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Sur P’application des périodes d’une variation de structure de
Hodge attachée aux familles d’hypersurfaces a singularités
simples

Philippe Eyssidieux and Damien Mégy

Résumé. Soit n € N* un entier positif pair et d un entier positif. Pour toute famille complete Y
d’hypersurfaces de P! de degré d a singularités isolées de type A-D-E, nous construisons
d’apres une idée de Carlson et Toledo reprise dans [34,43] un champ de Deligne-Mumford Y
d’espace de modules Y auquel la représentation de monodromie de la famille se prolonge. Nous
étudions I"application de périodes associée et montrons un théoréeme de Torelli infinitésimal
le long des strates isosingulicres de Y sous des hypotheses de transversalité. Enfin, nous
appliquons ce résultat a I'étude du revétement universel de Y.

Mathematics Subject Classification (2010). 14C30; 14J70, 14D05, 32Q30, 32S25.
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1. Introduction

La théorie de Hodge et ses prolongements imposent des contraintes tres fortes sur
le type d’homotopie des variétés kihlériennes compactes [12,42,44] et notamment
sur leurs groupes fondamentaux, appelés groupes kihlériens (voir [1] pour une
présentation et le séminaire Bourbaki [7] plus récent). En dépit des nombreux
résultats contraignant les groupes kiihlériens, la question posée initialement par Serre
de caractériser dans les termes de la théorie des groupes les groupes kihlériens parmi
les groupes de présentation finie reste largement ouverte.

Une approche dans I’étude de ces groupes fondamentaux est de considérer
leurs schémas de représentations linéaires. La géométrie des variétés kihlériennes
sous-jacentes a des conséquences algébriques importantes, notamment que ces
schémas sont a singularités quadratiques [25,42]. IIs héritent également de structures
supplémentaires par comparaison avec des espaces de modules de fibrés de Higgs.
Un certain type de representations linéaires, les Variations de Structure de Hodge
polarisables complexes (VSH), jouent un role privilégié dans I'étude des représenta-
tion linéaires des groupes kiihlériens grice au théoreme d’ubiquité de Simpson [41].
Le concept a été dégagé lors de la découverte fondamentale par Griffiths [27] que les
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systemes locaux de monodromie sur les espaces de modules de variétés polarisées
sont des VSH. Les applications de périodes associées donnent alors des informations
précieuses sur ces espaces de modules et leur uniformisation [13,27,30,33].

Cependant, malgré I’importance théorique des VSH, relativement peu d’exemples
concrets en sont connus et les espaces portant de telles variations sont rarement
compacts. Dans cet article, on étudie des situations ou il est possible d”obtenir, via le
théoreme de prolongement d’applications de périodes de Griffiths, des VSH sur des
variétés projectives. Le point de départ est le suivant.

Dans [43] est décrite une classe de surfaces projectives algébriques S munies de
(Q-variations de structure de Hodge Vg qui sont intéressantes du point de vue de la
théorie de Hodge non-abélienne : (S, Vg) ne peut pas s exprimer par tiré en arriere a
partir de systéemes locaux sur des courbes, variétés abéliennes ou espaces localement
symétriques hermitiens. Ce sont des exemples particulierement intéressants pour
I’uniformisation en plusieurs variables complexes (voir [24] pour un survey récent)
et I'un de nous a généralisé cette construction jusqu’en dimension six et a entamé
I’étude cohomologique de ces exemples [34]. La conjecture de Toledo stipule que
pour toute variété kihlérienne compacte Z, on a H?(m1(Z).Q) # 0, ce qui est le
cas si le revétement universel de Z est contractile. Cette conjecture n’est décidée
dans cette classe d’exemples que dans certains cas [34]. La motivation initiale de
ce travail est d’étudier pour cette classe d’exemples I'autre probleme ouvert général
de I"uniformisation en plusieurs variables complexes, c’est-a-dire la conjecture de
Shafarevich prédisant que le revétement universel d’une variété projective algébrique
complexe est holomorphiquement convexe (cf. [24] pour la définition de la convexité
holomorphe et une discussion du probleme).

Décrivons la construction de [43] et son prolongement par [34] qui reprennent
une idée de Carlson et Toledo. Dans ce qui suit X désigne une variété projective
complexe connexe de dimension n + 1 avec n > 1, L un faisceau inversible tel que
|L| n’a pas de point base. Si n = [f] € |L] est représenté par une section globale
f e HY(X,L)— {0}, on note

X,=Xy={xeX|f(x)=0}

Définissons I’ouvert de Zariski Uy := U(X, L)o de |L| comme le lieu des [ /] € |L]|
tels que X s est une hypersurface lisse et notons D := |L| — Uy le lieu discriminant.

L’ouvert Uy est la base d’un systeme local naturel, noté Vi, dont la fibre au-
dessus d’un point [ f] est I’espace vectoriel de cohomologie évanescente

HE(X 7, Q) = coker (H"(X, Q) Z25 H"(X1.Q))

Ce systeme local est le produit tensoriel par (Q d’une Z-variation de structure de
Hodge de poids n sur Uy qui est polarisée par la forme d’intersection _fo - U -

sur les fibres [46]. Fixons une fois pour toutes un élément général fy., € H°(X. L)
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et prenons 1) := [ fgen] € Up comme point base. La représentation d’holonomie du
systeme local Vyy,, s’écrit

p:m1(Up,n) — G := Aut (H:U(X,,,R),/ - U —) )
Xfl

Dans la suite, I’entier n est pair. La forme d’intersection est alors symétrique et le
groupe G est un groupe orthogonal.

Introduisons U := U(X, L) C |L| 'ouvert de Zariski, contenant Uy, formé
des hypersurfaces lisses ou n’ayant que des singularités isolées simples. Une
singularité isolée d’hypersurface est dite simple si dans une déformation miniverselle
([32]) n"apparaissent qu’un nombre fini de classes d’isomorphisme de singularités.
V. Arnold a démontré qu’une singularité d’hypersurface est simple si et seulement
si elle est de type ADE [2]. En dimension paire, le groupe de monodromie d’une
telle singularité est le groupe de Coxeter ADE correspondant, qui est en particulier
fini ; réciproquement, ce sont les seules singularités d’hypersurface dont le groupe de
monodromie est fini (voir [3] ou [14]). En dimension deux, la notion de singularité
simple est confondue avec celle de singularit¢ Du Val ou encore avec celle de
singularité canonique [29].

Cette propri€té de finitude de la monodromie nous permet dans la section 3.1
de construire un champ algébrique de Deligne—-Mumford U:=U (X, L) séparé et
propre sur son espace des modules U, contenant Uy comme ouvert de Zariski, et
vérifiant la propriété suivante : notant i : Uy C U Pinclusion et iy : 11 (Up, n) —
nl(a, n) le morphisme surjectif induit par i sur les groupes fondamentaux des
champs topologiques sous-jacents ( [35, 36]), alors le noyau de i, est contenu
dans celui de p. Par conséquent, la représentation p descend a une représentation
Do m(U n) — G. Si L est assez ample et si 1’ est un pomt de U au-dessus
d’une hypersurface singuliere X s/, le groupe d’inertie de U en 1’ est le produit des
groupes de monodromie des points singuliers de X s-. Ces groupes de monodromie
sont précisément les groupes de Coxeter ADE de méme type que les singularités.
Plus généralement, la construction de U integre comme groupe d’inertie en 7 le
groupe de monodromie locale de p en 1 qui est un sous-groupe de ce produit.

La représentation p apparait comme 1’holonomie d’une (Q-variation de structure
de Hodge (V7, F, S), polarisée de poids n, sur le champ U. L’'image I" de p est la
méme que celle de p et un théoreme classique de Beauville [5] entraine que c’est un
sous-groupe arithmétique du groupe orthogonal G (voir [9, théoreme 9.1]).

Notons U le sous-groupe de G qui stabilise la structure de Hodge sur /7, (X, R),
et D := G/U le domaine de Griffiths ( [27]) attaché a (V37, F, S). On rappelle
que D a une structure naturelle de variété complexe homogene et porte une distri-
bution holomorphe horizontale G-équivariante. L’action de I' sur D est proprement
discontinue et le champ quotient [["\ D] est un orbifold complexe. I application des
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périodes de (Vz7, £, ) définit une application holomorphe horizontale de champs
complexes analytiques _
p:U — ['\D].

Le principal résultat de cet article est un théoreme de Torelli infinitésimal. Plus
précisément, on étudie I"application des périodes p en restriction a certaines strates
définies de la maniere suivante : pour tout k € N, on note Uy C U l'ouvert des
hypersurfaces a singularités simples dont le nombre de Tjurina total (/) (voir la
section 2) est inférieur ou égal a k , et on note U; =U xy Ug.C’est un sous-champ
de U, d’espace de modules Uy. On s’intéresse au comportement de p sur les strates
5; — (E_—l (voir 3.6), sous des conditions de positivité sur L.

Theoréme 1 (voir prop. 3.8.1 et prop. 6.3.1). Pour X = P"*! avec n > 2 pair,
d>0etlL=0x(d),ona:

(1) L’actionde PGL(n + 2) sur |L| se reléve a U en préservant les différents 171

(2) Soitk >0.5(d >n+2+k, la différentielle de la restriction de I'application
de périodes de V7 a la strate U — Uy a pour noyau le tangent de ’orbite de
PGL(n + 2).

Nos bornes ne sont pas optimales. Si les surfaces quintiques avec un nceud
sont obtenues par notre théoreme, ce dernier est vide pour les surfaces quartiques
a singularités simples alors que Torelli infinitésimal est bien connu dans ce cas.
L’ obtention de bornes optimales nécessiterait des arguments nettement plus fins non
développés ici.

Le résultat avec & = 0 est un résultat classique de Griffiths [26]. La preuve du
théoreme | repose sur le calcul de la différentielle de I"application de périodes pour
des hypersurfaces nodales issue du travail fondamental [18] et de I'étude de leur
filtration de Hodge dans [20]. Nous étendons une partie des résultats de ces articles
aux hypersurfaces a singularités simples. Cette extension effectuée, 1’énoncé de type
Torelli infinitésimal repose sur une variante donnée au lemme 5.2.1 du théoreme de
Macaulay pour des hypersurfaces a singularités isolées quasi-homogenes, exacte-
ment comme dans [46]. Techniquement, nos résultats sont complémentaires de ceux
de [16,21] qui ne considerent pas la question de Torelli infinitésimal. !

Une généralisation du théoreme de Griffiths sur les intégrales rationnelles
donnant une interprétation de la différentielle de I’application de périodes comme
opérateur de multiplication pour les directions transverses aux strates isosingulieres
ne semble pas avoir €té considérée de facon systématique dans la littérature. De
méme 1l est probable que le théoreme 1 se généralise pour X quelconque pourvu
que L soit assez ample mais la encore nous n’avons pas trouvé de référence dans la
littérature. Nous laissons ces questions pour de futures recherches.

1. Alors que nous finissions de rédiger ce travail, A. Dimca nous a signalé que le lemme 5.2.1 résultait
de [19] qui traite le cas plus général des singularités isolées quelconques, moyennant une traduction qui
n’est pas si évidente pour nous. Notre preuve demandant moins de technologie et restant assez courte,
nous avons donc préféré la conserver.
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L’application a la conjecture de Shafarevich est immédiate en utilisant une
construction de [22,23] :

Corollaire 2. Hypotheses et notations comme au théoréme 1. Soit Y une variété
projective lisse et ¢ : Y — Uy un morphisme fini. Alors le revétement universel de
Y est une variété de Stein.

Remarquons qu’il existe effectivement de telles variétés projectives Y dont la
dimension peut aller jusqu’a six. En effet, I'ouvert Uy a un complémentaire de
codimension ¢ > min(7.k) dés que L est k-jet-ample (voir [34]). Pour plus de
résultats sur le revétement universel de tels Y, dans le cas ot X = P"*! ou non,
voir la section 7. Dans le cas ou ¢ est génériquement fini, I’étude de la conjecture de
Shafarevich semble beaucoup plus délicate et nous ne savons pas non plus la décider
dans tous les cas.

[’article est organisé comme suit. Aprés avoir rappelé quelques notations et
résultats dans la section 2, on construit dans la section 3 le champ U ainsi que la
variation de structure de Hodge V77, et on prouve la premiere partie du théoreme 1
en 3.8.1. La section 4 contient une comparaison entre les tiges de V7 aux points
correspondant a des variétés singulieres et la cohomologie de ces variétés singulieres.
La section 5 contient un théoreme général de dualité de Macaulay pour des variétés
a singularités modérées. On I’applique dans la section 6 par I’intermédiaire d’une
formule de type Dimca—Saito—Wotzlaw, pour obtenir en 6.3.1 la fin de la preuve du
théoreme 1. Les applications a la conjecture de Shafarevich sont données dans la
section 7.

Remerciements. Nous tenons a remercier D. Barlet, N. Borne, M. Brion, A. Dimca,
S. Druel, L. Gruson, C. Peters, C. Voisin, M. H. Saito et tout particuliecrement A. Ot-
winowska pour d’utiles remarques sur les questions trait€es ici. Nous remercions
¢galement le rapporteur dont les remarques ont aidé a améliorer I’exposition.

2. Notations et rappels

Dans cette premiere section, nous précisons certaines notations et rappelons
quelques résultats portant sur la topologie et la théorie de Hodge des hypersurfaces
a singularités simples.

Pour tout espace 7 et tout groupe A, A7 désigne le faisceau des fonctions
localement constantes sur 7 a valeurs dans A. Plus généralement si Wy est un
systeme local sur 7 et ¢ : T — T une application continue, on note Wy =
¢*Wr.. De méme, pour X — T une application continue, on note X77 = X x7 T'.

Soit X une variété projective lisse complexe de dimension impaire n + 1, L
un fibré en droites sans point base sur X. On note X C |L| x X I'hypersurface
universelle et py : X' — |L| la projection sur le premier facteur. L'ouvert Uy de
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I’introduction est I’ouvert de lissité de p; et en notant Xy = pl_l(UO), le conoyau
du morphisme de systemes locaux H" (X, Q)y, — R" p1+Qux, est exactement V.

2.1. Nombre de Tjurina. Soit f € H(X,L) — {0} telle que I'hypersurface
{f =0} := Xy n’ait que des singularités isolées. Soit ¥ C Xy le sous-schéma

artinien de X de support X}’"g défini par I’annulation du premier jet de f. La
longueur de X, i.e. le nombre de Tjurina total 7( /'), est défini par la relation

t(f)= Y t(f)= ) dimOxgp).

Pe|X| Pe|X|

Choisissant des coordonnées locales et une trivialisation locale de L et notant fp

la fonction qui définit f* dans ces coordonnées, on voit que Ox p est isomorphe a

afp afp )
dxy* " dxpg

I’algebre de Tjurina Ogn1 o/ (fp,

2.2. Cohomologie de certaines hypersurfaces singulieres. Soit [f] € |[L].
Alors la cohomologie H"(X y,(Q) est munie de la structure de Hodge mixte
canonique de Deligne [10]. Supposons que X ¢ n’ait que des singularités simples.
Comme une singularité simple a une forme d’intersection définie négative donc
non dégénérée, la variété de dimension paire Xy est une variété d’homologie
rationnelle [14, prop. 4.7]. Le morphisme naturel Qx ,[n] — ICx,Q vers le
complexe d’intersection [15, 5.4] est alors un isomorphisme et le groupe H" (X . Q)
coincide donc avec le groupe de cohomologie d’intersection /H"(X r, Q) :=
H(X s, ICx ,Q) et porte une structure de Hodge pure de poids n.

3. Structure orbifold sur U et prolongement de la représentation de monodro-
mie

Dans cette section on commence par introduire (3.1) le champ de Deligne-
Mumford U qui est muni d’une variation de structure de Hodge. Dans certains
cas (3.8), ce champ est également muni de 'action d’un groupe algébrique, et la
variation de structure de Hodge descend au champ d’ Artin quotient. Son application
des périodes est étudiée a la section suivante.

3.1. Reformulation et extension des résultats de [34]. Reprenons les notations
de la section précédente, et soit k € N, et Uy C |L| I'ouvert de Zariski constitué
des [f] € L tels que X s n’ait que des singularités isolées, simples, et telles que
(f) <k.OnalUy Cc Uy C - C U = |J; Ug. Remarquons que U est non vide
puisque ’ouvert Uy des [ /] tels que X ¢ soit lisse est non vide par Bertini.
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Proposition 3.1.1. Soient X, L et U comme ci-dessus. Il existe un champ de
Deligne—Mumford U contenant Uy et fini sur son espace de modules U, tel que la
représentation de monodromie de wy(Uy) se prolonge a'p := p(x.py : 71 (U, b) —
O(H"(Xp,Q)) oub € Uy est un point base arbitraire. De plus, si L est k-jet-ample,
alors le sous-champ ouvert ﬁ; = xy Uy est lisse.

La preuve occupe les paragraphes 3.2 a 3.6 suivants.

3.2. Déformations locales. Soit / € H®(X, L) tel que I'hypersurface X  C X
soit a singularités isolées. Tout voisinage de [f] dans PH®(X. L) induit une
déformation globale de X s et donc induit pour chaque point singulier p € |X]
une déformation locale du germe (X ¢, p). Notons Def(X s, p) la base d’une
déformation miniverselle [32, 6.4, 6.5] de la singularité isolée d hypersurface
(X f. p). La propriété€ universelle fournit des morphismes de germes

Xp (LI = Def(X;.p) et A= ] Ap:(LL.I/D— [] Def(Xy.p).

PE|Z] PE|X|

Il est connu que pour des singularités isolées d”hypersurfaces, Def (X ., p) est lisse et
naturellement isomorphe a un voisinage de 0 dans I’espace vectoriel Oy , [32, 6.7].
De plus, toujours par propriété universelle, la déformation (X x |[L|, (p.[f])) D
(X, (p.[fD) — (|L|.[f]) estinduite par la déformation miniverselle. En particulier
les éléments de |L| proches de [ f] et singuliers prés du point p sont ceux que A,
envoie dans le discriminant D, C Def(X ¢, p).

La surjection de faisceaux L. — L ® Oy induit un morphisme

HX.L) > HX.L®Os)= P 05, ® L (3.2.1)
pE|Z|

qui évalue les jets des sections aux points singuliers de X y. Ce morphisme s’annule
sur f et définit sur le quotient H(X, L)/(f) = Tirj|L| une application que 1'on
note

ev[y] = @ ev, : Tip|L| — @ Os,®L (3.2.2)

PE|X| pE|X]

Cette application est la différentielle de A en [ f7].

3.3. Stratification par le nombre de Tjurina. Soit kK € N et posons Z; = Uy —
Uk_y. Alors Zj est localement fermé dans U, on le munit de sa structure réduite
induite. Dans tous les cas envisagés ici, Z est non-vide, lisse de codimension un
et connexe car son adhérence est le discriminant D C |L| qui est irréductible. Par
contre Z; n’est pas généralement pas connexe si Kk > 2 : par exemple Z, désigne
les hypersurfaces X ¢ dont les singularités sont soit deux points doubles ordinaires,
soit un cusp de type A,.
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Soit [f] € Zi, p un point singulier de X s et A, : (|L|.[f]) — Def(X,.p)
comme plus haut. La déformation miniverselle possede une structure assez riche. Le
discriminant D, C Def(X r. p) est un germe d’hypersurface réduite et irréductible
dans Def(X . p) et sa multiplicité a I’origine est égale au nombre de Tjurina 7, :=
t(fp) de (Xr. p) [32, 4.8]. La stratification de Samuel de D), est la partition en
sous-ensembles

Z{ :={s € Dp, multy;D, =1}, [ €[1,7p].

C’est aussi la partition par nombre de Tjurina, au sens ou dans la famille miniverselle
(X, p) = (Def(X 7. p).0), la fibre au-dessus d’un point s € Z, a au voisinage de p
des points singuliers dont la somme des nombres de Tjurina vaut précisément /.

Par [17], cette partition coincide avec la stratification canonique de Whitney. En
notant Z{ le complémentaire du discriminant dans Def(X s, p), on a finalement une
stratification de toute la base

Tp
Def(X;.p) =] | 2!
I=0

avec le de codimension /. Le produit HPE|E| Def(X s, p) hérite de la stratification
produit.

Toute cette structure peut étre tirée en arriere a (| L|. [ /]) au moyen du morphisme
A. En particulier, pour tout / < k, I'intersection de Z; avec un voisinage de [ /] se
laisse décrire comme 1’image réciproque par A de la réunion sur toutes les partitions

de !/
I= %I
[

PE|Z

: cfratec : p
des strates produits [] ¢z Z; .

Le morphisme A permet également de comparer les groupes fondamentaux
locaux, au sens suivant. Soit B une boule de |L| centrée en [ f], suffisamment petite.
Alors, on a un morphisme de groupes fondamentaux

da 7 (Uo N B) — [] mi (Def(Xy, p) = Z7). (33.1)
pe|Z

Les groupes (Def(Xf. p)— le) sont bien compris grace aux travaux d”Arnold
et Brieskorn. Chacun d’entre eux est isomorphe au groupe de tresses généralisé de
type ADE correspondant au type de singularité au point p. Par exemple pour un point
singulier de type Ag, c’est le groupe de tresses classique a k + 1 brins. Le groupe
71(Up N B) est appelé groupe fondamental local en [ f7].

Cette description locale se comporte bien par cospécialisation au sens ou si une
singularité simple g se spécialise en [, alors une déformation miniverselle de g peut
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étre obtenue en construisant d’abord une déformation miniverselle de f et en prenant
a l'intérieur de celle-ci une transversale a I'orbite de g. Ainsi, une déformation
miniverselle de g peut étre réalisée comme plongée dans celle de f.

3.4. Utilisation de I’hypothese de k-jet amplitude. Soit k € N. Si L est k-jet
ample, on peut décrire la structure locale des strates Z; pour / < k et minorer leur
codimension pour / > k.

La k-jet-amplitude entraine que pour tout [f] € Zj, le morphisme (3.2.1)
d’évaluation des multijets est surjectif. Autrement dit, A est submersif en [ f] et
€quivalent 2 la seconde projection du produit (Zx, [f]) x [],¢x Def(X s, p) [32,
Ch. 6], la strate Z, est lisse en [ /] et son espace tangent est le noyau du morphisme
d’évaluation (3.2.2). Pour tout / < k, la strate Z; est lisse de codimension /, et la
stratification U, = Uf:o Z; est de Whitney en [ f] puisque c’est le cas dans les
déformations miniverselles locales. De plus, le morphisme induit (3.3.1) entre les
groupes fondamentaux locaux est un isomorphisme.

Enfin, toujours sous I'hypothese de k-jet amplitude, les strates Z; avec [ > k
sont de codimension au moins & + 1 [34, Th. 3.1] mais leur structure locale n’a pas
de description simple.

Remarque 3.4.1. S’il est vrai que I’hypothése de positivité sur L permet de
controler la codimension des strates Zj, nous attirons I’attention sur le fait que
le complémentaire de U dans |L| a une codimension qui ne peut pas étre rendue
arbitrairement petite. Dés que L est 3-jet ample, cette codimension est exactement
sept.

3.5. Revétement galoisien neutralisant la monodromie locale. Sur I'ouvert B N
Uy = B—Z,, on peut considérer la restriction du systeme local R" p1+Qy, de
cohomologie des fibres, ainsi que le systeme Vyy,, déduit du précédent en quotientant
par I'image (constante) de H" (X, Q). Sa représentation de monodromie est notée
p|ﬂl (B—7,) Ou simplement py r1, ¢’est la composition a gauche de p par 71 (Up N B)
— 11(Up). On I'appelle la représentation de monodromie locale en [ f].

Enfin, pour chaque point singulier p de X 7, on a sur Def(X, P) — Z1 la repré-
sentation de monodromie de la singularité, a valeurs dans les automorphismes de la
cohomologie de la fibre de Milnor notée ', et munie de sa forme d’intersection :

pp - T (Def(X. p) — ZT7) — Aut (H" (F,. Q). (—.—)).

Son image est le groupe de monodromie de la singularité, qui est fini car la singularité
est simple et de dimension paire.

En composant avec (A,)«, on obtient des représentations notées A;(p[,) de
(B~ Z)).

Toujours parce que Xy est de dimension paire et n’a que des singularités
isolées et simples, P11 se décompose comme somme directe d'un facteur trivial
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et de @A;(pp). Son image est donc finie. Si de plus L est k-jet ample, A, est

bijectivg et I'image de p[s) est isomorphe au produit des groupes de monodromie
des singularités de X r. Pour tous ces résultats, voir [34, Prop.4.1].

Par un théoré¢me de Selberg [40], il existe un sous-groupe normal sans torsion
d’indice fini dans p(mr;(Up)). Le revétement étale fini correspondant n : Uy — Uy
est galoisien de groupe noté G et se prolonge par le théoreme de Grauert—-Remmert
en un revétement galoisien normal encore noté n : |L|" — |[L|, unique a
isomorphisme prés. On note aussi U, = |L|" x|z Uy et n : U] — Uy la restriction
a cet ouvert. Le sous-groupe sans torsion d’indice fini n’est bien siir pas unique, et
donc le revétement n non plus. Cependant, la structure locale de 1 est toujours la
méme, au sens suivant. La restriction du revétement 7 : U(; — Uy au-dessus de
Up N B est un revétement non connexe, dont chaque composante connexe est le
revétement galoisien de Up N B défini par le sous-groupe ker p[ ) C 71(Ug N B), le
noyau de la monodromie locale [34, Th. 4.3, étape 1]. Ceci signifie que le systeme
local n*Vy,npg sur n~ ' (Uy N B) a monodromie nulle, done s étend en un systéme
local (trivial) sur n~!(B). Par conséquent, le systeme local Vy, tiré en arriére par
s’étend en un systeme local Vi sur U”.

Si L est k-jet ample, Ulé est lisse car le modele local de n U,é — Uy est
le quotient d’un espace vectoriel par un groupe de Coxeter de type ADE agissant
comme groupe de réflexions [34, 2.2]. Dans ce cas, le systeme local VU;Z sur U}
est sous-jacent a une variation de structure de Hodge par le théoreme d’extension de
Griftiths [27].

Le paragraphe qui suit élimine I’ambiguité sur le choix du revétement U”.

3.6. Construction du champ. Considérons le champ quotient U= [U'/G]. Cest
un champ de Deligne-Mumford normal, d”espaces de modules U. On peut définir
des sous-champs ouverts Uk = [U;/G], et considérer Zk — Uk — Uk_l avec la
structure réduite induite de .sous—champ localement fermé. On note (U), T (fj‘;),
b8 (Z;) les groupes fondamentaux des champs topologiques sous-jacents [35,36].

Le champ U ne dépend pas du choix du revétement n au sens ot si U — U
et U” — U sont deux revétements de groupe de Galois G et G» correspondant a
deux choix de sous-groupes distingués sans torsion comme plus haut, I'intersection
de ces deux groupes donne un revétement commun U”" — U, de groupe de Galois
noté Gs. Alors, [U'/G] = [U"/G3] ~ [U"/Ga].

Si evys) est surjective pour tout [ /] € Uy et en particulier si L est k-jet-ample,
alors la variété U, est lisse donc le champ quotient Uy est un champ de Deligne-
Mumford lisse d’espace grossier Uy, le groupe d’inertie en [ f] étant le produit des
groupes de monodromie locale des singularités de X s, et pour tout I < k, Z; est
lisse et Z; est une gerbe sur Z;. Cette description locale de U peut se reformuler de
la maniere suivante. Pour chaque point p singulier dans X , Def(X ¢, p) est’espace
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grossier d’un champ de Deligne-Mumford lisse Def(X 7. p) obtenu comme quotient
global d’un germe lisse par le groupe de monodromie de la singularité en p agissant
comme groupe de réflexions. La structure locale en [ /] du champ U est celle de

[] Def(xy. p).

PEIZ]

tirée en arriére par A.
Le systeme local Vi sur U’ est G-équivariant et descend donc a un systeme
local V77 sur U, dont on note la représentation de monodromie

7:m(U,b) — O(HE, (Xp,Q), (—, ),

avec b € Uy un point base arbitraire. Si Uy est lisse, le systeme local restreint ij‘;

sur Uy est sous jacent a une (Q-Variation de structure de Hodge. On obtient de la
méme maniere des variations de structure de Hodge Vf; sur les strates Zj si elles
sont lisses. Ceci termine la preuve de la proposition 3.1.1. O

3.7. Une question ouverte. Dans le cas X = P3, L = Op3(4) on sait que p est un
isomorphisme sur son image grace au théoréeme de Torelli pour les surfaces K3. Une
conjecture de Carlson—Toledo prédit que les seuls réseaux de groupes algébriques
réels semisimples apparaissant comme groupes kihlériens sont ceux des groupes de
type hermitien symétrique. Cette conjecture implique que 0 n’est pas injective pour
d > 5. Ceci motive :

Conjecture 1. Pour d > 5 le noyau de p = pp3 o ,(qy) €St un groupe infini.

La méthode de [9] pour prouver le fait analogue dans le cas de p ne s’applique
malheureusement pas ici. Nous ne voyons pas comment construire d’autres repré-
sentations linéaires de 1 (U (P*, Op3(d)). n). Ceci motive la :

Question 2. Le groupe m1(U(P3, Op3(d)).n) admet-il d’autres représentations
complexes que les représentations de la forme @ o'p ot a est une représentation

rationnelle de O(H"(Xo.R))?

Pour d = 4 la réponse a cette question est négative par le théoreme de
superrigidité de Margulis.

3.8. Relevement de I’action de PAut(X. L). Le groupe Aut(X.L)° des automor-
phismes du couple (X. L) agit sur |L| a travers PAut (X, L) = Aut(X, L)°/C* en
préservant les Uy.

La proposition suivante appliquée dans le cas particulier X = P"*! prouve la
partie (1) du théoréeme 1.

Proposition 3.8.1. Si le groupe PAut(X, L) est semisimple, son action sur U se
reléve a une action sur U.
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Démonstration. 1.algebre de Lie paut(X, L)? C HO(G)J“) est une algebre de Lie
de champs de vecteurs holomorphes qui sont tangents 4 chaque Zy. Or Z; est le lieu
de ramificationde |L|" — |L|. Donc ces champs de vecteurs se relevent a des champs
de vecteurs sur [L|" car tout champ de vecteurs tangent au lieu de ramification de
Z — Y avec Y lisse et Z normal se releve a Z.

En effet, le relévement a lieu en codimension un car un germe de champ de
vecteurs de la forme a(z, (wj))_ + b;i(z, (u)j))% a,b e C{z,wy,.... wy} se
reléve bien a un germe de champ de vecteurs holomorphes par un morphisme de
la forme (z, (wj) — (z¢, (w;)). Ce relevement en codimension un se prolonge a Y
tout entier car le faisceau des champs de vecteurs holomorphes sur I’espace normal Y
est réflexif.

On dispose donc d’un morphisme d’algebres de Lie paut(X, L)% — H(®y)¢
qui s’exponentic en un morphisme de groupes de Lie complexes du revétement
universel topologique P de PAut(X, L) vers le centralisateur C(G, Aut(U’) de G
dans Aur(U").

St PAut (X, L) est semisimple, le groupe P est un groupe algébrique affine se-
misimple et le morphisme correspondant est un morphisme de groupes algébriques.
Le noyau N du morphisme P — Aut’ (U) est contenu dans le noyau N’ de
P - PAut (X, L) car I’action de P redescend 2 une action de P sur U factorisant
via PAut (X, L). Mais N'/N commute a G et préserve 1. Comme 7 est galoisien de
groupe G on déduit que N'/N C Z(G) et que donc, en divisant U’ par N’/ N,

on obtient une action de PAut(X,L) sur U” := U’/(N'/N) qui commute a
Gal(U"/U) = G/(N'/N) := G’ et descend a une action de PAut(X,L) sur
U~[U"/G. O

Corollaire 3.8.2. L’application des périodes P - U = [T\D] attachée a p descend
a une application définie sur le champ quotient [PAut (X, L)\U] — [I'\D].

4. Interprétation géométrique de la représentation de monodromie prolongée

Avec les notations de 3.1, la premiere projection p; : |L| x X — |L| se restreint
en un morphisme surjectif lisse toujours noté p; : |[L| x X — X — |L| dont la fibre
au-dessus de [ /] est la variété ouverte X — X r.

Soit k € N. Si pour tout [ f] € Zj I'évaluation des multijets evy ) est surjective,
alors la strate Zy est lisse et porte le systéme local R”*1(p, )*@(kaX—A’zk) dont la

tige au-dessus de [ f] est H"T1(X — X 7, Q). Ce systeme local est sous-jacent a une

variation de structure de Hodge mixte et en notant W sa graduation par le poids, on
en tire la variation de structure de Hodge pure de poids n + 2 sur Zy :

42 pn+l

G’{’}V R" (Pl)*@(zkxX—xzk)~

que I’on peut tirer en arriere a Z et que 1’on note de la méme maniere. D autre part,
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Zi estmuni de la VSHYV 7% La proposition qui suit compare les variations de ces
deux VSH.

Proposition 4.0.3. Soit k € N et supposons ev( ry surjectif pour tout [ f] € Zy. Les

sous-faisceaux de © Z: définis par les noyaux des Grg(V) pour les variations de

structure de Hodge Grl'}VJr2 R 1(p, )+ Q(z, xX—Xz,) €l VZ sont égaux.

L’hypothese de la proposition est satisfaite si par exemple L est t( f')-jet ample,
en particulier si L est le produit tensoriel d’au moins 7( f) fibrés trés amples.

Pour montrer la proposition, on considere la cohomologie de la variété singu-
licre X £. On la compare dans un premier temps a celle de son complémentaire (4.1),
et ensuite a la tige de V qui est décrite comme la structure de Hodge limite dans
une dégénérescence (4.2). Cette comparaison effectuée en famille au-dessus de la
strate Zi donne le résultat (4.3). Une preuve alternative et plus constructive est
donnée dans le cas de familles de surfaces en (4.4).

4.1. Relation entre les structures de Hodge de X r etde X — X y. Comme rappelé
dans la section 2, X s est une variété d’homologie rationnelle et donc H" (X ¢, Q)
porte une structure de Hodge pure de poids n. Le groupe H" (X — X 7, Q) porte
une structure de Hodge mixte [10] de poids n + 1 et n 4 2, entrant dans une suite
exacte :

H'" '(X,Q) - H'"T' (X - X7,Q) > H;j_z(x. Q) - H"2(X,Q) (4.1.1)

Toujours parce que X s est une variété d’homologie rationnelle, on a un isomor-
phisme de structure de Hodge H" (X s, Q)(—1) = H;TZ(X. @). Pour avoir un tel
isomorphisme « de Thom », il suffit en effet que le complexe Qx , [n] soit autodual.

Ainsi G erH HEPY X — X 7. Q) est une sous-structure de Hodge pure de poids n +2
de H" (X y.@Q)(—1) et sa filtration de Hodge vérifie

0= F*"*2 c prtlc . F' = FY = G5 HY (X — X, 0)

On note que si H"T1(X,Q) = 0, ce qui est le cas si X = P"T! puisque n est
pair, alors H"T1(X — X s, Q) est pure de poids n + 2.

4.2. Structure de Hodge de X s et structure de Hodge limite. Soiti : A — U
un disque analytique tel que i (0) = [f] et i(A*) C Up. Posons XA = & xy A.
Alors la projection 1 : XA — A est un morphisme projectif, lisse au-dessus de A*
et la fibre en zéro est (AXa)o = X y. Rappelons rapidement les résultats généraux sur
de telles familles, avant d’examiner le cas particulier des singularités ADE.

D’un point de vue purement topologique d’abord, le formalisme des cycles
¢vanescents de Deligne donne dans la catégorie dérivée Df’(Xf.Q) un triangle
distingué (voir [15, 4.2])

can

Qx, = ¥1(Qua) =25 6,(Quy) > (4.2.1)
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ou le complexe ¢;(Qx,) est cohomologiquement concentré aux points singuliers
de X 7. En prenant I"hypercohomologie de ce triangle, on obtient une suite exacte
longue d’espaces vectoriels

oo HY(X Q) = H'(00(Quy) = H' (4 (Qup)) =+ (422)

L'espace vectoriel H" (y,(Qx,)) correspond a la cohomologie de la fibre proche
canonique, et cette suite exacte est celle qui permet de comparer la cohomologie de
la fibre centrale et des fibres proches.

La théorie de Hodge donne des informations supplémentaires sur cette suite
exacte. La cohomologie de la fibre singuliere H" (X ¢, Q) porte la structure de Hodge
mixte canonique de Deligne [10], et la cohomologie de la fibre proche H" (v, (Qx, )
peut également étre munie d’une structure de Hodge : la structure de Hodge limite
au sens de Schmid et Steenbrink [45]. On la notera Hﬁm(Xw. Q). Le morphisme
de spécialisation H"(X ;. Q) — H|;, (Xoo. Q) apparaissant dans la suite exacte
longue (4.2.2) est un morphisme de structures de Hodge mixtes.

La théorie de Hodge de cette suite exacte longue est en fait définie au niveau
du triangle distingué lui-méme, d’apres la théorie des modules de Hodge mixtes de
Saito [38]. Ceci peut se voir en deux étapes. Tout d’abord, on sait [15, 5.2.21] que
les foncteurs de cycles proches et évanescents convenablement décalés induisent
des foncteurs Py, = y,[—1] et P¢p, := ¢;[—1] de la catégorie Perv(Qy,) dans
Perv(Qy ). Le triangle distingué (4.2.1) peut se réécrire, apres décalage, comme la
suite exacte courte de faisceaux pervers sur X 5

0— Qx, ] = Py (Qupy[n + 1) = P (Qup[n + 1]) = 0. (4.2.3)

Ensuite, cette suite exacte est elle-méme sous-jacente a une suite exacte courte de
modules de Hodge mixtes. Le formalisme de Saito redonne en cohomologie la suite
exacte longue de structures de Hodge mixtes (4.2.2).

Dans le cas particulier ol X  n’a que des singularités ADE, on peut étre plus
précis. En effet, les groupes de monodromie des singularités de X ¢ sont finis, et apres
revétement fini, la monodromie de la famille X'+ — A™* devient non seulement
unipotente mais en fait triviale. La structure de Hodge limite H} (X oo, Q) est alors
pure, de méme que H"(X s, Q) par le paragraphe précédent, et le morphisme de
spécialisation est un morphisme de structures de Hodge pures. Plus généralement, la
description de la suite exacte longue (4.2.2) en termes de modules de Hodge est la
suivante.

Par hypothese sur les singularités de X y, ona Qx , [n] = ICx , Q. Ce complexe
est donc sous-jacent a un module de Hodge polarisable de poids n [37, cor. 1, p. 856].
D’autre part, Y, (Qx, [n + 1]) = PY,(ICx,Q) et comme la dégénérescence
t: X — A est 2 monodromie finie, ”vy,(/Cx, Q) est lui aussi sous-jacent a un
module de Hodge polarisable de poids n [37, (0.7), p. 852]. La suite exacte (4.2.3)
provient donc d’une suite exacte de modules de Hodge polarisables de poids n, et
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elle est donc scindée car la catégorie abélienne des modules de Hodge polarisables
de poids donné est semisimple [37, Lemme 5, p. 854].

Ceci fournit en hypercohomologie une suite exacte (courte) de structures de
Hodge pures :

0= H"(X7.Q) = H}', (Xoo.Q) = H" (¢4 (Qx,)) = 0. (4.2.4)

Le dernier terme peut se calculer a I'aide de la suite spectrale d"hypercohomologie.
Comme les singularités sont isolées, on a H" (¢ (Qx, ) = D pex) H" (1 Qs ) p-

4.3. Comparaison avec la variation de structure de Hodge des variétés sin-
gulieres. Faisons maintenant varier [ /] dans la strate isosinguliere Z. Soit avec
les notations du paragraphe 3.2 un germe de disque analytique j : (A,0) —

[Tyeis Def(X . p) tel que j(A*) C [lyes (Def(X s, p)—Z7) et dont la
monodromie est nulle.
On définit un germe T := (|L|.[f]) x,.; A muni de la famille d"hypersurfaces

XxTD>Xr 5T,
La projection naturelle t+ : 77 — A définit une fonction holomorphe et
S := {1t = 0} est exactement le germe en [ f] de la strate isosinguliere Z; de X .

< 5 b4 ! ; ;
Notons enfin g la composée Xy — T — A, dy, = dimAr, dyy = dim X,
ds =dimSetdr =dimT.
On a sur X5 une suite exacte courte de faisceaux pervers

0— QA’S [dAS] = pr(@XT [d.«'t'y‘]) ﬂ) qug(@‘-‘x'r [d,?t","]) — 0. (43])

Comme X est localement isomorphe a un produit de variété d’homologie ration-
nelle par un germe de variété lisse, on a Q xg [dvg] = [ CxgQ. Par le méme argument
que plus haut, Vg (Qu, [dy, ) = PP (ICx, Q) est pur et la suite exacte (4.3.1)
est sous-jacente a une suite exacte (scindée) de modules de Hodge polarisables.

Appliquons maintenant le foncteur de cohomologie perverse ” R, = PH R,
a cette suite exacte. On obtient une suite exacte de modules de Hodge purs sur S

0 — 7 R, Qug[dug] = P ROmP g (Quy ldny 1) = 7 RO7P g (Qicy [dvy ) = .
(4.3.2)
Simplifions I’écriture de ces trois termes.

(1) Au-dessus de S qui est lisse, le morphisme 7 est topologiquement localement
trivial donc
PRO7uQugldrg]) = R"mQug[ds).

(2) D’autre part, 7 est propre donc R, commute aux cycles proches [15, 4.2.11].
Ceci joint a la r-exactitude de Py donne alors ”Ron*pwg(@xr [dy,]) =
'z (pRO?T*@xT [d.t'r]),PUiSplﬁt (pROJT*@XT [d(\’r]) =Py, (Rn?T*QxT [dT])
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car les cycles proches ne dépendent que de la restriction aux fibres proches.
Finalement, on a

P RO g Qi [y ) = "9 (R" Qo [d7)

(3) Enfin et surtout, le troisieme module de Hodge PROJT*qug(@xT [dy,]) est
constant. En effet, ¢4 (Q ;- [d v, ]) est supporté sur le lieu singulier de g qui est
une union finie de sections étales de Xs — § qui décrivent les différents points
singuliers des variétés X lorsque s varie dans §. La restriction de 7 a ce support
est donc étale sur S et PROJT*qug(QYT [dxy]) = 7« (Pd)g (Quxy [(],1-_[])) est une
somme directe pour p € |X| de complexes de cycles évanescents de chaque
singularité de X lorsque s varie dans S. Or ces singularités sont de type ADE
donc rigides.

Chacun des facteurs de cette somme directe est donc constant sur § car
il s’obtient par tiré en arriere d’un faisceau de cycles évanescents sur la
déformation universelle locale Def(X r. p) de chaque singularit¢ p € |X]
de X .

Si le faisceau pervers sous-jacent a un module de Hodge est a décalage pres un
systeme local, alors ce systeme local est une VSH [37, lemme 3]. Apres décalage, la
suite exacte (4.3.2) est donc une suite exacte de variations de structure de Hodge sur
le germe § dont le troisieme terme est constant. Les applications des périodes des
deux premiers termes ont donc des différentielles en [f] qui ont le méme noyau.

Par ailleurs, le second terme tir¢ en arriére par S — S, ol Sestle germe de Zi
dans Uk est isomorphe a V% & H" (X, Q)3

Finalement, en tout pomt de S, le noyau de Grg (V) pour V3 est le méme que
pour (le tiré en arriere a S de) R" Q.

Compte tenu de la comparaison entre H" (X s, Q) et Gr{}frzH”+l (X —Xr.Q)
¢tablie en (4.1.1), on sait déja que le noyau de Grg (V) pour R" 1. Q y¢ est le méme
que pour Gr"WJer’?”+l (P1)+Q(sxx—xg). Ceci €tablit la proposition 4.0.3. ]

4.4. Interprétation dans le cas n = 2. Donnons un argument alternatif permettant
de démontrer la proposition 4.0.3 dans le cas n = 2.

Si on applique le théoréeme de résolution simultanée des singularités Du Val [4],
[6], ct. [29, p. 135] a la famille universelle p; : A — U on trouve un revétement
ramifié r : U* — U et une application holomorphe propre et lisse u : X'* — U™
avec un morphisme 7 : X'* — A" xy U* qui est une résolution simultanée, c’est a
dire que pourtout s € U™, s : X — A estune résolution. De plus, ces résolutions
peuvent étre supposées minimales. L.e morphisme r factorise par un morphisme fini

' . U* - U. Lexistence globale de r n’est pas évidente et il n’est pas clair pour
nous que r puisse étre choisi de fagon a ce que r’ soit étale. Toutefois, cf [8], ¢ est
le cas si on restreint ¥ a un petit voisinage d'un point de U. Ceci implique que
V’J‘[ﬂ e HZ(X}. @) comme structures de Hodge ou X} — X7 est la résolution
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minimale mais aussi que r’*V’g o Rzﬁ*Qx* comme variations de structure de
Hodge polarisables.

Notons Z; = r—1(Zy) et appelons X", respectivement X, la restriction de X'*,
respectivement X" au-dessus de Z;, respectivement Zy. Alors A7 est lisse sur Zy et,
quitte  faire un revétement étale de Z?, on peut supposer que sur chaque composante
connexe Z,? de Z I’ensemble singulier de A% est un produit de Z,? par un ensemble
fini. L'ensemble exceptionnel de my : X" — A} est globalement un produit de Z,?
par une réunion de configurations de courbes rationnelles du type A-D-E adéquat.

Ceci donne des suites exactes de variations de structure de Hodge :

0= Q=% = R, Qux| 0 =~ () Vg],0 = R*(p1)+Qu, — 0
Z; kL k
Notons v : U* x X — A* — U™ la premiere projection. La suite exacte
(4.1.1) implique que Rz(pl)*(@,\',\, (—1) ~ Grl‘fV R3U*Q(U*xx_x*)lztkp, puis par le
théoreme de semisimplicité :

(r')*Valzx o @(—1)%{? P Gl'3VR3v*@(1)(U*xX—x*)|zg

Ceci implique que sur Z}), les VSH Gy}, R3vxQu+xx—x) IZ? et V3| 70 ne différent

que par un systeme local de monodromie finie donc d’application de périodes

constante. En particulier, Torelli infinitésimal pour V77|zo0 équivaut a Torelli infi-
;

nitésimal pour Gry, R?’U*@XXU*—.\’lz;\? ce qui équivaut a la proposition 4.0.3 dans

ce cas.

5. Théoréeme de Macaulay avec singularités modérées

Claire Voisin nous a signalé qu’une variante du théoreme de Macaulay autorisant
un peu de singularités devrait suivre en adaptant [46, pp. 427-428]. Mettons en
ceuvre cette suggestion : apres quelques généralités sur le complexe de Koszul, nous
obtenons la propriété d’injectivité 5.2.2 en corollaire du résultat de dualité 5.2.1.
Cela est suffisant pour montrer I'injectivité de I"application des périodes de V7 sur
certaines strates de U'.

5.1. Un lemme sur le complexe de Koszul d’une presqu’intersection compleéte.
Soit D € N* un entier positif. Soit G € H°(X, LP) un sous-espace de dimension
n + 2. Notons ¢ C Oy le faisceau d’idéaux engendré par G, et ¥ C X le sous-
schéma tel que Oy = Oy /G.

Posons A = A(X.L) = ®renH(X.L¥). On appelle / I'idéal gradué de
A(X, L) défini en degré k par I = H%(G(k)).Ona (G) C I.

Soit K(G);, le complexe de Koszul en degré m :

H()(Lm—(n+2)D) ® AH+2G 5 5 HO(Lm—D) ® =5 HO(Lm)

ou le premier terme du complexe est par convention en degré 0.
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Considérons également, avec la méme convention, sa version faisceautique K(G);, :
OX(Lm—(n+2)D)®AH+2G Y OX(Lm—D)®G s OX(Lm)

L’hypercohomologie de ce complexe de faisceaux est décrite par le lemme
suivant.

Lemme 5.1.1. Si ¥ C X est artinien et localement d’intersection complete, alors,
pour tout m € Z, H' (K(G);,)) =O0pouri #n +2,n+ let

H"2(K(G)y,) = H'™HK(G);) =~ € Os.p. (5.1.1)

Pe|Z|

Démonstration. Le support |X| de X consiste en un nombre fini de points de X et

Oz = @ Ox.p

Pe|Z|

est une somme de faisceaux gratte-ciel. Par abus de langage on identifie Oy p et
I’algebre artinienne locale de ¥ en P. Ensuite, pour tout P € |X|, désignant par
mp C Oy, p I'idéal maximal, on a dimcGp/mpGp = n + 1 et toute famille
(go....8gn) dans Gp induisant une base de Gp/mpGp est une suite réguliere
dans Oy p engendrant Gp voir par exemple [28, Thm 129]. On peut donc choisir
une base (gy,.... 2n.2n+1) de G de sorte que (gq,...gy) est une suite réguliere
engendrant G p. Dans la catégorie dérivée Db(Mod((’)X’p)) on a donc

K(Gp = Kigrp..... gn+1,P)o ® K(gn+2,P)p
~ Og pl-n—11®F K(gnsa.p)"

~ (Os.pl-n—1] > Oz pl-n—2))

puis H”“(lC(G)(')!P) ~ H"+2(IC(G)5,P) ~ (Oyx. p comme Oy p-modules, les
autres faisceaux de cohomologie étant nuls. Par suite, les faisceaux de cohomologie
non nuls de K(G)S, sont les gratte-ciels H"T'(K(G)S) ~ H"t3(K(G)),) =
Dprex| O=.p puisque K(G)g est acyclique hors de |Z|. La suite spectrale d’hy-
percohomologie de K(G)y, n’a donc qu'un seul terme non nul en E; qui est
dy : HO(H"TY(K(G)2)) — HO(H"T2(K(G)s,)) et dy = 0 car cest le cas apres
localisation. Done, pour tout m € Z, H' (K(G)%,) = Opouri # n +2.n+ 1et

H'F2(K(G)y,) ~ H'™THKG);) ~ @D Os.p. (5.1.2)

Par ailleurs, on a la filtration béte de X(G)o définie par

05, K(G)® = Ox (L~ H1=PPy @ AnH1=PG s ... 5 Oy,
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Cette filtration décroissante induit une filtration sur H* (K(G)3,) et la suite spectrale
correspondante a un terme ET? = HY(Grl (K(G)*)). Elle dégénere en E,43. On
remarque également que (E;’O, dy) = K(G)j;,, de sorte que Ef’o = H?(K(G);,)
Notamment, E;H’O = H""2(K(G)%) = (R/(G))m et une variation légere de la
preuve du lemme 5.1.1 permet de voir que G a une suite régulicre de longueur n + 1
et donc que EX*’ = HP(K(G)2,) = 0 pour p < n.

5.2. Dualité de Macaulay pour des hypersurfaces de P" ™! i singularités isolées
quasihomogénes. On se place dans le cas particulier X = P"T! Soit f €
HO P!, Opnt1(d)) — {0} telle que I'hypersurface X ; := { f = 0} n’ait que des
singularités isolées quasi-homogenes. On considere G C HO(P"*t1, Opns1(d — 1))
le sous-espace vectoriel engendré par les dérivées partielles de f, et (G) = J
est alors I'idéal jacobien de f. Avec les notations précédentes, D = d — 1, et
X C X, s’identifie au sous-schéma artinien de X de support X}'"g défini par
I"annulation du premier jet de f, / a I'idéal de A s’annulant sur X et § = Jx
s’identifie, apres introduction de coordonnées locales, a I'idéal de Tjurina de la
fonction correspondant a f. Puisque les singularités de X s sont quasi-homogenes,
les idéaux de Milnor et de Tjurina coincident et donc X est intersection compléte
locale.

Sil € Z, on note
evi : HO(P"!, Opusr (1)) - HP(P"H1, Ox()))

la fiéche induite par la surjection de faisceaux Opn+1 — Ofx.

Onnote enfino = (n + 2)(d — 2).

Sur I’espace projectif P" 1 les faisceaux inversibles n’ont de cohomologie qu’en
degré 0 ou n + 1, on en déduit I'annulation de la plupart des termes de la suite
spectrale introduite en 5.1 :on a E/"? = 0 saufsig = Ooug = n + 1, et donc les

. N . 0.1+1 2,0
seules fleches d, non nulles sont les fleches d; et la fleche d,, 45 : E”Jf;r — E:-tz

Lemme 5.2.1. La fleche dy 4> E,?f; " E;’ig 0 induit un isomorphisme entre
(1/(G)) g et (1/(G)),,.

Démonstration. Cette fleche induit un isomorphisme entre sa coimage et son image.
Il suffit de calculer ces deux espaces.
g . Jiie n+2,0 _ ,
Premiére étape : I'image de d, - dans E, 57 = R/(G)y est (1/(G)),,
On a

n+3

n+2,0 n+2.0
ker(El - £y )

ker (ET+2,0 5 En+2‘0)

_ n+2,0 n+2,0\ _
Imd, 4+, = ker(En_,_2 —» E, /3 ) =

ker ([P0 — E7T30 < HI2(K(G)},))

n+2,0 n+2,0
ker (E7P20 - E1737)
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Or, la fleche composée

n+2,0 n+2,0 n+2.0 n+2,0 +2
£ — E, =E, ;0 > E 3 = H" ™ (K(G),,)

apparaissant au numérateur coincide avec H%(O(m)) — H°(O/G(m)). Son noyau
est donc H%(G(m)) = I,,. D’autre part, au dénominateur, on a

ker (E7*20 = Epi30) = ker ({2 —» E5*2°) = Imd,.

On en déduit

Imd;  (G)m’

Imd, iz =
B g _ ; . 0+l n4+2,0 ;. . ;.
Deuxieme étape : la coimage de dy> - E,’, ~ — E, 5" s'identifie par dualité de
Serre a (1/(G))Xm—|—(n+2)(d—2) = (1/(G))g_m-
La suite spectrale duale ((Ef?)Y."d,) s’identifie par dualité de Serre A une
renumérotation de la suite spectrale de la filtration béte de :

Wpn+1 (L_hm) —> Wpn+1 (L_m+d_l) ® GV —> > Wpn+l (L—m+(n+2)(d—1)) X A"+2GV

Le complexe obtenu en tensorisant par la droite complexe A" 2G ~ C s’identifie a
K(G)?,, . enutilisant wpn+1 >~ Opny1(n + 2). La premiere étape permet alors de
conclure. O

Corollaire 5.2.2. Soit d > n + 2. Supposons que 1/Jsq4_(n+2) soit engendré en
degré d — (n + 2), en tant que module gradué. L’application linéaire induite par la
multiplication

1/Jq — Hom(A/Jy—(n+2)- 1/ J2d—(n+2))
est injective.
Démonstration. Soit P un élément du noyau. On a, pour tout Q" € (A/J)y—n—2,
PQO" =0 mod J.Dela PQ”"Q"” = 0 mod J pour tout Q” € A/Jq. Puisque
A/ Jsd—(n+2) estengendré en degré d — (n + 2) > 0, il suitque PQ" =0 mod J
pourtout Q' € A/Jsy—(n+2)- Comme s —2d +n+2=m+2)(d—-1)—2d =
nd —n—2>d-n+2)ona

VOel/lgnaVQ €lfJo2d4n+2 < Q:PQ’ >d-(n+2)=0

ou < —;— >y désigne I’accouplement de dualité défini par d, 4+, entre [/J; et
I/Js—_q aulemme 5.2.1. Or on a, par fonctorialité de la dualité de Serre,

< QPO >4 (n+2)=< QO P >45_4 .

Puisque //J> 4—(n+2) est engendré en degré d — (n +2), P est orthogonal a I’espace
1/Js_g4 entier. Donc P =0 mod J. 0
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Une preuve plus courte du corollaire 5.2.2 valable dans le cas d’une hypersurface
avec un seul nceud nous a €t€ communiquée par A. Otwinowska au moment ou nous
finissions la présente preuve.

Enfin, mentionnons pour terminer les résultats similaires suivants :

Lemme 5.2.3. Si la flecche d’évaluation ev,, : H®(Opnt1(m)) — H®(Ox(m)) est
surjective, H”+1(K(G);_m) = ().

Démonstration. Au vu du lemme 5.1.1, reprenant les notations de la premiere €tape
de la preuve du lemme 5.2.1, on a aussi surjectivité de EMT20 _, H"+2(K(G )5):

n+3
De ceci suit que Ezl’"+1 = 0. Or, par la seconde étape de la preuve du lemme 5.2.1,
E)" ~ H"PY(K(G)_,)Y. 0

Corollaire 5.2.4. Soit mq tel que evy,, : H®(Opni1(mg)) — H(Ox(my)) soit
surjective. Pour tout m < o —mo, H" ™1 (K(G)3,) = 0.

Démonstration. Soit m < o — mg. La fleche evy_,, HO(OW+| (0 —m)) —
H°(Ox (0 — m)) est surjective. On peut donc conclure avec le lemme 5.2.3. H

Plus généralement, on a h" T (K(G)?) = h' (Ts(0 — m)).

6. Théoreme de Torelli local sur les strates isosinguliéres

Soit # un entier pair strictement positif et X 5 C P"+1 une hypersurface de
degré d a singularités isolées simples, de nombre de Tjurina total t( f) < d.Comme
dans le cas ol X s est lisse, une déformation isosinguliere de X ¢ fournit une variation
de structure de Hodge dont la tige en X ; est H"T1(P"*!1 — X /). Rappelons que
Hy = H" 1 (P"! — X r) est pur de poids 7 + 2 par la discussion de la section 4
et que sa filtration de Hodge vérifie

0=F"t2c F"' c...c F' = H"T'Y(P""! - X/, 0).

La variation de structure de Hodge infinitésimale correspondante a été étudié
par Dimca et Saito [18] et avec plus de détails dans le cas nodal par ces mémes
auteurs et Wotzlaw [20]. Dans cette section, nous extrayons de leur travail tous
les renseignements dont nous aurons besoin en ajoutant quelques petits points
supplémentaires. Ceci permet d’appliquer le résultat d’injectivité 5.2.2 et d’aboutir
a la démonstration du théoréme 1.
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6.1. Formule de Dimca-Saito-Wotzlaw pour les deux premiers termes de la
filtration de Hodge. Si y est un point singulier de Xz, on note comme [20,
section 1.1] @x, y le plus petit zéro de la h-fonction de la singularité. Dans
notre cas, la singularité¢ est quasihomogene et on note wy,..., Wp4+1 les poids
correspondants. Alors, il est connu que @y, , = > ; wi. Par exemple, pour une
singularité Ay, onaa@y , y = (n + 1)/2. Un examen des équations des singularités
simples [2] montre que I’on a toujours &y , , > 1. Plus précisément, si n > 4, alors
L&’X_,.,yj > 1,etsin = 2, alors L&'X_/.,yj = 1

Lorsque n = 2 on définit un idéal homogene I’ de I’anneau des polyndmes de
n + 2 variables de la fagon suivante. Définissons d’abord comme [20, (2.1.4)] le
faisceau d’idéaux I{ 1y € Ops cosupporté aux points singuliers y de X s par

F Op37y(*Xf) = (’1)OIF3(2Xf)-

ol le membre de gauche désigne la filtration de Hodge du D-module Op3(*X 1)
correspondant au module de Hodge mixte sous-jacent a Rjx(Qp3_y . On pose alors

I, = 1"(]P’3.I(’1)(k)) puis /' = Dgenl}.
Par [20, Theorem 2.2],on a :

Proposition 6.1.1.

Grit'H'"™ WP — X, C) = A/ Jg_n—2.

AlJrg—n—n sin=>4

GriH'" PPl - X, C) =
F ( =N sin=2

Dans [20, Lemma 1.5] est énoncé que, pour les surfaces nodales, Izl) est 1'idéal
des fonctions qui s’annulent sur les points singuliers de X s (avec structure réduite).
11 est facile de généraliser :

Lemme 6.1.2. L’idéal I(’l) coincide avec l'idéal de Tjurina : I(’l) = J=x.

p " . . o h N g.—2 N
Démonstration. 11s’agit de voir que F1Ops ,(xX y) = (gx - 3 Opa , O/

est une équation locale de X s pres de y. Or, d apres [20, (1.3.2)] (qui réfere a [39]),
la filtration de Hodge sur O[P3,y(* X r) est dans ce cas donnée par :

Fi1Ops ,(xXs) = FiDpa ,(h~ O).

ou Dps ,, est filtré par I'ordre de I'opérateur. En effet, suivant les notations de loc.
cit. ko = 0 et Oﬂil,y = Op3 ,. O

Corollaire 6.1.3. L’idéal 1’ coincide avec l'idéal I de la section 5.2.
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6.2. Formule de Dimca-Saito pour le premier gradué de la connexion de Gauss—
Maninde P"*!'—X r. 11y aégalement une seconde filtration sur H" 1 (P"+! — X ¢,
C) la filtration par I’ordre du pole notée P* et 'ona F' C P' [11].

Commed > ©(f),lefibré L := Opn+1(d) est t( f)-jetample et par 3.4, la strate
isosinguliere S de X ¢ dans I’espace projectif | L| paramétrisant les hypersurfaces de
degré d a pour espace tangent T{ 715 le noyau de ev( ), ¢’est-a-dire I /( f)4. Le long
de cette strate, la connexion de Gauss et Manin vérifie VP! ¢ P71 ® Qé du moins
si dim P! est localement constante pres de [ £] ce qui est vrai sur un ouvert dense
8" C § et [18] donne une formule pour Grp Vg si & € T 7S en termes de la partie
libre du module de Brieskorn.

Ceci est exploité dans [20, Remarks 3.9] dont nous tirons la proposition suivante :

Proposition 6.2.1. Le morphisme
GreV:£eT1S v (GreVe : Gri"'"Hy — GriHy)

s'identifie par l'isomorphisme de la proposition 6.1.1 a —1 fois la multiplication
1/(f)a®A/Jagn2— A)J2g_pnasin>4

Sin = 2,1l s’identifie a —1 fois la multiplication 1/(f)g ® A/Jg—n— —
]/JZd—n—Z-

Démonstration. En prenant garde au fait que la notation n correspond ici a ce qui
est not¢ n — 1 dans [20], cela résulte de [18] de la méme fagon que dans [20,
Remarks 3.9], au moins sur I'ouvert S’. On conclut par passage a la limite. [

6.3. Fin de la preuve du théoréme 1. Rappelons 1'énoncé de la partie (2) du
théoréme 1.

Proposition 6.3.1. Soitk > 0.Sid > n+2 +/ k, la différentielle de la restriction de
I"application de périodes de V7 a la strate Zy a pour noyau le tangent de [’orbite
de PGL(n + 2).

Démonstration. Soient k et d comme dans I’énoncé et notons L = Opn+1(d).

On commence par se ramener de Ze 4 Zk. Si [f] € Zx C |L|, I’espace tangent
en[flaZygest!/(f)a-
— Par la proposition 4.0.3, il suftit de montrer que sur Z, I’application des périodes
de la variation de structure de Hodge de poids n + 2

R" ™ (p0)Qzixx-x7,)

a une différentielle en [ /] dont le noyau est I’espace tangent a la P GL(n + 2)-orbite
de [ f] dans |L|, ¢’est-a-dire J/( f)q4.

— Par 6.2.1, cette différentielle est donnée au signe pres par une multiplication dans
des algebres de polyndmes adéquates.

— Par le corollaire 5.2.2, son noyau est J /() deés lors que //J est engendré en
degré d — (n + 2). Montrons donc ce dernier point.
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Comme le faisceau Opn+1(k — 1) est (k — 1)-jet-ample et que long (Ox) = k.
On a une surjection

HO@P"t!, Opnsi(k = 1)) = HO (P, Og(k — 1)),
et donc, puisque d > n + 2 + k, une surjection
HO (P Opugi(d —n —3)) - HY@P", Og(d —n —3)).

ce qui entraine 'annulation H'(P"*!' Ix(d — n — 3)) = 0. Comme le sous-
schéma défini par Zyx est de dimension zéro, ceci entraine par [31, 1.8.29] que Zx
est (d —n — 2)-régulier au sens de Castelnuovo-Mumford, et en particulier [31, 1.8]
que Zx(d — n — 2) est engendré par ses sections globales. Autrement dit, avec les
notations de 5.2 et en particulier du corollaire 5.2.2, I"'idéal I de A est engendré en
degré d — (n + 2), etdonc //J est engendré en degré d — (n + 2). Par conséquent,
le corollaire 5.2.2 s’applique : le noyau de la multiplication

Ig — Hom(A/Jy—n+2). I/ Jad—(n+2))

est Jg. U

7. Application a la conjecture de Shafarevich sur I’Uniformisation

7.1. Variétés propres sur U. Dans ce paragraphe on reprend les notations de 3.1
et on ne suppose pas que X = P"T! Rappelons qu'une variété complexe est
holomorphiquement convexe si elle admet une réduction de Cartan—Remmert, a
savoir un morphisme propre surjectif a fibres connexes de cette variété vers un espace
complexe de Stein, voir [24].

Soit Y une variété connexe projective lisse, ¢ : ¥ — U un morphisme, y € Y
un point base dont I'image u := ¢(y) est dans m c U, et X, C X I’hypersurface
lisse correspondante. La représentation p : (ﬁ. u) - O(H"(X,.Q)) construite
a la proposition 3.1.1 induit une représentation

¢*ﬁﬁ:= pods m(Y.y) — O(H"(Xy.Q)).
Notons Y*" — Y le revétement universel de Y et
Y? .= ker(¢*P)\Y "

le revétement topologique de Y attaché a la représentation ¢*p.
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- 1o s D ;
Proposition 7.1.1. La variété Y est holomorphiquement convexe.

Démonstration. Ceci résulte des résultats de [23] modulo le fait que {¢*p} est
constructible absolu. Dans le cas présent, on peut simplement utiliser 1’application
des périodes pour construire la réduction de Cartan—Remmert.

La représentation ¢*p est sous-jacente a une VSH polarisable définie sur Y qui
est * V. Notons I'" = ¢*p(mry (Y. y)). Lapplication des périodes attachée a ¢* V7
se releve & une application I''-équivariante P : Y” > D.Comme I’ agit proprement
discontiniment sur D puisque I'’ est discret, il suit que P est propre. Considérons sa
factorisation de Stein

"2 rlD

ol R est un espace complexe normal, « est propre surjective a fibres connexes, et 8
finie.

Comme il n’existe pas d’application holomorphe horizontale M — D ou M
est compacte complexe ( [27]), les fibres de « sont les sous-espaces analytiques
connexes fermés maximaux de Y” et donc R n’a pas de sous-espace complexe
analytique compact de dimension positive.

Pour montrer que R est de Stein, on utilise la solution de Narasimhan du
probleme de Levi. On peut construire des tonctions C* positives et exhaustives
sur D dont le hessien complexe est défini positif le long de la distribution horizontale
de D et il est ais¢ de les modifier pour construire une fonction d’exhaustion
strictement plurisousharmonique sur R, voir [23] pour plus de détails. L]

Corollaire 7.1.2. Le revétement universel Y'" de Y est de Stein si I’application des
périodes P:Y" — D est finie.

Démonstration. En effet dans ce cas Y© —> R est de Stein et tout revétement
topologique d’une variété de Stein est Stein. U

La discussion peut étre résumée comme suit : st ¢p @ Y — U est finie, le
revétement universel de Y est de Stein sauf si ¥ contient une courbe C telle que V¢
a monodromie finie.

Notons m : U — U etm’ : [I\D] — ['\D les applications canoniques vers
les espace des modules grossiers des champs considérés. Notons qu’il existe une
application holomorphe induite P,,,qs : U — ['\D entre espaces de modules. Si
¢ : Y — U est finie, alors P est finie si et seulement si la restriction de Prioa &
Yy :=mo@(Y) C U est finie.

Cette observation fournit un premier critere élémentaire pour prouver que yun
est de Stein sans supposer que X = P"T! et sans donc utiliser le théoreme 1, mais
seulement pour des variétés Y trés particuliéres.
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Proposition 7.1.3. Soit¢ : Y — ﬁﬁnie. Supposons que :
(1) Uapplication des périodes P : Y? > Dnest pas constante ;

(2) Yy C U C |L| est un sous-espace projectif de |L| ou plus généralement a la
propriété que toute application holomorphe de Yy, vers un espace complexe est
constante ou finie.

Alors, YU est de Stein.

Démonstration. Considérons la restriction de P,,,q : U — I'\D a Y,,. Elle n’est
pas constante car alors I’application des périodes P : Y? — D serait également
constante. Elle est donc finie et donc P aussi. On conclut par le corollaire 7.1.2. [

Cette proposition s’applique par exemple dans le cas suivant, qui est celui étudié
dans [34]. Soit 3 < k < 6. Si L est k-jet ample, le complémentaire de Uy dans |L|
est de codimension k 4 1 donc un sous-espace projectif générique de dimension au
plus k£ de |L| est inclus dans Uy. Prenons pour V,, un tel sous-espace projectif, et
pour Y I'image réciproque de Yy, par le revétement ramifié n : U, — Uy. Alors Y
est une sous-variété compacte lisse de U] portant une variation de structure de
Hodge Vy. Son application des périodes n’est pas constante car elle est par exemple
génériquement immersive par les théoremes de Torelli infinitésimaux génériques
classiques. La proposition s’applique donc et le revétement universel de Y est de
Stein.

7.2. Cas ou X = P""! et preuve du corollaire 2. Pour des variétés Y plus
générales, on s’assure que I'application des périodes ne contracte pas de courbes
en utilisant le théoréme 1. Pour cela on doit supposer que X = P"*1. Rappelons
I’énoncé du corollaire 2 :

Corollaire 7.2.1. (corollaire 2) Hypotheses et notations comme au théoréeme 1.
Soit Y une variété projective lisse et ¢ : Y — Up un morphisme fini. Alors le
revétement universel de Y est une variété de Stein.

Deémonstration. Par le corollaire 7.1.2, il suffit de montrer que la composée
P:Y >U— I'\D

est finie. Par le théoreme 1, une courbe C C Y contractée par P est nécessairement
dans une orbite de PGL(n + 2). Or celles-ci sont affines car le groupe des
automorphismes birationnels d’une variété de type général est fini et on déduit
qu’elles ne peuvent pas contenir de courbe complete. Ceci implique que P est finie
et le corollaire 7.1.2 permet de conclure. U
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