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A numerical invariant for linear representations of finite groups

Nikita A. Karpenko* and Zinovy Reichstein**

With an appendix by Julia Pevtsova’and Zinovy Reichstein

Abstract. We study the notion of essential dimension for a linear representation of a finite
group. In characteristic zero we relate it to the canonical dimension of certain products of Weil
transfers of generalized Severi-Brauer varieties. We then proceed to compute the canonical
dimension of a broad class of varieties of this type, extending earlier results of the first author.
As a consequence, we prove analogues of classical theorems of R. Brauer and O. Schilling
about the Schur index, where the Schur index of a representation is replaced by its essential
dimension. In the last section we show that in the modular setting ed(p) can be arbitrary large
(under a mild assumption on G). Here G is fixed, and p is allowed to range over the finite-
dimensional representations of G. The appendix gives a constructive version of this result.
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1. Introduction

Let K/k be a field extension, G be a finite group of exponent ¢, and p:G —
GL, (K) be a non-modular representation of G whose character takes values in k.
(Here “non-modular” means that char(k) does not divide |G|.) A theorem of Brauer
Says that if k contains a primitive eth root of unity . then p is defined over k,
i.e., pis K -equivalent to a representation p': G — GL, (k); see, e.g. [34, §12.3]. If
Ce & k, we would like to know “how far” p is from being defined over k. In the case,
Where p is absolutely irreducible, a classical answer to this question is given by the
Schur index of p, which is the smallest degree of a finite field extension //k such
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that p is defined over /. Some background material on the Schur index and further
references can be found in Section 2.

[n this paper we introduce and study another numerical invariant, the essential
dimension ed(p), which measures “how far” p is from being defined over k£ in a
different way. Here p is not assumed to be irreducible; for the definition of ed(p),
see Section 6. In Section 8 we show that the maximal value of ed(p), as p ranges
over representations with a fixed character y: G — k, which we denote by ed(y),
can be expressed as the canonical dimension of a certain product of Weil transfers of
generalized Severi—Brauer varieties. We use this to show that ed(p) < |G|/4 for any
n, k,and K/k in Section 9 and to prove a variant of a classical theorem of Brauer in
Section 10. In Section 11 we compute the canonical dimension of a broad class of
Weil transfers of generalized Severi—Brauer varieties, extending earlier results of the
first author from [20] and [22]. This leads to a formula for the essential p-dimension
of an irreducible character in terms of its decomposition into absolutely irreducible
components; see Corollary 12.3. As an application we prove a variant of a classical
theorem of Schilling in Section 13.

In Section 14 we show that in the modular setting ed(p) can be arbitrary large
(under a mild assumption on ). Here G is assumed to be fixed, and p is allowed
to range over the finite-dimensional representations of G. The appendix proves a
constructive version of this result.

2. Notation and representation-theoretic preliminaries

Throughout this paper G will denote a finite group of exponent e, k a field, k an
algebraic closure of k, K and F field extensions of k, {4 a primitive dth root of
unity, p a finite-dimensional representation of G, and y a character of G. In this
section we will assume that char(k) does not divide the order of G.

2a. Characters and character values. A function y:G — k is said to be a
character of G, if y is the character of some representation p: G — GL, (K) for
some field extension K/ k.

If y:G — k is a character, and F/k is a field, we set

F(x):=F(x(g)|g€G) C F().

Since F(¢,) is an abelian extension of F', sois F(y). Moreover, F'(x) is stable under
automorphisms of F(¢.)/ F.

Two characters, y. ¥': G — k are said to be conjugate over F' if there exists an
F-isomorphism of fields o: F(y) — F(x") suchthato o y = y'.

Lemma 2.1. Let y. x': G — k be characters and F/k be a field extension. Then

(a) Every automorphism h € Gal(F(y)/ F) leaves k() invariant.
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(b) If y and y'" are conjugate over F then they are conjugate over k.

(¢) Suppose k is algebraically closed in F. Then the converse to part (b) also
holds. That is, if y, " are conjugate over k then they are conjugate over F.

Proof. (a) It is enough to show that h(y(g)) € k(y) for every g € G. Since the
sequence of Galois groups

| = Gal(F(Le)/ F(x) — Gal(F(L)/F) — Gal(F(y)/ F) — 1

is exact, i can be lifted to an element of Gal(F({.)/F). By abuse of notation,
we will continue to denote this element of Gal(F'({,)/F) by h. The eigenvalues
of p(g) are of the form &,' . . . .. ¢ for some IEEETS Ty s o5 5 In. The automorphism /4
sends £, to another primitive eth root of unity {7 for some integer j. Then

h(x() =h(& +--+ )y ="+ -+ " = x(g)) e k(y),

as desired.
(b) is an immediate consequence of (a).
(c) If k is algebraically closed in F', then the homomorphism

Gal(F(x)/F) — Gal(k(x)/k)
given by o > 0 | (y) is surjective; see [28, Theorem VI.1.12]. O

2b. The envelope of a representation. If p: G — GL,(F) is a representation over
some field F/k, we define the k-envelope Envy(p) as the k-linear span of p(G)
in M,,(F). Note that Envg (p) is a k-subalgebra of M,, (F).

Lemma 2.2. For any integer s > 1, the k-algebras Envi (s - p) and Envy(p) are

isomorphic.

Proof. The diagonal embedding M, (F) <> M, (F) x---xM, (F) (s times) induces
an isomorphism between Envy (p) and Envy (s - p). O

Lemma 2.3, Assume the character x of p:G — GL,(F) is k-valued. Then
the natural homomorphism Envy (p) @k F — Envg(p) is an isomorphism of F-
algebras.

Proof. Tt suffices to show that if PUZ1) s s w5 p(g,) are linearly dependent over F for
Some elements gy, ... . ¢, € G, then they are linearly dependent over k. Indeed,
Suppose

arp(g) + - +arp(gr) =0

M, (F) for some aj..... a, € F,such that ¢; # 0 for some i. Then

tr((aip(g1) + -+ +arp(gr))  plg)) =0
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for every g € G, which simplifies to

arx(g18)+---+arx(grg) =0.

The homogeneous linear system

x1x(g18) + -+ xrx(grg) =0

in variables xy.....) v, has coeflicients in & and a non-trivial solution in F. Hence,
it has a non-trivial solution by, ..., b, in k, and we get that

tr((bip(g1) + -+ brp(gr)) - p(g)) =0

forevery g € G.

Note that Envg (p) is, by definition, a homomorphic image of the group ring k [G].
Hence, Envg (p) is semisimple and consequently, the trace form in Envg(p) is non-
degenerate. It follows that the elements p(gy),..., p(gr) are linearly dependent
over k, as desired. O

2c¢. The Schur index. Suppose K/k is a field extension, and p;: G — GL,(K)
is an absolutely irreducible representation with character y;: G — K. By taking
F = K in Lemma 2.3, one easily deduces that Envi(y,)(p1) is a central simple
algebra of degree n over k(). The index of this algebra is called the Schur index
of p;. We will denote it by my (p1).

In the sequel we will need the following properties of the Schur index.

Lemma 2.4. Let K be a field, G be a finite group such that char(K) does not
divide |G|, and p:G — GL,(K) be an irreducible representation. Denote the
character of p by y.

(a) Over the algebraic closure K, p decomposes as

pg = m(pr @ pr), (2.5)

where py,. ... pr are pairwise non-isomorphic irreducible representations of

G defined over K, and m is their common Schur index mg(py) = -+ =
mg(pr).

(b) Fori =1,..., rand p; as in (a), let xi: G — K be the character of p; . Then

K(xy) = -+ = K(yx,) is an abelian extension of K of degree r. Moreover,

Gal(K(x1)/ K) transitively permutes xy, ..., xr.

(¢c) Conversely, every irreducible representation p1:G — GL{(K) occurs as
an irreducible component of a unique K-irreducible representation p: G —
GL,(K), asin(2.5).

(d) The center Z of Envg(p) is K-isomorphic to K(y,) = K(yz) = -+ =
K(x,). Envg(p) is a central simple algebra over Z of index m.



Vol. 90 (2015) An invariant for representations of finite groups 671

(e) The multiplicity of py in any representation of G defined over K is a multiple
of mg(p1). Consequently, mg(py) divides my(p1) for any field extension
K/k.

(f) m divides dim(p,) = --- = dim(p,).

Proof. See [14, Theorem 74.5] for parts (a)-(d), and [13, Corollary 74.8] for parts
(e) and (f). O

Corollary 2.6. Let K/k be a field extension, p: G — GL,(K) be a representation,
whose character takes values in k, and

P = d1p1 @"'@drpr

be the irreducible decomposition of p over the algebraic closure K. Then the
Jollowing conditions are equivalent.

(1) p can be realized over k, Le., p is K-equivalent to a representation p': G —
GL, (k).

(2) The Schur index my (p;) divides d; for everyi = 1,..., )

Proof. Bach pj:G — GL,,,.(K) is K-equivalent to some pi:G — GL,,,.(E). Let
p o= dip| ® - ®ddp..G— GL, (k). Since p and p’ have the same character,
p can be realized over k if and only if p’ can be realized over k. Hence, we may
replace p by p” and thus assume that K = k from now on.

Denote the character of p by y and the character of p; by y;. Since y takes values
ink,d; = d;j whenever y; and y; are conjugate over k.

(1) = (2). Suppose p can be realized over k. Decomposing p as a direct sum of
k-irreducibles, we see that it suffices to prove (2) in the case where p is k-irreducible.
In this case (2) holds by Lemma 2.4(a).

(2) = (1). If a representation p satisfies condition (2), then p is a direct sum of
fepresentations of the form A = mg(x1)(p1 @ -+ D ps), where pq,..., ps
are absolutely irreducible representations of G and the characters xi,..., x; of
P1,...,ps are transitively permuted by Gal(k/k). By Lemma 2.4(c), every
Iepresentation of this form is defined over k. O

3 Preliminaries on essential and canonical dimension

3a. Essential dimension. et F : Fields; — Sets be a covariant functor, where
F'_eldsk is the category of field extensions of k and Sets is the category of sets. We
think of the functor F as specifying the type of algebraic objects under consideration,
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F(K) as the set of algebraic objects of this type defined over K, and the morphism
F(i). F(K) — F(L) associated to a field extension

kC KL 3.1)

as “base change”. For notational simplicity, we will denote the image of y € F(K)
under F (i) by yr.

Given a field extension L/K, as in (3.1), an object « € F (L) is said to descend
to K if it lies in the image of F(i). The essential dimension ed(«) is defined as
the minimal transcendence degree of K/k, where « descends to K. The essential
dimension ed(F) of the functor F is the supremum of ed(«) taken over all « €
F(K) and all K.

Usually ed(a) < oo forevery @ € F(K) and every K/k; see 8, Remark 2.7].
On the other hand, ed(F) = oc¢ in many cases of interest; for example, see
Theorem 14.1.

The essential dimension ed, (o) of @ € F(L) at a prime integer p is defined as
the minimal value of ed(cey), as L’ ranges over all finite field extensions L’/ L such
that p does not divide the degree [L’ : L]. The essential dimension ed,(F) is then
defined as the supremum of ed,(«), as K ranges over all field extensions of k& and «
ranges over F(K).

For generalities on essential dimension, see [3, 8, 30, 32].

3b. Canonical dimension. An interesting example of a covariant functor Fieldsy —
Sets is the “detection functor” Dy associated to an algebraic k-variety X. For a field
extension K /k, we define

a one-element set, if X has a K-point, and
Dx(K) := :
@, otherwise.

Ifk € K < L then 0 < Dx(K)| < |Dx(L)| < 1. Thus there is a unique
morphism of sets Dy (K) — Dy (L), which we define to be Dy (7).

The essential dimension (respectively, the essential p-dimension) of the func-
tor Dy is called the canonical dimension of X (respectively, the canonical p-
dimension of X) and is denoted by cd(X) (respectively, cd,(X)). If X is smooth
and projective, then cd(X) (respectively, cd, (X)) equals the minimal dimension of
the image of a rational self-map X --+ X (respectively, of a correspondence X ~» X
of degree prime to p). In particular,

0 < edy(X) < ed(X) < dim(X) (3.2)

for any prime p. If cd(X) = dim(X), we say that X is incompressible. If cd,(X) =
dim(X), we say that X' is p-incompressible. For details on the notion of canonical
dimension for algebraic varieties, we refer the reader to [30, §4].
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We will say that smooth projective varieties X and Y defined over K are
equivalent if there exist rational maps X --» Y and ¥ --» X. Similarly, we will say
that X and Y are p-equivalent for a prime integer p, if there exist correspondences
X ~ Y and Y ~ X of degree prime to p.

Lemma 3.3. (a) If X and Y are equivalent, then cd(X) = cd(Y).
(b) If X and Y are p-equivalent for some prime p, then cdp(X) = cdp(Y).

Proof. (a) Let K/k be a field extension. By Nishimura’s lemma, X has a K-point
if and only if so does Y; see |33, Proposition A.6]. Thus the detection functors Dy
and Dy are isomorphic, and cd(X) = ed(Dy) = ed(Dy) = cd(Y).

For a proof of part (b) see [26, Lemma 3.6 and Remark 3.7]. OJ

4. Balanced algebras

Let Z/k be a Galois field extension, and A be a central simple algebra over Z.
Given o € Gal(Z/ k), we will denote the “conjugate” Z-algebra A ® 7 Z, where the
tensor product is taken via a: Z — Z, by “A. We will say that A is balanced over k
if “4 is Brauer-equivalent to a tensor power of A for every @ € Gal(Z/ k).

Note that A is balanced, if the Brauer class of A descends to k: “4 is then
isomorphic to A for any . In this section we will consider another family of
balanced algebras.

Let K/k be a field extension, p: G — GL,(K) be an irreducible representation
whose character y is k-valued. Recall from Lemma 2.4 that Envy (p) is a central
simple algebra over Z ~ k(yy) = --- = k(x,).

Proposition 4.1. Envy ( p) is balanced over k.

Proof. Recall from [37, p. 14] that a cyclotomic algebra B/Z is a central simple
algebra of the form

B =z, .

g€Gal(Z(8)/Z)

Where ¢ is a root of unity, Z({) is a maximal subfield of B, and the basis elements v,
are subject to the relations

UgX = g(X)ug and wgup = Bl(g. hugy
forevery y ¢ Z(¢)and g, h € Gal(Z(¢)/Z). Here
B:Gal(Z($)/Z) x Gal(Z(£)/ Z) — Z(§)”

?S a 2-cocycle whose values are powers of £. Following the notational conventions
0 [37], we will write B := (8, Z(£)/Z).
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By the Brauer—Witt Theorem [37, Corollary 3.11], Envg (p) is Brauer-equivalent
to some cyclotomic algebra B/Z, as above. Thus it suffices to show that every
cyclotomic algebra is balanced over &, i.e., “B is Brauer-equivalent to a power of B
over Z forevery « € Gal(Z/ k).

By Lemma 2.4(d), Z is k-isomorphic to k (1), which is, by definition a subfield
of k(¢.), where ¢ is the exponent of . Thus there is a root of unity € such that

Z(8) Ck(E.¢e) = k(e)

and both ¢ and ¢, are powers of €. Note that k(e)/k is an abelian extension, and the
sequence of Galois groups

| — Gal(k(e)/Z) — Gal(k(e)/ k) — Gal(Z/ k) — 1

is exact. In particular, every @« € Gal(Z/k) can be lifted to an element of
Gal(k(e)/ k), which we will continue to denote by . Then «(¢) = €' for some
integer £. Since ¢ is a power of €, and each B(g. h) is a power of {, we have

a(B(g.h)) = B(g.h)" forevery g, h € Gal(Z(£)/ k). (4.2)

We claim that “B is Brauer-equivalent to B®' over Z. Indeed, since
B =(B.2(0)/2),

we have “B = (a(B). Z()/Z). By (4.2), "B = (a(B). Z(§)/ Z) = (B'. Z({)/ 2),
and (B*, Z(¢)/ Z) is Brauer-equivalent to B®?, as desired. ]

5. Generalized Severi-Brauer varieties and Weil transfers

Suppose Z/k is a finite Galois field extension and A is a central simple algebra
over Z. For | < m < deg(A), we will denote by SB(A, m) the generalized Severi—
Brauer variety (or equivalently, the twisted Grassmannian) of (m — 1)-dimensional
subspaces in SB(A). The Weil transfer Rz, (SB(A, m)) is a smooth projective
absolutely irreducible k-variety of dimension [Z : k] - m - (deg(A) — m). For
generalities on SB(A, m), see |5]. For generalities on the Weil transfer, see [17].
Proposition 5.1. Let Z, k and A be as above, X := Rz, (SB(A, m)) for some
I <m < deg(A), and K/ k be a field extension.

(a) Write Kz := K®y Z as a direct product Ky x---x Ky, where K|/ Z, . . ., Ks/Z
are field extensions. Then X has a K-point if and only if the index of the
central simple algebra Ak, := A ®z K; divides m foreveryi =1,...,: s,

(b) Assume that m divides ind(A), A is balanced and K = k(X)) is the function
field of X. Then Kz = K Qy Z is a field, and A Q) K ~ AQz Kz isa
central simple algebra over K z of index m.
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Proof. Firstnotethat A @ K >~ A®z K.

(a) By the definition of the Weil transfer, X = Rz, (SB(A, m)) has a K-point if
and only if SB(A, m) has a Kz-point or equivalently, if and only if SB(A.m) has a
K;-point forevery i = 1,...,: §. On the other hand, by [5, Proposition 3], SB(A4, m)
has a K;-point if and only if the index of Ak, divides m.

(b) Since X is absolutely irreducible, Kz is Z-isomorphic to the function field
of the Z-variety

Xz 1= X Xspec(t) SPEC(Z) = [ [ SB(*A.m)
acGal(Z/k)

see [6, §2.8]. Set F := Z(SB(A,m)). By [35, Corollary 1],
nd(A®z F)=m.

Since A is balanced, i.e., each algebra “A is a power of A, ind(*A ® z F) divides m
for every o € Gal(Z/k). By [5, Proposition 3], each SB(*A, m) f is rational over F.
Thus the natural projection of Z -varieties

Xz =[]SBEA.m) - B(A.m)
a€Gal(Z/k)

induces a purely transcendental extension of function fields F < Kz. Conse-
quently,

ind(A®z Kz) =ind(A®z F)=m,

as claimed. O

6. The essential dimension of a representation

Let us now fix a finite group G and an arbitrary field k&, and consider the covariant
functor

Repg ;. : Fields;, — Sets

defined by Repg ((K) := {K-isomorphism classes of representations G —
GL,, (K)} for every field K/k. Here n > 1 is allowed to vary.

The essential dimension ed(p) of a representation p: G — GL,(K) is defined
by viewing p as an object in Repg 4 (K). as in Section 3. That is, ed(p) is the
Smallest transcendence degree of an intermediate field k C Ky C K such that p is
K -€quivalent to a representation p’: G — GL,(Ky). To illustrate this notion, we
Include an example, where ed(p) is positive, and three elementary lemmas.
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Example 6.1. Let H = (—1,—1) be the algebra of Hamiltonian quaternions over
k = R, i.e., the 4-dimensional R-algebra given by two generators i, j, subject
to relations, i> = j2 = —1 and ij = —ji. The multiplicative subgroup G =
{1, i, £/, £ij} of H* is the quaternion group of order 8. Let K = R(SB(H)),
where SB(H) denotes the Severi—-Brauer variety of H. The representation p: G <
H— H®p K >~ M3(K) is easily seen to be absolutely irreducible. We claim that
ed(p) = 1. Indeed, trdegp(F') = 1, for any intermediate extension R C F C K,

unless F = R. On the other hand, p cannot descend to R, because Envg(p) = H,

and thus mpr(p) = ind(H) = 2 by Lemma 2.4(e). O
Lemma 6.2. Let G be a finite group, K/k be a field, pi:G — GLy, (K) be
representations of G over K (fori =1,..., s)and p >~ a;py @ -+ B agps, where

ay, ..., ag = 1 are integers. Then ed(p) < ed(p;) + -+ + ed(py).

Proof. Suppose p; descends to an intermediate field k C K; C K, where
trdeg, (K;) = ed(p;). Let Ky be the subfield of K generated by Ky, ..., K. Then p
descends to Ko and ed(p) < trdegy(Kp) < trdegy(Ky) + -+ + trdegy (K;) =
ed(p1) + -+ + ed(ps). O

Lemma 6.3. Let k C K be fields, G be a finite group, and p: G — GL,(K) be
a representation. Let k' := k(y) C K, where y is the character of p. Then the
essential dimension of p is the same, whether we consider it as an object on Repg

or RepK’k;.

Proof. If p descends to an intermediate field k C F C K, then F' automatically
contains k’. Moreover, trdeg; (F) = trdeg,,(F). The rest is immediate from the
definition. O

Lemma 6.4. Assume that char(k) does not divide |G| and the Schur index my(A)
equals 1 for every absolutely irreducible representation A of G. Then ed(p) = 0
for any representation p.G — GL,(L) over any field L/k. In other words,
ed(Repg ) = 0.

Proof. Let y be the character of p and k&’ := k(). By Lemma 2.4(e), my:(A) = 1
for every absolutely irreducible representation A:G — GL,(K) of G. By
Lemma 6.3 we may replace k by k" = k() and thus assume that y is k-valued.
Corollary 2.6 now tells us that p descends to k. 0J

Remark 6.5. The condition of Lemma 6.4 is always satisfied if char(k) > 0; see [14,
Theorem 74.9]. This tells us that for non-modular representations the notion of
essential dimension is only of interest when char(k) = 0. The situation is drastically
different in the modular setting; see Section 14.
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7. Irreducible characters

In view of Remark 6.5, we will now assume that char(k) = 0. In this setting there is
a tight connection between representations and characters.

Lemma 7.1. Suppose F\/k, F»/k are field extensions, and
p1:G — GL,(Fy), p2:G — GL,(F?)

are representations of a finite group G, with the same character y: G — k. Then the
k-algebras Envy (p1) and Envy (p2) are isomorphic.

Proof. Let F/k be a field containing both F; and F5. Then p; and p; are equivalent
over F', because they have the same character. Thus Envg(p;) and Envg (p,) are
conjugate inside M, (F). O

Given a representation p: G — GL,(F), with a k-valued character y: G — k,
Lemma 7.1 tells us that, up to isomorphism, the k-algebra Envy(p) depends only
on y and not on the specific choice of F and p. Thus we may denote this algebra by
Envy ().

If p is absolutely irreducible (and the character y is not necessarily k-valued), it
is common to write 1y () for the index of Envg ) (x) instead of my (p).

Let y: G — k be a character of G. Write

r

=) _mixi. (7.2)
i=1
where yq, ..., XriG — k are absolutely irreducible and distinct and my, ..., m, are

Positive integers. Since y is k-valued, m; = m; whenever y; and y; are conjugate
over k.

Lemma 7.3. Let y = S imixi:G — k be a character of G, as in (1.2). Then
the following are equivalent.

(a) y is the character of a K-irreducible representation p: G — GL,(K) for
some field extension K/ k.

(b) xi,..., xr form a single Gal(k(x1)/k)-orbit and my = --- = m, divides
Mg (xr) == mg(xr).

Proof. (a) = (b): By Lemma 2.4(a) and (b), y = m(y; + --- + xr), where
X1,..., xr are absolutely irreducible characters transitively permuted by Gal(K (x1)/ K),
and m = mg(y,) = --- = mg(y,). By Lemma 2.1(b), y;....,x, are also
transitively permuted by Gal(k(yy)/k). Moreover, by Lemma 2.4(e), m divides
Me(X1) = oo = mg(x,).
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(b) == (a): Let K be the function field of the Weil transfer variety Rz, (SB(A,m)),
where A is the underlying division algebra, Z is the center of Envg (), and

m:=my=--=m,.

Since the variety Rz« (SB(A,m)) is absolutely irreducible, k is algebraically closed
in K. Lemma 2.1(c) now tells us that yy,..., y, are conjugate over K. By
Lemma 2.4(c) there exists an irreducible K-representation p whose character is
mg(x1)(x1 + -+ xr). It remains to show that mg (y) = m. Indeed,

mg(y1) = ind(Envg(y)) = ind(Envg (y) ®x K) =m.

Here the first equality follows from Lemma 2.4(d), the second from Lemma 2.3, and
the third from Proposition 5.1(b). ]

We will say that a character y: G — k is irreducible over k if it satisfies the
equivalent conditions of Lemma 7.3.

8. The essential dimension of a character

In this section we will assume that char(k) = 0 and consider subfunctors
Rep, : Fields, — Sets
of Repg , given by

K +— {K —isomorphism classes of representations p: G — GL,(K)

with character y}

for every field K/k. Here y:G — k is a fixed character and n = y(lg).
The assumption that y takes values in k is natural in view of Lemma 6.3, and
the assumption that char(k) = 0 is natural in view of Remark 6.5. Since any
two K-representations with the same character are equivalent, Rep, (K) is either
empty or has exactly one element. We will say that y can be realized over K/ k if
Rep, (K) # @. In particular, Rep, and Rep . are isomorphic if and only if y and y’
can be realized over the same fields K/ k.

Definition 8.1. Let y: G — k be a character of a finite group G and p be a prime
integer. We will refer to the essential dimension of Rep, as the essential dimension
of x and will denote this number by ed( ). Similarly for the essential p-dimension:

ed(y) := ed(Rep,) and ed,(x) := ed,(Rep,).

We will say that characters y and A of G, are disjoint if they have no common
absolutely irreducible components.
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Lemma 8.2. (a) If the characters y,A: G — k are disjoint then

Rep, ., >~ Rep, x Rep;.

(b) Suppose a character y. G — k decomposes as Zle m; xi, as in (7.2). Set
X = "1 miyi, where m’ is the greatest common divisor of mi and my (). Then
Rep, =~ Rep,..

Proof. Let K be a field extension of k.

(a) By Corollary 2.6, y + A can be realized over K if and only if both y and A
can be realized over K.

(b) By Corollary 2.6

(i) y can be realized over K if and only if

(i) mg (x;) divides m;, forevery i = 1,...,s.
By Lemma 2.4(e), m g (x;) divides my (x;). Thus (ii) is equivalent to
(iii) mg (yx;) divides m;, forevery i =1,...,s.
Applying Corollary 2.6 one more time, we see that (iii) is equivalent to
(iv) x’ can be realized over K.

In summary, y can be realized over K if and only if y’ can be realized over
K, as desired.

0

Remark 8.3. Note that the character y” in Lemma 8.2(b) is a sum of pairwise disjoint
k-irreducible characters (see the discussion of k-irreducible characters at the end of
Section 7). In other words, we can replace any character y:G — k by a sum of
Pairwise disjoint k-irreducible characters without changing the functor Rep, .

As we observed above, Rep , (K) has at most one element for every field K/ k. In
other words, Rer is a detection functor in the sense of [24] or [30, Section 4a]. We
Saw in Section 3b that to every algebraic variety X defined over k, we can associate
the detection functor Dy, where Dy (K) is either empty or has exactly one element,
depending on whether or not X hasa K- -point. Given a character y: G — k, itis thus
Natural to ask if there exists a smooth projective k-variety X, such that the functors
Repx and Dy are isomorphic. The rest of this section will be devoted to showing
that this is, mdeed always the case. We begin by defining X.



680 N. A. Karpenko, Z. Reichstein and J. Pevtsova CMH

Definition 8.4. (a) Let G be a finite group and y :=m(y;+---+ x,): G — k be an
irreducible character of G, where yq,..., x, are Gal(k(y)/k)-conjugate absolutely
irreducible characters, and m > 1 divides my(y1) = +++ = my(x,). We define the
k-variety X, as the Weil transfer Rz, (SB(A,,m)), where Z is the center and A,
is the underlying division algebra of Envg (x).

(b) More generally, suppose y := Ay + -+ 4+ Ay, where Ay, ..., A;: G — k are
pairwise disjoint and irreducible over k. Then we define X, := X, xx --- xx X3,
where each X, is a Weil transfer of a generalized Severi-Brauer variety, as in
part (a).

Theorem 8.5. Let G be a finite group and y = Ay + - -+ + Ag be a character, where

s v v wibsh G 3 K

are pairwise disjoint and irreducible over k. Let Xy be the k-variety, as in
Definition 8.4. Then the functors Rep,, and Dy, are isomorphic. Consequently
ed(y) = cd(Xy) anded,(y) = cdp(Xy) for any prime p.

Proof. In view of Lemma 8.2(a) we may assume that y is irreducible over k, i.e.,
s = land y = A;. Write y := m(yy + +-- + xr), where x1.....3:G — k
are the absolutely irreducible components of y. Let K/k be a field extension. By
Corollary 2.6 the following conditions are equivalent:

(1) Repx(K) # ), i.e., y can be realized over K,
(i) mg(x ;) dividesm for j = 1,...,r.

Note that while the characters yq,..., Xr are conjugate over k, they may not be
conjugate over K. Denote the orbits of the Gal(K/K)-action on yy, ..., xr by
Oq...., Oy, and set u; 1= ZX/‘EO:' xj,sothat y = m(puy + -+ ).

Denote the center of the central simple algebra Envg (y) by Z. Write Kz =
K ®y Z as a direct product K| x --- x Ky, where K,/Z,...,K;/Z are field
extensions, as in Proposition 5.1. By Lemma 2.3,

Envg (x) >~ Envi(x) @k K >~ Envi () ®z Kz
~ (Envg () ®z K1) x -+ x (Envg(y) ®z Ky),

(8.6)
where >~ denotes 1somorphism of K-algebras. On the other hand, since pwq,..., iy
are K-valued characters,

Envg(y) >~ Envg(mpuy) x--- x Envg(mpu,) . (8.7)

Suppose y; € O;. Then by Lemma 2.2,

Envg (mu;) =~ Envg (i) >~ Envg (mg (x ;) i),
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and by Lemma 2.4(d), Envg(mg(y;)pi) is a central simple algebra of index
mg (x ;). Comparing (8.6) and (8.7), we conclude that s = ¢, and after renumbering
Ki...., K, we may assume that Envg (mpu;) ~ Envg(y) ®z K;. Thus (ii) is
equivalent to

(iii) the index of Envg (y) ® z K; divides m foreveryi = 1,...,s.
By Proposition 5.1(a), (iii) is equivalent to
(iv) Xy has a K-point, i.e., Dy, (K) # 9.

The equivalence of (i) and (iv) shows that the functors Rep, and Dy, are
isomorphic. Now

def

ed(y) & ed(Rep,) = ed(Dx,) = cd(X,)

and similarly for the essential dimension at p. O

Remark 8.8. Theorem 8.5 can, in fact, be applied to an arbitrary k-valued character
1. G — k. Indeed, the character " of Lemma 8.2(b) is a sum of pairwise disjoint
k-irreducible characters; see Remark 8.3. Thus Rep, =~ Rep, by Lemma 8.2, and
Rep, ~ Dy, by Theorem 8.5.

9. Upper bounds

If G is generated by r elements g, . . ., gr, then any representation p: G — GL, (K)
defined over a field K/k descends to the subfield K generated over k by the rn?
matrix entries of p(g1), ..., p(gr). Thus

ed(p) < trdegy (Ko) < rn?.

In this section we will improve on this naive upper bound, under the assumption that
char(k) = 0.

Our starting point is the following inequality, which is an immediate corollary of
Theorem 8.5 and the inequality (3.2).

Corollary 9.1. Let G be a finite group and y = m(x1 + - + x,):G — k
be an irreducible character over k, as in Section 7. Then ed(y) < dim(X x) =
rm(my (i) —m). O

We are now in a position to prove the main result of this section.

Proposition 9.2. Let G be a finite group, k be a field of characteristic 0, and K/ k
be a field extension. Let p: G — GL, (K) be a representation of G. Then
2

n
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my(1)? G

(b) ed(p) < > ;1| ki ) | & % Here the sum is taken over the distinct
absolutely irreducible K-subrepresentations A of p, and |x| denotes the
integer part of x.

1) A)? G
(c) ed(Rep,) < xd) and ed(Repg ;) < ZALmki ) | &2 |4| for any base

field k and any k-valued character y: G — k. Here Repg . is the functor

defined at the beginning of Section 6, and the sum is taken over all absolutely
irreducible representations A of G defined over k.

Proof. (a) Suppose p =~ p; @ p, over K, where dim(p;) = ny, dim(pz) = n»
and n = n; + n,. If we can prove the inequality of part (a) for p; and p,, then by
Lemma 6.2,

ed(p) < ed(pr) +ed(p2) < 1 + 4 < :

so that the desired inequality holds for p. Thus we may assume without loss of
generality that p i1s K-irreducible.

By Lemma 6.3 we may also assume that the character y of p is k-valued. By
Lemma 7.3, x is an irreducible character over k. Write y = m(y; + -+ + xr),
where m > 1 divides my (y1) = --- = my(x,). By Corollary 9.1

2
ed(p) <rm(my(y;) —m) < rmk(TX]).
Now recall that by Lemma 2.4(d), Envg(p) is a central simple algebra of index
my(y1) over a field Z such that [Z : k] = r. Thus

(9.3)

rmg(x1)* < rdimz(Envg (p)) = dimg (Envk (p)) = dimg (Envg (p)) < n”.
(9.4)
Here the equality dimg (Envy (p)) = dimg (Envg (p)) follows from Lemma 2.3, and
the inequality dimg (Envg(p)) < n? follows from the fact that Envg(p) is a K-
subalgebra of M,,(K). Combining (9.3) and (9.4), we obtain ed(p) < n?/4.

(b) Decompose p as a direct sum a; p; B---PBasps, where py, .. ., ps are pairwise
non-isomorphic K-irreducibles. Over K, we can further decompose each p; as

pi = mi(pi1 ® - D pir;) 9.5)

where the pi,..., pir; are pairwise non-isomorphic K -irreducibles. In fact, by

Lemma 2.4(c), no two irreducible representations p;; can be isomorphic over K,

as [ ranges from 1 to s and ;j ranges from 1 to r;.

mg(xi1)*
4

Now let us sharpen (9.3) a bit. Since m(mg(yi1) — m) < and

m(myg(yi1) —m) is an integer, we conclude that

1)> L )2
cd(pr) < ry KUy o UL

i=1
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Here the last equality follows from the fact that the characters y;i,.... Xir; of
Bl s s s 5 pir; are conjugate over k, and consequently, myg(pi1) = -+ = my(pir;).
Now by Lemma 6.2,

s s N2
ed(p) < ) ed(pi) < ZZL@JLJ

i=1 i=1j=1

This proves the first inequality in part (b).

To prove the second inequality, note that by Lemma 2.4(f), my (xi;) < dim(p;;).
Moreover, Y, dim(A)*> = |G|, where the sum is taken over the distinct absolutely
irreducible representations A of G; see, e.g., [34, Corollary 2(a), Section 2.4]. Thus

my(xii)? mk()(, dlm(p, IG]
> Y ’J\ZZ Pl o vy vl ;

i=1j=1 i=1 j=1 i=1j=1

This completes the proof of part (b). Part (c) is an immediate consequence of (a)
and (b). L]

Remark 9.6. Note that absolutely irreducible representations A of Schur index 1 do
not contribute anything to the sum ) _, L%“ZJ in part (b) and (c). In particular,
in the case, where every absolutely irreducible representation of G has Schur
index 1, we recover Lemma 6.4 from Proposition 9.2 (under the assumption that
char(k) = 0).

Another interesting example is obtained by setting G = (g, the quaternion
group of order 8 and k = (Q or R. In this case G has five absolutely irreducible
representations whose Schur indices are 1, 1, I, 1 and 2; see [14, Example, p. 740].

Thus Proposition 9.2 yields

12 2 12
ed(Repg, 1) < L J + L—J i+l L—J =1.

Example 6.1 shows that this upper bound is sharp, i.e., ed(Repg, ) = 1.

10. A variant of a theorem of Brauer

A theorem of R. Brauer [7] asserts for every integer / > 1 there exists a number
field k, a finite group G and a k-valued absolutely irreducible character y such that
the Schur index my () = [. For an alternative proofs of Brauer’s theorem, see [4]
or [36].

In this section we will prove an analogous statement with the Schur index
replaced by the essential dimension. Note however, that the analogy is not perfect.
Our character y will be reducible and Q-valued for every / > 2, while Brauer’s
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theorem will fail if we insist that & should be the same for all /, or that y should
be real-valued. (These assertions follow from the Benard-Schacher theorem [37,
Theorem 6.8]; see also [14, Section 74C].)

Proposition 10.1. For every integer | > 0 there exists a finite group G, and a
character y: G — Q such that edg(y) = .

Proof. The proposition is obvious for / = 0; just take y to be the trivial character,
for any group G. We may thus assume that / > 1. Choose / distinct prime integers
P1s--.,pr =3 (mod 4), and let A; be the quaternion algebra (—1, p;) over Q.

Lemma 10.2. The classes of Ay, .. .. Ay in Br(Q) are linearly independent over 7./ 2Z.

Proof. Assume the contrary. Then after renumbering Ay, ..., A;, we may assume
that A; ® -+ ®x A; is split over Q for some s > 1. Since [(a.¢)] ® [(b.¢)] =
[(ab, ¢)] in Br(Q), we see that the quaternion algebra (—1, p; ... py) is split over Q.
Equivalently, p; ... ps is a norm in Q(\/—_l)/k (see, e.g., [27, Theorem 2.7]), i.e.,
P1 ... ps can be written as a sum of two rational squares. Now recall that by a
classical theorem of Fermat, a positive integer n can be written as a sum of two
rational squares if and only if it can be written as a sum of two integer squares if and
only if every prime p which is = 3 (mod 4) occurs to an even power in the prime
decomposition of n. Inourcase n = p; ... ps does not satisfy this condition. Hence,
P1 ... Ps cannot be written as a sum of two rational squares, a contradiction. ]

We now return to the proof of Proposition 10.1. By a theorem of M. Benard [1]

there exist finite groups Gy, ..., Gy, number fields Fy,..., F;, and 2-dimensional
absolutely irreducible representations p;: G; — GL,(F;) such that A; := Envg (p;).
(In fact, since Q(+/—1) splits every A;, we may take F; = --- = F; = Q(v/~1).)
We will view each p; as a representation of G = G; x --- x G; via the natural

projection G — G;. Let y; be the characterof p; and y := y1 + -+ . G — Q.
By Theorem 8.5
ed(y) = cd(X,).

where X, = X, Xg --- xx Xy,, and X, 1s the 1-dimensional Severi—Brauer
variety SB(4;) over Q. Since the Brauer classes of Aq,..., A; in Br(Q) are
linearly independent over Z/27Z, |25, Theorem 2.1] tells us that cd(X,) = [/, as
desired. (For an alternative proof of [25, Theorem 2.1], see [23, Corollary 4.1 and
Remark 4.2].) O

Remark 10.3. Proposition 10.1 implies that there exists a field K/Q and a linear
representation p: G — GLy;(K) such that edg(p) = /. Note however, that p
is not the same as p; x -+ x p;:G — GLZI(Q(\/——I)), even though p and
p1 X -+ x p; have the same character. Indeed, since each p; is defined over @(\/—_1),
edg(py x---x p;) = 0. Under the isomorphism of functors Rep, ~ Dy  of
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Theorem 8.5, p; x- - -xp; corresponds to a ((+/—1)-point of X, while p corresponds
to the generic point.

11. Computation of canonical p-dimension

This section aims to determine canonical p-dimension of a broad class of Weil
transfers of generalized Severi—Brauer varieties. Here p is a fixed prime integer.
The base field k is allowed to be of arbitrary characteristic.

Let Z/k be a finite Galois field extension (not necessarily abelian). We will
work with Chow motives with coeflicients in a finite field of p elements; see [15,
§64]. For a motive M over Z, Rz, M is the motive over k given by the Weil
transfer of M introduced in [17]. Although the coefficient ring is assumed to be Z
in [17], and the results obtained there over Z do not formally imply similar results
for other coeflicients, the proofs go through for an arbitrary coeflicient ring.

For any finite separable field extension K/k and a motive M over K, the
corestriction of M 1s a well-defined motive over k; see [19].

Lemma 11.1. Let Z/k be an arbitrary finite Galois field extension and let
Mi,....Mp be m = 1 motives over Z. Then the motive Rz, (M @ --- ® My,)
decomposes in a direct sum

Rz/y(M1®---®My) =Rz M @---D Rz/tx My &N,

where N is a direct sum of corestrictions to k of motives over fields K with k C
K C Z,

Proof. For m = 1 the statement is void. For m = 2 use the same argument as in
[20, Proof of Lemma 2.1] or see below. For m > 3 argue by induction.

For the reader’s convenience, we supply a proof for m = 2. First we recall that
the Weil transfer Rz, X of a Z-variety X is characterized by the property that there
exists an isomorphism of Z-varieties (Rz/xX)z =~ Haegm(z/k) 9X commuting
with the action of the Galois group. Here °X is the conjugate variety and Gal(Z / k)
acts on the product [ | °X by permutation of the factors.

We start with the case where M, and M, are the motives of some smooth
projective Z-varieties X and Y. The Weil transfer Rz, (M @ M>) is then the
motive of the k-variety Rz, (X [[Y). We have

[T°xX LY =TICX 1Y) = q1°X) LT d1°Y) 10 -

where the dots stand for a disjoint union of products none of which is stable under
the action of Gal(Z/ k). It follows that Rz, (X [[Y) is a disjoint union of Rz /x X,
Rz /kY . and corestrictions of some K-varieties with some k C K C Z. This gives
the required motivic formula in the particular case under consideration.
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In the general case, we have M, = (X.[r]) and M, = (Y, [r]) for some alge-
braic cycles 7 and 7 ([7] and [z] are their classes modulo rational equivalence). We
recall that the Weil transfer of the motive (X. [r]) is defined as (Rz/x X. [Rz i 7]).
where Rz, is the algebraic cycle determined by (Rz/x7)z = [[%7r. Computing
Rz /(M & M>) this way, we get the desired formula. ]

Now recall from Section 3b that a k-variety X is called incompressible if
cd(X) = dim(X) and p-incompressible if cd,(X) = dim(X).

Theorem 11.2. Let p be a prime number, Z [k a finite Galois field extension of
degree p” for some r > 0, D a balanced central division Z-algebra of degree p"
for some n > 0, and X the generalized Severi—Brauer variety SB(D. p') of D for
somei = 0,1,...,n. Then the k-variety Rz, X, given by the Weil transfer of X, is
p-incompressible.

Note that in the case, where Z /k is a quadratic Galois extension, D is balanced
if the k-algebra given by the norm of D is Brauer-trivial; “D for « # 1 is then
opposite to D. In this special case Theorem 11.2 was proved in [20, Theorem 1.1].

Proof of Theorem 11.2. In the proof we will use Chow motives with coefficients in
a finite field of p elements. Therefore the Krull-Schmidt principle holds for direct
summands of motives of projective homogeneous varieties by [12] (see also [22]).

We will prove Theorem 11.2 by induction on r + n. The base case, where
r +n = 0, is trivial. Moreover, in the case where r = 0 (and n 1s arbitrary), we
have Z = k and thus Rz,x X = X is p-incompressible by [22, Theorem 4.3]. Thus
we may assume that r > 1 from now on.

If i = n, then X = SpecZ, Rz;xX = Speck, and the statement of
Theorem 11.2 is trivial. We will thus assume that i < n — 1 and, in particular,
thatn > 1.

Let k' be the function field of the variety Rz/x SB(D. p"~1). Set Z' := k' & Z.
By Proposition 5.1(b), the index of the central simple Z'-algebra Dz = D®z Z' =
D ®; k" is p"~!. Thus there exists a central division Z’-algebra D’ such that the
algebra of (p x p)-matrices over D’ is isomorphic to Dz/. Let X' = SB(D’. p'). By
[16, Theorem 10.9 and Corollary 10.19] (see also [11]), the motive of the variety X z-
decomposes in a direct sum

M(Xz) = M(X") & M(X")(p'™" ) & M(X)2p' ™" ) & -
- @MXN(p-DpTTH @ N,
where N is a direct sum of shifts of motives of certain projective homogeneous

Z'-varieties Y under the direct product of p copies of PGL{(D’) such that the index
of D’Z,(Y) divides pi_'. (If i = 0, then N = 0.) It follows by [22, Theorems 3.8
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and 4.3] that

M(Xz)~UX)eUXHp' ™ Heux)ep™" He---
@ UXN(p—Dp' ™" e N

where U(X') is the upper motive of X’ and N is now a direct sum of shifts of upper
motives of the varieties SB(D’, p/) with j < i. Therefore, by Lemma 11.1 and [17,
Theorem 5.4], the motive of the variety (Rz,x X )xr >~ Rz//k(Xz) decomposes in
a direct sum

M(Rz/x X)) =~ Rz )i U(X") & Rz'/ka(X’)(p’+i+”_‘)
@ RZ'/k'U(X’)(ZerJF"_l)@9...
- ® Rz UX)(p—Dp" T HeNe N, (113)

where now N is a direct sum of shifts of Rz, U(SB(D', p/)) with j < i, and N’
is a direct sum of corestrictions of motives over fields K with kK’ € K C Z’.
By the induction hypothesis, the variety Rz/ /X' is p-incompressible. By [18,
Theorem 5.1], this means that no positive shift of the motive U(Rz//xX') is a
direct summand of the motive of sz/k’X’. [t follows by [19] that sz/krU(X’)
is a direct sum of U(Rz:/x/ X"), of shifts of U(Rz;x SB(D', pj)) with j < i, and
of corestrictions of motives over fields K with k" C K C Z'. Therefore we may
exchange Rz, with U in (11.3) and get a decomposition of the form

M(Rz/x Xk =~ U(Rz /10 X') @ U(Rz i X)(p" HH"T
o) U(RZ’/k/X,)(2Pr+i+n_l) o o
@ URzyp XY(p—Dp™ " HeNe N, (114)

where N is now a direct sum of shifts of some U(Rz//,» SB(D', p’)) with j < i,
and N’ is a direct sum of corestrictions of motives over fields K with k' C K C Z'.
Note that the first p summands of decomposition (11.4) (that is, all but the last
two) are shifts of an indecomposable motive; moreover, no shift of this motive
is isomorphic to a summand of N or of N’. Since the variety Rz /X" is p-
incompressible, we have

dimU(Rz i X') = dim Ry X' = [Z' K] -dim X' = p" - p'(p" ™" = p').

(We refer the reader to [18, Theorem 5.1] for the definition of the dimension of the
upper motive, as well as its relationship to the dimension and p-incompressibility
of the corresponding variety.) Note that the shifting number of the p-th summand
in (11.4) plus dim Rz//x X' equals dim Rz X :

(p_ ])pr+t+n—l + prpf(pﬂ—l - pl) _ prp[(pn . p!).
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We want to show that the variety Rz, X is p-incompressible. In other words, we
want to show that dim U(Rz,x X) = dim Rz, X. Let [ be the number of shifts of
U(Rz /x X’) contained in the complete decomposition of the motive U(Rz/x X ).
Clearly, 1 </ < p and it suffices to show that /| = p because in this case the p-th
summand of (11.4) is contained in the complete decomposition of U(Rzx X )x.

The complete motivic decomposition of Rz, X contains several shifts of
U(Rz;kX). Let N be any of the remaining (indecomposable) summands. Then,
by [19], N is either a shift of the upper motive U(Rz,x SB(D, p7)) with some j < i
or a corestriction to k of a motive over a field K with k C K C Z. It follows
that the complete decomposition of Nj, does not contain any shift of U(Rz// 5 X”).
Therefore / divides p, thatis,/ = 1 or/ = p, and we only need to show that / # 1.

We claim that / > 1 provided that dim U(Rz,x X) > dim U(Rz/ /¢ X"). Indeed,
by [21, Proposition 2.4], the complete decomposition of U(Rz /X ), contains as
a summand the motive U(Rz:/x-X") shifted by the difference dimU(Rz,x X) —
dim U(Rz:/x+X"). Therefore, in order to show that / 7 1 it is enough to show that

dim U(Rz/kX) > dim U(sz/k/X/).

We already know the precise value of the dimension on the right, so we only need
to find a good enough lower bound on the dimension on the left. This will be given
by dimU((Rz/x X)), where k / k is a degree p Galois field subextension of Z/k.
We can determine the latter dimension using the induction hypothesis.

Indeed, since Rz, X =~ RE/kRZ/EX’ the variety (Rz/x X )j 1s isomorphic to

Rz X)i = T1 "Ry e X ~ Ry ; T1 °X,

ael ael

where I is the Galois group of Z /k, I is the Galois group of k /k, and o € T is a
representative of & € r (see [6, §2.8]). Since D is balanced, the product I_[&GI: . ¢
is equivalent to X. It follows that the varieties R, [ler ®X and R, i X are
equivalent and hence, by Lemma 3.3, have the same canonical p-dimension (i.e., the
dimensions of their upper motives coincide). The latter variety is p-incompressible
by the induction hypothesis. Consequently,

dim U(RZ/kX) > dim U((RZ/kX),;) = dim RZ/IEX = pr_l . pi(pn —pi).

The lower bound p” ! p’ (p" — p') on dim U(Rz,, X ) thus obtained is good enough
for our purposes, because

r

PPt (" =y > pt - p'(p" T = ph) = dimU(Rzr e X).
This completes the proof of Theorem 11.2. [

The following example, due to A. Merkurjev, shows that Theorem 11.2 fails if D
is not assumed to be balanced.
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Example 11.5. Let L be a field containing a primitive 4-th root of unity. Let Z be the
field Z := L(x,y.x’,y’) of rational functions over L in four variables x, y. x’, y'.
Consider the degree 4 cyclic central division Z-algebras C := (x,y)4 and C’ :=
(x'.y")4. Let k C Z be the subfield Z¢ of the elements in Z fixed under the L-
automorphism « of Z exchanging x with x’ and y with y’. The field extension Z /k
is then Galois of degree 2, and the algebra C’ is conjugate to C.

The index of the tensor product of Z-algebras C & C'®? is 8. Let D/Z be the
underlying (unbalanced!) division algebra of degree 8. Since the conjugate algebra
“D is Brauer-equivalent to C' ® C®?2, the subgroup of the Brauer group Br(Z)
generated by the classes of D and *D coincides with the subgroup generated by
the classes of C and “C = C’. Therefore the varieties X| := Rz, SB(D) and
X2 := Rz SB(C) are equivalent. Thus, by Lemma 3.3,

cd(X;) = cd(X5) < dim(X3) < dim(X;)

and consequently, X is compressible (and in particular, 2-compressible).

Remark 11.6. Some generalizations of Theorem 11.2 can be found in [23].

12. Some consequences of Theorem 11.2

Theorem 11.2 makes it possible to determine the canonical p-dimension of the Weil
transfer in the situation, where the degrees of Z/k and of D are not necessarily
p-powers.

Corollary 12.1. Let Z / k be a finite Galois field extension and D a balanced central
division Z-algebra. For any positive integer m dividing deg(D), one has

cdp Rz SB(D,m) =dim Rz SB(D',m") = [Z : k'] - m'(deg D" —m"),

where m' is the p-primary part of m (i.e., the highest power of p dividing m), D’ is
the p-primary component of D, and k' = ZYr where [ is a Sylow p-subgroup of
I := Gal(Z/k) (so that [Z : k'] is the p-primary part of [Z : k]).

Proof. Since the degree [k’ : k] is prime to p, we have
cdp, Rz/k SB(D,m) =cdp(Rz)x B(D.m))g

see [29, Proposition 1.5(2)]. The k’-variety Rz SB(D,m)gs is isomorphic to
a product of Rz,x SB(D,m) with several varieties of the form Rz, SB(D,m)
where D ranges over a set of conjugates of D. Since D is balanced, these algebras D
are Brauer-equivalent to powers of D. Thus the product is equivalent to the k'-
variety Rz x SB(D,m). We conclude by Lemma 3.3 that cd, Rz/x SB(D.m) =
cdp Rz, SB(D. m). In the sequel we will replace k by &, so that the degree [Z : k]
becomes a power of p.
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We may now replace k by its p-special closure; see [15, Proposition 101.16].
This will not change the value of ¢d,(X). In other words, we may assume that & is
p-special. Under this assumption the algebras D and D’ become Brauer-equivalent
and consequently, the k-varieties Rz/x SB(D,m) and Rz SB(D',m’) become
equivalent. By Lemma 3.3,

cdp Rz/x SB(D.m) =cdy, Rz x B(D',m").

Since the Z-algebra D’ is balanced over k, Theorem 11.2 tells us that Rz, SB(D'.m")
is p-incompressible. That is,

cdp Rz B(D',m') = dim(Rz,, B(D',m')) = [Z : k] -m'(deg D" —m'),
and the corollary follows. O

Remark 12.2. Corollary 12.1 can be used to compute the p-canonical dimension
of Rz, SB(D, j) forany j = 1,..., deg(D), even if j does not divide deg(D).
Indeed, let m be the greatest common divisor of j and deg(D). Proposition 5.1(a)
tells us that for any field extension K/ k, Rz, SB(D, j) has a K-point if and only if
Rz SB(D,m) has a K-point. In other words, the detection functors for these two
varieties are isomorphic. Consequently,

cd(Rz/x B(D. j)) = cd(Rz/x SB(D.m))
and cd,(Rz/x SB(D. j)) = cd,(Rz /% SB(D.m)).

and the value of cd,(Rz,x SB(D.m)) is given by Corollary 12.1.

We now return to the setting of Sections 7-9. In particular, G 1s a finite group,
and the base field k is of characteristic 0.

Corollary 12.3. Let y = m(yy + -+ + xr): G — k be an irreducible k-valued
character, where yq, ..., ¥ r are absolutely irreducible and conjugate over k, and m
divides my(y) = --- = my(x,), as in Section 7.

(a) edp(y) = r'm'(mg(x1)' —m'). Here X’ denotes the p-primary part of x (i.e.,
the highest power of p dividing x) for any integer x > 1.

(b) If r and my(x1) are powers of p, then ed,(y) = ed(y) = dim(X,) =
rm(my(x1) —m). Here X, is as in Definition 8.4.

Proof. (a) Let D be the underlying division algebra and Z/k be the center of
Envg (x). By Theorem 8.5, ed,(y) = c¢d,(X ). By Proposition 4.1, D is balanced.
The desired conclusion now follows from Corollary 12.1.

(b) Here r’ = r, my(x1)" = my(x) and thus m" = m. By part (a),

dim(X,) = rm(my(y1) —m) = ed,(y) < ed(y).

On the other hand, by Corollary 9.1, ed(y) < rm(mg(x1)—m), and part (b) follows.
]
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Remark 12.4. While a priori ed,(y) depends on k, G, and y, Corollary 12.3(a)
shows that, in fact, ed,(y) depends only on the integers r, m, and my(y1). (Here
we are assuming that y is irreducible.) We do not know if the same is true of ed(y).

13. A variant of a theorem of Schilling

Let G be a p-group and y; be an absolutely irreducible character of G. It is
well known that for any field k of characteristic O, mg(y;) = 1 if p is odd, and
mp(yx1) = 1or2if p = 2. Following C. Curtis and I. Reiner, we will attribute
this theorem to O. Schilling; see [14, Theorem 74.15]. For further bibliographical
references, see [37, Corollary 9.8].

In this section we will use Corollary 12.3 to prove the following analogous
statement, with the Schur index replaced by the essential dimension.

Proposition 13.1. Let k be a field of characteristic 0, G be a p-group, and y: G — k
be an irreducible character over k.

(a) If p is odd then ed(y) = 0.

(b) If p = 2 then ed,(y) = ed(x) = 0 or 2! for some integer | > 0.

(c) Moreover, everyl = 0 in part (b) can occur with k = Q, for suitable choices

of G and y.

Proof. Write y = m(yy + --- + xr), where y;:G — k are absolutely irreducible
characters and m divides my (). If m = my () then ed(y) = 0 by Corollary 9.1.

(a) In particular, this will always be the case if p is odd. Indeed, by Schilling’s
theorem, my (y;) = 1 and thus m = 1. (Also cf. Lemma 6.4.)

(b) By Schilling’s theorem, my(y;) = 1 or 2, and by the above argument,
we may assume that m < my(y;). Thus the only case we need to consider is
mp(y1) =2andm = 1. By Lemma 2.4(b), r = [k(y1) : k]. Since k(y1) C k(&e),
where the exponent e of G is a power of 2, we see that r divides [k () : k], which is,
once again, a power of 2. Thus we conclude that r is a power of 2. Corollary 12.3(b)
now tells us that

edr(y) =ed(y) = rm(mp(y)—m)y=r-1-2—-1)=r (13.2)

1s a power of 2, as claimed.
(c)Lets =212 and o € Gal(Q(¢s)/Q) be complex conjugation, and

F:=Q)’ =QU)NR=Q& + ).

Consider the quaternion algebra A = ((¢; — ;7 ')%, —1) over F, i.e., the F-algebra
generated by elements x and y, subject to the relations

x? = (s — Cs_l)z, y2 = —land xy = —yx.
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One readily checks that F({; — ¢;') = Q(&) is a maximal subfield of A, ¢
and y generate a multiplicative subgroup G of A of order 2s, which spans A as an
F -vector space, and the inclusion G < A* gives rise to an absolutely irreducible
2-dimensional representation

p1:G — A* < GL2(Q(&s)) -

Denote the character of p; by y;:G — F. We claim that Q(y;) = F. Indeed,
since A is an F'-algebra, the trace of every element of A4 lies in F, and in particular,
Q(x1) C F. On the other hand, y;(¢s) = & + ;! generates F over Q. This proves
the claim. Thus y; has exactly

r=1F Q= 5[0 : Q=2

conjugates xi,..., xrover Q, and y = y; + --- + x, is an irreducible character
over Q.

Note that since s = 2/t2 > 4, (¢s — é‘s_l)z < 0, A ®F R is R-isomorphic
to the Hamiltonian quaternion algebra HH = (—1, —1) and hence, is non-split. Thus
ind(A) = 2. Since A = Envg(p), Lemma 2.4(d) tells us that mg (1) = 2. Applying
Corollary 12.3(b), as in (13.2), we conclude that ed>(y) = ed(y) = r = 2!, as
desired. O

14. Essential dimension of modular representations

Let G be a finite group and Repg ; be the functor of representations defined at
the beginning of Section 6. In the non-modular setting (where char(k) does not
divide |G |), we know that

0, if char(k) > 0,by Remark 6.5, and

ed(Re is
(Repg x) < |G|/4, if char(k) = 0, by Proposition 9.2.

We shall now see that essential dimension of representations behaves very differently
in the modular case.

Theorem 14.1. Let k be a field of characteristic p. Suppose a finite group G
contains an elementary abelian subgroup E =~ (Z/pZ)* of rank 2. Then
ed(Repg ) = oc.

It is clear from the definition of essential dimension that if K C k' is a field
extension then ed(Repg ;) > ed(Repg /). Thus for the purpose of proving
Theorem 14.1 we may replace k by k’. In particular, we may assume without loss of
generality that k is algebraically closed.

Following D. Quillen, we will assiciate to a finite group G the projective variety
S = Proj(H*(G,k)), where the graded ring H*(G.k) is defined as the full
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cohomology ring H*(G.k), if p = 2, or as the direct sum of even-dimensional
cohomology groups H“"(G, k) if p > 3. To every representation p: G — GL, (K)
defined over a field K/k (or equivalently, a finitely generated K[G]-module), we
will denote the support variety of p by Supp(p). Note that Supp(p) is a closed
subvariety of §. For a detailed discussion of this construction we refer the reader
to [2, Chapter 5].

Let Z be a k-variety, and Subz: Fields; — Sets be a covariant functor, given by

Subz(K) := {closed subvarieties of Zg}.

Here subvarieties of Z g are required to be reduced but not necessarily irreducible.
Closed subvarieties X,Y C Zg represent the same element in Subz(K) if
X(K) =Y(K) in Z(K). We will now consider the morphism of functors

Supp: Repg ;, — Subg

which associates to a representation p: G — GL,(K) its support variety Supp(p).
A theorem of J. Carlson (Carlson’s realization theorem) asserts that this morphism
of functors is surjective; see [2, Corollary 5.9.2]. (Note that the usual statement
of Carlson’s realization theorem only says that Supp(k): Repg (k) — Subg (k) is
surjective; however, the proof shows that, in fact, Supp: Repg , (K) — Subg(K) is
surjective for every field K/ k.) Thus ed(Repg ;) > ed(Suby); see [3, Lemma 1.9].

By a theorem of Quillen, the condition that G contains an elementary abelian
subgroup of rank > 2 is equivalent to dim(S§) > 1; see [2, Theorem 5.3.8]. It now
suffices to prove the following proposition.

Proposition 14.2. Let Z be a projective variety of dimension d > 1 defined over an
infinite field k. Then ed(Subz) = oo.

Proof. We claim that there exists a surjective morphism Z — P4 defined over k.
Indeed, embed Z into a projective space PV. If d = N, there is nothing to prove. If
d < N, then there exists a linear subspace of dimension N — d — 1 defined over k
which does not intersect Z. Projecting Z from this subspace to a complementary
linear subspace of dimension ¢, we obtain a desired surjective morphism Z — P<.
This proves the claim.

The morphism Z — P4 induces a surjective morphism of functors Suby; —
Subp,. Using [3, Lemma 1.9] once again, we see that it suffices to show
ed(Subps) = oo. In other words, we may assume without loss of generality that
Z =Pp9,

Let L/k be a field, a;..... ay € L, and X [n] be the union of the points

Al =01 @5 108w 10} cuvsXg =(1 18, : Qir=20) (14.3)

in P4 We view X [n] as an element of Subpa (L).
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Lemma 14.4. Suppose X |[n] descends to a subvariety Y defined over a subfield
K C L. Then a; is algebraic over K foreveryi = 1,..., n.

Proof. Note that X[n] is a subvariety of the projective line P! < P? given by
X3 = -+ = xXg41 = 0, where xq,...,. X441 are the projective coordinates in P4,
Since X [1] descends to Y, we have Y(L) = X[n](L). Consequently, Y is a closed
subvariety of P!, (Note that here we are viewing Y as a subvariety of P4, not as a
subscheme.) Thus for the purpose of proving Lemma 14.4 we may replace P4 by P!,
i.e., assume that d = 1.

By the definition of the functor Subgi, X [n] descends to K if X [n] can be cut
out (set-theoretically) by homogeneous polynomials fi,..., fs € K[x1.x2]. In
other words, the points X = (1 : ay),..., X, = (1 : ay) are the only non-trivial
solutions, in the algebraic closure L, of a system of homogeneous equations

fi(x1.x2) = = filx1.x2) =0

with coefficients in K. Since every solution of such a system can be found over K,
we have ay, ..., a, € K. This completes the proof of Lemma 14.4. O

We now continue with the proof of Proposition 14.2. Taking ay,.... anp to
be independent variables and L := k(a;....,. ay), we see that trdeg; (K) =
trdeg, (L) = n and thus in this case ed(X [n]) = n. Therefore,

ed(Subga ;) = suped(X|[n]) = co.
n>1

This completes the proof of Proposition 14.2 and thus of Theorem 14.1. ]
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A. Modular representations of high essential dimension
by Julia Pevtsova and Zinovy Reichstein

Let k be a field of characteristic p, G be a finite group containing a rank 2 elementary
abelian subgroup E =~ (Z/ pZ)*. Theorem 14.1 asserts that for every integer nn there
exists a field extension K, /k and a representation p,: G — GL,;, (K,) such that
edg(pn) = n. However, the proof of Theorem 14.1 in Section 14 does not tell us
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how to construct p, or what d, = dim(p,) may be in terms of n. The purpose of
this appendix is to prove the following constructive version of Theorem 14.1.

Theorem A.l. Let k be a field of characteristic p, and G be a finite group.
Suppose G contains an elementary abelian subgroup E ~ (Z/pZ)?* of rank 2,
and let W = Wg(E) = Ng(E)/Cg(E) be the Weyl group of E in G. Set
Ky = klai,. ..., ap), where ay, ..., an, are independent variables. Then for every
integer n = 1 there exists a representation p,: G — GLy (Ky) of dimension
dy = dim(p,) < n|G||W|/ p such that edy (p,) = n.

The approach taken in the previous section is to use the support variety of a G-
representation p to bound ed(p) from below. Here we will first restrict p to £, then
use the support variety of p| g to bound ed(p) from below. Support varieties for E-
representations admit an alternative description as rank varieties, due to Carlson [9]
(see also [2, Section 5.8]). This makes them more amenable to explicit computations.
In particular, in the course of proving Theorem A.l we will construct an explicit
representation p, with ed(p,) = n and dim(p,) < n|G||W|/p.

Up to nilpotents, H*(E, k) is a polynomial ring in two variables over k; hence,
Proj(H®(E.k)) = P'. For K/k a field extension, the support variety Supp(p) of a
representation p: E — GL,(K) is thus a K-subvariety of P!. The Weyl group W
of E in G naturally acts on E by conjugation; this induces a W-actionon H*(E.k)
and thus on IP1. If p can be lifted to a K-representation of G, then Supp(p) is easily
seen to be invariant under the action of W on ]P)}(.

Let Subpi yy: Fieldsy — Sets be the functor given by

Subpi y (K) := {closed W-invariant subvarieties of ]P)}{}.

Here subvarieties of P}{ are required to be reduced but not necessarily irreducible,
as in Section 14. Let

SuppE: Repg x — Subpi y

be the morphism of functors which associates to a representation p: G — GL, (K)
the support variety Supp(p|g) C ]P’}(. One can show that SuppE:RepG,k —
Subpi  is surjective, but we will not do that here. For the purpose of proving
Theorem 14.1 the following variant of Carlson’s realization theorem [10] for
W -invariant subvarieties of P! will suffice.

Proposition A.2. Let K be an algebraically closed field extension of k. Let
Xi,..., X, be distinct K-points of P! such that their union X = X, U ... U Xy, is
W -invariant. Then there exists a K[G]-module M such that dimg (M) = m|G|/p
and Supp® (M) = X.

Let g;. g» be group generators of £. For any point x = [x; : x»] on PL, consider
the element

oy =x1(g1—1)+x2(g2—1)+ 1
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in the group algebra K[E]. Since of = 1, the element o, generates a cyclic sub-

group of K[E], commonly referred to as the “cyclic shifted subgroup” corresponding
to the point x (see [9, 2.11]). We denote by K[| the subalgebra of K[E] generated
by .. By construction, K [a,] >~ K[Z/pZ] >~ K[t]/(t?).

Let k C K C L be field extensions, and M be a K[E]-module. An L-point
X = [x1 : x3] of P! belongs to the rank variety SuppE (M) (defined over K) if and
only if the restriction (M ®k L) 4,11 not a free L[ey]-module (see [2, I1.5.8]).
If M is finite-dimensional and K is algebraically closed then it suffices to check the
K-points x =[xy : x3] € IP}{ to determine the rank variety of M. We also note that
by [9, Lemma 6.4] this description of the rank variety is independent of the choice
of generators of E.

The following lemma is a very special case of [31, Prop. 4.1]. For the reader’s
convenience we supply a direct proof.

Lemma A.3. Let K be an algebraically closed field, and let x = [x| : x»] € P! be
a K-point. Let M be a (finite dimensional) K [ax]-module. Then

K[E] @, if M is free

Supp® (Indgr, 1 M) =

X, otherwise,

where Indﬁf}l M = K[E] ®k[a,] M is the (tensor) induction of M from K [o]
to K[E]. '

Proof. Since rank varieties distribute over direct sums,
Supp” (M1 & M>) = Supp” (M1) U Supp” (M>), (A4)

it suffices to prove the lemma for each of the p indecomposable K [« ]|-modules.

If M is a free K[ay]-module, then the induced module Indﬁf\]_] M is free
which implies that the rank variety is empty. Hence, it suffices to prove the
lemma for the remaining p — | indecomposable K[o,|-modules. After a linear
substitution of generators {g; — 1, g2 — 1} of the augmentation ideal of the group
algebra K[E] we may assume that x = [1 : 0]. Call the new generators
of the augmentation ideal s and ¢, so that K[E] = K]Js.t]/(s?,t?). The list
of representatives of isomorphism classes of non-free indecomposable K{[s]/(s?)-
modules is {K, K[s]/(s?)..... K[s]/(sP~1)}. Hence, the lemma is reduced to
the following statement. Consider a truncated polynomial algebra K|[s.z|/(s?.t?)

acting on

Indf 18} ) KIs1/(s™) = Kls.11/(s7 . 17) ®psysse Kls1/ (") = K[1.s1/(7.s").

1 < n < p—1, via the obvious projection map. Then the restriction of
K|t,s]/(t?,s™) to the subalgebra of K[s,t]/(s”,t7) generated by as + bt is free
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if and only if b # 0. Indeed, if b # 0, then

n—1

Klt.s]/(t7.s") = Klas + bt.s)/((as + b1)? s") = @D s' Klas + bt]/(as + bt)?
i=0

is a free K[as + bt]/(as + bt)P-module. If b = 0, then (as)?~! = (as + bt)P~!
annihilates K[z, s]/(¢#,s") since n < p. Therefore, K[z, s]|/(¢?,s") is not a free
Klas + bt]/(as + bt)P-module. O

Proof of Proposition A.2. We claim that M := Ind% M x has the desired properties,

m
where My := @ Indﬁf)](.] K. Clearly, dim(My) = mp and, thus,
i=1 .

dim(M) = f—zl -dim(My) = mlG]

It remains to show that SuppE (M) = X. We will use the double coset formula

Resg Indg My = P Indqpe Resgnpe gMx .
g€E\G/E

By (A.4) we only need to compute the variety for each summand in the double coset
formula. Since My is a direct summand of Resg Indg My, we have

X = Supp® (My)  Supp® (Indg My) = Suppf (M) .

We need to prove the opposite inclusion, Supp” (IndEnEA ResggEg gMyx,) C X,

for each My, = Indﬁf)](.] K. Consider three cases:

(a) EN E% = E, thatis, g € Ng(E). Then the corresponding summand in
the double coset formula becomes gMy, the module My twisted by g. We have
Supp® (gMy) = g Supp® (My) = gX = X, since X is W-invariant,

(b) E N Ef = @. Then the corresponding summand is induced from the trivial
group and, hence, is free and has empty rank variety.

(c) EN E¢ = (o), a cyclic subgroup of E. Then 0 € E¢ = gEg™!
and, hence, g7 log € E. If g7log & (o), then {0, g 'og} generate E which

implies that g € Ng(FE) and contradicts the assumption E N Ef # E. Therefore,

g log € (o). By Lemma A.3, Supp (Ind )] gM, ) contains at most one point:

the point corresponding to the subgroup (o ) Moreover, this variety is non-empty
only if gMy, is not free as (o)-module. By the definition of the action on the twisted
module g M, , this happens if and only if M, is not free as (¢~ !0 g)-module. Since

(g7 1og) = (o), this is equivalent to the restriction of My, to (o) not being free.

Hence, Supp® (IndK( ! gMX ) C Supp® (My,) C X, as desired. O
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Proof of Theorem A.1. Fori = 1,....n,let X; = (1 : a;) be a K,-point of P!, and
Y [n] be the union of the W-orbits of Xy,..., Xn. We claim that ed(Y [n]) = n,
where we view Y [n] as an object in Subpl,w(fn), where K, be the algebraic
closure of K.

Suppose Y [1] descends to a subfield k € F C K,. Then by Lemma 14.4,
ayy ..., a, are algebraic over F. In other words, K,/ F is an algebraic extension or,
equivalently, trdeg; (F) = n. This shows that ed(Y [n]) = n, as claimed.

By Proposition A.2, there exists a representation p, : G — GLg, (K,) with
Supp” (pn) = Y [n]. Thus edg (ps) > edg (Y [1n]) = n. Moreover, since p, is defined
over K, and trdeg; (K, ) = n, we have edi(p,) < n. Thus edg(p,) = n, as desired.

Finally, since Y [1] is a union of at most n - |W | K,-points of P!, Proposition A.2
also tells us that d,, = dim(p,) < n|W||G|/p. O]

Many natural questions about essential dimension of modular representations
remain open. We will conclude this appendix by stating some of these questions
below. In what follows we will assume that k is a field of characteristic p > 0, G
is a finite group, and E ~ (Z/pZ)? is a subgroup of G. We will allow K to vary
over field extensions of k and p to vary over finite-dimensional representations of G
defined over K.

(1) Fix an integer d > 1. What is the maximal value of edy(p), where the
maximum is taken over all representations p of G of dimension < d?

(2) Let S := Proj(H®*(G,k)), as in Section 14, and fix a closed subvariety
X C § defined over k. What is the maximal value of edi(p), where p is subject
to the condition Supp(p) = Xg?

(3) Let W := Wg(E) = Ng(E)/Cg(FE) be the Weyl group of £ in G and X
be a W-equivariant subvariety of P! := Proj(H *(E. k)) defined over k. What is the
maximal value of edy (p), where p is subject to the condition SuppE(p) = Xg?

(4) What are the maximal values of edy(p) — edig(Supp(p)) and edi(p) —

edy (Supp” (p))?
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