i -th exterior product a' Vx is a weakly refined family with F a,, the generalized
Hodge-Tate weights

jel
the biggest Hodge-Tate weight K\ +•• + /£", and the same Zariski dense subset Z.
Hence (a! Vx)(%1) is a weakly refined family with generalized Hodge-Tate
weights {kj — at{i>}|/|=, and F a,. In particular, its biggest Hodge-Tate
weight is 0.

By Remark 5.30, we may apply Theorem 5.4 to (a' Vx)(ri~1) to get the

following:

Proposition 5.31. For each 1 <i<d, the presheaf S>Jlg((Al Vx)(t}fl ^' =""r=1
is a coherent sheaf on X.

For each 1 < / < d — 1, let TQ,(T) be the Sen polynomial for (a' Vx)(t]fl),
and let

k-1
P,(k) Yl Qi(-j)

/=o

for k > 1. The following proposition follows immediately from Proposition 5.7.

Proposition 5.32. For x £ X, if there exist positive integers k, > VK(a,(x)) for
each 1 < / < d — 1 satisfying

(Pl(kl)---Pd^(kd-i)Kx) #0, (5.6)

then x £ Xs and dim Djlg((A' Vx)(t], (.v)-1))^ for each 1 <i<d and

a e Gal(tf0/Qp).

Proposition 5.33. For x £ X, \ < i < d and a £ Galf/fo/Q^), if

dim^D^aA'F;5)^?,^)-1))^^'«'^1 1.

the coherent sheaf ((A' Vx) (t]f1) )% ~a' r_' '4 locally free of rank 1 around x,
and

^„1g((A,^)(t7rl))?/=a,,r=l ®k(x) -* Dtg((A,ki)(^I(.r)-,)))?,=a'w-r=1

is an isomorphism.

Proof We conclude the proposition by applying Proposition 5.13 to the weakly
refined family (a! Vx)(tjfi).
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As already noted in § 1.4, the saturated locus Xs of Vx is aZariski open and dense

subspace of X. Therefore it reduces to show that Vxs admits a global triangulation
on Xs and Xs contains all regular non-critical points. To this end, we will show that
the triangulation locus of Vx, forms a reduced Zariski closed subspace of Xs. The

upshot is to note that for a sequence of crystalline periods of the successive exterior
products of Vx obtained by the previous results, the condition that it gives rise to a

triangulation of Vx is purely algebraic. To make this statement precise, we introduce
the following notions.

Definition 5.34. Let A be a commutative ring with identity, and let M be a free

A-module of rank d.

(1) We call a free A-submodule N c M of rank c cofree if M/N is a free A-
module of rank d — c. We call m e M cofree if Am is cofree.

(2) Let m e M be cofree, and let n e a' M for some 1 < / < d. Suppose

m a n 0

in a, + xM. Then there exists a unique n A,_1 (M/Am) such that the wedge

product of any lift of n in Ai_1 M with m is equal to n; we call n the quotient
of n by in. Let N be a free rank 1 /1-submodule of M, and let P be a free

rank 1 A-submodule of a' M. If N A P 0 in A, + 1 M, we define the quotient
of P by N to be the A-submodule of A,_1 M generated by the quotient of any
generator of P by any generator of N.

(3) For each 1 < / < d, let N, be a free rank 1 /1-submodule of A' M. We say the

sequence N\ Nd forms a chain in M if there exists an A -basis e\ cj
of M such that

N, Aei A • • • A e,

for all 1 < / < d. In this case, the filtration

Fil, (A/) Span of {e, }0<y<; -
\ < i < d - \

which is independent of the choice of the basis {e\,... ,ed), is called the

associatedfiltration of the chain A'i i\',i.

Let m, e a'M for 1 < / < d. We say the sequence ini nid forms a

chain in M if the sequence Am\, Amd forms a chain. In this case, we
call the associated filtration of Ani\ Anij the associatedfiltration of the

chain m\ nid-

The following lemma is a simple exercise in linear algebra.

Lemma 5.35. The sequence in i inj forms a chain in M if and only if the

following hold.

(1) m i is cofree.
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(2) m i Am, =0 for 2 < / < d.

(3) The sequence ofquotients ofmj- 'tid by in i forms a chain in M/Am\.
Lemma 5.36. Suppose A is a Bezout domain, and let M be a free A-module of
rank d. For each 1 < i < d, let m, e A1M be cofree. Now suppose A —> B is an

injective map of commutative rings. Then the sequence nt\ inj forms a chain

in M ifand only if it forms a chain in M (A a B

Proof To show the "if" part of the lemma, we proceed by induction on d. The

initial case is trivial Suppose it is true for d k — 1 for some k > 2. Now

suppose rank M k and the sequence in i m^ forms a chain in M (g)^ B. Then

mi Am, =0 in A l + l(M (g)^ B). Hence m\ A m, 0 in A1 + 1M since the natural

map
A1 + 1M -> A'+1(M ®a B)

is injective. Furthermore, since m, is cofree in a' A/, its quotient by m\ is cofree in
A,_1 (M/Ami by the Bezout property of A. We therefore conclude the lemma trom
Lemma 5.35 and the inductive assumption.

Lemma 5.37. Let L be a finite extension of Qp, and let D be a (ip. T)-module
over TZl> of rank d (recall that L' L <S)iqp K'0). Then the following are true.

(1) Let Di be a rank 1 (ip, r)-submodule of D. Then Di is cofree in D if and

only if D\ is cofree in Dr for some (hence all) sufficiently small r.

(2) For 1 < / < d, let D, be a rank I (ip,r)-subinoduIe of A1 D. Then

the sequence Di,..., D([ forms a chain in D if and only if the sequence

D\ Dj forms a chain m Dr for some (hence all) sufficientlv small r.

Proof. We deduce (1) from Lemma 5.25. We deduce (2) from (1) and Lemma 5.36.

Now let S be an affinoid algebra over Qp.

Lemma 5.38. Let I be a closed subinterval of(0, oo), and let Al f, he a vector bundle

over 1Z1, <&QnS of rank d. For 1 < i < d, let a, be a global section of a' M L such
0 '

that its image in a' M' is cofree for any x M(S). Then the set of x e M(S)
where the image of the sequence a\,... ,aj forms a chain in Mlx forms a reduced

Zariski closed subspace ofM(S).

Proof. We proceed by induction on d. The case d 1 is trivial. Now suppose
that the lemma is true tor d k — 1 tor some A > 2, and that M$ has rank A.

By assumption, the image of a\ in is cofree for any x e M(S) Hence

Mls/(TZlK, ®QpS)a\ is a vector bundle of rank A — 1 overTlIK,®QpS.

Since / is a closed interval, using Lemma 5.17, we may suppose that both
and /(7£^, (SJq,, S)a i are free over VJK, ®aP S by restricting on a finite covering
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of M(S) by affinoid subdomains. Thus a, is cofree in M$. Extend {aj} to a basis

of M's over 1Z!s. We may expand a, using this basis. It is then straightforward to see

that for each 2 < i < k, the set of x e M(S), where the image of a\Aa, in A
is zero, forms a reduced Zariski closed subspace of M(S,) of M(S). Furthermore, it
follows that

a\ A a, =0
in A1 + 1 for 2 < i < d.

Now let M(S') be the intersection of all M(St), and let

b, 6 Al-l(Mil/(7ZIK,ßQpS')al)

be the quotient of a, by a\. For .v M(S'), since the image of a, is cofree
in A'M', the image of b, in a!_1 (Mx/(1Z'k, ®qp k(x))a,(x)) is cofree by

the Bezout property of 1Z',. By Femma 5.35, the desired subset of M(S) is

then the set of .v where the image of the sequence bj,... ,bk forms a chain in

(MrS')a\)x. We therefore conclude the case d k by the inductive

assumption.

Lemma 5.39. Let Ds be a ((p,T)-module over pS of rank d. For
1 < i < d, let Dt C a' Ds be a rank 1 (<p, T)-submodule over TZfCo®QpS. If D,

specializes to a rank 1 cofree k(x)-submodule of a' Dx for any x M(S)
and 1 < i < d, the set of x M (S) where the image of the sequence D\,..., Dj
forms a chain in Dx forms a reduced Zariski closed subspace of M(S).

Proof. By Lemma 5.37(2), the sequence D\,.Dj forms a chain in Dx if and

only if D\,..., Drd forms a chain in Drx for all sufficiently small r. By Lemma 5.36,

the latter holds if and only if f°rms a chain in We then

deduce the lemma by Lemma 5.38.

In the following, for 1 < / < d, set

Nt,x ^rig((A•vx)(r1;l)r/=a"r=l ®Kü®Qpox

which is a rank 1 (<p, T)-submodule of ^ (a' Vx) of type t),. Recall that in § 1.3 for
1 < / < d, we define the character S, : Kx -a- 0(X)x by setting t], and

SfnK) a,.

Proposition 5.40. The triangulation locus of Vx forms a reduced Zariski closed

subspace of Xs. Furthermore, the sequence Ni,..., N([ gives rise to a global
triangulation of Vx on the triangulation locus. That is, for any affinoid subdomain M(S)
of the triangulation locus, the sequence N\,..., Nd forms a chain in Djlg(Vs) whose

associatedfiltration is a triangulation of (V$) with parameters (S, /<)',-1 )i<,<d-
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Proof. Note that by its definition, the triangulation locus of Vx is exactly the set of
.v Xs where the image of the sequence Nx Nj forms a chain in D^g(Vx). We

then deduce the first statement from Lemma 5.39.

Now let M(S) be an affinoid subdomain of the triangulation locus of Vx, and

suppose (Ks) is defined for some s > 0. Set — Nltx- Since is a

rank 1 saturated (<p. r)-submodule of D^g(Kx) for .v M(S), by Proposition 5.26,

öj)=Dng(Ks)/<°i

is a (<p, T)-module of rank d — 1 over 7ZK' 0qp S with a representative vector bundle

flu ).P(s)

By Lemma 5.17, we choose a finite covering {M{Sj)}jj of M(S) by affinoids

such that all the vector bundles and ß(}k[p(s)/p are free.
I,dj c>,

Since M(S) is contained in the triangulation locus, it follows that

^(0),[p(s)/p' ,p(s)] ^ jy(.0),[p(s)/p ' ,p(i)] _ q

for 2 < / < d and j e J. Taking the quotient of ' >/>(*)]
hy

^ (o),[p(s)/p' ,p(i)] jor eacji j ancj g]ujng these quotients, we obtain a vector bundle

^(\),[p(s)/p ,p(^)]
oyer rJZK,^Q^S. Furthermore, note that each •£(•*)]

admits a basis e satisfying

<pf(e) (a,/ax)(e).

Therefore, we can extend to a rank 1 (q>. T)-submodule, which is

of type 8J8\, of D^\
We may iterate the above procedure as follows. Suppose after the k-th step, we

have a (<p, T)-module over T^K'f%>Q/,S of rank d — k and a rank 1 (<p. T)-

submodule of Al~k D, of type <5;/<5&, which specializes to a saturated (ip, T)-
submodule of Al~k Dlx for any jc X, for each k + 1 < i < d. Now let

z)?+1) D/N£>US.

It is then a (cp. T)-module over Hk' ®qpS of rank d — k — 1 by Proposition 5.26.

Then by the same argument as above, for each k + 2 < i < d, we get a rank 1

(ip. r)-submodule A^+1^ of A'~k~l D^+i^ of type Si/S^+i, which specializes to

saturated ((p. T)-submodule of D^+l' for .v e M(S).
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Now let Fil^D^Ks)) ker(Djlg(Ks) -> D^) for 1 < / < d. It follows from

the above procedure that (Fil, (D^g(Ks)))i<i<c/ is a triangulation of (Ks) with
successive quotients

Fil( + t(D^lg(Fs))/Fil, (Dj|g(Ks)) ^ N$us

for 0 < / < d — 1. The yields the second statement of the theorem.

It remains to show that the triangulation locus contains all regular non-critical
points.

Proposition 5.41. For x G X, ifVx satisfies

dim,wDrtlg((A'>-)(t?i(.v)-1))^=«'W-r=1 1

for all 1 < i < d — 1 and o Cial( Kq/Qp), and Djlg(Fx) admits a triangulation

(Fili(Djig(Fx)))i<,<rf with parameters (<5( /<)|-i)(.v)i<,<</, then the sequence

(tflg((A' Vxfirif1))*'=cli 'F=l ®k0®Qpox Dng (li(x)))i<i<d

forms a chain in D^g(Fx) and its associated filtration is just (Fil/h <,<</.

Proof. By Proposition 5.13, (5??g((A' Vx)(q~x))t _a"r~' js locally free of rank 1

around x, and

(@lg«AiVx)(ri7l))%'=a"r=1 ®k(x) -» Dtg((A,'PJC)(r//U)-|))?/=a'W'r=1

is an isomorphism for all / and o. Thus

(^g((A'VxHr]-1))«'^"^1 ®k(x) -> D+lg((Af Kjc)(i7i (jc)-1 ))V' =«,(Jr).r=1

is an isomorphism. By assumption, DJ (K*) admits a triangulation (Fil,) i <, with

parameters (5,-/<5,-i )i </<</• In particular, D^lg(Fx) contains a rank 1 (<p, r)-submod-
ule

D Fill (D^g(Kx)) 7tk(x)(8\)-

Recall that TZk(x)(^i) is defined to be

Dai(x) ®K0®Qpk(x) Dng(ll (-*))

We then deduce

dim^)(0(??7lU')))S/=ff|(x)'r=I > !•

This forces

(fl(t?r,W))?/=aiW'r=1 Dlig(K-(^,(^)))a/="lW'r=l
for all o.
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Hence

(D(TjJl (*)))»7 =«' W'r=1 Dlg(Vx(ri7l(x))F' =ai WT=1

It follows that the image of the map

^ntg((A,KAr)(t?7,))«'/=a"r 1

Qko^IcW - Dlg(Vx)

is exactly Fill (D„g(K*)). By a similar argument, we deduce that the image of the

map

<((A'^)(^I-1)r/=a"r=1<8iAr0®Q/,itU) D^/,, (*))- A'Dls(Vx)

is exactly A'Fil, (öJlg(Fx)). This yields the desired result.

Theorem 5.42. The triangulation locus of Vx contains all the points which satisfy
the assumption of Proposition 5.41. In particular, the triangulation locus of Vx
contains all regular non-critical points. As a consequence, the triangulation locus

of Vx coincides with the saturated locus Xs, which is a Zariski open and dense

subspace of X, and the (<p, T)-modules

Djlg((A1Fs)(r)r1)f/=a"r=1 ®K0®Q„S Dng^')

for 1 < / < d give rise to a triangulation of D*g( V$) with parameters
(8j/8i-i)i<,on any affinoidsubdomain M(S) of Xs.

Proof. The first assertion is an immediate consequence of Proposition 5.41.
Furthermore, it is clear that regular non-critical points satisfy the assumption of
Proposition 5.41. Thus they belong to the triangulation locus of Vx- On the other
hand, note that Xs is the intersections of the saturated loci of the weakly refined
families a' Vx for all 1 < i < d. Hence it is Zariski open by Propositions 5.6. Since
the set of regular non-critical points is Zariski dense in X, it follows that it is Zariski
dense in Xs, and Xs is Zariski dense in X. We then conclude the rest of the theorem

by Proposition 5.40.

As mentioned in the introduction, it is expected that all non-critical points belong
to the locus of global triangulation. Regarding this point, we make the following
conjecture.

Conjecture 5.43. Forx 6 X, ifDjlg(Kx) admits a triangulation (Fil, (D^f Fx))) i <i<d
with parameters ((<5,/<5;_] )(.*)) i<(<^ such that

dimfcW(D^g(7x)/Fill_1(Dtg(Vx)))f=a^a'-^r= 1

for all 1 < / < d and o Gal( A'o/Qy,), then x belongs to the triangulation locus.
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5.4. Specializations of refined families.

Lemma 5.44. Let L be a finite extension of E, and let D be a ((p. T)-module over
TZi' (L' L (g)Qp K'0). Let D\ be a (<p,T)-sabmodule of D, and let D[ be its

saturation in D. Then there exists a positive integer k such that tk D\ C D \.

Proof. Note that hid[z'' D\ is the saturation of Ind^'' Dj in Indp®'' D. By

[26, Proposition 3.1], there exists a positive integer k such that tk Indp®" D[ c
Indp^p D\. This yields the lemma.

Theorem 5.45. For x e X, the p-adic representation Vx is trianguline.

Proof. Let M(S) be an affinoid neighborhood of x. By the same argument as in the

proof of Proposition 5.13, there exists a proper birational map n : X' —» M(S) such

that for all 1 < i < d and a e Galj/fo/Q;,), the coherent sheaves

are locally free of rank 1 and the natural map

cJ>l^Vxfi{x*{thX)))l,=n*iaXY=X ®k(x')

is injective for any x' X'. By the previous lemma,

<((A'Vx,Kn*(r,71)))v,=*'<-ai)'r=1 ®ko9qpOx,

specializes to a rank 1 saturated (7?.A:(')i8)Q/,A:(x))[l/f]-submodule in Dr^g(A' Vx')[\ /r].
Pick some 5 > s(Ps) such that s ^ r„ for any n N, and put r — p(s). It

\r rlfollows that t has no roots in the annulus vp(T) r. Thus t is invertible in 7Z d,
Ko

Hence the natural map

WK.gU\ -» R
is injective. Now let M(S') be an affinoid subdomain of X'. Set Ds' (Ps')
and D, s' Dj|g(7r*(ty, )|a/(S')) f°r 1 < ' < d. We claim that the sequence

(Djlg((A'p5')un7r1))r/=7r+(a')'r=1 ®ato®q^' o!"1) !<,<«/

forms a chain in for any x' e M(S'). In fact, by Lemma 5.38, the set of such x'
forms a reduced Zariski closed subspace of M(S'). On the other hand, suppose n
is an isomorphism on a Zariski dense and open subset U of X'. By Theorem 5.42,
after shrinking U, we may further suppose that n(U) is contained in the triangulation
locus of M(S). It is then clear that the sequence

(D1tlg((A,^)(^*('/r,))r,='r,'(0,,)'r=I Dtr]h<,<d

forms a chain in Dfor any x' U IT M(S'). Since U n M(S') is Zariski dense
in M(S'), the claim follows.
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The claim and Lemma 5.37 then imply that the image of the sequence

(Dlg((A'VS>)(7T*(r1;l))f'=«*^r=1 ®K0e9pS> ö,r,S'[l//])l<,<^

forms a chain in D^f(Lx/)[l/t] for any x' e M(S'). Hence D*,, (IV) [ 1 /1] is

triangulable (in the obvious sense). This yields that DJ (IV) is triangulable. It

remains to show that Dj]g(Lx) is triangulable. Without loss of generality we may
assume that k(x') is Galois over k(x) for some x' in the preimage of .v. In this case,
define a G Gal(/r(Y')/^(x))-action on

Djg(lV) DIg(K*)®*w/:(*')

by setting g(a ® b) a <g> g(b). It then follows that the triangulation of Djin(IV)

maps onto a triangulation of Dj|g(Lx) via the projection

1 1

geG

5.5. Application to the eigencurve. Fix a positive integer N which is prime
to p. Let 5 be the set of places of Q consisting of the infinite place and the

places dividing pN. Let V be a two dimensional Gqts-representation over a finite
field of characteristic p, which is /7-modular in the sense of [11]. Let Ry be the

universal deformation ring of the pseudo representation associated to V. Let Xy
be the generic fiber of Spf(/?y), which is a rigid analytic space over Qp. By the

works of Coleman-Mazur [11] and Buzzard [9], there is a Q^-rigid analytic curve
C C Xy x Gm whose C^-valued points correspond bijectively to overconvergent
eigenforms of tame level N, which are of finite slope, and whose residual Galois

representation have the same semi-simplification as V. We further assume that C

belongs to the cuspidal part of the eigencurve. That is, the overconvergent modular
forms parametrized by C are all cuspidal.

Let
T : Gq,s -+ 0(C)

be the pseudo representation obtained by pulling back the universal pseudo
representation of Gq,s on Xy via the composite

C^XyX Gm^ Xy. (5.7)

Let a Ö(C)x denote the function of Gp-eigenvalue. Let k : C —> W be the

weight map. We normalize k in such a way that if x e C is a classical eigenform of
weight k, then k(x) k — 1.

Let C denote the normalization of C. By [11], there exists a family of
p-adic representations of Gq,s of dimension 2 over C whose associated pseudo
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representation is isomorphic to the pullback of T via C —» C. Let Vg be the dual of
this family of p-adic representations. Let a e 0(C)X denote the pullback of a via
C C. Let lc : C — C be the composite of k with C —»• C. Let Z be the set of
classical points z e C such that Vz is crystalline with distinct crystalline Frobenius

eigenvalues. By Coleman's classicality theorem, it is straightforward to see that Vg
is a family of 2-dimensional weakly refined p-adic representations together with

ki 0. K2 —lc, F a, Z Z.

Proposition 5.46. The coherent sheaf fZ^(V^)'t'=F,r=x is invertihle, and its image

in D*(,( Vx) is nonzero for any x C. As a consequence, Vx is trianguline for any

x e C.

Proof. Let M(S) be an affinoid subdomain of C. Let k be a positive integer such

that

k > logplf-'l
in 5. By Theorems 5.3 and 4.12, the map

Djg(Ks)*=F-r=l ^ (D+;"(Vs)/(tk))r

is an isomorphism. Note that (D^l'"(F,s)/(f*))r is a finite torsion-free 5-moduIe
by Proposition 2.23. Hence it is a locally free 5-module because 5 is smooth and

1-dimensional. Thus Dr^g(L'5')l?'=/r'r=l is a locally free 5-module. Furthermore, by

Proposition 5.6, it is locally free of rank 1 on a Zariski open and dense subspace
of M(S). Hence it is locally free of rank 1 on M(S), yielding the first statement of
the theorem.

For the second statement, by Proposition 2.23, (D^t'"(F,s)/(/'r))/(D^(''I(Fs)/(f*:))r
is finite and torsion-free over 5 as well. This implies that for any x M(S), the

natural map

(Dj/(Ks)/(f*))r 0 k(.v) -> D+;"(Vx)/(tk)

is injective. It follows that Dr^g(Ks')'i5=/r,r=l (8) k(x) —> Djlg(Vx) is injective as

well.

Proposition 5.47. For x e C, x is not saturated ifand only if Vx satisfies one of the

following two disjoint conditions:

(1) The weight at(.v) is a positive integer and vp( F(x)) > k(x). As a

consequence, Vx belongs to D [ in the sense of 114]/ hence Vx

is irreducible, Hodge—Tate and non-de Rluun. Furthermore, the image of
F r 1

generates a rank I saturated (tp. T)-submodule in
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(2) The weight k(x) is a positive integer and vp (F(x)) tc(x), and Vx has

a rank I subrepresentation V'x which is crystalline with Hodge-Tate weight

—k(x). Furthermore, in this case, the image of L^r)^=/-'r=1 in D^g (Vx)

is k(x) tK^e' where e' is a canonical basis of Dj (Fx).

In case (2), if x e Z, then it is critical. Hence Vx is split. Suppose Vx V\ © V2

where Vt has Hodge-Tate weight 0 and V2 has Hodge-Tate weight —k{ x). Then the

image of S'lg(Vy)'p=F,r=l in (P*) is k( v) tK^e2 where e2 is a canonical basis

ofDlg(V2).

Proof. Suppose that x is not saturated. Let D be the saturation ot the rank 1 (ip. T)-
submodule ot D^g(Lx) generated by S!^g(V^))<p=F'r=l ® k(x). Suppose

^ng{V-£f=F>r=l ® k(x) k(x) tke

for some positive integer k and canonical basis e of D. Thus the Hodge-Tate weight
ot D is —k, yielding that k(x) k is a positive integer. By Kedlaya's slope theory,
D has nonnegative slope, yielding that vp(a(x)) > k{x). If the inequality is strict,
then Vx satisfies the condition (1). If up(a(x)) k(x), it is straightforward to see

that Vx satisfies the condition (2). Furthermore, if v e Z, it is clear that v is critical.
For the converse, suppose Vx satisfies (1). If it is saturated, then it follows

from Colme7's classification of 2-dimensional irreducible trianguline representations

°t Gqp [13, §3.3] that Djlg(Lx) belongs to ,iZ£d. However, by [13, Proposition 3.5],

we know that all 2-dimensional triangulable (<p, T)-modules belonging to SFfcl

are non-etale. This makes a contradiction. Now suppose Vx satisfies (2). Note

that Vx/ Vx has Hodge-Tate weight 0. Thus if the image of £?r|g(F(j)(£,=/r'r=1

in D^|g(Vx/Vx) is nonzero, it generates a rank 1 (ip. r)-submodule which is of

Hodge-Tate weight 0 and positive slope, yielding a contradiction. Therefore

<(^r=a'r=1 ® k(x) maps into (Fx). It then follows that the image is ot
the given form.

In the case when V is an absolutely irreducible Gqts-representation, Ry
coincides with the universal deformation ring of V'°. Let Vc be the dual of the

pullback ot the universal representation of Gq,s on Ry via (5.7) Let Z be the

set of classical points : e C such that Vz is crystalline with distinct crystalline
Frobenius eigenvalues. Then Vc is a family ot 2-dimensional weakly refined p-adic
representations over C together with Ki — 0. k2 —k. F a and Z. Similarly, we
have the following result.

Theorem 5.48. For any x C, Zr|g (Vc)v=F-r= 1

is locally free of rank 1 around x

unless /cfiv) 0, and Lxs is crystalline and satisfies dim DCTyfiV^)<('=F 2. If x

10In this case. C automatically belongs to the cuspidal part ot the eigencurve
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is not of this form, it is not saturated ifand only if it satisfies one of the following two
disjoint conditions:

(1) The weight k{x) is a positive integer and vp(F(x)) > k(x). As a

consequence, Vx belongs to '/fi D .Z'IT in the sense of [14]; hence Vx

is irreducible, Hodge—Tate and non-de Rham. Furthermore, in this case

reW^(Kc)"=~-fT 1

generates a rank I saturated (tp, T)-submodule in

D le(Vx).

(2) The weight k(x) is a positive integer and vp(F(x)) k(x), and Vx has

a rank I subrepresentation V'x which is crystalline with Hodge-Tate weight

—k(x). Furthermore, in this case, the image of (If )f=FT=> jn Vx)

is k(x) tK^e' where e' is a canonical basis r;/'D^„(lV).

(2') In case (2), ifx e Z, then it is critical. Furthermore, suppose that Vx T'| ©
V2 where V\ has Hodge-Tate weight 0 and V2 has Hodge-Tate weight —k(x).
Then the image of lZjlg(Vc)<p=F'r=1 in dJi&(Vx) is k(x) tK^e2 where e2 is

a canonical basis o/"D^ (K2).

Proof. If dim^jt) Dcrys{Vf)(('=F^ < 1, &lg(Vc),fi=F'T=l is locally free of rank 1

around x by Proposition 5.13. Thus if {^n%(Vc))v=F''T=x is not locally free of
rank 1 around x, then Dcrys(Vfs)lfi=F^ is of dimension 2. Furthermore, in this case,

k(x) 0 by the weak admissibility of Dcry^(Fxss). We deduce the rest of the theorem

by the same argument as in the proof of Proposition 5.47.

Remark 5.49. By Theorem 5.48, if 3>Jl„(Vc)<p=F'T=l is not locally free around x,
then the weak admissibility of DcryfVxs) implies vp(F(x)) 0; hence x is

ordinary. Furthermore, it follows that the weight character of x is crystalline (hence

unramified) of Hodge-Tate weight 0. By the spectral theory of Up, we know that the

set of those x is finite.

We conjecture that there is no such x, i.e. &Jlg(Vc),p=F'r=> is everywhere
locally free of rank 1 over the eigencurve. In fact, for p > 5 and N 1, by
virtue of a classical result of Mazur-Wiles [29, §8, Proposition 2], we see that if
the weight character of .v is non-trivial on the torsion subgroup of Zp, Vc is an

extension of a ramified infinite order character by an unramified character around .v.

It is then straightforward to see that around x, 9>}ie(Vc)'f' F,r 1 is locally free of
rank 1 around v and gives rise to the desired global triangulation. We expect that

an analogue of the result of Mazur-Wiles holds for general p and N\ this would
confirm most of our conjecture.
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