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BIBLIOTHEK
Sur 1'application des periodes d'une variation de structure de

Hodge attachee aux families d'hypersurfaces ä singularites
simples

Philippe Eyssidieux and Damien Megy

Resume. Soit n e N* un entier positif pair et d un entier positif Pour toute tamille complete Y

d'hypersurfaces de P"+' de degre d ä singularites isolees de type A-D-E, nous constiuisons
d'apres une idee de Carlson et Toledo reprise dans [34,431 un champ de Deligne-Mumford Y

d'espace de modules Y auquel la representation de monodromie de la famille se prolonge. Nous
etudions l'application de periodes associee et montrons un theoreme de Torelli infinitesimal
le long des stiates isosingulieres de Y sous des hypotheses de transversalite Enfin, nous

apphquons ce resultat ä l'etude du revetement universel de Y.
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1. Introduction

La theone de Hodge et ses prolongements imposent des contraintes tres fortes sur
le type d'homotopie des varietes kähleriennes compactes [12,42,44] et notamment
sur leurs groupes fondamentaux, appeles groupes kähleriens (voir [1] pour une

presentation et le seminaire Bourbaki [7] plus recent). En depit des nombreux
resultats contraignant les groupes kähleriens, la question posee initialement par Serre
de caracteriser dans les termes de la theorie des groupes les groupes kähleriens parmi
les groupes de presentation finie reste largement ouverte.

Une approche dans l'etude de ces groupes fondamentaux est de considerer
leurs Schemas de representations lineaires. La geometrie des varietes kähleriennes

sous-jacentes a des consequences algebriques importantes, notamment que ces
Schemas sont ä singularites quadratiques [25,42]. Iis heritent egalement de structures
supplementaires par comparaison avec des espaces de modules de fibres de Higgs.
Un certain type de representations lineaires, les Variations de Structure de Hodge
polarisables complexes (VSH), jouent un role privilegie dans l'etude des representation

lineaires des groupes kähleriens grace au theoreme d'ubiquite de Simpson [41].
Le concept a ete degage lors de la decouverte fondamentale par Griffiths [27] que les
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systemes locaux de monodromie sur les espaces de modules de varietes polarisees
sont des VSH Les applications de penodes associees donnent alors des informations

precieuses sur ces espaces de modules et leur umformisation [13,27,30,33]
Cependant, malgre 1' importance theorique des VSH, relativement peu d'exemples

concrets en sont connus et les espaces portant de telles variations sont rarement

compacts Dans cet article, on etudie des situations oil ll est possible d'obtenir, via le

theoreme de prolongement d'applications de penodes de Griffiths, des VSH sur des

varietes projectives Le point de depart est le suivant.
Dans [43] est decnte une classe de surfaces projectives algebriques S munies de

Q-vanations de structure de Hodge Ys qui sont interessantes du point de vue de la
theone de Hodge non-abelienne (S, Ys) ne peut pas s'expnmer pai tire en arriere ä

partir de systemes locaux sur des courbes, varietes abeliennes ou espaces localement

symetriques hermitiens. Ce sont des exemples particuherement interessants pour
runiformisation en plusieurs variables complexes (voir [24] pour un survey recent)
et Tun de nous a generalise cette constiuction jusqu'en dimension six et a entame
1'etude cohomologique de ces exemples [34] La conjecture de Toledo stipule que

pour toute vanete kahlerienne compacte Z, on a (Z), Q) ^ 0, ce qui est le

cas si le revetement universel de Z est contractile Cette conjecture n'est decidee
dans cette classe d'exemples que dans certains cas [34] La motivation initiale de

ce travail est d'etudier pour cette classe d'exemples l'autre probleme ouvert general
de 1'umformisation en plusieurs variables complexes, c'est-ä-dire la conjecture de

Shafarevich predisant que le revetement universel d'une vanete projective algebnque
complexe est holomorphiquement convexe (ct. [24] pour la definition de la convexite
holomorphe et une discussion du probleme)

Decrivons la construction de [43] et son prolongement par [34] qui reprennent
une idee de Cailson et Toledo Dans ce qui suit X designe une vanete projective
complexe connexe de dimension n + 1 avec n > 1, L un faisceau inversible tel que
|L| n'a pas de point base. Si r) [/] |L| est represents par une section globale

f e H°(X, L) — [0], on note

I, I/ {ref|/(v) 0}.

Definissons l'ouvert de Zanski Uq •= U(X, L)o de |L| comme le lieu des [/] e \L\
tels que X/ est une hypersurtace lisse et notons D •= |L| — Uo le lieu discriminant

L'ouvert Uq est la base d'un Systeme local naturel, note Vt/0, dont la fibre au-
dessus d'un point [/] est l'espace vectonel de cohomologte evanescente

Hnev{Xf - Q) •= coker (H"(X, Q) Hn{Xf. Q))

Ce Systeme local est le produit tensonel par Q d'une Z-variation de structure de

Hodge de poids n sur Uo qui est polansee par la forme d'intersection fx — U —

sur les fibres [46] Fixons une fois pour toutes un element general fgen £ H°(X.L)



Vol. 90 (2015) Application des periodes des hypersurfaces ä singularites simples 733

et prenons r/ [fgen\ £ Uq comme point base. La representation d'holonomie du

Systeme local V[/0 s'ecrit

p : Jti(Uo, rj) -> G := Ant ^(X,, R), jf - U -j
Dans la suite, Tender n est pair. La forme d'intersection est alors symetrique et le

groupe G est un groupe orthogonal.
Introduisons U := U(X. L) c \L\ Touvert de Zariski, contenant U0, forme

des hypersurfaces lisses ou n'ayant que des singularites isolees simples. Une

singularite isolee d'hypersurface est dite simple si dans une deformation miniverseile

([32]) n'apparaissent qu'un nombre fini de classes d'isomorphisme de singularites.
V. Arnold a demontre qu'une singularite d'hypersurface est simple si et seulement
si eile est de type ADE [2]. En dimension paire, le groupe de monodromie d'une
telle singularite est le groupe de Coxeter ADE correspondant, qui est en particulier
fini; reciproquement, ce sont les seules singularites d'hypersurface dont le groupe de

monodromie est fini (voir [3] ou [14]). En dimension deux, la notion de singularite
simple est confondue avec celle de singularite Du Val ou encore avec celle de

singularite canonique [29].

Cette propriete de finitude de la monodromie nous permet dans la section 3.1

de construire un champ algebrique de Deligne-Mumford U := U(X, L) separe et

propre sur son espace des modules U, contenant Uq> comme ouvert de Zariski, et

verifiant la propriete suivante : notant i : U0 C U Tinclusion et /* : ni(U0, rj) —>

7i\{U,rj) le morphisme surjectif induit par i sur les groupes fondamentaux des

champs topologiques sous-jacents [35, 36]), alors le noyau de /* est contenu
dans celui de p. Par consequent, la representation p descend ä une representation

p : tt\ (U,rj) —> G. Si L est assez ample et si vj est un point de U au-dessus

d'une hypersurface singuliere Xft, le groupe d'inertie de U en rj est le produit des

groupes de monodromie des points singuliers de Xj>. Ces groupes de monodromie
sont precisement les groupes de Coxeter ADE de meme type que les singularites.
Plus generalement, la construction de U integre comme groupe d'inertie en p le

groupe de monodromie locale de p en rj qui est un sous-groupe de ce produit.
La representation pi apparait comme Tholonomie d'une Q-variation de structure

de Hodge (Vgr, T, S), polarisee de poids n, sur le champ U. L'image T de p est la

meme que celle de pi et un theoreme classique de Beauville [5] entraine que c'est un

sous-groupe arithmetique du groupe orthogonal G (voir [9, theoreme 9.1]).

Notons U le sous-groupe de G qui stabilise la structure de Hodge sur H"v {Xn, R),
et T> := G/U le domaine de Griffiths [27]) attache ä (Vy, J7, S). On rappelle
que T> a une structure naturelle de variete complexe homogene et porte une
distribution holomorphe horizontale G-equivariante. L'action de T sur T> est proprement
discontinue et le champ quotient [E\77] est un orbifold complexe. L'application des
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periodes de (Yjj.lF. S) definit une application holomorphe horizontale de champs

complexes analytiques

p : U -+ [r\D],
Le principal resultat de cet article est un theoreme de Torelli infinitesimal. Plus

precisement, on etudie 1'application des periodes p en restriction ä certaines strates
definies de la maniere suivante : pour tout k e N, on note Uk C U l'ouvert des

hypersurfaces ä singularites simples dont le nombre de Tjunna total r(f) (voir la
section 2) est inferieur ou egal ä k et on note Uk U xu Uk - C'est un sous-champ
de U, d'espace de modules Uk- On s'interesse au comportement de p sur les strates

Uk — Uk-i (voir 3.6), sous des conditions de positivite sur L.

Theoreme 1 (voir prop. 3.8.1 et prop 6.3.1). Pour X P" + 1

avec n > 2 pair,
d > 0 et L Ox(d), on a :

(1) faction de PGL(n + 2) sur \L\ se releve a U en preservant les differents U\.

(2) Soit k > 0 Si d > n + 2 + k, la differentielle de la restriction de l'apphcation
de periodes de Vjj ä la strate Uk — Uk~\ a pour noyau le tangent de l'orbite de

PGL(n + 2).

Nos bornes ne sont pas optimales. Si les surfaces quintiques avec un nceud

sont obtenues par notre theoreme, ce dernier est vide pour les surfaces quartiques
ä singularites simples alors que Torelli infinitesimal est bien connu dans ce cas.

L'obtention de bornes optimales necessiterait des arguments nettement plus fins non

developpes ici.
Le resultat avec k 0 est un resultat classique de Griffiths [26J. La preuve du

theoreme 1 repose sur le calcul de la differentielle de l'apphcation de periodes pour
des hypersurfaces nodales issue du travail fondamental [18] et de l'etude de leur
filtration de Hodge dans [20], Nous etendons une partie des resultats de ces articles

aux hypersurfaces ä singularites simples. Cette extension effectuee, l'enonce de type
Torelli infinitesimal repose sur une Variante donnee au lemme 5.2.1 du theoreme de

Macaulay pour des hypersurfaces a singularites isolees quasi-homogenes, exacte-

ment comme dans [46], Techniquement, nos resultats sont complementaires de ceux
de [16,21] qui ne considerent pas la question de Torelli infinitesimal.1

Une generalisation du theoreme de Griffiths sur les integrales rationnelles
donnant une interpretation de la differentielle de l'apphcation de periodes comme
Operateur de multiplication pour les directions transverses aux strates isosingulieres
ne semble pas avoir ete consideree de fa^on systematique dans la htterature. De

meme ll est probable que le theoreme 1 se generalise pour X quelconque pourvu
que L soit assez ample mais la encore nous n'avons pas trouve de reference dans la

litterature. Nous laissons ces questions pour de futures recherches.

1 Alors que nous hnissions de rediger ce travail, A Dimca nous a Signale que le lemme 5 2 1 resultait
de [191 qui traite le cas plus general des singularites isolees quelconques, moyennunt une traduction qui
n'est pas si evidente pour nous Notre preuve demandant moins de technologie et restant assez courte,
nous avons done pretere la conserver
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L'application ä la conjecture de Shafarevich est immediate en utilisant une
construction de [22,23] :

Corollaire 2. Hypotheses et notations comme an theoreme 1. Soit Y une variete

projective lisse et <p Y —> un niorphisme fini. Alors le revetement universel de

Y est une va riete de Stein.

Remarquons qu'il existe effectivement de telles varietes projectives Y dont la

dimension peut aller jusqu'ä six. En effet, l'ouvert Ut a un complementaire de

codimension c > min(7. k) des que L est k-jet-ample (voir [34]). Pour plus de

resultats sur le revetement universel de tels Y, dans le cas oü X Pn+I ou non,
voir la section 7. Dans le cas oü 0 est generiquement fini, l'etude de la conjecture de

Shafarevich semble beaucoup plus delicate et nous ne savons pas non plus la decider
dans tous les cas.

L'article est organise comme suit. Apres avoir rappele quelques notations et
resultats dans la section 2, on construit dans la section 3 le champ U ainsi que la
variation de structure de Hodge Vjjr, et on prouve la premiere partie du theoreme 1

en 3.8.1. La section 4 contient une comparaison entre les tiges de Vjj aux points
correspondant ä des varietes singulieres et la cohomologie de ces varietes singulieres.
La section 5 contient un theoreme general de dualite de Macaulay pour des varietes
ä singularites moderees. On I'applique dans la section 6 par 1'intermediate d'une
formule de type Dimca-Saito-Wotzlaw, pour obtenir en 6.3.1 la fin de la preuve du

theoreme 1. Les applications ä la conjecture de Shafarevich sont donnees dans la

section 7.

Remerciements. Nous tenons ä remercier D. Barlet, N. Borne, M. Brion, A. Dimca,
S. Druel, L. Gruson, C. Peters, C. Voisin, M. H. Saito et tout particulierement A. Ot-
winowska pour d'utiles remarques sur les questions traitees ici. Nous remercions

egalement le rapporteur dont les remarques ont aide a anteriorer 1'exposition.

2. Notations et rappels

Dans cette premiere section, nous precisons certaines notations et rappelons
quelques resultats portant sur la topologie et la theorie de Hodge des hypersurfaces
a singularites simples.

Pour tout espace T et tout groupe A, At designe le faisceau des fonctions
localement constantes sur T ä valeurs dans A. Plus generalement si Wr est un

Systeme local sur T et cp : T' —> T une application continue, on note Wj'
0*Wf. De meme, pour X -> T une application continue, on note Xj' X xj T'.

Soit X une variete projective lisse complexe de dimension impaire n + 1, I
un fibre en droites sans point base sur X. On note X C \L\ x X l'hypersurface
universelle et p\ : X \L\ la projection sur le premier facteur. L'ouvert Uq de
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1'introduction est l'ouvert de lissite de p\ et en notant Xq px '(C/oX le conoyau
du morphisme de systemes locaux Hn(X, Q)u0 — R" Pi*Qx0 est exactement Vt/0.

2.1. Nombre de Tjurina. Soit / e H°(X, L) — {0} telle que l'hypersurface

{/' 0} := Xf n'ait que des singularites isolees. Soit £ C Xf le sous-schema

artinien de X de support XSj"g defini par l'annulation du premier jet de /. La

longueur de £, i.e. le nombre de Tjurina total r(/), est defini par la relation

z(f) Y rp(f) Y dim(Os,p).
Ps|E| Pe|E|

Choisissant des coordonnees locales et une trivialisation locale de L et notant fp
la fonction qui definit f dans ces coordonnees, on voit que ö-^.p est isomorphe ä

l'algebre de Tjurina 0Cn+^fi/{fp, a^)-

2.2. Cohomologie de certaines hypersurfaces singulieres. Soit [/] \L\.
Alors la cohomologie Hn(Xf,Q) est munie de la structure de Hodge mixte

canonique de Deligne [10]. Supposons que Xf n'ait que des singularites simples.
Comme une singularity simple a une forme d'intersection definie negative done

non degeneree, la variete de dimension paire X/ est une variete d'homologie
rationnelle [14, prop. 4.7]. Le morphisme naturel Qx/ [«] ICx,Q vers le

complexe d'intersection [15,5.4] est alors un isomorphisme et le groupe H" (Xf, Q)
coincide done avec le groupe de cohomologie d'intersection IHn(Xf,Q) :=
H°(A'/, ICx/ Q) et porte une structure de Hodge pure de poids n.

3. Structure orbifold sur U et prolongement de la representation de monodro-
mie

Dans cette section on commence par introduire (3.1) le champ de Deligne-
Mumford U qui est muni d'une variation de structure de Hodge. Dans certains

cas (3.8), ce champ est egalement muni de Faction d'un groupe algebrique, et la

variation de structure de Hodge descend au champ d'Artin quotient. Son application
des periodes est etudiee ä la section suivante.

3.1. Reformulation et extension des resultats de [34]. Reprenons les notations
de la section precedente, et soit k e N, et Up c \L\ l'ouvert de Zariski constitue
des [/] e L tels que X/ n'ait que des singularites isolees, simples, et telles que

t(/) < k. On a Uo C U\ C ••• C U [J^ U^. Remarquons que U est non vide

puisque l'ouvert Uo des [/] tels que X/ soit lisse est non vide par Bertini.
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Proposition 3.1.1. Soient X, L et U comme ci-dessu v. II existe un champ de

Deligne—Mumford U contenant Uo et fini sitr son espace de modules U, tel que la

representation de monodromie de n\ (Uo) se prolonge ä'p := *P(x,L) • 771 (0''. b) —>

0(H" (Xfr,Q)) oil b e Uo est un point base arbitralre. De plus, si L est k -jet-ample,
alors le sous-clutmp ouvert := U Xy Uk est lisse.

La preuve occupe les paragraphes 3.2 ä 3.6 suivants.

3.2. Deformations locales. Soit / e H°(X,L) tel que l'hypersurface Xf c X
soit ä singularites isolees. Tout voisinage de [/] dans FH°(X,L) induit une
deformation globale de Xf et done induit pour chaque point singulier p e |E|
une deformation locale du germe (Xf.p). Notons Dei(Xf.p) la base d'une
deformation miniverselle [32, 6.4, 6.5] de la singularity isolee d'hypersurface

(Xf, p). La propriete universelle fournit des morphismes de germes

\p:(\L\.[f])^Def(Xf.p) et A [~[ Xp : (|L|, [/]) -> [~[ Def(Xf, p).
pe |E| pe|E|

II est connu que pour des singularites isolees d'hypersurfaces, Def(Ay, p) est lisse et

naturellement isomorphe ä un voisinage de 0 dans l'espace vectoriel Oy,,p [32, 6.7],
De plus, toujours par propriete universelle, la deformation (X x |L|, (p, [/])) D

(X, (p, [./])) —>• (|L|, [/]) est induite par la deformation miniverselle. En particulier
les elements de \L\ proches de [/] et singuliers pres du point p sont ceux que Xp
envoie dans le discriminant Vp C Def(Af/, p).

La surjection de faisceaux L L <g> induit un morphisme

H°(X, L) -> //°(A,L0Oe) © Ov,P®L (3.2.1)

pe|E|

qui evalue les jets des sections aux points singuliers de Xf. Ce morphisme s'annule
sur / et definit sur le quotient H°(X, L)/(f) ~ T[/]|L| une application que Ton
note

evU\ 0 evp : T[f]|L\ -+ 0 Os.p ® L (3.2.2)

/?e|E| pe|E|

Cette application est la differentielle de A en [/].

3.3. Stratification par le nombre de Tjurina. Soit i: Net posons U^ —

Uk-1- Alors Zk est localement ferme dans U, on le munit de sa structure reduite
induite. Dans tous les cas envisages ici, Z\ est non-vide, lisse de codimension un
et connexe car son adherence est le discriminant D c \L\ qui est irreductible. Par

contre Z^ n'est pas generalement pas connexe si k > 2 : par exemple Z2 designe
les hypersurfaces X/ dont les singularites sont soit deux points doubles ordinaires,
soit un cusp de type
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Soit [f] G Zk, p un point singulier de Xf et Xp : (\L\, [/']) —>• Def(Xy, p)
comme plus haut. La deformation miniverselle possede une structure assez riche. Le
discriminant Vp C Def(Zy, p) est un germe d'hypersurface reduite et irreductible
dans Def(Zy, p) et sa multiplicity ä l'origine est egale au nombre de Tjurina xp :=
r( fp) de (Xf, p) [32, 4.8], La stratification de Samuel de Vp est la partition en

sous-ensembles

Zf := {x Vp, mu\isVp /}, /GJI.T/jJ.

C'est aussi la partition par nombre de Tjurina, au sens oil dans la famille miniverselle

(X,p) —> (Def(Zy, p), 0), la fibre au-dessus d'un point s G Zf a au voisinage de p
des points singuliers dont la somme des nombres de Tjurina vaut precisement /.

Par [17J, cette partition coincide avec la stratification canonique de Whitney. En

notant Zf le complementaire du discriminant dans Def(Zy. p), on a finalement une
stratification de toute la base

xp

Def(Xf,p) \Jzf,
l=o

avec Zf de codimension /. Le produit npe|E| DeffZy, p) herite de la stratification

produit.
Toute cette structure peut etre tiree en arriere ä (| L \,[/']) au moyen du morphisme

A. En particulier, pour tout I < k, l'intersection de Z/ avec un voisinage de [/] se

laisse decrire comme 1'image reciproque par A de la reunion sur toutes les partitions
de/

'= E'o
pe |Z|

des strates produits n^e]s| Zf •

Le morphisme A permet egalement de comparer les groupes fondamentaux
locaux, au sens suivant. Soit B une boule de |L| centree en [/], suffisamment petite.
Alors, on a un morphisme de groupes fondamentaux

A* : ni(UQ nß)-> [~[ (Def(Zy, p) - Zf) (3.3.1)

pe |E|

Les groupes tz\ ^Def(Xy, p) — Zf j sont bien compris grace aux travaux d'Arnold

et Brieskorn. Chacun d'entre eux est isomorphe au groupe de tresses generalise de

type ADE correspondant au type de singularity au point p. Par exemple pour un point
singulier de type Ak, c'est le groupe de tresses classique a A' + 1 brins. Le groupe
it\(Uo H B) est appele groupe fondamental local en [/].

Cette description locale se comporte bien par cospecialisation au sens oil si une

singularity simple g se specialise en /, alors une deformation miniverselle de g peut
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etre obtenue en construisant d'abord une deformation miniverseile de f et en prenant
a l'interieur de celle-ci une transversale ä l'orbite de g. Ainsi, une deformation
miniverseile de g peut etre realisee comme plongee dans celle de /.

3.4. Utilisation de l'hypothese de A-jet amplitude. Soit k e N. Si L est A-jet
ample, on peut decrire la structure locale des strates Z/ pour / < A et minorer leur
codimension pour / > k.

La A-jet-amplitude entraine que pour tout [/] e Z^, le morphisme (3.2.1)
d'evaluation des multijets est surjectif. Autrement dit, A est submersif en [/] et

equivalent ä la seconde projection du produit (Z*. [/]) x ri/>e|E| Def(V/, p) [32,
Ch. 6], la strate Z^ est ltsse en [ / ] et son espace tangent est le noyau du morphisme
d'evaluation (3.2.2). Pour tout / 5 k, la strate Z/ est hsse de codimension /, et la

stratification U\ U/=o est ^e Whitney en [/] puisque c'est le cas dans les

deformations mimverselles locales. De plus, le morphisme induit (3.3.1) entre les

groupes fondamentaux locaux est un isomorphisme.
Enfin, toujours sous l'hypothese de Ar-jet amplitude, les strates Z/ avec I > k

sont de codimension au moins k + 1 [34, Th. 3.11 mais leur structure locale n'a pas
de description simple.

Remarque 3.4.1. S'il est vrai que l'hypothese de positivite sur L permet de

contröler la codimension des strates Z^, nous attirons l'attention sur le fait que
le complementaire de U dans \L\ a une codimension qui ne peut pas etre rendue

arbitrairement petite. Des que L est 3-jet ample, cette codimension est exactement

sept.

3.5. Revetement galoisien neutralisant la monodromie locale. Sur l'ouvert B n
U0 B — Zi, on peut considerer la restriction du Systeme local R"p\*Q_x0 de

cohomologie des fibres, ainsi que le Systeme V{/0 deduit du precedent en quotientant
par 1'image (constante) de Hn(X,Q). Sa representation de monodromie est notee
p| (ß-zi) ou ^implement p[yj, c'est la composition ä gauche de p par n\(Uo n B)
—» jt\(Uo) On l'appelle la representation de monodromie locale en [ f}.

Enfin. pour chaque point singulier p de X f, on a sur Def(A\ E) — Zf la
representation de monodromie de la singularity, ä valeurs dans les automorphismes de la

cohomologie de la fibre de Milnor notee Fp et munie de sa forme d'intersection :

pp itt, (Def(A. p)-Zf) ^Aut(Hn(Fp,Q). (--)).
Son image est le groupe de monodromie de la singularity, qui est fini car la singularity
est simple et de dimension paire.

En composant avec (A^)*, on obtient des representations notees A*(pp) de

*i (B - Z7).
Toujours parce que Xj est de dimension paire et n'a que des singularites

isolees et simples, py ] se decompose comme somme directe d'un facteur trivial
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et de Son image est done finie. Si de plus L est A-jet ample. A* est

p
bijective et l'image de p[/] est isomorphe au produit des groupes de monodromie
des singularites de Xf. Pour tous ces resultats, voir [34, Prop.4.1],

Par un theoreme de Selberg [40], il existe un sous-groupe normal sans torsion
d'indice fini dans p(n\(Uo)). Le revetement etale fini correspondant i) : Uq —» Uo

est galoisien de groupe note G et se prolonge par le theoreme de Grauert-Remmert
en un revetement galoisien normal encore note i) : \L\' —»• |L|, unique a

isomorphisme pres. On note aussi U'k — \L\' X|/q Uk et r) : U'k —> Uk la restriction
a cet ouvert. Le sous-groupe sans torsion d'indice fini n'est bien sür pas unique, et
done le revetement 17 non plus. Cependant, la structure locale de r] est toujours la

nieme, au sens suivant. La restriction du revetement 17 : Uq —» Uo au-dessus de

I/o O ß est un revetement non connexe, dont chaque composante connexe est le

revetement galoisien de Uo D B detini par le sous-groupe kerp[/] C jz\(Uo Pi Z?), le

noyau de la monodromie locale [34, Th. 4.3, etape 1 ]. Ceci signifie que le systeme
local iy*V[/()nß sur r/-I(Uq 0 B) a monodromie nulle, done s'etend en un systeme
local (trivial) sur rj~x(B). Par consequent, le systeme local Vj/() tire en arriere par 17

s'etend en un systeme local Vjy sur U'.
Si L est A-jet ample, Uk est lisse car le modele local de 17 : U'k —>• Uk est

le quotient d'un espace vectoriel par un groupe de Coxeter de type ADE agissant

comme groupe de reflexions [34, 2.2], Dans ce cas, le systeme local sur Uk
est sous-jacent ä une variation de structure de Hodge par le theoreme d'extension de

Griffiths [27],
Le paragraphe qui suit elimine I'ambiguite sur le choix du revetement U'.

3.6. Construction du champ. Considerons le champ quotient U [U'/G], C'est

un champ de Deligne-Mumford normal, d'espaces de modules U^. On^peut definir
des sous-champs ouverts Uk [Uk/G], et considerer Z^ := Uk — Uk-\ avec la

structure reduite induite de sous-champ localement ferine. On note 7t\(Uk),
7i] (Zk) les groupes fondamentaux des champs topologiques sous-jacents [35,36].

Le champ U ne depend pas du choix du revetement 17 au sens ou si U' —> U

et U" -> U sont deux revetements de groupe de Galois G\ et G2 correspondant a

deux choix de sous-groupes distingues sans torsion comme plus haut, 1'intersection
de ces deux groupes donne un revetement commun U'" —> U, de groupe de Galois

note G3. Alors, [U'/Gx] ~ [W'/Gi] ~ [U"/G2\.
Si cn[/] est surjective pour tout [/] e Uk et en particuher si L est A-jet-ample.

alors la variete U'k est lisse done le champ quotient Uk est un champ de Deligne-
Mumford lisse d'espace grossier Uk, le groupe d'inertie en [ f ] etant le produit des

groupes de monodromie locale des singularites de Ay, et pour tout I < A, Z/ est

lisse et Z/ est une gerbe sur Z/. Cette description locale de U peut se reformuler de

la maniere suivante. Pour chaque point p singulierdans Xy, Def(A/. p) est l'espace
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grossier d'un champ de Deligne-Mumford lisse Def(Z/. p) obtenu comme quotient
global d'un germe lisse par le groupe de monodromie de la singularity en p agissant
comme groupe de reflexions. La structure locale en [f] du champ U est celle de

I] Def(Xf,p),
pz IS!

tiree en arriere par A.

Le systeme local Vy sur U' est G-equivariant et descend done ä un Systeme
local Vjj sur U, dont on note la representation de monodromie

f: nx(U,b) 0(H"v(Xb, Q),

avec b e Uo un point base arbitraire. Si est lisse, le systeme local restreint

sur Uk est sous jacent ä une Q-Variation de structure de Hodge. On obtient de la

meme maniere des variations de structure de Hodge sur les strates Zb si elles

sont lisses. Ceci termine la pieuve de la proposition 3.1.1.

3.7. Une question ouverte. Dans le cas X P3, L — Ovx(A) on sait quef est un

isomorphisme sui son image grace au theoreme de Torelh pour les surfaces K3. Une

conjecture de Carlson-Toledo predit que les seuls reseaux de groupes algebnques
reels semisimples apparaissant comme groupes kahleriens sont ceux des groupes de

type hermitien symetnque. Cette conjecture implique que jön'est pas injective pour
d > 5. Ceci motive :

Conjecture 1. Pour d >5 le noyau de"p X)7-\(.d)) est"" groupe infim.

La methode de [9] pour prouver le fait analogue dans le cas de p ne s'applique
malheureusement pas ici. Nous ne voyons pas comment construire d'autres
representations hneaires de n\(U(P3, 0Pi(J)), r\). Ceci motive la :

Question 2. Le groupe tt\(U(P3. ()?^(d)), >]) admet-d d'autres representations
complexes que les representations de la forme a of) ou a est une representation
rationnelle de 0(H"(Xg,R))'!

Pour d 4 la reponse ä cette question est negative par le theoreme de

superngidite de Margulis.

3.8. Relevement de Paction de PAut(X, L). Le groupe Aut(X, L)° des automor-
phismes du couple (X, L) agit sur |L| a travers PAut(X, L) Aut(X, L)°/C* en

preservant les Uk-
La proposition suivante appliquee dans le cas particulier X P"+l prouve la

Partie (1) du theoreme 1.

Proposition 3.8.1. Si le groupe PAut(X, L) est senusimple, son action sur U se

releve ä une action sur U.
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Demonstration. L'algebre de Lie paut(X, L)op C //°(01£|) est une algebre de Lie
de champs de vecteurs holomorphes qui sont tangents ä chaque Z^. Or Z\ est le lieu
de ramification de |L |' —> | L |. Done ces champs de vecteurs se relevent ä des champs
de vecteurs sur \L\' car tout champ de vecteurs tangent au lieu de ramification de

Z Y avec Y lisse et Z normal se releve ä Z.
En effet, le relevement a lieu en codimension un car un germe de champ de

vecteurs de la forme a(z, (Wj))z-i^ + bj (z. (wj)) «-be C{z, w\,... ,w„) se

releve bien ä un germe de champ de vecteurs holomorphes par un morphisme de

la forme (z,(wj) -> (ze. (w,)). Ce relevement en codimension un se prolonge ä Y

tout entier car le faisceau des champs de vecteurs holomorphes sur 1'espace normal Y

est reflexif.
On dispose done d'un morphisme d'algebres de Lie paut(Z, L)op —H°(<A(j')G

qui s'exponentie en un morphisme de groupes de Lie complexes du revetement
universel topologique P de PAut(X, L) vers le centralisateur C(G, Aut(U') de G

dans Aut(U').
Si PAut(X. L) est semisimple, le groupe P est un groupe algebrique affine

semisimple et le morphisme correspondant est un morphisme de groupes algebriques.
Le noyau N du morphisme P —»• Aut'(U) est contenu dans le noyau N' de

P —> PAut(X. L) car Taction de P redescend a une action de P sur U factorisant
via PAut(X. L). Mais N'/N commute a G et preserve rj. Comme t) est galoisien de

groupe G on deduit que N'/N C Z(G) et que done, en divisant U' par N'/N,
on obtient une action de PAut(X. L) sur U" := U'/(N'/N) qui commute ä

GaI(U"/U) G/(N'/N) := G' et descend ä une action de PAut(X.L) sur
U ~ [U"/G'\.

Corollaire 3.8.2. L'application des periodesV : U \Y\D] attachee a~p descend

a une application definie sur le champ epiotient [PAut(X, L)\U] —> [F\V],

4. Interpretation geometrique de la representation de monodromie prolongee

Avec les notations de 3.1, la premiere projection /Ji:|L|xZ—*|L|se restreint

en un morphisme surjectif lisse toujours note p \ :]L]xZ — X ^ \L \ dont la fibre
au-dessus de [/] est la variete ouverte X — Xf.

Soit k £ N. Si pour tout [/] e Z^ revaluation des multijets cu[/] est surjective,
alors la strate Z^ est lisse et porte le Systeme local Rn+1 (pi)*Q(zkxx-xZk) ^on,: 'a

tige au-dessus de [/] est Hn+x(X — X/, Q). Ce Systeme local est sous-jacent ä une
variation de structure de Hodge mixte et en notant W sa graduation par le poids, on

en tire la variation de structure de Hodge pure de poids n + 2 sur Zk :

Gi'w~2Rn+l (P\)*Q(zkxX-xZli)<

que Ton peut tirer en arriere ä Z^ et que Ton note de la meme maniere. D'autre part,
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Zyt est muni de la VSH V£-. La proposition qui suit compare les variations de ces
deux VSH.

Proposition 4.0.3. Soit k e N et supposons et>[/] surjectifpour tout [/] e 7k. Les

sous-faisceaux cle (~)^ definis par les noyaux des Grp(V) pour les variations de

structure de Hodge Gr^~2Rn + 1

(p\ )*Q(zkxX-xZk) et ^zk sont ?8aux-

L'hypothese de la proposition est satisfaite si par exemple L est r(/)-jet ample,
en particulier si L est le produit tensoriel d'au moins x (/) fibres tres amples.

Pour montrer la proposition, on considere la cohomologie de la variete singulare

X f. On la compare dans un premier temps ä celle de son complementaire (4.1),
et ensuite ä la tige de V qui est decrite comme la structure de Hodge limite dans

une degenerescence (4.2). Cette comparaison effectuee en famille au-dessus de la
strate donne le resultat (4.3). Une preuve alternative et plus constructive est

donnee dans le cas de families de surfaces en (4.4).

4.1. Relation entre les structures de Hodge de X f et de X — X/. Comme rappele
dans la section 2, Xf est une variete d'homologie rationnelle et done H"(X/, Q)
porte une structure de Hodge pure de poids n. Le groupe Hn + l(X — Xf,Q) porte
une structure de Hodge mixte (10) de poids n + 1 et /; + 2, entrant dans une suite

exacte :

Hn+\X,Q) H"+l(X - Xf,Q) -* H^2(X,Q) -> Hn+2(X,Q) (4.1.1)

Toujours parce que Xf est une variete d'homologie rationnelle, on a un isomor-

phisme de structure de Hodge H" (Xf, Q)(— 1) —> H^+2(X, Q). Pour avoir un tel

isomorphisme « de Thorn », il suffit en effet que le complexe Qx, ["] soit autodual.

Ainsi Gr^~2 Hn+1 (X — Xj, Q) est une sous-structure de Hodge pure de poids n + 2

de H"(X/, Q)(— 1) et sa filtration de Hodge verifie

0 Fn+2 C Fn + X

C C Fx T° Gr^+2H"+1(X -Xf,Q)
On note que si Hn + l(X, Q) 0, ce qui est le cas si X P" + 1

puisque n est

pair, alors Hn+l(X — Xf, Q) est pure de poids n + 2.

4.2. Structure de Hodge de Xf et structure de Hodge limite. Soit i : A —> U

un disque analytique tel que /(()) [/] et /(A*) c Uq. Posons Xa X x-u A.
Alors la projection t : X& —>• A est un morphisme projectif, lisse au-dessus de A*
et la fibre en zero est (X&)o Xf. Rappelons rapidement les resultats generaux sur
de telles families, avant d'examiner le cas particulier des singularites ADE.

D'un point de vue purement topologique d'abord, le formalisme des cycles
evanescents de Deligne donne dans la categorie derivee D%(Xf.Q) un triangle
distingue (voir [ 15, 4.2])

can +1
<Q>*, ^t(QxA) —> 4>t(QxA) —1 (4.2.1)
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ou le complexe 4>t(QxA) est cohomologiquement concentre aux points stnguliers
de Xf En prenant l'hypercohomologie de ce triangle, on obtient une suite exacte

longue d'espaces vectonels

Hn(Xf,Q)^M"(xls,(QXA))^Vl.n(<pl{QxA))^--- (4 2 2)

L'espace vectonel H"(i/i,(Q^a)) correspond ä la cohomologie de la fibre proche

canonique, et cette suite exacte est celle qui permet de comparer la cohomologie de

la fibre centrale et des fibres proches
La theorie de Hodge donne des informations supplementaires sur cette suite

exacte La cohomologie de la fibre singuhere H"(X/, Q) porte la structure de Hodge
mixte canonique de Dehgne [ 10], et la cohomologie de la fibre proche H" (i/q (Q ya
peut egalement etre munie d'une structure de Hodge la structure de Hodge limite
au sens de Schmid et Steenbrink [45] On la notera H"im(Xoo.Q). Le morphisme
de specialisation H"(Xf,Q) —» H"im(X00,Q) apparaissant dans la suite exacte

longue (4.2.2) est un morphisme de structures de Hodge nnxtes
La theorie de Hodge de cette suite exacte longue est en fait definie au niveau

du triangle distingue lui-meme, d'apres la theorie des modules de Hodge mixtes de

Saito [38J. Ceci peut se voir en deux etapes. Tout d'abord, on salt [15, 5 2 21] que
les foncteurs de cycles proches et evanescents convenablement decales induisent
des foncteurs p\j/t := [— 1J et p(pt := 4>t[— 1] de la categone Perv(QA-A) dans

Perv(Q^/). Le triangle distingue (4.2 1) peut se reecrire, apres decalage, comme la

suite exacte courte de faisceaux pervers sur Xf
0 -> Qxf [n] (Qaa[" + 1]) -> P4>t(QxA[n + 1]) 0. (4.2.3)

Ensuite, cette suite exacte est elle-meme sous-jacente a une suite exacte courte de

modules de Hodge mixtes. Le formalisme de Saito redonne en cohomologie la suite

exacte longue de structures de Hodge mixtes (4.2.2).
Dans le cas particuher oü X/ n'a que des singulantes ADE, on peut etre plus

precis. En effet, les groupes de monodromie des singulantes de Xf sont finis, et apres
revetement fini, la monodromie de la famille —> A* devient non seulement

unipotente mais en fait triviale. La structure de Hodge limite H"im(X00, Q) est alors

pure, de meme que H"(X/,Q) par le paragraphe precedent, et le morphisme de

specialisation est un morphisme de structures de Hodge pures Plus generalement, la

description de la suite exacte longue (4.2.2) en termes de modules de Hodge est la

suivante
Par hypothese sur les singulantes de X/, on a Q^/ [/?] ICx, Q. Ce complexe

est done sous-jacent ä un module de Hodge polansable de poids n [37, cor. 1, p 856]
D'autie part, pi//t(QxA[n + ']) Pxl/t(ICxAQ) et comme la degenerescence
t : X —»• A est ä monodromie time, p\j/t(ICxAQ) est lui aussi sous-jacent ä un

module de Hodge polansable de poids n [37, (0 7), p. 852], La suite exacte (4.2.3)

provient done d'une suite exacte de modules de Hodge polansables de poids //, et
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eile est done scindee car la categorie abelienne des modules de Hodge polarisables
de poids donne est semisimple [37, Lemme 5, p. 854).

Ceci fournit en hypercohomologie une suite exacte (courte) de structures de

Hodge pures :

0-> Hn(Xf.®)^ H^JXcc.Q) ^ 0. (4.2.4)

Le dernier terme peut se calculer ä l'aide de la suite spectrale d'hypercohomologie.
Comme les singularites sont isolees, on a (Qaa)) — ®p6[x| W(4>tQxA)p-

4.3. Comparaison avec la variation de structure de Hodge des Varietes sin-
gulieres. Faisons maintenant varier [/] dans la strate isosinguliere Z^. Soit avec
les notations du paragraphe 3.2 un germe de disque analytique j : (A.0) —>

Y\Pz\T.\Vef(Xf,p) tel 9ue 7<a*) C l~Ips|E| (Def(V/, p) — Zp et dont la

monodromie est nulle.
On definit un germe T := (|L|, [/]) A muni de la famille d'hypersurfaces

X x T D Xj T
La projection naturelle t : T A definit une fonction holomorphe et

5 := {t Oj est exactement le germe en [/'] de la strate isosinguliere de Xy.
Notons enfin g la composee Xj —»• T —>• A, dX/ dim Xp, dXs dintAs,
ds dim S et dp dim T.

On a sur Pc'$ une suite exacte courte de faisceaux pervers

0 -> QXs [dXs] -> Pi>g(QXl [dx, })^p4>g(QaY [dXl ]) 0. (4.3.1)

Comme X$ est localement isomorphe a un produit de variete d'homologie ration-
nelle par un germe de variete lisse, on a Q^s- [dXs] ICXsQ. Par le meme argument
que plus haut, pifg{QXr[dXT]) pifg(ICXT<Q)) est pur et la suite exacte (4.3.1)
est sous-jacente ä une suite exacte (scindee) de modules de Hodge polarisables.

Appliquons maintenant le foncteur de cohomologie perverse p R°jt* PH° Rjt*
ä cette suite exacte. On obtient une suite exacte de modules de Hodge purs sur S

0 -* PR°n.QXs[dXs] -* pR°Jtfp^g(QXl [dx,]) ^ p R0TT*p4>g{^xT[dXr\) 0.

(4.3.2)

Simplifions l'ecriture de ces trois termes.

(1) Au-dessus de S qui est lisse, le ntorphisme n est topologiquement localement
trivial done

^°;r*QA;s,KvJ /?"jr,Q.vs[</s].

(2) D'autre part, n est propre done Rjt* commute aux cycles proches [15, 4.2.11],
Ceci joint ä la ^-exactitude de p\jj donne alors p R°JT*pi/g(Q>xT[dXT])
pif, (p R°7T*QXT[dXr]),pms px/jt (pR0n* Qx, [dXr]) pft {Rnn*QXT[dT})
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car les cycles proches ne dependent que de la restriction aux fibres proches.
Finalement, on a

pR°7T*pxl/g(QX/ \dXr}) pi/t (Rnn*QXT[dT])

(3) Enfin et surtout, le troisieme module de Hodge p R0jr*p(j)g(QXr[dX7 ]) est

constant. En effet, p(pg(QXT [dx, ]) est supporte sur le lieu singulier de g qui est

une union finie de sections etales de Xs —> S qui decrivent les differents points
singuliers des varietes Xs lorsque s varie dans S. La restriction de n ä ce support
est done etale sur S et p R°jr*p<f)g(QXl [dX/ ]) jt* (p<j>g{Qx, [dXj ])) est une

somme directe pour p e |S| de complexes de cycles evanescents de chaque

singularity de Xs lorsque s varie dans S. Or ces singularites sont de type ADE
done rigides.

Chacun des facteurs de cette somme directe est done constant sur S car
il s'obtient par tire en arriere d'un faisceau de cycles evanescents sur la

deformation universelle locale Def(Xf,p) de chaque singularity p e |E|
de Xf.

Si le faisceau pervers sous-jacent a un module de Hodge est a decalage pres un

systeme local, alors ce Systeme local est une VSH [37, lemme 3]. Apres decalage, la

suite exacte (4.3.2) est done une suite exacte de variations de structure de Hodge sur
le germe S dont le troisieme terme est constant. Les applications des periodes des

deux premiers termes ont done des differentielles en [/] qui ont le meme noyau.
Par ailleurs, le second terme tire en arriere par S —> S, oü S est le germe de Z^

dans Uk, est isomorphe a Vj" © Hn(X, Qy$.
Finalement, en tout point de S, le noyau de Grjr(V) pour V^rest le meme que

pour (le tire en arriere a S de) R"7i*<Q>Xs.

Compte tenu de la comparaison entre Hn{X/\Q) et G r^~2 Hn+X (X — X / .Q)
etablie en (4.1.1), on sait deja que le noyau de Gi'f(V) pour R"jz*QXs est le meme

que pour Gr^~2R"+x (p\)*Q(5xA'-.v^)- Ceci etablit la proposition 4.0.3.

4.4. Interpretation dans le cas n 2. Donnons un argument alternatif permettant
de demontrer la proposition 4.0.3 dans le cas n 2.

Si on applique le theoreme de resolution simultanee des singularites Du Val [4],
[61, cf. (29, p. 135J a la famille universelle p\ : X —» U on trouve un revetement
ramifie r : U* —> U et une application holomorphe propre et lisse ft : X* — U*
avec un morphisme jt : X* —»• X xy U* qui est une resolution simultanee, e'est ä

dire que pour tout .s e U*, ns : X* Xs est une resolution. De plus, ces resolutions

peuvent etre supposees minimales. Le morphisme r factorise par un morphisme fini
: U* —» U. L'existence globale de r n'est pas evidente et il n'est pas clair pour

nous que r puisse etre choisi de fa^on a ce que r' soit etale. Toutefois, cf [8], e'est
le cas si on restreint it ä un petit voisinage d'un point de U. Ceci implique que

Y77 [yj — H2(X'j,Q) comme structures de Hodge oil X'j —> Xf est la resolution
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minimale mais aussi que r'*Yjj — R2ii*Qx* comme variations de structure de

Hodge polarisables.
Notons Z£ r~{(Zif) et appelons X£, respectivement X^ la restriction de X*,

respectivement X au-dessus de Z£, respectivement Alors X£ est lisse sur Z^ et,

quitte ä taire un revetement etale de Z®, on peut supposer que sur chaque composante
connexe Z" de Z^ l'ensemble singulier de X^ est un produit de Z° par un ensemble
hnt. L'ensemble exceptionnel de : X£ —> X^ est globalement un produit de Z®

par une reunion de configurations de courbes rationnelles du type A-D-E adequat.
Ceci donne des suites exactes de variations de structure de Hodge :

0 - Q(—1 )®o - /?2m*Q,v* |zo ^ {r')*Yy |zo -* R2(Pi)*Qxk -> 0
^ k k k

Notons v : U* x X — X* —» U* la premiere projection. La suite exacte

(4.1.1) implique que R2(p\)*Qxk (-1) ~ Gr^fi3u*Q([/*xX-;e*)|zo, puis par le

theoreme de semisimplicite :

{r')*Vy\zo ~ Q(—l)®o © Gi'wR3'v*Q.(\)(u*xX-x*)\z"
* K k

Ceci implique que sur Z°, les VSH Gr^,/?3u*Q([/*xAr-a,)lz'> et V£/Iz<> ne different

que par un systeme local de monodromie finie done d'apphcation de periodes
constante. En particulier, Torelli infinitesimal pour Vyr|zo equivaut a Torelli

infinitesimal pour Gr^,/?3t;*Qx,x[/*-v|z« ce qui equivaut ä la proposition 4.0.3 dans

ce cas.

5. Theoreme de Macaulay avec singularites moderees

Claire Voisin nous a signale qu'une Variante du theoreme de Macaulay autorisant
un peu de singularites devrait sutvre en adaptant |46, pp. 427-4281. Mettons en

ceuvre cette suggestion : apres quelques generalites sur le complexe de Koszul, nous
obtenons la propnete d'mjectivite 5.2.2 en corollaire du resultat de dualite 5.2.1.
Cela est süffisant pour montrer 1'injectivite de l'application des periodes de Vjj sur
certaines strates de U.

5.1. Un lemme sur le complexe de Koszul d'une presqu'intersection complete.
Soit D e N* un entier positif. Soit G C H°(X, LD) un sous-espace de dimension
a + 2. Notons Q C Ox le faisceau d'ideaux engendre par G, et S C X le sous-
schema tel que Ox /Q

Posons A A(X, L) Q^eNH°(X, Lk) On appelle / l'ideal gradue de

d(A". L) defim en degre k par H°(Q(k)). On a (G) C /
Soit K(G)'m le complexe de Koszul en degre m :

H°(Lm-(n+2)D) ^ A*+2Q ^ H°(L'"~D) ®G ^ H°(Lm)

°u le premier terme du complexe est par convention en degre 0.
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Considerons egalement, avec la meme convention, sa version faisceautique JC(G)'m :

Ox(Lm-(n+2}D) ® An+2G -> Ox(Lm~D) ® G Ox(Lm)

L'hypercohomologie de ce complexe de faisceaux est decrite par le Iemme

suivant.

Lemme 5.1.1. Si E C X est artinien et localement d'intersection complete, alors,

pour tout m e Z, W {K,{G)'m) 0pour i ^ n + 2, n + 1 et

W+2(K,(G)'m) ~ H"+1(/C(G);> ~ 0 Ox,p. (5.1.1)

Ps|E|

Demonstration. Le support |E| de E consiste en un nombre fini de points de X et

Ce (J) On.p
P6|S|

est une somme de faisceaux gratte-ciel. Par abus de langage on identifie öx,.p et

l'algebre artinienne locale de E en P. Ensuite, pour tout P £ |E|, designant par
m/> C Ox,p I 'ideal maximal, on a dime QpjmpQp — n + 1 et toute famille

(go,...gn) dans Qp induisant une base de Qp/mpQp est une suite reguliere
dans Ox,p engendrant Qp voir par exentple [28, Thm 129J. On peut done choisir
une base (gi gn,gn+1) de G de sorte que (gi,...gn) est une suite reguliere
engendrant Qp. Dans la categorie derivee Db(Mod(Ox,p)) on a done

W)l,P — fcigl.P gn + \,p)o <8> fc(gn+2,p)o

— Oy,,p[—n — •] fc{gn+2,p)'

— (Cs,p[-/; - 1] -* Oj,p[-n - 2])

puis Hn+] (K,(G)'Q p) ~ Hn+2(K,(G)') p) ~ Ox,,p comme -modules, les

autres faisceaux de cohomologie etant nuls. Par suite, les faisceaux de cohomologie
non nuls de K(G)'m sont les gratte-ciels Hn+l {K{G)'m) ~ Hn+2(JC(G)mm) ~
0pe|E|ös,p puisque /C(G)ö est acyclique hors de |E|. La suite spectrale d'hy-
percohomologie de K,{G)'m n'a done qu'un seul terme non nul en E\ qui est

d\ : H°(Hn+x (K.(G)'m)) H°(Hn+2(IC(G)l1)) et d\ 0 car e'est le cas apres
localisation. Done, pour tout m e Z, H' (K.(G)'m) 0 pour / ^ n + 2. n + 1 et

Hn+2{K(G)'m) ~ H"+1(/C(G);) ~ 0 O^p. (5.1.2)

Pe|E|

Par ailleurs, on a la filtration bete de /C(G)o definie par

o>pK,(G)' Ox{L-(n+x~p)D) ® An+i~pG >Ox.
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Cette filtration decroissante induit une filtration sur H*(/C(G)^) et la suite spectrale

correspondante a un terme E^'q H9(Gr£(JC(G)')). Elle degenere en En+3. On

remarque egalement que (E*'0, d\) K(G)'m, de sorte que E%'° Hp(K{G)'m).
Notamment, E^2'0 Hn+1(K(G)'m) (R/(G))m et une variation legere de la

preuve du lemme 5.1.1 permet de voir que G a une suite reguliere de longueur n + 1

et done que E?'° HP{K(G)'m) 0 pour p <n.

5.2. Dualite de Macaulay pour des hypersurfaces de P"+l ä singularites isolees

quasihomogenes. On se place dans le cas particulier X P"+1. Soit f e
H°(Pn+1, 0Pn+\ (d)) — {0} telle que l'hypersurface Xf\= {/ 0J n'ait que des

singularites isolees quasi-homogenes. On considere G C H°(Pn + i, Opn+i (d — 1))
le sous-espace vectoriel engendre par les derivees partielles de /, et (G) J
est alors l'ideal jacobien de /. Avec les notations precedentes, D d — 1, et

E C X f s'identifie au sous-schema artinien de X de support XsJng defini par
l'annulation du premier jet de /", / ä l'ideal de A s'annulant sur E et Q Jy,
s'identifie, apres introduction de coordonnees locales, ä l'ideal de Tjurina de la
fonction correspondant ä /. Puisque les singularites de Xf sont quasi-homogenes,
les ideaux de Milnor et de Tjurina coincident et done E est intersection complete
locale.

Si / e Z, on note

la fleche induite par la surjection de faisceaux Opn+1 —> Oj;.
On note enfin a — (n + 2)(d — 2).
Sur 1'espace projectif P" + 1, les faisceaux inversibles n'ont de cohomologie qu'en

degre 0 ou 11 + 1, on en deduit l'annulation de la plupart des termes de la suite

spectrale introduite en 5.1 : on a Er'q 0 sauf si q 0 ou q 11 + 1, et done les

seules fleches dr non nulles sont les Heches d\ et la fleche dn+2 : E°'"^ ~2'°-
Lemme 5.2.1. La fleche dn +2 : ^«+2

' ^ ^ 0 duluit tin isomorphisme enlre

Demonstration. Cette fleche induit un isomorphisme entre sa coimage et son image.
11 suffit de calculer ces deux espaces.
Premiere etape : Vintage de dn+2 dans Eff+2'0 R/(G)m est (//(G))m.

ev, : //°(P"+1,Or,+,(/)) ^ H°(P"+l,OxU))

(//(G)et (I/(G))m.

On a
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Or, la Heche composee

E"+2'0 -» E2+2'° Enn%lfi -» Ennll'° ^ W+2(lC(GYm)

apparaissant au numerateur coincide avec H°(ö(m)) —>• H°(ö/Q{m)). Son noyau
est done H°(Q(m)) — Im. D autre part, au denominateur, on a

ker(£i+2'0 -» £^+2'°) ker(£"+2'0 -» £^+2'°) Imdx.

On en deduit

Im dn+2
Im Im

Im d\ (G)m

Deuxieme etape : la coimage de d„+2 £„°;"2+1 K+2'0 s 'identifie par dualite de

Serreä(I/(G)Zm+{n+2){d_2) (I/(G))va_m.
La suite spectrale duale ((Er'q)wdr) s'identifie par dualite de Serre a une

renumerotation de la suite spectrale de la filtration bete de :

flV+i <L~m) - wp»+> (L~m+d~l) <8 Gv -» «P„+, (^-i"+(»+2)W-D) 0 a«+2GV

Le complexe obtenu en tensorisant par la droite complexe An+2G ~ C s'identifie ä

fc{G)'_m+a en utilisant cuF,+1 ~ Op„+1 (n + 2). La premiere etape permet alors de

conclure.

Corollaire 5.2.2. Soit d > n + 2. Supposons que I j J>d-(n+2) solt engendre en

degre d — (n + 2), en tant que module gradue. £'application lineaire Indulte par la

multiplication
I/Jd Hom(/4/Jd-(n-(-2). I/ Jld-(n + 2))

est injective.

Demonstration. Soit P un element du noyau. On a, pour tout Q"' £ (A/J)d-n-2,
PQ'" 0 mod J. De la PQ"'Q" — 0 mod J pour tout Q" e A/J>0. Puisque

A/J>d-(n-1-2) est engendre en degre d — (n + 2) > 0, il suit que PQ' 0 mod J

pour tout Q' e A/J>d_(n+2). Comme a — 2d + n + 2 (n + 2)(d — 1) — 2d
n d — n — 2 > d — (n + 2) on a

V Q e I /Jd-n-2 V Q' I / Jo-2d+n+2 < Q- P Q' >d-(n+2)= 0

oil < —; — >d designe l'accouplement de dualite defini par dn+\ entre I/Jd et

// Ja-d au lemme 5.2.1. Or on a, par fonctorialite de la dualite de Serre,

< Q: PQ' >^_(„+2) < QQ': P >a-d

Puisque I/ J>d_(n+2) est engendre en degre d — (/; + 2), P est orthogonal ä l'espace
/ / Ja-d entier. Done P 0 mod J.
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Une preuve plus courte du corollaire 5.2.2 valable dans le cas d'une hypersurface
avec un seul nceud nous a ete communiquee par A. Otwinowska au moment ou nous
finissions la presente preuve.

Enfin, mentionnons pour terminer les resultats similaires suivants :

Lemme 5.2.3. Si la fleche d'evaluation evm : H0(OF,,+i(m)) —> 7/°(ös(m)) est

surjective. /I"+i (K(G)'a_m) 0.

Demonstration. Au vu du lemme 5.1.1, reprenant les notations de la premiere etape
de la preuve du lemme 5.2.1, on a aussi surjectivite de F"+2'0 —> H',+2(/C(G)^I).
De ceci suit que 0. Or, par la seconde etape de la preuve du lemme 5.2.1,

£^'n+1 ~ Hn+i(K(G)'a_mr.

Corollaire 5.2.4. Soit m0 tel que evmo : H°(OFn+\(m0)) —> H°(O^(m0)) soit
surjective. Pour tout m <0 — m0, ZZ"+1 (K(G)°m) 0.

Demonstration. Soit m < a — mo- La tleche eva_,„ : H°(Opn+ I (ct - m)) ->
7/°(Öe(ct — m)) est surjective. On peut done conclure avec le lemme 5.2.3.

Plus generalement, on a hn+x (K(G)'m) It1 — m)).

6. Theoreme de Torelli local sur les strates isosingulieres

Soit n un entier pair strictement positif et Xf C P"+1 une hypersurface de

degre d a singularites isolees simples, de nombre de Tjurina total t(/) < d. Comme
dans le cas oü Xf est lisse, une deformation isosinguliere de Ay fournit une variation
de structure de Hodge dont la tige en Ay est H " + t(P"+l — Xf). Rappelons que

Hj := H"+l(P"+I — Ay) est pur de poids n + 2 par la discussion de la section 4

et que sa filtration de Hodge verifie

Fn+2 C F"+x C ••• C Fl //"+'(P"+1 - Ay.C).

La variation de structure de Hodge infinitesimale correspondante a ete etudie

par Dimca et Saito [18] et avec plus de details dans le cas nodal par ces memes
auteurs et Wotzlaw [20]. Dans cette section, nous extrayons de leur travail tous
les renseignements dont nous aurons besoin en ajoutant quelques petits points
-supplementaires. Ceci permet d'appliquer le resultat d'injectivite 5.2.2 et d'aboutir
a la demonstration du theoreme 1.
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6.1. Formule de Dimca-Saito-Wotzlaw pour les deux premiers termes de la
filtration de Hodge. Si y est un point singulier de Xf, on note comme [20,
section 1.1] ocxr,y le plus Pet't zero de la 6-fonction de la singularity. Dans

notre cas, la singularity est quasihomogene et on note uq wn+1 les poids

correspondants. Alors, il est connu que ax f ,y Yli wi- Par exemple, pour une

singularity A\, on a cexf,y (n + l)/2. Un examen des equations des singularites
simples [2] montre que 1'on a toujours 'ax, ,y > 1- P'us precisement, si n > 4, alors

\axr,y\ > 1, et si /i 2, alors \axr,y\ ••

Lorsque /! 2 on definit un ideal homogene /' de l'anneau des polynömes de

n + 2 variables de la faijon suivante. Definissons d'abord comme [20, (2.1.4)] le

faisceau d'ideaux 2^ C öv3 cosupporte aux points singuliers y de Xf par

FlOP3ty(*Xf)=T(l)öP3(2Xf),

oü le membre de gauche designe la filtration de Hodge du P-module 0P3(*Xf)
correspondant au module de Hodge mixte sous-jacent a Rj*Qp3_y. On pose alors

i'k r(P3. i'{l)(k)) puis r ®kmi'k.
Par [20, Theorem 2.2], on a :

Proposition 6.1.1.

GrnF+lHn+x(Vn+l -Xf,C) A/Jd-n-2.

GrnFHn+x(Fn+i -XfX) \A/j2d-n-2 sin^4
F J \r/J2J-n-2 sin =2

Dans [20, Lemma 1.5] est enonce que, pour les surfaces nodales, X'^ est 1" ideal
des fonctions qui s'annulent sur les points singuliers de X/ (avec structure reduite).
II est facile de generaliser :

Lemme 6.1.2. L'ideal X'^ coincide avec /'ideal de Tjurina : 1'^ — Jy.

Demonstration. II s'agit de voir que FiOPiy(*Xf) ,v oa ^
est une equation locale de Xf pres de y. Or, d'apres [20, (1.3.2)] (qui refere a ]39]),
la filtration de Hodge sur ÖPi,y(*X/) est dans ce cas donnee par:

F,öw\y(*Xf) FX^J/r'O).
ou X>P3<y est filtre par l'ordre de l'operateur. En effet, suivant les notations de loc.

cit. k0 0 et 0P3^y.

Corollaire 6.1.3. L'ideal V coincide avec l'ideal I de la section 5.2.
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6.2. Formule de Dimca-Saito pour le premier gradue de la connexion de Gauss-
ManindeP"+1—X/. II y a egalement une seconde filtration sur Hn+l (P"+1 - Xf.
C) la filtration par l'ordre du pole notee P* et 1'on a Fl C P' [11 ].

Commed > r(/), le fibre L := Opn+\(d) est r(/)-jet ample et par3.4, lastrate

isosinguliere S de Xf dans 1'espace projectif \L \ parametrisant les hypersurfaces de

degre d a pour espace tangent T^f^S le noyau de ev[f], c'est-a-dire //(/ )d. Le long
de cette strate, la connexion de Gauss et Manin verifie VP1 c P'-1 <8> £2^. du moins
si dim P' est localement constante pres de [/] ce qui est vrai sur un ouvert dense

S' C S et [18] donne une formule pour Grp V| si f e T[f]S en termes de la partie
fibre du module de Brieskorn.

Ceci est exploite dans [20, Remarks 3.9[ dont nous tirons la proposition suivante :

Proposition 6.2.1. Le morphisme

GrFV : % £ T[f]S (GrfV? : GrnF+lHj GrnFHf)

s'identife par l'isomorphisme de la proposition 6.1.1 ä —1 fois la multiplication
I Kf)d ® A/Jd-n-2 - A / J2d—n—2 si n > 4.

Si n 2, il s'identifie ä —1 fois la multiplication I/(f)d ® A/Jd-n-2
I / J2d —n—2'

Demonstration. En prenant garde au fait que la notation n correspond ici ä ce qui
est note n — 1 dans [20], cela resulte de [18] de la meme fa?on que dans [20,
Remarks 3.9], au moins sur l'ouvert S'. On conclut par passage ä la limite.

6.3. Fin de la preuve du theoreme 1. Rappeions l'enonce de la partie (2) du

theoreme 1.

Proposition 6.3.1. Soit k > 0. Si d > n + 2 + k, la differentielle de la restriction de

/'application de periodes de Vjj a la strate Zp a pour noyau le tangent de l'orbite
de PGL(n + 2).

Demonstration. Soient k et d comme dans l'enonce et notons L Oe„+1 (d).
On commence par se ramener de ä Z^. Si [/'] £ c |L|, 1'espace tangent

en [/] ä Zk est I/U)d-
— Par la proposition 4.0.3, il suffit de montrer que sur Zk, l'application des periodes
de la variation de structure de Hodge de poids n + 2

R" + X(P\)*Q(Z£xX—,YZa)

a une differentielle en [ / ] dont le noyau est 1'espace tangent ä la PGL(n + 2)-orbite
de [/'] dans |L|, c'est-a-dire J/( f )d.
— Par 6.2.1, cette differentielle est donnee au signe pres par une multiplication dans

des algebres de polynömes adequates.
-— Par le corollaire 5.2.2, son noyau est J/(f)d des lors que //J est engendre en

degre d — (n + 2). Montrons done ce dernier point.
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Comme le faisceau öpn+\ (k — 1) est (k — l)-jet-ample et que long (0s) k,
on a une surjection

H°(Fn+l.OP„+i(k - 1)) H°(Fn+\Ox(k- 1)),

et done, puisque d > n + 2 + k, une surjection

H0(Fn+\Ovn+l(d -n -3)) -> //°(Pn+1, - n - 3)),

ce qui entraine l'annulation Hx(P"+1,Xs(r/ — n — 3)) 0. Comme le sous-
schema defini par est de dimension zero, ceci entraine par [31, 1.8.29| que Xy,

est (d — n — 2)-regulier au sens de Castelnuovo-Mumford, et en particulier [31,1.8]
que 1Y,(d — n — 2) est engendre par ses sections globales. Autrement dit, avec les

notations de 5.2 et en particulier du corollaire 5.2.2,1'ideal I de. A est engendre en

degre d — (n + 2), et done //J est engendre en degre d — (n + 2). Par consequent,
le corollaire 5.2.2 s'applique : le noyau de la multiplication

ld ->• Hom(/l/Jd-(n+2)- I / J2d-(n+2))

est Jd

7. Application ä la conjecture de Shafarevich sur l'Uniformisation

7.1. Varietes propres sur U. Dans ce paragraphe on reprend les notations de 3.1

et on ne suppose pas que X P"+1. Rappelons qu'une variete complexe est

holomorphiquement convexe si eile admet une reduction de Cartan-Remmert, ä

savoir un morphisme propre surjectif ä fibres connexes de cette variete vers un espace

complexe de Stein, voir |24J.

Soit Y une variete connexe projective lisse, cp : Y — U un morphisme, y £ Y

un point base dont l'image u := <f>(y) est dans Uq C U, et Xu C X l'hypersurface
lisse correspondante. La representation jo : jt\(U,u) —> 0(Hn(Xu, Q)) construite
ä la proposition 3.1.1 induit une representation

</>*jo := p o (p% : n\{Y,y) 0(Hn(Xu, Q)).

Notons Yun —> Y le revetement universel de Y et

Yp := kex(<p*~p)\Jun

le revetement topologique de Y attache ä la representation <p*"p.
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Proposition 7.1.1. La variete YP est holomorphiquement convexe.

Demonstration. Ceci resulte des resultats de [23] modulo le fait que {0*]o} est

constructible absolu. Dans le cas present, on peut simplement utiliser 1'application
des periodes pour construire la reduction de Cartan-Remmert.

La representation 0*]o est sous-jacente ä une VSH polansable definie sur Y qui
est Notons r" <f>*p(n\ (Y. j)). L'application des penodes attachee ä

se releve ä une application T'-equivanante V : YP —> P. Comme r" agit proprement
discontinüment sur T> puisque r" est discret, ll suit que V est propre. Considerons sa

factorisation de Stein

ou R est un espace complexe normal, a est propre surjective ä fibres connexes, et ß
finie

Comme il n'existe pas d'application holomorphe horizontale M —» V oü M
est compacte complexe [27]), les fibres de a sont les sous-espaces analytiques
connexes fermes maximaux de YP et done R n'a pas de sous-espace complexe
analytique compact de dimension positive.

Pour montrer que R est de Stein, on utilise la solution de Narasimhan du

Probleme de Levi. On peut construire des fonctions C°° positives et exhaustives

sur T> dont le hessien complexe est defini positif le long de la distribution horizontale
de V et il est aise de les modifier pour construire une fonction d'exhaustion
stnetement plunsousharmomque sur R, voir [23] poui plus de details.

Corollaire 7.1.2. Le revetement universe! Yu" de Y est de Stein si l'application des

periodes V : YP —> T> est finie.

Demonstration. En eft'et dans ce cas YP —> R est de Stein et tout revetement

topologique d'une variete de Stem est Stein.

La discussion peut etre resumee comme suit : si <j) \ Y —> U est finie, le

revetement universel de Y est de Stein sauf si Y contient une courbe C telle que Vc
a monodromie time.

Notons m : U —» U et m' : [L\27] — r\Z7 les applications canomques vers
les espace des modules grossiers des champs consideres. Notons qu'il existe une

application holomorphe induite Vmod : U — r\77 entre espaces de modules. Si

0 : Y —> U est finie, alors V est finie si et seulement si la restriction de Vmod a

Ym := m o <p(Y) C U est finie.
Cette observation fournit un premier entere elementaire pour prouver que Yun

est de Stein sans supposer que X P"+1 et sans done utiliser le theoreme 1, mais
seulement pour des vanetes Y tres particulieres.
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Proposition 7.1.3. Soit (f> : Y —>• U finie. Supposons que :

(1) 1'application des periodes V : YP —> T> n 'est pas constante;

(2) Ym C U C \L\ est un sous-espace projectif de \L\ on plus generalement a la

propriete que toute application holomorphe de Ym vers un espace complexe est

constante ou finie.

Alors, Yun est de Stein.

Demonstration. Considerons la restriction de Vmoii : U —> T\27 ä Ym. Elle n'est

pas constante car alors l'application des periodes V : Yp —» V serait egalement
constante. Elle est done finie et done V aussi. On conclut par le corollaire 7.1.2.

Cette proposition s'applique par exemple dans le cas suivant, qui est celui etudie
dans [34J. Soit 3 < k < 6. Si L est £-jet ample, le complementaire de Uk dans \L\
est de codimension k + 1 done un sous-espace projectif generique de dimension au

plus k de \L\ est inclus dans Uk- Prenons pour Ym un tel sous-espace projectif, et

pour Y 1'image reciproque de Ym par le revetement ramifie q : ->• Uk- Alors Y

est une sous-variete compacte lisse de U'k portant une variation de structure de

Hodge Vy. Son application des periodes n'est pas constante car elle est par exemple
generiquement immersive par les theoremes de Torelli infinitesimaux generiques
classiques. La proposition s' applique done et le revetement universel de Y est de

Stein.

7.2. Cas ou X P"+1 et preuve du corollaire 2. Pour des varietes Y plus
generates, on s'assure que l'application des periodes ne contracte pas de courbes

en utilisant le theoreme 1. Pour cela on doit supposer que X P"+1. Rappelons
l'enonce du corollaire 2 :

Corollaire 7.2.1. (corollaire 2) Hypotheses et notations comme au theoreme 1.

Soit Y une variete projective lisse et cp : Y —> Uk un morpliisme fini. Alors le

revetement universel de Y est une variete de Stein.

Demonstration. Par le corollaire 7.1.2, il suffit de montrer que la composee

P :Y T\V

est finie. Par le theoreme 1, une courbe C C Y contractee par P est necessairement
dans une orbite de PGL(n + 2). Or celles-ci sont affines car le groupe des

automorphismes birationnels d'une variete de type general est fini et on deduit

qu'elles ne peuvent pas contenir de courbe complete. Ceci implique que P est finie
et le corollaire 7.1.2 permet de conclure.
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