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Teichmüller discs with completely degenerate
Kontsevich-Zorich spectrum

David Aulicino*

Abstract. We reduce a question of Eskin-Kontsevich-Zorich and Forni-Matheus-Zorich,
which asks for a classification of all SL2(R)-invarianl ergodic probability measures with
completely degenerate Kontsevich-Zorich spectrum, to a conjecture of Midler's. Let 27^(1) be
the subset of the moduli space ol Abelian differentials Mg whose elements have period
matrix derivative of rank one. There is an SL2(R)-invanant ergodic probability measure v with
completely degenerate Kontsevich-Zorich spectrum, i c. A i 1 > A2 • • • Xg 0, if and

only if v has support contained in D^(l). We approach this problem by studying Teichmüller
discs contained in 27^(1). We show that if (A.cu) generates a Teichmüller disc in 27^(1),
then (X, aj) is completely peiiodic. Fuilhermore, we show that there are no Teichmüller discs

in 27^,(1), for g 2, and the two known examples of Teichmüller discs in 27^(1), for g — 3,4,
are the only two such discs in those genera Finally, we piove that if there are no genus five
Veech surfaces generating Teichmüller discs in 275(1), then there are no Teichmüller discs
in 27^,(1), for g 5, 6.

Mathematics Subject Classification (2010). 37Dxx, 37F30, 32Gxx.

Keywords. Moduli space ot Abelian differentials, translation surfaces, Teichmüller discs,
Kontsevich-Zorich cocycle, Lyapunov exponents.

1. Introduction

lo [21], Kontsevich and Zorich introduced the Kontsevich-Zorich cocycle as

a cocycle on the Hodge bundle over the moduli space of Riemann surfaces,
denoted (l,KZ, which is a continuous time version of the Rauzy-Veech-Zorich
cocycle. They showed that this cocycle has a spectrum of 2g Lyapunov exponents
with the property

1 2-1 > A2 > ••• > Xg > -kg >•••> -A2 > -A) -1.

These exponents have strong implications about the dynamics of flows on Riemann

surfaces, interval exchange transformations, rational billiards, and related systems.

Partially supported by National Science Foundation giant DMS - 0800673 and DMS - 1204414.



574 D. Aulicino CMH

They also describe how generic trajectories of an Abelian differential distribute over
a surface [39]. Furthermore, Zorich [39] proved that they fully describe the non-
trivial exponents of the Teichiniiller geodesic flow, denoted Gt. Veech [34] proved
A2 < 1, which implies that G, is non-uniformly hyperbolic. Since then, the study of
the Lyapunov spectrum of the Kontsevich-Zorich cocycle has become of widespread
interest. Forni [ 111 proved the first part of the Kontsevich-Zorich conjecture [21j:
Xg > 0 for the canonical SL2(M)-invariant ergodic measure in the moduli space of
holomorphic quadratic differentials. His result implies GtKZ is also non-uniformly
hyperbolic. Avila and Viana |2| then used independent techniques to show that the

spectrum is simple for the canonical measures on the strata of Abelian differentials,
i.e. Xk > A£+1, for all k.

Throughout this paper, the spectrum of Lyapunov exponents of the Kontsevich-
Zorich cocycle will be referred to as the Kontsevich-Zorich spectrum (KZ-spectrum).
Veech asked to what extent the KZ-spectrum could be degenerate. Forni [12]
found an example of an SL2(IR)-invariant measure supported on the Teichmüller
disc of a genus three surface with completely degenerate KZ-spectrum, i.e. A[
1 > A2 A3 0. In the literature, the genus three surface generating Forni's

example, denoted here by (M3,com3), is known as the Eierlegende Wollmilchsau
for its numerous remarkable properties [18]. Forni and Matheus [13] then found

an example generated by a genus four surface, denoted here by with
A] 1 > A2 A3 A4 0. Both surfaces are Veech surfaces and in particular,

square tiled cyclic covers. They will be defined and depicted in Section 8. By relating
Teichmiiller and Shimura curves, Möller [30] proved that these two examples are

the only examples of Veech surfaces generating Teichiniiller discs supporting a

measure with completely degenerate KZ-spectrum except for possible examples in

certain strata of Abelian differentials in genus live. In a paper of Forni, Matheus
and Zorich [ 14], they proved that the two examples are the only square-tiled cyclic
cover surfaces generating Teichmiiller discs supporting a measure with completely
degenerate KZ-spectrum. In the recent work of [8], it was shown that there are

no regular SL2(R)-invariant suborbifolds with completely degenerate Kontsevich-
Zorich spectrum for g > 7. It was recently announced by Eskin and Mirzakhani [9],
that the closure of every Teichmiiller disc is an SL2(R)-invariant suborbifold. The

technical condition of regularity for an SL2(M)-invariant suborbifold is defined in [8,

Section 1.5]. It was recently announced by Avila, Matheus, and Yoccoz that every
SL2(IR)-invariant suborbifold is regular |1], Hence, the result of ]8, Corollary 5]

perfectly complements the results of this paper.
Both |8] and [ 14] asked if the two known examples generate the only Teichmiiller

discs whose closures support an SL2(R)-invariant ergodic probability measure with
completely degenerate Kontsevich-Zorich spectrum. In this paper we give a nearly

complete answer to this question by reducing the entire problem to a conjecture
of Möller that claims there are no Veech surfaces in genus five that generate a

Teichmüller disc with this property. Let Vg( 1) denote the subset of the moduli space
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of Abelian differentials, where the derivative of the period matrix has rank one. We
address a potentially stronger problem and ask for a classification of all Teichmüller
discs in Vg( 1).

Theorem 1.1. There are no Teichmiiller discs in Vg(\), for g 2. The surface

(Mi.comj) generates the only Teichmiiller disc in 'D3(1) and (M4, <wm4) generates
the only Teichmiiller disc in 274( 1). Furthermore, if there are no Teichmiiller curves
in T>5 (1), then there are no Teichmiiller discs in Vg (1), for g 5,6.

The main techniques used in this paper include degenerating surfaces under the

Deligne-Mumford compactification of the moduli space of Riemann surfaces, and

an analysis of the derivative of the period matrix under such deformations. This

concept has already been used successfully in [ 11 ]. Several other authors have also

used this concept in other guises such as the second fundamental form of the Hodge
bundle 115J and the Kodaira-Spencer map in the work of Möller and his coauthors

[4,5,30J.

To prove this theorem we show first that any surface generating a Teichmüller
disc in Vg{\) is completely periodic, cf. Theorem 5.5. Then we show that degenerating

surfaces in the closure of a Teichmiiller disc in Vg (1) must have a very specific

configuration, cf. Lemma 5.9. Proving the results requires some technical lemmas

demonstrating convergence of the derivative of the period matrix, cf. Section 3.2,

and a technical lemma concerning the limit of a surface with cylinders that do not
fill the surface under the Teichmiiller geodesic flow, cf. Lemma 4.3. These results

quickly yield some applications, cf. Proposition 6.4.

Next we show that the closure of every Teichmiiller disc in Vg{\) must contain a

(possibly degenerate) surface that is a Veech surface, cf. Theorem 7.4. This leads to

an analysis of punctures on a Veech surface with the goal of excluding more and more

configurations of the punctures until the remainder of the results follow. Theorem 1.1

summarizes Proposition 6.4, Theorem 8.10, Theorem 9.10, and Proposition 8.16.
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2. Preliminaries

2.1. The moduli space of Riemann surfaces. Let I be a Riemann surface of
genus g with n punctures (i.e. marked points). Let R(X) denote the Teichmüller

space of X or simply Rgt„ when X is understood. The surface X admits a

pants decomposition, X V\ U U Vjg-3+n, into 3g — 3 + n pairs of
pants, where each pair of pants is homeomorphic to the sphere with a total of
three punctures and disjoint boundary curves. The Fenchel-Nielsen coordinates

for Teichmüller space describe surfaces in terms of the lengths and twists of
curves in a pants decomposition of X. A point in Teichmüller space is given by

3*_3+„. 01 03H+»)e«f3+"xB3H+".
Let Diff+(A') be the group of orientation preserving diffeomorphisms on X. Let

DiffjJ"(X) denote the normal subgroup of Diff+(A') whose elements are isotopic to
the identity. Then the mapping class group is the quotient

r(A') Difl^ CYj/DifFjOY).

The moduli space ofgenus g surfaces with n punctures is defined to be

Kg,n R{X)/T(X).

Deligne and Mumford [7] introduced a compactification of the moduli space
denoted 1Zg,n of Riemann surfaces within the more general setting of compactifying
the space of stable curves. Every neighborhood of a point on a Riemann surface
with nodes is either conformally equivalent to the unit complex disc, or to the set

{(.v, y) G C2|.v v 0}. The point mapped to (0,0) with the latter property is called

a node. We regard this as the contraction or pinching of a simple closed curve on

a surface to a point. Removing a node results in two punctures on either side of
the node. This may or may not disconnect the surface. After removing all nodes,

each of the connected components of the punctured degenerate surface is called a

part. A pair of punctures, denoted (p, p'), will specifically refer to the punctures
created by removing a node. We will assume this deconstruction throughout and

say that pinching a curve results in a pair of punctures unless we say otherwise.
Theorem B.l in Appendix B of [20] describes the compactification of the moduli

space in terms of the Fenchel-Nielsen coordinates (or equivalently, a choice of pants

decomposition) for Teichmüller space. By [20, Theorem B.l J, the boundary of the

moduli space TZg,n under the Deligne-Mumford compactification is given by letting
one or more of the lengths f, in the Fenchel-Nielsen coordinates be zero.

2.2. Abelian and quadratic differentials.

2.2.1. Abelian differentials. Let K be the cotangent bundle over X. A section a) of
A" is a complex 1 -form called an Abelian differential. An Abelian differential a> on X
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is given in local coordinates by co <p(z) clz, where (p(z) is a holomorphic function
on the punctured surface possibly having poles of finite order at the punctures.
Furthermore, co obeys the change of coordinates formula

The zeros and poles of co are called singularities and all other points are called

regular. The Chern formula relates the total number of zeros and poles counting
multiplicity, by

An Abelian differential co determines an orientable horizontal and vertical
foliation of a surface given by {3(at) 0} and {!U(u>) 0}, respectively.
Equivalently, the foliations can be defined by a pullback of the horizontal and vertical
lines in the complex plane under the local coordinate chart on the surface. The
Abelian differential co determines a flat structure on the surface away from the

singularities. A maximal connected subset of a foliation is called a leaf. If a leaf
is compact and it does not pass through a singularity of co, then it is called a closed

regular trajectory. A closed connected subset a of a leaf with endpoints at zeros of co

whose interior consists entirely of regular points of co is called a saddle connection.
Given a closed regular trajectory y, the closure of the maximal set of parallel closed

regular trajectories homotopic to y form a cylinder. By definition, the boundaries of
a cylinder consist of a union of saddle connections. We say that two cylinders are

homologous (resp. parallel) if their core curves are homologous (resp. parallel). If
every leaf of a foliation is compact, the foliation is periodic.

Lemma 2.1. IfC\ and C2 are homologous cylinders on a surface (X,co), then C\
and C2 are parallel.

Proof. Let y\ and y2 be the core curves of C\ and C2, respectively. Without loss of
generality, assume that is a closed curve of the vertical foliation on X by co. Then

by the definition of homologous

The last equality follows because yt lies exactly in the vertical foliation so it has no
horizontal holonomy. However, this implies

f(<j(z))do{z) (p(a(z))o'(z)dz.

U(zeros) - JJ(poles) 2g - 2.

Thus
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which implies

31 (<u) 0.

Therefore, f2 has no horizontal holonotny either, so it must be parallel to y\.

Call cp(z) or co Iwlomorphic if it can be continued holomorphically across all

punctures of X. When f(z) is holomorphic it naturally determines a flat metric on

the surface. The length of a curve y in this metric is given by

f \<j>(z)dz\.
Jy

Furthermore, there is an area form given by

A(co) - I co A co.
2 Jx

In the case of meromorphic differentials, the metric is still defined on compact
subsets away from the punctures at which the differential has a pole though the area

form is infinite.
Let Tg<n be the Teichmüller space of Riemann surfaces carrying Abelian

differentials. Define the moduli spcice ofAbelian differentials on Riemann surfaces

of genus g with n punctures by Mgy„ — Tgy„/ T(X). Define M.g := Mgy o and

M(gl \(X,co) G Mg\A(co) 1}.

Given a holomorphic differential co on X, the sum of the orders of the zeros
of co is 2g — 2. This determines a stratification of the moduli space of holomorphic
differentials by the multiplicities of the zeros of the Abelian differential. Denote the

strata by %(k), where k is a vector corresponding to a partition of 2g — 2. In the

case of meromorphic differentials, we list the orders of the poles in the vector k so

that the sum of the components of the vector remains 2g - 2.

The moduli space of Abelian differentials can be expanded so that limits of
convergent sequences of Abelian differentials lying on degenerating surfaces exist

on nodal surfaces [17]. An Abelian differential a) on a nodal Riemann surface is

holomorphic everywhere except possibly at the punctures arising from removing the

nodes, where co is meromorphic with at most simple poles. At each pair of punctures
(/>, p'), co satisfies

Resp(ft)) —Resy,/^).

Let Aig denote the moduli space of meromorphic Abelian differentials over the

compactified base space 7Zg.

There is a natural action by K* on the bundle of Abelian differentials. Let r e R*
and (X, co) e Mg, then

/• • (X,a>) := (X, reo).

I
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For the remainder of the paper, we abuse notation and assume that the moduli

space M.g is always quotiented by M* unless we say otherwise. Furthermore, it will
often be useful to choose a representative differential of the coset (V, a>)[M*]. For
instance, if co is holomorphic and nonzero, we may choose the representative so that
its area form is one and if co is not holomorphic, we may choose a representative such

that the modulus of the largest residue is one. This will be called area normalization
or residue normalization, respectively.

The advantage of this projectivized moduli space of Abelian differentials is that it
guarantees that for every sequence of Abelian differentials converging to an Abelian
differential on a degenerate surface that there is at least one part of the degenerate
surface on which the limiting Abelian differential is not identically zero. Without the

projectivization, no such guarantee can be made. Let {(Xn, con)}^=Q be a sequence
of surfaces carrying holomorphic Abelian differentials converging to a degenerate
surface (Xco') in M.g. Since Xn has finite genus, there are finitely many pinching
curves.

Definition. For positive constants M, p\ < p2 < 1, an Abelian differential co on
the annulus AtyC,c' '= S C||f|/c' < |£| < c} is band bounded, provided that

M</£/£)_1| < M for £ satisfying \t\/(c'p2) < |£| < \t\/{c'px) and satisfying

P\c < |CI < P2C.

A sequence ofAbelian differentials cot on cumuli A,tCtC' with t tending to zero, is

band bounded provided the differentials co, on Auc%c< are band boundedfor positive
constants M, p\, P2, and cdl small t.

We can assume that con is band bounded 137, Definition 11 on the annulus around

each pinching curve. If we multiply co„ by rn so that the constant M in the definition
of band bounded is uniformly bounded away from zero and infinity for all n, then

Lemma 2.2 follows from [37, Lemma 2].

Lemma 2.2. Given a sequence \{Xn. co,,) \=0 such that the sequence {Xn\ff=()
converges to a degenerate surface X', there exists an Abelian differential co' on X'
such that co' is the limit of the sequence [co„ }^20 in Aig /M* and co' is not identically
Zero on every part of X'.

2.2.2. Quadratic differentials. Let K be the cotangent bundle over X. The

sections of the bundle K <8>c K are called quadratic differentials. A quadratic
differential is given in local coordinates by q cp(z)dz2 and obeys the change
of coordinates formula

f(o(z))do{z)2 <p(a{z)){o\z))2dz2.

Singularities and regular points are defined as before and in this case the Chern
formula reads

[[(zeros) — ft (poles) Ag — 4.
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A quadratic differential determines a horizontal and vertical foliation of a surface

given by (3(^0(7)) 0} and {!){(^/(j){z)) 0}, respectively. These foliations
are not necessarily orientable. If they are, q is called an orientable quadratic
differential. If a quadratic differential is holomorphic everywhere except for at most

a finite set of simple poles, then it is called an integrable quadratic differential.
Denote the TeicbmiiUer space of integrable quadratic differentials by Qg,n and

the corresponding moduli space of integrable quadratic differentials by Qg,n '

Qg,n/Fg,n-
There is a natural way of associating an Abelian differential to a given quadratic

differential. If q is non-orientable, then there is a connected double covering

ji : X -> X defined as follows. For each chart U of X, let q <pu(z)dz2 and

define two charts V± of X each of which maps homeomorphically to U under n
and V± carry the local differentials ± ^/<pu (z) dz. This lift is compatible across
charts and defines a quadratic differential a>* with the property q h2, where h is

an Abelian differential. This lifting procedure is called the orientating double cover
construction, and it can be used to translate the terms defined for Abelian differentials
above (metrics, etc.) to non-orientable quadratic differentials.

As above, the bundle of quadratic differentials can be extended to the boundary
of the moduli space of Riemann surfaces as defined by the Deligne-Mumford
compactification. By admitting quadratic differentials with at most double poles,
limits of sequences of integrable quadratic differentials on non-degenerate surfaces

exist on degenerate surfaces. Define the residue of a quadratic differential q at a

point p to be the coefficient of the term 1 /z2 in its Taylor expansion at p. Given a

quadratic differential q on a degenerate surface X with a pair of punctures (p, p'),
the residues of q obey the relation

Resp(q) Resp>(q).

Let Qg<n denote the moduli space of regular quadratic differentials on the compact-
ified base space of Riemann surfaces TZg,n-

2.3. The SL2(M) action. We define the SL2(R) action on quadratic differentials.
It is clear that this definition applies to Abelian differentials as well. Let q be an

integrable quadratic differential. Let h (resp. v) denote the horizontal (resp. vertical)
foliation of q. The action by A SL2(M) on an integrable quadratic differential q is

defined by

a b h

c d V

and denoted by A • (X,q). The action is well-defined on and between charts of X.
Thus it defines an action by A globally on (X, q). It was stated in [4, Section 11] that
the action is also well-defined on meromorphic Abelian differentials with at most
simple poles. Furthermore, [4, Proposition 11.1| says that the action of GLj (R)
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extends continuously to the boundary of M.g. We point out to the reader that the

action by GL^"(R) on Mg without the action by R* is the same as considering the

action of SL2(R) on ,Mg/R* because the action by R commutes with everything.

Definition. Given a surface (X ,q) e Qg,n, the Teichmiiller disc of (X,q) is the

orbit of {X, q) in Qg,n under the action by SZ^R).

The Teichmiiller geodesic flow, denoted Gt, on the bundle of quadratic differentials

is the action by diagonal matrices:

Gt
e' 0

0 e~'

We note for the convenience of the reader that the residue of the simple pole of an

Abelian differential differs from the holonomy vector by a factor of 2iti.
Lemma 2.3. Let oj be an Abelian differential on a surface X with residue c a + ib
at p e X. Let t'c, denote the residue at p after acting by G, on (X, a>). Then

c'g, ae~' + ibe'.

Proof. Without loss of generality, let p 0 in local coordinates about p. By [32,
Theorem 6.3], it suffices to look at how the differential cdz/z changes under the

action by Gt. To do this, convert to polar coordinates and integrate the differential
around the curve y defined by r 1. Let c a + ib. Then

c dz (dr ,f\ adr /, dr \—= (a + ib) f b i dOj bdd + i b— +ad6\

Furthermore, dr 0 because r 1. So this simplifies to {—b + ia)d6 and acting
by G, we get (-be1 + iae~') dB. Therefore,

c'g, / (-be' + iae~')d0 ae~' + ibe'.
2ni J0

Definition. A number c e C is e-nearly imaginary if\ arg(c) ± tt/2| < e.

Lemma 2.4. Let (X'. of) be a degenerate surface carrying an Abelian differential
with simple poles and residues {c, cm}. Given e > 0, there exists A G

SL2(W) such that if c'j is a residue of A (X'.of). for 1 < < m, then c'- is

E-nearly imaginary.

Pr°of. It is possible that at' has some real residues. If so, multiply co' by a complex
unit £ so that fco' has no real residues. Given a residue fcj of fco', after acting on
tcj by Gt, the real part of the resulting residue is e~'))\(fcj) by Lemma 2.3. Hence,
there exists T such that

\e~Tmcj)\ < e\e-TW(fcj) + ieTZ(fCj)\.
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Lemma 2.5. Let [ (Xn. o>„) a sequence of surfaces containing cylinders
Cn C Xn with core curves y„. Let uin and hn denote the flat length with respect
to con of the circumference and height of Cn, respectively. If the ratio hn/wn tends

to infinity with n, then the hyperbolic length ofyn converges to zero.

Proof. The modulus of the cylinder Cn is exactly the quotient hn/wn. By [23,
Lemma 3|,

1

Extx(y„) <
Mod^(y„)

where Extx(yn) is the extremal length of yn with respect to a Riemann surface X.
By 124, Corollary 2], Extv(y„) goes to zero with the hyperbolic length of y„.

Corollary 2.6. Let (X, co) admit a cylinder with core curve y such that y lies in

the vertical foliation of X by co. Then for all divergent sequences ofpositive times

{tn [ for which the limit

lim Gt • (X,co) (X',a/),
rt—KX)

exists, y degenerates to a node of X'.

Proof. Let C C X denote the cylinder with core curve y and let w and h denote the

circumference and height of C, respectively. After time t„, the circumference and

height are given by e~'"u> and e'"h. Since

e'" h
lim ——— oo,

/j->-Oo e w

y pinches as n tends to infinity, by Lemma 2.5.

Lemma 2.7. Let D be a Teicluniiller disc in yVf^/M*. Given a sequence
j (Xn. 0)n in D converging to a degenerate surface (X', of there exists a

degenerate surface (X", to") in the closure of D such that co" is not holomorphic
on every part of X". Furthermore, X" is reached from X' by pinching additional
curves of X'.

Proof. By Lemma 2.2, we assume that there is a part S C X' such that co' is not

identically zero on S. If to' has simple poles on X', then we are done, so assume
otherwise. By [27, Theorem 2|, there is a cylinder C\ on S. Degenerate S under
the Teichmiiller geodesic flow by pinching the core curve of C\. All punctures
of X' are obviously preserved under the SL2(M) action. The new limit co\ carries

an Abelian differential which is not identically zero everywhere by Lemma 2.2.

If oo\ is holomorphic on every part we can repeat the argument. Since the genus
is finite, the repetition of this argument will terminate when we reach a differential
that is not holomorphic or when the surface degenerates to a sphere, which does not

carry holomorphic differentials. Since the punctures of X' are preserved under the
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SL2(M) action, X" is reached from X' by pinching additional curves. Furthermore,
it follows from the continuity of the SL2(R) action [4, Proposition 11.1] that X" is
in the closure of D.

3. Lyapunov exponents and the rank one locus

In the first subsection, we give the precise formulation of the problem answered in
this paper. In the second subsection we present all of the technical lemmas related to
the derivative of the period matrix that will be used throughout the remainder of this

paper.

3.1. Lyapunov exponents of the KZ-cocycle. Let X be a Riemann surface of
genus g. Consider the cocycle defined by the Teichmüller geodesic flow as follows

G, x Id : Tg x Hl{X,C) -> Tg x //'(Jf.C).

The mapping class group preserves the real and imaginary parts of
Tg x //1 (X, C). The Kontsevich-Zorich cocycle is the quotient cocycle

Gfz : 111 ((Tg x Hl(X,C))/rg) -* 5H ((Tg x Hl(X, C))/rg)

restricted to the real part.
Let v denote a finite SL2(M)-invariant ergodic measure on Mg. The cocycle

Gfz admits a spectrum of 2g Lyapunov exponents with respect to v. The natural

symplectic structure on Hl(X,C) induces a symplectic structure on the entire
bundle 1)1 ((Tg x H1 (V, C))/ T^), which forces a symmetry of the 2g Lyapunov
exponents.

\=xvl>y2 > > x; > -xvg > • > -xv2 > -x\ -l.
We refer to these 2g numbers as the spectrum of Lyapunov exponents of the

Kontsevich-Zorich cocycle or the KZ-spectrum for short. If Xvk 0, for some k, then
the spectrum is called degenerate. If Xvk 0 for all k > 1, then the KZ-spectrum is

completely degenerate.
Kontsevich and Zorich [21 ] as well as Forni [11] gave a formula for the sum of

these exponents in terms of the eigenvalues of a Hermitian form. These eigenvalues
were reinterpreted through the second fundamental form of the Hodge bundle [15].
Let (X,co) e Mg. Let L^(X) be the Hilbert space of complex-valued functions
°n X that are L2 with respect to w. Let (•, )« be the inner product on L2(X). Let

C L^iX) be the subspaces of meromorphic and anti-meromorphic functions,
respectively. Define the orthogonal projections

: Ll(X) M*.
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For two meromorphic functions ,m2 e M+,

HajOn^,m\) (n~(mf), n~(m%))a.

The eigenvalues of Hw(-, are given by the functionals A^((o) : M.^ -»• R, which
are continuous for all k and on, and obey the inequalities

1 Ai(üj) > A2(CU) > •• > Ag(u>) > 0.

In [ 121, Forni introduced a filtration of sets

Vg(\)cVg(2)C---cVg(g-\),
where

Vg(k) {(A,co) 6 Aig\Afc+i(<y) • • • Ag(a>) 0},

and T>g(k) is called the rank k locus. The set T>g(g — 1) T>g is the determinant
locus introduced in [ 111.

Let v be a canonical SL2(M)-invariant measure on a connected component CK of
the stratum %(k) C Mg of Abelian differentials. Corollary 5.3 of [11] gives the

following identity:

\v2 + + \ vg f A2(ru) + • • • + Ag(co)dv.
mc'k) Jck

In [12], Forni notes that this formula can be extended to any SL2(R)-invariant
ergodic probability measure, from which the lemma below follows.

Lemma 3.1 (Forni (12, Cor. 7.1]). Let v be a finite SL2(M.)-invariant ergodic
measure on the moduli space Mg. The KZ-spectrum with respect to v is completely
degenerate if and only iffor almost every [X. en) e supp(v), Hm has rank one, i.e.

supp(v) cT>g(\).
We introduce the derivative of the period matrix, which will be the focus of

this paper. Let {a\ ag. bg) be a basis for the first homology group
H{(X, C). Let {0/}y 1

be a basis of the complex vector space of holomorphic
Abelian differentials on X normalized so that

[ 0j=iij,
Jdj

where Sjj is the Kronecker delta. Under this choice of basis of Abelian differentials,
the period matrix Fl(X) is the symmetric matrix with positive definite imaginary
part whose components are given by
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The space of Beltrami differentials, B(X) is dual to the cotangent space of
quadratic differentials. Every Abelian differential to uniquely determines a Beltrami
differential

a)
ßw

to

which is defined everywhere except at the zeros and poles of to of which there are

only finitely many. In the Teichmüller space R(X) the space B{X) represents the

tangent space and ß e B(X) a tangent vector at X. In R(X), ß determines a

direction in which we can take a derivative of 11(A). The derivative of the period
matrix at X in direction ß is denoted by dY\(X)/dß. Let co h{z)dz and Ok

fk(z) dz, for all k. Rauch's formula, [20, Proposition A.3], gives a concise formula
for the components of the derivative of the period matrix.

dllijiX) f f h

dßa
f OiOj dßw f fifjjdz Adz
Jx Jx h

In the proof of Lemma 4.1 of [11], Forni defines a complex bilinear form on

holomorphic Abelian differentials to\, co2 by

I CO I 0)2
B(0(couco2) l — ,—\ to 00

It was proven in [11] that Hw BMB* (and a typo in the equation in [11]
was corrected in [15]). It is possible to choose a basis of Abelian differentials
{01, ,<pg} on X such that

dUijiX) ^
~r~ Bw {(pi,<pj).

dßw

Hence, Hw has rank one if and only if dU(X)/dßw has rank one. For this reason
it suffices to regard Vg(\) as the set where dU(X)/dßw has rank one for the

remainder of this paper.
Since v is an SL2(M)-invariant measure, supp(v) must be an SL2(M)-invariant

set. Consider (A, to) supp(v). Let D be the Teichmüller disc generated by
(X - oo). Then D c supp(v), and if the KZ-spectrum with respect to v is completely
degenerate, then D cVg{\). This is precisely the problem that we address in this

paper.

Problem. Classify all Teichmüller discs D such that D C T>g{\).

^2. The derivative of the period matrix. One of the most important techniques
111 this paper is the use of estimates for the derivative of the period matrix near
the boundary of the moduli space Mg. In this section we introduce plumbing
coordinates for a Riemann surface and express Abelian differentials in terms of
those plumbing coordinates using the exposition of [38]. Unfortunately, it will
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not be possible to guarantee convergence of the derivative of the period matrix in

every possible scenario, but it will be possible for all cases relevant to this paper.
Lemma 3.2 below is a stronger statement than that of [11, Lemma 4.21 because

it applies to any sequence satisfying a relatively lax set of assumptions. These

convergence lemmas motivate and justify defining the rank of the derivative of the

period matrix for surfaces in the boundary of Mg.
Plumbing coordinates have been used extensively from 1261 to [11], among

others. They have been used to write explicit formulas for differentials near the

boundary of the moduli space. Wolpert [37] reworked the foundations of differentials
on families of degenerating surfaces using the language of sheaves, and expressed
the differentials on degenerating surfaces in terms of plumbing coordinates. We copy
the language and notation of [11, Section 4| and [37,38], as appropriate. Let X' be

a degenerate Riemann surface in the boundary of TZg. Let X' have 1 < m < 3g — 3

pairs of punctures {(pi.p[)\, for 1 < / < m. Let r £ C3g~3~m denote the

local coordinates for a neighborhood of X' in the Teichmüller space of X'. We

denote surfaces in a neighborhood of X' £ 3lZg by X(0, r). We refer the reader

to 138, Section 3], where the coordinates are specifically chosen to correspond to
small deformations of the complex structure on X'. For our purposes, it suffices

to know that such a coordinate r exists. Let (U, (0, r), z, and (L, (0, r), id, be

coordinate charts around pi and p\, respectively, such that z,(/?,) &>,(/?!) 0.

Following [37,38], let c',c" be positive constants, V {|z| < c',\w\ < c"},
D {|r| < c'c"}, and n : V —> D be the singular fibration with projection

jr(z,iv) zw t, where z. w, t £ C. Let tm (f'1', £ Dm. Let

c < 1 be a small positive constant. For |f^| < c4 and 1 < i < in, remove the discs

[|z, | < c2} and [|in, | < r2} from 3f'(0, r) to get an open surface X*. For each /,
identify a point u0 e [i/|c2 < |z,-(j/)| < c} C X* to the point (z,-(i/0),/*'Vw(»o))
in the fiber of a /lh factor of nm : Vm -» Dm (induced by 7r : V -» D), and identify
a point n0 £ [u|c2 < |u;,-(u)| < e} C X* to the point o). w;, (u0)) in the

fiber of a kih factor of jx : V D. This implies that we can write X(t, r) to fully
coordinatize a neighborhood of the degenerate surface X' := 3f(0, roo) G 1Zg.

In [26] and [11], the identification of the annuli is made directly so that if we
translate their language to Wolpert's, we get

(Z;(»o)./(,)/z,(»o)) (t0)/Wi(Vo),Wj(Vo))

and identify along the curve |u>/(v0)| M»o)| "J\t(i)\- It suffices to follow this
convention throughout this paper. Following the notation of |37|, we define annuli
with respect to this identification. Let

RzU(l)) j < Ifcl < c'} C {\t^\/c" < It, I < c'j
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and

Rw(t(,)) := < IM < c"} c i\t{l)\/c' < IM < c"J.

Let c c' c" and define

m

X*(t,z)=: X? U\J RZ('(,))U Rw(t(i)).
i i

Next we consider Abelian differentials on Riemann surfaces. Let D\X- • -xDm
Dm denote the m copies of D above. Following [37], every Abelian differential
can be expressed in terms of local coordinates on Dj. This is done by considering
the coordinate on an annulus and the map t,} [fj ,t^/t,j) (resp. t,j h>-

As A7) tends to zero this yields the convergence of the differential
in local coordinates about the degenerating annuli resulting in the map t,j i-> (£y,0)
(resp. Sj (0,^)).

It follows from a version of the Cartan-Serre theorem with parameters or [26,
Proposition 4.1] that there is a basis of Abelian differentials {6\(t. r),..., 8g(t, r)}
on X(t, r), for all small t, such that {0i(O, r^) 0^(0, Too)} spans the space of
Abelian differentials on X'. We assume such a fixed basis in a neighborhood of a

degenerate surface throughout this paper. Let

(> _ (7U) /(7_1), A7 + |),

In local coordinates on D,, let 9, (t\ t, / (7)/f,) 2f, (C, r, ,t{j)/tj) dtj/Sj,
where

k,t>o
by [37],

Let {(Ar„,£un)}^=0 be a sequence of surfaces carrying Abelian differentials

converging to a degenerate surface (X\co'). Without loss of generality, we can
ignore the beginning of the sequence so that every element of the sequence can
be expressed in terms of the local coordinates established above. Thus, let X„
xUn, r„) and X' *(0, r«,). Let

wn 2An{t',T,i}j,t(j)ß]) -y--
sy

in local coordinates on D,. Contrary to the coefficients f, in the basis of Abelian
differentials, note the dependence of the function An on n.

Lemma 3.2. We follow the notation established above. Let {(X(tn, t„), ojn)}f=o be
a sequence ofsurfaces converging to a degenerate surface (W (0, too), co'). For each
n' let {Öi (tn, r„) 0g (tn, r„)} be a basis for the space ofAbelian differentials on
X(tn, Tn). Given /, j.for all k, ifone of the following is true:
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(1) Either /, (0, 0,0) 0 on Dk or f} (0, too. 0, 0) 0 on Dk, or

(2) /4qo(0. Too. 0.0) 7^ 0 on Dk,

then

(d n,y (X(t„, xn)) I" \ i \ nhm / 0,(0,700)0,(0,7-00)^' 0,
n^oc \ dpa,,, «,) /

Proof. On compact subsets away from the punctures, the integrand converges to an

integrable real analytic function, so the dominated convergence theorem gives us the

desired convergence on these compact sets. Hence, it suffices to prove convergence
(A:) (k) (k)

on each annulus Rz(tn and Rw(tn To get convergence on Rw(tn it suffices
(k)

to show convergence 011 Rz(t„ because they are symmetric up to multiplication by
a constant. Using Rauch's formula, we explicitly write the expression to be estimated

as tn tends to zero in C. That the following integral makes sense and proves the

desired convergence follows from [37, Lemma 2J.

4 f I fI (t'n T„ & ,t(nk' /& fJ (t'n X„ &, tjjk) /& An (t'n, T„, Jn^ /& / Zk

JR:«},k))\ & Sk An(t'n,xn^k,t(nk)/^k)/^k

/, (0. roc, 0) fj (0. too, 0) /too(0, Too, 0)/& \ „ -
Kk U AooiO.Xoo.^.O)/^)

Following the proof of [11, Lemma 4.2], we split the difference in the integrand into
the following three terms:

(I) 4 1
fU'n^n^kjik)/Kk) /i(0,Too,Cifc,0)f (-

Kk tk

fjf'n^n^k-tr IKk) An(t'n.xn.i;k,C}^k)ßk
_ -

y t. Ik) kXLjk R "S/r^ An{t'n•^n^t,kAn /^k)/^k

4 / 1
fj(tn<Tn< ^kdh Vftfc) fj (0, Tqo, 0)fJRz (tf' \ & £*

/, (0. ^00.0) An{t'n, xn, t,k. tj, ^/^k)/^k
n. —

7 77 Ü7 dZkAdtkh An(t^.xn^kj(nk)/U)/U
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(HI) 4 L ./i(0, Too.0) /,((), loo, fr,0)
Kk Kk

An{t'niTn,{,k<tn ^ooCO» too, t/c, 0)/t*

r„. £*, tjik)/U)/^k T°°' £*- °)/£*
d&^dtk.

Regardless of whether Case 1) or 2) holds, convergence of the expressions (I)
and (II) is guaranteed. Consider the difference

Mt'n.rn.SlctW/Sk) - M0,Too.l;k.0),

where * indicates that the choice of subscript i or j does not matter here as long
as the subscript is the same on both functions. By [37], /* is holomorphic in all
variables, hence, there is a constant Co > 0 such that

lt*l ffVW - .MO, Too, 0) £C0
,Wi

It* I2

and

./*(/;,, r„,
t* -c°i&r

Using Holder's inequality, there is a constant Ci > 0 such that the following
inequalities hold

KDI < 4||(/|(t'n, r„, t*> - /i (0, too. t*.0))/t*llL2(Äz(,,<*>))

Wfji'ir 1n^k-'h Vt*)/t*ll^2(Äz(,W')^

| ;^\ j

- " C°
|^|2 Khr:(tl,k>)) II C° " T2(R--('/,* *))

If* 'I /

<cl-!^=(log|,m|)'/2 clVl/«i(ioetf»l),/2
Ak)
Ln
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and

KIDI < 4||( fj (t'„, r„, fk, tj,k)/fk) - fj (0, Too, 0))/fk\\L2iRz(la))}

LA (0» Too- fk- O)/CA IIL2(R-(4a>))

5 II C„
(Oi

|^|2 llL2(/e.-(/,<,A,))ll^° |^| iil2(R-('»m))l|C01

< c, /k^T(iog i^^)172.

The convergence for (III) remains to be shown. We split this into two cases that

are resolved by Lemmas 3.3 and 3.4. Note that in Case 2), it suffices to assume that

fi (0, too, 0.0) fi 0 and fi (0, Zoo- 0,0) fi 0. Otherwise, Case 2) is subsumed by
Case 1).

Lemma 3.3. Given k, if f (0. too, 0,0) 0 on Dk or f} (0, r^, 0,0) 0 on Dk,
then (III) converges to zero as n tends to infinity.

Proof. By the assumption that at most one of /, and fj has a simple pole, we have

/l(0, Too, (jt, 0) fj (0, Too, ^ 0)
1(111)1 <4 L fk

An (t'„ r„ fk, t„
^

/fk)/fk ^oo(0> Too- fk-Q)/fk\ dfk A d fk

An(t'n, Tn. fk-'nk)lfk)/fk AooiO, Zoo, fk'ty/fk J fk

The quantity /, (0, r^, fk.°) fj (0, r^, fk, 0)/fk is bounded on Rz(t(k)) because /,
and f} are holomorphic (hence bounded) and fi (0, r^, 0, 0) • fj (0, Too, 0,0) 0.
This implies that there exists a constant C > 0 such that

<Cf
J R

l(III)|
lR:(t!,k>)

An (in • tn • fk - G / fk) ^oo(0. Lso» fk- 0)

A„{t'n,Xn, fk,tr/fk) ^(O, T«,, fk, 0)

(I fk A d fk

\fk\

The integrand is clearly bounded by the integrable function 2/1^ | for all n, and thus,
the dominated convergence theorem yields the desired convergence.

Lemma 3.4. Given k, if /, (0, r^, 0,0) fi 0, f, (0, r^, 0,0) fi 0, and
<4oc(I)• too- 0- 0) fi~ 0 on Dk< then (III) converges to zero as n tends to infinity.

Proof. By assumption, there exists N such that An((), z^, 0,0) fi 0 for all n > N.
Since /WO. too, 0,0) fi 0, there exists r > 0 such that
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An{t'n,Xn^kJnk)/&) # 0 and An{t'n^n,i;kJ^k)li;k)/An(t'n,Tn^kJ^k)/t,k) is

real analytic function in the polydisc < r, |(T| < r) C C2. Therefore, there

exists a constant C2 > 0 such that in the annulus {y|b^| < |(T| < r/2}, we have

An{t'n,T„,$kAk)ßk)ftk /looiO.Ioo.^.O)/^

An(t'„,*n<t,k,tn 'IKk)IKk ^oo(0, r^, 0)/^

An(t'niTn,{,k,tn /£k) ^00(0, Too, 0)

An(t'n, r„, U-thk)Itk) ^°o(0, Too, fc.O)

i,Wi
< C2

Ik I

<c2^(Ol

Exactly as in the proof of [ 11, Lemma 4.2], there exists a constant C3 > 0 such that

.// (0. Too, 0) fj (0, Too, &, 0)
1(111)1 < - C;Vl^log 1^1+4 f

J\ik\>r/2 k

An{t'n.rn,^k,tn Vk)/k ^oo(0, Tqq, ^k, 0)/k
An(t'n-Tn,i;k,tnk)/^k)/U /4oo(0- r°°' k'°)/k

k

d k ^ dt,k

Since the domain of integration in the right-hand integral does not depend on t,
the domain of integration is compact and the integrand is bounded by an integrable
function for all 11. This proof is completed by applying the dominated convergence
theorem to the sequence as n tends to infinity.

Definition. Define the extension of the rank k locus to the boundary of Mg to be
the closure ofVg(k) in Mg and denote it by Vg(k).

Remark. Since Vg (k) is already a closed set in Mg, we would never need to write
P*g{k) to mean the closure of"Dg(k) in A4g.

Lemma 3.5. If(X', to') e VJk), of is holomorphic on X', and co' ^ 0 on any part
of X', then

fdU(X')
Rank ——

V dptw>
< k.

Proof This is clear for (X', w') e Vg(k), so we assume (A", to') eVg(k)ndMg.
y definition, Vg{k) is the closure of Vg(k) in Mg, so there exists a sequence
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{(Xn. con)}'^Ll in Vg(k) converging to (X', to'). Let X' be a surface of genus g' < g.

Let {6 (») ](")
V 9g"^} be a basis of Abelian differentials on Xn ordered so that

lim 9{"] 9m,

for 1 < m < g', and the set {9\ 9g'} is a basis for the space of holomorphic

Abelian differentials on X'. Note that for each m, 1 < m < g', {6,
(«)>
m /„ i1, is a

sequence of holomorphic differentials converging to a holomorphic differential. Let

A„ (A^) denote the minor of dfl(Xn)/diitün defined by

f ejn)ef
J X,i

d[x,a>„

for 1 < i,j < g', and let A denote the derivative of the period matrix of
(X',a>'). Since we restricted our attention to the basis of differentials that are

holomorphic on X' and u>' 0 is holomorphic, An converges to A componentwise

by Lemma 3.2. For any sequence of matrices {An}'^Li converging to a matrix A

component-wise, there exists an e > 0 such that if || An — A || < s, where || A || denotes

the sum of the absolute values of the components of A, then Rank(A„) > Rank(A).
Also, given a matrix M with minor B, Rank(M) > Rank(ß). The lemma follows
by letting M dVl(Xn)/dßWn and B A„, so that

k > Rank fdU(Xn) > Rank(A„) > Rank(A) Rank fdU(X')
V dßa>„ J y""' V"/ V dp,

Lemma 3.6. Let {(X(tn, r„). a)„)}^L0 be a sequence of surfaces converging to a

surface (X',co') e Mg. For all /, j and n > 0, there exists a constant C > 0, such

that

L 0,(O.Too)0,(O,roo)
a)'

< C.

Proof. The differentials 9, (0, r^) are holomorphic on the compact set X* for all /,
by the definition of X* Hence, |0,(O, Too)| < C' for some constant C' and all /'.

This implies

L CO

9,(0. r00)9j (0, loo) —
to

<! 10,(0.100)^(0,100)1 <C'2 C.
Jx*

Lemma 3.7. Let D£ {z||e| < \z\ < 1} C C. For all N > 0 and e > 0,

/J De

,iV
-dz Adz. — 0.
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Proof. Convert to polar coordinates by letting z re'd. For all e > 0

"27T c 1 N ,,iN6C C C rVAI zN jz dz A dz —2i I I
Jd, Jo Je re~lt -r drdO

-2i r f rNe*N+Wdrde.
Jo Je

This expression integrates to zero, for all (V > 0.

Lemma 3.8. Let De {z||e| 5 |z| 5 1} C C. For all N e Z, K > 0 and e > 0,

there exists C > 0 such that

j --
J df

N-K dz Adz < C.

Proof. Convert to polar coordinates by letting z re'6. Then for all e > 0

p 1

f zNzK dz Adz -2/ f f rNe'Ner
J De Jo Je

Ke~iK6rdrdO

r2jt p\

_2ij J^ rN + i+Kel(N~K)edrde.

If N — K ^ 0, this expression integrates to zero. Otherwise, this expression is
bounded by

pin /* 1

/ / r2K+x drd6
Jo Je

<
2 it

+ O(e) < C,

for some C > 0.

We state the following two results for the annulus Rz(ln^) and remark that the

same results hold for Rw{t}p).
Lemma 3.9. We follow the notation established above. Let {(X(t„, xn). o»n)}^l0
be a sequence of surfaces converging to a degenerate surface (X(Q. too), «')
For each /?, let \0\(t„,rn) (f (t„. r„)j be a basis for the space of Abelian
differentials on X(tn. r„). Given i.j.k, if either /,((). r^O, 0) 0 on Dk or
./j (0, Tqo, 0,0) Q on Dk, then there exists C > 0 such that for all n > 0

L
Rz(f,k))

0/(0. roo)0/(O. Too)dp-w' < C.

In particular, if /, (0, roo, 0, 0) 0 or f) (0. r«,. 0.0) 0 on Dk. and
^oo(0, too, 0,0) zf 0 on Dk, then

lim [ 9j(Q,roo)6j(0,Too)dp,co' 0.
n^°°jRAf,k))
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Proof. There are three cases to consider in the first claim of the lemma. It suffices

to consider the case where exactly one of the differentials 0,(0, ico) or 07(0, too)
has a simple pole. Without loss of generality, assume that 0/(0, too) is holomorphic.

(k)Fix a choice of coordinates ff in Rz(tn so that by [32, Theorem 6.3J, there exists

K > — 1 and c e C such that co' cf^dff. Let 0, (0. too) (c,Iff + hj(ff)) dff
and 6j (0, roo) hj (ff)dff, where and h} are holomorphic in ff. This yields

L
Rz(tnk))

0i((). roo)07(O. loo) dHa

R:ff,k))

<

L

L
L

cfK —ffffff + lh(ff))hj(ff)^dff/\dff

hj(ff)
dk

Rzffff)

K+ 1

K
k

dff A dff + f
jr-M;

a</& + L

(A)

Clk))

hi(ff)hj(ff)^dffAdff

\hi iff )hj (Xk) | dff A dff

By Lemma 3.7 or 3.8, the right-hand side of the inequality is bounded independently
of A".

In the particularca.se when K — 1, we have

f (I1
öi(0, roo)0,(O. too) r//xü

JrlR;(tl,k))

<

L

L
R:Uhk))

(c./ff + 'h(ff)) dff a dff
cff

h,(ff)^dff Adff
ff

+ Irz«^) bi(ff)b ,(ff)z= dff A dff
ff

By Lemma 3.7, both terms on the right-hand side of the inequality are zero.

Lemma 3.10. We follow the notation established above. Let {(A'(/„, r„),m„)}^L0
be a sequence of surjaces converging to a degenerate surface (T((), r^), ft/). For
each n, let {0| (tn. r„) 0g{tn- *n) I be a basis for the space ofAbelian differentials

on X'(/„, r„). Given i. j,k, //'./,((), Too,0,0) c, ± 0, f){0, Too-0,0) iq ^ 0,

and /loo(0, too. 0.0) c f 0 on Iff. then for sufficiently large n,

I 0| (0, Zoo)0j (0, Tqo) dPa)> C'i Cj-2tt V— 1 log |tj.^ | "F 0(1).
jRzffr) c
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Proof. We have

I 0/(0. roo)0;(O, Too)
J Rz itf*)

fR
(f(,)}

(Cittk + Mfr)) (<;/£* + M&)) | (c/c + H(&,&))

where /?, and hj are holomorphic, H is analytic in both variables, and H(0,0) 0.
It follows from Lemmas 3.7 and 3.8 that every term is bounded uniformly for all n
with the exception of

C'Cjr f m ITU cJl>k A dt>k -IciCj- x/^T f \rdrd6
c JR:(tt,k)) tfkl2 Jc Jo JjffP\/c»r2

-Anacj1-^ ^log(c') - Iog(^a/0)

QCy^TrV^Ilogl^l + 0(1).

4. Surgery on Abelian differentials

The goal of this section is to prove Lemma 4.3, which is a technical result essential to
the proof of Theorem 5.5, which in turn forms the foundation of the remainder of this
paper. We start with a general lemma concerning quadratic differentials with simple
poles. Then we introduce a surgery on Riemann surfaces with Abelian differentials.
This surgery allows us to use Lemma 4.1 to prove Lemma 4.3. Finally, we include
Corollary 4.4, which will not be used in this paper, but the author feels it is inherently
interesting.

Recall that a saddle connection is a trajectory between two not necessarily
distinct singularities such as a zero or a simple pole of a quadratic differential. It
is implicit in the definition that all saddle connections have finite length.

Lemma 4.1. Let (X,q) be a surface carrying an integrable quadratic differentiaI
with at most simple poles. If the vertical foliation of (X. q) has no regular
closed trajectories and every trajectory emanating from a simple pole is a saddle
connection, then there exists a sequence of times {tn} such that

lim G,„-(X,q) (X'.q'),
n^-oo

end the lengths of the saddle connections in the vertical foliation converge to zero
as " tends to infinity.

In particular, every saddle connection to a simple pole has length converging to
zero. Furthermore, q' may have double poles and X' may be a degenerate Riemann
surface.
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Proof We will relet to saddle connections in the veitical foliation as saddle

connections toi short because no other foliation will be consideied in this proof. Let
the saddle connections have length bounded above by nq. After time t, the saddle

connections will have length at most e~'wi by assumption Since they contract at

the maximal rate, then length alter passing to a limit is always finite because the

largest possible normalization term is e'

We hist claim that it a saddle connection has nonzeio length, then q' must have

double poles It not, then q' would be mlegrable and the area normalization would
have been used at every step of the limit causing the lengths of the saddle connections
of q to be contracted to zero by e~', as t tended to infinity Hence, q' has double

poles

By contiadiction, assume that foi all sequences of divergent times {/„}, the

lengths of some saddle connections on q' have nonzero length. Let Gt„ (X,q)
(Xn,qn) Let wj"' be the length of the longest saddle connection on (Xn,qn), and

by the contradiction assumption, let w[ > 0 be the limit of the lengths Since q'
has double poles, the double poles are realized geometrically by one or more infinite

cylinders Let C2 be one such infinite cylinder on (X1, q'). For all sufficiently large /i,
this cylinder persists on (Xn,qn) Denote the cylinder by C2"\ and let u>^ be its

circumference Let w'2 be the circumference of C2. Consider the ratio w\n^/w^\
By assumption,

lira w\H)/wltt) > C > 0.
«—oo

Pass to a subsequence of times {6j}^L0 such that there is a constant CL satisfying
0 < CL < ui j"^/w2"\ for all it Recall that under the area normalization, the lengths
of the saddle connections contract by e~'" for each n Therefore,

lim e'"w\"^ w\ < oc,
«—>oo

and w\ > 0 by assumption This implies w2 < oo because e'" is the maximal rate
of expansion and

uA < lim < oo.
«—00

Hence, foi all sequences {/„} the saddle connections and the coie cuive of the

cylinder C2n) contract for all n at the maximal rate under the area normalization

This is only possible if the saddle connections and the core curve of C2n) are parallel
for all n Otherwise, there would be an N > 0 sufficiently large, such that e'"w2^
increases exponentially tor all n > N. However, it was assumed above that the

saddle connections and C2"^ are not parallel because there were no closed regular
trajectories parallel to the saddle connections of q. This contradiction implies that
there must exist a sequence of divergent times along the Teichmuller trajectory such
that the length of every saddle connection converges to zero
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We proceed by introducing a surgery on Riemann surfaces with Abelian
differentials. For convenience, if S is a subsurface of X and carries a differential co, then
(S, co) will mean the subsurface S with the differential that is given by the restriction
of co to S.

Definition. Let (X, co) be a Riemann surface carrying an Abelian differential. Let C

be a collection ofcylinders in the verticalfoliation of(X, co) such that UC / (A, co).

Consider the open set X\C, and its closure X \ C, which is a (possibly disconnected)
Riemann surface with boundary. Then dX \ C is a union ofcircles (as is true for any
Riemann surface with boundary), and (i)X \ C, co) is a union of saddle connections
which are exactly a subset1 of the saddle connections lying in the boundary of
the cylinders in C. For each of the boundaries (circles) of X \ C, choose a pair
of antipodes (i)X \C,co) with distance measured as usual with respect to the flat
metric. Next, identify opposite sides so that if the antipode chosen is at a regular
point p of co, then the identification yields a simple pole of a quadratic differential
at p. This procedure, which results in a (possibly disconnected) surface (X,q)
carrying an integrable meromorphic quadratic differential, is called the cylinder
surgery of (X, co) relative to C.

Lemma 4.2. Let (X, co) be a Riemann surface carrying an Abelian differential,
and C be a collection ofcylinders in the vertical foliation of (X, co) such that UC
{X to). If the cylinder surgery of (X,co) relative to C yields (X,q), then (X. q)
is a possibly disconnected Riemann surface carrying an integrable meromorphic
quadratic differential.

Proof. It is clear that if we identify opposite sides of borders on a bordered
Riemann surface, we get a Riemann surface. The fact that we get a unique
quadratic differential depending only on our choice of antipodes follows from [19,
Main Theorem],

Remark. Note that the definition does not require the collection to be maximal.
However, we do not claim that taking a non-maximal collection, performing the

surgery, and then performing the surgery on the remaining cylinders in the foliation
will yield the same (X,q) as if we performed the surgery on the maximal set of
cylinders in the beginning. We will only use a maximal collection ofcylinders in all
°f the results below. Thus, this issue will not arise.

Furthermore, in all of the proofs below the choice of antipodes will not matter
because the foliation will be fixed throughout the argument.

Lemma 4.3. Let (V, co) be a Riemann surface carrying an Abelian differential.
Let C be a maximal collection of cylinders in the vertical foliation of (X, co). If

'We say subset because liiere could be a saddle connection on the top and bottom of a cylinder in C or
ying between two cylinders in C that is permanently deleted by the excision and cannot be recovered by

taking a closure.
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the cylinders in C do not fill the surface, then there exists a sequence of times {/„}
such that

lim Gt • (X,co) (X', ft/),
n—>oo

where the circumferences of the cylinders in C converge to zero on (X',cor). The

surface (X'.cof will necessarily he a degenerate surface and co' will have at most

simple poles.

Proof. Consider the action of Gt on (A", co) by decomposing (X, at) into (X\C, to) U

(C,to). This is a natural partition of the surface because the boundaries of the

cylinders naturally divide the surface into these two regions, and the boundaries are

preserved by G, for all t. Let (A ,q) denote the surface resulting from performing
the cylinder surgery on {X, to) relative to C. The choice of antipodes in the cylinder
surgery will not matter in this proof.

Note that outside of the measure zero set corresponding to the boundaries

of (A' \ C.co) that were identified, q and to coincide exactly on X. Along the

identification, it is possible that some zeros on opposite sides were identified, but

generically, the identification at the antipodes will result in at most two simple poles
of a quadratic differential. By definition of a cylinder, the boundary of a cylinder
contains zeros of co. Hence, after the identification, all of the trajectories from the

simple poles on q terminate at a zero of q in time bounded by at most (half) of the

largest circumference of a cylinder in C. Moreover, the boundary of every cylinder
in C is a union of saddle connections in the vertical foliation, which implies that

the boundaries of the cylinders correspond to a union of saddle connections in the

vertical foliation of q. Finally, since C was taken to be a maximal set, (X, q) has no
closed regular trajectories. This demonstrates that the surface (A ,q) satisfies all of
the assumptions of Lemma 4.1. Hence, there exists a sequence of times {tn \ such

that the limit of Gln (X. q) converges to a quadratic differential (X', q') where all
of the lengths of the saddle connections in the vertical foliations converge to zero.

On the other hand, consider the action of Gt)l on (X \C,a>) along the

subsequence of times {/„J. Fixing the antipodes chosen for the cylinder surgery, and for
each n, identifying opposite sides of the borders of (X \ C, co) relative to the choice
of antipodes yields Gt„ (X,q). Since all of the saddle connections in the vertical
foliation of Gtn • (X ,q) converge to a point as n tends to infinity, all of the borders
of (A \ C, co) also converge to a point. This implies that

lim G,n-(X.q)= lim G,n (X \C,co).
n—>oo /i->oo

To complete the proof, it suffices to prove

lim G,n (X \C.to) — lim G, (X, co).
n—>oo n—>-oo

However, this follows from the proof of Lemma 4.1. The core curves of the cylinders
contract by e~'" under the Teichmüller geodesic flow. In Lemma 4.1, the sequence
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{t„} was constructed exactly so that the normalization constant rn ]R+ satisfied

Hindoo r„e~'" 0. Hence, the circumferences of the cylinders converge to zero.
This proves the claim and produces a limit with the desired properties.

Though the following corollary will not be used in this paper, the result elucidates
the cylinder surgery via an application of it, and its proof is sufficiently short that the
author feels its inclusion is merited.

Corollary 4.4. Let (X, co) be a Rienuinn surface carrying a meromorphic Abelian
differential with at most simple poles. Let C be a maximal collection of (not
necessarily finite) cylinders in the vertical foliation of (X.co). If all of the infinite
cylinders corresponding to the simple poles of co are contained in C2 and UC f X,
then there exists 6 (O.n) such that the vertical foliation of (X, e'8co) admits a
cylinder C' such that C DC" has measure zero.

Proof. Recall that a cylinder was defined to be a closed set. Note that the proof of
Lemma 4.3, applies just as well if some or all of the cylinders in C had infinite height
because the essential ingredient in the proof of Lemma 4.3 is the use of Lemma 4.1,
where the collection of cylinders C is non-existent.

By Lemma 4.3, there exists a sequence of times |f„} such that lim,,-^ Gt„ •

(X.co) (X' co'), where all of the cylinders in C converged to punctures of (X', co').
Either co' is holomorphic or it is not, in which case it has a simple pole.

If co' has a simple pole, then (X'.co') has an infinite cylinder, and for large n,
there is a cylinder Cn on G,n • (3f. co), which is not in C. Since C was assumed to be

maximal, C„ is a cylinder that does not lie in the vertical foliation of (3f, co).

If co' is holomorphic, then [27, Theorem 21 implies that there is a dense set of
directions containing a cylinder C'. The cylinder C' persists on Gtn (X. co) and due
to our freedom to choose the foliation in which it lies, it can be chosen so that it is

not parallel to the cylinders in C. Hence, in either case, we can produce a cylinder
that is not parallel to the cylinders of C. Thus, C' can only intersect C at at most a

finite set of points. D

5. Complete periodicity and the connectivity graph in TXg(\)

The key results of this section are Theorem 5.5 and Lemma 5.9. They form the
foundation on which the remainder of this paper rests. The former result proves
that every surface generating a Teichmüller disc in the rank one locus must be

completely periodic, while the latter result describes the configuration of the parts of
a degenerate surface in the closure of a Teichmüller disc contained in the rank one
locus. We begin by recalling some basic definitions from graph theory.

2This is equivalent to the condition that there exists a e R such that lor each simple pole of co with
residue c, e'ac R.
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Let G be a graph consisting of a vertex set V(G) and an edge set E{G). A path
is a graph with vertex set {iq vn} such that there is an edge from i>, to u; + i, for
all 1 </'</! — 1. A cycle is a path with an additional edge connecting tq to vn.
Consider the set of all cycles contained in G. This set forms a finite dimensional

vector space over the field F2 called the cycle space of G. Denote the dimension

of the cycle space by dimc(G). All the graphs in the discussion below may be

multigraphs, i.e. we permit multiple edges between the same pair of vertices and

there may be edges from a vertex to itself.

Definition. Let G(X') he the following multigraph associated to the degenerate

surface X', or simply G when the surface is understood. There is a bijection
sending V(G) to the parts of X' by Vj i-> .S',. For all i. j and all pairs of
punctures (p. p') from parts S, to Sj of X', with i not necessarily distinct from j,
there is a unique edge of G from Vj to Vj representing (p. p'). The graph G is

called the connectivity graph. Let Gp (X',co') be the subgraph of G(X') such that
V(GP) V(G and the edges of Gp correspond to the pairs of punctures at
which a>' has simple poles.

Remark. We will be using Lemma 3.2 implicitly throughout this section. It is

extremely important to note that nowhere in these results do we require that every

component of the derivative of the period matrix has a limit as we take sequences
in M.g converging to a degenerate surface. We are very careful to choose minors

of the derivative of the period matrix such that the limit exists. This will suffice to

provide the requisite lower bounds on the rank of the derivative of the period matrix
near the boundary of the moduli space.

Throughout this section, it will be advantageous to choose a basis of Abelian
differentials with very specific properties depending on the surface to which a

sequence of Abelian differentials is converging. Most importantly, the choice of basis

we make in the following lemma will facilitate the application of the convergence
lemmas from Section 3.2.

Lemma 5.1. Given a degenerate surface X((), r^) in the boundary qflZg, there
exists a set ofAbelian differentials {9\ (0, loo), .0g (0, loo)} on X(0, r^) such that
for all t (tx tm). with tj ^ 0 for all j, {0\ (/, r) 9g (t. r)} is a basis for
the space ofholomorpliic Abelian differentials on X(t. x). Moreover, this set can be
constructed so that \9\(0, Too), — 9g(0, Too)} has the following properties:

(1) For some 1 < g\ < g, 0/ (0, r^) is holomorphic ifand only if 1 < i < gx.

(2) For all (/?,-, p\) such that (pt, p\) e S for some part S C A", 0/(0, r«,) has

simple poles at (pj, p'f), 0/(0, too) is holomorphic across all other punctures
of S, and 0/ (0, t«,) 0 on X' \ S.

(3) For each cycle C-, G(A") consisting of more than one edge, 0/(0, Too) has

poles at the pairs of punctures corresponding to the edges of C, and 0/ 0

for all S C X' such that S does not correspond to a vertex of C,.
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(4) For any puncture p e X' and for all i, j, ifResp{9j) ^ 0 and Resp(6j) / 0,

then Resp(9i) Resp(9j) ±1.

Proof. The first claim follows from the Cartan-Serre theorem or [26, Proposition

4.1], We proceed by explicitly constructing a basis of Abelian differentials on X'
with the desired properties. The first gi differentials can be taken as a union of the
bases of holomorphic differentials on each part such that if 9j is an element of the
basis of Abelian differentials on a part 5 C X\ then define 0, 0 on X' \ S.

Let the parts of X' be given by Si U • • • U Sn. By [ 10, Theorem II.5.1 b.], given
two punctures (p. p') on a connected Riemann surface S, there exists a meromorphic
Abelian differential on S which is holomorphic everywhere on S and across all
punctures of S except p and p', where it can be expressed as dz/z and —dw/w,
in terms of local coordinates z and w, respectively. Hence, for each part Sj carrying
a pair of punctures (p. p') we can take a basis element to be a differential which has

simple poles only at those two punctures and is zero on every other part. Let the
basis of Abelian differentials on X' consist of g2 such differentials with exactly two
simple poles, where 0 < g2 < g.

Finally, let G\ be the subgraph of G(X'.m') such that G\ has no edges from a

vertex to itself. We claim dimc(Gi) g — gi — g2- This follows because each basis

differential on X' corresponds to a closed horizontal homology curve on a surface
near X' in the interior of the moduli space Kg. The only horizontal homology curves
that have not been accounted for in the description above are those that split over
several parts. Define the remaining basis differentials as follows. For each j, with
0 < j < g - g, - g2, let Cj be an element of the cycle basis of G. Define 9j to be

zero on every part which does not correspond to a vertex of Cj. Each vertex v of Cj
corresponds to a part 5 of A" such that S has two punctures p i and p2 corresponding
to edges of C, incident to v. The punctures pt and p2 are not paired. By [10,
Theorem II.5. lb.], there is a meromorphic differential holomorphic everywhere on S

and across all punctures of S except for p\ and p2 at which it has simple poles with
residues 1 and -1, respectively. Define the differential 9j to have two poles on each

Part corresponding to a vertex in the cycle Cj. The only restriction is given by the
rule that if the residue of the simple pole at p\ is ±1, then the residue of the simple
pole at p'x is T1. This construction completes the proof that such a basis exists.

By construction, the residues of each differential at every pole are ±1. In order
to satisfy the final property, it may be necessary to multiply some of the differentials
by —1 so that the residues at each puncture are equal. d

Lemma 5.2. Let {(A„. w„)!°°=0 he « sequence of surfaces in a Teichmüller disc D
converging to a degenerate surface (X'.aj'). Let S C X' he a part of X'. If a)'
has kx pairs ofpoles on S. then

fdU(X„)\
up Rank —: I > k\
n \ dß(ti„ /
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Proof. We show that a single pair of poles on X' corresponds to a divergent diagonal
term of tlY\(Xn)/diiUn as n tends to infinity, while the off-diagonal terms in the row

and column of that unbounded diagonal term are bounded for all n. Let be

the ij component of tlVl(Xn)/dpCOn. Let (p,. p'f) be a pair of punctures on S such

that to' has a pair of poles at (p,, /?•), for 1 < i < k\. As in Lemma 5.1, let 0,- have

a pair of poles with residue ±1 at (/?,-, p'j) and let 0,- be holomorphic everywhere
else on X', for 1 < / < ki. We consider the k\ x k\ minor of dn(Xn)/dpM:l given

by (bjf), for 1 <i.j <kt and show that it has full rank for sufficiently large n. By

Lemmas 3.6 and 3.9, all of the off-diagonal terms b^ bj"^ are bounded, for all //,
because 0, and 0, do not have any poles at the same pair of punctures for / j.
Furthermore, for each i, the contribution of the integral in Rauch's formula to the

diagonal term b^ is bounded everywhere outside of the discs around /?, and p\ by
Lemmas 3.6 and 3.9. By Lemma 3.10, the contribution to the integral in Rauch's

(k)formula on Rz{tn diverges with n. Recall that if to has residue c at p,, then

it has residue —c at p'r Since the quotient c/c —c/ — c, the sum of the two

divergent terms coming from Lemma 3.10 do not cancel and bif diverges to infinity
with/;.

Lemma 5.3. Let \ (Xn. ton)\fL0 be a sequence of surfaces in a Teiclimiiller disc D

converging to a degenerate surface (X', to'). Let G'p be the subgraph of'Gp formed
by removing all edges from each vertex to itself. Let kj_ — min(dimc (G'p), 2). Then

'< V co„ J

Proof If dimc(G'/)) 0, we are done. If dimc(G'/)) 1, then we claim that

dn(Xn)/diiWll is not the zero matrix, for some choice of n. Let 9\ be the differential
with poles along the cycle of G'p. Let (pi, p\) be a pair of poles of to' in the cycle.
The claim follows from Lemma 3.10 by letting c'i ± 1, lim^oo c'^n) c'i ±1,
where is the residue of to,, in local coordinates about p\, and considering the
1. 1 component of tlYl{Xn)/dpWn.

Assume dimc(G'/>) > 2. Let C C G'p be a cycle. Using Lemma 2.4 assume
that the residues of to' are ^-nearly imaginary. It can be shown that given s > 0,
there exists S > 0 such that, for all c e C that are ö-nearly imaginary

c
- + 1

c
< £.

(k)
Hence, the coefficients ot the unbounded log |/,, f\ terms in Lemma 3.10, for all A',

differ from each other by at most 2s.

By Lemma 5.1, there is a basis {9i,... ,9g\ such that for all 1 < / < g, 9, has

residue ± 1 at all of its simple poles. Without loss of generality, let 9\ be an element
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of the basis of Abelian differentials that has pairs of simple poles corresponding to
all of the edges of C. Again, let /?•"' denote the ij component of the derivative of
the period matrix on Xn wilh respect to to,,. By Lemma 3.6, the integral in Rauch's
formula for the derivative of the period matrix is bounded outside of all discs around
the punctures of X'. However, it is possible that two different elements in the basis
of differentials have simple poles at the same pairs of punctures at which to' has a

simple pole.
Let C c G'p be a cycle distinct from C (though it may have non-trivial

intersection with C). Let 62 be the differential with poles at the pairs of punctures
corresponding to edges of C'. Every edge of both C and C' corresponds to a pair of
poles of to'. (Note that Lemma 3.2 guarantees that we can apply all of the lemmas
of Section 3.2 to the 2 x 2 minor (/>," 4

< for 1 < i,j < 2, because to' has poles
at every puncture where 8\ or 02 have poles.) We claim that for all n sufficiently
large, Lemma 3.10 implies that each of these three terms
is a sum of divergent terms. However, §(E(C H C')) < tl(£(C)) implies that
is a sum of fewer divergent terms than b\"\ and there is no cancellation between the

divergent terms by the <5-nearly imaginary assumption. For the exact same reason,
I^22 I > \b\'2 | |/4"'|- Thus the diagonal term of each row and column is strictly
larger than the off-diagonal terms in its row and column, for n sufficiently large. This
implies that the derivative of the period matrix has a 2 x 2 minor of full rank.

Lemma 5.4. Let D be a Teiclwiiiller disc contained in T)g (I). If (X', to') is a
degenerate surface in the closure of D and co' is not holomorphic, then GP(X', to')
is the union of a cycle (possibly on just one vertex) and a finite (possibly empty) set
of isolated vertices.

Proof. Since every Abelian differential with a simple pole on a Riemann surface S
has at least two simple poles on S, no vertex in G'p has degree one. Using the

notation of Lemmas 5.2 and 5.3, we must have kx + k2 < l. The case where
k\ + k2 is excluded by the assumption that to' is not holomorphic, so we
assume kx + k2 l. If it, I, then Gp has a vertex with an edge forming a loop
and Lemmas 5.2 and 5.3 imply that there are no other edges. If k2 1, then Gp
contains a cycle C. However, we claim Gp cannot contain any other edges. There
are no additional paths in Gp between any two vertices in C because k2 1. Since

^1=0 implies there are no edges from a vertex to itself, there are no additional
Paths emanating from a vertex in C because any such path would have to end in a

vertex of degree one in G'p. Hence, k2 1 implies E(GP) E(C).

Definition. Given (X.co), let Tq denote the vertical foliation of (X,e'eto). For
"U ö e if die existence of a closed regular trajectory of Tg implies that every
dajectory ofTe is closed, then (X, to) is completely periodic.
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Theorem 5.5. If the Teichmiiller disc D generated by (X, to) is contained in Vg(\),
then (X, to) is completely periodic.

Proof. By [27, Theorem 2], there exists a real number 9 such that (J, e'eu>) admits

a cylinder in the vertical foliation. Without loss of generality, let (X, to) admit a

cylinder C\ in its vertical foliation. By contradiction, suppose that {X,to) is not

completely periodic. Acting on (A\ to) by the Teichmiiller geodesic flow, there exists

a sequence of times {/„} by Lemma 4.3 such that every cylinder parallel to C\ has

circumference converging to zero and the limit surface (X', to') has punctures in

place of the cylinders parallel to C|. Define (Xn,a)n) Gt„ (A", to), and let C

(Xn.to„) be the cylinder on (Xn.ton) corresponding to Ci.
Either to' is holomorphic, or it is not. If to' is not holomorphic, then there is a

simple pole which corresponds to an infinite cylinder C2. Let C2"^ C (X„.ton) be

the sequence of cylinders converging to C2. By Lemma 4.3, is not parallel

to C^\ On the other hand, if to' is holomorphic, then there is a part of X' with

positive genus and there exists a choice of direction on (X', to') that admits a finite

cylinder C2 by [27, Theorem 2|. As before, let C2^ C (Xn,ton) be the sequence
of cylinders converging to C2. In this case pinch the core curve of the cylinder C2

under the Teichmiiller geodesic flow while normalizing the largest residue. The new

degenerate surface, denoted (X', to') by abuse of notation, either has (Case A:) poles

resulting from an infinite cylinder C2, or (Case B:) neither C[ nor C2 (the limits

of and C2n^) exist. By the continuity of the SL2OR) action to the boundary

of the moduli space [4, Proposition 11.1], there is a sequence {(3f„, o»„)}^_0 in D

converging to (X'. to'). We address Cases A and B in the course of the remainder of
the proof.

By Lemma 2.1, cf0) is not homologous to C2°^ because is not parallel

to C2°\ Since the SL2(M) action preserves homology, is not homologous

to C2"^ for all n > 0. The remainder of this proof is dedicated to finding a degenerate
surface (X' .to') in the closure of D such that Gp(X',co') contradicts the conclusion
of Lemma 5.4.

Consider the case when to' has one or more pairs of simple poles arising from
pinching a set of cylinders that are pairwise homologous. In this case, let C2 be an

infinite cylinder, while C[ does not exist because the circumferences of the cylinders
in the sequence converge to zero. Given e' > 0, we can find a surface

(Xn,ton) e D, where n depends on e', such that (Xn, ton) has two non-homologous
cylinders of equal circumference at most V? and the moduli of the cylinders tend to

infinity as s' tends to zero. Choose e < e' such that the circumference of C,(yV)

is equal to e for a sufficiently large value of N. Since the sequence {C2(n)}£L0

converges to a cylinder of finite nonzero circumference, the circumferences of the

cylinders C2"\ denoted w2"^ satisfy 0 < w2 < w2n) < < oo, for all n. The
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core curves of and C^ are not parallel for all n, so for each n there exists a

matrix Bn e SL2(R) that transforms the core curve of C,'"' into a leaf of the vertical

foliation and transforms the core curve of C2"' into a leaf of the horizontal foliation.
For each N, consider the one parameter family of matrices, GsBn e SL2(M). Action
by Gt Bn on (Xn.con) results in the core curve of C,^ expanding at the maximal

rate e', while the core curve of C2(yV) contracts at the maximal rate e~'. At time t,
the circumference of C,^ is given by e's, and the circumference of C2^ is given

by e~'w^\ Let 7V be the time satisfying the equation eTNe e~TNw^\ At

time 7V, the circumference of each cylinder is given by Jw^e. Define a sequence
by

:= GJn BN (XN,con)

and consider C^N\ C2^ to be cylinders in X^N\ We claim the moduli of
and C2(yv) diverge to infinity with N. Let h denote the height of a cylinder C, w
its circumference, A{C) its area, and Mod(C) its modulus. By the definition of the

modulus,
h A(C)

Mod(C) - ——L
w uA

In the case at hand, the areas of the cylinders Cj^ and C2^ are bounded below for

all N because SL2(M) preserves area. Both cylinders have circumference
so their core curves pinch because

lim Ju)iN^E< lim Js'= 0.
s'—() V e'-+0 v

Note that this argument can be applied to Case A above. Let (X'^2\ co'^) be the

limit of the sequence {(X^, As N tends to infinity, the cylinders c[N^
and degenerate to cylinders of equal circumference. If that circumference is

non-zero, then <y''2) has two pairs of simple poles coming from non-homologous
cylinders. By Lemma 5.4, Gp(X',oj') has a cycle with the pair of punctures
represented by C2 corresponding to an edge of Gp. Since cylinders with pinched
core curves remain pinched under this procedure, Gp(X'^2\co'^) must contain an
edge e corresponding to C[ in addition to the cycle of GP(X\co'). It is impossible
for e and the edges of GP(X\ co') to be part of a larger cycle in Gp(X,(2\ü/(2))
because that would imply that e represents a cylinder whose core curve, a posteriori,
must be parallel to the core curves of the cylinders represented by the edges of

This contradicts Lemma 5.4. However, it is still possible that the
circumferences of both cylinders converge to zero in which case neither C[ nor C2
exist and <o'(2) is holomorphic at both pairs of punctures. We address this possibility.

By Lemma 2.7, we can assume without loss of generality, that co'(2) has a pair
°f simple poles. We proceed by induction, where each step of the induction is to
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perform the argument of the preceding paragraph until we reach a contradiction.
The first step is already done. We present the jlh step of the procedure. Let

{(X„. con)}%L0 denote the sequence of surfaces converging to a degenerate surface

ft/'v)) .such that (Xn,a>n) has j pairwise non-homologous cylinders all

of whose circumferences converge to zero while another sequence of cylinders

}~0 converges to a pair of poles of Let {C^}%L0, for 1 < k < j,
denote the j distinct sequences of cylinders whose circumferences converge to zero

as 11 tends to infinity. Without loss of generality, let {C^}^_0 be a sequence of
cylinders such that for infinitely many values of n and all k ^ 1, the circumference

of is less than or equal to the circumference of c[n\ This may require
the sequences to be renamed. We pass to a subsequence such that this holds for
all //. Recall that e' > 0 was fixed in the preceding paragraph and an appropriate

s > 0 was chosen. Furthermore, the circumference of the cylinder Cx"^ is

iv^e'/t2'), where w\n^ is a constant satisfying 0 < wx < w["^ < w^ < oo

for all it. Let [
denote the circumference of which also satisfies 0 <

Wj + 1
< w"+l < w^+l < oo for all n. We highlight the differences that arise

in the course of repeating the argument of the preceding paragraph. Solving the

equation eTN ui\N)s[^2'^ — e~TN shows that at time Tn the lengths of the

circumferences are yjw^x i/(2y +1) see that the core curves of all j + 1

cylinders still pinch as e' tends to zero, note that, as before, the areas of all of the

cylinders are fixed under the SL2(R) action and thus their areas are bounded from
below. Finally,

lim Ju/ZP, < lim Jui^+X wx en^2' + ' =0.
f'^0 v J + l ' e'->o V 7 + 1

Note that this induction procedure includes Case B that was left unaddressed above.

Let (A+ + denote the degenerate surface formed by letting N tend to

infinity in the sequence {GjnBn {X^. ^/v)}/v=o- above, the cylinders CXN^

and degenerate to cylinders of equal circumference. If that circumference

is non-zero, then + has at least two pairs of simple poles coming from
nonhomologous cylinders, namely C[ and C' + x. By Lemma 5.4, Gp (X'^Kto'^^)
has a cycle with the pair of punctures represented by C' + corresponding to an

edge of Gp. Since cylinders with pinched core curves remain pinched under
this procedure, Gp {X'^J + l\ c</'/ + 1)) must contain an edge e corresponding to C[
in addition to the cycle from Gp(X'^Kcn'^^). As before, e and the edges of
Gp(X'(j),a>'(,)) cannot be edges of a larger cycle. This contradicts Lemma 5.4.

However, it is still possible that the circumferences of all j + 1 cylinders converge to

zero in which case o/(7 + 1) is holomorphic at j + 1 pairs of punctures. In that case,

repeat this argument.
This procedure must terminate at worst when j g because the core curves of
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the cylinders chosen at each step are pairwise non-homologous, and one can pinch
at most g such curves. Hence, performing this procedure at the g — 1 iteration

guarantees at least two poles from sequences of non-homologous cylinders and

results in a contradiction. This contradiction demonstrates that X must in fact be the

empty set. In other words, the surface is filled by cylinders, and the vertical foliation
of X by a> is periodic. Since this argument holds for all 9 e R such that (X, el9co)

admits a cylinder in the vertical foliation, (V, co) is completely periodic.

Theorem 5.5 is used implicitly in the following corollary to guarantee that it is

not a vacuous statement. Compare this statement with [30, Lemma 5.3],

Corollary 5.6. Let (X, co) generate a Teichmiiller disc D C T>g(l). For each 9 R
such that the vertical foliation of (X, eldco) is periodic, (X, e'eco) decomposes into
a union of cylinders C\ Cf such that all of the saddle connections on the top
of Cj are identified to the saddle connections on the bottom of C, +1 and vice versa,
for all i < k — 1, and all of the saddle connections on the top of are identified
to the saddle connections on the bottom of C\ and vice versa. Furthermore, the

circumference of Cj equals the circumference of Cj, for all i, j.
Proof Without loss of generality, assume that the vertical foliation of (A\ co) is periodic.

Consider a divergent sequence of times {t„} such that the sequence G,n • (X. co)

converges to a degenerate surface (A'', tu'). By |25, Theorem 3], the limit of this

sequence is given by pinching the core curves of every cylinder in the cylinder
decomposition of (X.co). Furthermore, tu' has a pair of simple poles at all of the

pairs of punctures of X'. Hence, G(X'.co') GF(X'. tu'). Since G(X'.co') is a

connected graph, G(X'.co') must be a cycle by Lemma 5.4. This implies that the

cylinders must be arranged in exactly the configuration described in the statement of
the corollary. Clearly this argument does not depend on 9, so the result follows.

Lemma 5.7. Let (X.co) generate a Teichmiiller disc D C Vg( 1). If (X' ,tu') is a
degenerate surface in the closure of D and co' is not holomorphic, then on every part
°f X', either co' has simple poles, or co' 0.

Proof Let \(Xn.con)\ff() be a sequence in D converging to the degenerate surface

(X' .ft/) as n tends to infinity. Since tu' is not holomorphic, there is a sequence
of cylinders {C,('!)}^L0, such that cfn) C X„ and the core curve of C,(n) pinches
to form a pair of simple poles of to'. By Theorem 5.5, the foliation in which

(X„,con) admits the cylinder C*"' is periodic. Therelore, there is a collection
of cylinders {C,(n) C^} that fill X„. Let in-"' denote the circumference

°f Cj- \ By Corollary 5.6, the ratios 1 for all / 5 k and n > 0.

Hence, if the core curve of C,"' pinches, then the core curve of every cylinder
ln thüt foliation with height //j"' pinches if it satisfies the condition that h^/w^
diverges to infinity. Since the ratios between the circumferences are constant, every
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sequence of cylinders contains one or more cylinders converging to an infinite

cylinder on X', and to' must have simple poles on every part with the exception
of parts corresponding to the collapsing of saddle connections in the boundary of
the cylinders. However, since the saddle connections have zero area, any part of X'
corresponding to their collapse must also have zero area, i.e. to' 0.

Definition. An edge e of a connectivity graph G(X') is called a holomorphic edge
with respect to to' if to' is holomorphic at the pair ofpunctures corresponding to e.

Lemma 5.8. Let (X, to) generate a Teichmiiller disc D e 'Dg(1) and let (X',to')
he a degenerate surface in the closure of D. If e is an edge in the connectivity
graph G(X') between two distinct vertices corresponding to parts carrying a

nonzero differential, then e is not a holomorphic edge with respect to to'.

Proof. By contradiction, assume there is a holomorphic edge e between two distinct
vertices corresponding to parts on which to' is not the zero differential. First, we
claim that to' cannot be holomorphic on a surface with two or more parts. By
Lemma 2.7, we can act by the SL2(M) action on (X', to') to reach a surface (X", to")
such that to" has a pair of simple poles. By Lemma 5.7, on every part of X", to" must
have simple poles or be identically zero. However, for every pair of punctures {p. p')
on X' where to' is holomorphic, to" must also be holomorphic at the corresponding
pair of punctures on X". This forces Gp (X" .to") to be a disconnected graph with
at least two connected components such that each of the two components contains

a vertex of degree at least two. This contradicts Lemma 5.4, hence to' is not

holomorphic on every part of X'.
If to' is not holomorphic, then by assumption and Lemmas 5.4 and 5.7 imply

that e is an edge between two vertices of the cycle Gp (X', to'). Let C\ be a cylinder
corresponding to an edge of G p (X' ,to'). Let {X\,to\) be a surface whose vertical
foliation contains the core curve of C\. The vertical foliation of {X\,to\) is periodic
by Theorem 5.5, and [25, Theorem 31 implies that the core curves of all of the

cylinders parallel to C\ pinch under Gt. Let (X".to") be the resulting degenerate
surface. Note that to" has simple poles at every pair of punctures on X". Moreover,
since we pinched the core curve of every cylinder parallel to C\, to" must have poles
at all of the same punctures at which to' has poles on X'. However, the edge e

is no longer in the graph G(X", to"), which implies that the two vertices it joined
are a single vertex in G(X",to"). This is impossible because it would imply that
dimc(G/>) > 2. Therefore, G(X') has no holomorphic edges with respect to to'.

Lemma 5.9. If(X', to') is a degenerate surface in the closure of a Teichmiiller disc
D C Vg(\), then (X'. to') has one of the following three configurations:

(1) (A", to') has exactly one part on which to' 0 with at most two simple poles.

(2) <X'. to') has exactly two parts on which to' f that are joined by exactly two

pairs ofpoles.
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(3) X' S\ U • • • U S„ has n > 3 parts on which of ^ 0 such that a/ has exactly
one pair ofpoles joining Sj to Sj + \, for 1 < j < n — 1, and exactly one pair
ofpoles joining S„ to S\.

Furthermore, there are no pairs of punctures joining two distinct parts in the

second and third configuration above such that co' is holomorphic at those pairs
ofpunctures.

Proof. By Lemma 5.2, if X' has one part, then co' has at most one pair of poles.
If X' has more than one part, then this lemma follows from Lemmas 5.4, 5.7, and

Lemma 5.8.

Remark. Case (2) describes a cycle on two vertices that is simply a degenerate
version of Case (3). We distinguished it from Case (3) for clarity.

Convention. For the remainder of this paper, we will ignore parts of a degenerate
surface (X',co') carrying the zero differential. For example, we may say that a

degenerate surface has two parts, when we mean that it has two parts on which
co' ^ 0, but it may have many more parts on which co' 0.

6. Applications of complete periodicity in T>g (1)

The property of complete periodicity imposes very strong restrictions on a surface.

With little effort we prove that there are no Teichnuiller discs in T>g(l) in certain

strata of Abelian differentials and apply this to genus two.

Lemma 6.1. Given a completely periodic surface (X. co) e M.g, g > 2, there exists
9 e R such that the cylinder decomposition of(X, e'9co) has at least two cylinders.

Proof. Assume that (X,co) is filled by a single cylinder C. We show that there

exists a direction such that (X,co) is not filled by a single cylinder. The top and

bottom of C consist of a union of saddle connections. Choose one such saddle

connection a on the bottom of C joining zeros Zi to z2, which are not necessarily
distinct. Let a' be the saddle connection on the top of C to which o is identified.
Let o' have endpoints zj and z'2 such that z; is identified to zj, for / 1,2. Consider
the family of trajectories in C parallel to a trajectory from z\ to zj. This determines
a cylinder C' c X with zt on its top and z2 on its bottom formed by identifying a
t° 0"'. Since a is a proper subset of the top of cylinder C, the cylinder C' does not
hll (X, co). Furthermore, (A\a>) is completely periodic, so the complement of C'
must contain at least one cylinder.

Proposition 6.2. There are no Teichmiiller discs contained in Dg (I) fi fi(2g — 2).
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Proof. By contradiction, assume that there is a surface (A', to) generating a Teich-

miiller disc in T>g{l) D Tl(2g — 2). By Lemma 6.1, choose a direction 9 such

that (X.e'9to) decomposes into two or more cylinders. Under the Teichmüller

geodesic flow, (X.e'9to) degenerates to a surface (X'.to') with two or more parts

by Lemma 5.9 and [25, Theorem 3]. Moreover, the zero of order 2g — 2 must lie on

exactly one of the parts because [25, Theorem 3] implies that only the core curves
of cylinders are pinched. This implies that there is a part of X' with two simple
poles and no zeros, i.e. a twice punctured sphere. This is not admissible under the

Deligne-Mumford compactification, thus we get a contradiction.

Proposition 6.3. Let n and in be odd numbers such that n + in 2g — 2. There are

no Teichmidler discs contained in Vg (1) fl H(n, in).

Proof. By contradiction, assume that there is a surface (3f, to) generating a

Teichmüller disc in Vg(l) fl Ti(n.in). By Lemma 6.1, choose a direction 8 such

that (X.e'9co) decomposes into two or more cylinders. Under the Teichmüller

geodesic flow, (X,e'9co) degenerates to a surface (X',a)') with two or more parts
by Lemma 5.9 and [25, Theorem 3]. Moreover, the zeros must lie on one or two of
the parts of X' because [25, Theorem 3] implies that only the core curves of cylinders
were pinched. If they lie on the same part, then as before, every other part must be a

twice punctured sphere, which is impossible. However, if they lie on different parts,
then there is a part with two simple poles and a zero of order n. Since there does

not exist an integer g' > 0 such that n — 2 2g' — 2, the Chern formula cannot be

satisfied and we have a contradiction.

Though Proposition 6.4 is well-known, we provide an original proof that there

are no Teichmliller discs contained in X>2(1). The best possible result for the

Lyapunov exponents of genus two surfaces was proven by Bainbridge [3], who used

McMullen's [29] classification of SL2(M)-invariant ergodic measures in genus two
to calculate the Lyapunov exponents of the Kontsevich-Zorich cocycle explicitly.
Bainbridge found A2 1/2, for all SL2(K)-invariant ergodic measures with support
in TL(\, 1), and A2 1/3, for all SL2(M)-invariant ergodic measures with support
in Ti(2).

Proposition 6.4. There are no Teicluniiller discs contained in P2( 1).

Proof. This follows from Propositions 6.2 and 6.3 because A42 7i(2) U TL(1, 1).

Note that X>2( 1) is the determinant locus in genus two. We remark that the author
has another proof of Proposition 6.4 using more direct methods than those in this

paper and more elementary than those of [31.
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7. Convergence to Veech surfaces

The goal of this section is to prove Theorem 7.4, which will serve as the first step
toward bridging the gap between the problem of classifying all TeichmLiller discs
in Vg( 1) and Möller's [301 nearly complete classification of Teichmüller curves

inX>g(l).

Lemma 7.1. Given a surface (X,to) generating a Teichmiiller disc D\ c Vg(\),
let {(V„, be a sequence of surfaces in D\ converging to {X', of) e Mg,
where (X', to') f D\ and of is liolo/norphic. If D2 is the Teichmiiller disc generated
by (X',to'), then D2 C T>g( 1). Furthermore, D2 C D\.

Proof We recall that the SL2(R) action on Mg is continuous by [4, Proposi-
tion 11.11. Since Vg{ 1) is closed, the closure of D\ in Mg is also contained in

27^(1). Furthermore, every point in D2 is the limit of a sequence of points in D\.
This can be seen by taking a sufficiently small neighborhood of (X',to'), which
contains points in D\ by assumption. By the continuity of the SL2(R) action on

M.g, there is an arbitrarily small neighborhood of any point in D2 that also contains
points in D\. Hence, D2 C D\ C Vg{\).

Definition. A surface (X.to) is called a Veech surface if its group SL(X, to) ofaffine
dijfeomorphisnis is a lattice in SL2{R). The Teichmiiller disc generated by a Veech

surface in the moduli space Mg is called a Teichmüller curve.

The reason for the term Teichmiiller curve follows from a result of Smillie, which
states that the SL2(R) orbit of a Veech surface projected into 7Zg is closed. This
result was never published by John Smillie. However, it was communicated to
William Veech, who outlined a proof of it in 135J (see also [31]). Moreover, when

projected into TZg, Teichmiiller curves are algebraic curves. One striking property of
Veech surfaces is the Veech dichotomy. The Veech dichotomy completely describes
the dynamics of the trajectory of any point on the surface X [331. It says that the

geodesic How on X with respect to the Hat structure induced by to is either periodic
or uniquely ergodic. The following definition was introduced in [6],

Definition. A completely periodic surface satisfies topological dichotomy if any
direction that admits a saddle connection is periodic.

Lemma 7.2. Given a Teichmiiller disc D C Vg (I) ofa completely periodic surface
(Tfo.coo) Mg, which does not satisfy topological dichotomy, there exists a
sequence of surfaces {(Xn.<o,i))fLu in D converging to a surface (X'. (»') G Vg(l)
such that X' has one part, to' is holomorphic, and a saddle connection of (Vq. coq)

contracts to a point on (X', to').

p>'oofi By assumption, there exists a saddle connection o0 lying in a nonperiodic
foliation of the surface (V0,m0). Without loss of generality, let cr0 He in the vertical
o'iation of (A"o,ft>o). Act by the Teichmiiller geodesic How G, on (Jq.^o) so
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that (To contracts by e~' as t tends to infinity. We prove that we can choose

a divergent sequences of limes {t„}^=0 such that the corresponding sequence of
surfaces {(X„,co„)defined by

(Xn.co„) — Gt)l (Xo,(Oo),

converges to a degenerate surface (X', co'), where co' is holomorphic. Let fo 0.

Let a, be the saddle connection on G, • (X0,a>o) defined by contracting the

saddle connection a by e~'. If co' is not holomorphic, then, by Corollary 5.6, for

all e > 0, there exists an N and 0^, such that the vertical foliation of (Ajv, e'®N co^)
determines a decomposition of (X^. e'®N co^) into a union of cylinders Cj Cp,
with waist lengths e and heights h \ hp, respectively, such that \/e.
This follows from the assumption that the area of every surface in the sequence is

one. This sequence of surfaces defines a sequence of closed curves {yn,t„ }^0 whose

lengths tend to zero as n tends to infinity, where yn%t„ is the waist curve of a cylinder
on (X„.el0"con). Furthermore, for each n, the curve yn,tn corresponds to a closed

curve Yn.to 011 (Ao. <^o) with the property that the image of Yn,t0 under Gt„ is yn,tir
Note that for all n and no curve y„,f„ 's parallel to a,n because otn does not lie in

a periodic foliation while ynJtl always lies in a periodic foliation.
We claim that we can pass to a subsequence such that yn,tn is transverse to

yn+i,tn- Let 0 < an,t < it denote the angle between yn,t and antt. For all n

and tn, anJn ^ 0 because Yn,t„ is not parallel to otn. Fixing n and letting t tend

to infinity, \anJ\ tends to n/2 because yn,t„ has nontrivial length in the maximally
expanding direction of G,, so for sufficiently large t, yn>t converges to the direction

of maximum expansion, which is orthogonal to the direction of minimal expansion
in which (r0 lies. We prove that the set T {yn,o\n > 0} is infinite. If not, the

previous comment would imply that given 5 > 0, there exists a time T > 0, such

that for all n and t > T,
sup \\anil \ - 7t/2| < S.

n

This would contradict the fact that the lengths of the curves {yn,t}nL0 tend to zero.
Hence, the set T is infinite and we can pass to a subsequence such that y,utn is

transverse to yn+i.t„- Equivalently, Yn,t„+1 is transverse to Yn+\,t„+l
Now we can construct a sequence of surfaces corresponding to a divergent

sequence of times {t'„}^L0 such that the limit is holomorphic and the saddle
connection an degenerates to a point. Let eyy > 0 be the infimum, taken over
all cylinder decompositions of (A'n,(On), of the length of the waist curves of
the cylinders at time W. By passing to a subsequence of times, we can assume

}5v+i,/,v+i has length e^+i < £n. However, yn,in has length e/v and Yn+\,in is

transverse to ynjn- For any surface (X,co), whose Teichmüller disc is contained
in Vg( 1), let y be the waist curve of a cylinder C, which is an element of a

cylinder decomposition C of (X, co). It follows from Corollary 5.6 that every closed

regular trajectory transverse to y must pass through every cylinder in C at least once.
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Thus, in this case, YN+\,tN has length at least I/en- Since YN+\,tN+l has length

£jv+i < en andy/v+ii//v can be pinched under the Teichmiiller geodesic flow so that
the direction of on contracts, then there is a time t'N+x such that fjv < t'N+x < Ov+i
and YN+\,t'N+^ has length one. Furthermore, if JOv+t,/^, has length one, then by
the assumption that the area of (A'o, a>o) is one, the fact that G, preserves area, and

the Teichmiiller disc of (Am <z>o) is contained in Vg(\), we have that the minimum
length of any curve transverse to Yn+u'n+] 's a'so one- This implies that there are

no short closed curves which are not unions of saddle connections. This defines
a divergent sequence of times {t'n}fLQ such that the corresponding sequence of
surfaces {(Xn> o)n)}fL0 converges to a degenerate surface (X',o)'), where on' is

holomorphic and op contracts to a point on A". Finally, by Lemma 5.9, the only
admissible boundary points of a Teichmiiller disc contained in £>g(l), which carry
holomorphic Abelian differentials, must have exactly one part.

The following definition was introduced by Vorobets 136). In [31, Theorem 1.3,
Parts (i) and (ii)J, Smillie and Weiss prove that a surface is uniformly completely
periodic if and only if it is a Veech surface.

Definition. Let Sq denote the set of saddle connections of the vertical foliation
of (X,e'9(ü). A surface is called uniformly completely periodic if it satisfies

topological dichotomy and there exists a real number s > 0 such that for all 9,

where Sß f 0, the ratio of the length of the longest saddle connection in Sq to the

shortest saddle connection in Sq is bounded by s.

Lemma 7.3. Given a Teichmiiller disc D C T>g{\) of a surface satisfying
topological dichotomy (A0, o)0) MK that is not uniformly completely periodic,
there exists a sequence of surfaces {{Xn,o)„)}ff0 in D converging to a surface

(X',o)') e Vg( 1) such that X' has one part, on' is holomorphic, and a saddle

connection of(A'o, (<H)) contracts to a point on (X', of).

Proof Since the surface (Ao.&>o) is not uniformly completely periodic, given a

divergent sequence of positive real numbers {sj }JL0, there exists a corresponding
sequence of angles {9j }JL0 such that the ratio of the longest saddle connection to

the shortest saddle connection on (A'o. e'e'a>0) is greater than sj, for all j. We
show that there exists a sequence of times {/„ }^L0 such that the sequence of surfaces

{G,„ (X0,e'e"co0)}£!„ converges to a surface (X'.to'), where on' is holomorphic.
Moreover, there is a sequence of saddle connections on G,n (A'o, e'9"co0) converging
to a point as n tends to infinity.

Pass to a subsequence of {0/}yL0 defined as follows. Since there is a finite
number of zeros, there is a finite number of pairs of zeros. Choose a pair of zeros
2i and z2 that occur infinitely often in the sequence {(A'o, e'e"wo)}%L0 as the pairs
°f zeros which are joined by the shortest saddle connection. By Corollary 5.6, all
°f the cylinders in the cylinder decomposition of a surface in V>g(\) have equal
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circumference and we can assume that (Xo.coo) has unit area and cylinders of unit
circumference. For each angle 9j, denote by Wj > 1 the length of the circumference

of the cylinders in that direction. Then define the times t; by e~'iWj 1, for
all j. Then Gtn (X0, e'd"a>0) (Xn.con) is the action on the surface such

that the waist curves of the cylinders of circumference w} contract at the maximal
rate. Furthermore, since the length of each saddle connection is bounded above by
the circumference of the cylinders, the length of the shortest saddle connection on

(Xn,u>n) is bounded above by l/.v„. Note that lim,,-^ \/sn 0. The Teichmüller

geodesic flow preserves area, so the surface (Xn, ton) also has unit area for all n. This

implies that the sum of the heights of the cylinders is equal to one, as well. It follows
from Corollary 5.6 that any closed curve transverse to the horizontal direction has

length at least one because any such curve must travel the heights of every cylinder
in the cylinder decomposition. Since in this situation the minimum length of a closed

curve transverse to the vertical direction is the waist curve of a cylinder which has

length one, there are no closed curves that can pinch that are not unions of saddle

connections, i.e. no core curves of cylinders can pinch.

If a closed curve, which is a union of saddle connections, degenerates as n tends

to infinity, then the limit is a degenerate surface carrying a holomorphic Abelian
differential. By Lemma 5.9, the only such degenerate surfaces in the boundary of

Vg (1) have one part.

Theorem 7.4. If the Teichmiiller disc D of(X, to) is contained in 'Dg (1), then either
there is a Veech surface (X'.to1) G M.g, or a punctured torus (S,dz) G Mg such

that the Teicluniiller disc D' generated by it is contained in T>g(1). Furthermore,

every surface in D' is the limit of a sequence of surfaces in D.

Proof. If (X.co) is a Veech surface, let (X.co) (X'.co'). Otherwise, assume that

(X.co) (Ao.i.wo.i) is not a Veech surface and let D\ be its Teichmüller disc.
Since (X.co) is not a Veech surface, but its Teichmiiller disc is contained in Vg(\),
(X, co) is completely periodic by Theorem 5.5. Furthermore, (X, co) is not uniformly
completely periodic by [31, Theorem 1.3, Parts (i) and (ii)|. By Lemmas 7.2 and 7.3,
there exists a sequence {(Arnii,ai„,i)}^=l converging to a surface (XQt2, ^0,2) £

Mg with one part carrying a holomorphic Abelian differential with (Ao,2.«0,2) s
Vg( 1) and a saddle connection on cu0,1 degenerates to a point on Ao,2. A degenerate
saddle connection implies either two or more zeros of oj0, 1 converge to a single
zero of fo>o,2 or a closed curve of X0A converges to a pair of punctures on V(),2.
Then (A0,2.^0,2) has Teichmiiller disc D2 and by Lemma 7.1, D2 C 1^(1) • By
Theorem 5.5, (^0,2.^0.2) ^ also completely periodic. If it is a Veech surface, then

we are done. Otherwise, we proceed by induction using Lemmas 7.2 and 7.3 to

create a sequence of surfaces {(A0>/, (o0j )}^=1 in Mg such that each surface in the

sequence carries a differential either with fewer distinct zeros or lower genus than
the previous surface in the sequence. Since both the number of zeros as well as the
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genus are finite, this process will terminate at some step N resulting in a surface

(X0}n, coo,n) £ fgO) with Teichmüller disc D^. By Lemma 7.1, D# C Vg{\).
The surface Vo,jv cannot be a sphere because (Oo,n is holomorphic and coo^ is

nonzero by Lemma 2.2. Hence, there are three possibilities. Either (Oo,n has a

single zero, Xq^ is a punctured torus, or (Xo,w,cuo,iv) is a Veech surface. By
Lemma 6.2, cuo.At cannot have a single zero. Thus, the only remaining possibility
is that (V0,Af. (Do,n) is a Veech surface or a punctured torus carrying a holomorphic
Abelian differential.

Let D' be the Teichmüller disc generated by (X0,n,coo,n)- Lemma 7.1 implies
that every surface in D' is the limit of a sequence of surfaces in D\.

8. Punctured Veech surfaces

There are several key results that give a nearly complete picture of Teichmüller
curves in Vg{\). We recall all of the results here for the sake of completeness
and convenience of the reader. There are two similarly named, related concepts:
a square-tiled covering and a square-tiled cyclic cover. A square-tiled covering is a

specific type of Veech surface introduced by Thurston formed by gluing unit squares
together to form a genus g surface. Naturally, such a surface comes with a covering
of the unit square, i.e. the torus. A surface is a square-tiled covering if and only if it
has affine group commensurable to SL2(Z), by [16, Theorem 5.9].

We define a square-tiled cyclic cover using the exposition of [14]. A square-tiled
cyclic cover is a specific type of square-tiled covering. Let N > 1 be an integer and

(«i, «2.«3. t/4) Z4 such that they satisfy

4

0 <üj < N: gcd(/V, U\ a 4) =1: 0( mod N).
1 1

Then the algebraic equation

wN (z - z, P (z - z2)"~(z - z3)aHz - r4)04

defines a closed, connected and nonsingular Riemann surface denoted by

f(«1,z/2,«3,z/4). By construction, Mn(u\.a2.a3,a4) is a ramified cover over
lhe Riemann sphere P'(C) branched over the points zj z4. Consider the

meromorphic quadratic differential

dz2

(" — -1)(- — -2H- — -3)(- — -4)

on pi(C). [t |ias simpje poies at =l =4 and no other zeros or poles. Then the

c'inonical projection

p : MN(ai,«2,r/3,«4) P'(C)
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induces a quadratic differential q p*qo by pull-back. Lemma 8.1 follows from
[30, Cor. 3.3, Sect. 3.61.

Remark. The name cyclic cover comes from the fact that the group of deck

transformations of a cyclic cover is the cyclic group Z/(VZ.

Lemma 8.1 (Möller). If (X, a>) is a Veech surface whose Teichmüller disc is

contained in Vg(\), then (A", co) is a square-tiled covering.

We recall the two known examples of surfaces that generate Teichmüller discs

in Vg{ 1). The genus three example, denoted here by (M3,o)m3), is commonly
known as the Eierlegende Wollmilchsau for its numerous remarkable properties [18].
Forni [12] discovered that its Kontsevich-Zorich spectrum is indeed completely
degenerate. The surface (M3.u>m3) is a square-tiled surface given by the algebraic
equation

w4 (z - Z\)(z - z2)(z - z3)(z - z4).

Its differential, given in [28], can be written explicitly as

dz
%3 —y-w2

It is easy to see that this lies in the principal stratum of genus three, H(\, 1, 1, 1).

The surface is pictured in Figure 1 and the zeros lie at the corners of the squares and

are denoted by iq u4. For completeness, note that the stratum %{1, 1, 1, 1) is

connected by [22],

dj E «3 D m G «a F

1

A v2 B fi C «3

vi c v' B "'A
H

Vj Q f| £ v3 p U, 0 v3

Figure 1 The Eierlegende Wollmilchsau (A/.i.cua/,)

Proposition 8.2 (Forni). The square-tiled surface (M3,cum3) generates a Teich-

miiller curve in V3(\).

The genus four example was discovered by Forni and Matheus [13] and we
denote it by (M4,cdm4). Recently, Vincent Delecroix and Barak Weiss have

proposed to Carlos Matheus that (/V/4, com4) be named the Ornithorynque (Platypus



Vol.90 (2015) Teichmüller discs with completely degenerate KZ-spectrum 617

in French). We adopt this terminology here. The surface (A/4, a>M4) is a square-tiled
surface given by the algebraic equation

w6 (z - Zi)(z - z2)(z - z3)(z - Z4)3.

Its differential, see [28], can be written explicitly as

zdz
mM4 —

wz

It is easy to see that this lies in the stratum 7/(2,2,2). The surface is pictured in
Figure 2 and the zeros, denoted by v\,v2,v2, lie at the corners of the squares. For
completeness, note that 7/(2,2,2) has two connected components by [22], and it
was proven in [28] and again in [ 14] that (A/4, com4 lies in the connected component
Heve"(2, 2, 2) where the spin-structure has even parity.

Proposition 8.3 (Forni-Matheus). The square-tiled surface (M4,com4) generates a
Teichmiiller curve in P4( I).

Möller [30] showed that Teichmüller curves in T>g(\) must also be Shimura
curves. This allowed him to give a nearly complete classification of Teichmüller
curves mVg{\).
Theorem 8.4 (Möller). Other than possible examples in certain strata ofMs, listed
m the table in [30, Corollary 5.15], and the examples of Propositions 8.2 and 8.3,
there are no other Teichmüller curves contained in 'Dg (1), for g > 2.

E V2 B

"3

G

K K

»3 1'3

H I

i'i i'i

1.S2'

C D

L L

»3 »3

G H

in HI

A 1'2 D "i

J

•l*

Figure 2. The Ornithorynque {M4, com4)

These results are key to the remainder of the paper. Theorem 7.4 implies that for
any Teichmüller disc in Vg (1) there is a sequence of surfaces converging to a Veech
surface. This Veech surface may arise from pinching curves to pairs of punctures
thereby resulting in a punctured Veech surface, or possibly from degenerating unions
°f saddle connections that form a surface of positive genus. Moreover, Lemma 8.1

•mplies that this punctured Veech surface is, in fact, a punctured square-tiled surface.
The strategy will be to proceed by contradiction and assume that there is such a
sequence of surfaces converging to a punctured square-tiled surface. The theme of
the remainder of this paper is captured in the following question.
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Question. Given a sequence ofsurfaces in a Teichmüller disc contained in T>g (1)
converging to a degenerate surface X', which is square-tiled and carries a holomorphic
Abelian differential to', at which points of X' can the punctures lie?

Definition. Let (X.co) G A4g and p e X. Let Vp(X) denote the set of all closed

regular trajectories y passing through p with respect to e'6, for alt 9 £ R. Define
the set

Gp{X) H Y-

vzr„(X)

It should be obvious to the reader that for any compact Riemann surface X and

any p £ X, CP(X) is a finite set. Otherwise, it would have an accumulation point
on X, which is impossible.

Theorem 8.5. Let D he a Teichmiiller disc in Dg(\). Let (X'.co') be a degenerate

surface in the closure of D such that to' is holomorphic and X' has exactly one part.
If (p. p') is a pair ofpunctures on (X1, to'), then p' £ Cp{X').

Proof. We proceed by contradiction and assume p' rf. CP(X'). By definition of
CP(X'), there exists a 9 £ R such that (X',e'du/) has a closed leaf y passing

through p and not through p'. We act on (X'.e'^co') by Gt and claim that we can
find a divergent sequence of times {tn such that Gtn • (X', e'eco') converges to a

degenerate surface which cannot be a boundary point of a Teichmiiller disc in Vg (1).
Since (A", to') is completely periodic, by Theorem 5.5, all of the leaves of the vertical

foliation of (X'. e'8co') are closed. By Corollary 5.6, all of the leaves have the same

length t. After time t, they have length e~'L Furthermore, since p and p' do not
both lie on y, the distance between them tends to infinity exponentially with t. Let
(X'.co') degenerate to (X",to") under the action by Gt. This implies that (p, p')
are a pair of holomorphic punctures paired between two distinct parts of (X",co").
However, Lemma 5.9 says that there cannot be a pair of holomorphic punctures on

two distinct parts of a degenerate surface whose Teichmiiller disc is contained in

Vf,( 1). This contradiction implies that p' £ CP(X').

Lemma 8.6. Let T2 denote the torus. For all p T2, Cp('F2) {/?}.

Proof. Identify T2 with the unit square S. Consider the horizontal and vertical lines

intersecting at p £ S. It is obvious that these two lines have no other intersection

point. Hence, Cp(T2) (p).

Corollary 8.7. Let D be a Teichmiiller disc in VK(\) such that (X'.co') is a

degenerate surface carrying a holomorphic Abelian differential, and (X', to') is a

square-tiled surface with covering map n : X' -» T2. If (p. p') is a pair of
punctures on X', then n(p) n(p').
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Proof. Closed trajectories on X' descend to closed trajectories on T2 under jr.
Hence, it follows from Theorem 8.5 and Lemma 8.6 that

iz(p') ir(Cp(X')) Cn{p)(T2) {jt(/j)>.

Remark. Corollary 8.7 is weaker than Theorem 8.5 because n(p) Jt(p') does

not imply p' e CP(X).

In order to proceed, we need to introduce some terminology to help us work with
the parts of a degenerate surface carrying zero differentials.

Definition. Let {(Xn, a>„) J be a sequence of surfaces in a Teichmüller disc D
converging to a degenerate surface (X'.co') in the closure of D with exactly one

part carrying a non-zero holomorphic differential and every other part carries the

zero differential. If a saddle connection o between any two zeros ofa>„ collapses to
a point as n tends to infinity, then we call a a short saddle connection.

In the Deligne-Mumford compactification, every part of a degenerate surface
carries an Abelian differential with at most simple poles. It is permitted for
some parts of the degenerate surface to carry the zero differential. Since the
limits we take will be of holomorphic differentials on surfaces converging to

holomorphic differentials on degenerate surfaces, the zero differential represents a

loss of information that we do not wish to consider. From the algebraic perspective,
these surfaces carrying the zero differential are essential to preserve "stability."
However, this perspective will not be relelvant to this paper. Throughout, we use the

following convention. The surface (X'.co') could have several parts, where a>' 0

on all but one part. We abuse notation and in the proofs below and let (X', co') refer
to the part carrying a non-zero holomorphic differential. Most of the time, (X1, a)')
will actually be a Veech surface with completely degenerate KZ-spectrum, or a torus.

Definition. Let {(Xn, con) }fL0 be a sequence ofsurfaces converging to a degenerate
surface [X', to') such that to' is non-zero and holomorphic on exactly one part of X'
und identically zero on every other part ofX'. By abuse ofnotation, let X' denote the

Part carrying the non-zero holomorphic differential. Let {p\ Pk \ be a maximal
set ofpunctures on X' with the foilowing property. Let gj be a small curve homotopic
to Pi> for all i. Then y, can also be considered as a small curve on (Xn. (on) for
large n, and it bounds a region that degenerates to a point as n tends to infinity. If
die set of interiors of the curves gj on (Xn. a>„) is connected, then {p\ Pk} is
called a connected set of punctures.

In particular, when k 1, we say that p\ is an isolated puncture.

Lemma 8.8. Let (X.w) generate a Teichmiiller disc D C Vg( 1). If{{Xn, öj„)}^L0
ls a sequence of surfaces in D converging to a degenerate surface (X'.of) in the
closure of D with exactly one part carrying a non-zero holomorphic differential and
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every other part carries the zero differential, then no puncture on X' at a regular
point of co' is isolated.

Proof. By Theorem 7.4, it suffices to assume (X',co') is a Veech surface or a

punctured torus. By contradiction, assume that p is an isolated puncture on (X1, co').

By [30], the surface (X'.co') is a branched covering of a torus (or just the torus
itself if X' is a torus). On (A", co') there is a regular trajectory r)\ that does not pass

through any of the finitely many punctures of X'. Furthermore, there are at least two
transverse choices for rjj. (In fact, there are infinitely many choices.) We take rj\
so that the cylinder C it represents is bounded by the isolated puncture p on at least

one of its sides, and so that the intersection number of it with the transverse direction
of tj2 specified below is equal to the degree of the cover, which is at most 36 by [30],

Consider (Xn,a>n) in a small neighborhood of (X',co'). By [27], there exists a

periodic direction transverse to the foliation in which the short saddle connections lie
on (Xn,a)n). By Theorem 5.5, {X„, con) is completely periodic and therefore we get
a decomposition of (Xn,con) into cylinders. The trajectory rji persists on (X„,co„),
for n sufficiently large. The cylinder determined by r)i is incident with a zero zo

of co„ that converges to the puncture p. The zero Zo must be incident with a short

saddle connection o transverse to t]\. Transversality is guaranteed by the fact that

there is more than one choice of direction for rji above.

In a sufficiently small neighborhood of zq, there is a trajectory t]\ parallel to rj\
such that the cylinders represented by t]\ and t]\ share a common boundary as

described in Corollary 5.6. Therefore, both copies of o must be incident with
the boundary of C. However, both copies of a must also lie in the same small

neighborhood by the definition of an isolated puncture. Since the puncture on X'
lies at a regular point, the interior of the separating curve, from the definition of an

isolated puncture, can be embedded in the plane.

By Corollary 5.6, all copies of zo lie on the bottom of the same cylinder. Thus
there is another trajectory t]2 transverse to rp with the same property that every copy
of zo lies on the boundary between two cylinders with core curves parallel to ij2.
Since the intersection number of t]2 and r]\ is a finite fixed number, the two copies
of a cannot get arbitrarily close as n tends to infinity. This implies that as n tends to

infinity, they converge to two distinct punctures, which contradicts the fact that they
came from a single isolated puncture.

Lemma 8.9. Given a Teicluniiller disc D C VK( 1), for g > 2, there is no degenerate

surface in the closure of D C T>g (1) of the form (S, co), where S is a punctured torus
and co is holomorphic.

Proof. By contradiction, assume there is a degenerate surface of the form (S, co) in

the boundary of D. We claim that every puncture on S must be isolated. By the

assumption that S arises from pinching curves on a higher genus surface, S has an

even, nonzero, number of punctures. Let p and p' be punctures on S in the same
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connected set of punctures. By Lemma 8.6, there are two parallel curves on S, rp
and r)2 passing through p and p', respectively. There are two more curves rj\ and tf2

parallel to r)i that do not pass through punctures of S such that t]\ is not homotopic
to vl2 (because S is not a torus, but a punctured torus). Pinching the curves f,
and r]'2 degenerates the torus S into a union of two or more spheres S' such that p
and p' do not lie on the same sphere. Any edge (possibly contained in a path in the

graph theoretic sense) corresponding to the punctures between p and p' cannot be

holomorphic by Lemma 5.9. Moreover, every point of S is regular and therefore,
there cannot be any isolated punctures either by Lemma 8.8. Hence, no degenerate
surface in the closure of D is a punctured torus.

Theorem 8.10. The Eierlegende Wollmilchsau (Mj,om3) generates the only
Teichmüller disc in T>3(1).

Proof. By [30] (restated in Theorem 8.4 above), the Eierlegende Wollmilchsau is
the only Veech surface that generates a Teichmtiller disc in V3(1). By contradiction,
assume that there is a genus three surface (A, co) that generates a Teichmtiller disc
P> C V3(1), Then X is not a Veech surface, but it is completely periodic by
Theorem 5.5. By Theorem 7.4, there is a sequence of surfaces in D converging to a

Veech surface (X', co') contained in V3( 1). Since Theorem 7.4 guarantees that either
the Abelian differential a)' has fewer zeros than cd, which implies {X1, cd') cannot lie
in the principal stratum of A4 3, or X' has lower genus than X. However, X' cannot
have lower genus by Lemma 8.9, Proposition 6.4, and the fact that the sphere carries
no nonzero holomorphic differentials. Moreover, Theorem 8.4 implies that (X', co')

cannot be a Veech surface because (A", co') does not lie in the principal stratum. This
contradiction implies that no other Teichmüller disc is contained in £>3(1).

Before proving that the Ornithorynque is the only example of a surface in genus
four with completely degenerate KZ-spectrum, we address genus five and six and
then return to genus four in the following section.

If the connected set of punctures consists of exactly two punctures, then we
call those punctures a generalized pair of punctures. Once again recall that we
are abusing notation so that (X'.co') refers to both the degenerate surface and the

Part carrying the nonzero holomorphic differential. Note that a pair of punctures
's certainly a generalized pair of punctures, but not necessarily vice versa because a

generalized pair of punctures could represent the collapse of a surface with arbitrarily
high genus and not just a closed curve.

Lemma 8.11. Let (X.co) generate a Teicluniiller disc D C 'DK( 1). Let {{Xn,con)}fL0
be a sequence of surfaces in D converging to a degenerate surface (X',co') in the
closure of D with exactly one part carrying a non-zero holomorphic differential. If
(V co has a generalized pair ofpunctures such that both punctures lie at regular
Points of of then either the generalized pair ofpunctures represent a surface with
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genus strictly greater than two, or there are at least four connected sets ofpunctures
on (X', ft/).

Figure 3. Simple Zero Saddle Connections

Proof. We consider how (Xcu') descends to the torus (7", dz), or T for short, under
the branched covering n : (A",ft/) —> T. By Lemma 8.8, none of the punctures at

regular points is isolated. Also, if p and q are paired punctures on (A', ft/), then

they descend to the same point on the torus by Corollary 8.7.

Recall that for the torus to have the property that every trajectory passing through
one marked point passes through another marked point before closing, requires the

torus to have a minimum of four marked points lying at the 2-torsion points of
the torus. Assume by contradiction, that T has strictly fewer than four punctures
that lift to twice as many punctures on (X', ft)'), and that the punctures represent
the degeneration of a surface of genus at most two. We first assume that one

of the generalized pairs of punctures has a degenerate genus two surface between

them because the same argument will hold for genus one and a node, and in fact,
be much simpler. The goal will be to produce a trajectory with length shorter
than the circumferences of cylinders to which it is parallel thereby contradicting
Corollary 5.6.

Recall from the definition of a connected set of punctures, that y, is homotopic
to the puncture />, By the assumption that the punctures lie at regular points, the

picture can be regarded as two sheets with some identifications between them that

vanish to a node (or generalized pair of punctures) as n tends to infinity. This implies
that Yi traverses an angle of In around each puncture /?,•, for /' 1, 2. We claim that

no saddle connection in the interior of y,- can be paired with a saddle connection in
the interior of y, The proof is identical to the proof of Lemma 8.8 because we can

consider the same transverse curves constructed in the proof of that lemma to get the

same contradiction. In other words, each saddle connection in the interior of y\ 's

paired with a saddle connection in the interior of y2. However, this also implies that

we cannot have any zeros that are not simple in the interior of y,. Any zero that is not

simple has angle strictly greater than An. Each sheet is a Euclidean plane and can

contribute an angle of at most 2n, which implies that for some a saddle connection
in the interior of y, is paired with a saddle connection in the same interior and we
have a contradiction.
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Since all of the zeros in the interior of the y,- are simple and we have assumed

that we are degenerating a surface of genus two between the two punctures, there

must be at most six saddle connections in the interior of each y,- coming from the

six simple zeros. Note that zeros of total order six are needed to produce a genus
two surface because the two regular points at which the genus two surface is joined
each appear as double poles on the genus two surface after a blowup of the genus
two surface.

By the assumption that there are fewer than four generalized pairs of punctures,
we have that there are infinitely many trajectories between a generalized pair of
punctures that do not meet a different generalized pair of punctures because closed

trajectories on (A", w') descend to closed trajectories on the torus and by assumption
not all of the 2-torsion points of the torus have punctures over them. Each simple
zero must have short saddle connections on each side of it as depicted in Figure 3. In
particular, if both short saddle connections meeting a simple zero have equal length,
then the result is a slit construction. However, we will not assume equality of their
lengths.

We claim that not every trajectory leaving one of the short saddle connections in
the interior of yi meets a different short saddle connection in the interior of yi before

leaving the region bounded by y\. To see this, consider the convex hull homotopic
to yi with extreme points given by the zeros of con in the interior of y\. Let rf be a

closed flat trajectory passing through exactly one extreme point of this convex hull.
Consider a closed regular trajectory i] parallel to rf passing through the convex region
such that its boundary is exactly rf. Since rf passes through the simple zero zo, it
must also pass through the other copy of z0 by Corollary 5.6, and the trajectory rj

will close when it reaches the short saddle connection incident with z0 in the interior
°f y2. This forces rj to be shorter than the circumferences of cylinders parallel to it

contradicting Corollary 5.6.

Proposition 8.12. Let (X.w) generate a Teichnudler disc D C Vg(\). If
{(*„ o)n) is a sequence of surfaces in D converging to a degenerate siuface
(X' • (»') in the closure of D with exactly one part carrying a non-zero holomorphic
differential and every other part carries the zero differential, and the non-zero
holomorphic part ofiX'.co') is (M3.(%,) with punctures, then g>l.

Pro°f As above, we abuse notation and ignore any other parts of the degenerate
surface carrying the zero differential and let {X'.co') denote with
Punctures. By Lemma 8.8, (A''.to') does not have isolated punctures at regular
Points, and by Lemma 8.11, if it has a generalized pair of punctures at regular points,
then it has at least four pairs or a genus three surface between a generalized pair of
Punctures, which implies that (X, to) has genus at least seven.
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Therefore, to prove this proposition, it suffices to examine the possibility of
punctures at the zeros of co'. Note that by Theorem 8.5 no puncture at a zero of co'

can be connected to a puncture at any other zero. Therefore, each of the possible

punctures at the zeros are isolated. If all four zeros were punctured, then there

would have to be a surface of genus at least one at each puncture and we would
have degenerated a surface of genus at least seven. Therefore, we assume that at

most three zeros are punctured, and each puncture has at most a surface of genus
three attached to it.

Note that the proof that there is no isolated puncture at a regular point fails when

the isolated puncture is at a simple zero exactly because the local picture is not of
a single plane but of two planes joined by a branch cut. Due to the branch cut, the

curve y homotopic to the puncture traverses an angle of 4n in this case. Therefore,
this case is actually similar to the case of two punctures at regular points with the

difference being the branch cut emanating from the simple zero and joining the two
sheets. We claim that the proof of Lemma 8.11 that there are no generalized pairs
of punctures at regular points still holds even in this case with the branch cut. The

key is that the direction of the branch cut is not distinguished, so we can choose any
direction in which to take it without a problem. Therefore, by choosing it parallel to

the trajectory ij chosen in the proof of Lemma 8.11, we get the same contradiction
because ij cannot pass through a branch cut parallel to itself and move to a different
sheet of the cover of the torus. Therefore, we still have a contradiction that proves
that no surface of genus less than seven in Vg{\) can degenerate to the (Mj,com3)-"

Following the lines of terminology of an isolated puncture and a generalized pair
of punctures, we define a triple of punctures to be a connected set of exactly three

punctures.

Lemma 8.13. Let (X, co) generate a Teichiniiller disc D C Dg(l). If{(Xn,con)}^L0
is a sequence of surfaces in genus five or six in D converging to (X', of) in the

closure of D, and the non-zero holomorphic part of (X',co') is (M4. o>m4 with a

triple of punctures or an isolated puncture at a zero, then every zero of con is a
double zero.

Proof First we claim that there can be no zeros of order higher than two. Any zeros

of order higher than two have a cone angle strictly greater than 6n, which implies
that they must be realized by a minimum of four sheets joined by a branch cut.

However, this would imply that more than three sheets have a puncture in the limit.
This is impossible by Corollary 8.7 and the fact that (M4,com4) is a three sheeted

cover of the torus.

Next, assume that the triple of punctures on (X\co') does not lie over a 2-torsion

point on the torus covered by (M4.cl>m4). Then there can be no simple zeros on

(Xn,con) for sufficiently large n because every cylinder has zeros of even order on
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Figure 4. Double Zero Saddle Connections

its boundary. Therefore, if there is a simple zero on the boundary this implies that
there must be another simple zero on the boundary. By contradiction, let zo be one of
the simple zeros. Since zo converges to a puncture that does not lie over a 2-torsion
point, there must be infinitely many trajectories that pass through zo without passing
through any of the zeros that limit to the double zeros of (M4, u>ma)- However, each

one of these trajectories must pass through another simple zero z\ in a neighborhood
of z0. Since z0 and Z\ can be taken arbitrarily close, it is impossible for an infinite set

of transverse trajectories to pass through both of them. Hence, every zero converging
to the puncture must be a double zero.

Figure 5. Cases I) and 2) in the proof of Lemma 8.13
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Next we claim that it the triple of punctures lies over the only 2-torsion point
that is unramihed, then theie must be two double zeros converging to a triple of
punctures as in Figure 4. Note that the complication here that prevents the argument
above trom working is that every double zero of to' could result from two simple
zeros colliding and thereby preventing the construction of a closed trajectory that

avoids all simple zeros outside ot the ones in question. In this case, there are either
1) two simple zeros and a double zero, or 2) four simple zeros converging to the

triple of punctures. We claim that Cases 1) and 2) correspond to the configurations
of saddle connections in Figure 5.

In Case 1), this is the only admissible configuration (up to permutation of the

labels). Consider the three interiors of the curves y,, for / 1,2,3. Each one

must contain a copy of the double zero. Then, if there are two copies of each of the

two simple zeros, place them in the picture as in Figure 5 without loss of generality.
However, there is a unique way to connect the zeros in these pictures so that each

zero has its prescribed order and the saddle connections lie entirely within the regions
bounded by the y,.

In Case 2), note that the interior of each y, must contain at least two simple zeros
and cannot contain more than one copy of the same zero. Furthermore, if two zeros

Zi and Z2 appear in the interior of y\, then they must both appear in the same copy
ot y,, for i 2, 3 in order for all of the saddle connections between the zeros to

lie entirely within the region bounded by the curves y, and for all of the zeros to be

simple
We claim that Cases I) and 2) can be excluded because they contradict the fact

that on every surface in a periodic direction, the core curves of every cylinder in

that direction are homologous. In each case, pick the longest saddle connection a
incident with a simple zero, or just one of them if they all have equal length.
Then there is a trajectory going directly from a to its copy forming a closed

cylinder with circumference shorter than the cylinders to which it is parallel. Such a

trajectory exists because in the interior of y2 in Figure 5, there are not enough saddle

connections to block every tiajectory emanating from a. Hence, there can be no

simple zero converging to the 2-torsion point that is unramified over the torus.

Finally, assume that the puncture is isolated at one, or at most two, of the double

zeros of to'. Note that on (X'.to') by considering the horizontal, vertical, and a

diagonal direction, we see cylinders that isolate each of the three zeros so that each

one is the unique zero lying between two cylinders. In fact, there are infinitely many
such directions. Therefore, for sufficiently large these cylinders persist where the

boundaries of the cylinders vary by an arbitrarily small quantity dependent on n.
Recall that every pair of adjacent cylinders must have zeros with even total order
between them. This implies that both simple zeros must lie in the boundary of the

same cylinder. By considering a different periodic direction that isolates the same

zero on (X'.to') and considering this cylinder on (Xn.co„), we see that the small
saddle connection between the simple zeros must lie in both transverse directions.
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This contradiction implies that it must be a double zero. Since we can repeat this

argument for each of the three double zeros of (X\ft/), the stratum in genus five or
six must contain zeros, which are all of even order. Hence, if (Xn,a>„) is in genus
five or six and degenerates in this way or via a triple of punctures, then all of the

zeros of u>„ have order two.

Lemma 8.14. Let (X,co) generate a Teichmiiller disc D cVg(\). Let {(Xn,(on)}^L0
be a sequence of surfaces in D converging to a degenerate surface (A", of) in the
closure of D with exactly one part carrying a non-zero holomorphic differential,
which is the Ornithorynque. If (X',co') has a triple of punctures such that every
puncture does not lie over a 2-torsion point of the torus, then (Xn,a>n) has genus at
least seven.

Proof By contradiction, assume that the (X',cor) has a triple of punctures after
degenerating a surface (Xn.con) of genus six. A genus five surface degenerating
to a genus four surface cannot possibly have a triple of punctures. By Corollary 8.7,
all three punctures must descend to the same point on the torus below. We claim
the arrangement of the zeros must be as depicted in Figure 4. This follows from
Lemma 8.13, which implies that there must be five double zeros on the surface.
Therefore it suffices to consider the configurations of Figure 4| A and B].

Assume by contradiction that there is a triple of punctures that descend to the

same puncture on the torus below, which is not a 2-torsion point. If we consider
a surface (Xn,ton) in a neighborhood of (X'.a)'), the puncture opens to a union
of saddle connections with two double zeros lying along each curve as pictured in

Figure 4. Let zq be one of the zeros. The saddle connections are identified in one
of two possible ways pictured in Figure 4 as either Configurations A or B. Without
loss of generality, we assume Configuration A and note that the argument below is
identical for Configuration B. In fact, the only difference between A and B is the
order in which a trajectory visits the punctures.

The first important fact to note is that we can often get the same contradiction
we achieved above in the case of a generalized pair of punctures. Specifically, if
the geometry of (X„, o>„) forces a trajectory to travel from a saddle connection,
saY b, to its copy in Configuration A, without passing through a and c first, we see
a cylinder with circumference that is too short, i.e., different from the circumference
°t a parallel cylinder, which is a contradiction. Furthermore, after an appropriate
twisting and action by the Teichmüller geodesic flow, we can assume that the saddle

connections a,b,c of Figure 4 lie in a direction which converges to the vertical
direction on (X'.co') as n tends to infinity. By inspection of the identifications in
(^4.o>a/4) in Figure 2, we see two cylinders in the horizontal direction and the
triple of punctures are visited by a horizontal trajectory y in a different order in
each cylinder. This eliminates the possibility of having punctures in the interior of
the lower horizontal cylinder in Figure 2. Since (M4,cum4) decomposes into two
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Figure 6. An Open Set of Points (the Shaded Region) on the Torus to which the Triple of
Punctures Cannot Descend

cylinders in every direction, this argument eliminates the possibility of the punctures

lying in the interior of one of the two cylinders in each direction except for the

vertical one.
As we said above, assume without loss of generality that we have the identification

of Figure 4[A ]. Then if we consider the horizontal direction and the slope

± 1 directions, relative to Figure 2, and map (A", to') to the torus, we see that the

open shaded region in Figure 6 can be excluded as an admissible location for the

punctures. Acting by an element of SL2(R) is equivalent to considering different
directions on (X', to'). Let each 2x2 square in Figure 2 have unit side length. Then

(M4, com4) is fixed under action by the matrix

because (M4,coa/4) has Veech group SL2(Z). However, the non-shaded region
is obviously not lixed by the action, but an admissible point to which a triple of
punctures on (X' ,to') must descend, must lie in the intersection of the non-shaded

regions we see after acting by hn for all n Z. This infinite intersection can only
contain the 2-torsion points of the torus. This concludes the proof that a triple of
punctures must lie over the 2-torsion points.

Proposition 8.15. Let (X.to) generate a Teichmüller disc D c VK (I), g > 4. If
{(Xn,a)n)}fL{) is a sequence of surfaces in D converging to (A",ft/) in the closure

of D, and the non-zero holomorphic part of (X', of is (A-/4, o>m4 with punctures,
then g > 1.
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Figure 7 A genus 5 oi 6 sui face in a small neighboihood of the Oinithorynque with two double
zeros collapsing to a double zero

Proof. We consider all possible degenerations ol a surface of genus five and six
to the punctured (M4,com4) and exclude each one. By Lemma 8.8, we cannot
have isolated punctures at regulai points, and by Lemma 8.11, generalized pairs
of punctures at regular points must come m quadruples or from degenerating a

surface of genus higher than two In eithei case, the surface (V, at) from which it
would have to degenerate would have genus eight and the claim would be complete.
Furthermore, Lemma 8.14 says there cannot be a triple of punctures over a point
that is not a 2-torsion point of the torus covered by (M4.ü>m4)- The remainder of
this proof is devoted to excluding the only lemaining possibilities using proof by
contradiction: one or two punctures at a zero ol (X'.co'), or a triple of punctures
over the 2-torsion point with regular points above it. By Lemma 8.13, every zero of
(Xn,con) is a double zero and tl any two double zeros collide to form a higher order

zero, then Lemma 8.13 also implies that we have leached a contradiction.
Assume that there are five double zeros on a genus six surface because the genus

five case will be a simplification ol the lollowing prool. We enumerate the possible
degenerations in terms of zeros colliding on the genus six surface. I) First, it is

possible foi three double zeros to collide and degenerate to a single puncture at a

double zero. II) Secondly, it is possible loi two pairs of double zeros to collide to
two punctured double zeros ot (M4.com4)- Ill) Finally, it is possible to have a triple
°f punctures over the only 2-torsion point at which (M4, coma) is unramified.

I) Assume by contradiction that three double zeios collide to form a puncture.
We claim that it is possible to constiuct a sequence of suifaces such that only two of
the three double zeios collapse. Assume that the three double zeros denoted zo,
zu and Z2 collapsing to a zero of (X'.co') do not all he on the same side of a

cylinder by choosing a tiansverse direction ll they do and declaring this direction
to be horizontal. Let

For each n, we claim there exists an element htl, ol the horocycle flow such that
exactly two of z0, z,, z2 ol (X„. con) converge for • (A'n.co„). There are two cases
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to consider: I) there exists h,> such that no pair of z0, z\, Z2 converges, or 2) there

exists h,r such that a pair of zeros from {zo, Z\, Z2} converge while the third zero is

isolated.

In Case 1), this implies that the three zeros separate for some value h,^. We

claim there must be a choice of so that one zero, say Zo, converges to another

zero, say z2, while z 1 is bounded away from zo, Z2. This will happen by taking tn

large enough so that z2 wraps back around and becomes close to Zo again. There

are two possibilities within this collapse of two double zeros. Either two double

zeros collapse to form a punctured double zero, or several saddle connections

simultaneously collapse and yield a triple of saddle connections collapsing as in

Figure 4[A or B], The latter case is subsumed by II) below. We claim that either
scenario yields a contradiction.

Consider (Xn,ajn) in place of htn (X„,co„), and without loss of generality let

zo and Z2 be the two zeros that collide in the sequence ht/l • (Xn,a)n) as n tends to

infinity. Then there are saddle connections in the direction from zo to zi on (X„,con)
of length approximately 1/3, where the side length of each square in Figure 2 is 1 /3,
and approximately in the horizontal direction on (Xn, a>n). In particular, this implies
that the triple of saddle connections must be arranged as in Figure 4| A or B] because

they are the only two arrangements that can exist. If we consider the periodic
direction on (Xn. con) that converges to the vertical direction of (X\a>') in the limit,
we see two cylinders crossing the triple of saddle connections. However, this implies
that a vertical trajectory in one of the two vertical cylinders must close and have

circumference less than the other vertical direction contradicting Corollary 5.6.

In Case 2) a pair of zeros from {z0,Z|,z2} converges while the third zero is

isolated in the sequence /?f;i • (Xn,a>n). If two double zeros collapse to a triple of
punctures, then we can choose so that the triple of punctures does not lie over
the 2-torsion points of (X'.co'). This contradicts Lemma 8.14 and implies that two
of the double zeros collapse to a punctured double zero. If two double zeros collapse
to a double zero, then the surface degenerates from genus six to genus live. The

possibility of such a degeneration will be excluded by the argument below.

II) It is a priori possible for two double zeros to collapse to a punctured double
zero. In fact, on a genus six surface this degeneration can occur among at most
two different pairs of double zeros, while in genus five, at most one such pair can
exist. Assume the labels as in Figure 2. Since the resulting genus four surface

will have one or two punctures depending on the genus we degenerate from, we
make a careful analysis of the picture in a neighborhood of one of the double zeros,

say u3 to which a double zero is collapsing. We claim that up to three possible
choices of labels for the saddle connections labeled with an asterisk in Figure 7, the

picture locally around v3 must appear as in Figure 7. Without loss of generality,
we assume that the horizontal direction on (Xn,a>n) is transverse to the short saddle

connections connecting the double zero z0 and v3. Then after acting by either a

horocycle How that fixes either the vertical or horizontal direction (upper or lower
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triangular matrices) we can assume that the saddle connections are in the direction
pictured in Figure 7. Label the bottom saddle connections a, b, c without loss of
generality. Then there are three choices for the asterisked saddle connections listed
in the order they would appear in Figure 7: (b. a, c), (b, c, a), (c, a, b). It is easily
checked that (b. c. a) is not permitted because with this identification, U3 is no longer
a double zero. However, the other two identifications, which are both of the form
(*. a, *) are not possible either because a horizontal trajectory from a to itself closes
too quickly and contradicts Corollary 5.6.

Ill) Using the argument from I) Case 1) above where the horocycle flow is used to
stretch a saddle connection, we can consider the case of two double zeros collapsing
to a triple of punctures at regular points that descend to a 2-torsion point on the torus.
By stretching the short saddle connections so that each of the three pairs of saddle

connections wraps around a third of the total surface, exactly as in I) Case 1), we get
the same contradiction as above. This completes the claim that a (Xn,con) must have
at least genus seven to degenerate to (X', co').

Define the natural poset on partitions of an integer where if k and k' are partitions
of n, then k < k' if k' is strictly a refinement of k. Note that k / k'.

Theorem 8.16. If Möller's conjecture is true, i.e. there are no Teichmüller curves
,n Ds( 1), then there are no Teichntiiller discs in VK (1), for g 5, 6. Moreover, the

stratum TT(k') C Ms does not contain a Teichmiiller disc in T>s{ 1) if there does not
exist k in [30, Corollary 5.15: Table] such that k < k'.

Proof First we prove the claim for genus six. By [30], any such Teichmiiller disc
•s not generated by a Veech surface. Therefore, by Theorem 7.4, we can collapse
zeros and converge to a Veech surface with completely degenerate KZ-spectrum.
By Lemma 8.9, Proposition 6.2, and Lemmas 8.12 and 8.15, a genus six surface

cannot degenerate to a surface of genus one, two, three, or four, respectively. Since
there are no Teichmiiller discs in V6(\) in 7f(10) by Proposition 7.1, the closure
°f a Teichmiiller disc D C T>(,( 1) must contain a Veech surface in genus five with

completely degenerate KZ-spectrum. Thus, the claim about genus six follows.

Next, we address genus five. By contradiction, any such Teichmiiller disc
in ^sl 1) could not be generated by a Veech surface. Therefore we can collapse zeros
by Theorem 7.4. By Lemma 8.9, Proposition 6.2, and Lemmas 8.12 and 8.15, the

surface cannot degenerate to genus one, two, three, or four, respectively. Therefore,
we can continue to collapse zeros until we reach the stratum 7f(8). However, this
stratum does not contain any Teichmüller discs in T>5( 1) by Proposition 7.1 and we
have the desired contradiction.

In the absence of Möller's conjecture, the only obstruction to the argument above
ls the existence of a Teichmiiller curve in V5(\). Hence, the second claim of the
•einma follows.

"
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Remark. In fact, mach more can he said about the degeneration of a genus six

surface to a genus five Veech surface with completely degenerate KZ-spectrum.

Topologically speaking, the only wayfor a genus six surface to degenerate to a genus
five surface, is for a curve to pinch, or a torus with zero area to separate resulting in

a genus five surface with exactly one or two punctures. By Lemma 8.8, there are no
isolated punctures at regular points, and so such a genus six surface would have to

degenerate to a genus five surface by pinching a closed curve ofsaddle connections,

or having an isolated puncture at a zero.
We claim it is also impossible to have a pair of punctures both lying at regular

points. Let (X'. to') be the degenerate surface ofgenus five. If (X', at') has a pair of
punctures (p.cj), then there is a closed trajectory y' joining them. If \(Xn, ton)\fL0
is a sequence ofsurfaces in D converging to (X', to') in the closure of D, then there

is a closed regular trajectory y on (Xn,ton) parallel to y' defining a cylinder C

with boundary containing a zero z0, for sufficiently large n, that converges to p
or q as n tends to infinity. However, the saddle connections incident with Zo must
be as depicted in Figure 3 because z0 is a simple zero. Otherwise, Xn would have

genus strictly greater than six. Hence, the trajectory through saddle connection a

in Figure 3 closes too quickly, and we get the same contradiction as in the proof of
Lemma 8.12. Hence, all punctures on (X', a>') must lie over the branch points on the

torus it covers.

It is not clear how to rule out this last possibility due to the combinatorics
involved in possibly having multiple higher order zeros collapsing to one or two

punctures with zeros, and the lack ofprecise information about the identifications on

a theoretical genus five example.

9. The Teichmüller Disc in 1)

The goal of this section is to prove Theorem 9.10, which says that the Ornithorynque
(M4,cüjv/4), discovered by [13], and depicted in Figure 2, generates the only
Teichmiiller disc in V^( \). Throughout this section we adopt the standard shorthand
for strata, e.g. FL( 14,2) := H( 1, 1. 1, 1, 2).

Lemma 9.1. If(X. to) is not a Veech surface, (X, to) generates a Teichmiiller disc D
in T>i(\), and a sequence of surfaces in D converges to a Veech surface (X'.to1),
then X' has genus four.

Proof. The surface X' cannot have positive genus less than four by Lemma 8.9,

Proposition 8.12, and Proposition 6.4. Recall that X' cannot be a sphere either
because to' is holomorphic by Theorem 7.4 and to' is nonzero by Lemma 2.2.

Lemma 9.2. If(X,to) generates a Teichmiiller disc in Vfi 1), then (X,to) decomposes

into at most three cylinders.
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Proof. The top of every cylinder must have a positive, even number of zeros counted
with multiplicity, and the total order of the zeros of co is six.

Ideally, we would like to use the same exact proof as Theorem 8.10 to show
that the genus four surface (A/4, com4) generates the only Teichmüller disc in X>4(1).
However, this is not possible because (A/4, com4) does not lie in the principal stratum
as the genus three example does. A priori, it is possible for zeros to converge under
the conditions of Theorem 7.4 without reaching a contradiction. On the other hand,
this technique can prove the result in most of the strata of
Lemma 9.3. There are no TeichmiiUer discs in 774(1) except possibly in the strata
77(23), %(12,22), TL( 14,2), and Ft) l6). Furthermore, (M4,oom4) generates the

only TeichmiiUer disc in Fl(23) H V4{ 1).

Proof. By [30] (see Theorem 8.4), (M4,oom4) generates the only Teichmüller
curve in T>4(\). Hence, any other TeichmiiUer disc D must be generated by a

surface (X, co), which is completely periodic by Theorem 5.5, but not Veech. By
Theorem 7.4, there exists a sequence of surfaces in D converging to a Veech
surface (X',co') in 774(1). The surface X' cannot have genus less than four by
Lemma 9.1. Moreover, it is impossible to collapse zeros in any strata other than
77(12,22), Ti( l4, 2), and FL( l6), which are excluded in the statement of the lemma,
and converge to the Veech surface in FL(23).

Since any other Teichmüller disc in FL(23) n £>4(1) must be generated by a non-
Veech surface (X, co), the zeros of (V, co) can be collapsed to reach a contradiction.

Lemma 9.3 says that the classification problem is complete in genus four except
for three strata. The remainder of this section is dedicated to addressing those strata.
The strategy is similar to the one used to prove Theorem 7.4.

Lemma 9.4. If (X, co) generates a TeichmiiUer disc D in FL{l2, 22) n V4(\ then
(A, co) satisfies topological dichotomy.

Proof By Theorem 5.5, (X,co) is completely periodic. We show that every saddle

connection between two zeros must lie in a periodic foliation. First, consider any
saddle connection a from a double zero, denoted by z, to any other zero, denoted z'.
If cr does not lie in a periodic foliation, then we can act on it by the Teichmüller
geodesic flow so that it contracts at the maximal rate and choose a subsequence
of times {tn}n as in the proof of Lemma 7.2 such that Gtll • {X, co) converges to a

surface (X'.co1), where co' is holomorphic. The surface X' cannot degenerate to a
'ower genus surface by Lemma 9.1, so a must degenerate to a point resulting in
a zero of order strictly greater than two. However, there are no such Teichmüller
Jscs in a stratum with a zero of order strictly greater than two by Lemma 9.3.

is contradiction implies the saddle connection a, which does not lie in a periodic
0 'ation, can only lie between the two simple zeros denoted by z\ and zi.
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Without loss of generality, assume a has length e > 0 and (A', a>) has a cylinder
decomposition consisting of cylinders with unit circumference. By Lemma 9.2,

(A'.to) is a union of one to three cylinders. Degenerating the cylinders under the

Teichmüller geodesic How results in a surface as described in Lemma 5.9. This

implies that the total order of the zeros on the top (and bottom) of every cylinder
in the cylinder decomposition must be even because every part of the degenerate
surface has two poles. In the stratum Ti( 12.22), this forces the two simple zeros

to lie on the top of the same cylinder in every cylinder decomposition of (X, m).
As usual, assume the area of the surface is one and the lengths of the waists of the

cylinders are also one, so that the total heights of the cylinders is one. Since a does

not lie in a periodic foliation, it must leave zj and travel up the entire height of all
the cylinders before reaching z2. However, this implies that a has length at least
1 > e and this contradiction implies that all saddle connections of (X, to) must lie in

a periodic foliation.

Lemma 9.5. There are no Teicluniiller discs contained in H(l2, 22) fl T>4(1).

Proof. We prove this lemma by showing that if (X,co) Ti( 12,22) generates a

Teichmliller disc in 73>4(1), then {X.o)) is uniformly completely periodic. By [31],
(X.co) is a Veech surface and by [30], there are no Veech surfaces in TL{ 12,22) that

generate a Teichmliller disc in 1). This contradiction will imply the lemma.

By contradiction, assume that there exists a surface (A\co) 7T(\2,22)
generating a Teichmliller disc in £>4(1). By [30], {X,a>) is not a Veech surface

and by Lemma 9.4, (X. to) satisfies topological dichotomy. As in the proof of the

previous lemma, the only two zeros that are permitted to converge in the context
of Theorem 7.4 are the simple zeros z\ and z2. Without loss of generality, let a
be a saddle connection between Z\ and z2 of length e > 0. Consider a cylinder
decomposition of (X.co), C\ Cn, with 1 < n < 3, such that Z\ and z2 lie

on the bottom of Cj. Let z3 be a double zero on the top of C\. Consider the

saddle connection a\ from z\ to z3. We can take (j\ to have length less than two
because the total height of all of the cylinders is one and a\ connects the top and

bottom of a single cylinder. Then a\ lies on the top of a cylinder C[ in a different
cylinder decomposition C of (A", at) because (X, a>) satisfies topological dichotomy
by Lemma 9.4. Since the total order of the zeros on the top of every cylinder must be

even, z2 must also lie along the top of C[. Furthermore, C consists of at most two
cylinders because the total order of the zeros along the top of one of the cylinders
is four. This implies that the total height of the cylinders in the decomposition C'

is at most e because a is transverse to cr, and a must join the top of C2 to the

bottom of C\. The total area of the cylinders is still one, so the waist length of
the cylinders in C must be at least \/e. Act by the Teichmliller geodesic flow so

that the waist of the cylinders in C is reduced to one and the total height of the

cylinders is expanded to one. In the process of the expansion and contraction, the
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saddle connection a\ of length at most two is contracted to length at most 2e. Since
this argument holds for all e > 0, <ti can be contracted to a point resulting in a zero
of order three. By Lemma 9.1, the surface will not degenerate and we get a surface

generating a Teichmliller disc in a stratum that does not contain a Teichmüller disc.
This contradiction completes the proof.

Lemma 9.6. If (X.co) generates a Teichmiiller disc D in Hi l4.2) fl X>4(1), then
(X co) satisfies topological dichotomy.

Proof. By Theorem 5.5, (X.co) is completely periodic. We show that every saddle

connection between two zeros must lie in a periodic foliation. First, consider any
saddle connection a from the double zero, denoted by z, to any other zero, denoted
by z'. By contradiction, if a does not lie in a periodic foliation, then we can
act on it by the Teichmüller geodesic flow so that it contracts at the maximal rate
and choose a subsequence of times {/„}„ as in the proof of Lemma 7.2 such that

• (X.co) converges to a surface (X'.cv'). where co' is holomorphic. The surface
cannot degenerate to a lower genus surface by Lemma 9.1, so a must degenerate to
a point resulting in a zero of order strictly greater than two. However, there are no
such Teichmliller discs in a stratum with a zero of order strictly greater than two by
Lemma 9.3. This contradiction implies a saddle connection o, which does not lie in
a periodic foliation, can only lie between two of the simple zeros.

Let z\ z4 denote the simple zeros of co and let z5 denote the double zero.
By contradiction, let 0 denote the saddle connection that does not lie in a periodic
foliation. In light of the argument above, let a be a saddle connection from Z\
to and let it have length s. while there is a cylinder decomposition C such that
the cylinders have circumference one. The zeros z\ and z5 cannot lie on the top
or bottom of the same cylinder in C because this would imply C consists of two
cylinders, one of which has height less than e. As e tends to zero, the resulting
sequence of surfaces would have to converge to (M4,com4) because this generates
the only Teichmliller disc in V4( 1) in a lower stratum. The cylinder decomposition
would only consist of one cylinder, which contradicts the cylinder decomposition of
(A/4,WiW4) wjti-, reSpCcl l0 an(j without loss of generality, let Zi and z5 be on
the top and bottom of a cylinder. Consider the shortest saddle connection a 1 from
zi to z5, which has length less than two. Then fT| lies in a periodic foliation by the
argument above, and in particular, it is not parallel to a. Since the total order of
the zeros on the bottom of a cylinder must be even, the leaf of the periodic foliation
containing oq must contain at least one other simple zero. We show that this will
•ead to a contradiction.

Let C, denote the cylinder with the saddle connection a 1 on its bottom. Then the
ottom of C[ must also contain either z2, z3, or z4. We only consider z2 and z3 here
ecause the argument for z4 will be identical to the argument for z2. First assume
at tlle bottom of C| contains the zero z3. Then the saddle connection o cannot
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be a subset of the bottom of Ci because it does not lie in a periodic foliation, so

it must traverse the heights of every cylinder in the cylinder decomposition before

it reaches z3. This implies that the total height of the cylinders is less than e. By
contracting the waist of the cylinders in this direction to unit length, a\ contracts to

a saddle connection of length 2s. Since this argument holds for all e, we converge
to a degenerate surface with a zero of order at least three and reach a contradiction
with Lemma 9.3.

Next we assume that the bottom of Ci contains the zeros zi, Z5, and z2. In this

case, it is clear that the surface decomposes into at most two cylinders. Furthermore,

(X.co) cannot consist of exactly one cylinder because Z3 would lie on its top and

that would imply that the height of C\ is s while its circumference is one, which
would contradict that the area of the surface is one. Though there are two cylinders,
this argument shows that one of them, say C2 has height e because both cylinders
have Zi and r3 on different sides and since the distance between them is e, the

height of the cylinder must be less than s. Lemma 9.5 implies that both Z\ and z3

must converge to z2 and Z4, simultaneously and respectively, (though we make no

claims about the rates at which this happens) because otherwise we would have a

contradiction with Lemma 9.5. However, as we consider the sequence of surfaces

resulting from letting e vary over a sequence decreasing to zero, we get that the

cylinder C2 must vanish in the limit so that (X' .co') lies in H(23) and consists of
one cylinder. However, this directly contradicts the fact that (AF4, com4) decomposes

into exactly two cylinders in every direction. This contradiction implies that any
Teichmüller disc satisfying the assumptions of this lemma is generated by a surface

satisfying topological dichotomy.

Lemma 9.7. There are no Teichmiiller discs contained in%( 14, 2) nT>4(1).

Proof. As in the proof of Lemma 9.5, we show that if (J, at) e TL{ l4, 2) generates
a Teichmiiller disc in X>4{ I), then {X, co) is uniformly completely periodic. By (31),
(X.co) is a Veech surface and by [30], there are no Veech surfaces in 7f(l4,2) that

generate a Teichmiiller disc in V4(\).
By contradiction, assume that there exists a surface (A, co) e TL( l4, 2) generating

a Teichmiiller disc in X>4(1). By [30], (X, co) is not a Veech surface and by
Lemma 9.6, (X.co) satisfies topological dichotomy. As in the proof of the previous
lemma, only simple zeros can converge. Let Z\ z4 denote the simple zeros, and
let z5 denote the double zero. Without loss of generality, let a be a saddle connection
between two such zeros zt and z3 of length e > 0. By Lemma 9.6, consider a

cylinder decomposition C of (X. co) such that z 1 and z3 lie on the bottom of C\ C.

It is possible to choose C\ so that the double zero z5 lies on its top because z5 must
lie at the top of some cylinder, and the cylinder will have simple zeros on its bottom
of distance e. It was noted in the previous proof that there must always be two pairs
of simple zeros, say zt, z3 and z2, z4, such that each zero in the pair has distance e
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from the other zero in the pair because the pairs of simple zeros must converge to
double zeros simultaneously. Consider the saddle connection a' from z\ to Z5. We

can take a' to have length less than two because the total height of all the cylinders is

one and a' connects the top and bottom of a single cylinder. Then a' lies on the top
of a cylinder C[ in a different cylinder decomposition C' of (V, o>). The top of C[
must contain exactly one of z2, z3 or z4 because the total order of the zeros on the

top of C[ is even. If it contains z3, then the total height of the cylinders in C' is
less than s. We claim that if it contains either z2 or z4, then the total height of the

cylinders in C is at most 2s. To see this, note that z 1, Z5, and say z2, without loss
of generality, lie on the top of C[. Then z3 and z4 must lie on the bottom of C[.
Hence, C[ has height at most s. If the height of C'2 is bounded away from zero by a

constant C > 0, for all s > 0, then as s tends to zero, we get a sequence converging
to a surface that must be (M4, wm4), but with a cylinder decomposition consisting
of exactly one cylinder. This contradicts the fact that every cylinder decomposition
of (A/4, o>m4) has two cylinders, so C2 must have height s'.

We abuse notation and set e max(s, s'). Furthermore, C consists of at most
two cylinders because the total order of the zeros along the top of one of the cylinders
is four. The total area of the cylinders is one, so the waist length of the cylinders
in C must be at least 1/(2e). Act by the Teichmüller geodesic flow so that the

circumference of the cylinders in C' is reduced to one and the total height of the

cylinders is expanded to one. In the process of the expansion and contraction, the
saddle connection a' of length at most two is contracted to length at most 4s. Since
this argument holds for all s > 0, a' can be contracted to a point resulting in a zero
of order three. By Lemma 9.1, the surface will not degenerate and we get a surface

generating a Teichmiiller disc in a stratum that does not contain a Teichmüller disc.
This shows (X, to) must be uniformly completely periodic and yields the desired

contradiction. D

Let

//,

denote the horocycle flow.

Lemma 9.8. If {X. u>) generates a Teichmiiller disc D in TL( l6)fTZ74( 1), then {X, a))
satisfies topological dichotomy.

Proof. Let z,-, for 1 < / < 6, denote the simple zeros of co. Assume by contradiction
that (A.a>) does not satisfy topological dichotomy. Let a\ be a saddle connection
from z, to z2, without loss of generality, that does not lie in a periodic foliation.

CTt converges to a point, then the other zeros must also converge to each other in
Pairs because there are no Teichmiiller discs in X74( 1) in any lower stratum other

an TL(23) by Lemmas 9.5 and 9.7. Setting notation, let z3 and z5 converge to z4
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and z6, respectively Let denote flat length with respect to to We assume that

e max {t/ül(z,,zl +1)},
ie{l 3,5}

and the length ot a\ is at most e, and (X, to) admits a cylinder decomposition

into cylinders of unit circumference We dehne a sequence of surfaces (X„,ton)
converging to (X' to') — (M4.com4) letting e 1 /n For each (Xn,ton) fix a

cylinder decomposition C„ such that the cylinders have unit cucumference Pass to a

subsequence, such that Cn has the same number ot cylinders as Cm, for all n,m > 0

First we claim that the cylindei decompositions Cn do not consist of exactly

one cylinder Assume by contradiction that it does consist ot exactly one cylinder
Since ai does not he in a periodic foliation, o\ must traverse the height ot the

cylindei However, this would imply that the height ot the cylindei is at most 1 //;
while the circumference is one, which contradicts the fact that the atea ot each

surface in the sequence is one

Secondly, we claim that the cylinder decompositions Cn do not consist of exactly

two cylinders To see this, we use the same argument as above to see that if theie

are two cylinders, then one of them must have height at most 1//;. As we let n

tend to infinity, the surface converges to a surface (X1, to'), which must have a single

cylindei because the height ot one ot the two cylinders in (X„, ton) converged to zero

However, (M4,com4) decomposes into two cylinders in every periodic direction so

we have a conti adiction that implies that there cannot be two cylinders.

Finally, we assume that for all n, C„ consists of exactly three cylinders, the

maximum possible by Lemma 9 2 The saddle connection o\ cannot he in the

foliation of the cylinder of Cn because it does not lie in a periodic foliation
Therefore, z\ and Z2 he on the top and bottom of a cylinder, say C3 By the

assumption that there are thiee cylinders, there must be another pan ol zeros between

the top and bottom of C3 II not, the total height ot the three cylinders would be at

most 3/"- which would contiadict the assumption that the surlace has atea one, lor
large n Therefore, we have that the saddle connection a3 from Z5 to z6 ot length at

most e lies on the top ot the cylinder Cj This anangement ot the zeios must hold
tor all n in the sequence {(Xn, co„)because this argument did not depend on the
value of n

Now we make an elementary observation If we consider the action of Hs on

(X„.co„), then the heights and boundanes of the three cylinders in Cn aic preseived,
though the cylinders themselves are twisted (in the sense ot Dehn twists) This
implies that the saddle connection cr3 is preserved undei the action of Hs, while
the distance between z \ and zi can be increased to some constant bounded away
from zero Theretoie, for each n, there exists a number where 0 < s„ < 1

such that the sequence {HSn (Xn,ojn)\n converges to a surface which does not
degenerate because the cylinders have circumference one Howevei, at least one pair
ot simple zeros remain simple zeros in the limit, while at least one pair of simple
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zeros converge to a double zero. This contradicts either Lemma 9.5 or 9.7, and

implies that the arrangement of the cylinders and the z.eros described above for the

case where Cn consists of three cylinders cannot occur. However, since this was the

only remaining potentially admissible arrangement of the zeros in such a cylinder
decomposition, we have a contradiction which implies (X,a>) satisfies topological
dichotomy.

Lemma 9.9. There are no TeichmiiUer discs contained in TL( l6) fl X>4(1).

Proof The idea of this proof is identical to Lemmas 9.5 and 9.7. Assume by
contradiction that such a surface (X.co) exists. By Lemma 9.8, (X,w) satisfies

topological dichotomy, but [30) implies that (X,w) is not uniformly completely
periodic. We show that there is a sequence of surfaces in the TeichmiiUer disc D
generated by (3f, u>) converging to a surface in a stratum other than TL(23).

As in the proof of the previous lemma, let z,- denote the simple zeros of a>, for
' < / < 6. By Theorem 7.4, there is a sequence of surfaces {(Xn,con)}n in D
converging to (A/4, com4)- For / 1,3,5, we can assume that z,- converges to z,-+1
in this sequence because there are no TeichmiiUer discs in T>4(\) in any lower stratum
other than TL(23) by Lemmas 9.5 and 9.7. Let dm{-, •) denote flat length with respect
to to. As before, assume that

e max {da)(zi,zi +1)},
/e{ 1,3,5)

and (V, cu) admits a cylinder decomposition into cylinders of unit circumference.
We define a sequence of surfaces {(A„,cu„)}„ converging to (X',a>') (M4,com4)
by letting e 1 /n. For each (X„.a)„) fix a cylinder decomposition Cn such that the

cylinders have unit circumference and pass to a subsequence, such that C„ has the
same number of cylinders as C,„, for all n.in > 0.

First note that C„ cannot contain exactly one cylinder, for all n, because the

sequence converges to a surface that decomposes into two cylinders in every periodic
direction. If we assume that C„ splits into three cylinders, then there are two possible
arrangements of the zeros. Either one or more of the saddle connections of length at
most e lies between the top and bottom of a cylinder, or, after renaming the zeros, cr,
'ies on the top of C, for 1 < i < 3. If one or more of the saddle connections lies
across a cylinder, then we have the same arrangement as in the proof of Lemma 9.8:
ci has the saddle connection o3 along its top, and C3 has zi and z3 on its bottom and
z2 and z4 on its top. In fact, to exclude the possibility of this case from occurring, it
suffices to use the "horocycle trick" from the previous lemma to get a contradiction,

refore, we are left with the other case where a, lies on the top of C,, for all /.
•nee we know that the limit (M4,a)M4) decomposes into two cylinders, one of the
ree cylinders, say C3 must have height lin converging to zero. Let 02 lie on the

°ttom ot C3, and a3 lie on the top of C3. Let (X'n,a)'n) := HSn (Xn,con). For
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each n, there is a number sn satisfying 0 < sn < 1 such that the

4»;,(Z3.Z5) h„.

As n tends to infinity, the limit must lie in the stratum Ti(2,4), which does not
contain a Teichmüller disc in £>4(1) by Lemma 9.3. This contradiction implies that

the the cylinder decomposition Cn must consist of exactly two cylinders for all n.

Finally, we assume that Cn contains exactly two cylinders, for all n. Consider

sufficiently large n so that 1 / n << 1. The heights of the cylinders must be bounded

away from zero so that the sequence converges to a surface with two cylinders. This

implies that the three saddle connections a,-, for 1 < / < 3, of length less than \ jn
lie on the boundaries of the cylinders, Ci and C2, i.e. the short saddle connections

are parallel. Consider a straight trajectory y of length less than two from z\ on
the bottom of Cj to itself on the top of C2. Such a trajectory can be found by

considering a saddle connection from a double zero to itself at the limit (X'.co')
and using this saddle connection to find a saddle connection between a simple zero
and itself on (Xn,a>„) for sufficiently large n. We permit y to pass through another

zero. By Lemma 9.8, this saddle connection determines a periodic foliation, thus, a

cylinder decomposition C'n. We claim that the total height of the cylinders in C'n is at

most 3/n. We consider three cases. If C'n consists of exactly one cylinder, then this
is clear because there is a saddle connection of length less than 1 /n transverse to the

foliation. If C'n consists of exactly two cylinders, then there is at least one cylinder
of height at most 1 / n. In fact, both cylinders must have height at most 1/7/ because

each cylinder has four zeros on one side and two zeros on the other, which implies
that one of the saddle connections of length at most 1 /n must traverse the heights of
both cylinders. Finally, if C'n consists of exactly three cylinders, then each cylinder
has two zeros on each side. Since a,- does not fie in the foliation of C'n for all /, every
cylinder has height at most 1 //;.

If we form a new sequence of surfaces in D by acting on the foliation C'n by the
Teichmüller geodesic How so that the cylinders have unit circumference, then the
curve y must have length at most 6/n in this new sequence. However, as n tends
to infinity, this would imply that a curve from z{ to itself contracts to a point. This
forces the surface to degenerate because z 1 can no longer be a zero in the limit.
This directly contradicts Lemma 9.1 and implies that there is no surface generating
a TeichmLiller disc in 73>4 (1) in the principal stratum.

We summarize Lemmas 9.3, 9.5, 9.7, and 9.9 in the following theorem.

Theorem 9.10. The Ornithorynque (M4, coM4 generates the only TeichmiiUer disc-
in V4{ 1).
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