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Equidimensional isometric maps

Bernd Kirchheim, Emanuele Spadaro and Laszl6 Székelyhidi Jr.

Abstract. In Gromov’s (reatise (Partial differential relations, volume 9 of Ergebnisse der
Mathematik und ihrer Grenzgebiete (3), 1986), a continuous map between Riemannian
manifolds 1s called isometric if it preserves the length of rectifiable curves. In this note we
develop a method using the Baire category theorem for constructing such isometries. We show
that a typical 1-Lipschitz map is isometric in canonically formulated extension and restriction
problems.
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1. Introduction

Since the fundamental works of Nash [16] and Kuiper [13] it is well known that
Isometric maps with low regularity can be surprisingly flexible objects. In particular,
any short immersion of an n-dimensional Riemannian manifold with continuous
metric into R”*1 can be uniformly approximated by isometric immersions of
class C'!. One of the main ideas introduced by Nash, and revisited by Kuiper, is
an iterative scheme, whereby in each stage the short map is perturbed by a rapidly
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oscillating “corrugation” (or “spiral” in higher codimensions) such that the resulting
maps converge in C! to an isometric immersion.

On the contrary, in the equidimensional case, that is, for maps from a n-dimensio-
nal manifold into R", isometries of class C! are rigid. Namely, if f : R" — R”"
is a C! map with Df € O(n) for every x € R”, then f is globally orientation
preserving or reversing and, by a classical Liouville theorem, is an affine map, i.e. a
rigid motion.

Therefore, in order to see some flexibility, one needs to relax the C'' condition.
A natural choice is to consider Lipschitz maps instead. To fix ideas consider maps
f + R" — R". There are several ways in which one can define what it means to
be an isometry: either look at changes in the metric under f (a local condition), or
look at the effect on the length of curves (a global condition). For f € C! the two
conditions lead to the same notion - this can be seen as a simple example of the local-
to-global principle in geometry. If f is merely Lipschitz, by Rademacher’s theorem
the derivative D/ (x) exists for almost every x € R”, hence a weak preservation of
the metric amounts to the condition

(DT Df =1d L' ae. inR", (1.1)

Here we denote by £" the Lebesgue measure on R”. We will call such maps weak
isometries. As pointed out by Gromov on p. 218 of his treatise [9], such maps
might collapse whole submanifolds to a single point and thus are very far from a
truly geometric notion of isometry. For instance, it is possible to solve the Dirichlet
problem DfT Df = Idae.in Q = [0.1]" and f]yq = 0 — see e.g. [S.6]. By
extending f periodically on the whole R”, one can then find a solutions to (1.1) such
that /(R"~! x {0}) = {0}.

The more geometric definition of isometry therefore is the following: a Lipschitz
map between Riemannian manifolds f : M — N is isometric if it preserves the
length of any rectifiable curve (c.f. [9, §2.4.10]):

Cpm(y) =L€n(f o y) forevery y:[0,1] — M rectifiable. (1.2)

It is not difficult to see that any isometry is a weak isometry, but the converse is in
general false. To compare with (1.1), notice that an isometric map f : R" — R”
satisfies

(DM AHT DM f =1d H"-ae.on M, (1.3)

for every m-dimensional submanifold M C R", m = 1..... n, where DM
denotes the tangential derivative and H"™ is the m-dimensional Hausdorfl measure.
Actually, it is not difficult to see that in condition (1.3) it suffices to check the lowest
dimensional case m = 1, i.c.

V. fl=1 H'-ae.ony (1.4)

for every rectifiable curve y C R”, where V; f* denotes the tangential derivative.



Vol. 90 (2015) Equidimensional isometric maps 763

For constructing isometries one might imagine a “folding up” pattern as the
analogous perturbations to corrugations in an iterative scheme a la Nash and prove
results similar in spirit to the Nash—Kuiper theorem. Indeed, in [9] Gromov shows
that every strictly short map between Riemannian manifolds admits an arbitrarily
close uniform approximation by isometries. More generally, Gromov’s convex
integration is a powerful generalization of the Nash technique, that applies to a
large class of differential relations. A version for differential inclusions of Lipschitz
maps has been developed in [14, 15], where also the system (1.1) is treated as a
particular case.

On the other hand it was noticed by several authors [4, 6, 10], that the Baire
category method, introduced in [3, 7] for ordinary differential inclusions, can be
applied to problems such as (1.1) (which can be written as the differential inclusion
Du(x) € O(n) a.e. x). Indeed Baire category methods have been used for many
existence proofs in analysis and geometry, also for the construction of topological
embeddings (but since the literature is vast and scattered we do not add any specific
reference). In the question considered, this approach leads not only to the density of
weak isometries but also to genericity in the sense of Baire category.

Our contribution in this paper is twofold. First of all we develop a version of the
Baire category method for isometric maps satistying (1.2) in the sense considered
by Gromov and prove several residuality results. Our method allows one to reduce
the problem of Baire-residuality to the density of certain approximate isometries,
see §3 below.

Secondly, we give a self-contained proof of the density of (approximate) isome-
tries that follows the general philosophy of Baire category techniques for differential
inclusions. To explain this, recall that the density of Lipschitz isometries between
Riemannian manifolds follows from Gromov’s result [9, §2.4.11] concerning the fine
approximability of isometries. Alternatively, in R" one can use the following result
of Brehm [2] concerning the extension of isometries:

Theorem 1.1 (Brehm [2]). Let H C R” be a finite set and f : H — R™ be a short
map, withn < m. Then, there exists an extension of f to a piecewise affine isometric
map of the whole R”.

Both Gromov’s and Brehm’s proof rely on the (global) geometric property of
being an isometry, in particular special piecewise affine isometries (called normally
folded maps in [9]) are used as the basic building block and it is not clear how
o generalize this notion to other differential inclusions. In contrast, our approach
1S to treat isometries as solutions to a fine differential inclusion as in (1.3), where
the tangential derivative on lower-dimensional objects is prescribed. As in the
usual Baire category method, we use an explicit oscillating perturbation to show
the perturbation property for the (tangential) gradient of the map f. The new key
Point however is to use a calibration to control the underlying curves. We expect
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our method to find applicability in a more general class of such fine differential
inclusions.

To conclude this introduction we mention that there is yet another, stronger
notion of isometry. In [9, §2.4.10] a map f : M — N between Riemannian
manifolds is called a strong isometry if for any x, y € M

k—1
distps (x, y) = lim inf{z disty ( £(x;), _f(xi+1))}.
£—0 =0
where the infimum is taken over all e-chains between x and y, that is, sequence of
points xo = X. X1,....x;r = y with distps(x;, x;+1) < &. The same notion is
called an intrinsic isometry in [17]. It is not difficult to see that a strong isometry is
an isometry. Moreover, strong isometries preserve the length of any curve (not just
rectifiable). Now, using Gromov’s theorem (or our Theorem 2.2 below) it is possible
to construct an isometry f : R? — R?, which maps the Koch curve (or any purely
unrectifiable curve) to a single point. Such a map will obviously not be a strong
isometry. We note in passing that in [9, §2.4.10] this construction is described with a
curve C with the property that dimg (C N Cy) < 1 for all rectifiable curves Cq. This
property is stronger than being purely unrectifiable, and in fact it turns out that such
a curve C does not exist — see [1]. Our main results and techniques in this paper, in
particular in §5, do not extend to strong isometries.

Acknowledgements. We would like to express our thanks to Giovanni Alberti, to
whom we are indebted for many fruitful and inspiring discussions concerning this
work.

2. Statement of the main results

We first consider the problem of extending a map defined on an arbitrary compact
set K C R". This is a generalization of the Dirichlet problem on a bounded domain
Q C R", if we take K = 0Q2.

It is clear that an isometric extension need not always exist. For example,
consider the following map: K = 9[0.1]> € R? and f : K — R? given by
f(x.y) = (x.0). Clearly, f is a short map admitting a unique 1-Lipschitz extension
to [0, 1]? (namely f(x.y) = (x,0)), which is not an isometric map because, for
instance, vertical line segments are mapped to single points.

In order to deal with this issue, we need to characterize the set C( /. K) where
the map f has a unique 1-Lipschitz extension. It is clear that f extends uniquely as
a 1-Lipschitz map on the set

C(/K):= U conv(H),

HesS

where S := {H C K : f|g is an affine isometry}.
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As seen in the example above, if the unique 1-Lipschitz extension on C( f, K) is not
isometric, there is no chance to solve the extension problem. On the other hand,
if C(f.K) = K, the map f does admit extensions which are locally strictly short
outside K. This is the content of the following proposition. In the sequel we use the
following standard terminology:

* in a topological space a subset is called residual if it contains the intersection
of countably many dense open sets;

 aproperty is typical (or the typical element satisfies a property) if that property
holds in a residual set.

Proposition 2.1. A function f : K — R" admits an 1-Lipschitz extension
h : R" — R" such that

L] th = f"
e Lip(h|a) < 1forevery ACCR"\ K
if and only if
C(f.K)y=K. (2.1)
Moreover, the typical 1-Lipschitz map [ : K — R” satisfies (2.1).

The proof of Proposition 2.1 (restated as Proposition 4.4 and 7.1) is contained
in Sections 4 and 7. As a consequence, we prove that the solutions to the Dirichlet
problem which are isometric in R” \ C( f, K) are in fact residual:

Theorem 2.2 (Typical extension). Let K C R”" be a compact setand f : K — R" a
short map. Then, the typical 1-Lipschitz extension of f to the whole R" is isometric
on R" \ C(f, K).

We then consider the problem of Dirichlet data f : K — R" which extend to a
global isometric map F : R" — R” (not just of R" \ C(f, K)). We prove that also
this is a generic property.

Theorem 2.3 (Typical restriction). Let K C R” be a compact set. The typical short
map f . K — R" is the restriction of an isometric map of the whole R".

Finally, we address the problem of isometric maps from a Riemannian mani-
fold M™ into R”. We show that such maps are residual in the space of short maps.

Theorem 2.4 (Typical isometries). Let M be a n-dimensional Riemannian manifold
with continuous metric. Then, the isometric maps of M into R" are residual in the
Space of short maps.

3. Approximate isometric maps

In what follows M is a connected n-dimensional smooth manifold with or without
bOundary. We assume that M is endowed with a continuous Riemannian metric g;
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we denote by dps and | - |, the induced Riemannian distance on M and the norm on

each tangent space T M, respectively. In the case of subsets of R”, we use the usual

notation |x| and x - y for the norm and the scalar product of vectors, respectively.
Given a path-connected subset S € M we introduce the following notation.

(a) The space of short maps from M into R” is denoted by Lip, (M, R"), i.e.
Lip,(M.R") :={f : M — R" : Lip, (f) < 1}.

where

Lip, (/)= sup LD =S

x#yeM dy(x.y)
(b) I's(x, y) is the set of rectifiable curves from x to y contained in S:
[s(x,y):= {y :[0,1] = § : y rectifiable, y(0) = x,y(1) = v}.

o

We denote by ds the induced metric, i.e.

d<l(x, y) = inf ¢ !
s(x.y) e s ¢(¥)

(c) We denote by Z(S) the set of all short maps f € Lip;(M.R") which
are isometric in S, i. e. £(f o y) = {g(y) for every rectifiable curve
y [0, 1] — S, where

1 1
ton=[rorolar wd L) = [ B Ohkowd.
Equivalently, f € Z(S) if for every y as above
|(f o) )] =1y (e forae.tel0.1].

(d) Forevery e > 0and x,y € S, we denote by Fg(x, v,S) C Lip;(M.R") the
mappings satisfying

Fu(x,,S) := {f € Lip,(M,R") : £(foy)+ele(y) > (1—e)ds(x.)

Vy e FS(_\-._v)}.

Note that in general the maps in Lip, (M. R") are not bounded (except when M itself
is bounded). For this reason, we use the following metric on Lip, (M. R"):

D(f.g) := sup min {I, | f(x)— g(x)l} = min {1, sup | f(x) —g(.\‘)l} )
xeM xeM
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It 1s easy to verify that (Lip;(M,R"), D) is a complete metric space and that D
induces the uniform convergence, i.e.

lim D(f;.f)=0 <= lim |fi— flcous =0.
I—>+00 [—+o0

Definition 3.1. Let S C M be path-connected. We define the set of e-approximate
1sometric maps in S by:

T.(S) == ) Fe(x.y. ). (3.1)
xXF#yeS

The name is justified by the following result.
Lemma 3.2. Let S C M be path-connected. Then

() Z:(5) = Z(5). (3.2)

>0

Proof. Note first that Z(S) C Fe(x,y,S) forevery e > Oand x # y € S. Indeed,
every f € Z(S) satisfies

U foy)+elg(y) = +e)lg(y)> (1 —e)dm(x,y) Yy eTlg(x,y).

In order to prove the converse inclusion, assume f € Z.(S) for every ¢ > 0 and
let y : [0,1] — S be a rectifiable curve. Then, for every partition 0 =ty < --- <

Im = 1, setting y; := ¥|i1,.1,,,]- We have
m—1 m—1
(foy)y=Y ULfoy)= Y duy(t)) y(tjt1)).
j=0 J=0
Since this holds for any partition, £( / o y) > {4 (y) and, hence, f € Z(S). Wl

3.1. Separability. We show next that it suffices to take a countable intersection in
order to obtain a subset of approximate isometric maps.

Lemma 3.3. Let S be path-connected and Sy C S be a countable dense subset for
the induced metric ds. Then,

() Felx.y.8) C Loe(S).
XF#y€So

Proof. We may assume without loss of generality that ¢ < 1/2, otherwise the
Statement is trivial. Let f € Fg(xg, yo.S) for all xo,y9 € So. For x,y € §,
we choose n > 0 and xg, yo € Sp such that

P
n < st(x,y).
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and
ds(x.x0) +ds(y.yo) <.

We can find two curves y; € ['s(xg,x) and y» € ['s(y, yo) such that

le(y1) + g (y2) < ds(x.x9) +ds(y.yo) + 1.

Observe that

(I =2¢e)ds(x.y) < (1 —e)ds(xo.yo) —eds(x.y) + (1 —€)n
< (1 —e)ds(xo. yo) — 2n(1 + ).
since
(3 +e)n < eds(x.y).
Then we consider the concatenation y := y, - ¥ - 1 (i.e., the curve obtained by

joining, in the order, the curves y;, ¥ and y»), and note that y € I's(xp, yp). Using
that

Lg(7) = Lg(y) + 27
and that f € Fy(xg. yo.S), we obtain

t(foy)=l(foy)—2n
> (1 —e)ds(xo,y0) —e(lg(y) +2n7) — 21
> (1 =2e)ds(x.y) —elg(y)
> (1 —=2¢8)ds(x,y) —2elg(y).

This shows that f € F>.(x, v, S). Since this holds for every x, y € §, we conclude
| e Zr:(S). O

3.2. Closedness. The following lemma shows that the sets of approximate isomet-
ric maps are Gy sets.

Lemma 34. Let S C M be compact. Then, for every x,y € S and ¢ > 0,
Fe(x,y,S) is open in Lip, (M, R").

Proof. We show that Lip,(M,R") \ F(x,y,S) is closed under the uniform
convergence induced by D. To this aim, assume that f; € Lip, (M, R")\ Fe(x,y,S)
converges to f uniformly in M. By assumption, there exist y; € ['s(x, y) with

E(froyk) +elg(yr) < (1 —e)ds(x.y).

In particular, the lengths €4 (yx) are uniformly bounded. Therefore, since we are
considering curves in the compact set S, we may extract a subsequence such that
vk, — v € Ts(x.y) uniformly. This implies that also f; o yx, converges
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uniformly to f o y. Now, since the length is lower semicontinuous under uniform
convergence, we deduce that

t(foy) +ely(y) =(1—g)ds(x.y).

This implies that f € Lip, (M, R") \ Fc(x,y,S), hence Lip; (M,R") \ Fe(x,y,S)
is closed. (]

3.3. Locality. The notion of isometric map is local in the following sense.

Lemma 3.5. Let {Uy}qeca be an open covering of M such that every Uy is path-
connected. Let f € Lip;(M,R") be such that f|y, € Z(Uy). Then f € T(M).

Proof. We need to prove that, for a given curve y : [0, 1] = M,

E(foy) =Lg(y).

Since y([0, 1]) is compact, we begin fixing a finite covering of y([0, 1]) by sets Uy,
§ =L, m. Using the uniform continuity of y, we infer the existence of n > 0
such that

Vielo,1] 3/ €ef{l,..., m} such that y([t,1 +n]) C Uy, .

We then choose any partition 0 = tg < --- < 1, = | such that |t; — t; 41| < n. By
the choice of n, for every i = 1,...m — 1 there exists j(i) such that y([t;,ti+1]) C
4 Therefore, from f|y, € Z(Uy) we deduce that

LY ION
ﬁ(foyl[tl-ﬂtl'-f-l]) =Eg(}/l[[1,t,+l]) VI e l ..... m — l.

and therefore

m—1 m—1
E(f o y) = Z E(f © yl[ff,ti+1]) = Z eg(y[[,',t,‘+|]) = Eg()/)- L_—|
i=0

i=0

4. Locally strictly short extensions

As mentioned in the introduction, given a short map f : K C R”" — R" on a
compact set K, f will have a unique 1-Lipschitz extension f to a possibly larger set
containing K, namely
C(f.K):= U conv(H),
Hes

where § := {H C K : f|y is an affine isometry}. Here " f'| y affine” 1s understood
in the sense that f |y (x) = Ax + b for some A € O(n) and b € R”. Note that it is
easily verified either by elementary geometry or by a calculation analogous to the one
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in (4.1)—(4.3) that “ f | g affine isometry” is equivalent to being (globally) distance
preserving in H in the sense that [ f(x) — f(y)| = |x — y|forall x,y € H. Then,
by the triangle inequality, f extends uniquely as a 1-Lipschitz map on C( f, K) and
in particular K C C( f, K). In the following lemmas we prove two simple properties
of C( f, K), namely its compactness and a hull-type property.

Lemma 4.1. For every K C R" compact and f : K — R" short, C(f.K) C R" is
compact.

Proof. We notice first that C( f, K) is a bounded set. Therefore, we need only to
show that it is closed. Assume that z! € conv(H;) — =. Using Carathéodory’s

Theorem, we may assume without loss of generality that H; = | yé ..... y,ﬂ} and
n n
=Y "Ayl with Y al=1. 1l >o0.
i=0 =0

By compactness (up to extracting subsequences which are not relabelled) we may
infer that there exist y; € R” and A; € [0, 1] fori =0,.... n such that

lim y' =y and lim Al =A;.

[—~+o00 | —+o0

Then, z € conv(H) for H := {yg,..., Vn}. Moreover, H € S because

. I I . i ! ) ..
lg(yvi) —g(yj)l = lll+moo1g(y,-) - gl = zllﬂ,o'yf —yil=lyi—yjl Yi.j
This shows that z € C(f, K), i.e. C(f, K) is closed. O

Lemma 4.2. Let f : K — R" be a short map, with K C R" compact and let
| C(f. K) — R" be the unique 1-Lipschitz extension of [ to C(f. K). Then,

C(f.C(f.K)) = C(f.K).

Proof. Itis enough to show that, for every x, y € C(f, K) such that If_(.\')—f_(y)l =
|x — y|, it holds

[x.y]:={Ax+(1 =2y :1el01]} CC(fK).

Without loss of generality, we may assume that

y=f( =0 (4.1)
Set H = {xo ..... x;} C K, ! < n, such that f|g is an affine isometry and
X = Zi o x; for positive o; with ), «; = 1. Note that in general / may be

different from n, because we assumed that «; > 0 for every /. Since f |y is affine
and (4.1) holds, we have

= 12%‘ fxil.
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Squaring we get
Za? i |> + Zai ojXiXj = Za,-z |f(xi)]*+ Zai o f(xi) f(xj). (4.2)
i i#j I i#)

From (4.1) and Lip(f) < 1, it follows that | f(z)| < |z| for every z € K. Recalling
that | f(x;) — f(x;)| = |xi — x;| for x;, x; € H, this implies

1
i £ = 5 (17 @R + 1GNP =1 (i) = fGx)P)
1
< 5 (il 4 1 2 = b = 12)
= Xj-Xj. (43)

Using (4.2) and (4.3) together (recall that | f(z)| < |z| for every z € K), we deduce
that | f(x;)] = |x;| for every x; € H. In particular, {0} U H € S and by definition

[0, x] C conv({0} U H) C C(f. K). O

We now turn to the proof of Proposition 2.1. We start with a definition.

Definition 4.3 (LSSE). Let K C R be acompactsetand f : K — R”" a short map.
We say that f is locally strict short extendable, or briefly f is LSSE, if there exists
h € Lip, (R”,R") such that #|x = f and Lip(&|4) < 1 forevery A CC R” \ K.

Clearly, if f : K — R" is LSSE, then C(/, K) = K, because, for every
I-Lipschitz extension /& of f it holds h|c(r.x) = flc(rk). where f is the unique
1-Lipschitz extension of f to C(f. K), and Lip(f_'jc(f’K)mBE(x)) > 1 for every
x € C(f,K) and every ¢ > 0, while / is locally strictly short outside of K. We
show that this is also a sufficient condition for f to be LSSE.

Proposition 4.4. For a short function [ : K — R” the following are equivalent
(a) f is LSSE;
(b) forevery x ¢ K there exists px € R" such that

px =S <lx—yl VyeKk: (4.4)

(c) for every x ¢ K, there exist at least two different 1-Lipschitz extensions fi,

Jaof f 1o KU{xj.

(d)
x,yeK: |fx)—fW)I=Ilx-y| = [x.y]CK. (4.5)

In particular, f is LSSE if and only if C(f. K) = K.
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Proof. To prove the equivalence between (a) and (b), assume that 4 is a locally
strictly short extension of f". Then, it follows from Definition 4.3 that py := /1(x)
fulfills (4.4). Conversely, if (4.4) holds, for every x ¢ K there exists 6, > 0 such
that

lpx — fO)] < |z — y] VyeK and VzeBs (x)CR"\K. (4.6
For every x ¢ K, we define the functions f; by

f(w) ifw e K,

Sx(w) = Dx if w e B (x),

and consider F, an arbitrary 1-Lipschitz extensions to the whole R” given by
Kirszbraun’s Theorem [8, §2.10.43]. Since R” \ K is locally compact, there exist
countably many x; such that

R"\ K = (] B, (xi).

i=1

Setting h = Zi 2—i Fy., it is immediate to verify from (4.6) that / is a locally
strictly short extension of g.

To show the equivalence between (b) and (c), note that, if the maps x +— ¢ and
X > ¢’ are two different extensions to K U {x}, then p, := 9+4’ gatisfies (4.4).

2
Vice versa, if (4.4) holds, then the continuous function

|px — f(¥)]

d(y) =
lx — y]

satisfies maxxg @ = 1 — n for some n > 0. Then, for every z € Bjs(pyx) with
§ < 7dist(x, K), the extension of f given by x + z is a l-Lipschitz extension

of f:
2 =S _ [px =S +8
lx—yl |x =yl - |x = y|

Note that, we have actually proven that (b) fails in a point x if and only if (¢) fails in
the same point x.

l —n+ <1l Vyek.

So far we have proved the equivalence of (a), (b) and (c). Next, it is clear that (b)
implies (d).

To show the converse, we argue by contradiction and assume that (d) holds but (c)
not, i.e. there exists x ¢ K such that /" admits a unique extension f : KU{x} — R".
Let f_(x) = py and set

H:={yeK:|[f(y)—pxl =ly—x[}
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Note that H is compact and, by the failure of (b) in x, H # (. Two cases can occur:
(i) px & conv(f(H));
(ii) px € conv(f(H)).

In case (i), since conv( f(H)) is compact, there exists &, 7 > 0, and v € S"~! such

that
pPx-v>2e+ f(y)-v VyeH,NK,

where H; denotes an open t-neighborhood of H. Moreover, by compactness of
K \ Hq, there exists a § > 0 such that

| f(»)—pxl+6=|x—y| YyeK\H:.

An elementary computation shows that x +— ¢y := px —nv is a new |-Lipschitz
extension of f to K U {x} if n is chosen accordingly. Indeed, we have

1S = px+ v =1/ = px> + 07 + 20 (S () = px) - v
<|f) = pxl® + 0" —4ne
<|ly—-xP+n*—-4ne Vye H NK,
and
| f(W)—px+nv[=|x—y[-8+n Vy¢H.
Hence, it suffices to choose

n < max {3, 4¢}.

This contradicts the assumption that j_‘ is the only 1-Lipschitz extension to K U {x}
and gives the desired conclusion in case (i).

In case (ii), let / € N be the minimum integer with the following property: there
exist / points {yq,..., yi} =: H" C H such that py C conv(f(H')). We claim that

| fi) — fi)l <lyi—yil Yyi,yjeH. 4.7)

Indeed, assume this is not the case, e.g. | f(y1) — f(»2)| = |¥1 — y2|- Then, since
Px = Y_; a; f(yi) for positive a; with )", o; = 1 and f|[, .y, is affine, we can set

oy yp +az2)2
o +ay

By (4.5), [y1.y2] C K, thus implying in particular that z € K. Moreover, by
comparing the congruent triangles {y;, y2.x} and { f(y1). f(y2). px} we deduce
that z € H. Since it is moreover easy to see that p, € conv( f({z. y3..... vi}), we
obtain a contradiction with the assumption that [ was the least number satisfying the
above property.

To conclude we note that (4.7) implies that there exists a strictly short extension
of f|pto H' U {x}, denoted by F : H' U {x} — R". Clearly, F(x) # py by the
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definition of H. This leads to a contradiction and concludes the proof. Indeed, set
Fix) =:gxand v ;= ﬁ. Since py € conv( f(H’)), there exists y € H’ such
that U

px-v = f(y)-v,
which in turns implies
|f(V) = gx| 2 [f(y) = pxl = |y — x|,
against Lip(F) < 1. O

5. Density

In this section we set, referring to the notation of Section 3,
M =R",
and define, forevery x,y € K and ¢ > 0, E.(x, y. K) to be the restriction of maps
from Fe(x,y,K)to K, i.e.
E.(x,y,K):={heLip/(K,R"):3 f € F(x,y,K)st. flxk =h}.

Our aim is to prove the following density result.

Proposition 5.1. Let K C R" be a compact set. Then, for every x.y € K and
e > 0, the set Ec(x, y, K) is dense in Lip, (K, R").

5.1. Single lamination. In this section we show the basic lamination construction
which will be used to increase distances in one direction. We consider functions of
the following form:

w(x)=Ax+ Ch(x-§).
where A € R™" £ ¢ € R" and h : R — R is the l-periodic extension of the
following piecewise linear function with slopes A; < 0 < A,,

At for 0 <t < 22
hity =" o TRk (5.1)

Note that w 1s Lipschitz and piecewise affine in parallel strips, with

A2
Vw(x) = o Arb Qi fork(xf<k+’12_A" forall k € Z.
A+22{Q®¢E for k+ 2 <x-E<k+1,
(5.2)
In what follows, a simplex is defined to be the closed convex hull of n + | affinely
independent points in R”, T := co{xy,.... X}, and its barycenter is the point X :=

-0
n+1 J=0"7"
Proposition 5.2. Let T be a simplex and u be a strictly short affine map on T', with
Vu = Aand ATA < (1 —6y) I for some 0 < 8y < 1. Then, for every 0 < 6 < 6
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and 1 > 0, there exists v € Lip(T, R") such that:
(i) v=uondT;
(ii) lu —vlcoery =
(iii) Lip(v) <1—¢;
(iv) (1-280) fol |y (t)-e1|dt < £(voy) forevery rectifiable y : [0, 1] — T, where
1), is the (1 — n)-rescaled simplex with the same barycenter as T.

For the proof of the proposition we need the following elementary linear algebra
lemma.

Lemma 5.3. Let A € R™" and 6 > 0 be such that AT A < (1 — 0) I. Then, there
exists £ € R" such that

(1-0)¢-elP < (ATA+E®E)C-L=(1-0)¢)* V(eR"  (53)
Proof. Let B = (1 —0)I — AT A, so that, by assumption, B > 0. First consider the
case By; > Oandset & := lez_” Be;. We claim that

(B—£E®E&)e; =0, (5.4)
(B—E®&8w-w=>0 VweR". (5.5)

Indeed, (5.4) follows directly from the definition of £&. To see (5.5), notice that 8 > 0
implies, for any # € R and any w € R",

B(w +tey) - (w+tey) =t*(Bey-ey) + 2t (Bey-w) + (Bw-w) >0. (5.6)
The fact that the above quadratic expression in / is nonnegative is equivalent to
(Bw - w)(Bey -e1) — (Bey -w)* > 0.
On the other hand, by direct calculation
(B—E®&w-w = B! (Bw-w)(Bey-e1)— (Bey - w)?).

thus leading to (5.5). Similarly, if B;; = 0, we set £ = 0. Then, (5.4) and (5.5)
still hold: indeed, the latter is trivially true by the assumption on A and the former
follows from (5.6) being w and ¢ arbitrary.

To conclude the proof of the lemma, note that (5.4) and (5.5) are equivalent to

(ATA+E®E)er =(1—0)e,
(ATA+E@8)w-w<(1-0)|w? VYweR"

Therefore, for a general { =t e; + w withw L e, (5.3) follows:
(1-6) 1% < (AT A+£RE) 0L = (1-0) 1+ (AT A+ERE)w-w < (1-0) (> +|w[?).
O
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Proof of Proposition 5.2. We show that a suitable truncation of a single lamination
satisfies the conclusion of the proposition. Fix 0 < 6 < 6, and n > 0, and note
that AT A < (1 — 6) I. We split into two cases, depending on whether det A = 0 or
det A #£ 0.

The case det A # 0. Let & be the vector given by Lemma 5.3 and consider { € R”"
and A; < 0 < A, such that

=ATE and 24, + 22|02 =1, if detAd#0,

Choose a cut-off function ¥ : T — [0, 1], ¥ € C>(T), such that ¥ = 1 on T
and fix a periodic piecewise affine functions & with slopes A; and A, asin (5.1). We
claim that, for p large enough, the map

v(x) = u(x) + éh(ux &) Y (x)

satisfies the conclusions of the lemma.
Clearly, (i) follows from v € C2°(T). Moreover, since ||[u — v|[co <

choosing p > fIhII%oIC!, also (ii) follows. Next, notice that, by the choice of ¢, for

almost every x € T,

Al -ol8]
noo

Vo) Vo(x) = ATA+ (W (px -5y () AT E+ (W (ux- &) y(x)ER AT
+ (N (px-E) Y )’ L2 E®E+ Epu(x)
=ATA+ (2/1’(u x-E)Y(x)+ (A (px-&)y(x) lél)z) E®E
+ Ey(x),

where E, (x) is an error satisfying || £, || co < %, for some Cy depending on i1, ¥, .
Hence, since i’ = A; and 0 < ¢ < 1,

2 (Ax-E)¢Y(x)+ (F(Ax-§)y(x) |t§'|)2 <1 forae xeT.

Then, for % < f/2, (iii) follows from the convexity of T', since

Lip(v)? = esssup sup |Vv(x)n|* = esssup sup (Vv(x)TVv(x) n-n)
xeT |n|=1 xeT |n|=1

(& 6
< sup (ATA+E®E)-n) + sup [E(x)] < QY P B 1—5
Inl=1 xeT M

(-2



Vol. 90 (2015) Equidimensional isometric maps 177
To prove (iv), let y : [0, 1] — Tj be a rectifiable curve and let
O=ty<thh<---<ty=1

be any partition of the interval [0, 1]. By adding more points if necessary, since v is
a single lamination in 7},, we may assume that the restriction of v onto each interval
[y(tj). Y(Lj41 )] is affine. Moreover, by the explicit formula (5.2),

v(y(tjs1)) —v(y(t;) = (A+ X LR E)(y(tj+1) — y(I))).

where A; is chosen depending on which strip the segment lies in and, in case the
segment lies on the boundary of a strip, i.e. £ - (y(tj4+1) — y(t;)) = 0, any value can
be taken. Therefore, in both cases, using (5.3) and

A+X R8T (A+2tRE =ATA+ 1, ATI@E+ 1 E® ATE
+ATIPERE
—ATA+EQE.

we have

lo(y(tj+1) — o)) = V1I=6|(y(tjs1) — v(t))) - e
> (1-20) |(y(tj+1) = y())) -en] .

Summing and refining the partition ad infinitum, since the integral in (iv) is the total
variation of the curve y - ¢, we conclude the proof in the case det A # 0.

The case det A = 0. In this case we consider
feKer(AT) and —— =—=1[Y=1.
Then, for i, ¥ and v as above, we have for almost every x € T,
Vo) Vo) = ATA+ (W (nx - )Y () ATERE + (W (kx -5 v(x))§® ATL

2
+ (W (ux-E) Y (0) G E®E + Enlx)

= ATA+ Y () EQE + Eu(x),
where E,, (x) is again an error satisfying || E, || co < % for some Cyp depending on

h.yr, & Since 0 < ¥ < land ¢ = | in T}, the estimates (i)—(iv) follows in the same
way as before. [



778 B. Kirchheim, E. Spadaro and L. Székelyhidi Jr. CMH

5.2. Triangulation and approximation of short maps. In this subsection we
construct a calibration in order to obtain sufficient control on curves in I'g(x, y).
We start by proving an elementary result on piecewise affine approximations on
triangulations.

Let T = co{xyp,...,x,} be a simplex and X its barycenter. Givenu : T — R",
the affine interpolation of v in 7 is the function

u(x) = u(xo) + A (x — xp),

where A € R”" is such that u(x;) = u(x;) for every i (A always exists and 1s
unique because the points x; are affinely independent). Note that not every affine
interpolation of a short map is short. Consider, for example, the map u : R? — R2,

(1.4/3)

u(x) = (|x|,0), and the simplex T of vertices xo = 0, x; = =3 and x; =

(1,—v3)

>— . It turns out that the affine interpolation of « in 7" is given by

u(x) = (é g)v

so that Lip(u) = 2, although u is short.
The following lemma provides a bound for the Lipschitz constant of v — u.

Lemma 5.4. Let T be a simplex and ry.ry > 0 be such that B, (x) C T C By, (X).
For every u € C*(T,R"), the affine interpolation i in T satisfies

, _ 4rz .
Lip(u —u) < — [V=ullcoerys (2.7)
1

where

192u) 3 ()
u = Imax X .
cr) xeT =1 Bx,-axj
l’_]"=

Proof. Let A = Vu. For every B € R"™" denote by L g the linear map given by
Lp(x) = Bx and denote by |B| = maxj;=; | B n| the operator norm. We claim
that

p
1B — A < %Lip(u—LB). (5.8)
1

Indeed, let n € S"~! be such that |[B — A| = (B — A)n and consider the line
[, =X +tn :t € R}. Clearly, by the convexity of T, [, intersects d7 in two

points,
p= Zlixi and ¢ = ZM Xi
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with Aj, ;i = 0and > ; A; = >, 1y = 1. Then, since |p —g| > 2 ry, it follows that

(B—4)(p— )| _ | i — i) (B — A)xi — xo)|

|B— A =

lp—aql - 2r
\Z (Ai — i) {(B xi —u(x;)) — (B xo — u(xo)}]
2'1
LIP(M —Lg) Y ;(Ai + wi)lxi — xol 2LiP(M — Lp)diam(T’)
2]’1 - 21’1

2 .
< =2 Lipu — Lp).
r'1
By convexity, for every f € C(T,R"),
Lip(f) = max |V f(x)|. (5.9)
xel

Set B = Vu(y) such that

Lip(u — i) = max |V(u —u)| = |B — A|.
xe€T

From (5.9) and (5.8), we deduce (5.7):

8) 2ra 59) 21y

Lip(u —u) = |B — A| < —Llp(u—LB) < T Tea%(Wu(x)—Vu W)
< 272 |92l oy max b — 1 = 22 |92l oy, 0
T on xeT TN

Remark 5.5. Actually, increasing the angle in xq in the example given above shows
that estimate (5.8) is optimal up to a multiplicative constant.

In what follows, a triangulation 7 = {T;};en of R" is defined as a family of
simplices such that U; 7; = R” and, forevery i # j, 7; N T} is acommon face when
not empty. We call a triangulation periodic if there exist finitely many simplices

Ty, ..., Ty such that T = Ul_l{T,- +v:v ez}
Given a simplex T = co{xop...., Xn}, we consider the (n — 1)-dimensional
supporting linear subspaces of its faces defined as follows: for @ = («j..... On)

with0 < @) < --- < oy < n, the corresponding supporting hyperplane is given by

r _
Vy = Span{xq, — Xgs.--,3 Xty — Xty J-

We denote by N5 the set of all unit normals to the supporting hyperplanes of
simplices 7 in T,

Nr={ve " ':v L V] forsomeaand T € T}.
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Proposition 5.6. For every 6 > 0, there exist 0 < § < 1, a periodic triangulation T
and a function ¢ € C°°(R") such that:

o(l.x) =1 VieR" Viez (5.10)
d
0< 2 (x)<8 VxeR' j#1 (5.11)
axj
do 1 " do
0<—(x)<—— VxeR" and ——(x)=0 VxeF; (512
x| 1—6 09X

where F = Urer0T is the union of the faces of the simplices of T and Fs denotes
its open §-neighborhood.

Proof. Step 1: The existence of a transversal triangulation. We start showing the
existence of a periodic triangulation S such that every orthogonal vector v € Ng
satisfies v - e # 0, i.e. such that e; is transversal to any supporting hyperplane.

To this aim, consider {77,..., Ty}, a triangulation of [0, 1/2]" which can be
extended to the whole R” by periodicity (that such triangulation does exist is a simple
exercise), and set

M
R =Ty +v/2:v € 2" = (Riien.
7=1

For w € R” with w -e; = 0, let f, : R” — R” be the piecewise affine map given
by, for every x = (x;,x) €e R x R"!,

Juw(x) = x + h(x)) w,

where £ : R — R is the 1-periodic extension of

ny={  Fo=t=a
l-i if 5 =i < 1.

Note that, fy,|g; is linear for every simplex R; of R, so that §; = fy(R;) are also
simplices. Moreover, since w-e; = 0, f, : R" — R” is a periodic homeomorphism:
for every integer vector v € Z"*, f,(x + v) = fu(x) + v. Hence, fy,(R; +v) =
Jw(R;) + v implies that S = {S§; };en is a periodic triangulation of R" as well.

We claim that there exists w L e; such that & is transversal to e;. Indeed, for
every simplex R;, V(fy|g;) = L+w, where L, v = v+(v-e;)w and the sign is
chosen depending on the sign of #’(x;) for x € R;. By simple linear algebra, using
L:U1 =L_, asw L e;, we infer that

Ns={LL v v e N},
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Hence, v € N5 is orthogonal to e if and only if there exists v’ € Nz such that
0= (Liwv’,el) = (v, Lywer) = (V' e1) £ (v’, w). (5.13)

Now notice that, for a fixed v’ either the solutions w L e satisfying (5.13) are
affine (n — 2)-dimensional subspaces or, in the case v’ = ey, there are no solution.
Hence, relying on the fact that N is finite, R being periodic, one infers that for
H" 'ae. w L ey nov € Ny is orthogonal to ej.

Step 2: Construction of a calibration. From now on we fix a periodic transversal
triangulation & = {S;};en. For every y > 0, we denote by F, the open y-
neighborhood of union of all faces of S. Consider the C*° function g : R" — [0, 1],

8 = Py/2 * X(R"\F3y/2)

where p € C2°(By) is such that p > 0, [ p = 1 and, as usual p, = r~"p(3). Note
that, since F is periodic, also g is periodic and

g=0 on F, and g=1 on R"\F,.

Set, for x = (x1,x) € R x R*™ 1,

f(x1,Xx) ::/0 g(t.x)dt.

Clearly 1 is smooth and, by the periodicity of g, for 7 € [0, 1) and / € Z, (below the
computation for [ € N, the other case being analogous), we have

t+1 [-1 Lit1 t+l
fi+1,x)= f g(s.x)ds = Z/ g(s, x)ds +j g(s,x)ds
0 oV l
=1 f(1,%) + f(t,%). (5.14)
For every ¥ € R"™! | setting [z = {(f.X) : 0 <t < 1}, it holds
F1,%) = 1=H' Iz N Fay). (5.15)

Since no v € Ny is orthogonal to e, each /5 intersects transversally a bounded
number of faces, so that there exists a constant C > 0 such that H! (I N Fay) =Cy
for every y > 0. By (5.15), for y small enough, the function

Fixa; X)
£(1,%)

is well defined and smooth. From (5.14) it follows that

V(x).X) =

Yl +t,x)=1+y(t, X).
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In particular, ¥ (/,x) = [ and V is Z"-periodic with i—wl(x) = f(1.3) 'g(x).
Therefore, from the choice of g, we have
Iy 1

Y
0< < YxelR" d —(x)=0 forxeF,. 5.16
= =1-Cy X an BXI(\C) or x v ( )

Now, for every k € N, consider the horizontal rescaling 7, : R” — R” given by
i (1, %) = (3, %). We claim that, for sufficiently large k,

e(x) ==k "W(kx,x) and T ={T;}. with T; := 1 (S)).

satisfy the conclusions of the proposition for a suitable §. Indeed, 7 is clearly
periodic and ¢(I, X) = k' (k [, X) = [, thus proving (5.12). Setting ' = U, 97T;,
from (5.16) we deduce that -gjx—‘”](x) = %’T(k X1, X) satisfy

dyp 1 dy ’
0< P < o VxeR" and Tr](x) =0 forx Efy/k = el Fp):
(5.17)
Moreover, using the periodicity of Vi,
dy o .
<k Vyllco. Y #L (5.18)
Xj
Given now 6 > 0, we can choose y, k and § in the following way:
0 IVl co 14
<—, k> ———— and 8 < -,
Y=e *= ¢ =%
so that, from (5.17) and (5.18), the lemma follows. ]

Remark 5.7. We note here that, given 7 and ¢ as in Proposition 5.6, for every
k € N, the following functions and triangulations,

ok(x) ==k lp(kx) and T* = {T}}ien,

where Tf‘ = k~!T;, satisfy the same conclusions as in Proposition 5.6 with §; =
5/ k:

oc(1,X)=1 YieR" VIeZ (5.19)
d
HE| = VxeR" j#I (5.20)
an

) I 9
075 <5 VYxeR' and —a‘”‘ (x)=0 YxelFs. (521)
X1
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5.3. Proof of Proposition 5.1. In light of the Kirszbraun extension theorem, it
suffices to show that, given a short map f : R" — R” and n > 0, there exists
h € Fe(x,y, K)such that || f = &l[cogy = 1.

There is no loss of generality in assuming that x = 0, y = e¢; and K C Bpg for

some R > 0. We construct h as the result of successive approximations.

Step 1: Mollification. We consider first the map f; = (1 —260) pg * [, where
6 > 0 is a real number to be fixed later. Clearly,

f1 € C®M@R"), Lip(fi)) <1-286,

and

If = fillcosyry = I1F —po * fllcowny +26 ps * fllcos,
<9 (1 +2 fuco(Bzw)) . (5.22)

Step 2: Piecewise affine approximation. Next, we approximate f; uniformly by
a piecewise affine map f>. To this aim, consider the periodic triangulation 7~ given
by Proposition 5.6. Note that, by periodicity, there exist o, r > 0 such that, for every
T,‘ € T,

B.(x;) C T; C Bysr(x;), with x; barycenter of Tj;.

Choose k € N such that

4ro?||V2 4r
| ’I{IHCU(BQ_R) <0 and ro

<90, (5.23)

and consider f, the piecewise affine approximation of f; subordinated to the
rescaled triangulation 7% in Remark 5.7. From Lemma 5.4, it follows that Salpx

is short for every Tl.k C B, g because

4r o V2 fillcos, p)

Lip(/2l7%) = Lip(/1) + Lip((f2 = fO)l7x) =1 =260 +

k
(5.23)
< 1-40.
Moreover, always for TX C Bag,
_ . . _ 4r o (523)
12~ fillcorp) = (Lip(f2) + Lip(f) diam(Tf) < == "< 6. (5:24)
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Step 3: Laminations. Finally, in every TI/'C C B,gr we replace f> by the single
lamination construction in Proposition 5.2. Since the boundary data for each simplex
is the same of f;, gluing all the constructions together, we obtain a short map f3
defined on the union of the Tl-k C By g. Moreover, we take # small enough in order
to assure that the boundary of the rescaled simplices T[’é by a factor (1 — ) and

with the same barycenter of Tik belongs to the 8 -neighborhood of the faces of T,
1.e. (notation as in Remark 5.7)

BT,% C ]:5,\,.

With this assumption, by Proposition 5.2, the function f3 satisfies:

0 1

| f3—Fallcosry = 6. Lip(f3) = -7 and (1—9)f ly1(t)|dt < £(fzoy).
0

(5.25)

for every rectifiable y = (y1..... yn) 1 [0, 1] = R™ \ F;, .
We set h := f3|g. Clearly, from (5.22), (5.24) and (5.25), it follows that

lh — ]F”CU(K) <6(3+2 llf;llcfi'(BZR+H))- (5.26)

So, up to choosing 6 suitably small, we need only to show that 2 € F¢(x,y. K). Let
y € I'k(x, y). We start noticing that there exist finitely many pairwise disjoint open
intervals /7, J,,, C [0, 1] such that

y(I)) CR"\ Fs, and y(Jpn) C Fs,.
and

D W) + Dyl = Ey) — 6. (5.27)
l m

Therefore, we can estimate the length of /& o y as follows: letting ¢ be the function
in Remark 5.7,

(5.25) (5.21) 9
5(’1°V)izf(hoylz,) > (I_Q)Zf, yil = (1~9)ZZ[’ %(

21 - 0)? Z[ l—( )ri|+ (1 6)? ij —( )y }
(521)+(527) 9(1 9)
: 0
z(l—e)zf weor 1= |2y [ -0 a-0)
0 *

J=2

(5.20) 2 2
> (1= 0)*(ee(y(1) — @ (y(0))) = (n = D E(y) 0 (1 = 0)" — 6 (1 =)

=(1-62-0(1-60)[(n—1ly)(1-06)+1]. (5.28)

)Vi,
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Therefore, from (5.28) we deduce that there exists & = 8(g) > 0 such that £{(hoy) >
(1 —eg)if £(y) < &~ !. Since the condition defining F,(x, y, K) is always satisfied if
£(y) > ¢!, this implies that 2 € F,(x, y, K) and finishes the proof.

6. Typical extensions

In this section we prove Theorem 2.2 which we restate for convenience.
Theorem 6.1. Ler f : K — R" be a short map, with K C R" compact. Set

Xf = {F S Lipl(Rn,Rn) . FlC(f,K) = f},
where f denotes the unique short extension of f to C(f, K). Then
Xy NIR"\ C(f. K)) is residual in X y.

Proof. Let {B;};ien be a countable family of closed balls B; C R"” \ C(f, K) whose
interiors cover R” \ C(f, K). By Lemmas 3.2, 3.3 and 3.5, we have that

IRNCLKNNX; D (V) () Fusx.y.B)nXy.

keNieN x,yeB; NQ"

Therefore, in view of Lemma 3.4, it is enough to prove that X r N Fy/x(x,y, B;) is
dense in X ¢. For simplicity of notation we drop the subscript i, B; = B and show
that, for every F € X7, n > 0and ¢ > 0, there existsamap G € Xy N Fe(x, y, B)
such that

£ = Gllcony = 1- (6.1)

We divide the proof in several steps.

Step 1: local strictly short approximation. By Lemma 4.2 and Proposition 4.4 we
can fix a locally strictly short extension 4 : R" — R” of f. Let R > 0 be such that
C(f.K)U B C Bg and 17 > 0 to be fixed later.

If Flp,, = 0, set F; := F. Otherwise, assuming that F'|g,, # 0, fixt > 0
arbitrary such that
< ! ;

2Nl coyr) + 1E lcoB,R)
and define the function F; : Bog — R” given by Fy = (1 —¢)F + t h: clearly in
either case

t

Filerwy = f» (6.2)
HF - Fl ”CO(BZR) = N, (63)
Lip(F1|g) < (1 —¢)Lip(F) + ¢ Lip(h[p) = I —«, (6.4)

for some 0 < o < 1, because / is strictly short in B.
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Step 2: global extension. Next we extend F; to the entire R" keeping close to F.
To this aim, consider the function F" : R"” \ Bog — R" given by

' . _ 4
Fuy_f(}(l 1+HJ)'

for some 7 > 0 to be fixed momentarily. It is simple to verify that

“F == FI”C()(R”\BQR) S T. (65)
Moreover, F’ is locally strictly short: indeed,
T
x(1— - 1 —
( 1+MJ y( y)‘
(1 + |x]) (Ix[ = Iy]
=|(x—y) )
U+M|1+Ul l+h )(1+ |y])
T (14 |x|) |x|
=l =y{1- +|x =yl
( (14 |x)(1 + [y]) (1+ [x[)(1+|»])

=u-ﬂ(1— - )<hyL
(14 [x[)(1 + [y])

Next, consider the map given by

|F'(x) = F'(y)] <

P F; In BZR ZrR.
F' inR”\BzR.

We claim that F” is locally strictly short outside C( f, K). Since F; and F’ are

locally strictly short, it is enough to consider z € B, 5_ 2e and w € dB,g and

estimate | F"(z) — F"(w)|. To this aim, we set w := Tl Y (2R - 1252};2) and note that
there exists B(z, R) > 0 such that

|z — w]

|Z—~w|_1_'8 VZEBBZR ., Y w € dBsp. (6.6)

Indeed, for every fixed w € dB;g, one can consider the function ®(z) := :j:g} and

notice that & is continuous on 98, ,_ 20K and ®(z) < 1 for every z. Therefore,
1+2

by compactness of the sphere, ® has a maximum which is strictly less then 1 and
is independent of w because of rotational invariance. We can, hence, estimate as
follows:

|F"(z) = F"(w)| < |Fi1(z) — F1(0)| + | F1 () — F'(w)|
= |F1(z) — Fi(w)| + |F1(0) — F(w)|
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(6.3) _
< lz—w[+m

e (1 — g) Iz — w),

ETR Tn particular, this implies that there exists # > 0 such that

1+2R"

provided n; <

Lip (F”l(Bm\BZR)UBZR_Ier ) <1-6.

Using the Kirszbraun extension theorem, we can hence extend F"” to a strictly short
map F"’ on B3zg, and finally set

F” in Bag,

Fy = .
F' in R"\ Bzpg.

Observe that, by construction,

Lip (Fa|By,) < 1 —6. (6.7)
Moreover, for every z € Baog \ B, ek setting Z := 1‘2—[(2 R — fj—fR), we have
41t R

|F2(z) — F1(2)| £ |F2(2) - F22) |+ |Fi(2)—F1(2)| £ 2|z -Z| <

It follows, then, that

| F2 — Fllco@ny = max {21 + [|F1 — Fllcog,py: | F' = Fllcomm\ By )}
<271+ . (6.8)

6.1. Step 3: almost isometric approximation. Using Proposition 5.1, we find
F'Y € Lip,(Bagr,R") N F.(x, y, B) such that

IF™ — F, lcocss ) < 0 12, (6.9)

for some 7, > 0 to be fixed soon. For now we merely assume that 7, satisfies the
following: setting B = B, (x), we require B’ = B,4,,(x) C Bar \ C(f. K).
Next, we verify that the map

_\F™ in B,

F* o=
Fz in BzR\B,,
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is Lipschitz continuous with Lip(FV) < 1. Indeed, arguing as before, it is enough to
consider the case of z € B and w € B, \ B’ and estimate as follows:

|F¥(z) = F*(w)| < |F2(2) = F2(w)| + [F2(2) = F'°(2))

(6.7)4+(6.9)
<(1=0)|lw—z|+6n

<(1=-0)|w—-z|+60|lw—z| <|w-—1z|

Using Kirszbraun’s Theorem, we extend FY to a short map F3 on the whole R". As
before, for every z € B’ \ B, taking w € dB’ with |w — z| < 52, we get

|F3(2) — F2(2)| < |F3(2) — F3(w)| + |F2(w) — F2(2)| < 2|w —z| <273,
It follows, then, from (6.9) that

1F2 — F3llcony = max {| F'* — Fallcogy. 2 M2} < 27a. (6.10)

We can now conclude that the function G := F3 is an approximation for our
initial function F. Indeed, G € Xy since by (6.2) Glc(rx) = Filc(rk) = f_
and Lip(G) < 1. Moreover, G € F(x,y, B) because G|p = F3|p and F3 €
Lip(B2r, R") N Fe(x, y, B). Finally, putting together (6.8) and (6.10), we conclude
(6.1) by choosing suitably 7, n; and 7, in this order. O

For later use we state the following immediate corollary of Theorem 2.2.

Corollary 6.2. Let Q2 C R”" be an open and bounded set, and let h : 2 — R" be a
given Lipschitz map with Lip(h) < L for some L > 0. Then, for every n > 0 and
M > L, there exists amap g . 2 — R" such that glpq = h, ||g —h|coq) < nand
every rectifiable curve y : [0, 1] — Q satisfies £(g o y) = M £(y).

Proof. The proof follows easily applying Theorem 2.2 to K := dQ2 and f = g/M
(note that from the condition Lip(h) < L < M it follows that C(f. K) = K). O

7. Generic restrictions

In this section we prove Theorem 2.3. We start with the following proposition on the
genericity of LSSE maps.

Proposition 7.1. Let K C R" be a compact set. Then, the typical short map in
Lip, (K, R") admits an extension to the whole R", which is locally strictly short on
R" \ K.

Proof. We construct a residual set of LSSE maps in Lip, (K, R"). For every ¢ > 0,
let K, denote the open e-neighborhood of K. Let moreover G, C Lip,(K.R") be
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the set of short maps f : K — R with this property: there exists L. < 1 and there
exists 7 : R” \ K. — R” such that Lip(h) < L and

h(z) = fO) <Llz—y| YzeR"\ K, VyeKk. (7.1)

Note that G, is open in Lip, (K, R"): indeed, if || /" — f|cok) < {1 L)E , then, for
z¢ K.and y € K, we have

|h(z) — ') < [h(z) = fFO+ 1) — f ()]

1 - L l—I—L
<Ll|z—y|+ 7 e =< |z — y],

thus implying that /" € G, because HL < 1. On the other hand, G, is also dense.
Indeed, as a consequence of Klrszbraun s theorem all strictly short maps from K
to R" belong to G, and the set of strictly short maps on a compact set is dense in the
set of short maps (indeed, given f € Lip,(K,R"), A f with A < 1 is strictly short
and converges uniformly to f as A tends to 1).
We show that the residual set
= () G

Q3e>0

is made of LSSE maps, thus proving the proposition. Indeed, let g € G. By
definition, for every g = 2% there exists a function /i : R" \ K;, — R"
satisfying (7.1). Let Hy be the Kirszbraun extension (i.e. with optimal Lipschitz
constant) of the map

hi(x) if x € (R"\ K., ).

KU(R"\ K;, )3 x+—
(R"\ Key) g(x) if x e K.

Note that by (7.1) the maps Hy are short. Set
f v= Z gk Hy.
k

The function f is a locally strictly short extension of g. Indeed, by construction
Lip(f) < 1 and f|x = g. Moreover, for every open set B with B N K = 0,
Lip(f|p) < 1 because Lip(hg) < 1 for every k such that B C (R" \ K, ). O

Proof of Theorem 2.3. Recall from Section 5 that for every x; # x; € Q"
and e, R > 0 the set Eg(x;.x;, Bg) 1s defined as

Ee(x;i,x;, Bg):={h € Lip;(K.R") : 3 f € Fe(x;.x;, BR) s.t. flx = h}.

By Lemma 3.4 and _the openness of the restriction map (see [12, Theorem 2.2]
or [11]), E¢(x;.x;, Br) are open subsets of Lip, (K,R"). Moreover, by Proposi-
tion 5.1. these sets are also dense.
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Let £ be the set of LSSE maps g : K — R”" and recall that £ is residual in
Lip, (K, R") by Proposition 7.1. We claim that every map in the residual set

& o= LN m m m Es(xi‘xj\BR)

x; #x; €Q" Q26>0 ReN\{0}

satisfies the conclusion of the theorem, i.e. is the restriction of an isometric map of
the entire space.

To show this, let f € F. In view of Theorem 2.2 and Proposition 4.4, there
exists an extension F' : R" — R" of f such that F|pn\ g € Z(R" \ K). We want to
prove that actually F € Z(R").

Fix any curve y : [0, 1] — R”. We can assume without loss of generality that y
1s parametrized by arc-length. Set

U:=y 'R"\K)and V := y~}(K).

Since Flgm\x € Z(R™ \ K), it follows that [(F o y)'| = 1 fora.e.r € U. We need
only to show that |(F oy)'| = 1 forae.t € V.

We argue by contradiction. Assuming the above claim is false: there exists a
compact set W C V and 0 < n < 1 such that

L'W)>2n and [(Foy)|=|(foy)|<1—2n forae.t € W.
It then follows that

1
f (FoyY(®)|dt <1—2n+(1—=2n2n=1—4n% (7.2)
0

Consider next a partition 7y = 0 < t; < --- < t,, = | such that

v(t;) # y(tizy) Vie{l...., m} (7.3)
Sy =yl > 1 -7 (7.4)

i=1

Then, by elementary algebra, from (7.2), (7.3) and (7.4) it follows that

CF o yliy0) _ Yizi CF o V1.0 < L4 <1-3n%

min =<
il mt |y () —y(ti-0)] — X0 ly() —y(ti)] T 1 =12

Let j € {1,..., m} be such that

E(F o yl[[,‘,ljfi])
ly(t;) — v(tj-1)l

<1-3n% (7.5)
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Fix next ¢ > 0 satisfying the following conditions:

e < P ly(t;) — y(tj-1)| (7.6)
e (1 e M) < 772- (7.7)
|xj _xj—ll

Consider two points x; and x;_; € Q" such that
ly(t;) — x| + ly(tj—1) —xj—1| < ¢ (7.8)

and, since f € F, a function F e FollX psiX =1+ Bg) such that F|g = f. Then,
since Fl|g = Flg and |(F oy)|u] <1 = |(F oy)|u|, we deduce from (7.5) that
E(F O)"[ijl,tj])
ly(;) = y(tj-1)l

Let y be the curve obtained concatenating the straight segment from x;_; to y(7;-1),
Vlit;_,.r;1 and the straight segment from y(z;) to x;, i.e.

<1-3n° (7.9)

)7 = [)/(tj—l)’xj—l] ) yl[tj_l,tj] . [)Cj, y(tj)]
Then we calculate:

UF o) a® UF oyl 141+

lxj —xj—1| = |y(t;) —yti-1)|—¢
_ E(FOVI[;,_.,;,])jL € ( ly(t;) —y(tj-1)] )
Ay =yl @) =yl ) Ny () —y(ti-)| —«
(7.5)4+(7,6)

1
5(1—3172+)72)1 2<I—172

| (Ol o,
(7—<7> . (1 o Vlpej—ye;) + 8)
&y — &)
(7.8) ((y
TP i (7.10)
|xj —xj1]

On the other hand (7.10) implies that F ¢ Fe(xjoxj1, Bgr), which is the desired
contradiction. O

8. Isometric embedding of Riemannian manifolds

Now we proceed with the proof of Theorem 2.4. In this section M is a smooth
manifold of dimension n (with or without boundary) and g € 72(M) is a continuous
Riemannian metric (i.e. a symmetric and positive definite 2-tensor field).
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8.1. Locally strictly short maps. The following general density result is used in
the proof of Theorem 2.4. Denote by Lip_; ,,.(M,R") the space of locally strictly

short maps:
Lipoy oc(M.R") = {f € Lip,(M,R") : Lip(f|a) <1 YACC M}.

Lemma 8.1. The set of locally strictly short maps Lip_y 1,.(M.R") is dense in
Lip, (M, R").

Proof. For every short map f € Lip,(M.RR") and every ¢ > 0, we show that there
exists 1 € Lip_y o.(M,R") such that D(f,h) < e. Fix a point po € M. Without
loss of generality, we may assume that f(p9) = 0. We claim that the map

&
h(p) = L -
1(p) f(P)( 1+ duy (p. Po))

fulfills the requirements. Observe first that

el f(p)l e|lf(p)— f(po)l edp (p. po)
D(h, = — )
(.1 ;25 1 +dp(p. po) pgg:: 1 +dm(p. po) = 1 4+ dpm(p. po) =4

Therefore, we need only to show that 2 € Lip_; j,.(M,R"). To this end, setting for
brevity of notation d(p) = dps(p. po), we notice that for any p,qg € M,

€ € &
h(p) —h(q) = (f(p) — f(q)) (1 = W) — /@) (1 +d(p) | +d(q))

£ e(d(q)—d(p))
(f(p) f(‘”)( l—f—a’(p)) T Ty + da)
Hence, it follows that
& ed(q) )
h(p) —h du(p.q) [1—
I (P) ((/)l =< M(p q) ( l+d(p) + (1 +d(p))(1 -I—d(q))
£
=du(p.q) (1~ : 6.1
m(p ‘”( (1+d(p))(1+d(q))) e

Given any compact set A CC M, there exists C > 0 such that sup ,c 4 dm (p. po) =
C. It follows from (8.1) applied to p.g € A that

&

Lip(h|a) =1 - axo2 < 1

thus implying & € Lip_, ;,.(M,R"). O
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8.2. Local bi-Lipschitz approximations. For the proof of Theorem 2.4 we need
also the following simple technical lemma.

Lemma 8.2. Let (B, h) be a Riemannian manifold with continuous metric tensor h,
where B C R" denotes either the ball B, centered at the origin or the half ball
B> N{x, = 0}. Forevery B > 0 there exists r € (0, 1) with this property: for every
p € By N B there exists a diffeomorphism ® : B,(p) — U for some convex open set
U C R" such that ®*go = h(p) with go the standard flat Euclidean metric of R"
and @ is bi-Lipschitz with

Lip(®) <14+ B and Lip(®~') <1+ 8. (8.2)
Proof. LetG : B — Rfy’:rﬁ  be the matrix-field corresponding to the metric tensor 7,
where R:;:Z& denotes the set of positive definite symmetric 7 X n matrices. Namely,

G i1s such that
h(v,w)=(Gv)- -w

where we recall - is the standard scalar product in R”. By the continuity of G and
the compactness of B; M B, there exists r € (0, 1) such that

(1G_|f);3))2 = Gx) =(1+ ﬁ)z G(y) Vx,ye Bl N B, dy(x,y) <4r (83)

where the above inequalities are meant in the sense of quadratic forms.

Fix now any p € B, N B. By the spectral theorem we can find R € O(n) and
D e R™" a positive definite diagonal matrix such that G(p) = RTDZR. We can
then define @ to be the linear map ®(x) := L(x — p) where L = RT DL, Clearly
U := ®(B,(p)) is convex and it is very simple to verify that ®*go = h(p): indeed
for every v, w € R”

h(p)(DO(p)v, DO(p)w) = G(p)R"D'v-RTD'w =v-w.

In order to estimate the Lipschitz constant of @, consider two points x.y € B,(p),
0 < n < r arbitrary and y € I'(x, y, B) such that £;(y) < dj(x,y) + n. Then for
every 1 € [0, 1] we have

dp(p.y(t)) = dp(p,y(0)) + dp(y(0),y(t)) = dp(p.x) + £p(y)
Sdp(p.x)+dp(x,y)+n=4r.

Hence (8.3) is applicable and implies that 1(p) < (1 + B)?h(y(t)) as quadratic
forms, or equivalently go < (1 + B)*(®~1)*h(y(t)). One can therefore estimate

1
)~ 00| = Ley(@op) = [ 1@y O] dr
0

1
<1+ ﬁ)/o [V (Ol dt = (1 + Bl (y)
< (1 + B)dn(x,y) + n). (8.4)
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Since n > 0 arbitrary, we conclude that Lip(®) < 1+ B. Vice versa we can consider
two points z, w € U and the straight line o : [0, 1] — U connecting z to w (note
o ([0, 1]) C U). Arguing as before, from (8.3) we have that 2(y (1)) < (1+8)(P)*go
from which

1
dp(z,w) < Ly(®7 ' 00) = f (@7 00) (1) p@-100()) 4!
0
1
<(1+ ,‘3)[ lo’(t)|dt = (1 + B)|z — w| (8.5)
0

ie Lip(®~!) <1+ 8. O

8.3. Proof of Theorem 2.4. We fix a smooth atlas {(A4;, ¢;)}ieny of M with the
following properties:

(a) A; CC M;
(b1) ¢i(Ai) = B, CR"if A; N M = @;
(b2) ¢i(A;) = BaN{x, >0} CR"if A; N OM # 0;
(¢) Uieng; '(B1) = M.
Set C; = qai_l(Bl) and note that C; is compact in M. By Lemmas 3.2, 3.3, 3.4 and

3.5 we have that
Iv =) () Fpaxp.Co)
IENkeN x#yeD;

where D; = (pl."l((@” N By). It is then enough to show that F,(x, v, C;) is dense in
Lip,(M,R") for every ¢ > 0 and every x, y € C;. To simplify the notation, since
from now on the subindex i is fixed, we drop it and, moreover, we write B for either
B> or B> N {x, > 0}, according to the case occurring in (by) or (by).

We have then fixed the following notation:
ACM, ¢:A— B and ¢ Y(B,NB)=C.

We have to show that, given f € Lip,;(M,R") and n > 0, there exists F €
Fe(x,y,C) such that D(F, /) < n. We divide the proof in different steps.

Step 1: locally strictly short approximation. Recalling that by Lemma 8.1 the
inclusion
Lip_y jo.(M.R") C Lip, (M,RR")

is dense, we then find fo € Lip_; ,.(M.R") such that D(fo. f) < 3. By the

definition of Lip_, ,.(M,R"), there exists @ > 0 such that Lip( folc) = | — .
Clearly, there is no loss of generality in assuming that o < &.
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Step 2: local bi-Lipschitz approximations. Let 8 > 0 be a parameter to be fixed
later and /1 := (¢~ 1)*g the pull-back metric. One can then apply Lemma 8.2 to
(B.h) and find r > 0 which satisfies the conclusion therein. By a simple volume
argument (recall that B is either B, or the half ball B, N {x, > 0}) there exists a
constant N = N(n) depending only on the dimension 7, in particular not on r, such
that we can cover B by N families of pairwise disjoint open balls of radius r. More
precisely, for/ =1,..., N there exists F; = {B,(p/‘,-)}:.';ul) for some m(/) € N and
pLi € By N B, such that

N m(l)

Br(pri) O Br(pry) =0 Vi#j and Bl B
I=1i=1

For every pair (/,7) above we let ®;; : B, (p;;) — U;; C R”" be the bi-Lipschitz
diffeomorphism given in Lemma 8.2, and we set A;; := ¢~ "(B,(p1.i))-

Step 3: iterative procedure. We construct the map F : M — R”" as the result of
an iterative procedure which leads to a sequence of maps fo. f1..... N M - R"
(where N is the number of the families of the covering in the previous step) such
that F = fy € Fe(x.y.C).

We set 6 = % and fy given in Step 1, and construct the functions fi..... IN
recursively satisfing the following:

Lip, (fi) = (1 + B)** (1 —a) (8.6)
D(fx. fo) = k0 (8.7)
U froy) =2 (1 +B) (1 —a)be(y) (8.8)

for every k > 1 and every rectifiable curve y : [0, 1] — Uj<x U; A;; C C.

Note that (8.6) and (8.7) are clearly satisfied by fo. Given fi_ satisfying (8.6),
(8.7) and (8.8) (only if & > 1), we construct f; in the following way. We consider
the balls B, (p ;) of Step 2 and set ¥ ; : Ug; — R" given by

: i
Vki = fk—10 P ;-

Using the bound on the Lipschitz constant of <D;', in (8.2) and (8.6), one can verify
that

Lip(¥.) < (1 + ) (1 — ).
Hence we can use Corollary 6.2 and construct a map yx; : Ux; — R”" such that

Lip(xk.i) < (14 B) Lip(yx,i) = (1 4+ B)*'(1 —a). (8.9)
xkilave; = Yilove .+ Nxei — Yaillcow, ) < 0. (8.10)
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and for every rectifiable curve y : [0, 1] — Uy ;

ki o7) =1+ A¥* 1 —) (7). (8.11)
Then, we set f; : M — R",

fee) = M1 if x € M\ UJZP Ay,
) Xk,i©®Ppi(x) if x € Ay ; forsomei =1,..., m(k).

By (8.10) and the fact that the {Ag ;}; are disjoint open sets, fi is well-defined
and satisfies (8.7) by triangular inequality. Moreover (8.6) follows from (8.2) and
(8.9) straightforwardly. For what concerns (8.8) we argue as follows. Consider
y 1 [0,1] = Uj<x U; Ap; rectifiable. Set I = y~'(U; A ;). Since the sets A;;
are open and disjoint, I is relatively open in [0, 1] and we can write / = U;J;
with J; disjoint relatively open sets such that y(J;) C Ag; for every i. Setting
Yi = ®k i o y|y,, it follows from the definition of f; that

Cfioyls) =07 = (1+ B> 11 —a) t(5)
(8.2) 3
> (L+ B 21 —a) Lo ().

On the other hand, let H C [0,1] \ / denote the set of points ¢ such that / has
Lebesgue density 0 at ¢ and there exist ( fr o ¥)'(t), (fr—1 © y)'(t) with

|(fk—107) ()] = A+ (1 =)y t)lg.

Note that A has full measure in [0, 1]\ / thanks to the assumption of (8.8) for fx_;.
Since fx o y|w = fik—1 © ¥|u, it follows easily that, for every 1 € H,

Sk o) O] = 1Sk op) O] 2 (1+B) (1 =) ¥ ()]
Therefore, (8.8) for f; follows from

Weon) =Y hiorl)+ [ [(eopy@ld

[0,1]\
=1+ B2 (=) Yt + 1+ A (=) [ Ol

>(1+p) (1 —a) (ngm) + [H Iy’(t)gdr) = (1+B) (1 =) Ly

Clearly F = fn concludes the proof for

[ 1
0<ﬂ<3N — 1.
l -«

Indeed, Step 1, (8.7) and (8.6) imply D(F, f) < nand Lip(F) < 1. Moreover Step
2,0 < ¢and (8.8) lead easily to I € Fe(x,y,C). H
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