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A numerical invariant for linear representations of finite groups

Nikita A. Karpenko* and Zinovy Reichstein**

With an appendix by Julia Pevtsova' and Zinovy Reichstein

Abstract. We study the notion ol essential dimension lor a linear representation of a finite
group. In characteristic zero we relate it to the canonical dimension of certain products of Weil
transfers ot geneiahzed Seven-Biauei varieties. We then proceed to compute the canonical
dimension of a broad class ol varieties ot this type, extending earlier results of the first author.
As a consequence, we prove analogues of classical theorems of R. Brauer and O Schilling
about the Schur index, where the Schur index ol a icpresentation is replaced by its essential
dimension. In the last section we show that in the modular setting ed(p) can be arbitrary large
(under a nuld assumption on G) Here G is fixed, and p is allowed to range over the finite-
dimensional representations of G The appendix gives a constiuctive version of this result.
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!• Introduction

Let K/k be a field extension, G be a finite group of exponent e, and p: G -»•

GL„(/f) be a non-modular representation of G whose character takes values in k.
(Here "non-modular" means that char(A does not divide |G|.) A theorem of Brauer

says that if k contains a primitive eth root of unity then p is defined over k,
'•e., p is /(-equivalent to a representation p'\ G -»• GL„(A); see, e.g. [34, §12.3], If

& k, we would like to know "how far" p is from being defined over k. In the case,
where p is absolutely irreducible, a classical answer to this question is given by the
Schur index ot p, which is the smallest degree of a finite field extension l/k such
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that p is defined over /. Some background material on the Schur index and further
references can be found in Section 2.

In this paper we introduce and study another numerical invariant, the essential

dimension ed(p), which measures "how far" p is from being defined over k in a

different way. Here p is not assumed to be irreducible; for the definition of ed(p),
see Section 6. In Section 8 we show that the maximal value of ed(p), as p ranges
over representations with a fixed character G -> k, which we denote by ed(/),
can be expressed as the canonical dimension of a certain product of Weil transfers of
generalized Severi-Brauer varieties. We use this to show that ed(p) ^ |G|/4 for any

n, k, and K/ k in Section 9 and to prove a variant of a classical theorem of Brauer in

Section 10. In Section 11 we compute the canonical dimension of a broad class of
Weil transfers of generalized Severi-Brauer varieties, extending earlier results of the

first author from f20] and [22], This leads to a formula for the essential p-dimension
of an irreducible character in terms of its decomposition into absolutely irreducible

components; see Corollary 12.3. As an application we prove a variant of a classical

theorem of Schilling in Section 13.

In Section 14 we show that in the modular setting ed(p) can be arbitrary large

(under a mild assumption on G). Here G is assumed to be fixed, and p is allowed

to range over the finite-dimensional representations of G. The appendix proves a

constructive version of this result.

2. Notation and representation-theoretic preliminaries

Throughout this paper G will denote a finite group of exponent e, k a field, k an

algebraic closure of k, K and F field extensions of k, a primitive r/th root of
unity, p a finite-dimensional representation of G, and x a character of G. In this

section we will assume that char(£) does not divide the order of G.

2a. Characters and character values. A function x- G -» k is said to be a
character of G, if xis the character of some representation p: G GL„(A') for
some field extension K/k.

If X- G k is a character, and F/k is a field, we set

F(X):= F(x(g)\geG)cF(t;e).

Since F(t,e) is an abelian extension of F, so is F(x). Moreover, F{x) is stable under

automorphisms of F(^e)/F.
Two characters, /, G —> k are said to be conjugate over F if there exists an

/•"-isomorphism of fields a: F(x) —> F(x') such that a o x x'
Lemma 2.1. Let /, G ^ k he characters and F/ k be afield extension. Then

(a) Every automorphism h £ Gal(F(^)//•") leaves k{j) invariant.
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(b) If X and x' are conjugate over F then they are conjugate overk.

(c) Suppose k is algebraically closed in F. Then the converse to part (b) also
holds. That is, ify. yf are conjugate over k then they are conjugate over F.

Proof, (a) It is enough to show that h(x(g)) e k(y) for every g e G. Since the

sequence of Galois groups

1 Gal(F(^e)/F(x)) -> Gal(F(tje)/F) -> Gal(F(X)/F) -» 1

is exact, h can be lifted to an element of Ga\(F(fe)/F). By abuse of notation,
we will continue to denote this element of Gal(F{ije)/F) by h. The eigenvalues
of p(g) are of the form iff Q' for some integers / x in. The automorphism h
sends ije to another primitive cth root of unity tjJe for some integer j. Then

h(x(g)) h(Q + • + C") Si" + ' • + Uin X(gj) e k(x),

as desired.

(b) is an immediate consequence of (a).
(c) If k is algebraically closed in F, then the homomorphism

Ga\(F(X)/F)^Gä\(k(x)/k)

given by a a\k(x) is surjective; see [28, Theorem VI. 1.12].

2b. The envelope of a representation. If p: G -> GL,, (F) is a representation over
some field F/k, we define the k-envelope Env^(p) as the /c-linear span of p(G)
in M„(F). Note that EnvGp) is a fc-subalgebra of M„(F).
Lemma 2.2. For any integer s j; 1, the k-algebras Env^G p) and Env^ (p) are
isomorphic.

Proof. The diagonal embedding M„ (/^) ^ M„(F) x ••• x M„(F) (s times) induces
an isomorphism between Env,t(p) and Env^G • p).

Lemma 2.3. Assume the character y °.f P'-G GL„(F) is k-valued. Then
the natural homomorphism Env^(p) (Ak I' Envp (p) is an isomorphism of F-
algebras.

Proof It suffices to show that if p(g\) p(gr) are linearly dependent over F for
some elements #i gr e G, then they are linearly dependent over k. Indeed,
suppose

aip(gi) + + arp{gr) 0

in M„(F) for some a\ ar e F, such that r/, 7^ 0 for some i. Then

tr(("iP(£i) + + arp(gr))-p(g)) 0
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for every g e G. which simplifies to

"iX(gig) + + "rX(grg) 0.

The homogeneous linear system

*i;r0riff) + --- + *rxter£) o

in variables x\ xr has coefficients in k and a non-trivial solution in F. Hence,
it has a non-trivial solution b\,..., br in A:, and we get that

tr((/?ip(^i) + ••• + brp(gr)) p{g)) 0

for every g e G.

Note that Env^(p) is, by definition, a homomorphic image of the group ring k[G}.
Hence, Env^fp) is semisimple and consequently, the trace form in Env^(p) is non-
degenerate. It follows that the elements p(gi),..., p(gr) are linearly dependent

over k, as desired.

2c. The Schur index. Suppose Kjk is a field extension, and p\ \ G —> GL„(K)
is an absolutely irreducible representation with character/i: G —» K. By taking
F K in Lemma 2.3, one easily deduces that Envyt(^,)(pi) is a central simple
algebra of degree n over k{xi). The index of this algebra is called the Sclutr index

of pi. We will denote it by m^ (pi).
In the sequel we will need the following properties of the Schur index.

Lemma 2.4. Let K be a field, G be a finite group such that char(A') does not
divide |G|, and p: G —> GL„ (K) be an irreducible representation. Denote the

character of p by X-

(a) Over the algebraic closure K, p decomposes as

Px ~ /M(pi ® ••• ® pr), (2.5)

where f)\ pr are pairwise non-isomorphic irreducible representations of
G defined over K, and rn is their common Schur index m/dp\)

K(PT)-

(b) For i 1 r and pas in (a), let Xi'-G -»• K be the character ofp, Then

T(x\) • • K(jr) is an abelian extension of K of degree r. Moreover,

Gal(K(x\)/K) transitively permutes x\, • •, Xr-

(c) Conversely, every irreducible representation p\: G GL| (K) occurs as

an irreducible component of a unique K-irreducible representation p\G^
GCn(K), as in (2.5).

(d) The center Z of Env^(p) is K-isomorphic to K(xi) K(x2) •••

K(Xr)• Env^(p) is a central simple algebra over Z of index m.
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(e) The multiplicity ofp\ in any representation of G defined over K is a multiple
°f wk(Pi)- Consequently, mk(P\) divides m^ipi) for any field extension

K/k.
(f) m divides dim(pi) • • • dim(pr).

Proof. See 114, Theorem 74.5J for parts (a)-(d), and [13, Corollary 74.8] for parts
(e) and (f).

Corollary 2.6. Let K/k be a field extension, p: G —> GLn(K) be a representation,
whose character takes values in k, and

P d\P\ © •• © drpr

be the irreducible decomposition of p over the algebraic closure K. Then the

following conditions are equivalent.

(1) p can be realized over k, i.e., p is K-equivalent to a representation p'\ G -»
GLn(k).

(2) The Schur index m^ipi) divides d, for evety i 1 r.

Proof. Each pp.G — GL„((/Q is /(-equivalent to some p\\G — GLni.(k). Let
P1 '= d\p\ © • • • © drp'r: G -> GLn(k). Since p and p' have the same character,
p can be realized over k if and only if p' can be realized over k. Hence, we may
replace p by p' and thus assume that K k from now on.

Denote the character of p by x and the character of p, by Xi Since x takes values
in k,di dj whenever Xi and Xi are conjugate over k.

(1) => (2). Suppose p can be realized over k. Decomposing p as a direct sum of
A-irreducibles, we see that it suffices to prove (2) in the case where p is A:-irreducible.
In this case (2) holds by Lemma 2.4(a).

(2) => (1). If a representation p satisfies condition (2), then p is a direct sum of
representations of the form A '»jt(;fi)(Pi © © A?)> where p\,...,ps
are absolutely irreducible representations of G and the characters X\,•••,/$ of
P\'--.,ps are transitively permuted by Gal(A/A). By Lemma 2.4(c), every
representation of this form is defined over k.

3- Preliminaries on essential and canonical dimension

3a. Essential dimension. Let J7 : Fields^ -> Sets be a covariant functor, where
Fields^, is the category of field extensions of A and Sets is the category of sets. We
think of the functor T as specifying the type of algebraic objects under consideration,
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F(K) as the set of algebraic objects of this type defined over K, and the morphism

/"(; ):Jr(K) —> F(L) associated to a field extension

as "base change". For notational simplicity, we will denote the image of y e T(K)
under F(i) by yi.

Given a field extension L/K, as in (3.1), an object a e IF(L) is said to descend

to K if it lies in the image of IF(i). The essential dimension ed(a) is defined as

the minimal transcendence degree of K/k, where a descends to K. The essential

dimension edfT7) of the functor T is the supremum of ed(a) taken over all a e

F{K) and all K.
Usually ed(a) < oo for every a e F(K) and every K/k\ see [8, Remark 2.7],

On the other hand, edjT7) oo in many cases of interest; for example, see

Theorem 14.1.

The essential dimension e&p{a) of a e IF(L) at a prime integer p is defined as

the minimal value of ed(a//), as L' ranges over all finite field extensions L'/L such

that p does not divide the degree [L' : L], The essential dimension ed^J7) is then

defined as the supremum of edp(a), as K ranges over all field extensions of k and a

ranges over J^IK).
For generalities on essential dimension, see [3, 8, 30, 32],

3b. Canonical dimension. An interesting example of a covariant functor Fields^
Sets is the "detection functor" T>x associated to an algebraic /c-variety X. For a field
extension K/k, we define

If k C K L then 0 ^ \T>x(K)\ ^ \T>x(L)\ ^ 1. Thus there is a unique

morphism of sets Vx(K) -> T>x(L), which we define to be T>x(i)-
The essential dimension (respectively, the essential /^-dimension) of the functor

T>x is called the canonical dimension of X (respectively, the canonical p-
dimension of X) and is denoted by cd(3f) (respectively, cd/,(A)). If X is smooth
and projective, then cd(A) (respectively, cd^jA)) equals the minimal dimension of
the image of a rational self-mapX ---> X (respectively, of a correspondence A X
of degree prime to p) In particular,

k C K <-> L (3.1)

T>X(K) :

a one-element set, if X has a Ai-point, and

0, otherwise.

0 cdP(X) < cd(A') ^ dim(A) (3.2)

for any prime p. IfcdfA) dirnjA), we say that X is incompressible. IfcdpfA)
dim(A'), we say that X is /^-incompressible. For details on the notion of canonical
dimension for algebraic varieties, we refer the reader to [30, §4],
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We will say that smooth projective varieties X and Y defined over K are

equivalent if there exist rational maps X ---» Y and Y --* X. Similarly, we will say
that X and Y are /^-equivalent for a prime integer p, if there exist correspondences
X Y and Y X of degree prime to p.

Lemma 3.3. (a) If X and Y are equivalent, then cd(Z) cd(T).

(b) If X and Y are p-equivalent for some prime p. then cdp(X) cdp(Y).

Proof, (a) Let K/k be a field extension. By Nishimura's lemma, X has a AVpoint
if and only if so does Y; see [33, Proposition A.6|. Thus the detection functors T>x
and T>y are isomorphic, and cd(JV) ed(T>x) ed(Vy) cd(T).

For a proof of part (b) see [26, Lemma 3.6 and Remark 3.7].

4. Balanced algebras

Let Z/k be a Galois field extension, and A be a central simple algebra over Z.
Given a e Gal(Z/k), we will denote the "conjugate" Z-algebra A <g>z Z, where the
tensor product is taken via a: Z -> Z, by "A. We will say that A is balanced over k
if01A is Brauer-equivalent to a tensor power of A for every a e Gal(Z/k).

Note that A is balanced, if the Brauer class of A descends to k : aA is then

isomorphic to A for any a. In this section we will consider another family of
balanced algebras.

Let K/k be a field extension, p:G -» GL„(/V) be an irreducible representation
whose character x is valued. Recall from Lemma 2.4 that Env/t(/o) is a central
simple algebra over Z ~ k(xi) • k(xr)-
Proposition 4.1. Env^f/o) is balanced over k.

Proof Recall from [37, p. 14] that a cyclotomic algebra B/Z is a central simple
a'gebra of the form

Ä ®Z(£)w*.
#eCi;il(ZR)/Z)

where £ is a root of unity, Z(£) is a maximal subfield of B, and the basis elements ug
are subject to the relations

Ug.x g(x)ug and Ugith ß(gJi)ugh

for every x e Z(0 and g.h e Gal(Z(^)/Z). Here

ß: Gal(Z(^)/Z) x Gal(Z(f)/Z) Z(0*
ls a 2-cocycle whose values are powers of Following the notational conventions
ln [37], we will write B := (ß. Z{f)/Z).
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By the Brauer-Witt Theorem [37, Corollary 3.111, Env^(p) is Brauer-equivalent
to some cyclotomic algebra B/Z, as above. Thus it suffices to show that every
cyclotomic algebra is balanced over k, i.e., aB is Brauer-equivalent to a power of B

over Z for every a e Gal(Z/k).
By Lemma 2.4(d), Z is ^-isomorphic to k(jt), which is, by definition a subfield

of k(^e), where e is the exponent of G. Thus there is a root of unity e such that

Z(0 Ck({,(e) k(e)

and both £ and t,e are powers of e. Note that k(e)/k is an abelian extension, and the

sequence of Galois groups

1 Gal(Ar(e)/Z) -> Gal(k(e)/k) Gal(Z//c) -* 1

is exact. In particular, every a e Gal(Z/k) can be lifted to an element of
Gal(k(e)/k), which we will continue to denote by a. Then a(e) e' for some

integer /. Since t, is a power of e, and each ß(g, h) is a power of £, we have

a(ß(g, h)) ß(g, h)' for every g, h e Gal(Z(f)/k). (4.2)

We claim that aB is Brauer-equivalent to B®' over Z. Indeed, since

B (ß,Z(0/Z),

we have aB (a(ß), Z(f)/Z). By (4.2), aB (a(ß), Z(S)/Z) (ß',Z(0/Z),
and (ßl, Z(%)/Z) is Brauer-equivalent to B®1, as desired.

5. Generalized Severi-Brauer varieties and Weil transfers

Suppose Z/k is a finite Galois held extension and A is a central simple algebra
over Z. For 1 ^ m ^ deg(4), we will denote by SB(4, in) the generalized Severi-
Brauer variety (or equivalently, the twisted Grassmannian) of (in — l)-dimensional
subspaces in SB(/1). The Weil transfer /?z/k(SB(A, m)) is a smooth projective
absolutely irreducible /:-variety of dimension [Z : k] in (deg(/l) — in). For

generalities on SB(4, in), see [5]. For generalities on the Weil transfer, see [17].

Proposition 5.1. Let Z, k and A be as above, X := Rz/k(^(A,m)) for some
1 < in ;C deg(/I), and K/k be a field extension.

(a) Write Kz '= K®kZ as a direct product K\x-• -x Ks, where K i jZ Ks jZ
are field extensions. Then X has a K-point if and only if the index of the

central simple algebra A := A 0z Kj divides m for every i 1 s.

(b) Assume that in divides ind(/l), A is balanced and K k(X) is the function
field of X. Then Kz K (% Z is a field, and A 0^ K ~ A Zz Kz is a

central simple algebra over Kz of index in.
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Proof. First note that A <S>k K — A <S>z Kz-

(a) By the definition of the Weil transfer, X Rz/k(^(A. m)) has a ATpoint if
and only if SB(/1. in) has a A"z-point or equivalently, if and only if SB(,4, in) has a

Kj -point for every ; 1 .v. On the other hand, by [5, Proposition 3], SB (A, m)
has a A",-point if and only if the index of A^i divides in.

(b) Since X is absolutely irreducible, Kz is Z-isomorphic to the function field
of the Z-variety

Vz := V xSpcc(it) Spec(Z) ]~[ SB("4, in),
ct(aCtt\\{Z / k)

see [6, §2.8]. Set F := Z(SB(/1, in)). By [35, Corollary 11,

ind(/l <8>z F) m

Since A is balanced, i.e., each algebra aA is a power of A, ind^M ®z F) divides m

foreverycr Gal(Z/k). By [5, Proposition 3], each SB CM, m)f is rational overF".
Thus the natural projection of Z-varieties

]~[SB(a/l,/H) -> SB(/4,/n)
aeGul {Z/k)

induces a purely transcendental extension of function fields F Kz-
Consequently,

ind(/4 <g)z Kz) ind(/l <g>z F) m

as claimed.

6. The essential dimension of a representation

Let us now fix a finite group G and an arbitrary field k, and consider the covariant
functor

RepG k : Fields^ -» Sets

defined by Repc^(A") := {/f-isomorphism classes of representations G —>

GL„(/f)} for every field K/k. Here ^ 1 is allowed to vary.
The essential dimension ed(p) of a representation p:G —> GL„(A') is defined

by viewing p as an object in RepC jt(Af), as in Section 3. That is, ed(p) is the
smallest transcendence degree of an intermediate field k C A'o C K such that p is

^-equivalent to a representation p'.G GL„(Ao)- To illustrate this notion, we
mclude an example, where ed(p) is positive, and three elementary lemmas.
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Example 6.1. Let HI (—1.— 1) be the algebra of Hamiltonian quaternions over
k R, i.e., the 4-dimensional R-algebra given by two generators /, j, subject
to relations, i2 j2 —1 and ij —ji. The multiplicative subgroup G

{± 1, ±/, ± j, ±ij J of H* is the quaternion group of order 8. Let K R(SB(H)),
where SB(HI) denotes the Severi-Brauer variety of HI. The representation p:G
HI HI (gl® K ~ M2(/if) is easily seen to be absolutely irreducible. We claim that

ed(p) 1. Indeed, trdegR(F) 1, for any intermediate extension R C F C K,
unless F R. On the other hand, p cannot descend to R, because EnvR(p) HI,

and thus m^(p) ind(H) 2 by Lemma 2.4(e).

Lemma 6.2. Let G be a finite group, K/k be a field, p,: G —> GLni(K) be

representations of G over K (for i 1,..., s) and p ~ ai p\ © • • • © asps, where

a\ a $
1 are integers. Then ed(p) ^ ed(pi) + • • + ed^).

Proof Suppose p, descends to an intermediate field k C A",- C K, where

trdegj.(Ki) ed(p, Let K$ be the subfield of K generated by K\,..., Ks. Then p
descends to Kq and ed(p) < trdegyt(A"0) < trdeg^.() + ••• + trdegi(AIi)
ed(pi) H hed(p5).

Lemma 6.3. Let k C K be fields, G be a finite group, and p:G —> GL,, (K) be

a representation. Let k' := k(y) C K, where y ls the character of p. Then the

essential dimension of p is the same, whether we consider it as an object on Rep^
or Rep^ £/.

Proof. If p descends to an intermediate field k C F C K, then F automatically
contains k'. Moreover, trdegk(F) trdeg^F). The rest is immediate from the

definition.

Lemma 6.4. Assume that char(/:) does not divide |G| and the Sclutr index m^(A)
equals 1 for every absolutely irreducible representation A of G. Then ed(p) 0

for any representation p:G GLn(L) over any field L/k. In other words,

ed(RepGk) 0.

Proof. Let / be the character of p and k' := k(y). By Lemma 2.4(e), mk>(X) 1

for every absolutely irreducible representation A:G -> GLn(K) of G. By
Lemma 6.3 we may replace k by k' k(y) and thus assume that y is A-valued.

Corollary 2.6 now tells us that p descends to k.

Remark 6.5. The condition of Lemma 6.4 is always satisfied if char(A) > 0; see [14,

Theorem 74.9], This tells us that for non-modular representations the notion of
essential dimension is only of interest when char(A) 0. The situation is drastically
different in the modular setting; see Section 14.
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7. Irreducible characters

In view of Remark 6.5, we will now assume that char(/c) 0. In this setting there is

a tight connection between representations and characters.

Lemma 7.1. Suppose F\/k, F2 / k are field extensions, and

pi: G —» GL„(fj), p2: G-> GLn(F2)

are representations ofa finite group G, with the same character / : G —r k. Then the

k-algehras Envyt(pi) and Env/t (p2) are isomorphic.

Proof. Let F/k be a field containing both F\ and F2. Then pi and p2 are equivalent
over F, because they have the same character. Thus Env^jpi) and Env^(p2) are

conjugate inside M„(F).

Given a representation p: G —» GLn(E), with a Ar-valued character x'G -»• k,
Lemma 7.1 tells us that, up to isomorphism, the A-algebra Env^(p) depends only
on x and not on the specific choice of F and p. Thus we may denote this algebra by
Envk(x).

If p is absolutely irreducible (and the character x is not necessarily Ar-valued), it
is common to write mk(x) for the index of Env^(J()(/) instead of mk(p).

Let x- G —»• k be a character of G. Write

r

X T/"UXi, (7.2)

i i

where X\, Xr'-G -»A7 are absolutely irreducible and distinct and are

positive integers. Since x is &-valued,= '«/ whenever Xi and Xj are conjugate
over A:.

Lemma 7.3. Let x Xa i 111' Xi ' G —> k he a character of G, as in (7.2). Then
'he following are equivalent.

(a) x is the character of a K-irreducible representation p: G —r GL,, (K) for
some field extension K/ k.

(h) X\ Xr form a single Gal(A'(/i)/k)-orhit and ni\ • mr divides

"ik(x t) •• mk{Xr).

Proof (a) => (b): By Lemma 2.4(a) and (b), x m(Xi + ••• + Xr), where
Xi Xr are absolutely irreducible characters transitively permuted by Ga\{K{x\)/K),
and m mK(x\) mniXr)- By Lemma 2.1(b), x\Xr are also

transitively permuted by Gal(/:(/i)/k). Moreover, by Lemma 2.4(e), m divides
mk(x t) mk(Xr)-
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(b) =>• (a): Let K be the function field of the Weil transfer variety /?z/£(SB(z1, >")),
where A is the underlying division algebra, Z is the center of Env,t(/), and

m := my =• mr

Since the variety /?z/fc(SB(/4, m)) is absolutely irreducible, k is algebraically closed
in K. Lemma 2.1(c) now tells us that Xi>--->Xr are conjugate over K. By
Lemma 2.4(c) there exists an irreducible Z-representation p whose character is

>iik(xi)(Zi + • • + Xr) If remains to show that /«a:(zi) m- Indeed,

i"k(Xi) ind(Env/f (/)) ind(Envfc(^) ®k K) m

Here the first equality follows from Lemma 2.4(d), the second from Lemma 2.3, and

the third from Proposition 5.1 (b).

We will say that a character G k is irreducible over k if it satisfies the

equivalent conditions of Lemma 7.3.

8. The essential dimension of a character

In this section we will assume that char(A) 0 and consider subfunctors

Rep^ : Fields^ -» Sets

of Repc k given by

K h-> \K — isomorphism classes of representations p: G —> GLn(K)
with character /}

for every field K/k. Here G —> k is a fixed character and n a('g)-
The assumption that x takes values in k is natural in view of Lemma 6.3, and

the assumption that char(A 0 is natural in view of Remark 6.5. Since any
two -representations with the same character are equivalent, Rep^A") is either

empty or has exactly one element. We will say that x can be realized over K/k if
Rep^( K) ^ 0. In particular, Rep^ and Rep^/ are isomorphic if and only if x and x'
can be realized over the same fields K/k.
Definition 8.1. Let G -> k be a character of a finite group G and p be a prime
integer. We will refer to the essential dimension of Rep^ as the essential dimension

of x and will denote this number by ed(,y). Similarly for the essential /»-dimension:

ed(z) := edfRep^) and ed/?(^) := ed^Rep^).

We will say that characters x and A of G, are disjoint if they have no common
absolutely irreducible components.
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Lemma 8.2. (a) If the characters X- A: G k are disjoint then

RePx+A - Rep* x RepA

(b) Suppose a character x'G —> k decomposes as ]V; i m,Xi, as in (7.2). Set

X' : X!/ i /«J where m[ is the greatest common divisor ofm/ andm^f/f). Then

Rep^ ~ Rep^/.

Proof. Let A" be a field extension of k.

(a) By Corollary 2.6, / + A can be realized over K if and only if both x and A

can be realized over K.

(b) By Corollary 2.6

(i) x can be realized over K if and only if

(ii) mx(Xi) divides mt, for every i 1,..., s.

By Lemma 2.4(e), mxiXi) divides m^iXi)- Thus (ii) is equivalent to

(iii) itik(Xi) divides m'r for every / l,...,s.

Applying Corollary 2.6 one more time, we see that (iii) is equivalent to

(iv) x' can be realized over K.

In summary, x can he realized over K if and only if x! can be realized over

K, as desired.

Remark 8.3. Note that the character x' in Lemma 8.2(b) is a sum of pairwise disjoint
A-irreducible characters (see the discussion of/c-irreducible characters at the end of
Section 7). In other words, we can replace any character x'- G -> k by a sum of
ptiirwise disjoint A-irreducible characters without changing the functor Repr

As we observed above, Rep^(K) has at most one element for every field K/k. In
other words, Rep^ is a detection functor in the sense of [24] or [30, Section 4a]. We
saw in Section 3b that to every algebraic variety X defined over k, we can associate
the detection functor T>x, where T>x(K) is either empty or has exactly one element,
depending on whether or not X has a A"-point. Given a character x'-G -> k, it is thus

tatural to ask if there exists a smooth projective A-variety Xx such that the functors
Rep^ and T>xx are isomorphic. The rest of this section will be devoted to showing
that this is, indeed, always the case. We begin by defining Xx.
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Definition 8.4. (a) Let G be a finite group and / := m(x\ H P Xr)- G —> k be an

irreducible character of G, where xx, • Xr are Gal(A:(/i)//:)-conjugate absolutely
irreducible characters, and m ^ 1 divides m^ixi) ••• mx(Xr)- We define the

&-variety Xx as the Weil transfer RZ/k(where Z is the center and Ax
is the underlying division algebra of Env^(^).

(b) More generally, suppose ^ : A i -(-•• + where X\,..., Xs: G -* k are

pairwise disjoint and irreducible over k. Then we define Xx := X\t x^ Xx,.,
where each Xx, is a Weil transfer of a generalized Severi-Brauer variety, as in

part (a).

Theorem 8.5. Let G be a finite group and x '= X\ -\ \- Xs be a character, where

X i,..., Xs: G —> k

are pairwise disjoint and irreducible over k. Let Xx be the k-variety, as in

Definition 8.4. Then the functors Rep^ and T>xx are isomorphic. Consequently

ed(/) cd(Z^) andedp(x) cdP(Xx) for any prime p.

Proof. In view of Lemma 8.2(a) we may assume that x is irreducible over k, i.e.,

ä 1 and x A). Write x m(xt H 1" Xr), where x\ — ,Xr-G -+ k

are the absolutely irreducible components of x- Let K/k be a field extension. By
Corollary 2.6 the following conditions are equivalent:

(i) Rep^lK) ^ 0, i.e., x can be realized over K,

(ii) MK(Xj) divides/« for j 1 r.

Note that while the characters X\ Xr are conjugate over k, they may not be

conjugate over K. Denote the orbits of the Gal(A7AT)-action on x\,---,Xr by
Ox Ot, and set pt := EX/eo, Xj, so that X m(px + b Pt)-

Denote the center of the central simple algebra Env^j/) by Z. Write Kz '

K <S>k Z as a direct product K\ x ••• x Ks, where K\/Z,..., Ks/Z are field
extensions, as in Proposition 5.1. By Lemma 2.3,

Env/c(z) ^ Envyt(z) <S>k K ~ Emk(x) 0Z Kz
~ (Env/f(/) 0Z Kx) x ••• x (EnvjcM 0Z Ks),

(8.6)

where ~ denotes isomorphism of A'-algebras. On the other hand, since px pt
are K-valued characters,

Env^(/) ~ Emfc(mpx) x • • • x En\K(mpt) (8.7)

Suppose Xj ^ Oi. Then by Lemma 2.2,

Emk(mpi) ~ Emtc(pi) ~ EmK(mK(xj)Pi),
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and by Lemma 2.4(d), Env/f(mx(Xj)P'i) is a central simple algebra of index

mK(Xj)- Comparing (8.6) and (8.7), we conclude that s t, and after renumbering

Ki,..., Ks, we may assume that Env^(m/x,) ~ Env/c(y) <g>z K(. Thus (ii) is

equivalent to

(iii) the index of Eiiva:(/) 0z Ki divides m for every i 1,..., s.

By Proposition 5.1(a), (iii) is equivalent to

(iv) Xx has a K-point, i.e., X>xx(K) ^ 0.

The equivalence of (i) and (iv) shows that the functors Repz and T>xx are

isomorphic. Now

ed(x) ed(ReP/) ed(VXx) cd(Xx)

and similarly for the essential dimension at p.

Remark 8.8. Theorem 8.5 can, in fact, be applied to an arbitrary /c-valued character

X'. G -> k. Indeed, the character /' of Lemma 8.2(b) is a sum of pairwise disjoint
^-irreducible characters; see Remark 8.3. Thus ReP;(. ~ ReP;(/ by Lemma 8.2, and

ReP;(, ~ T>xx, by Theorem 8.5.

9. UPPer bounds

If G is generated by r elements g\,..., gr, then any representation p: G —> GL„(A')
defined over a field K/k descends to the subfield Ko generated over k by the rn2
matrix entries of p(gi),. p(gr)- Thus

ed(p) ^ trdegj-C/fo) < rn2

In this section we will improve on this naive upper bound, under the assumption that
char (k) 0.

Our starting point is the following inequality, which is an immediate corollary of
Theorem 8.5 and the inequality (3.2).

Corollary 9.1. Let G be a finite group and x m(Xi + "" + Xr)'-G k
be an irreducible character over k, as in Section 7. Then ed(/) dim(A';f)
rm{mk{x i)-m).

We are now in a position to prove the main result of this section.

Proposition 9.2. Let G be a finite group, k be a field of characteristic 0, and Kjk
be afield extension. Let p: G GL,,{K) be a representation of G. Then

n2
(a) ed(p) ^ —.
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mfc(A)2 |G[
(b) ed(p) ^ 2^aL—^—J ^ Here the sum is taken over the distinct

absolutely irreducible K-subrepresentations A of p, and [_.r J denotes the

integer part ofx.
y(l)2 m^iX)2 IGI

(c) ed(Repz) < —and ed(RepG fc) < ^—J ^ — for any base

field k and any k-valued character /: G k. Here RepG k is the functor
defined at the beginning of Section 6, and the sum is taken over all absolutely
irreducible representations X of G defined over k.

Proof (a) Suppose p ~ p\ © P2 over K, where dim(pi) n j, dim(p2) »2
and /;=//]+ /;2. If we can prove the inequality of part (a) for p\ and p2, then by
Lemma 6.2,

2 2 2

ed(p) ^ ed(pi) + ed(p2) + '~f

so that the desired inequality holds for p. Thus we may assume without loss of
generality that p is /^-irreducible.

By Lemma 6.3 we may also assume that the character % of p is A-valued. By
Lemma 7.3, x is an irreducible character over k. Write x ,r>(Xi + + Xr),
wherem ^ 1 divides m/c(xi) in^iXr)- By Corollary 9.1

1 )2
ed(p) ^ rm{mk(x\)-/«)< /• (9.3)

Now recall that by Lemma 2.4(d), EnVjt(p) is a central simple algebra of index

mk(X 1) over a fieid Z such that [Z : k] r. Thus

rmkixi)2 < r dimz(Env/t(p)) dim/t(Env/t(p)) dim*(Envtf(p)) < n2

(9.4)
Here the equality dim^Env^p)) dim^ (Env# (p)) follows from Lemma 2.3, and

the inequality dim/f(Env^(p)) ^ n2 follows from the fact that Env^(p) is a K-
subalgebra of Mn(/f). Combining (9.3) and (9.4), we obtain ed(p) ^ n2/4.

(b) Decompose p as a direct sum a\p\ ©• • -®asps, where p\ ps are pairwise
non-isomorphic ÄT-irreducibles. Over K, we can further decompose each p, as

p( ~ m,(p,i © © p,r,), (9.5)

where the p,i,..., pir; are pairwise non-isomorphic /(-irreducibles. In fact, by
Lemma 2.4(c), no two irreducible representations ptJ can be isomorphic over K,
as / ranges from 1 to s and j ranges from 1 to rt.

mkiXi\)2
Now let us sharpen (9.3) a bit. Since m{mk(Xi\) ~ ,n) ^ ^

ar,d

m(nik(Xi i) — m) is an integer, we conclude that

ar ,mk(Xn)2, x^fitikiXu)2 ied(A) < r, L J
^

J •

1=1
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Here the last equality follows from the fact that the characters Xi\ Xir, of
p,i pir/ are conjugate over k, and consequently, mic(p,i) miciPir,)-
Now by Lemma 6.2,

ed(p) ^ ^ed(p,) ^ ^^ ^mk(X^j) j _

1=1 1=17=1

This proves the first inequality in part (b).
To prove the second inequality, note that by Lemma 2.4(f), mk(Xij) ^ dim(pu).

Moreover, JV dim(A)2 |G|, where the sum is taken over the distinct absolutely
irreducible representations A of G; see, e.g., [34, Corollary 2(a), Section 2.4], Thus

y^^nk(Xij)2j < y^ y^ mk(Xij)2
< y-v y-v

dim(pi7)2 ^ |G|

1 1 7 1
^

1 1 ] 1

^
1 1 7 1

^ ^

This completes the proof of part (b). Part (c) is an immediate consequence of (a)
and (b).

Remark 9.6. Note that absolutely irreducible representations A of Schur index 1 do

not contribute anything to the sum J 'n Part (b) ar|d (c)- In particular,
in the case, where every absolutely irreducible representation of G has Schur
index 1, we recover Lemma 6.4 from Proposition 9.2 (under the assumption that

char(A) 0).
Another interesting example is obtained by setting G Q$, the quaternion

group of order 8 and k Q or BL In this case G has five absolutely irreducible
representations whose Schur indices are 1, 1, 1, 1 and 2; see [14, Example, p. 740],
Thus Proposition 9.2 yields

ed(Repß8;/c) ^ |_—J + L^J + L^J + L^J + L^J 1
•

Example 6.1 shows that this upper bound is sharp, i.e., ed(RepQ8 ^) 1.

10. A variant of a theorem of Brauer

A theorem of R. Brauer [7] asserts for every integer / ^ 1 there exists a number
field k, a finite group G and a A-valued absolutely irreducible character / such that

the Schur index m^ix) — ' For an alternative proofs of Brauer's theorem, see [4]
or [36].

In this section we will prove an analogous statement with the Schur index

replaced by the essential dimension. Note however, that the analogy is not perfect.
Our character / will be reducible and Q-valued for every / ^ 2, while Brauer's
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theorem will fail if we insist that k should be the same for all /, or that % should
be real-valued. (These assertions follow from the Benard-Schacher theorem [37,
Theorem 6.8]; see also [14, Section 74C].)

Proposition 10.1. For every integer / 7; 0 there exists a finite group G, and a
character x- G —» Q such that edQ(^) /.

Proof. The proposition is obvious for / 0; just take / to be the trivial character,
for any group G. We may thus assume that / > 1. Choose / distinct prime integers

Pi,..., pi 3 (mod 4), and let 4, be the quaternion algebra (— 1, p,) over Q.

Lemma 10.2. The classes ofA\ 4/ in Br(Q) are linearly independent over Z/2Z.

Proof. Assume the contrary. Then after renumbering Ai,..., A/, we may assume
that Ai (g>£ • • As is split over Q for some s ^ 1. Since [(a. c)] ® [(b. c)]
\(ab, c)] in Br(Q), we see that the quaternion algebra (— 1. p\ ps) is split over Q.
Equivalently, p\ ps is a norm in Q(V—T)/k (see, e.g., [27, Theorem 2.7]), i.e.,

P\ ps can be written as a sum of two rational squares. Now recall that by a

classical theorem of Fermat, a positive integer n can be written as a sum of two
rational squares if and only if it can be written as a sum of two integer squares if and

only if every prime p which is s 3 (mod 4) occurs to an even power in the prime
decomposition of n. In our case n p\ ps does not satisfy this condition. Hence,

Pi Ps cannot be written as a sum of two rational squares, a contradiction.

We now return to the proof of Proposition 10.1. By a theorem of M. Benard [1]
there exist finite groups G\,..., G/, number fields F\,.... F;, and 2-dimensional
absolutely irreducible representations p,: G, —> GL2(T";) such that A, := Env^ip,).
(In fact, since Q(V^T) splits every A,, we may take F\ Fi — Q(V—T).)
We will view each p, as a representation of G Gj x x G/ via the natural

projection G —> G,. Let Xi be the character of p, and / '= Xi + ' " + Xr - G —> Q.

By Theorem 8.5

ed(z) cd(Ax),

where Xx := XXl x^ x^ XXl, and XXi is the 1-dimensional Severi-Brauer
variety SB(A,) over Q. Since the Brauer classes of A\ 4; in Br(Q) are

linearly independent over Z/2Z, [25, Theorem 2.1] tells us that cd{Xx) /, as

desired. (For an alternative proof of [25, Theorem 2.1], see [23, Corollary 4.1 and

Remark 4.2].)

Remark 10.3. Proposition 10.1 implies that there exists a field K/Q and a linear
representation p:G —> GL2/(A") such that edgfp) I. Note however, that p
is not the same as pi x x p/:G —> GL2;(Q(V—T)), even though p and

Pi x • • x pi have the same character. Indeed, since each p, is defined over (Q>(\/—T),

edglpi x x pi) 0. Under the isomorphism of functors Repz - VXx of
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Theorem 8.5, pi x- • -xp/ corresponds to aQ(\/^I)-point of Xx, while p corresponds
to the generic point.

11. Computation of canonical p-dimension

This section aims to determine canonical p-dimension of a broad class of Weil
transfers of generalized Severi-Brauer varieties. Here p is a fixed prime integer.
The base field k is allowed to be of arbitrary characteristic.

Let Z/k be a finite Galois field extension (not necessarily abelian). We will
work with Chow motives with coefficients in a finite field of p elements; see [15,
§64]. For a motive M over Z, Rz/kM is the motive over k given by the Weil
transfer of M introduced in [17]. Although the coefficient ring is assumed to be Z
in [17], and the results obtained there over Z do not formally imply similar results

for other coefficients, the proofs go through for an arbitrary coefficient ring.
For any finite separable field extension K/k and a motive M over K, the

corestriction of M is a well-defined motive over k\ see [19].

Lemma 11.1. Let Z/k be an arbitrary finite Galois field extension and let

Mi,, Mm be m ^ 1 motives over Z. Then the motive Rz/k(Mi © • • © Mm)
decomposes in a direct sum

Rz/k(Mi © • • • © Mm) ~ Rz/kMi © • ffi Rz/kMm © N,

where N is a direct sum of corestrictions to k of motives over fields K with k C

K C Z.

Proof. For m 1 the statement is void. For m 2 use the same argument as in

[20, Proof of Lemma 2.1 ] or see below. For m > 3 argue by induction.
For the reader's convenience, we supply a proof for m 2. First we recall that

the Weil transfer Rz/kX of a Z-variety X is characterized by the property that there

exists an isomorphism of Z-varieties (Rz/kX)z — WoeGa\(zlk) °X commuting
with the action of the Galois group. Here aX is the conjugate variety and Gal(Z/ k)
acts on the product ]~[ "X by permutation of the factors.

We start with the case where M\ and M2 are the motives of some smooth

projective Z-varieties X and Y. The Weil transfer Rz/k(M\ © M2) is then the

motive of the /:-variety Rz/k(X LI Y). We have

Y]a(xUY) T](axUaY) (T\CX) U(UUY) LI •
where the dots stand for a disjoint union of products none of which is stable under
the action of Gal {Z/k). It follows that Rz/k(X LI Y) is a disjoint union of Rz/kX,
Rz/kY, and corestrictions of some ^-varieties with some k C K C Z. This gives
the required motivic formula in the particular case under consideration.
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In the general case, we have M\ — (Z. [7r]) and M2 — (T. [r]) for some
algebraic cycles jt and r ([jt] and [r] are their classes modulo rational equivalence). We

recall that the Weil transfer of the motive (X, [jt]) is defined as (Rz/k^- [Rz/k7*])-
where Rz/kn is the algebraic cycle determined by {Rz/k^)z IT771- Computing

Rz/k(M 1 © M2) this way, we get the desired formula.

Now recall from Section 3b that a /.'-variety X is called incompressible if
cd(Z) dim(A') and /»-incompressible if cd^Z) dim(Z).

Theorem 11.2. Let p be a prime number, Z/k a finite Galois field extension of
degree pr for some r ^ 0, D a balanced central division Z-algebra of degree p"
for some n 0, and X the generalized Severi-Brauer variety 3l(D, p') of D for
some i 0. 1,..., //. Then the k-variety Rz/k X, given by the Weil transfer of X, is

p-incompressible.

Note that in the case, where Z/k is a quadratic Galois extension, D is balanced

if the /c-algebra given by the norm of D is Brauer-trivial; aD for a ^ 1 is then

opposite to D. In this special case Theorem 1 1.2 was proved in [20, Theorem 1.1],

Proofof Theorem 11.2. In the proof we will use Chow motives with coefficients in

a finite field of p elements. Therefore the Krull-Schmidt principle holds for direct
summands of motives of projective homogeneous varieties by [12] (see also [22]).

We will prove Theorem 11.2 by induction on /• + /;. The base case, where
/• + //= 0, is trivial. Moreover, in the case where r 0 (and n is arbitrary), we
have Z k and thus Rz/kX X is /»-incompressible by [22, Theorem 4.3]. Thus

we may assume that r ^ 1 from now on.

If i n, then X SpecZ, Rz/k% Speck, and the statement of
Theorem 11.2 is trivial. We will thus assume that i ^ — 1 and, in particular,
that > 1.

Let k' be the function field of the variety Rz/k SB(D. p"~l). Set Z' := /' (g>£ Z.
By Proposition 5.1(b), the index of the central simple Z'-algebra Dz' D%zX'
D ®k k' is pn~l. Thus there exists a central division Z'-algebra D' such that the

algebra of (p x /»)-matrices over D' is isomorphic to Dz'- Let X' SB(Z)'. p'). By
[16, Theorem 10.9 and Corollary 10.19) (see also [ 11]), the motive of the variety Xz'
decomposes in a direct sum

M(Xz') ~ M(X') © M(X')(pi+n~l) © M(X')(2p'+"~l) © ••
® M(X')((p — \ )pi+n~x) © N.

where N is a direct sum of shifts of motives of certain projective homogeneous
Z'-varieties Y under the direct product of p copies of PGLi (D') such that the index

of D'z'{y) P'~l- (If' If"211 N 0.) It follows by [22, Theorems 3.8
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and 4.3] that

M(Xz') ^ U(X') © U(X')(pl+n~x) © U(X')(2pl+"-x) ©

— ®U(X')({p- l)p,+"_1)© N.

where U(X') is the upper motive of X' and N is now a direct sum of shifts of upper
motives of the varieties SB(D'. pJ) with j < i. Therefore, by Lemma 11.1 and [17,
Theorem 5.4], the motive of the variety (Rz/kX)k' — Rzf/k'(XZ') decomposes in
a direct sum

M(Rz,kX)k, ~ Rz'ik'U(X') © Rz,/k,U(X')(pr+,+n-1)

© Rz',k'U(X')(2pr+,+"-1)®---
• • • © Rz</k>U(X')((p — \)pr+,+"~l) ffi V © N', (11.3)

where now N is a direct sum of shifts of Rz>/k>U(Si(D', PJ)) with j < /, and N'
is a direct sum of corestrictions of motives over fields K with k' C K c Z'.
By the induction hypothesis, the variety Rz'/k'X' is /»-incompressible. By 118,

Theorem 5.1], this means that no positive shift of the motive U(Rz'/k'X') is a

direct summand of the motive of Rz'/k'X'. It follows by [19] that Rz>/k>U(X')
is a direct sum of U(Rz>/k>X'), of shifts of U(Rz'/k' SB(D'. pJ)) with j < i, and

of corestrictions of motives over fields K with k' C K c Z'. Therefore we may
exchange Rz'/k' w'lh ^ in (11.3) and get a decomposition of the form

M(Rz/kX)k, ~ U(Rz,/k,X') © U(Rz>ik>X')(pr+i+n-1)

®U(RZ'/k,X')(2pr+,+n-x)®---

(BU(Rz,ik,X')((p-\)pr+,+n-1)® N ® N', (11.4)

where N is now a direct sum of shifts of some U(Rz>/k> SB(D'. pJ)) with j < /,
and N' is a direct sum of corestrictions of motives over fields K with k' C K C Z'.
Note that the first p summands of decomposition (11.4) (that is, all but the last

two) are shifts of an indecomposable motive; moreover, no shift of this motive
is isomorphic to a summand of N or of N'. Since the variety RZ'/k'X' is p-
incompressible, we have

dim U(RZr/k'X') dim Rz'/k'X' [Z' : k'] • dim X' pr p' (p"~l —/»').

(We refer the reader to [18, Theorem 5.1 ] for the definition of the dimension of the

upper motive, as well as its relationship to the dimension and /»-incompressibility
of the corresponding variety.) Note that the shifting number of the p-th summand
in (11.4) plus dim RZ'/kX' equals dim RZ/kX:

(p-\)pr+,+n-{ + prpl(p"~] -p') prp'(pn -p').
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We want to show that the variety Rz/kX is /^-incompressible. In other words, we
want to show that dim U(Rz/kX) dim Rz/kX Let I be the number of shifts of
U(Rz'/k'X') contained in the complete decomposition of the motive U(Rz/kX)k'-
Clearly, 1 ^ ^ p and it suffices to show that / p because in this case the p-th
summand of (11.4) is contained in the complete decomposition of U(Rz/kX)k'-

The complete motivic decomposition of Rz/kX contains several shifts of
U(Rz/kX). Let N be any of the remaining (indecomposable) summands. Then,

by [19], At is either a shift of the upper motive U(Rz/k SB (Lb p1)) with some j < i
or a corestriction to k of a motive over a held K with kC.KdZ.ll follows
that the complete decomposition of does not contain any shift of U(Rz>/k'X').
Therefore / divides p, that is, / 1 or / p, and we only need to show that / ^ 1.

We claim that / > 1 provided that dim U(Rz/kX) > dim U(Rz'/k'X'). Indeed,

by [21, Proposition 2.4], the complete decomposition of U(Rz/kX)k' contains as

a summand the motive U(Rz'/k'X') shifted by the difference dimU(Rz/kX) ~
dim U{Rz'/k'X'). Therefore, in order to show that / 7^ 1 it is enough to show that

dim U(Rz/kX) > dim U(Rz>/k'X').

We already know the precise value of the dimension on the right, so we only need

to find a good enough lower bound on the dimension on the left. This will be given
by dim U((Rz/kX)j^), where k/k is a degree p Galois field subextension of Z/k.
We can determine the latter dimension using the induction hypothesis.

Indeed, since Rz/kX — R^/k^z/k^' variety (Rz/kX)p is isomorphic to

(RZ,kX)-k ~ n äRz,kx - Rz/k n
aer aeT

where T is the Galois group of Z/k, T is the Galois group of k/k, and a e T is a

representative of ä e T (see [6, §2.8]). Since D is balanced, the product n<jef "X
is equivalent to X. It follows that the varieties RZ/j. flaef "X and Rz/kX are

equivalent and hence, by Lemma 3.3, have the same canonical p-dimension (i.e., the

dimensions of their upper motives coincide). The latter variety is p-incompressible
by the induction hypothesis. Consequently,

dim U(RZ/kX) > dimU((RZ/kX)^) dim Rz/pX pr~l p'(pn - p').

The lower bound pr_1 -p' (pn—p') on dim U(Rz/kX) thus obtained is good enough
for our purposes, because

pr~X P'(P" -p')> Pr • P'(P"~X -p') dim U(RZ'/k'Xf).

This completes the proof of Theorem 11.2.

The following example, due to A. Merkurjev, shows that Theorem 11.2 fails if D
is not assumed to be balanced.
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Example 11.5. Let L be a field containing a primitive 4-th root of unity. Let Z be the

field Z := L(x, y. x', y') of rational functions over L in four variables x. y, x', y'.
Consider the degree 4 cyclic central division Z-algebras C := (x, y)4 and C' :=
(x', y')4. Let k c Z be the subfield Z" of the elements in Z fixed under the L-
automorphism a of Z exchanging x with x' and y with y'. The field extension Z/k
is then Galois of degree 2, and the algebra C' is conjugate to C.

The index of the tensor product of Z-algebras C <8> C'®2 is 8. Let D/Z be the

underlying (unbalanced!) division algebra of degree 8. Since the conjugate algebra
aD is Brauer-equivalent to C' <8> C®2, the subgroup of the Brauer group Br(Z)
generated by the classes of D and aD coincides with the subgroup generated by
the classes of C and aC C'. Therefore the varieties X\ := Rz/k SB(Z)) and

X2 '= Rz/k SB(C) are equivalent. Thus, by Lemma 3.3,

cd(Xi) cd(Z2) < dim(Z2) < dimjZ,)

and consequently, X\ is compressible (and in particular, 2-compressible).

Remark 11.6. Some generalizations of Theorem 11.2 can be found in [23],

12. Some consequences of Theorem 11.2

Theorem 11.2 makes it possible to determine the canonical /"-dimension of the Weil
transfer in the situation, where the degrees of Z/k and of D are not necessarily

p-powers.

Corollary 12.1. Let Z/k be a finite Galois field extension and D a balanced central
division Z-algebra. For any positive integer m dividing deg(D), one has

cdp RZ/k ®(£>, m) dim Rz/k, S3(£>', m') [Z : Jfc'] • m'(deg D' - m').

where in' is the p-primary part of m (i.e., the highest power of p dividing m), D' is

the p-primary component of D, and k' ZTp, where Tp is a Sylow p-subgroup of
T := Gal(Z/k (so that [Z : k'] is the p-primary part of[Z : k]).

Proof. Since the degree [k' : k] is prime to p, we have

cd/, RZ/k &(D,m) cdp(RZ/k SB(D,m))k>;

see [29, Proposition 1.5(2)]. The k'-variety Rz/k^{k),m)k' is isomorphic to
a product of Rz/k' SB(D,m) with several varieties of the form Rz/k'^(D.m)
where D ranges over a set of conjugates of D. Since D is balanced, these algebras D
are Brauer-equivalent to powers of D. Thus the product is equivalent to the k'-
variety Rz/k' SB(D, m). We conclude by Lemma 3.3 that cdp Rz/k^(D-m)
cd/> Rz/k' SB(D, m). In the sequel we will replace k by k', so that the degree [Z : k]
becomes a power of p.
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We may now replace k by its /»-special closure; see [15, Proposition 101.16].
This will not change the value of cdp(Ar). In other words, we may assume that k is

/»-special. Under this assumption the algebras D and D' become Brauer-equivalent
and consequently, the ^-varieties Rz/k^(D.m) and Rz/k^(D'.m') become

equivalent. By Lemma 3.3,

cd^ RZ/k SB(D, m) cdp RZ/k SB(D', m).

Since the Z-algebra D' is balanced over k, Theorem 11.2 tells us that Rz/k SB(D', m')
is /^-incompressible. That is,

cd^ Rz/k SB(D', m') dim (Rz/k SB(D\ m'j) [Z : k] m'( deg D' — in'),

and the corollary follows.

Remark 12.2. Corollary 12.1 can be used to compute the /»-canonical dimension

°f Rz/k for any j 1 deg(Z)), even if j does not divide deg(D).
Indeed, let m be the greatest common divisor of j and deg(Z)). Proposition 5.1(a)
tells us that for any field extension K/k, Rz/k SB(D, j) has a /(-point if and only if
Rz/k SB(Z),/«) has a AT-point. In other words, the detection functors for these two
varieties are isomotphic. Consequently,

cd(Rz/k SB(D, j)) cd(Rz/Jt SB(D, m))

and cdp(Rz/k SB(D./')) cdp{Rz/k SB(D.m)),

and the value of cdp(Rz/k SB(D, m)) is given by Corollary 12.1.

We now return to the setting of Sections 7-9. In particular, G is a finite group,
and the base field k is of characteristic 0.

Corollary 12.3. Let / m(Xi + + Xr)'-G k be an irreducible k-valued
character, where Xi Xr are absolutely irreducible and conjugate over k, and m

divides mkixl) • • • »ik(Xr), as in Section 7.

(a) edp(x) — r'm'(mk(xi)' ~m'). Here x' denotes the p-primarypart ofx (i.e.,
the highest power of p dividing x) for any integer x > 1.

(b) If r and m/((xi) are powers of p, then edp(x) ed(/) dim(A'/)
rm(mk(xi) — m)- Here 's as 'n Definition 8.4.

Proof, (a) Let D be the underlying division algebra and Z/k be the center of
EnVyt(z). By Theorem 8.5, edp(z) cdp(Xx). By Proposition 4.1, D is balanced.

The desired conclusion now follows from Corollary 12.1.

(b) Here r' r, m/fixi)' ttik(x) ar,d thus m' m By Part (a)-

dim(Zx) rm(mk(X\) ~m) edp(x) ^ ed(x)

On the other hand, by Corollary 9.1, ed(y) ^ (m^(p)-m), and part (b) follows.
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Remark 12.4. While a priori edp(x) depends on k, G, and /, Corollary 12.3(a)
shows that, in fact, edp(/) depends only on the integers r, m, and mk(xt)- (Here
we are assuming that / is irreducible.) We do not know if the same is true of ed(/).

13. A variant of a theorem of Schilling

Let G be a p-group and xi be an absolutely irreducible character of G. It is
well known that for any field k of characteristic 0, mk(j\) — 1 if p is odd, and

mk(Xi) — ' °r 2 if p 2. Following C. Curtis and I. Reiner, we will attribute
this theorem to O. Schilling; see [14, Theorem 74.15] For further bibliographical
references, see [37, Corollary 9.8].

In this section we will use Corollary 12.3 to prove the following analogous
statement, with the Schur index replaced by the essential dimension.

Proposition 13.1. Let k be afield ofcharacteristic 0, G be a p-group, and x'G —> k
be an irreducible character over k.

(a) If p is odd then ed(^) 0.

(b) If p 2 then ed2(;() ed(/) 0 or 2l for some integer I 0.

(c) Moreover, every I fi 0 in part (b) can occur with k Q, for suitable choices

of G and X-

Proof Write / m(x\ + • • + Xr), where Xi G —»• k are absolutely irreducible
characters and m divides mk(x i). If in — mk(X\) then ed(^) 0 by Corollary 9.1.

(a) In particular, this will always be the case if p is odd. Indeed, by Schilling's
theorem, mit(;(i) 1 and thus m 1. (Also cf. Lemma 6.4.)

(b) By Schilling's theorem, ink(xi) 1 or 2, and by the above argument,
we may assume that m < ink(xi)- Thus the only case we need to consider is

mk(X\) 2 and m — 1. By Lemma 2.4(b), r \k{xi) ' k]. Since k(xi) C k{fie),
where the exponent e of G is a power of 2, we see that r divides [k(ife) : k], which is,
once again, a power ol 2. Thus we conclude that r is a power of 2. Corollary 12.3(b)

now tells us that

ed2(z) ed(/) rm(mk(x) - m) r 1 • (2 - 1) r (13.2)

is a power of 2, as claimed.

(c) Let s 2/+2, and a e Gal(Q(^)/Q) be complex conjugation, and

f := q(&) n R m* + r;1) •

Consider the quaternion algebra A — ((fs — ^f1)2, —1) over F, i.e., the F-algebra
generated by elements v and y, subject to the relations

a2 (fs - 1)2, y2 -1 and xy -yx.
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One readily checks that F(£y — ^~1) Q(£y) is a maximal subfield of A,
and y generate a multiplicative subgroup G of A of order 2s, which spans A as an

F-vector space, and the inclusion G A* gives rise to an absolutely irreducible
2-dimensional representation

p\ ' G ^ Ax °-> GL2(Q(^)).

Denote the character of p\ by X\.G —> F. We claim that Q(/i) F. Indeed,
since A is an F-algebra, the trace of every element of A lies in F, and in particular,

Q(/i) C F. On the other hand, Zi (ti) ts + ^71 generates FoverQ. This proves
the claim. Thus x\ has exactly

r [F : Q] : Q] 2l

conjugates x\ Xr over Q, and x X\ + ''' + Xr is an irreducible character

over Q.
Note that since 5 2/+2 ^ 4, (£s — %~1)2 < 0, A M is K-isomorphic

to the Hamiltonian quaternion algebra H (-1,-1) and hence, is non-split. Thus

ind(A) 2. Since A EnvQ(p), Lemma2.4(d) tells us that mqixi) 2. Applying
Corollary 12.3(b), as in (13.2), we conclude that ed2(/) ed(/) r 2', as

desired.

14. Essential dimension of modular representations

Let G be a finite group and RepG ^ be the functor of representations defined at

the beginning of Section 6. In the non-modular setting (where char(k) does not
divide |G|), we know that

i0,
if char(Ar) > 0, by Remark 6.5, and

< |G|/4, if char(k) 0, by Proposition 9.2.

We shall now see that essential dimension of representations behaves very differently
in the modular case.

Theorem 14.1. Let k be a field of characteristic p. Suppose a finite group G

contains an elementary abelian subgroup E ~ (Z//?Z)2 of rank 2. Then

ed(RepG k) oo.

It is clear from the definition of essential dimension that if k C k' is a field
extension then ed(RepG it) ^ ed(RepG k,). Thus for the purpose of proving
Theorem 14.1 we may replace k by k'. In particular, we may assume without loss of
generality that k is algebraically closed.

Following D. Quillen, we will assiciate to a finite group G the projective variety
S := Proj(H'(G,k)), where the graded ring H'(G.k) is defined as the full
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cohomology ring H*(G,k), if p 2, or as the direct sum of even-dimensional

cohomology groups Hewn(G, k) if p ^ 3 To every representation p G —> GLn(K)
defined over a field K/k (or equivalently, a finitely generated A^[G]-module), we
will denote the suppoit variety of p by Supp(p) Note that Supp(p) is a closed

subvanety of S For a detailed discussion ot this construction we refer the reader

to [2, Chapter 5]
Let Z be a k-vanety, and Subz- Fields^ —» Sets be a covanant functor, given by

SubzfA") {closed subvaneties of Z%}

Here subvarieties of Z& are required to be reduced but not necessarily irreducible
Closed subvaneties X, Y C Z% represent the same element in Subz(A^) if
X(K) Y(K) in Z(K) We will now consider the morphism of functors

Supp RepGj. Subs

which associates to a representation p G —* GL„(A') its support variety Supp(p)
A theorem of J Carlson (Carlson's realization theorem) asserts that this morphism
of functors is surjective, see [2, Corollary 5 9 2] (Note that the usual statement
of Carlson's realization theorem only says that Supp(£) RepG k(k) —> Subs(&) is

surjective, however, the proof shows that, in fact, Supp. RepG k(K) —> Subs(/f) is

surjective for every held K/k) Thus ed(RepG k)2 ed(Subs); see [3, Lemma 1 9]

By a theorem ot Quillen, the condition that G contains an elementary abelian

subgroup of rank ^ 2 is equivalent to dim(S) ^ 1, see [2, Theorem 5 3 8], It now
suffices to prove the following proposition

Proposition 14.2. Let Z be a projective vanety ofdimension d ^ 1 defined over an
infinite field k Then ed(Subz) oo

Proof We claim that there exists a suijective morphism Z —> defined over k
Indeed, embed Z into a projective space If d N, there is nothing to prove If
d < N, then there exists a linear subspace ot dimension N — d — 1 defined over k

which does not intersect Z Projecting Z from this subspace to a complementary
linear subspace of dimension d, we obtain a desired surjective morphism Z —> ¥d
This proves the claim

The morphism Z —> Fd induces a surjective morphism of functors Subz -
SubPa Using [3, Lemma 1 9] once again, we see that it suffices to show

ed(Subpa) oo In other words, we may assume without loss of generality that
Z P^

Let L/k be a held, a\ a„ L, and X[n] be the union of the points

Xx=(\ <7i. 0 0), .,Xn={\.an O--- 0) (143)

in fd We view X [//] as an element of SubPa (L)
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Lemma 14.4. Suppose X[n] descends to a subvariety Y defined over a subfield
K C L. Then a, is algebraic over K for every i 1 n.

Proof. Note that X[;i] is a subvariety of the projective line P1 C ¥d given by

,v3 Xd+i 0, where X\ v^ + j are the projective coordinates in ¥d.
Since A[;;] descends to Y, we have Y(L) X[n\(L). Consequently, Y is a closed

subvariety of P1. (Note that here we are viewing Y as a subvariety of Fd, not as a

subscheme.) Thus for the purpose of proving Lemma 14.4 we may replace 7Pd by P1,

i.e., assume that d 1.

By the definition of the functor Subpi, A[;i] descends to K if X[n\ can be cut

out (set-theoretically) by homogeneous polynomials £ AT[cvi.-V2]- In
other words, the points X\ — (1 : a\) Xn (1 : an) are the only non-trivial
solutions, in the algebraic closure L, of a system of homogeneous equations

f\{x\.x2) •• /s(.vi..r2) 0

with coefficients in K. Since every solution of such a system can be found over K,
we have a\ an e K. This completes the proof of Lemma 14.4.

We now continue with the proof of Proposition 14.2. Taking a\ a„ to
be independent variables and L := k(a 1 a„), we see that trdeg^f/O
trdeg^(L) n and thus in this case ed(X[;;]) n. Therefore,

ed(SubP,/ k) ^ suped(AC[/?]) 00.

This completes the proof of Proposition 14.2 and thus of Theorem 14.1.
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A. Modular representations of high essential dimension
by Julia Pevtsova and Zinovy Reichstein

Let k be a field of characteristic p,G be a finite group containing a rank 2 elementary
abelian subgroup E ~ (Z//?Z)2. Theorem 14.1 asserts that for every integer;; there

exists a field extension Kn/k and a representation p„:G —> GLd„(Kn) such that

edk(Pn) ^ it- However, the proof of Theorem 14.1 in Section 14 does not tell us
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how to construct p„ or what dn dim(p„) may be in terms of n. The purpose of
this appendix is to prove the following constructive version of Theorem 14.1.

Theorem A.l. Let k be a field of characteristic p, and G be a finite group.
Suppose G contains an elementary abeiian subgroup E ~ (Z/ /?Z)2 of rank 2,

and let W := Wg(E) Ng(E)/Cg(E) be the Weyi group of E in G. Set

Kn := k (a) a„), where a \ an are independent variables. Then for every
integer n 1 there exists a representation p„:G —> GLdn(K„) of dimension
dn — dim(p„) ^ n\G\\W\/p such that edk{pn) —

The approach taken in the previous section is to use the support variety of a G-
representation p to bound ed(p) from below. Here we will first restrict p to E, then

use the support variety of p\ E to bound ed(p) from below. Support varieties for E-
representations admit an alternative description as rank varieties, due to Carlson [9]
(see also [2, Section 5.8]). This makes them more amenable to explicit computations.
In particular, in the course of proving Theorem A.l we will construct an explicit
representation p„ with ed(p„) n and dim(p„) ^ n\G\\W\/p.

Lip to nilpotents, H'(E, k) is a polynomial ring in two variables over k; hence,

Proj(//*(£, A')) P1. For K/k a field extension, the support variety Supp(p) of a

representation p: E —> GL„(A") is thus a A-subvariety of P1. The Weyl group W

of E in G naturally acts on E by conjugation; this induces a fL-action on H'(E.k)
and thus on P1. If p can be lifted to a A-representation of G, then Supp(p) is easily
seen to be invariant under the action of W on P^.

Let Subii Fields^ —»• Sets be the functor given by

Subpi ^(A) := {closed IL-invariant subvarieties of Pj^-J.

Here subvarieties of Pjj. are required to be reduced but not necessarily irreducible,
as in Section 14. Let

Supp£:RepGjt ->• SubPi ^
be the morphism of functors which associates to a representation p:G —» GL„(Ar)
the support variety Supp(p|£) C ¥XK. One can show that Supp£; Repc k ->•

Subpi jy is surjective, but we will not do that here. For the purpose of proving
Theorem 14.1 the following variant of Carlson's realization theorem [10] for
fL-invariant subvarieties of P1 will suffice.

Proposition A.2. Let K be an algebraically closed field extension of k. Let

Xi Xm be distinct K-points ofP1 such that their union X X\ U U Xm is

W-invariant. Then there exists a K[G]-module M such that dim^(A4) m|G|/p
and Supp£(A/) X.

Let gi, g2 be group generators of E. For any point x — [,Vi : x2\ on P^, consider
the element

ux *i(gi - 1) + x2(g2 - 1) + 1
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in the group algebra K[E]. Since ax 1, the element ax generates a cyclic
subgroup of K[E\, commonly referred to as the "cyclic shifted subgroup" corresponding
to the point x (see [9, 2.11]). We denote by K[ax] the subalgebra of K[E] generated

by a*. By construction, K[ax\ ~ K\L/pZ] ~ K[t]/(tp).
Let k C K c L be field extensions, and M be a A'ffJ-module. An L-point

.V [x\ : X2] of P1 belongs to the rank variety Supp£(M) (defined over K) if and

only if the restriction (M 0^- Lis not a free L[ax]-module (see [2, II.5.8]).
If M is finite-dimensional and K is algebraically closed then it suffices to check the

/f-points x — [x\ : X2] 6 IP^ to determine the rank variety of M. We also note that

by [9, Lemma 6.4] this description of the rank variety is independent of the choice

of generators of E.
The following lemma is a very special case of [31, Prop. 4.1]. For the reader's

convenience we supply a direct proof.

Lemma A.3. Let K be an algebraically closed field, and let x [x\ : X2] e IP1 be

a K-point. Let M be a (finite dimensional) K[ax]-module. Then

c En ,K[E] (0. if M is free
Supp (ind^, M) j t

K\F]where Ind^^j M K[E\ ] M is the (tensor) induction of M from K[ax\
to K[E].

Proof Since rank varieties distribute over direct sums,

Supp£(Mi © M2) Supp£(Mi) U Supp£(A/2). (A.4)

it suffices to prove the lemma for each of the p indecomposable /f[ax]-modules.
K\F1If M is a free /f[ax]-module, then the induced module Ind^|a ^ M is free

which implies that the rank variety is empty. Hence, it suffices to prove the

lemma for the remaining p — 1 indecomposable /f[ax]-modules. After a linear
substitution of generators {g\ — l,g2 — 1} of the augmentation ideal of the group
algebra K[E] we may assume that x [1 : 0]. Call the new generators
of the augmentation ideal 5 and f, so that K[E] K[s,t]/(sp,tp). The list
of representatives of isomorphism classes of non-free indecomposable A'[^]/(s,/')-
modules is {K, /f[s]/(,s2) )}. Hence, the lemma is reduced to
the following statement. Consider a truncated polynomial algebra t]/(sp, tp)
acting on

IndAM/6") Kl'l-t}/(spJp) ®K[s]/s" K[s]/(sn) ^ K[t.s]/(tp.sn),

1 ^ n ^ p — 1, via the obvious projection map. Then the restriction of
K[t,s]/(tp,sn) to the subalgebra of K[s.t}/(sp,tp) generated by as + bt is free
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if and only if b ^ 0. Indeed, if b ^ 0, then

n-1

K[t,s]/(tp ,sn) ^ K[as + bt,s]/((as + bt)p,sn) s K[as + bt]/(as + bt)p
i=o

is a free K[as + bt]/(as + Zr?)p-module. If b 0, then (as)p~i (as + bt)p~x
annihilates K[t,s]/(tp,sn) since n < p. Therefore, K[t,s]/(tp,sn) is not a free

K[as + bt]/(as + bt)p -module.

ProofofProposition A.2. We claim that M := Indf Mx has the desired properties,
m K\E\where Mx '= ® Ind^^ ^

K. Clearly, dim(M^) mp and, thus,
i '

IG I m\G\
dim(M) —- • dim(M^)

p2 p

It remains to show that Supp£(M) X. We will use the double coset formula

Resf Indf MX ® Indf n£* Resf *nEK gMx
geE\G/E

By (A.4) we only need to compute the variety for each summand in the double coset
formula. Since Mx is a direct summand of Resf Indf Mx, we have

X Supp£(Mx) C Supp£(Indf Mx) — Supp£(M).

We need to prove the opposite inclusion, Supp£(Indf nEf! Resf snE/! gMx,) C X,
K\Flfor each Mx, Ind^.^ ^

K. Consider three cases:

(a) E n Eg E, that is, g £ Nq(E). Then the corresponding summand in
the double coset formula becomes gMx, the module Mx twisted by g. We have

Supp£(gMx) gSupp£(M;r) gX X, since X is IT-invariant.
(b) E n Eg 0. Then the corresponding summand is induced from the trivial

group and, hence, is free and has empty rank variety.
(c) E n Eg (o), a cyclic subgroup of E. Then a E8 gEg~x

and, hence, g~Iag e E. If g~log $ (a), then {a, g_1crg} generate E which
implies that g e Nq(E) and contradicts the assumption E n E8 ^ E. Therefore,

g~log e (cr). By Lemma A.3, Supp£(Ind^f^ gMx-,) contains at most one point:
the point corresponding to the subgroup (a). Moreover, this variety is non-empty
only if gMx, is not free as (a)-module. By the definition of the action on the twisted
module gMx,, this happens if and only if Mx, is not free as (g_1crg)-module. Since

(S~l<yg) (cr), this is equivalent to the restriction of Mx, to (a) not being free.

Hence, Supp£ (Ind^'f^ gMx,) C SuppE(Mx,) C X, as desired.
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Proofof Theorem A. 1. Fort 1 n, let X, (1 : at) be a Kn -point of P1, and

Y[n] be the union of the W-orbits of X\ Xn. We claim that ed(F[/;]) n,
where we view Y\n\ as an object in Subpi<w(Kn), where Kn be the algebraic
closure of Kn.

Suppose Y[n] descends to a subfield k C F C Kn. Then by Lemma 14.4,

a \ a„ are algebraic over F. In other words, Kn/ F is an algebraic extension or,

equivalently, trdegyt(F) n. This shows that ed(T[/t]) n, as claimed.

By Proposition A.2, there exists a representation p„ : G —»• GLdn(K„) with
Supp£(p„) Y[n]. Thus ed^jp«) ^ edk(Y[n]) 7s //. Moreover, since p„ is defined

over Kn and trdegA.(A'„) n, we have edk(p„) ^ n. Thus edk(p„) n, as desired.

Finally, since Y[n\ is a union of at most n • \ W\ Kn-points of P1, Proposition A.2
also tells us that dn dim(p„) ^ n\W\\G\/p.

Many natural questions about essential dimension of modular representations
remain open. We will conclude this appendix by stating some of these questions
below. In what follows we will assume that k is a field of characteristic p > 0, G

is a finite group, and E ~ (Z/ph)2 is a subgroup of G. We will allow K to vary
over field extensions of k and p to vary over finite-dimensional representations of G

defined over K.
(1) Fix an integer d ^ 1. What is the maximal value of ed/t(p), where the

maximum is taken over all representations p of G of dimension ^ dl
(2) Let S := Proj(//*(G,k)), as in Section 14, and fix a closed subvariety

X C S defined over k. What is the maximal value of edyt(p), where p is subject
to the condition Supp(p) X^-

(3) Let W := WG(E) NG(E)/CG(E) be the Weyl group of E in G and X
be a VF-equivariant subvariety of P1 := Proj(H'(E,k)) defined over k. What is the

maximal value of ed^(p), where p is subject to the condition Supp£(p) Xj<(1

(4) What are the maximal values of ed^lp) — ed^jSuppjp)) and edyt(p) —

edfc(Supp£(p))?
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