A numerical invariant for linear representations of finite groups

Autor(en): Karpenko, Nikita A. / Reichstein, Zinovy
Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 90 (2015)
Heft 3
PDF erstellt am:
29.04.2024

Persistenter Link: https://doi.org/10.5169/seals-658065

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

A numerical invariant for linear representations of finite groups

Nikita A. Karpenko* and Zinovy Reichstein**
With an appendix by Julia Pevtsova ${ }^{\dagger}$ and Zinovy Reichstein

Abstract

We study the notion of essential dimension for a linear representation of a finite group. In characteristic zero we relate it to the canonical dimension of certain products of Weil transfers of generalized Severi-Brauer varieties. We then proceed to compute the canonical dimension of a broad class of varieties of this type, extending earlier results of the first author. As a consequence, we prove analogues of classical theorems of R. Brauer and O. Schilling about the Schur index, where the Schur index of a representation is replaced by its essential dimension. In the last section we show that in the modular setting ed (ρ) can be arbitrary large (under a mild assumption on G). Here G is fixed, and ρ is allowed to range over the finitedimensional representations of G. The appendix gives a constructive version of this result.

Mathematics Subject Classification (2010). 14C25, 16K50, 20C05.
Keywords. Representations of finite groups, characters, Schur index, central simple algebras, essential dimension, Severi-Brauer varieties, Weil transfer, Chow groups and motives, canonical dimension and incompressibility.

1. Introduction

Let K / k be a field extension, G be a finite group of exponent e, and $\rho: G \rightarrow$ $\mathrm{GL}_{n}(K)$ be a non-modular representation of G whose character takes values in k. (Here "non-modular" means that char (k) does not divide $|G|$.) A theorem of Brauer says that if k contains a primitive e th root of unity ζ_{e} then ρ is defined over k, i.e., ρ is K-equivalent to a representation $\rho^{\prime}: G \rightarrow \mathrm{GL}_{n}(k)$; see, e.g. [34, §12.3]. If $\zeta_{e} \notin k$, we would like to know "how far" ρ is from being defined over k. In the case, where ρ is absolutely irreducible, a classical answer to this question is given by the Schur index of ρ, which is the smallest degree of a finite field extension l / k such

[^0]that ρ is defined over l. Some background material on the Schur index and further references can be found in Section 2.

In this paper we introduce and study another numerical invariant, the essential dimension $\operatorname{ed}(\rho)$, which measures "how far" ρ is from being defined over k in a different way. Here ρ is not assumed to be irreducible; for the definition of $\operatorname{ed}(\rho)$, see Section 6. In Section 8 we show that the maximal value of ed (ρ), as ρ ranges over representations with a fixed character $\chi: G \rightarrow k$, which we denote by $\operatorname{ed}(\chi)$, can be expressed as the canonical dimension of a certain product of Weil transfers of generalized Severi-Brauer varieties. We use this to show that ed $(\rho) \leqslant|G| / 4$ for any n, k, and K / k in Section 9 and to prove a variant of a classical theorem of Brauer in Section 10. In Section 11 we compute the canonical dimension of a broad class of Weil transfers of generalized Severi-Brauer varieties, extending earlier results of the first author from [20] and [22]. This leads to a formula for the essential p-dimension of an irreducible character in terms of its decomposition into absolutely irreducible components; see Corollary 12.3. As an application we prove a variant of a classical theorem of Schilling in Section 13.

In Section 14 we show that in the modular setting ed (ρ) can be arbitrary large (under a mild assumption on G). Here G is assumed to be fixed, and ρ is allowed to range over the finite-dimensional representations of G. The appendix proves a constructive version of this result.

2. Notation and representation-theoretic preliminaries

Throughout this paper G will denote a finite group of exponent e, k a field, \bar{k} an algebraic closure of k, K and F field extensions of k, ζ_{d} a primitive d th root of unity, ρ a finite-dimensional representation of G, and χ a character of G. In this section we will assume that char (k) does not divide the order of G.

2a. Characters and character values. A function $\chi: G \rightarrow k$ is said to be a character of G, if χ is the character of some representation $\rho: G \rightarrow \mathrm{GL}_{n}(K)$ for some field extension K / k.

If $\chi: G \rightarrow \bar{k}$ is a character, and F / k is a field, we set

$$
F(\chi):=F(\chi(g) \mid g \in G) \subset F\left(\zeta_{e}\right)
$$

Since $F\left(\zeta_{e}\right)$ is an abelian extension of F, so is $F(\chi)$. Moreover, $F(\chi)$ is stable under automorphisms of $F\left(\zeta_{e}\right) / F$.

Two characters, $\chi, \chi^{\prime}: G \rightarrow \bar{k}$ are said to be conjugate over F if there exists an F-isomorphism of fields $\sigma: F(\chi) \rightarrow F\left(\chi^{\prime}\right)$ such that $\sigma \circ \chi=\chi^{\prime}$.
Lemma 2.1. Let $\chi, \chi^{\prime}: G \rightarrow \bar{k}$ be characters and F / k be a field extension. Then
(a) Every automorphism $h \in \operatorname{Gal}(F(\chi) / F)$ leaves $k(\chi)$ invariant.
(b) If χ and χ^{\prime} are conjugate over F then they are conjugate over k.
(c) Suppose k is algebraically closed in F. Then the converse to part (b) also holds. That is, if χ, χ^{\prime} are conjugate over k then they are conjugate over F.

Proof. (a) It is enough to show that $h(\chi(g)) \in k(\chi)$ for every $g \in G$. Since the sequence of Galois groups

$$
1 \rightarrow \operatorname{Gal}\left(F\left(\zeta_{e}\right) / F(\chi)\right) \rightarrow \operatorname{Gal}\left(F\left(\zeta_{e}\right) / F\right) \rightarrow \operatorname{Gal}(F(\chi) / F) \rightarrow 1
$$

is exact, h can be lifted to an element of $\operatorname{Gal}\left(F\left(\zeta_{e}\right) / F\right)$. By abuse of notation, we will continue to denote this element of $\operatorname{Gal}\left(F\left(\zeta_{e}\right) / F\right)$ by h. The eigenvalues of $\rho(g)$ are of the form $\zeta_{e}^{i_{1}}, \ldots, \zeta_{e}^{i_{n}}$ for some integers i_{1}, \ldots, i_{n}. The automorphism h sends ζ_{e} to another primitive e th root of unity ζ_{e}^{j} for some integer j. Then

$$
h(\chi(g))=h\left(\zeta_{e}^{i_{1}}+\cdots+\zeta_{e}^{i_{n}}\right)=\zeta_{e}^{j i_{1}}+\cdots+\zeta_{e}^{j i_{n}}=\chi\left(g^{j}\right) \in k(\chi),
$$

as desired.
(b) is an immediate consequence of (a).
(c) If k is algebraically closed in F, then the homomorphism

$$
\operatorname{Gal}(F(\chi) / F) \rightarrow \operatorname{Gal}(k(\chi) / k)
$$

given by $\sigma \mapsto \sigma_{\mid k(\chi)}$ is surjective; see [28, Theorem VI.1.12].
2b. The envelope of a representation. If $\rho: G \rightarrow \mathrm{GL}_{n}(F)$ is a representation over some field F / k, we define the k-envelope $\operatorname{Env}_{k}(\rho)$ as the k-linear span of $\rho(G)$ in $\mathrm{M}_{n}(F)$. Note that $\operatorname{Env}_{k}(\rho)$ is a k-subalgebra of $\mathrm{M}_{n}(F)$.
Lemma 2.2. For any integer $s \geqslant 1$, the k-algebras $\operatorname{Env}_{k}(s \cdot \rho)$ and $\operatorname{Env}_{k}(\rho)$ are isomorphic.

Proof. The diagonal embedding $\mathrm{M}_{n}(F) \hookrightarrow \mathrm{M}_{n}(F) \times \cdots \times \mathrm{M}_{n}(F)(s$ times) induces an isomorphism between $\operatorname{Env}_{k}(\rho)$ and $\operatorname{Env}_{k}(s \cdot \rho)$.

Lemma 2.3. Assume the character χ of $\rho: G \rightarrow \operatorname{GL}_{n}(F)$ is k-valued. Then the natural homomorphism $\operatorname{Env}_{k}(\rho) \otimes_{k} F \rightarrow \operatorname{Env}_{F}(\rho)$ is an isomorphism of F algebras.

Proof. It suffices to show that if $\rho\left(g_{1}\right), \ldots, \rho\left(g_{r}\right)$ are linearly dependent over F for some elements $g_{1}, \ldots, g_{r} \in G$, then they are linearly dependent over k. Indeed, suppose

$$
a_{1} \rho\left(g_{1}\right)+\cdots+a_{r} \rho\left(g_{r}\right)=0
$$

in $\mathrm{M}_{n}(F)$ for some $a_{1}, \ldots, a_{r} \in F$, such that $a_{i} \neq 0$ for some i. Then

$$
\operatorname{tr}\left(\left(a_{1} \rho\left(g_{1}\right)+\cdots+a_{r} \rho\left(g_{r}\right)\right) \cdot \rho(g)\right)=0
$$

for every $g \in G$, which simplifies to

$$
a_{1} \chi\left(g_{1} g\right)+\cdots+a_{r} \chi\left(g_{r} g\right)=0
$$

The homogeneous linear system

$$
x_{1} \chi\left(g_{1} g\right)+\cdots+x_{r} \chi\left(g_{r} g\right)=0
$$

in variables x_{1}, \ldots, x_{r} has coefficients in k and a non-trivial solution in F. Hence, it has a non-trivial solution b_{1}, \ldots, b_{r} in k, and we get that

$$
\operatorname{tr}\left(\left(b_{1} \rho\left(g_{1}\right)+\cdots+b_{r} \rho\left(g_{r}\right)\right) \cdot \rho(g)\right)=0
$$

for every $g \in G$.
Note that $\operatorname{Env}_{k}(\rho)$ is, by definition, a homomorphic image of the group ring $k[G]$. Hence, $\operatorname{Env}_{k}(\rho)$ is semisimple and consequently, the trace form in $\operatorname{Env}_{k}(\rho)$ is nondegenerate. It follows that the elements $\rho\left(g_{1}\right), \ldots, \rho\left(g_{r}\right)$ are linearly dependent over k, as desired.

2c. The Schur index. Suppose K / k is a field extension, and $\rho_{1}: G \rightarrow \mathrm{GL}_{n}(K)$ is an absolutely irreducible representation with character $\chi_{1}: G \rightarrow K$. By taking $F=\bar{K}$ in Lemma 2.3, one easily deduces that $\operatorname{Env}_{k\left(\chi_{1}\right)}\left(\rho_{1}\right)$ is a central simple algebra of degree n over $k\left(\chi_{1}\right)$. The index of this algebra is called the Schur index of ρ_{1}. We will denote it by $m_{k}\left(\rho_{1}\right)$.

In the sequel we will need the following properties of the Schur index.
Lemma 2.4. Let K be a field, G be a finite group such that $\operatorname{char}(K)$ does not divide $|G|$, and $\rho: G \rightarrow \mathrm{GL}_{n}(K)$ be an irreducible representation. Denote the character of ρ by χ.
(a) Over the algebraic closure \bar{K}, ρ decomposes as

$$
\begin{equation*}
\rho_{\bar{K}} \simeq m\left(\rho_{1} \oplus \cdots \oplus \rho_{r}\right) \tag{2.5}
\end{equation*}
$$

where $\rho_{1}, \ldots, \rho_{r}$ are pairwise non-isomorphic irreducible representations of G defined over \bar{K}, and m is their common Schur index $m_{K}\left(\rho_{1}\right)=\cdots=$ $m_{K}\left(\rho_{r}\right)$.
(b) For $i=1, \ldots, r$ and ρ_{i} as in (a), let $\chi_{i}: G \rightarrow \bar{K}$ be the character of ρ_{i}. Then $K\left(\chi_{1}\right)=\cdots=K\left(\chi_{r}\right)$ is an abelian extension of K of degree r. Moreover, $\operatorname{Gal}\left(K\left(\chi_{1}\right) / K\right)$ transitively permutes $\chi_{1}, \ldots, \chi_{r}$.
(c) Conversely, every irreducible representation $\rho_{1}: G \rightarrow \mathrm{GL}_{1}(\bar{K})$ occurs as an irreducible component of a unique K-irreducible representation $\rho: G \rightarrow$ $\mathrm{GL}_{n}(K)$, as in (2.5).
(d) The center Z of $\operatorname{Env}_{K}(\rho)$ is K-isomorphic to $K\left(\chi_{1}\right)=K\left(\chi_{2}\right)=\cdots=$ $K\left(\chi_{r}\right) . \operatorname{Env}_{K}(\rho)$ is a central simple algebra over Z of index m.
(e) The multiplicity of ρ_{1} in any representation of G defined over K is a multiple of $m_{K}\left(\rho_{1}\right)$. Consequently, $m_{K}\left(\rho_{1}\right)$ divides $m_{k}\left(\rho_{1}\right)$ for any field extension K / k.
(f) m divides $\operatorname{dim}\left(\rho_{1}\right)=\cdots=\operatorname{dim}\left(\rho_{r}\right)$.

Proof. See [14, Theorem 74.5] for parts (a)-(d), and [13, Corollary 74.8] for parts (e) and (f).

Corollary 2.6. Let K / k be a field extension, $\rho: G \rightarrow \mathrm{GL}_{n}(K)$ be a representation, whose character takes values in k, and

$$
\rho=d_{1} \rho_{1} \oplus \cdots \oplus d_{r} \rho_{r}
$$

be the irreducible decomposition of ρ over the algebraic closure \bar{K}. Then the following conditions are equivalent.
(1) ρ can be realized over k, i.e., ρ is K-equivalent to a representation $\rho^{\prime}: G \rightarrow$ $\mathrm{GL}_{n}(k)$.
(2) The Schur index $m_{k}\left(\rho_{i}\right)$ divides d_{i} for every $i=1, \ldots, r$.

Proof. Each $\rho_{i}: G \rightarrow \mathrm{GL}_{n_{i}}(\bar{K})$ is \bar{K}-equivalent to some $\rho_{i}^{\prime}: G \rightarrow \mathrm{GL}_{n_{i}}(\bar{k})$. Let $\rho^{\prime}:=d_{1} \rho_{1}^{\prime} \oplus \cdots \oplus d_{r} \rho_{r}^{\prime}: G \rightarrow \mathrm{GL}_{n}(\bar{k})$. Since ρ and ρ^{\prime} have the same character, ρ can be realized over k if and only if ρ^{\prime} can be realized over k. Hence, we may replace ρ by ρ^{\prime} and thus assume that $K=\bar{k}$ from now on.

Denote the character of ρ by χ and the character of ρ_{i} by χ_{i}. Since χ takes values in $k, d_{i}=d_{j}$ whenever χ_{i} and χ_{j} are conjugate over k.
$(1) \Longrightarrow(2)$. Suppose ρ can be realized over k. Decomposing ρ as a direct sum of k-irreducibles, we see that it suffices to prove (2) in the case where ρ is k-irreducible. In this case (2) holds by Lemma 2.4(a).
$(2) \Longrightarrow(1)$. If a representation ρ satisfies condition (2), then ρ is a direct sum of representations of the form $\lambda=m_{k}\left(\chi_{1}\right)\left(\rho_{1} \oplus \cdots \oplus \rho_{s}\right)$, where $\rho_{1}, \ldots, \rho_{s}$ are absolutely irreducible representations of G and the characters $\chi_{1}, \ldots, \chi_{s}$ of $\rho_{1}, \ldots, \rho_{s}$ are transitively permuted by $\operatorname{Gal}(\bar{k} / k)$. By Lemma 2.4(c), every representation of this form is defined over k.

3. Preliminaries on essential and canonical dimension

3a. Essential dimension. Let $\mathcal{F}:$ Fields $_{k} \rightarrow$ Sets be a covariant functor, where Fields $_{k}$ is the category of field extensions of k and Sets is the category of sets. We think of the functor \mathcal{F} as specifying the type of algebraic objects under consideration,
$\mathcal{F}(K)$ as the set of algebraic objects of this type defined over K, and the morphism $\mathcal{F}(i): \mathcal{F}(K) \rightarrow \mathcal{F}(L)$ associated to a field extension

$$
\begin{equation*}
k \subset K \stackrel{i}{\hookrightarrow} L \tag{3.1}
\end{equation*}
$$

as "base change". For notational simplicity, we will denote the image of $\gamma \in \mathcal{F}(K)$ under $\mathcal{F}(i)$ by γ_{L}.

Given a field extension L / K, as in (3.1), an object $\alpha \in \mathcal{F}(L)$ is said to descend to K if it lies in the image of $\mathcal{F}(i)$. The essential dimension $\operatorname{ed}(\alpha)$ is defined as the minimal transcendence degree of K / k, where α descends to K. The essential dimension $\operatorname{ed}(\mathcal{F})$ of the functor \mathcal{F} is the supremum of $\operatorname{ed}(\alpha)$ taken over all $\alpha \in$ $\mathcal{F}(K)$ and all K.

Usually ed $(\alpha)<\infty$ for every $\alpha \in \mathcal{F}(K)$ and every K / k; see [8, Remark 2.7]. On the other hand, $\operatorname{ed}(\mathcal{F})=\infty$ in many cases of interest; for example, see Theorem 14.1.

The essential dimension $\operatorname{ed}_{p}(\alpha)$ of $\alpha \in \mathcal{F}(L)$ at a prime integer p is defined as the minimal value of $\operatorname{ed}\left(\alpha_{L^{\prime}}\right)$, as L^{\prime} ranges over all finite field extensions L^{\prime} / L such that p does not divide the degree $\left[L^{\prime}: L\right]$. The essential dimension $\operatorname{ed}_{p}(\mathcal{F})$ is then defined as the supremum of $\operatorname{ed}_{p}(\alpha)$, as K ranges over all field extensions of k and α ranges over $\mathcal{F}(K)$.

For generalities on essential dimension, see [3, 8, 30, 32].
3b. Canonical dimension. An interesting example of a covariant functor Fields ${ }_{k} \rightarrow$ Sets is the "detection functor" \mathcal{D}_{X} associated to an algebraic k-variety X. For a field extension K / k, we define

$$
\mathcal{D}_{X}(K):=\left\{\begin{array}{l}
\text { a one-element set, if } X \text { has a } K \text {-point, and } \\
\emptyset, \text { otherwise }
\end{array}\right.
$$

If $k \subset K \stackrel{i}{\hookrightarrow} L$ then $0 \leqslant\left|\mathcal{D}_{X}(K)\right| \leqslant\left|\mathcal{D}_{X}(L)\right| \leqslant 1$. Thus there is a unique morphism of sets $\mathcal{D}_{X}(K) \rightarrow \mathcal{D}_{X}(L)$, which we define to be $\mathcal{D}_{X}(i)$.

The essential dimension (respectively, the essential p-dimension) of the functor \mathcal{D}_{X} is called the canonical dimension of X (respectively, the canonical p dimension of X) and is denoted by $\operatorname{cd}(X)$ (respectively, $\operatorname{cd}_{p}(X)$). If X is smooth and projective, then $\operatorname{cd}(X)$ (respectively, $\left.\operatorname{cd}_{p}(X)\right)$ equals the minimal dimension of the image of a rational self-map $X \rightarrow X$ (respectively, of a correspondence $X \rightsquigarrow X$ of degree prime to p). In particular,

$$
\begin{equation*}
0 \leqslant \operatorname{cd}_{p}(X) \leqslant \operatorname{cd}(X) \leqslant \operatorname{dim}(X) \tag{3.2}
\end{equation*}
$$

for any prime p. If $\operatorname{cd}(X)=\operatorname{dim}(X)$, we say that X is incompressible. If $\operatorname{cd}_{p}(X)=$ $\operatorname{dim}(X)$, we say that X is p-incompressible. For details on the notion of canonical dimension for algebraic varieties, we refer the reader to [30, §4].

We will say that smooth projective varieties X and Y defined over K are equivalent if there exist rational maps $X \rightarrow Y$ and $Y \rightarrow X$. Similarly, we will say that X and Y are p-equivalent for a prime integer p, if there exist correspondences $X \rightsquigarrow Y$ and $Y \rightsquigarrow X$ of degree prime to p.
Lemma 3.3. (a) If X and Y are equivalent, then $\operatorname{cd}(X)=\operatorname{cd}(Y)$.
(b) If X and Y are p-equivalent for some prime p, then $\operatorname{cd}_{p}(X)=\operatorname{cd}_{p}(Y)$.

Proof. (a) Let K / k be a field extension. By Nishimura's lemma, X has a K-point if and only if so does Y; see [33, Proposition A.6]. Thus the detection functors \mathcal{D}_{X} and \mathcal{D}_{Y} are isomorphic, and $\operatorname{cd}(X)=\operatorname{ed}\left(\mathcal{D}_{X}\right)=\operatorname{ed}\left(\mathcal{D}_{Y}\right)=\operatorname{cd}(Y)$.

For a proof of part (b) see [26, Lemma 3.6 and Remark 3.7].

4. Balanced algebras

Let Z / k be a Galois field extension, and A be a central simple algebra over Z. Given $\alpha \in \operatorname{Gal}(Z / k)$, we will denote the "conjugate" Z-algebra $A \otimes_{Z} Z$, where the tensor product is taken via $\alpha: Z \rightarrow Z$, by ${ }^{\alpha} A$. We will say that A is balanced over k if ${ }^{\alpha} A$ is Brauer-equivalent to a tensor power of A for every $\alpha \in \operatorname{Gal}(Z / k)$.

Note that A is balanced, if the Brauer class of A descends to $k:{ }^{\alpha} A$ is then isomorphic to A for any α. In this section we will consider another family of balanced algebras.

Let K / k be a field extension, $\rho: G \rightarrow \mathrm{GL}_{n}(K)$ be an irreducible representation whose character χ is k-valued. Recall from Lemma 2.4 that $\operatorname{Env}_{k}(\rho)$ is a central simple algebra over $Z \simeq k\left(\chi_{1}\right)=\cdots=k\left(\chi_{r}\right)$.
Proposition 4.1. $\operatorname{Env}_{k}(\rho)$ is balanced over k.
Proof. Recall from [37, p. 14] that a cyclotomic algebra B / Z is a central simple algebra of the form

$$
B=\bigoplus_{g \in \operatorname{Gal}(Z(\zeta) / Z)} Z(\zeta) u_{g}
$$

where ζ is a root of unity, $Z(\zeta)$ is a maximal subfield of B, and the basis elements u_{g} are subject to the relations

$$
u_{g} x=g(x) u_{g} \quad \text { and } \quad u_{g} u_{h}=\beta(g, h) u_{g h}
$$

for every $x \in Z(\zeta)$ and $g, h \in \operatorname{Gal}(Z(\zeta) / Z)$. Here

$$
\beta: \operatorname{Gal}(Z(\zeta) / Z) \times \operatorname{Gal}(Z(\zeta) / Z) \rightarrow Z(\zeta)^{*}
$$

is a 2 -cocycle whose values are powers of ζ. Following the notational conventions in [37], we will write $B:=(\beta, Z(\zeta) / Z)$.

By the Brauer-Witt Theorem [37, Corollary 3.11], $\operatorname{Env}_{k}(\rho)$ is Brauer-equivalent to some cyclotomic algebra B / Z, as above. Thus it suffices to show that every cyclotomic algebra is balanced over k, i.e., ${ }^{\alpha} B$ is Brauer-equivalent to a power of B over Z for every $\alpha \in \operatorname{Gal}(Z / k)$.

By Lemma 2.4(d), Z is k-isomorphic to $k\left(\chi_{1}\right)$, which is, by definition a subfield of $k\left(\zeta_{e}\right)$, where e is the exponent of G. Thus there is a root of unity ϵ such that

$$
Z(\zeta) \subset k\left(\zeta, \zeta_{e}\right)=k(\epsilon)
$$

and both ζ and ζ_{e} are powers of ϵ. Note that $k(\epsilon) / k$ is an abelian extension, and the sequence of Galois groups

$$
1 \rightarrow \operatorname{Gal}(k(\epsilon) / Z) \rightarrow \operatorname{Gal}(k(\epsilon) / k) \rightarrow \operatorname{Gal}(Z / k) \rightarrow 1
$$

is exact. In particular, every $\alpha \in \operatorname{Gal}(Z / k)$ can be lifted to an element of $\operatorname{Gal}(k(\epsilon) / k)$, which we will continue to denote by α. Then $\alpha(\epsilon)=\epsilon^{t}$ for some integer t. Since ζ is a power of ϵ, and each $\beta(g, h)$ is a power of ζ, we have

$$
\begin{equation*}
\alpha(\beta(g, h))=\beta(g, h)^{t} \text { for every } g, h \in \operatorname{Gal}(Z(\zeta) / k) \tag{4.2}
\end{equation*}
$$

We claim that ${ }^{\alpha} B$ is Brauer-equivalent to $B^{\otimes t}$ over Z. Indeed, since

$$
B=(\beta, Z(\zeta) / Z)
$$

we have ${ }^{\alpha} B=(\alpha(\beta), Z(\zeta) / Z)$. By (4.2), ${ }^{\alpha} B=(\alpha(\beta), Z(\zeta) / Z)=\left(\beta^{t}, Z(\zeta) / Z\right)$, and $\left(\beta^{t}, Z(\zeta) / Z\right)$ is Brauer-equivalent to $B^{\otimes t}$, as desired.

5. Generalized Severi-Brauer varieties and Weil transfers

Suppose Z / k is a finite Galois field extension and A is a central simple algebra over Z. For $1 \leqslant m \leqslant \operatorname{deg}(A)$, we will denote by $\operatorname{SB}(A, m)$ the generalized SeveriBrauer variety (or equivalently, the twisted Grassmannian) of $(m-1)$-dimensional subspaces in $\mathrm{SB}(A)$. The Weil transfer $R_{Z / k}(\mathrm{SB}(A, m))$ is a smooth projective absolutely irreducible k-variety of dimension $[Z: k] \cdot m \cdot(\operatorname{deg}(A)-m)$. For generalities on $\mathrm{SB}(A, m)$, see [5]. For generalities on the Weil transfer, see [17].
Proposition 5.1. Let Z, k and A be as above, $X:=R_{Z / k}(\mathrm{SB}(A, m))$ for some $1 \leqslant m \leqslant \operatorname{deg}(A)$, and K / k be a field extension.
(a) Write $K_{Z}:=K \otimes_{k} Z$ as a direct product $K_{1} \times \cdots \times K_{s}$, where $K_{1} / Z, \ldots, K_{s} / Z$ are field extensions. Then X has a K-point if and only if the index of the central simple algebra $A_{K_{i}}:=A \otimes_{Z} K_{i}$ divides m for every $i=1, \ldots, s$.
(b) Assume that m divides $\operatorname{ind}(A), A$ is balanced and $K=k(X)$ is the function field of X. Then $K_{Z}=K \otimes_{k} Z$ is a field, and $A \otimes_{k} K \simeq A \otimes_{Z} K_{Z}$ is a central simple algebra over K_{Z} of index m.

Proof. First note that $A \otimes_{k} K \simeq A \otimes_{Z} K_{Z}$.
(a) By the definition of the Weil transfer, $X=R_{Z / k}(\mathrm{SB}(A, m))$ has a K-point if and only if $\mathrm{SB}(A, m)$ has a K_{Z}-point or equivalently, if and only if $\mathrm{SB}(A, m)$ has a K_{i}-point for every $i=1, \ldots, s$. On the other hand, by [5, Proposition 3], $\mathrm{SB}(A, m)$ has a K_{i}-point if and only if the index of $A_{K_{i}}$ divides m.
(b) Since X is absolutely irreducible, K_{Z} is Z-isomorphic to the function field of the Z-variety

$$
X_{Z}:=X \times_{\operatorname{Spec}(k)} \operatorname{Spec}(Z)=\prod_{\alpha \in \operatorname{Gal}(Z / k)} \operatorname{SB}\left({ }^{\alpha} A, m\right),
$$

see $[6, \S 2.8]$. Set $F:=Z(\operatorname{SB}(A, m))$. By [35, Corollary 1],

$$
\operatorname{ind}\left(A \otimes_{Z} F\right)=m
$$

Since A is balanced, i.e., each algebra ${ }^{\alpha} A$ is a power of A, $\operatorname{ind}\left({ }^{\alpha} A \otimes_{Z} F\right)$ divides m for every $\alpha \in \operatorname{Gal}(Z / k)$. By [5, Proposition 3], each $\mathrm{SB}\left({ }^{\alpha} A, m\right)_{F}$ is rational over F. Thus the natural projection of Z-varieties

$$
X_{Z}=\prod_{\alpha \in \operatorname{Gal}(Z / k)} \mathrm{SB}\left({ }^{\alpha} A, m\right) \rightarrow \mathrm{SB}(A, m)
$$

induces a purely transcendental extension of function fields $F \hookrightarrow K_{Z}$. Consequently,

$$
\operatorname{ind}\left(A \otimes_{Z} K_{Z}\right)=\operatorname{ind}\left(A \otimes_{Z} F\right)=m
$$

as claimed.

6. The essential dimension of a representation

Let us now fix a finite group G and an arbitrary field k, and consider the covariant functor

$$
\operatorname{Rep}_{G, k}: \text { Fields }_{k} \rightarrow \text { Sets }
$$

defined by $\operatorname{Rep}_{G, k}(K):=\{K$-isomorphism classes of representations $G \rightarrow$ $\mathrm{GL}_{n}(K)$ \} for every field K / k. Here $n \geqslant 1$ is allowed to vary.

The essential dimension ed (ρ) of a representation $\rho: G \rightarrow \mathrm{GL}_{n}(K)$ is defined by viewing ρ as an object in $\operatorname{Rep}_{G, k}(K)$, as in Section 3. That is, ed (ρ) is the smallest transcendence degree of an intermediate field $k \subset K_{0} \subset K$ such that ρ is K-equivalent to a representation $\rho^{\prime}: G \rightarrow \operatorname{GL}_{n}\left(K_{0}\right)$. To illustrate this notion, we include an example, where $\operatorname{ed}(\rho)$ is positive, and three elementary lemmas.

Example 6.1. Let $\mathbb{H}=(-1,-1)$ be the algebra of Hamiltonian quaternions over $k=\mathbb{R}$, i.e., the 4-dimensional \mathbb{R}-algebra given by two generators i, j, subject to relations, $i^{2}=j^{2}=-1$ and $i j=-j i$. The multiplicative subgroup $G=$ $\{ \pm 1, \pm i, \pm j, \pm i j\}$ of \mathbb{H}^{*} is the quaternion group of order 8 . Let $K=\mathbb{R}(\mathrm{SB}(\mathbb{H}))$, where $\mathrm{SB}(\mathbb{H})$ denotes the Severi-Brauer variety of \mathbb{H}. The representation $\rho: G \hookrightarrow$ $\mathbb{H} \hookrightarrow \mathbb{H} \otimes_{\mathbb{R}} K \simeq \mathrm{M}_{2}(K)$ is easily seen to be absolutely irreducible. We claim that $\operatorname{ed}(\rho)=1$. Indeed, $\operatorname{trdeg}_{\mathbb{R}}(F)=1$, for any intermediate extension $\mathbb{R} \subset F \subset K$, unless $F=\mathbb{R}$. On the other hand, ρ cannot descend to \mathbb{R}, because $\operatorname{Env}_{\mathbb{R}}(\rho)=\mathbb{H}$, and thus $m_{\mathbb{R}}(\rho)=\operatorname{ind}(\mathbb{H})=2$ by Lemma 2.4(e).
Lemma 6.2. Let G be a finite group, K / k be a field, $\rho_{i}: G \rightarrow \operatorname{GL}_{n_{i}}(K)$ be representations of G over $K($ for $i=1, \ldots, s)$ and $\rho \simeq a_{1} \rho_{1} \oplus \cdots \oplus a_{s} \rho_{s}$, where $a_{1}, \ldots, a_{s} \geqslant 1$ are integers. Then $\operatorname{ed}(\rho) \leqslant \operatorname{ed}\left(\rho_{1}\right)+\cdots+\operatorname{ed}\left(\rho_{s}\right)$.

Proof. Suppose ρ_{i} descends to an intermediate field $k \subset K_{i} \subset K$, where $\operatorname{trdeg}_{k}\left(K_{i}\right)=\operatorname{ed}\left(\rho_{i}\right)$. Let K_{0} be the subfield of K generated by K_{1}, \ldots, K_{s}. Then ρ descends to K_{0} and $\operatorname{ed}(\rho) \leqslant \operatorname{trdeg}_{k}\left(K_{0}\right) \leqslant \operatorname{trdeg}_{k}\left(K_{1}\right)+\cdots+\operatorname{trdeg}_{k}\left(K_{s}\right)=$ $\operatorname{ed}\left(\rho_{1}\right)+\cdots+\operatorname{ed}\left(\rho_{s}\right)$.

Lemma 6.3. Let $k \subset K$ be fields, G be a finite group, and $\rho: G \rightarrow \mathrm{GL}_{n}(K)$ be a representation. Let $k^{\prime}:=k(\chi) \subset K$, where χ is the character of ρ. Then the essential dimension of ρ is the same, whether we consider it as an object on $\boldsymbol{R e p}_{K, k}$ or $\boldsymbol{\operatorname { R e p }}_{K, k^{\prime}}$.

Proof. If ρ descends to an intermediate field $k \subset F \subset K$, then F automatically contains k^{\prime}. Moreover, $\operatorname{trdeg}_{k}(F)=\operatorname{trdeg}_{k^{\prime}}(F)$. The rest is immediate from the definition.

Lemma 6.4. Assume that char (k) does not divide $|G|$ and the Schur index $m_{k}(\lambda)$ equals 1 for every absolutely irreducible representation λ of G. Then $\operatorname{ed}(\rho)=0$ for any representation $\rho: G \rightarrow \mathrm{GL}_{n}(L)$ over any field L / k. In other words, $\operatorname{ed}\left(\boldsymbol{R e p}_{G, k}\right)=0$.

Proof. Let χ be the character of ρ and $k^{\prime}:=k(\chi)$. By Lemma 2.4(e), $m_{k^{\prime}}(\lambda)=1$ for every absolutely irreducible representation $\lambda: G \rightarrow \mathrm{GL}_{n}(K)$ of G. By Lemma 6.3 we may replace k by $k^{\prime}=k(\chi)$ and thus assume that χ is k-valued. Corollary 2.6 now tells us that ρ descends to k.

Remark 6.5. The condition of Lemma 6.4 is always satisfied if $\operatorname{char}(k)>0$; see [14, Theorem 74.9]. This tells us that for non-modular representations the notion of essential dimension is only of interest when $\operatorname{char}(k)=0$. The situation is drastically different in the modular setting; see Section 14.

7. Irreducible characters

In view of Remark 6.5 , we will now assume that $\operatorname{char}(k)=0$. In this setting there is a tight connection between representations and characters.
Lemma 7.1. Suppose $F_{1} / k, F_{2} / k$ are field extensions, and

$$
\rho_{1}: G \rightarrow \mathrm{GL}_{n}\left(F_{1}\right), \quad \rho_{2}: G \rightarrow \mathrm{GL}_{n}\left(F_{2}\right)
$$

are representations of a finite group G, with the same character $\chi: G \rightarrow k$. Then the k-algebras $\operatorname{Env}_{k}\left(\rho_{1}\right)$ and $\operatorname{Env}_{k}\left(\rho_{2}\right)$ are isomorphic.

Proof. Let F / k be a field containing both F_{1} and F_{2}. Then ρ_{1} and ρ_{2} are equivalent over F, because they have the same character. $\operatorname{Thus~}_{\operatorname{Env}}^{k}\left(\rho_{1}\right)$ and $\operatorname{Env}_{k}\left(\rho_{2}\right)$ are conjugate inside $\mathrm{M}_{n}(F)$.

Given a representation $\rho: G \rightarrow \mathrm{GL}_{n}(F)$, with a k-valued character $\chi: G \rightarrow k$, Lemma 7.1 tells us that, up to isomorphism, the k-algebra $\operatorname{Env}_{k}(\rho)$ depends only on χ and not on the specific choice of F and ρ. Thus we may denote this algebra by $\operatorname{Env}_{k}(\chi)$.

If ρ is absolutely irreducible (and the character χ is not necessarily k-valued), it is common to write $m_{k}(\chi)$ for the index of $\operatorname{Env}_{k(\chi)}(\chi)$ instead of $m_{k}(\rho)$.

Let $\chi: G \rightarrow k$ be a character of G. Write

$$
\begin{equation*}
\chi=\sum_{i=1}^{r} m_{i} \chi_{i}, \tag{7.2}
\end{equation*}
$$

where $\chi_{1}, \ldots, \chi_{r}: G \rightarrow \bar{k}$ are absolutely irreducible and distinct and m_{1}, \ldots, m_{r} are positive integers. Since χ is k-valued, $m_{i}=m_{j}$ whenever χ_{i} and χ_{j} are conjugate over k.

Lemma 7.3. Let $\chi=\sum_{i=1}^{r} m_{i} \chi_{i}: G \rightarrow k$ be a character of G, as in (7.2). Then the following are equivalent.
(a) χ is the character of a K-irreducible representation $\rho: G \rightarrow \operatorname{GL}_{n}(K)$ for some field extension K / k.
(b) $\chi_{1}, \ldots, \chi_{r}$ form a single $\operatorname{Gal}\left(k\left(\chi_{1}\right) / k\right)$-orbit and $m_{1}=\cdots=m_{r}$ divides $m_{k}\left(\chi_{1}\right)=\cdots=m_{k}\left(\chi_{r}\right)$.

Proof. (a) \Longrightarrow (b): By Lemma 2.4(a) and (b), $\chi=m\left(\chi_{1}+\cdots+\chi_{r}\right)$, where $\chi_{1}, \ldots, \chi_{r}$ are absolutely irreducible characters transitively permuted by $\operatorname{Gal}\left(K\left(\chi_{1}\right) / K\right)$, and $m=m_{K}\left(\chi_{1}\right)=\cdots=m_{K}\left(\chi_{r}\right)$. By Lemma 2.1(b), $\chi_{1}, \ldots, \chi_{r}$ are also transitively permuted by $\operatorname{Gal}\left(k\left(\chi_{1}\right) / k\right)$. Moreover, by Lemma 2.4(e), m divides $m_{k}\left(\chi_{1}\right)=\cdots=m_{k}\left(\chi_{r}\right)$.
(b) \Longrightarrow (a): Let K be the function field of the Weil transfer variety $R_{Z / k}(\mathrm{SB}(A, m))$, where A is the underlying division algebra, Z is the center of $\operatorname{Env}_{k}(\chi)$, and

$$
m:=m_{1}=\cdots=m_{r}
$$

Since the variety $R_{Z / k}(\mathrm{SB}(A, m))$ is absolutely irreducible, k is algebraically closed in K. Lemma 2.1(c) now tells us that $\chi_{1}, \ldots, \chi_{r}$ are conjugate over K. By Lemma 2.4(c) there exists an irreducible K-representation ρ whose character is $m_{K}\left(\chi_{1}\right)\left(\chi_{1}+\cdots+\chi_{r}\right)$. It remains to show that $m_{K}\left(\chi_{1}\right)=m$. Indeed,

$$
m_{K}\left(\chi_{1}\right)=\operatorname{ind}\left(\operatorname{Env}_{K}(\chi)\right)=\operatorname{ind}\left(\operatorname{Env}_{k}(\chi) \otimes_{k} K\right)=m
$$

Here the first equality follows from Lemma 2.4(d), the second from Lemma 2.3, and the third from Proposition 5.1(b).

We will say that a character $\chi: G \rightarrow k$ is irreducible over k if it satisfies the equivalent conditions of Lemma 7.3.

8. The essential dimension of a character

In this section we will assume that $\operatorname{char}(k)=0$ and consider subfunctors

$$
\operatorname{Rep}_{\chi}: \text { Fields }_{k} \rightarrow \text { Sets }
$$

of $\boldsymbol{R e p}_{G, k}$ given by

$$
K \quad \mapsto \quad\left\{K-\text { isomorphism classes of representations } \rho: G \rightarrow \mathrm{GL}_{n}(K)\right.
$$ with character χ \}

for every field K / k. Here $\chi: G \rightarrow k$ is a fixed character and $n=\chi\left(1_{G}\right)$. The assumption that χ takes values in k is natural in view of Lemma 6.3, and the assumption that $\operatorname{char}(k)=0$ is natural in view of Remark 6.5. Since any two K-representations with the same character are equivalent, $\operatorname{Rep}_{\chi}(K)$ is either empty or has exactly one element. We will say that χ can be realized over K / k if $\boldsymbol{\operatorname { R e p }}_{\chi}(K) \neq \emptyset$. In particular, $\boldsymbol{\operatorname { R e p }}_{\chi}$ and $\operatorname{Rep}_{\chi^{\prime}}$ are isomorphic if and only if χ and χ^{\prime} can be realized over the same fields K / k.
Definition 8.1. Let $\chi: G \rightarrow k$ be a character of a finite group G and p be a prime integer. We will refer to the essential dimension of Rep \boldsymbol{R}_{χ} as the essential dimension of χ and will denote this number by ed (χ). Similarly for the essential p-dimension:

$$
\operatorname{ed}(\chi):=\operatorname{ed}\left(\boldsymbol{\operatorname { R e p }}_{\chi}\right) \text { and } \operatorname{ed}_{p}(\chi):=\operatorname{ed}_{p}\left(\boldsymbol{\operatorname { R e p }}_{\chi}\right)
$$

We will say that characters χ and λ of G, are disjoint if they have no common absolutely irreducible components.

Lemma 8.2. (a) If the characters $\chi, \lambda: G \rightarrow k$ are disjoint then

$$
\boldsymbol{\operatorname { R e p }}_{\chi+\lambda} \simeq \boldsymbol{\operatorname { R e p }}_{\chi} \times \boldsymbol{\operatorname { R e p }}_{\lambda}
$$

(b) Suppose a character $\chi: G \rightarrow k$ decomposes as $\sum_{i=1}^{s} m_{i} \chi_{i}$, as in (7.2). Set $\chi^{\prime}:=\sum_{i=1}^{s} m_{i}^{\prime} \chi_{i}$, where m_{i}^{\prime} is the greatest common divisor of m_{i} and $m_{k}\left(\chi_{i}\right)$. Then $\boldsymbol{\operatorname { R e p }}_{\chi} \simeq \boldsymbol{\operatorname { R e p }}_{\chi^{\prime}}$.

Proof. Let K be a field extension of k.
(a) By Corollary 2.6, $\chi+\lambda$ can be realized over K if and only if both χ and λ can be realized over K.
(b) By Corollary 2.6
(i) χ can be realized over K if and only if
(ii) $m_{K}\left(\chi_{i}\right)$ divides m_{i}, for every $i=1, \ldots, s$.

By Lemma 2.4(e), $m_{K}\left(\chi_{i}\right)$ divides $m_{k}\left(\chi_{i}\right)$. Thus (ii) is equivalent to
(iii) $m_{K}\left(\chi_{i}\right)$ divides m_{i}^{\prime}, for every $i=1, \ldots, s$.

Applying Corollary 2.6 one more time, we see that (iii) is equivalent to
(iv) χ^{\prime} can be realized over K.

In summary, χ can be realized over K if and only if χ^{\prime} can be realized over K, as desired.

Remark 8.3. Note that the character χ^{\prime} in Lemma 8.2(b) is a sum of pairwise disjoint k-irreducible characters (see the discussion of k-irreducible characters at the end of Section 7). In other words, we can replace any character $\chi: G \rightarrow k$ by a sum of pairwise disjoint k-irreducible characters without changing the functor $\operatorname{Rep}_{\chi}$.

As we observed above, $\operatorname{Rep}_{\chi}(K)$ has at most one element for every field K / k. In other words, $\operatorname{Rep}_{\chi}$ is a detection functor in the sense of [24] or [30, Section 4a]. We saw in Section 3b that to every algebraic variety X defined over k, we can associate the detection functor \mathcal{D}_{X}, where $\mathcal{D}_{X}(K)$ is either empty or has exactly one element, depending on whether or not \dot{X} has a K-point. Given a character $\chi: G \rightarrow k$, it is thus natural to ask if there exists a smooth projective k-variety X_{χ} such that the functors $\operatorname{Rep}_{\chi}$ and $\mathcal{D}_{X_{\chi}}$ are isomorphic. The rest of this section will be devoted to showing that this is, indeed, always the case. We begin by defining X_{χ}.

Definition 8.4. (a) Let G be a finite group and $\chi:=m\left(\chi_{1}+\cdots+\chi_{r}\right): G \rightarrow k$ be an irreducible character of G, where $\chi_{1}, \ldots, \chi_{r} \operatorname{are} \operatorname{Gal}\left(k\left(\chi_{1}\right) / k\right)$-conjugate absolutely irreducible characters, and $m \geqslant 1$ divides $m_{k}\left(\chi_{1}\right)=\cdots=m_{k}\left(\chi_{r}\right)$. We define the k-variety X_{χ} as the Weil transfer $R_{Z / k}\left(\mathrm{SB}\left(A_{\chi}, m\right)\right)$, where Z is the center and A_{χ} is the underlying division algebra of $\operatorname{Env}_{k}(\chi)$.
(b) More generally, suppose $\chi:=\lambda_{1}+\cdots+\lambda_{s}$, where $\lambda_{1}, \ldots, \lambda_{s}: G \rightarrow k$ are pairwise disjoint and irreducible over k. Then we define $X_{\chi}:=X_{\lambda_{1}} \times{ }_{k} \cdots \times_{k} X_{\lambda_{r}}$, where each $X_{\lambda_{i}}$ is a Weil transfer of a generalized Severi-Brauer variety, as in part (a).

Theorem 8.5. Let G be a finite group and $\chi:=\lambda_{1}+\cdots+\lambda_{s}$ be a character, where

$$
\lambda_{1}, \ldots, \lambda_{s}: G \rightarrow k
$$

are pairwise disjoint and irreducible over k. Let X_{χ} be the k-variety, as in Definition 8.4. Then the functors $\operatorname{Rep}_{\chi}$ and $\mathcal{D}_{X_{\chi}}$ are isomorphic. Consequently $\operatorname{ed}(\chi)=\operatorname{cd}\left(X_{\chi}\right)$ and $\operatorname{ed}_{p}(\chi)=\operatorname{cd}_{p}\left(X_{\chi}\right)$ for any prime p.

Proof. In view of Lemma 8.2(a) we may assume that χ is irreducible over k, i.e., $s=1$ and $\chi=\lambda_{1}$. Write $\chi:=m\left(\chi_{1}+\cdots+\chi_{r}\right)$, where $\chi_{1}, \ldots, \chi_{r}: G \rightarrow \bar{k}$ are the absolutely irreducible components of χ. Let K / k be a field extension. By Corollary 2.6 the following conditions are equivalent:
(i) $\operatorname{Rep}_{\chi}(K) \neq \emptyset$, i.e., χ can be realized over K,
(ii) $m_{K}\left(\chi_{j}\right)$ divides m for $j=1, \ldots, r$.

Note that while the characters $\chi_{1}, \ldots, \chi_{r}$ are conjugate over k, they may not be conjugate over K. Denote the orbits of the $\operatorname{Gal}(\bar{K} / K)$-action on $\chi_{1}, \ldots, \chi_{r}$ by $\mathcal{O}_{1}, \ldots, \mathcal{O}_{t}$, and set $\mu_{i}:=\sum_{\chi_{j} \in \mathcal{O}_{i}} \chi_{j}$, so that $\chi=m\left(\mu_{1}+\cdots+\mu_{t}\right)$.

Denote the center of the central simple algebra $\operatorname{Env}_{k}(\chi)$ by Z. Write $K_{Z}:=$ $K \otimes_{k} Z$ as a direct product $K_{1} \times \cdots \times K_{s}$, where $K_{1} / Z, \ldots, K_{s} / Z$ are field extensions, as in Proposition 5.1. By Lemma 2.3,

$$
\begin{align*}
\operatorname{Env}_{K}(\chi) \simeq \operatorname{Env}_{k}(\chi) \otimes_{k} K & \simeq \operatorname{Env}_{k}(\chi) \otimes_{Z} K_{Z} \\
& \simeq\left(\operatorname{Env}_{K}(\chi) \otimes_{Z} K_{1}\right) \times \cdots \times\left(\operatorname{Env}_{K}(\chi) \otimes_{Z} K_{s}\right) \tag{8.6}
\end{align*}
$$

where \simeq denotes isomorphism of K-algebras. On the other hand, since μ_{1}, \ldots, μ_{t} are K-valued characters,

$$
\begin{equation*}
\operatorname{Env}_{K}(\chi) \simeq \operatorname{Env}_{K}\left(m \mu_{1}\right) \times \cdots \times \operatorname{Env}_{K}\left(m \mu_{t}\right) \tag{8.7}
\end{equation*}
$$

Suppose $\chi_{j} \in \mathcal{O}_{i}$. Then by Lemma 2.2,

$$
\operatorname{Env}_{K}\left(m \mu_{i}\right) \simeq \operatorname{Env}_{K}\left(\mu_{i}\right) \simeq \operatorname{Env}_{K}\left(m_{K}\left(\chi_{j}\right) \mu_{i}\right)
$$

and by Lemma 2.4(d), $\operatorname{Env}_{K}\left(m_{K}\left(\chi_{j}\right) \mu_{i}\right)$ is a central simple algebra of index $m_{K}\left(\chi_{j}\right)$. Comparing (8.6) and (8.7), we conclude that $s=t$, and after renumbering K_{1}, \ldots, K_{s}, we may assume that $\operatorname{Env}_{K}\left(m \mu_{i}\right) \simeq \operatorname{Env}_{K}(\chi) \otimes_{Z} K_{i}$. Thus (ii) is equivalent to
(iii) the index of $\operatorname{Env}_{K}(\chi) \otimes_{Z} K_{i}$ divides m for every $i=1, \ldots, s$.

By Proposition 5.1(a), (iii) is equivalent to
(iv) X_{χ} has a K-point, i.e., $\mathcal{D}_{X_{\chi}}(K) \neq \emptyset$.

The equivalence of (i) and (iv) shows that the functors $\operatorname{Rep}_{\chi}$ and $\mathcal{D}_{X_{\chi}}$ are isomorphic. Now

$$
\operatorname{ed}(\chi) \stackrel{\text { def }}{=} \operatorname{ed}\left(\boldsymbol{\operatorname { R e p }}_{\chi}\right)=\operatorname{ed}\left(\mathcal{D}_{X_{\chi}}\right) \stackrel{\text { def }}{=} \operatorname{cd}\left(X_{\chi}\right)
$$

and similarly for the essential dimension at p.
Remark 8.8. Theorem 8.5 can, in fact, be applied to an arbitrary k-valued character $\chi: G \rightarrow k$. Indeed, the character χ^{\prime} of Lemma $8.2(\mathrm{~b})$ is a sum of pairwise disjoint k-irreducible characters; see Remark 8.3. Thus $\operatorname{Rep}_{\chi} \simeq \operatorname{Rep}_{\chi^{\prime}}$ by Lemma 8.2, and $\operatorname{Rep}_{\chi^{\prime}} \simeq \mathcal{D}_{X_{\chi^{\prime}}}$ by Theorem 8.5.

9. Upper bounds

If G is generated by r elements g_{1}, \ldots, g_{r}, then any representation $\rho: G \rightarrow \mathrm{GL}_{n}(K)$ defined over a field K / k descends to the subfield K_{0} generated over k by the $r n^{2}$ matrix entries of $\rho\left(g_{1}\right), \ldots, \rho\left(g_{r}\right)$. Thus

$$
\operatorname{ed}(\rho) \leqslant \operatorname{trdeg}_{k}\left(K_{0}\right) \leqslant r n^{2}
$$

In this section we will improve on this naive upper bound, under the assumption that $\operatorname{char}(k)=0$.

Our starting point is the following inequality, which is an immediate corollary of Theorem 8.5 and the inequality (3.2).

Corollary 9.1. Let G be a finite group and $\chi=m\left(\chi_{1}+\cdots+\chi_{r}\right): G \rightarrow k$ be an irreducible character over k, as in Section 7. Then $\operatorname{ed}(\chi) \leqslant \operatorname{dim}\left(X_{\chi}\right)=$ $r m\left(m_{k}\left(\chi_{1}\right)-m\right)$.

We are now in a position to prove the main result of this section.
Proposition 9.2. Let G be a finite group, k be a field of characteristic 0 , and K / k be a field extension. Let $\rho: G \rightarrow \mathrm{GL}_{n}(K)$ be a representation of G. Then
(a) $\operatorname{ed}(\rho) \leqslant \frac{n^{2}}{4}$.
(b) $\operatorname{ed}(\rho) \leqslant \sum_{\lambda}\left\lfloor\frac{m_{k}(\lambda)^{2}}{4}\right\rfloor \leqslant \frac{|G|}{4}$. Here the sum is taken over the distinct absolutely irreducible \bar{K}-subrepresentations λ of ρ, and $\lfloor x\rfloor$ denotes the integer part of x.
(c) $\operatorname{ed}\left(\boldsymbol{\operatorname { R e p }}_{\chi}\right) \leqslant \frac{\chi(1)^{2}}{4}$ and $\operatorname{ed}\left(\boldsymbol{\operatorname { R e p }}_{G, k}\right) \leqslant \sum_{\lambda}\left\lfloor\frac{m_{k}(\lambda)^{2}}{4}\right\rfloor \leqslant \frac{|G|}{4}$ for any base field k and any k-valued character $\chi: G \rightarrow k$. Here $\operatorname{Rep}_{G, k}$ is the functor defined at the beginning of Section 6, and the sum is taken over all absolutely irreducible representations λ of G defined over \bar{k}.

Proof. (a) Suppose $\rho \simeq \rho_{1} \oplus \rho_{2}$ over K, where $\operatorname{dim}\left(\rho_{1}\right)=n_{1}, \operatorname{dim}\left(\rho_{2}\right)=n_{2}$ and $n=n_{1}+n_{2}$. If we can prove the inequality of part (a) for ρ_{1} and ρ_{2}, then by Lemma 6.2,

$$
\operatorname{ed}(\rho) \leqslant \operatorname{ed}\left(\rho_{1}\right)+\operatorname{ed}\left(\rho_{2}\right) \leqslant \frac{n_{1}^{2}}{4}+\frac{n_{2}^{2}}{4} \leqslant \frac{n^{2}}{4}
$$

so that the desired inequality holds for ρ. Thus we may assume without loss of generality that ρ is K-irreducible.

By Lemma 6.3 we may also assume that the character χ of ρ is k-valued. By Lemma 7.3, χ is an irreducible character over k. Write $\chi=m\left(\chi_{1}+\cdots+\chi_{r}\right)$, where $m \geqslant 1$ divides $m_{k}\left(\chi_{1}\right)=\cdots=m_{k}\left(\chi_{r}\right)$. By Corollary 9.1

$$
\begin{equation*}
\operatorname{ed}(\rho) \leqslant r m\left(m_{k}\left(\chi_{1}\right)-m\right) \leqslant r \frac{m_{k}\left(\chi_{1}\right)^{2}}{4} \tag{9.3}
\end{equation*}
$$

Now recall that by Lemma 2.4(d), $\operatorname{Env}_{k}(\rho)$ is a central simple algebra of index $m_{k}\left(\chi_{1}\right)$ over a field Z such that $[Z: k]=r$. Thus

$$
\begin{equation*}
r m_{k}\left(\chi_{1}\right)^{2} \leqslant r \operatorname{dim}_{Z}\left(\operatorname{Env}_{k}(\rho)\right)=\operatorname{dim}_{k}\left(\operatorname{Env}_{k}(\rho)\right)=\operatorname{dim}_{K}\left(\operatorname{Env}_{K}(\rho)\right) \leqslant n^{2} \tag{9.4}
\end{equation*}
$$

Here the equality $\operatorname{dim}_{k}\left(\operatorname{Env}_{k}(\rho)\right)=\operatorname{dim}_{K}\left(\operatorname{Env}_{K}(\rho)\right)$ follows from Lemma 2.3, and the inequality $\operatorname{dim}_{K}\left(\operatorname{Env}_{K}(\rho)\right) \leqslant n^{2}$ follows from the fact that $\operatorname{Env}_{K}(\rho)$ is a K subalgebra of $\mathrm{M}_{n}(K)$. Combining (9.3) and (9.4), we obtain ed $(\rho) \leqslant n^{2} / 4$.
(b) Decompose ρ as a direct sum $a_{1} \rho_{1} \oplus \cdots \oplus a_{s} \rho_{s}$, where $\rho_{1}, \ldots, \rho_{s}$ are pairwise non-isomorphic K-irreducibles. Over \bar{K}, we can further decompose each ρ_{i} as

$$
\begin{equation*}
\rho_{i} \simeq m_{i}\left(\rho_{i 1} \oplus \cdots \oplus \rho_{i r_{i}}\right) \tag{9.5}
\end{equation*}
$$

where the $\rho_{i 1}, \ldots, \rho_{i r_{i}}$ are pairwise non-isomorphic \bar{K}-irreducibles. In fact, by Lemma 2.4(c), no two irreducible representations $\rho_{i j}$ can be isomorphic over \bar{K}, as i ranges from 1 to s and j ranges from 1 to r_{i}.

Now let us sharpen (9.3) a bit. Since $m\left(m_{k}\left(\chi_{i 1}\right)-m\right) \leqslant \frac{m_{k}\left(\chi_{i 1}\right)^{2}}{4}$ and $m\left(m_{k}\left(\chi_{i 1}\right)-m\right)$ is an integer, we conclude that

$$
\operatorname{ed}\left(\rho_{i}\right) \leqslant r_{i}\left\lfloor\frac{m_{k}\left(\chi_{i 1}\right)^{2}}{4}\right\rfloor=\sum_{i=1}^{r_{i}}\left\lfloor\frac{m_{k}\left(\chi_{i j}\right)^{2}}{4}\right\rfloor .
$$

Here the last equality follows from the fact that the characters $\chi_{i 1}, \ldots, \chi_{i r_{i}}$ of $\rho_{i 1}, \ldots, \rho_{i r_{i}}$ are conjugate over k, and consequently, $m_{k}\left(\rho_{i 1}\right)=\cdots=m_{k}\left(\rho_{i r_{i}}\right)$. Now by Lemma 6.2,

$$
\operatorname{ed}(\rho) \leqslant \sum_{i=1}^{s} \operatorname{ed}\left(\rho_{i}\right) \leqslant \sum_{i=1}^{s} \sum_{j=1}^{r_{i}}\left\lfloor\frac{m_{k}\left(\chi_{i j}\right)^{2}}{4}\right\rfloor .
$$

This proves the first inequality in part (b).
To prove the second inequality, note that by Lemma 2.4(f), $m_{k}\left(\chi_{i j}\right) \leqslant \operatorname{dim}\left(\rho_{i j}\right)$. Moreover, $\sum_{\lambda} \operatorname{dim}(\lambda)^{2}=|G|$, where the sum is taken over the distinct absolutely irreducible representations λ of G; see, e.g., [34, Corollary 2(a), Section 2.4]. Thus

$$
\sum_{i=1}^{s} \sum_{j=1}^{r_{i}}\left\lfloor\frac{m_{k}\left(\chi_{i j}\right)^{2}}{4}\right\rfloor \leqslant \sum_{i=1}^{s} \sum_{j=1}^{r_{i}} \frac{m_{k}\left(\chi_{i j}\right)^{2}}{4} \leqslant \sum_{i=1}^{s} \sum_{j=1}^{r_{i}} \frac{\operatorname{dim}\left(\rho_{i j}\right)^{2}}{4} \leqslant \frac{|G|}{4} .
$$

This completes the proof of part (b). Part (c) is an immediate consequence of (a) and (b).

Remark 9.6. Note that absolutely irreducible representations λ of Schur index 1 do not contribute anything to the sum $\sum_{\lambda}\left\lfloor\frac{m_{k}(\lambda)^{2}}{4}\right\rfloor$ in part (b) and (c). In particular, in the case, where every absolutely irreducible representation of G has Schur index 1, we recover Lemma 6.4 from Proposition 9.2 (under the assumption that $\operatorname{char}(k)=0)$.

Another interesting example is obtained by setting $G=Q_{8}$, the quaternion group of order 8 and $k=\mathbb{Q}$ or \mathbb{R}. In this case G has five absolutely irreducible representations whose Schur indices are 1, 1, 1, 1 and 2; see [14, Example, p. 740]. Thus Proposition 9.2 yields

$$
\operatorname{ed}\left(\boldsymbol{\operatorname { R e p }}_{Q_{8}, k}\right) \leqslant\left\lfloor\frac{1^{2}}{4}\right\rfloor+\left\lfloor\frac{1^{2}}{4}\right\rfloor+\left\lfloor\frac{1^{2}}{4}\right\rfloor+\left\lfloor\frac{1^{2}}{4}\right\rfloor+\left\lfloor\frac{2^{2}}{4}\right\rfloor=1
$$

Example 6.1 shows that this upper bound is sharp, i.e., $\operatorname{ed}\left(\operatorname{Rep}_{Q_{8}, k}\right)=1$.

10. A variant of a theorem of Brauer

A theorem of R. Brauer [7] asserts for every integer $l \geqslant 1$ there exists a number field k, a finite group G and a k-valued absolutely irreducible character χ such that the Schur index $m_{k}(\chi)=l$. For an alternative proofs of Brauer's theorem, see [4] or [36].

In this section we will prove an analogous statement with the Schur index replaced by the essential dimension. Note however, that the analogy is not perfect. Our character χ will be reducible and \mathbb{Q}-valued for every $l \geqslant 2$, while Brauer's
theorem will fail if we insist that k should be the same for all l, or that χ should be real-valued. (These assertions follow from the Benard-Schacher theorem [37, Theorem 6.8]; see also [14, Section 74C].)

Proposition 10.1. For every integer $l \geqslant 0$ there exists a finite group G, and a character $\chi: G \rightarrow \mathbb{Q}$ such that $\mathrm{ed}_{\mathbb{Q}}(\chi)=l$.

Proof. The proposition is obvious for $l=0$; just take χ to be the trivial character, for any group G. We may thus assume that $l \geqslant 1$. Choose l distinct prime integers $p_{1}, \ldots, p_{l} \equiv 3(\bmod 4)$, and let A_{i} be the quaternion algebra $\left(-1, p_{i}\right)$ over \mathbb{Q}.

Lemma 10.2. The classes of A_{1}, \ldots, A_{l} in $\operatorname{Br}(\mathbb{Q})$ are linearly independent over $\mathbb{Z} / 2 \mathbb{Z}$.
Proof. Assume the contrary. Then after renumbering A_{1}, \ldots, A_{l}, we may assume that $A_{1} \otimes_{k} \cdots \otimes_{k} A_{s}$ is split over \mathbb{Q} for some $s \geqslant 1$. Since $[(a, c)] \otimes[(b, c)]=$ $[(a b, c)]$ in $\operatorname{Br}(\mathbb{Q})$, we see that the quaternion algebra $\left(-1, p_{1} \ldots p_{s}\right)$ is split over \mathbb{Q}. Equivalently, $p_{1} \ldots p_{s}$ is a norm in $\mathbb{Q}(\sqrt{-1}) / k$ (see, e.g., [27, Theorem 2.7]), i.e., $p_{1} \ldots p_{s}$ can be written as a sum of two rational squares. Now recall that by a classical theorem of Fermat, a positive integer n can be written as a sum of two rational squares if and only if it can be written as a sum of two integer squares if and only if every prime p which is $\equiv 3(\bmod 4)$ occurs to an even power in the prime decomposition of n. In our case $n=p_{1} \ldots p_{s}$ does not satisfy this condition. Hence, $p_{1} \ldots p_{s}$ cannot be written as a sum of two rational squares, a contradiction.

We now return to the proof of Proposition 10.1. By a theorem of M. Benard [1] there exist finite groups G_{1}, \ldots, G_{l}, number fields F_{1}, \ldots, F_{l}, and 2-dimensional absolutely irreducible representations $\rho_{i}: G_{i} \rightarrow \mathrm{GL}_{2}\left(F_{i}\right)$ such that $A_{i}:=\operatorname{Env}_{k}\left(\rho_{i}\right)$. (In fact, since $\mathbb{Q}(\sqrt{-1})$ splits every A_{i}, we may take $F_{1}=\cdots=F_{l}=\mathbb{Q}(\sqrt{-1})$.) We will view each ρ_{i} as a representation of $G=G_{1} \times \cdots \times G_{l}$ via the natural projection $G \rightarrow G_{i}$. Let χ_{i} be the character of ρ_{i} and $\chi:=\chi_{1}+\cdots+\chi_{r}: G \rightarrow \mathbb{Q}$. By Theorem 8.5

$$
\operatorname{ed}(\chi)=\operatorname{cd}\left(X_{\chi}\right)
$$

where $X_{\chi}:=X_{\chi_{1}} \times_{k} \cdots \times_{k} X_{\chi_{l}}$, and $X_{\chi_{i}}$ is the 1-dimensional Severi-Brauer variety $\mathrm{SB}\left(A_{i}\right)$ over \mathbb{Q}. Since the Brauer classes of A_{1}, \ldots, A_{l} in $\operatorname{Br}(\mathbb{Q})$ are linearly independent over $\mathbb{Z} / 2 \mathbb{Z}$, [25, Theorem 2.1] tells us that $\operatorname{cd}\left(X_{\chi}\right)=l$, as desired. (For an alternative proof of [25, Theorem 2.1], see [23, Corollary 4.1 and Remark 4.2].)

Remark 10.3. Proposition 10.1 implies that there exists a field K / \mathbb{Q} and a linear representation $\rho: G \rightarrow \mathrm{GL}_{2 l}(K)$ such that $\mathrm{ed}_{\mathbb{Q}}(\rho)=l$. Note however, that ρ is not the same as $\rho_{1} \times \cdots \times \rho_{l}: G \rightarrow \mathrm{GL}_{2 l}(\mathbb{Q}(\sqrt{-1})$), even though ρ and $\rho_{1} \times \cdots \times \rho_{l}$ have the same character. Indeed, since each ρ_{i} is defined over $\mathbb{Q}(\sqrt{-1})$, $\operatorname{ed}_{\mathbb{Q}}\left(\rho_{1} \times \cdots \times \rho_{l}\right)=0$. Under the isomorphism of functors $\operatorname{Rep}_{\chi} \simeq \mathcal{D}_{X_{\chi}}$ of

Theorem 8.5, $\rho_{1} \times \cdots \times \rho_{l}$ corresponds to a $\mathbb{Q}(\sqrt{-1})$-point of X_{χ}, while ρ corresponds to the generic point.

11. Computation of canonical p-dimension

This section aims to determine canonical p-dimension of a broad class of Weil transfers of generalized Severi-Brauer varieties. Here p is a fixed prime integer. The base field k is allowed to be of arbitrary characteristic.

Let Z / k be a finite Galois field extension (not necessarily abelian). We will work with Chow motives with coefficients in a finite field of p elements; see [15, §64]. For a motive M over $Z, R_{Z / k} M$ is the motive over k given by the Weil transfer of M introduced in [17]. Although the coefficient ring is assumed to be \mathbb{Z} in [17], and the results obtained there over \mathbb{Z} do not formally imply similar results for other coefficients, the proofs go through for an arbitrary coefficient ring.

For any finite separable field extension K / k and a motive M over K, the corestriction of M is a well-defined motive over k; see [19].
Lemma 11.1. Let Z / k be an arbitrary finite Galois field extension and let M_{1}, \ldots, M_{m} be $m \geqslant 1$ motives over Z. Then the motive $R_{Z / k}\left(M_{1} \oplus \cdots \oplus M_{m}\right)$ decomposes in a direct sum

$$
R_{Z / k}\left(M_{1} \oplus \cdots \oplus M_{m}\right) \simeq R_{Z / k} M_{1} \oplus \cdots \oplus R_{Z / k} M_{m} \oplus N
$$

where N is a direct sum of corestrictions to k of motives over fields K with $k \subsetneq$ $K \subset Z$.

Proof. For $m=1$ the statement is void. For $m=2$ use the same argument as in [20, Proof of Lemma 2.1] or see below. For $m \geqslant 3$ argue by induction.

For the reader's convenience, we supply a proof for $m=2$. First we recall that the Weil transfer $R_{Z / k} X$ of a Z-variety X is characterized by the property that there exists an isomorphism of Z-varieties $\left(R_{Z / k} X\right)_{Z} \simeq \prod_{\sigma \in \operatorname{Gal}(Z / k)}{ }^{\sigma} X$ commuting with the action of the Galois group. Here ${ }^{\sigma} X$ is the conjugate variety and $\operatorname{Gal}(Z / k)$ acts on the product $\prod^{\sigma} X$ by permutation of the factors.

We start with the case where M_{1} and M_{2} are the motives of some smooth projective Z-varieties X and Y. The Weil transfer $R_{Z / k}\left(M_{1} \oplus M_{2}\right)$ is then the motive of the k-variety $R_{Z / k}(X \amalg Y)$. We have

$$
\Pi^{\sigma}(X \amalg Y)=\Pi\left({ }^{\sigma} X \coprod^{\sigma} Y\right)=\left(\Pi^{\sigma} X\right) \amalg\left(\Pi^{\sigma} Y\right) \amalg \cdots,
$$

where the dots stand for a disjoint union of products none of which is stable under the action of $\operatorname{Gal}(Z / k)$. It follows that $R_{Z / k}(X \amalg Y)$ is a disjoint union of $R_{Z / k} X$, $R_{Z / k} Y$, and corestrictions of some K-varieties with some $k \subsetneq K \subset Z$. This gives the required motivic formula in the particular case under consideration.

In the general case, we have $M_{1}=(X,[\pi])$ and $M_{2}=(Y,[\tau])$ for some algebraic cycles π and τ ($[\pi]$ and $[\tau]$ are their classes modulo rational equivalence). We recall that the Weil transfer of the motive $(X,[\pi])$ is defined as $\left(R_{Z / k} X,\left[R_{Z / k} \pi\right]\right)$, where $R_{Z / k} \pi$ is the algebraic cycle determined by $\left(R_{Z / k} \pi\right)_{Z}=\prod^{\sigma} \pi$. Computing $R_{Z / k}\left(M_{1} \oplus M_{2}\right)$ this way, we get the desired formula.

Now recall from Section 3b that a k-variety X is called incompressible if $\operatorname{cd}(X)=\operatorname{dim}(X)$ and p-incompressible if $\operatorname{cd}_{p}(X)=\operatorname{dim}(X)$.

Theorem 11.2. Let p be a prime number, Z / k a finite Galois field extension of degree p^{r} for some $r \geqslant 0, D$ a balanced central division Z-algebra of degree p^{n} for some $n \geqslant 0$, and X the generalized Severi-Brauer variety $\mathrm{SB}\left(D, p^{i}\right)$ of D for some $i=0,1, \ldots, n$. Then the k-variety $R_{Z / k} X$, given by the Weil transfer of X, is p-incompressible.

Note that in the case, where Z / k is a quadratic Galois extension, D is balanced if the k-algebra given by the norm of D is Brauer-trivial; ${ }^{\alpha} D$ for $\alpha \neq 1$ is then opposite to D. In this special case Theorem 11.2 was proved in [20, Theorem 1.1].

Proof of Theorem 11.2. In the proof we will use Chow motives with coefficients in a finite field of p elements. Therefore the Krull-Schmidt principle holds for direct summands of motives of projective homogeneous varieties by [12] (see also [22]).

We will prove Theorem 11.2 by induction on $r+n$. The base case, where $r+n=0$, is trivial. Moreover, in the case where $r=0$ (and n is arbitrary), we have $Z=k$ and thus $R_{Z / k} X=X$ is p-incompressible by [22, Theorem 4.3]. Thus we may assume that $r \geqslant 1$ from now on.

If $i=n$, then $X=\operatorname{Spec} Z, R_{Z / k} X=\operatorname{Spec} k$, and the statement of Theorem 11.2 is trivial. We will thus assume that $i \leqslant n-1$ and, in particular, that $n \geqslant 1$.

Let k^{\prime} be the function field of the variety $R_{Z / k} \mathrm{SB}\left(D, p^{n-1}\right)$. Set $Z^{\prime}:=k^{\prime} \otimes_{k} Z$. By Proposition 5.1(b), the index of the central simple Z^{\prime}-algebra $D_{Z^{\prime}}=D \otimes_{Z} Z^{\prime}=$ $D \otimes_{k} k^{\prime}$ is p^{n-1}. Thus there exists a central division Z^{\prime}-algebra D^{\prime} such that the algebra of $(p \times p)$-matrices over D^{\prime} is isomorphic to $D_{Z^{\prime}}$. Let $X^{\prime}=\mathrm{SB}\left(D^{\prime}, p^{i}\right)$. By [16, Theorem 10.9 and Corollary 10.19] (see also [11]), the motive of the variety $X_{Z^{\prime}}$ decomposes in a direct sum

$$
\begin{aligned}
M\left(X_{Z^{\prime}}\right) \simeq M\left(X^{\prime}\right) \oplus M\left(X^{\prime}\right)\left(p^{i+n-1}\right) \oplus & M\left(X^{\prime}\right)\left(2 p^{i+n-1}\right) \oplus \cdots \\
& \cdots \oplus M\left(X^{\prime}\right)\left((p-1) p^{i+n-1}\right) \oplus N
\end{aligned}
$$

where N is a direct sum of shifts of motives of certain projective homogeneous Z^{\prime}-varieties Y under the direct product of p copies of $\mathrm{PGL}_{1}\left(D^{\prime}\right)$ such that the index of $D_{Z^{\prime}(Y)}^{\prime}$ divides p^{i-1}. (If $i=0$, then $N=0$.) It follows by [22, Theorems 3.8
and 4.3] that

$$
\begin{aligned}
M\left(X_{Z^{\prime}}\right) \simeq U\left(X^{\prime}\right) \oplus U^{\prime}\left(X^{\prime}\right)\left(p^{i+n-1}\right) \oplus U(& \left.X^{\prime}\right)\left(2 p^{i+n-1}\right) \oplus \cdots \\
& \cdots \oplus U\left(X^{\prime}\right)\left((p-1) p^{i+n-1}\right) \oplus N
\end{aligned}
$$

where $U\left(X^{\prime}\right)$ is the upper motive of X^{\prime} and N is now a direct sum of shifts of upper motives of the varieties $\mathrm{SB}\left(D^{\prime}, p^{j}\right)$ with $j<i$. Therefore, by Lemma 11.1 and [17, Theorem 5.4], the motive of the variety $\left(R_{Z / k} X\right)_{k^{\prime}} \simeq R_{Z^{\prime} / k^{\prime}}\left(X_{Z^{\prime}}\right)$ decomposes in a direct sum

$$
\begin{align*}
& M\left(R_{Z / k} X\right)_{k^{\prime}} \simeq R_{Z^{\prime} / k^{\prime}} U\left(X^{\prime}\right) \oplus R_{Z^{\prime} / k^{\prime}} U\left(X^{\prime}\right)\left(p^{r+i+n-1}\right) \\
& \oplus R_{Z^{\prime} / k^{\prime}} U\left(X^{\prime}\right)\left(2 p^{r+i+n-1}\right) \oplus \cdots \\
& \cdots \oplus R_{Z^{\prime} / k^{\prime}} U\left(X^{\prime}\right)\left((p-1) p^{r+i+n-1}\right) \oplus N \oplus N^{\prime} \tag{11.3}
\end{align*}
$$

where now N is a direct sum of shifts of $R_{Z^{\prime} / k^{\prime}} U\left(\mathrm{SB}\left(D^{\prime}, p^{j}\right)\right)$ with $j<i$, and N^{\prime} is a direct sum of corestrictions of motives over fields K with $k^{\prime} \subsetneq K \subset Z^{\prime}$. By the induction hypothesis, the variety $R_{Z^{\prime} / k^{\prime}} X^{\prime}$ is p-incompressible. By [18, Theorem 5.1], this means that no positive shift of the motive $U\left(R_{Z^{\prime} / k^{\prime}} X^{\prime}\right)$ is a direct summand of the motive of $R_{Z^{\prime} / k^{\prime}} X^{\prime}$. It follows by [19] that $R_{Z^{\prime} / k^{\prime}} U\left(X^{\prime}\right)$ is a direct sum of $U\left(R_{Z^{\prime} / k^{\prime}} X^{\prime}\right)$, of shifts of $U\left(R_{Z^{\prime} / k^{\prime}} \mathrm{SB}\left(D^{\prime}, p^{j}\right)\right)$ with $j<i$, and of corestrictions of motives over fields K with $k^{\prime} \subsetneq K \subset Z^{\prime}$. Therefore we may exchange $R_{Z^{\prime} / k^{\prime}}$ with U in (11.3) and get a decomposition of the form

$$
\begin{align*}
M\left(R_{Z / k} X\right)_{k^{\prime}} \simeq U(& \left.R_{Z^{\prime} / k^{\prime}} X^{\prime}\right) \oplus U\left(R_{Z^{\prime} / k^{\prime}} X^{\prime}\right)\left(p^{r+i+n-1}\right) \\
& \oplus U\left(R_{Z^{\prime} / k^{\prime}} X^{\prime}\right)\left(2 p^{r+i+n-1}\right) \oplus \cdots \\
& \cdots \oplus U\left(R_{Z^{\prime} / k^{\prime}} X^{\prime}\right)\left((p-1) p^{r+i+n-1}\right) \oplus N \oplus N^{\prime} \tag{11.4}
\end{align*}
$$

where N is now a direct sum of shifts of some $U\left(R_{Z^{\prime} / k^{\prime}} \mathrm{SB}\left(D^{\prime}, p^{j}\right)\right)$ with $j<i$, and N^{\prime} is a direct sum of corestrictions of motives over fields K with $k^{\prime} \subsetneq K \subset Z^{\prime}$. Note that the first p summands of decomposition (11.4) (that is, all but the last two) are shifts of an indecomposable motive; moreover, no shift of this motive is isomorphic to a summand of N or of N^{\prime}. Since the variety $R_{Z^{\prime} / k^{\prime}} X^{\prime}$ is p incompressible, we have

$$
\operatorname{dim} U\left(R_{Z^{\prime} / k^{\prime}} X^{\prime}\right)=\operatorname{dim} R_{Z^{\prime} / k^{\prime}} X^{\prime}=\left[Z^{\prime}: k^{\prime}\right] \cdot \operatorname{dim} X^{\prime}=p^{r} \cdot p^{i}\left(p^{n-1}-p^{i}\right)
$$

(We refer the reader to [18, Theorem 5.1] for the definition of the dimension of the upper motive, as well as its relationship to the dimension and p-incompressibility of the corresponding variety.) Note that the shifting number of the p-th summand in (11.4) plus $\operatorname{dim} R_{Z^{\prime} / k} X^{\prime}$ equals $\operatorname{dim} R_{Z / k} X$:

$$
(p-1) p^{r+i+n-1}+p^{r} p^{i}\left(p^{n-1}-p^{i}\right)=p^{r} p^{i}\left(p^{n}-p^{i}\right)
$$

We want to show that the variety $R_{Z / k} X$ is p-incompressible. In other words, we want to show that $\operatorname{dim} U\left(R_{Z / k} X\right)=\operatorname{dim} R_{Z / k} X$. Let l be the number of shifts of $U\left(R_{Z^{\prime} / k^{\prime}} X^{\prime}\right)$ contained in the complete decomposition of the motive $U\left(R_{Z / k} X\right)_{k^{\prime}}$. Clearly, $1 \leqslant l \leqslant p$ and it suffices to show that $l=p$ because in this case the p-th summand of (11.4) is contained in the complete decomposition of $U\left(R_{Z / k} X\right)_{k^{\prime}}$.

The complete motivic decomposition of $R_{Z / k} X$ contains several shifts of $U\left(R_{Z / k} X\right)$. Let N be any of the remaining (indecomposable) summands. Then, by [19], N is either a shift of the upper motive $U\left(R_{Z / k} \mathrm{SB}\left(D, p^{j}\right)\right)$ with some $j<i$ or a corestriction to k of a motive over a field K with $k \subsetneq K \subset Z$. It follows that the complete decomposition of $N_{k^{\prime}}$ does not contain any shift of $U\left(R_{Z^{\prime} / k^{\prime}} X^{\prime}\right)$. Therefore l divides p, that is, $l=1$ or $l=p$, and we only need to show that $l \neq 1$.

We claim that $l>1$ provided that $\operatorname{dim} U\left(R_{Z / k} X\right)>\operatorname{dim} U\left(R_{Z^{\prime} / k^{\prime}} X^{\prime}\right)$. Indeed, by [21, Proposition 2.4], the complete decomposition of $U\left(R_{Z / k} X\right)_{k^{\prime}}$ contains as a summand the motive $U\left(R_{Z^{\prime} / k^{\prime}} X^{\prime}\right)$ shifted by the $\operatorname{difference} \operatorname{dim} U\left(R_{Z / k} X\right)-$ $\operatorname{dim} U\left(R_{Z^{\prime} / k^{\prime}} X^{\prime}\right)$. Therefore, in order to show that $l \neq 1$ it is enough to show that

$$
\operatorname{dim} U\left(R_{Z / k} X\right)>\operatorname{dim} U\left(R_{Z^{\prime} / k^{\prime}} X^{\prime}\right)
$$

We already know the precise value of the dimension on the right, so we only need to find a good enough lower bound on the dimension on the left. This will be given by $\operatorname{dim} U\left(\left(R_{Z / k} X\right)_{\tilde{k}}\right)$, where \tilde{k} / k is a degree p Galois field subextension of Z / k. We can determine the latter dimension using the induction hypothesis.

Indeed, since $R_{Z / k} X \simeq R_{\tilde{k} / k} R_{Z / \tilde{k}} X$, the variety $\left(R_{Z / k} X\right)_{\tilde{k}}$ is isomorphic to

$$
\left(R_{Z / k} X\right)_{\tilde{k}} \simeq \prod_{\tilde{\alpha} \in \tilde{\Gamma}}^{\tilde{\alpha}} R_{Z / \tilde{k}} X \simeq R_{Z / \tilde{k}} \prod_{\tilde{\alpha} \in \tilde{\Gamma}}^{\alpha} X
$$

where Γ is the Galois group of $Z / k, \tilde{\Gamma}$ is the Galois group of \tilde{k} / k, and $\alpha \in \Gamma$ is a representative of $\tilde{\alpha} \in \tilde{\Gamma}$ (see [6, §2.8]). Since D is balanced, the product $\prod_{\tilde{\alpha} \in \tilde{\Gamma}}{ }^{\alpha} X$ is equivalent to X. It follows that the varieties $R_{Z / \tilde{k}} \prod_{\tilde{\alpha} \in \tilde{\Gamma}}{ }^{\alpha} X$ and $R_{Z / \tilde{k}} X$ are equivalent and hence, by Lemma 3.3, have the same canonical p-dimension (i.e., the dimensions of their upper motives coincide). The latter variety is p-incompressible by the induction hypothesis. Consequently,

$$
\operatorname{dim} U\left(R_{Z / k} X\right) \geqslant \operatorname{dim} U\left(\left(R_{Z / k} X\right)_{\tilde{k}}\right)=\operatorname{dim} R_{Z / \tilde{k}} X=p^{r-1} \cdot p^{i}\left(p^{n}-p^{i}\right)
$$

The lower bound $p^{r-1} \cdot p^{i}\left(p^{n}-p^{i}\right)$ on $\operatorname{dim} U\left(R_{Z / k} X\right)$ thus obtained is good enough for our purposes, because

$$
p^{r-1} \cdot p^{i}\left(p^{n}-p^{i}\right)>p^{r} \cdot p^{i}\left(p^{n-1}-p^{i}\right)=\operatorname{dim} U\left(R_{Z^{\prime} / k^{\prime}} X^{\prime}\right)
$$

This completes the proof of Theorem 11.2.
The following example, due to A. Merkurjev, shows that Theorem 11.2 fails if D is not assumed to be balanced.

Example 11.5. Let L be a field containing a primitive 4-th root of unity. Let Z be the field $Z:=L\left(x, y, x^{\prime}, y^{\prime}\right)$ of rational functions over L in four variables $x, y, x^{\prime}, y^{\prime}$. Consider the degree 4 cyclic central division Z-algebras $C:=(x, y)_{4}$ and $C^{\prime}:=$ $\left(x^{\prime}, y^{\prime}\right)_{4}$. Let $k \subset Z$ be the subfield Z^{α} of the elements in Z fixed under the L automorphism α of Z exchanging x with x^{\prime} and y with y^{\prime}. The field extension Z / k is then Galois of degree 2 , and the algebra C^{\prime} is conjugate to C.

The index of the tensor product of Z-algebras $C \otimes C^{\prime \otimes 2}$ is 8 . Let D / Z be the underlying (unbalanced!) division algebra of degree 8 . Since the conjugate algebra ${ }^{\alpha} D$ is Brauer-equivalent to $C^{\prime} \otimes C^{\otimes 2}$, the subgroup of the Brauer group $\operatorname{Br}(Z)$ generated by the classes of D and ${ }^{\alpha} D$ coincides with the subgroup generated by the classes of C and ${ }^{\alpha} C=C^{\prime}$. Therefore the varieties $X_{1}:=R_{Z / k} \mathrm{SB}(D)$ and $X_{2}:=R_{Z / k} \mathrm{SB}(C)$ are equivalent. Thus, by Lemma 3.3,

$$
\operatorname{cd}\left(X_{1}\right)=\operatorname{cd}\left(X_{2}\right) \leqslant \operatorname{dim}\left(X_{2}\right)<\operatorname{dim}\left(X_{1}\right)
$$

and consequently, X_{1} is compressible (and in particular, 2-compressible).
Remark 11.6. Some generalizations of Theorem 11.2 can be found in [23].

12. Some consequences of Theorem 11.2

Theorem 11.2 makes it possible to determine the canonical p-dimension of the Weil transfer in the situation, where the degrees of Z / k and of D are not necessarily p-powers.
Corollary 12.1. Let Z / k be a finite Galois field extension and D a balanced central division Z-algebra. For any positive integer m dividing $\operatorname{deg}(D)$, one has

$$
\operatorname{cd}_{p} R_{Z / k} \mathrm{SB}(D, m)=\operatorname{dim} R_{Z / k^{\prime}} \mathrm{SB}\left(D^{\prime}, m^{\prime}\right)=\left[Z: k^{\prime}\right] \cdot m^{\prime}\left(\operatorname{deg} D^{\prime}-m^{\prime}\right)
$$

where m^{\prime} is the p-primary part of m (i.e., the highest power of p dividing m), D^{\prime} is the p-primary component of D, and $k^{\prime}=Z^{\Gamma_{p}}$, where Γ_{p} is a Sylow p-subgroup of $\Gamma:=\operatorname{Gal}(Z / k)$ (so that $\left[Z: k^{\prime}\right]$ is the p-primary part of $[Z: k]$).

Proof. Since the degree $\left[k^{\prime}: k\right]$ is prime to p, we have

$$
\operatorname{cd}_{p} R_{Z / k} \mathrm{SB}(D, m)=\operatorname{cd}_{p}\left(R_{Z / k} \mathrm{SB}(D, m)\right)_{k^{\prime}}
$$

see [29, Proposition 1.5(2)]. The k^{\prime}-variety $R_{Z / k} \mathrm{SB}(D, m)_{k^{\prime}}$ is isomorphic to a product of $R_{Z / k^{\prime}} \mathrm{SB}(D, m)$ with several varieties of the form $R_{Z / k^{\prime}} \mathrm{SB}(\tilde{D}, m)$ where \tilde{D} ranges over a set of conjugates of D. Since D is balanced, these algebras \tilde{D} are Brauer-equivalent to powers of D. Thus the product is equivalent to the k^{\prime} variety $R_{Z / k^{\prime}} \mathrm{SB}(D, m)$. We conclude by Lemma 3.3 that $\mathrm{cd}_{p} R_{Z / k} \mathrm{SB}(D, m)=$ ${ }^{c d}{ }_{p} R_{Z / k^{\prime}} \mathrm{SB}(D, m)$. In the sequel we will replace k by k^{\prime}, so that the degree $[Z: k]$ becomes a power of p.

We may now replace k by its p-special closure; see [15, Proposition 101.16]. This will not change the value of $\operatorname{cd}_{p}(X)$. In other words, we may assume that k is p-special. Under this assumption the algebras D and D^{\prime} become Brauer-equivalent and consequently, the k-varieties $R_{Z / k} \mathrm{SB}(D, m)$ and $R_{Z / k} \mathrm{SB}\left(D^{\prime}, m^{\prime}\right)$ become equivalent. By Lemma 3.3,

$$
\operatorname{cd}_{p} R_{Z / k} \mathrm{SB}(D, m)=\operatorname{cd}_{p} R_{Z / k} \mathrm{SB}\left(D^{\prime}, m^{\prime}\right)
$$

Since the Z-algebra D^{\prime} is balanced over k, Theorem 11.2 tells us that $R_{Z / k} \mathrm{SB}\left(D^{\prime}, m^{\prime}\right)$ is p-incompressible. That is,

$$
\operatorname{cd}_{p} R_{Z / k} \mathrm{SB}\left(D^{\prime}, m^{\prime}\right)=\operatorname{dim}\left(R_{Z / k} \mathrm{SB}\left(D^{\prime}, m^{\prime}\right)\right)=[Z: k] \cdot m^{\prime}\left(\operatorname{deg} D^{\prime}-m^{\prime}\right)
$$

and the corollary follows.
Remark 12.2. Corollary 12.1 can be used to compute the p-canonical dimension of $R_{Z / k} \operatorname{SB}(D, j)$ for any $j=1, \ldots, \operatorname{deg}(D)$, even if j does not divide $\operatorname{deg}(D)$. Indeed, let m be the greatest common divisor of j and $\operatorname{deg}(D)$. Proposition 5.1(a) tells us that for any field extension $K / k, R_{Z / k} \mathrm{SB}(D, j)$ has a K-point if and only if $R_{Z / k} \mathrm{SB}(D, m)$ has a K-point. In other words, the detection functors for these two varieties are isomorphic. Consequently,

$$
\operatorname{cd}\left(R_{Z / k} \mathrm{SB}(D, j)\right)=\operatorname{cd}\left(R_{Z / k} \mathrm{SB}(D, m)\right)
$$

and

$$
\operatorname{cd}_{p}\left(R_{Z / k} \mathrm{SB}(D, j)\right)=\operatorname{cd}_{p}\left(R_{Z / k} \mathrm{SB}(D, m)\right)
$$

and the value of $\operatorname{cd}_{p}\left(R_{Z / k} \mathrm{SB}(D, m)\right)$ is given by Corollary 12.1.
We now return to the setting of Sections 7-9. In particular, G is a finite group, and the base field k is of characteristic 0 .
Corollary 12.3. Let $\chi=m\left(\chi_{1}+\cdots+\chi_{r}\right): G \rightarrow k$ be an irreducible k-valued character, where $\chi_{1}, \ldots, \chi_{r}$ are absolutely irreducible and conjugate over k, and m divides $m_{k}\left(\chi_{1}\right)=\cdots=m_{k}\left(\chi_{r}\right)$, as in Section 7 .
(a) $\operatorname{ed}_{p}(\chi)=r^{\prime} m^{\prime}\left(m_{k}\left(\chi_{1}\right)^{\prime}-m^{\prime}\right)$. Here x^{\prime} denotes the p-primary part of x (i.e., the highest power of p dividing x) for any integer $x \geq 1$.
(b) If r and $m_{k}\left(\chi_{1}\right)$ are powers of p, then $\operatorname{ed}_{p}(\chi)=\operatorname{ed}(\chi)=\operatorname{dim}\left(X_{\chi}\right)=$ $r m\left(m_{k}\left(\chi_{1}\right)-m\right)$. Here X_{χ} is as in Definition 8.4.

Proof. (a) Let D be the underlying division algebra and Z / k be the center of $\operatorname{Env}_{k}(\chi)$. By Theorem 8.5, ed ${ }_{p}(\chi)=\operatorname{cd}_{p}\left(X_{\chi}\right)$. By Proposition 4.1, D is balanced. The desired conclusion now follows from Corollary 12.1.
(b) Here $r^{\prime}=r, m_{k}\left(\chi_{1}\right)^{\prime}=m_{k}(\chi)$ and thus $m^{\prime}=m$. By part (a),

$$
\operatorname{dim}\left(X_{\chi}\right)=r m\left(m_{k}\left(\chi_{1}\right)-m\right)=\operatorname{ed}_{p}(\chi) \leqslant \operatorname{ed}(\chi) .
$$

On the other hand, by Corollary 9.1, ed $(\chi) \leqslant r m\left(m_{k}\left(\chi_{1}\right)-m\right)$, and part (b) follows.

Remark 12.4. While a priori ed $p(\chi)$ depends on k, G, and χ, Corollary 12.3(a) shows that, in fact, $\operatorname{ed}_{p}(\chi)$ depends only on the integers r, m, and $m_{k}\left(\chi_{1}\right)$. (Here we are assuming that χ is irreducible.) We do not know if the same is true of $\operatorname{ed}(\chi)$.

13. A variant of a theorem of Schilling

Let G be a p-group and χ_{1} be an absolutely irreducible character of G. It is well known that for any field k of characteristic $0, m_{k}\left(\chi_{1}\right)=1$ if p is odd, and $m_{k}\left(\chi_{1}\right)=1$ or 2 if $p=2$. Following C. Curtis and I. Reiner, we will attribute this theorem to O. Schilling; see [14, Theorem 74.15]. For further bibliographical references, see [37, Corollary 9.8].

In this section we will use Corollary 12.3 to prove the following analogous statement, with the Schur index replaced by the essential dimension.
Proposition 13.1. Let k be a field of characteristic 0 , G be a p-group, and $\chi: G \rightarrow k$ be an irreducible character over k.
(a) If p is odd then $\operatorname{ed}(\chi)=0$.
(b) If $p=2$ then $\mathrm{ed}_{2}(\chi)=\mathrm{ed}(\chi)=0$ or 2^{l} for some integer $l \geqslant 0$.
(c) Moreover, every $l \geqslant 0$ in part (b) can occur with $k=\mathbb{Q}$, for suitable choices of G and χ.

Proof. Write $\chi=m\left(\chi_{1}+\cdots+\chi_{r}\right)$, where $\chi_{i}: G \rightarrow \bar{k}$ are absolutely irreducible characters and m divides $m_{k}\left(\chi_{1}\right)$. If $m=m_{k}\left(\chi_{1}\right)$ then $\operatorname{ed}(\chi)=0$ by Corollary 9.1.
(a) In particular, this will always be the case if p is odd. Indeed, by Schilling's theorem, $m_{k}\left(\chi_{1}\right)=1$ and thus $m=1$. (Also cf. Lemma 6.4.)
(b) By Schilling's theorem, $m_{k}\left(\chi_{1}\right)=1$ or 2 , and by the above argument, we may assume that $m<m_{k}\left(\chi_{1}\right)$. Thus the only case we need to consider is $m_{k}\left(\chi_{1}\right)=2$ and $m=1$. By Lemma 2.4(b), $r=\left[k\left(\chi_{1}\right): k\right]$. Since $k\left(\chi_{1}\right) \subset k\left(\zeta_{e}\right)$, where the exponent e of G is a power of 2 , we see that r divides $\left[k\left(\zeta_{e}\right): k\right]$, which is, once again, a power of 2 . Thus we conclude that r is a power of 2 . Corollary 12.3(b) now tells us that

$$
\begin{equation*}
\operatorname{ed}_{2}(\chi)=\operatorname{ed}(\chi)=r m\left(m_{k}(\chi)-m\right)=r \cdot 1 \cdot(2-1)=r \tag{13.2}
\end{equation*}
$$

is a power of 2 , as claimed.
(c) Let $s=2^{l+2}$, and $\sigma \in \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{s}\right) / \mathbb{Q}\right)$ be complex conjugation, and

$$
F:=\mathbb{Q}\left(\zeta_{s}\right)^{\sigma}=\mathbb{Q}\left(\zeta_{s}\right) \cap \mathbb{R}=\mathbb{Q}\left(\zeta_{s}+\zeta_{s}^{-1}\right)
$$

Consider the quaternion algebra $A=\left(\left(\zeta_{s}-\zeta_{s}^{-1}\right)^{2},-1\right)$ over F, i.e., the F-algebra generated by elements x and y, subject to the relations

$$
x^{2}=\left(\zeta_{s}-\zeta_{s}^{-1}\right)^{2}, y^{2}=-1 \text { and } x y=-y x
$$

One readily checks that $F\left(\zeta_{s}-\zeta_{s}^{-1}\right)=\mathbb{Q}\left(\zeta_{s}\right)$ is a maximal subfield of A, ζ_{s} and y generate a multiplicative subgroup G of A of order $2 s$, which spans A as an F-vector space, and the inclusion $G \hookrightarrow A^{\times}$gives rise to an absolutely irreducible 2-dimensional representation

$$
\rho_{1}: G \hookrightarrow A^{\times} \hookrightarrow \mathrm{GL}_{2}\left(\mathbb{Q}\left(\zeta_{s}\right)\right) .
$$

Denote the character of ρ_{1} by $\chi_{1}: G \rightarrow F$. We claim that $\mathbb{Q}\left(\chi_{1}\right)=F$. Indeed, since A is an F-algebra, the trace of every element of A lies in F, and in particular, $\mathbb{Q}\left(\chi_{1}\right) \subset F$. On the other hand, $\chi_{1}\left(\zeta_{s}\right)=\zeta_{s}+\zeta_{s}^{-1}$ generates F over \mathbb{Q}. This proves the claim. Thus χ_{1} has exactly

$$
r=[F: \mathbb{Q}]=\frac{1}{2}\left[\mathbb{Q}\left(\zeta_{s}\right): \mathbb{Q}\right]=2^{l}
$$

conjugates $\chi_{1}, \ldots, \chi_{r}$ over \mathbb{Q}, and $\chi=\chi_{1}+\cdots+\chi_{r}$ is an irreducible character over \mathbb{Q}.

Note that since $s=2^{l+2} \geqslant 4,\left(\zeta_{s}-\zeta_{s}^{-1}\right)^{2}<0, A \otimes_{F} \mathbb{R}$ is \mathbb{R}-isomorphic to the Hamiltonian quaternion algebra $\mathbb{H}=(-1,-1)$ and hence, is non-split. Thus $\operatorname{ind}(A)=2$. Since $A=\operatorname{Env}_{\mathbb{Q}}(\rho)$, Lemma 2.4(d) tells us that $m_{\mathbb{Q}}\left(\chi_{1}\right)=2$. Applying Corollary 12.3(b), as in (13.2), we conclude that $\mathrm{ed}_{2}(\chi)=\operatorname{ed}(\chi)=r=2^{l}$, as desired.

14. Essential dimension of modular representations

Let G be a finite group and $\operatorname{Rep}_{G, k}$ be the functor of representations defined at the beginning of Section 6. In the non-modular setting (where char (k) does not divide $|G|$), we know that

$$
\operatorname{ed}\left(\operatorname{Rep}_{G, k}\right) \text { is } \begin{cases}0, & \text { if } \operatorname{char}(k)>0, \text { by Remark 6.5, and } \\ \leqslant|G| / 4, & \text { if } \operatorname{char}(k)=0, \text { by Proposition 9.2. }\end{cases}
$$

We shall now see that essential dimension of representations behaves very differently in the modular case.
Theorem 14.1. Let k be a field of characteristic p. Suppose a finite group G contains an elementary abelian subgroup $E \simeq(\mathbb{Z} / p \mathbb{Z})^{2}$ of rank 2. Then $\operatorname{ed}\left(\boldsymbol{\operatorname { R e p }}_{G, k}\right)=\infty$.

It is clear from the definition of essential dimension that if $k \subset k^{\prime}$ is a field extension then $\operatorname{ed}\left(\operatorname{Rep}_{G, k}\right) \geqslant \operatorname{ed}\left(\boldsymbol{\operatorname { R e p }}_{G, k^{\prime}}\right)$. Thus for the purpose of proving Theorem 14.1 we may replace k by k^{\prime}. In particular, we may assume without loss of generality that k is algebraically closed.

Following D. Quillen, we will assiciate to a finite group G the projective variety $S:=\operatorname{Proj}\left(H^{\bullet}(G, k)\right)$, where the graded ring $H^{\bullet}(G, k)$ is defined as the full
cohomology ring $H^{*}(G, k)$, if $p=2$, or as the direct sum of even-dimensional cohomology groups $H^{\text {even }}(G, k)$ if $p \geqslant 3$. To every representation $\rho: G \rightarrow \operatorname{GL}_{n}(K)$ defined over a field K / k (or equivalently, a finitely generated $K[G]$-module), we will denote the support variety of ρ by $\operatorname{Supp}(\rho)$. Note that $\operatorname{Supp}(\rho)$ is a closed subvariety of S. For a detailed discussion of this construction we refer the reader to [2, Chapter 5].

Let Z be a k-variety, and $\mathbf{S u b}_{Z}:$ Fields ${ }_{k} \rightarrow$ Sets be a covariant functor, given by

$$
\operatorname{Sub}_{Z}(K):=\left\{\text { closed subvarieties of } Z_{K}\right\} .
$$

Here subvarieties of Z_{K} are required to be reduced but not necessarily irreducible. Closed subvarieties $X, Y \subset Z_{K}$ represent the same element in $\operatorname{Sub}_{Z}(K)$ if $X(\bar{K})=Y(\bar{K})$ in $Z(\bar{K})$. We will now consider the morphism of functors

$$
\text { Supp: } \boldsymbol{\operatorname { R e p }}_{G, k} \rightarrow \operatorname{Sub}_{S}
$$

which associates to a representation $\rho: G \rightarrow \operatorname{GL}_{n}(K)$ its support variety $\operatorname{Supp}(\rho)$. A theorem of J. Carlson (Carlson's realization theorem) asserts that this morphism of functors is surjective; see [2, Corollary 5.9.2]. (Note that the usual statement of Carlson's realization theorem only says that $\operatorname{Supp}(k): \boldsymbol{\operatorname { R e p }}_{G, k}(k) \rightarrow \operatorname{Sub}_{S}(k)$ is surjective; however, the proof shows that, in fact, $\operatorname{Supp}: \operatorname{Rep}_{G, k}(K) \rightarrow \operatorname{Sub}_{S}(K)$ is surjective for every field K / k.) Thus $\operatorname{ed}\left(\operatorname{Rep}_{G, k}\right) \geqslant \operatorname{ed}\left(\mathbf{S u b}_{S}\right)$; see [3, Lemma 1.9].

By a theorem of Quillen, the condition that G contains an elementary abelian subgroup of rank $\geqslant 2$ is equivalent to $\operatorname{dim}(S) \geqslant 1$; see [2, Theorem 5.3.8]. It now suffices to prove the following proposition.
Proposition 14.2. Let Z be a projective variety of dimension $d \geqslant 1$ defined over an infinite field k. Then $\operatorname{ed}\left(\mathbf{S u b}_{Z}\right)=\infty$.

Proof. We claim that there exists a surjective morphism $Z \rightarrow \mathbb{P}^{d}$ defined over k. Indeed, embed Z into a projective space \mathbb{P}^{N}. If $d=N$, there is nothing to prove. If $d<N$, then there exists a linear subspace of dimension $N-d-1$ defined over k which does not intersect Z. Projecting Z from this subspace to a complementary linear subspace of dimension d, we obtain a desired surjective morphism $Z \rightarrow \mathbb{P}^{d}$. This proves the claim.

The morphism $Z \rightarrow \mathbb{P}^{d}$ induces a surjective morphism of functors $\mathbf{S u b}_{Z} \rightarrow$ $\mathbf{S u b}_{\mathbb{P} d}$. Using [3, Lemma 1.9] once again, we see that it suffices to show $\operatorname{ed}\left(\mathbf{S u b}_{\mathbb{P} d}\right)=\infty$. In other words, we may assume without loss of generality that $Z=\mathbb{P}^{d}$.

Let L / k be a field, $a_{1}, \ldots, a_{n} \in L$, and $X[n]$ be the union of the points

$$
\begin{equation*}
X_{1}=\left(1: a_{1}: 0: \cdots: 0\right), \ldots, X_{n}=\left(1: a_{n}: 0 \cdots: 0\right) \tag{14.3}
\end{equation*}
$$

in \mathbb{P}^{d}. We view $X[n]$ as an element of $\mathbf{S u b}_{\mathbb{P}^{d}}(L)$.

Lemma 14.4. Suppose $X[n]$ descends to a subvariety Y defined over a subfield $K \subset L$. Then a_{i} is algebraic over K for every $i=1, \ldots, n$.

Proof. Note that $X[n]$ is a subvariety of the projective line $\mathbb{P}^{1} \subset \mathbb{P}^{d}$ given by $x_{3}=\cdots=x_{d+1}=0$, where x_{1}, \ldots, x_{d+1} are the projective coordinates in \mathbb{P}^{d}. Since $X[n]$ descends to Y, we have $Y(\bar{L})=X[n](\bar{L})$. Consequently, Y is a closed subvariety of \mathbb{P}^{1}. (Note that here we are viewing Y as a subvariety of \mathbb{P}^{d}, not as a subscheme.) Thus for the purpose of proving Lemma 14.4 we may replace \mathbb{P}^{d} by \mathbb{P}^{1}, i.e., assume that $d=1$.

By the definition of the functor $\mathbf{S u b}_{\mathbb{P}}, X[n]$ descends to K if $X[n]$ can be cut out (set-theoretically) by homogeneous polynomials $f_{1}, \ldots, f_{s} \in K\left[x_{1}, x_{2}\right]$. In other words, the points $X_{1}=\left(1: a_{1}\right), \ldots, X_{n}=\left(1: a_{n}\right)$ are the only non-trivial solutions, in the algebraic closure \bar{L}, of a system of homogeneous equations

$$
f_{1}\left(x_{1}, x_{2}\right)=\cdots=f_{s}\left(x_{1}, x_{2}\right)=0
$$

with coefficients in K. Since every solution of such a system can be found over \bar{K}, we have $a_{1}, \ldots, a_{n} \in \bar{K}$. This completes the proof of Lemma 14.4.

We now continue with the proof of Proposition 14.2. Taking a_{1}, \ldots, a_{n} to be independent variables and $L:=k\left(a_{1}, \ldots, a_{n}\right)$, we see that $\operatorname{trdeg}_{k}(K)=$ $\operatorname{trdeg}_{k}(L)=n$ and thus in this case $\operatorname{ed}(X[n])=n$. Therefore,

$$
\operatorname{ed}\left(\mathbf{S u b}_{\mathbb{P}^{d}}, k\right) \geqslant \sup _{n \geqslant 1} \operatorname{ed}(X[n])=\infty
$$

This completes the proof of Proposition 14.2 and thus of Theorem 14.1.
Acknowledgements. The authors are grateful to Alexander Merkurjev for contributing Example 11.5 and to the anonymous referee for a careful reading of our paper and numerous constructive suggestions. In particular, the referee brought to our attention a theorem of Benard [1], which allowed us to strengthen the statement and simplify the proof of Proposition 10.1. We are also grateful to Patrick Brosnan, Jon Carlson, Jerome Lefebvre, Julia Pevtsova, and Lior Silberman for stimulating discussions.

A. Modular representations of high essential dimension by Julia Pevtsova and Zinovy Reichstein

Let k be a field of characteristic p, G be a finite group containing a rank 2 elementary abelian subgroup $E \simeq(\mathbb{Z} / p \mathbb{Z})^{2}$. Theorem 14.1 asserts that for every integer n there exists a field extension K_{n} / k and a representation $\rho_{n}: G \rightarrow \mathrm{GL}_{d_{n}}\left(K_{n}\right)$ such that $\mathrm{ed}_{k}\left(\rho_{n}\right) \geqslant n$. However, the proof of Theorem 14.1 in Section 14 does not tell us
how to construct ρ_{n} or what $d_{n}=\operatorname{dim}\left(\rho_{n}\right)$ may be in terms of n. The purpose of this appendix is to prove the following constructive version of Theorem 14.1.
Theorem A.1. Let k be a field of characteristic p, and G be a finite group. Suppose G contains an elementary abelian subgroup $E \simeq(\mathbb{Z} / p \mathbb{Z})^{2}$ of rank 2 , and let $W:=W_{G}(E)=N_{G}(E) / C_{G}(E)$ be the Weyl group of E in G. Set $K_{n}:=k\left(a_{1}, \ldots, a_{n}\right)$, where a_{1}, \ldots, a_{n} are independent variables. Then for every integer $n \geqslant 1$ there exists a representation $\rho_{n}: G \rightarrow \mathrm{GL}_{d_{n}}\left(K_{n}\right)$ of dimension $d_{n}=\operatorname{dim}\left(\rho_{n}\right) \leqslant n|G \| W| / p$ such that $\mathrm{ed}_{k}\left(\rho_{n}\right)=n$.

The approach taken in the previous section is to use the support variety of a G representation ρ to bound $\operatorname{ed}(\rho)$ from below. Here we will first restrict ρ to E, then use the support variety of $\rho_{\mid E}$ to bound ed (ρ) from below. Support varieties for E representations admit an alternative description as rank varieties, due to Carlson [9] (see also [2, Section 5.8]). This makes them more amenable to explicit computations. In particular, in the course of proving Theorem A. 1 we will construct an explicit representation ρ_{n} with $\operatorname{ed}\left(\rho_{n}\right)=n$ and $\operatorname{dim}\left(\rho_{n}\right) \leqslant n|G||W| / p$.

Up to nilpotents, $H^{\bullet}(E, k)$ is a polynomial ring in two variables over k; hence, $\operatorname{Proj}\left(H^{\bullet}(E, k)\right)=\mathbb{P}^{1}$. For K / k a field extension, the support variety $\operatorname{Supp}(\rho)$ of a representation $\rho: E \rightarrow \mathrm{GL}_{n}(K)$ is thus a K-subvariety of \mathbb{P}^{1}. The Weyl group W of E in G naturally acts on E by conjugation; this induces a W-action on $H^{\bullet}(E, k)$ and thus on \mathbb{P}^{1}. If ρ can be lifted to a K-representation of G, then $\operatorname{Supp}(\rho)$ is easily seen to be invariant under the action of W on \mathbb{P}_{K}^{1}.

Let $\mathbf{S u b}_{\mathbb{P}^{1}, W}:$ Fields $_{k} \rightarrow$ Sets be the functor given by

$$
\mathbf{S u b}_{\mathbb{P}^{1}, W}(K):=\left\{\text { closed } W \text {-invariant subvarieties of } \mathbb{P}_{K}^{1}\right\}
$$

Here subvarieties of \mathbb{P}_{K}^{1} are required to be reduced but not necessarily irreducible, as in Section 14. Let

$$
\operatorname{Supp}^{E}: \boldsymbol{\operatorname { R e p }}_{G, k} \rightarrow \mathbf{S u b}_{\mathbb{P}^{1}, W}
$$

be the morphism of functors which associates to a representation $\rho: G \rightarrow \mathrm{GL}_{n}(K)$ the support variety $\operatorname{Supp}\left(\rho_{\mid E}\right) \subset \mathbb{P}_{K}^{1}$. One can show that $\operatorname{Supp}^{E}: \operatorname{Rep}_{G, k} \rightarrow$ $\operatorname{Sub}_{\mathbb{P}^{1}, W}$ is surjective, but we will not do that here. For the purpose of proving Theorem 14.1 the following variant of Carlson's realization theorem [10] for W-invariant subvarieties of \mathbb{P}^{1} will suffice.

Proposition A.2. Let K be an algebraically closed field extension of k. Let X_{1}, \ldots, X_{m} be distinct K-points of \mathbb{P}^{1} such that their union $X=X_{1} \cup \ldots \cup X_{m}$ is W-invariant. Then there exists a $K[G]$-module M such that $\operatorname{dim}_{K}(M)=m|G| / p$ and $\operatorname{Supp}^{E}(M)=X$.

Let g_{1}, g_{2} be group generators of E. For any point $x=\left[x_{1}: x_{2}\right]$ on \mathbb{P}_{K}^{1}, consider the element

$$
\alpha_{x}=x_{1}\left(g_{1}-1\right)+x_{2}\left(g_{2}-1\right)+1
$$

in the group algebra $K[E]$. Since $\alpha_{x}^{p}=1$, the element α_{x} generates a cyclic subgroup of $K[E]$, commonly referred to as the "cyclic shifted subgroup" corresponding to the point x (see $[9,2.11]$). We denote by $K\left[\alpha_{x}\right]$ the subalgebra of $K[E]$ generated by α_{x}. By construction, $K\left[\alpha_{x}\right] \simeq K[\mathbb{Z} / p \mathbb{Z}] \simeq K[t] /\left(t^{p}\right)$.

Let $k \subset K \subset L$ be field extensions, and M be a $K[E]$-module. An L-point $x=\left[x_{1}: x_{2}\right]$ of \mathbb{P}^{1} belongs to the rank variety $\operatorname{Supp}^{E}(M)$ (defined over K) if and only if the restriction $\left(M \otimes_{K} L\right) \downarrow_{L\left[\alpha_{x}\right]}$ is not a free $L\left[\alpha_{x}\right]$-module (see [2, II.5.8]). If M is finite-dimensional and K is algebraically closed then it suffices to check the K-points $x=\left[x_{1}: x_{2}\right] \in \mathbb{P}_{K}^{1}$ to determine the rank variety of M. We also note that by [9, Lemma 6.4] this description of the rank variety is independent of the choice of generators of E.

The following lemma is a very special case of [31, Prop. 4.1]. For the reader's convenience we supply a direct proof.
Lemma A.3. Let K be an algebraically closed field, and let $x=\left[x_{1}: x_{2}\right] \in \mathbb{P}^{1}$ be a K-point. Let M be a (finite dimensional) $K\left[\alpha_{x}\right]$-module. Then

$$
\operatorname{Supp}^{E}\left(\operatorname{Ind}_{K\left[\alpha_{x}\right]}^{K[E]} M\right)= \begin{cases}\emptyset, & \text { if } M \text { is free } \\ x, & \text { otherwise }\end{cases}
$$

where $\operatorname{Ind}_{K\left[\alpha_{x}\right]}^{K[E]} M=K[E] \otimes_{K\left[\alpha_{x}\right]} M$ is the (tensor) induction of M from $K\left[\alpha_{x}\right]$ to $K[E]$.

Proof. Since rank varieties distribute over direct sums,

$$
\begin{equation*}
\operatorname{Supp}^{E}\left(M_{1} \oplus M_{2}\right)=\operatorname{Supp}^{E}\left(M_{1}\right) \cup \operatorname{Supp}^{E}\left(M_{2}\right) \tag{A.4}
\end{equation*}
$$

it suffices to prove the lemma for each of the p indecomposable $K\left[\alpha_{x}\right]$-modules.
If M is a free $K\left[\alpha_{x}\right]$-module, then the induced module $\operatorname{Ind}_{K\left[\alpha_{x}\right]}^{K[E]} M$ is free which implies that the rank variety is empty. Hence, it suffices to prove the lemma for the remaining $p-1$ indecomposable $K\left[\alpha_{x}\right]$-modules. After a linear substitution of generators $\left\{g_{1}-1, g_{2}-1\right\}$ of the augmentation ideal of the group algebra $K[E]$ we may assume that $x=\left[\begin{array}{ll}1: 0\end{array}\right]$. Call the new generators of the augmentation ideal s and t, so that $K[E] \cong K[s, t] /\left(s^{p}, t^{p}\right)$. The list of representatives of isomorphism classes of non-free indecomposable $K[s] /\left(s^{p}\right)$ modules is $\left\{K, K[s] /\left(s^{2}\right), \ldots, K[s] /\left(s^{p-1}\right)\right\}$. Hence, the lemma is reduced to the following statement. Consider a truncated polynomial algebra $K[s, t] /\left(s^{p}, t^{p}\right)$ acting on

$$
\operatorname{Ind}_{K[s] /\left(s^{p}\right)}^{K[E]} K[s] /\left(s^{n}\right)=K[s, t] /\left(s^{p}, t^{p}\right) \otimes_{K[s] / s^{p}} K[s] /\left(s^{n}\right) \cong K[t, s] /\left(t^{p}, s^{n}\right)
$$

$1 \leqslant n \leqslant p-1$, via the obvious projection map. Then the restriction of $K[t, s] /\left(t^{p}, s^{n}\right)$ to the subalgebra of $K[s, t] /\left(s^{p}, t^{p}\right)$ generated by $a s+b t$ is free
if and only if $b \neq 0$. Indeed, if $b \neq 0$, then

$$
K[t, s] /\left(t^{p}, s^{n}\right) \cong K[a s+b t, s] /\left((a s+b t)^{p}, s^{n}\right) \cong \bigoplus_{i=0}^{n-1} s^{i} K[a s+b t] /(a s+b t)^{p}
$$

is a free $K[a s+b t] /(a s+b t)^{p}$-module. If $b=0$, then $(a s)^{p-1}=(a s+b t)^{p-1}$ annihilates $K[t, s] /\left(t^{p}, s^{n}\right)$ since $n<p$. Therefore, $K[t, s] /\left(t^{p}, s^{n}\right)$ is not a free $K[a s+b t] /(a s+b t)^{p}$-module.

Proof of Proposition A.2. We claim that $M:=\operatorname{Ind}_{E}^{G} M_{X}$ has the desired properties, where $M_{X}:=\bigoplus_{i=1}^{m} \operatorname{Ind}_{K\left[\alpha_{X_{i}}\right]}^{K[E]} K$. Clearly, $\operatorname{dim}\left(M_{X}\right)=m p$ and, thus,

$$
\operatorname{dim}(M)=\frac{|G|}{p^{2}} \cdot \operatorname{dim}\left(M_{X}\right)=\frac{m|G|}{p} .
$$

It remains to show that $\operatorname{Supp}^{E}(M)=X$. We will use the double coset formula

$$
\operatorname{Res}_{E}^{G} \operatorname{Ind}_{E}^{G} M_{X}=\bigoplus_{g \in E \backslash G / E} \operatorname{Ind}_{E \cap E^{g}}^{E} \operatorname{Res}_{E \cap E^{g}}^{E^{g}} g M_{X}
$$

By (A.4) we only need to compute the variety for each summand in the double coset formula. Since M_{X} is a direct summand of $\operatorname{Res}_{E}^{G} \operatorname{Ind}_{E}^{G} M_{X}$, we have

$$
X=\operatorname{Supp}^{E}\left(M_{X}\right) \subset \operatorname{Supp}^{E}\left(\operatorname{Ind}_{E}^{G} M_{X}\right)=\operatorname{Supp}^{E}(M) .
$$

We need to prove the opposite inclusion, $\operatorname{Supp}^{E}\left(\operatorname{Ind}_{E \cap E^{g}}^{E} \operatorname{Res}_{E \cap E^{g}}^{E^{g}} g M_{X_{i}}\right) \subset X$, for each $M_{X_{i}}=\operatorname{Ind}_{K\left[\alpha_{X_{i}}\right]}^{K[E]} K$. Consider three cases:
(a) $E \cap E^{g}=E$, that is, $g \in N_{G}(E)$. Then the corresponding summand in the double coset formula becomes $g M_{X}$, the module M_{X} twisted by g. We have $\operatorname{Supp}^{E}\left(g M_{X}\right)=g \operatorname{Supp}^{E}\left(M_{X}\right)=g X=X$, since X is W-invariant.
(b) $E \cap E^{g}=\emptyset$. Then the corresponding summand is induced from the trivial group and, hence, is free and has empty rank variety.
(c) $E \cap E^{g}=\langle\sigma\rangle$, a cyclic subgroup of E. Then $\sigma \in E^{g}=g E g^{-1}$ and, hence, $g^{-1} \sigma g \in E$. If $g^{-1} \sigma g \notin\langle\sigma\rangle$, then $\left\{\sigma, g^{-1} \sigma g\right\}$ generate E which implies that $g \in N_{G}(E)$ and contradicts the assumption $E \cap E^{g} \neq E$. Therefore, $g^{-1} \sigma g \in\langle\sigma\rangle$. By Lemma A.3, $\operatorname{Supp}^{E}\left(\operatorname{Ind}_{K\langle\sigma\rangle}^{K[E]} g M_{X_{i}}\right)$ contains at most one point: the point corresponding to the subgroup $\langle\sigma\rangle$. Moreover, this variety is non-empty only if $g M_{X_{i}}$ is not free as $\langle\sigma\rangle$-module. By the definition of the action on the twisted module $g M_{X_{i}}$, this happens if and only if $M_{X_{i}}$ is not free as $\left\langle g^{-1} \sigma g\right\rangle$-module. Since $\left\langle g^{-1} \sigma g\right\rangle=\langle\sigma\rangle$, this is equivalent to the restriction of $M_{X_{i}}$ to $\langle\sigma\rangle$ not being free. Hence, $\operatorname{Supp}^{E}\left(\operatorname{Ind}_{K\langle\sigma\rangle}^{K[E]} g M_{X_{i}}\right) \subset \operatorname{Supp}^{E}\left(M_{X_{i}}\right) \subset X$, as desired.

Proof of Theorem A.1. For $i=1, \ldots, n$, let $X_{i}=\left(1: a_{i}\right)$ be a K_{n}-point of \mathbb{P}^{1}, and $Y[n]$ be the union of the W-orbits of X_{1}, \ldots, X_{n}. We claim that $\operatorname{ed}(Y[n])=n$, where we view $Y[n]$ as an object in $\operatorname{Sub}_{\mathbb{P}^{1}, W}\left(\bar{K}_{n}\right)$, where \bar{K}_{n} be the algebraic closure of K_{n}.

Suppose $Y[n]$ descends to a subfield $k \subset F \subset \bar{K}_{n}$. Then by Lemma 14.4, a_{1}, \ldots, a_{n} are algebraic over F. In other words, \bar{K}_{n} / F is an algebraic extension or, equivalently, $\operatorname{trdeg}_{k}(F)=n$. This shows that $\operatorname{ed}(Y[n])=n$, as claimed.

By Proposition A.2, there exists a representation $\rho_{n}: G \rightarrow \mathrm{GL}_{d_{n}}\left(\bar{K}_{n}\right)$ with $\operatorname{Supp}^{E}\left(\rho_{n}\right)=Y[n]$. Thus ed ${ }_{k}\left(\rho_{n}\right) \geqslant \operatorname{ed}_{k}(Y[n]) \geqslant n$. Moreover, since ρ_{n} is defined over K_{n} and $\operatorname{trdeg}_{k}\left(K_{n}\right)=n$, we have $\operatorname{ed}_{k}\left(\rho_{n}\right) \leqslant n$. Thus ed ${ }_{k}\left(\rho_{n}\right)=n$, as desired.

Finally, since $Y[n]$ is a union of at most $n \cdot|W| K_{n}$-points of \mathbb{P}^{1}, Proposition A. 2 also tells us that $d_{n}=\operatorname{dim}\left(\rho_{n}\right) \leqslant n|W||G| / p$.

Many natural questions about essential dimension of modular representations remain open. We will conclude this appendix by stating some of these questions below. In what follows we will assume that k is a field of characteristic $p>0, G$ is a finite group, and $E \simeq(\mathbb{Z} / p \mathbb{Z})^{2}$ is a subgroup of G. We will allow K to vary over field extensions of k and ρ to vary over finite-dimensional representations of G defined over K.
(1) Fix an integer $d \geqslant 1$. What is the maximal value of $\operatorname{ed}_{k}(\rho)$, where the maximum is taken over all representations ρ of G of dimension $\leqslant d$?
(2) Let $S:=\operatorname{Proj}\left(H^{\bullet}(G, k)\right)$, as in Section 14, and fix a closed subvariety $X \subset S$ defined over k. What is the maximal value of $\operatorname{ed}_{k}(\rho)$, where ρ is subject to the condition $\operatorname{Supp}(\rho)=X_{K}$?
(3) Let $W:=W_{G}(E)=N_{G}(E) / C_{G}(E)$ be the Weyl group of E in G and X be a W-equivariant subvariety of $\mathbb{P}^{1}:=\operatorname{Proj}\left(H^{\bullet}(E, k)\right)$ defined over k. What is the maximal value of $\operatorname{ed}_{k}(\rho)$, where ρ is subject to the condition $\operatorname{Supp}^{E}(\rho)=X_{K}$?
(4) What are the maximal values of $\mathrm{ed}_{k}(\rho)-\operatorname{ed}_{k}(\operatorname{Supp}(\rho))$ and $\mathrm{ed}_{k}(\rho)-$ $\operatorname{ed}_{k}\left(\operatorname{Supp}^{E}(\rho)\right)$?

References

[1] M. Benard, Quaternion constituents of group algebras. Proc. Amer. Math. Soc., 30 (1971), 217-219. Zbl 0223.16008 MR 280609
[2] D. J. Benson, Representations and cohomology. II, second ed., Cambridge Studies in Advanced Mathematics, 31. Cambridge University Press, Cambridge, 1998. Zbl 0908.20002 MR 1634407
[3] G. Berhuy and G. Favi, Essential dimension: a functorial point of view (after A. Merkurjev). Doc. Math., 8 (2003), 279-330. Zbl 1101.14324 MR 2029168
[4] S. D. Berman, On Schur's index. Uspehi Mat. Nauk 16, 2 (1961), no. 98, 95-99. Zbl 0102.27101 MR 125165
[5] A. Blanchet, Function fields of generalized Brauer-Severi varieties. Comm. Algebra, 19 (1991), no. 1, 97-118. Zbl 0717.16014 MR 1092553
[6] A. Borel and J.-P. Serre, Théorèmes de finitude en cohomologie galoisienne. Comment. Math. Helv., 39 (1964), 111-164. Zbl 0143.05901 MR 181643
[7] R. Brauer, Untersuchungen über die arithmetischen Eigenschaften von Gruppen linearer Substitutionen. Math. Z., 31 (1930), no. 1, 733-747. Zbl 56.0865.04 MR 1545145
[8] P. Brosnan, Z. Reichstein and A. Vistoli, Essential dimension of moduli of curves and other algebraic stacks. With an appendix by Najmuddin Fakhruddin. J. Eur. Math. Soc. (JEMS), $\mathbf{1 3}$ (2011), no. 4, 1079-1112. Zbl 1234.14003 MR 2800485
[9] J. F. Carlson, The varieties and the cohomology ring of a module. J. Algebra, 85 (1983), no. 1, 104-143. Zbl 0526.20040 MR 723070
[10] J. F. Carlson, The variety of an indecomposable module is connected. Invent. Math., 77 (1984), no. 2, 291-299. Zbl 0543.20032 MR 752822
[11] V. Chernousov, S. Gille and A. Merkurjev, Motivic decomposition of isotropic projective homogeneous varieties. Duke Math. J., 126 (2005), no. 1, 137-159. Zbl 1086.14041 MR 2110630
[12] V. Chernousov and A. Merkurjev, Motivic decomposition of projective homogeneous varieties and the Krull-Schmidt theorem. Transform. Groups, 11 (2006), no. 3, 371-386. Zbl 1111.14009 MR 2264459
[13] C. W. Curtis and I. Reiner, Methods of representation theory. I. With applications to finite groups and orders. Pure and Applied Mathematics, A Wiley-Interscience Publication. John Wiley \& Sons, Inc., New York, 1981. Zbl 0469.20001 MR 632548
[14] C. W. Curtis and I. Reiner, Methods of representation theory. II. With applications to finite groups and orders. Pure and Applied Mathematics, A Wiley-Interscience Publication. John Wiley \& Sons, Inc., New York, 1987. Zbl 0616.20001 MR 892316
[15] R. Elman, N. Karpenko and A. Merkurjev, The algebraic and geometric theory of quadratic forms. American Mathematical Society Colloquium Publications, 56. American Mathematical Society, Providence, RI, 2008. Zbl 1165.11042 MR 2427530
[16] N. A. Karpenko, Cohomology of relative cellular spaces and of isotropic flag varieties. Algebra i Analiz, 12 (2000), no. 1, 3-69. Zbl 1003.14016 MR 1758562
[17] N. A. Karpenko, Weil transfer of algebraic cycles. Indag. Math. (N.S.), 11 (2000), no. 1, 73-86. Zbl 1047.14004 MR 1809664
[18] N. A. Karpenko, Canonical dimension in Proceedings of the International Congress of Mathematicians. II, 146-161. Hindustan Book Agency, New Delhi, 2010. Zbl 1227.14043 MR 2827789
[19] N. A. Karpenko, Upper motives of outer algebraic groups in Quadratic forms, linear algebraic groups, and cohomology, Dev. Math. 18, 249-258, Springer, New York, 2010. Zbl 1216.14043 MR 2648730
[20] N. A Karpenko, Incompressibility of quadratic Weil transfer of generalized SeveriBrauer varieties. J. Inst. Math. Jussieu, 11 (2012), no. 1, 119-131. Zbl 1244.14032 MR 2862376
[21] N. A. Karpenko, Sufficiently generic orthogonal Grassmannians. J. Algebra, 372 (2012), 365-375. Zbl 1271.14063 MR 2990015
[22] N. A. Karpenko, Upper motives of algebraic groups and incompressibility of SeveriBrauer varieties. J. Reine Angew. Math., 677 (2013), 179-198. Zbl 1267.14009 MR 3039776
[23] N. A. Karpenko, Incompressibility of products of Weil transfers of generalized SeveriBrauer varieties. Math. Z., 279 (2015), no. 3-4, 767-777. Zbl 06422640 MR 3318250
[24] N. A. Karpenko and A. S. Merkurjev, Canonical p-dimension of algebraic groups. Adv. Math., 205 (2006), no. 2, 410-433. Zbl 1119.14041 MR 2258262
[25] N. A. Karpenko and A. S. Merkurjev, Essential dimension of finite p-groups. Invent. Math., 172 (2008), no. 3, 491-508. Zbl 1200.12002 MR 2393078
[26] N. A. Karpenko and A. S. Merkurjev, On standard norm varieties. Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 1, 175-214. Zbl 1275.14006 MR 3087392
[27] T. Y. Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics, 67. American Mathematical Society, Providence, RI, 2005. Zbl 1068.11023 MR 2104929
[28] S. Lang, Algebra, third ed., Graduate Texts in Mathematics, 211. Springer-Verlag, New York, 2002. Zbl 0984.00001 MR 1878556
[29] A. S. Merkurjev, Essential dimension in Quadratic Forms - Algebra, Arithmetic, and Geometry, 299-326. Contemp. Math., 493. Amer. Math. Soc., Providence, RI, 2009, Zbl 1188.14006 MR 2537108
[30] A. S. Merkurjev, Essential dimension: a survey. Transform. Groups, 18 (2013), no. 2, 415-481. Zbl 1278.14066 MR 3055773
[31] J. Pevtsova, Support cones for infinitesimal group schemes in Hopf algebras, 203-213. Lecture Notes in Pure and Applied Math., 237. Dekker, New York, 2004. Zbl 1063.20051 MR 2051741
[32] Z. Reichstein, Essential dimension in Proceedings of the International Congress of Mathematicians. II, 162-188. Hindustan Book Agency, New Delhi, 2010. Zbl 1232.14030 MR 2827790
[33] Z. Reichstein and B. Youssin, Essential dimensions of algebraic groups and a resolution theorem for G-varieties. With an appendix by János Kollár and Endre Szabó. Canad. J. Math., 52 (2000), no. 5, 1018-1056. Zbl 1044.14023 MR 1782331
[34] J.-P. Serre, Linear representations of finite groups. Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, 42. Springer-Verlag, New York-Heidelberg, 1977. Zbl 0355.20006 MR 450380
[35] A. R. Wadsworth, The index reduction formula for generic partial splitting varieties. Comm. Algebra, 21 (1993), no. 4, 1063-1070. Zbl 0788.16014 MR 1209920
[36] T. Yamada, On the group algebras of metabelian groups over algebraic number fields. I. Osaka J. Math. 6 (1969), 211-228. Zbl 0184.05102 MR 263944
[37] T. Yamada, The Schur subgroup of the Brauer group. Lecture Notes in Mathematics, 397. Springer-Verlag, Berlin-New York, 1974. Zbl 0321.20004 MR 347957

Received July 27, 2014; revised March 17, 2015
N. A. Karpenko, Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
E-mail: karpenko@ualberta.ca
Z. Reichstein, Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada
E-mail: reichst@math.ubc.ca
J. Pevtsova, Department of Mathematics, University of Washington, Seattle, WA 98105, USA
E-mail: julia@mah.washington.edu

[^0]: *The first author acknowledges partial support of the French Agence Nationale de la Recherche (ANR) under reference ANR-12-BL01-0005; his work has also been partially supported by a start-up grant of the University of Alberta and a Discovery Grant from the National Science and Engineering Board of Canada.
 ${ }^{* *}$ The second author has been partially supported by a Discovery Grant from the National Science and Engineering Board of Canada.
 ${ }^{\dagger}$ Partially supported by the NSF grant DMS-0953011.

