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Immersions associated with holomorphic germs BIBLIOTHEK

Andrds Némethi* and Gergé Pintér**

Abstract. A holomorphic germ ® : (C%,0) — (C3,0), singular only at the origin, induces at
the links level an immersion of S= into S°. The regular homotopy type of immersions S* ¢+ §°
are determined by their Smale invariant, defined up to a sign ambiguity. In this paper we fix a
sign of the Smale invariant and we show that for immersions induced by holomorphic gems
the sign-refined Smale invariant €2 is the negative of the number of cross caps appearing in
a generic perturbation of ®. Using the algebraic method we calculate €2 for some families of
singularities, among others the A-D-E quotient singularities. As a corollary, we obtain that the
regular homotopy classes which admit holomorphic representatives are exactly those, which
have non-positive sign-refined Smale invariant. This answers a question of Mumford regarding
exactly this correspondence. We also determine the sign ambiguity in the topological formulae
of Hughes—Melvin and Ekholm-Sziics connecting the Smale invariant with (singular) Seifert
surfaces. In the case of holomorphic realizations of Seifert surfaces, we also determine their
involved invariants in terms of holomorphic geometry.

Mathematics Subject Classification (2010). 32505, 32525, 32550, 57M27; 14Bxx, 32Sxx,
STR57, 55N35.

Keywords. Hypersurface singularities, links of singularities, Smale invariant, regular homo-
lopy type, singular Seifert surface, cross caps.

L. Introduction

L1.  Let S" denote the n—sphere, the boundary of the unit ball in R"*!'. The
regular homotopy classes of immersions f : S & §°, denoted by Imm(S~, §°),
are identified with the elements of m3(V3(Rs)) = m3(SO(5)) = Z by the Hirsch-
Smale theory [9, 22]. The correspondence is given by the Smale invariant Q( f)
of an immersion /. Besides the original definition of Smale [22], there are several
Cquivalent definitions of Q( f) (see [9, 10, 25]). Usually, in all these constructions
Fhere is no identification of a distinguished generator of 73(SO(5)), hence the Smale
variant is well-defined only up to a sign.

*:The first author is partially supported by OTKA Grant 100796.
The second author is supported by ‘Lendiilet’ and ERC program ‘LTDBud’ at Rényi Institute.
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The subgroup Emb(S?, 5%) of Imm(S3, S°) consists of the regular homotopy
classes which admit embedding representatives. By [10] this is the subgroup 24-7Z C
7 = Imm(S3, S°). For embeddings the Smale invariant has the following alternative
definition too, given by Hughes and Melvin. Let M* be a ‘Seifert surface’ in S° of
£(8?), then 2Q2( £)/3 is the signature of F (up to a sign), cf. [10]. (This and similar
identities will be reviewed in Section 8.)

Our goal is to analyse the complex analytic realizations of the elements of the
above two groups. Let ® : (C%,0) — (C3,0) be a holomorphic germ. We
assume that & is singular only at the origin, that is {z : rank(d ®;) < 2} C {0}
in a small representative of (C2,0). Such a germ, at the level of links of the
spacegerms (C2,0) and (C3,0), provides an immersion f : S 4 §°> (see 2.1).
If an element of Imm(S?3. S°), or Emb(S3, S°) respectively, can be realized (up to
regular homotopy) by such an immersion, we call it holomorphic. The corresponding
subsets will be denoted by Immy,,;(S3, S°) and Emby,,; (S?3, S°) respectively.

As we will see, Immy,,;(S3, §°) is not symmetric with respect to a sign change
of Z, hence, in order to identify the subset Immhol(S3,S5) without any sign-
ambiguity, we will fix a ‘canonical’ generator of m3(SO(5)). This will be done via
the ismorphisms 73(U(3)) — m3(SO(6)) — m3(SO(5)) and by fixing a canonical
generator in w3(U(3)) (see 4.2). Sometimes, to emphasize that we work with the
Smale invariant with this fixed sign convention, we refer to it as the sign-refined
Smale invariant. Our second goal is to determine the correct signs (compatibly with
the above choice of generators) in the existing topological formulas, which were
stated only up to a sign—ambiguity.

1.2. The set Immy,,; (53, S°). One expects that the analytic geometry of holomor-
phic realization imposes some rigidity restrictions, and also provides some further
connections with the properties of complex analytic spaces. Mumford already in
1961 in his seminal article [20] asked for the characterization of the Smale invariant
of a holomorphic (algebraic) immersion in terms of the analytic/algebraic geometry.
This article provides a complete answer to his question. A more precise formulation
of our guiding questions are:

Question 1.2.1.

(a) Which are the regular homotopy classes Immy;(S3, S°) and Emby,; (S3, S°)
represented by holomorphic germs?

(b) How can a certain regular homotopy class be identified via complex singularity
theory, that is, via algebraic or analytic invariants of the involved analytic
spaces? Furthermore, if some ® realizes some Smale invariant (e.g., if its Smale
invariant is zero), then what kind of specific analytic properties ® must have?

The main results of this paper provide the following answer in the case of
immersions.
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Theorem 1.2.2.

(a) Immy,o (S3, S?) is identified via the sign—refined Smale invariant QU f) by the
set of non—positive integers.

(b) If the immersion f is induced by the holomorphic germ ®, then Q(f) =
—C(P), where C(P) is the number of cross cap points (complex Whitney
umbrellas, or pinch points) of a generic perturbation of ®. C(®) can be
calculated in an algebraic way, as the codimension of the ideal generated by
the determinants of the 2 x 2-minors of the Jacobian matrix of ®.

The main tool of the proof of Theorem 1.2.2 is the concept of complex Smale
invariant of the germ ®. We introduce it in Section 3 and then we prove that it
agrees with C(®). Next, in Section 6 we identify the complex Smale invariant of a
germ @ with the (classical) Smale invariant of the link of ®. The proof of the part
(b) of Theorem 1.2.2 is then ready up to sign. In 4.2 we fix explicit generators of the
groups m3(U) and m3(SO) and calculate the homomorphism between them. With
this convention the complex Smale invariant of ® is equal to C(®) and is opposite
to the sign—-refined Smale invariant.

Part (b) of Theorem 1.2.2 implies that the sign-refined Smale invariant of a
complex analytic realization is always non—positive. The proof of part (a) is then
completed by Example 7.1.1, which provides analytic representatives for all non—
positive Q( f).

Note that in the present literature the known (C°°) realizations of certain Smale
invariants §2( /) are rather involved (similarly, as the computation of 2(f) for
any concrete f), see e.g. [11, 2]. Here we provide very simple polynomial maps
realizing all non—positive Smale invariants. Furthermore, the computation of C(®)
for any @ is extremely simple.

Moreover, precomposing the above complex realizations with the C* reflection
(s.1) > (s,7), we get explicit representatives for all positive Smale numbers as well,
compare |2, Lemma 3.4.2.].

1.3. The set Emby,;(S?3, $%). Recall that Emby,, (S3, S°) consists of regular
homotopy classes (that is, sign-refined Smale invariants in Z) represented by holo-
morphic germs & whose induced immersions 53 g4 §° might not be embeddings,
but are regular homotopic with embeddings.

A more restrictive subset consists of those regular homotopy classes (Smale
variants), which can be represented by holomorphic gems, whose restrictions off
origin are embeddings.

Theorem 1.3.1.
(@) Emby,,;(S3, 8%) = (24-Z) N Z<o.

(b) Assume that the immersion [ is the restriction at links level of a holomorphic
germ & as above, f = ®|ga. Then the following facts are equivalent:
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(1) rank ddy = 2 (hence ® is not singular),

2 Bl Hi=0
(3) f: 83 < S°isan embedding,
4 f: §3 < S3 s the trivial embedding.

Again, we wish to emphasize that the previous construction of the generator of
24 .7 = Emb(S3, S7) (that is, of a smooth embedding with Q(f) = £24) is
complicated, it is more existential than constructive [10]. On the other hand, by
our complex realizations, for any given Q(f) € 24 - Z we provide several easily
defined germs, which are immersions, and are regular homotopic with embeddings.
Moreover, part (b) says that it is impossible to find holomorphic representatives @
such that |3 is already embedding (except for Q(f) = 0).

The essential parts of Theorem 1.3.1(b) are the implications (2) = (1) and (3) =
(1), which conclude an analytic statement from topological ones. The proof (2) =
(1) is based on Theorem 1.2.2, which recovers the vanishing of the analytic invariant
C(®) from the ‘topological vanishing” Q( f) = 0.

A possible proof of (®|g3 embedding) = (rankd®y = 2) is based on a deep
theorem of Mumford, which says that if the link of a complex normal surface
singularity is S? then the germ should be non—singular [20]. We will provide two
other possible proofs too: one of them is based on Mond’s Theorem 2.2.1, the
other on a theorem of Ekholm-Sziics [3] (a generalization of the already mentioned
Hughes—Melvin resuls [10]). These theorems will be discussed in connection with
properties of Seifert surfaces in Section 8 as well.

1.4.  The literature of singular analytic germs & : (C2,0) — (C3,0) is huge with
several deep and interesting results and invariants, see e.g. the articles of D. Mond
and V. Goryunov [6, 7, 8, 16, 17, 18] and the references therein. In singularity
classifications finitely determined or finite codimensional germs are central (with
respect to some equivalence relation). For germs ® : (C2,0) — (C3,0) Mond
proved that the finiteness of the (holomorphic) right-left codimension is equivalent
with the finiteness of three invariants: the number of (virtual) cross caps C(®),
the number of (virtual) ordinary triple points 7(®), and an other invariant N(®P)
measuring the non-transverse selfintersections [17]. This is more restrictive than
our assumption {z : rank(d ®;) < 2} = {0}, which requires the finiteness of C(P)
only.

However, it is advantageous to consider this larger class, since there are many key
families of germs with infinite right-left codimension, but with finite C(®), and they
produce interesting connections with other areas as well (see e.g. the next example).

Example 1.4.1. Consider a simple hypersurface singularity (X,0) C (C?,0) (that
is, of type A-D-E). They are quotient singularities, that is (X,0) ~ (C2,0)/G
for certain finite subgroup G C GL(2,C). Let K be the link of (X,0) (e.g.,
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it is a lens space for A-type), and consider the regular G-covering S® — K.
This composed with the inclusion K <> S> provides an immersion S3 9 S°.
Hence, the universal cover of each A-D-E singularity automatically provides an
element of Immy,,; (S3, S°), which usually have infinite right-left codimension. The
corresponding Smale invariants are given in Section 7. E.g., —Q(A4,—_1) = n? — 1,
hence A4 represents (up to regular homotopy) a generator of 24 - Z = Emb(S3, S°).

Recently Kinjo, using the plumbing graphs of the links of A-D singularities
and C*°—techniques, constructed immersions with the same Smale invariants as our
—C(®) [13]. Hence, the natural complex analytic maps (C2,0) — (X,0) C (C3,0)
provide analytic realizations of the C*° constructions of [13], and emphasize their
distinguished nature.

1.5. Smale invariants and the geometry of Seifert surfaces. In Section 8 we
review three major topological theorems, which recover the classical Smale invariant
in terms of the geometry of their Seifert surfaces (namely the Hughes—-Malvin
theorem [10], and two theorems of Ekholm-Sziics [3]). All of them carry the sign
ambiguity of the Smale invariant (which sometimes is also caused by the nature of
their proofs).

Section 9 has two goals. First, we will indicate the correct sign in all these
formulae, whenever the Smale invariant is replaced by the sign-refined Smale
invariant. Moreover, we also determine the Seifert type invariants in terms of C(®)
and 7'(®), whenever the immersion is induced by a holomorphic germ .

When f is a generic immersion, the invariant L(f) of generic immersions
introduced by Ekholm [2] is also expressed in terms of C(®) and T(®), namely
L(f)=C(®)-3T(®D).

1.6. C*°-characterisation of C(®) and 7'(®). The formulae connecting the
holomorphic invariants C(®) and 7(®P) with C*°-invariants Q( f) and L( f) have
the following consequence.

Theorem 1.6.1. Assume that the analytic germs ® and @' : (C2,0) — (C3,0) are
C left-right equivalent (that is, ®' = A o® o holds for some germs of orientation
preserving diffeomorphisms ¥ (R*,0) — (R*,0) and A : (R®,0) — (R®,0)).
Then

(@) C(d) = C(D).

(b) 1f additionally the immersion [ associated with ® is a generic immersion, then
T(®) < oo and T(®) = T (D).
Part (a) of Theorem 1.6.1 is proved as Corollary 6.1.2, while part (b) in
Remark 9.1 5.

We thank the anonymous referee for suggesting to us that such a consequence
might follow from our characterisations of C and 7" in terms of Q( f) and L( f).
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In fact, one might even ask for the topological analogue of Theorem 1.6.1: is
it true that if & = A o ® o ¥ holds for some germs of orientation preserving
homeomorphisms  : (R*.0) — (R*,0) and A : (R®,0) — (R®,0), then C(d) =
C(®') and T(®) = T(P')? In Remark 9.1.5 we show the following.

Corollary 1.6.2. In the presence of a topological left—right equivalence as above,
if [ and " are generic immersions then L(f) = L(f"), hence C(®) — 3T (®) =
C(®') — 3T (D).

The full extension of Theorem 1.6.1 from C° to topological category is obstructed
by the following facts. Though we identify the analytic invariant C(®) with the
smooth Smale invariant €2(f), it is not known if €(f) is stable with respect
to topological left-right equivalence. A possible way to prove this requires the
extension of the formulae from Section 8 from smooth to more general Seifert
surfaces, which exceeds the aims of the present note. We plan to return back to
this point later in a different article. Also, we do not know how the topological left—
right equivalence behaves with respect to analytic deformations used in Sections 8
and 9.

Acknowledgements. The authors are very grateful to Andrds Sztcs for several
very helpful conversations regarding different definitions and properties of the Smale
invariant. Without his advises this works would not be completed. We also thank
Tamds Terpai and Guillermo Penafort Sanchis for several discussions and advices
regarding topological invariants of singular maps.

2. Basic definitions and preliminary properties

2.1. The immersion associated with ®. If (X, 0) is a complex analytic germ with
an isolated singularity 0 € X then its link K can be defined as follows. Set a real
analytic map p : X — [0.00) such that p~1(0) = {0}. Then, for ¢ > 0 sufficiently
small, K := p~!(e) is an oriented manifold, whose isotopy class (in X \ {0}) is
independent of the choices, cf. Lemma (2.2) and Proposition (2.5) of [15]. e.g., if
(X.0) is a subset of (CV,0), then one can take the restriction of p(z) = |z] (the
norm of z). In this way, the link of (CN,0) is the sphere SezN_l. Nevertheless, the
general definition is very convenient even if (X, 0) = (CN,0).

Let & : (C2,0) — (C30)bea holomorphic germ singular only at O (as in the
introduction). Define p : (C2,0) — [0, 00) by p(z) = |®(z)|. Since d~1(0) = {0}
(if ®~1(0) would be a positive dimensional germ, then along it the rank of d®,
would be < 2). Hence p~'(0) = {0} (in a small representative).

Lemma 2.1.1. There exists an €y > 0 sufficiently small such that B, = &~ '({z :
1z] < €}) is a non-metric C closed ball around the origin of C?. Its boundary,

o 1(S 65) is canonically diffeomorphic to S3 for any € < €y. In fact, for € with
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0 < € < €, any standard metric sphere SS sits in ‘B¢, and it is isotopic with
OI(S2) in B\ 0.

In the sequel ! (SES) and Sg’ C C? will be identified. When it is important to
differentiate them we will use the notation &° := ®~!1(S7?). We write also §* = §?2
and §° = 52,

Definition 2.1.2. We call the restriction f = ®|s3 : &* & S the immersion
associated with ®. (It’s regular homotopy class is independent of all the choices.)

2.2. The number of cross caps. Let ® : (C?,0) — (C3, 0) be a holomorphic germ
singular only at 0. Consider a generic holomorphic deformation ®; of ® = @,.
The singular points of @), are cross caps (or complex Whitney umbrellas), i.e.
they have the local form (s,1) + (s2,st.) in some local holomorphic coordinates.
Their number does not depend on the deformation ®y, it is an invariant of ®, cf.
[16, 17]. We denote it by C(®P).

C(®) can be computed in an algebraic way as well. Let M; : Hom(C?,C3) —
C denote the determinants of the three 2 x 2 minors (j = 1,2,3). Let J be the
ideal of the local ring O¢2 , generated by the elements M; o d ®, where d ® is the
complex Jacobian matrix. J has finite codimension exactly when ® is immersion
off the origin.

Theorem 2.2.1. [16, Proposition 1] C(P) = dim¢ (O¢2 o/ J).

2.3. The number of triple points. If ® is a generic deformation as above, then the
singular points of the image of @) o might have the following types: self-transversal
double points, cross caps and triple points, cf. [16, 17]. The double point set has
complex dimension 1, while triple points are isolated. If the codimension of the
second fitting ideal of @4 (O¢2) is finite, say 7(P), then the number of triple points
T'(®D)20) of @; 4 is independent of the deformation and A, it is exactly 7(®) (cf.
[19, 16]).

2.4. The Smale-invariant. Let /' : S* 9 R° be an immersion. Instead of the
original definition of Smale [22] we adopt the construction of Hughes and Melvin
for the Smale invariant of f, see [10], compare also with [25]. Let U be a tubular
neighborhood of the standard S3 ¢ R, and let F : U 9 R be an orientation
Preserving immersion extending f, i.c. F|g3 = f. Let TU be the tangent bundle
of U. It inherits a global trivialization from the natural trivialization of TR>. In
Particular, there is a map (the Jacobian matrix)
dF|y : U — GLT(5R).

Its homotopy class is the Smale invariant of /"

Qf) = [dF[s:] € m3(SO(5)) (2.4.1)

(Via the homotopy equivalence induced by the inclusion SO(5) € GL* (5, R)).
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Remark 2.4.2. If G is a connected Lie group, or a factor of it by a closed connected
subgroup, then 7, (G ) can be identified with the homotopy classes of the continuous
maps f : §" — G without any base point. Furthermore, for Lie groups, the group
operation of m, ((r) agrees with that induced by the pointwise multiplication in G;
cf. [24, p. 88 and 89].

Proposition 2.4.3. Q( f) does not depend on the choice of U and F, it depends
only on the regular homotopy class of f, and Q : Inm(S3,R%) — 73(SO(5)) is a
bijection.

Indeed, Smale proved that his original invariant gives a bijection between
Imm(S3,R’) and m3(V3(R?)), cf. [22], where V3(R®) denotes the real Stiefel
manifold (the space of linear independent 3-frames of R”). Hughes and Melvin
proved that their alternative definition (2.4.1) of the Smale invariant does not depend
on the choice of F and agrees with the original Smale invariant through the natural
group isomorphism m3(SO(5)) — m3(Va(R?)).

Note that the standard embedding SO(5) < SO induces a group isomorphism
between m3(SO(5)) and n3(S0). These groups are (a priori non—canonically)
isomorphic to Z.

We wish to emphasize the following facts regarding orientations of S? and R>
and their effects on the above definition. (This might serve also as a small guide for
the next sections.)

Let us think about S as the subset of R*, the boundary of the 4-ball B4 inR*, or
via embedding R* C R, as a subset of R>. We do not wish to fix any orientation on
it as the orientation of 3B* (that would depend on the convention how one defines
the orientation of the boundary of an oriented manifold — called, say, ‘boundary
convention’).

Note that in the above definition of the Smale invariant, not the orientation
of S? is used, but the orientation of the tubular neighborhood U < R> and the
orientation of the target R. Moreover, Q( f) is unsensitive to the orientation change
simultaneously in both R>. In this way we get an element Q(f) € [S>,SO(5)],
which is independent of the orientation of R> and does not use any orientation of
S3. Furthermore, if we define (this will done in 4.2) a generator [L] in [S3, SO(5)],
using again only the embedding S* C R® (and no other orientation data), then
$2( f) identifies with an element of Z, such that its definition is independent of any
orientations of $3 and R, hence also of the ‘boundary convention’.

All our discussions are in this spirit (except Sections 8 and 9, where oriented
Seifert surfaces are treated): we run orientation and ‘boundary convention’ free
definitions and statements (associated with S3, regarded as a subset of R®, and
immersions > 9+ R7).

However, if we fix a ‘boundary convention’, then $3 (in R®) will get an
orientation (as dB*). Then, for any oriented abstract S3, let us denote it by S3,
and immersion S* 9+ R>, we can define the Smale invariant Q4(f) € Z (here ‘a’
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refers to the ‘abstract’” S3) by identifying S* with the embedded S* C R by an
orientation preserving diffeomorphism and taking (S* — S* 9 R?). This Q4( f)
depends on the ‘boundary convention’, since the identification S — S* depends on
it: changing the convention we change Q“( ) by a sign.

This point of view should be adapted when S? will be the (oriented) boundary of
an oriented Seifert surface. But till Section 8 we will focus on the first version, Q( f).

Next, in the definition of ©( f), one can replace R> by §°, where S> is the
boundary of the ball in R®, and S is embedded naturally in §°. By taking a generic
point P € §° we identify S° \ {P} with R®, and U will be replaced by a tubular
neighborhood of S3 in S°. Then the previous definition of Q( ) can be repeated
for any immersion S3 9+ S (where S C S°) providing an element [S3, SO(5)],
which becomes an integer once a generator [L] is constructed from the embedding
§3 C §°. Again, this Smale invariant ( f) will be independent of the orientations
of $3 and S?, hence of the ‘boundary convention’ as well.

For immersions defined in Subsection 2.1, &3 evidently sits naturally in C2 =R*
(hence also in a certain &° = S° C C* = R®, cf. 6.1). This together
with definition 2.4.1 provide £2( /) (which becomes an integer once [L] will be
constructed in 4.2).

3. The complex Smale invariant

3.1.  In this section we define the complex Smale invariant Q¢ (®P) for a holomor-
phic germ @ : (C2,0) — (C?3,0), singular only at 0. It will be the bridge between

C(®P) and Q( f).
Definition 3.1.1. Consider the map (with target the complex Stiefel variety V5 (C?)):

d®lgs 1 S — V,(C?)

defined via the natural trivialization of the complex tangent bundles 7C? and TC3.
By definition, the complex Smale invariant of @ is the homotopy class:

Qe (®) = [dP|g3] € m3(V2(CY)).

By the connectivity of the group of local coordinate transformations, Qc(®) is
independent of the choice of local coordinates in (C2.0) and (C?,0).

Remark 3.1.2. The projection U(3) — V,(C?) induces an isomorphism between
73(Va(C3)) and 75(U(3)) = m3(U) (see e.g. [12]). Hence, if we choose a complex
hormal vector field Ng of ®, then the map

(d®, No)|gs : S* — GL(3,C)
represents Q¢ (P) in w3(GL(3. C)) = m3(U(3)) = m3(U).
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A canonical choice of N¢ could be the complex conjugate of the cross product of
the partial derivatives of ®:

No(s, t) = 0,D(s,t) x d,P(s,1) .

Remark 3.1.3. 73(U) = Z and in 4.2 we identify them through a fixed iso-

morphism. In this way Q¢(®) becomes a well-defined integer without any sign—
ambiguity.

4. Distinguished generators and sign conventions

4.1. There is a natural map t : U(3) — SO(6), which replaces any entry

Mi; = a + bi of a matrix M € U(3) by the real 2 x 2-matrix (z _ab) A

map F : C? — C? can be regarded as a map F : R® — RO: if we denote by
zj = xj +iy; (j = 1.2,3) the coordinates of C3, then for the components of F
and F one has

Fi(zy,z2,23) = /‘:2]'—1(-\‘|-.V|-X2~ y2,X3,y3) + fﬁzj(xlw V1, X2, Y2, X3.)3).

The~n t(deF) = dg F holds for the complex Jacobian of F and the real Jacobian
of F.
Let j : SO(5) — SO(6) denote the inclusion. It is well known (see e.g. [12])
that
m3(j) - m3(SO(5)) — m3(S0(6)) 4.1.1)

is an isomorphism.

Lemma 4.1.2. The homomorphism m3(t) : m3(UQ3)) — m3(S0O(6)) is an
isomorphism too.

Proof. First, we provide a more conceptual proof, which does not identify distin-
guished generators. Both sides are in the stable range (see [12]), hence we can switch
to the homomorphism 73(U) — m3(0) induced by the embedding r : U < 0.
By (a proof of) Bott periodicity, the factor O/ U is homotopically equivalent to the
loopspace Q0O of O, cf. [1]. Hence m;(O/U) = n;(Q0) = m;11(0) = 0 for
i = 3 and 4. Then the isomorphism follows from the homotopy exact sequence of
the fibration O — O/ U with fibre U. O

In 4.2 we will give another, more computational proof, where we will be able to
fix distinguished generators for m3(U(3)) and 73(SO(6)), and via these generators
we identify 73(r) with multiplication by —1.
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4.2. Conventions and identifications. First, we identify H and R* and C? in the
obvious way: we identify the quaternion ¢ = a + bi + ¢j +dk = z + wj € H
with (a.b,c,d) € R* and with the complex pair (z, w) € C?, where z = a + bi
and w = ¢ + di. Also, we identify S? with the quaternions of unit length: S3 =
{g=a+bi+cj+dkeH|a®>+b24+c2+d?>=1).

Notation 4.2.1. We define the following maps. Set

M:S3-—>U(2),1{q:( : —_w )

w z

where ¢ = z 4+ wj. u, is the (complex) matrix of the right (quaternionic)
multiplication with ¢, that is, of the map H — H, p +— pg. Note that the left
multiplication by ¢ is not a complex unitary transformation, in general. Next, set

a —b =G —d
b a —-d c

. Q3 —
L:S — 50(4), Lfi - C d a —b
d —c b a

Where g = a + bi + ¢j + dk. L, is the (real) matrix of the left multiplication with
g (i.e., of the map H — H, p > ¢gp).

Let R : S3 — SO(4) be the map which assigns for a g € S the (real) matrix
R, of the righ multiplication with ¢ (i.e., of the map H — H, p — pq).

Let p : §3 — SO(4) be the map which assigns for a g € 2 the (real) matrix pg
of the conjugation with ¢ (i.e., of the map H — H, p — gpg™").

We use the same notation for the compositions of these maps with the inclusions
SO(4) < SO and U(2) < U. Note that these inclusions commute with 7.

Proposition 4.2.2. [12, Section 7, Subsection 12]
(@) m3(U(2)) = 73(U) = ZJul).

(b) m3(SO(4)) = Z([L]) & Z{[p).

(©) m3(SO) = Z{[L]) and [p] = 2[L] in 73(SO).

In the sequel, using these base choices [u] and [L] we identify the groups m3(U)
and 73(SO) with 7. Now we can state the explicit version of Proposition 4.1.2.

Proposition 4.2.3. m3(0)([u]) = —[L] € 73(SO) holds for [u] € m3(U).

Proof. From definitions r o u = R and pR = L, thus m3(t)([u]) = [R] = [L] -
o] = —[L] by part (c) of Proposition 4.2.2. u

Remark 4.2.4. Let p : U(2) — S? be the projection (choosing the first or the
Second column of the matrix). Then [u] € m3(U(2)) is the unique generator for
which deg(u o p) = 1.
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Proposition 4.2.5. Let ® : C2 — C3 be the cross cap, i.e. ®(s,t) = (s%,5t,1).
Then Qc (D) = [u].

Proof. The map d®|g3 : S — V,(C?) represents Qc(P). We should compose
this with V5(C3) — U(3), then with the inverse of the inclusion U(2) — U(3), and
finally with the projection U(2) — S?; and then calculate the degree of the resulting
map S3 — S3. In fact, along these compositions we will use (the homotopically
equivalent groups) GL(2,C) and GL(3,C) instead of U(2) and U(3). Therefore,
we will arrive in C? \ {0} instead of S3.

2s 0
dd|gs 1S3 > 1K(C?), G.0)—=]| ¢ s
0 1
The first composition gives the map
2s 0 N
S > GL3,C), (s.)—=| t s N |,
0 1 N;
where Ny = 1, N, = —25 and N3 = 252 are the coordinates of the normal vector

Ng (see Remark 3.1.2). This is modified by the homotopy

23 0 Nl
S3x[0,1] - GL3,C), (s,;t,l)>| t hs N
0 1 hN;s

which maps (s. . 0) into GL(2,C) € GL(3,C). [Note that the determinant is |£|* +
4]s|? + 4h?|s|* # 0, thus the image is indeed in GL(3, C).] Hence, we obtain the
map
§* > GL(2,C), (s.1) ( 25 M )
! N>

which composes with the projection (first column) provides §3 — C?\ {0}, (s,1)
(2s,1). After a normalisation, the degree of the resulting map is 1. U

Remark 4.2.6. The proof of Proposition 4.2.5 works for all germs of the form

D(s,t) = (g1(s.1), 22(s,1),1) 4.2.7

and implies that

QC((D) = deg (53 - S3 (S,t) . (as‘gl(S,t), 8sg2(s,[)) ) |

|(8Sgl(s’ t)’ asgz(sﬂ t))l



Vol. 90 (2015) Immersions associated with holomorphic germs 525

This degree agrees with the intersection multiplicity in (C?,0) of 952 and 9, g5, i.e.
OCQ,O
(0581, 0582) .
This also equals C(®) by Theorem 2.2.1. This proves Q2¢(P) = C(P) for maps of
corank 1. (All germs which satisfy rank(d ®y) = 1 are right-left equivalent with
germs of type (4.2.7)). This identity will be proved in the general case in Section 5.

Conversely, the identity Q¢ (P) = C(P) is proved in Section 5 independently of

Theorem 2.2.1, therefore (4.2.8) together with Theorem 5.1.1 give a new proof for
Mond’s Theorem 2.2.1 in the case of germs which satisfy rank(d ®¢) = 1.

Qc(P) = dime (4.2.8)

Remark 4.2.9. The conventions we use are not universal. For example, Kirby and
Melvin in [14] have chosen the same generators of 73(U) and w3(SO) (these are
[u] and [L] with our notations), but they identified R* and C? differently than us.
Namely, they identified the quaternion ¢ = a + bi + ¢j +dk = z 4+ jw € H
with (a,b,c.d) € R* and the complex pair (z, w) € C?, where z = a + bi and
w = ¢ — di. With that identification u, becomes the (complex) matrix of the
quaternionic left multiplication with ¢. In that identification 73 (7)[u] would be equal
to —[R], since that is the homotopy class of the map S* — SO(4) given by the
composition T o u o k, where « is the reflection « (z, w) = (z, w).

5. The identity Q¢ (P) = C(P).

5.1.  Next we identify the complex Smale invariant with the number of cross caps.
Theorem 5.1.1. Q¢ (P) = C(P).

Proof. Consider the following diagram:

do cC: — Hom(C?,C3)
U U ,
d®|c2\oy: C*\ {0} — Hom(C?,C3) \ D = V,(C?)

where D = {M € Hom(C2,C?) | rank(M) < 2}. D is an irreducible algebraic va-
riety of complex codimension 2, its Zariski open set D! ={M € D |rank(M) = 1}
is smooth.

First we prove that Q¢(®) is equal to the linking number of d®[g3 and D in
Hom(C?,C3). This is defined as follows. If g : §$3 - Hom(C?,C*\Disa
smooth map, and g is a smooth extension defined on the ball such that g|gs = g
and g intersects D transversally along D', then the linking number of g and D is the
algebraic number of the intersection points of g and D. By standard argument it is a
homotopy invariant of maps S* — Hom(C?,C?)\ D.

The linking number gives a group homomorphism Ik : 73(V2(C?)) — Z. Next
lemma shows that this homomorphism is surjective.
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Lemma 5.1.2. Let ®(s,t) = (s%,s¢,1) be the cross cap. If g = d®|g3 and
g = d®|ga, then g(0) € D is the only intersection point and the intersection is
transversal at that point.

Proof. This is a straightforward local computation left to the reader. The transver-
sality follows also from the conceptual fact that the cross cap is a stable map. ]

The sign of the intersection multiplicity at the intersection point of two complex
submanifolds is always positive. For g described in 5.1.2 the linking number of
2(S3) and D is 1. This shows not only that the homomorphism given by the linking
number is surjective (hence an isomorphism too), but also that this isomorphism
agrees with the chosen one in 4.2. This follows from the fact that the complex Smale
invariant of the cross cap is exactly the chosen generator, see Proposition 4.2.5.
Hence, the homomorphisms £2¢ and Ik coincide.

Next, we show that 1K g, 2,03y (dP|g3(S?). D) = C(P). Take a generic
perturbation @, of ®. d P, |¢3 is homotopic to d ®|¢3, hence their linking numbers
are the same. &, has only cross cap singularities, their number is C(®). This means
that d ®|pa intersects transversally D in C(®P) points. Intersection of complex
manifolds provides positive signs. [l

Corollary 5.1.3. Q¢(P) > 0.

6. The proof of Theorems 1.2.2 and 1.3.1

6.1. Theorem 1.2.2 follows from Theorem 5.1.1, Proposition 4.2.3 and the next
identity.

Proposition 6.1.1. 73(7)(Qc(P)) = m3(j)(2(f)).

Proof. By the definition of the Smale invariant, one has to extend f to a neigbour-
hood of the standard embedding of S3 in an R’ (cf. 2.4). On the other hand
® extends f in the C? direction. We will compare these two extensions using a
common extension F : W — C3, where W is a suitable neighborhood of &2 in C3.

Let us consider a fixed e which satisfies the properties of Corollary 2.1.1. We
also write B® = {z : |z| < €} € C3, S7 = 3BE, B := & (BE) for the C®
ball in C%, and &7 := ®~'(S?) for its boundary. (Late we will drop some of the
€’s.) For positive €1, € sufficiently closed to €, €] < € < €3, and for 0 < p K ¢
one defines F(s,t,r) = ®(s,t) + r - No(s,t), where (s,t,r) € W := &7 1(z :
€1 < |z| < €2) X Dg, Df) is the p-disc in C, and N¢ is the complex normal vector
of ®, see Remark 3.1.2 . Since the normal bundle of f in S? is trivial (and since the
transversality is an open property), we get that F~1(S?) is diffeomorphic to &2 x D;.
In fact, if p : C* x D) — D} is the natural projection, then for any r € D? we
can define G, := F~'(S2) N p~'(r). Then each S, is a C™ 3-sphere, being
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the boundary of the C*® 4-ball B}, C p~'(r). Then F~(S?) = UreD%G;"J
Moreover, B° := Urepg%g,r C C? x C is a thickened tubular neighbourhood of

‘Bﬁ Cc C2x0, homeomorphic to the real 6-ball. Its corners can be smoothed, hence
we think about it as a C® ball. Its boundary &° := dB® (diffeomorphic to the
5-sphere) is the union of F~!(S?) (diffeomorphic to S* x D?) and UreBD%%?,r
(diffeomorphic to B* x S1).

In a point (s,7,0) € &2 x {0} the differential of F is

dF(s,t,0) = (3, F(s5,1,0),9, F(s,1,0), 8, F(s,1,0))
= (3D (s5,1), 3, D(s,1), No(s.1)) .

Thus, the homotopy class of dF|g3 equals Qc(®) (cf. 3.1.2). Therefore, taking
the real function F : W — R® (cf. 4.1), its real Jacobian satisfies [dF|62] =
73 () (R (P))

On the other hand we show that [d F| s3] = m3(j)(2(f)). In order to recover
the Smale invariant Q(f) of f = ®|g3 : &3 3 S, first we need to fix a global
coordinate system in a contractible neighbourhood of the source &3 in &> and also
inR* ~ §2 \ {a point} containing im(f). Let us introduce the ‘outward normal at
the end’ convention to orient compatibly a manifold and its boundary. In this way
we fix an orientation of &> = 983° and S° = dB®. (According to 2.4, the output of
the proof is independent of the convention choice.)

In the first case we introduce a coordinate system in &> \ {Q} ~ R® compatibly
with the orientation, where Q € &5\ &2 is an arbitrary point (e.g. (0,0, p)). Let v’
denote the framing of T(&5 \ {Q}) =~ TR® induced by this coordinate system. We
can extend the outward normal frame vg of &2 in C? to the rest of &° \ {Q} (as the
outward normal vector of &°). This framing can be extended to a neighbourhood V
of &3\ {0} inC3. Letv : V — GL(6,R) denote this framing (or more precisely,
V is the transition function from the standard framing inherited from R® to the one
just constructed).

The target is the standard S° C R®. We can choose a point P € S3\ f(&3) and
4 coordinate system on 52 \ { P} compatibly with the orientation. The coordinate
System induces a framing n of the tangent bundle T(S5 \ {P}) of S\ {P}. In
the points of the tar get of F the vectors of 1’ and d F (vg) are linearly independent,
that is, ( F(u6) behaves like a normal framing (this follows from the transversality
Property of 2.1). We can extend it to a normal framing ne of S*\ {P}in RS. In
this way we get a framing of the tangent bundle of a neighbourhood V'’ of SO\ 1P)
in RS Lety: V' — GL1(6,R) denote the transition from the framing on V'
inherited from R to the framing just defined.

The Smale invariant €2( ) is constructed in the following way, cf. 2.4. Take

j(v’,n’)(ﬁl‘f)*
the Jacobian of £ restricted to T = £~ (52) prescribed in the framings v and n.
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The homotopy class of this matrix restricted to &3 (as a map &3 — GLT(6.R))
equals to (/). (Since F preserves the orientation, F'|¢ does as well.)

nﬁv.n)(ﬁ)li = j(\j(v’,n’)(ﬁlf))

because d F(vg) = ng. thus the homotopy class of J(, n)(F)|e3 equals 3(7)(2(f)).

On the other hand 7, n)(F) (7 o F)-dF-v. Asmaps &> — GLT(6,R),
(n7lo F)|b3 and v|s3 are nullhomotopic because the vector fields are defined on
the contractible spaces &° \ {Q} and S \ { P}. Therefore (cf. Remark 2.4.2)

[T (F)les] = (17" o F)lgs] + [d Fles] + [vlgs] = [d Fles]

The left hand side of this identity is 73(j)(£2(f)), while the right hand side
m3(1) (2 (D). O

Corollary 6.1.2. Assume that the analytic germs ® and @' : (C?,0) — (C3,0) are
C® left-right equivalent, that is, ® = A o ® o holds for some germs of orientation
preserving diffeomorphisms v : (R* 0) — (R*, 0) and A : (R®,0) — (R®,0).
Then C(®) = C(D').

Proof. Forasufficiently small € take & = (®')"1(82) = S?andlet /' : 67 — §°
be the immersion associated with the germ @’ (cf 2.1).

As in the proof of Proposition 6.1.1, let F : W — RS be the extension of &
viewed as a real function. Then, by that proof, [dF[bs] = m3(J)(R(f)) €
m3(GLT(6,R)), which is —C(®) under the above identification.

Let us define W : (R®,0) — (R®,0) by

W(xy, X2, X3, X4, X5, X6) = (Y (x1, X2, X3, X4), X5, X6).

W is a germ of orientation preserving diffeomorphism extending .

Then A o ® o W restricted on some neighborhood W’ of &'plays the role of a real
extension of ®’|s3 = f’. One can verify that the proof of Proposition 6.1.1 works
for this extension as well, since it sends the normal vector of &" into a non-tangent
vector of S>. Therefore,

[d(A o ® o W)|gn] = m3(j)(R2(f")).

Finally, note that [d(A o ® o W)|sn] = [dﬁ|63]. This follows from the fact
that the functions dA o ® o W and d W (with images in (GL™*(6,R)) extend to the
ball B.*. ]

6.2. Proof of Theorem 1.3.1. Part (a) follows from Theorem 1.2.2 and [10]. In
part (b), the implications (1) = (2,3,4), and (4) = (3) are clear.
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Proof of (2) = (1): (2) implies C(®) = 0 by Theorem 1.2.2, while this vanishing
implies (1) via Mond’s Theorem 2.2.1. For (3) = (1) we provide three proofs, each
of them emphasize a different geometrical/topological aspect.

(A) (Based on Mumford’s Theorem.) If f is an embedding then the image (X, 0)
of ® is an isolated hypersurface singularity in (C*,0). Moreover, its link is S3,
hence by Mumford’s theorem [20] (X, 0) is smooth. Hence its normalization @ is an
isomorphism.

(B) (Based on Mond’s Theorem.) Let us take the generic deformation ®;, and
consider the closure D of the preimage of the the set of double values. It is a 1-
dimensional closed complex analytic subspace of the disc in C2. The preimages of
cross cap and triple points are interior points of the closure of D, while its boundary
is D N S is the preimage of the double points of the immersion of f : §3 9 §3.
If f"is an embedding then dD = @, hence D is a compact analytic curve in (the disc
of) C2, hence it should be empty. This shows that ®; has no cross cap and triple
points either. Hence C(®) = 0, which implies (1) by 2.2.1 as before.

(C) (Based on Ekholm-Sziics Theorem.)  As above, we get that &, is an
embedding. Since ®|S3 is an embedding, this embedding is regular homotopic
to ®;|S3, hence they have the same Smale invariant. In the second case it can be
determined by an Ekholm-Sziics formula [3] (recalled as Theorem 8.1.9 here): since
im(®,) is an embedded Seifert surface with signature zero we get Q( f) = 0. This
basically proves (3) = (2). Then we continue with the already shown (2) = (1).

In fact, the main point of this last proof is already coded in Hughes—Melvin
Theorem [10] (8.1.1 here), but in that statement the Seifert surface is in R> and not
in Ri (or in the 6-ball). But 8.1.9 shows that that Hughes—Melvin Theorem is true
even if the 4—manifold M * with boundary in R® is embedded in Rg_ (instead of R?).

7. Examples

7.1.  This section contains the first list of the promised examples.

Example 7.1.1. Fixk € Zsg. _i(s.1) = (s, 12 4 sk{). The ideal J (cf. 2.2) is
generated by (21, 3t + sk, —2k 125k~ 1) = (1.5%). Hence Q(f) = —C(®) = —k.

This family gives representatives for every regular homotopy class with non-
Positive sign-refined Smale invariant. Furthermore, we can represent any regular
hOmOtopy class with Smale invariant k in the form ®_j ok, where « is the reflection
K(z,w) = (z,w) (c.f. [2, Lemma 3.4.2.]).

Example 7.1.2 (Singularities of type A). These are quotient singularities of the form
(X,0) = (C2,0)/Zy, where 7 = {& € C|& = 1} denotes the cyclic group
f)f order k, and the action is &  (s.1) = (£s.6 ') for £ € Zx. (X,0) is the
'Mage of a map @, whose components are the generators of the invariant algebra
Cls, [} see [23, page 95], namely ®(s.7) = (sk, 1%, st). One can easily compute
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that J = (s%. (K s~ and Q(f) = —C(P) = —(k% — 1). ((X.0) is the
Ag——singularity.)

Example 7.1.3 (Singularities of type D). These are the quotient singularities of form
(C2,0)/ D, where D, denotes the binary dihedral group, [23, page 89]. ®(s,t) =
(212,827 4+ 12" s5t(s?" — 12")) [23, page 95]. By a computation J = (sf(s2" —
127), 5202 (52" 4 121), (52" — t2")2 — 4ns?7¢?"). In singularity theory the quotient
is known as the D, 4,—singularity.

A possible computation of dim (Og2 o/ J) is based on the following facts.

Lemma 7.1.4.

(a) Take fi, f2.h € O¢2 y such that fy f2 and h are relative primes. Then one has
the following exact sequence:

0— O(CZ,O/(.fZJ]) - OCZ,O/(fl fa.h) — O(c2,o/(f1,h) — 0.

(b) Take f\. f2.g.h € Oc2 o such that the ideal ( f1 f2. g, h) has finite codimension,
and h = fih' for some h' € O¢2 . Then one has the following exact sequence:

0= Oc29/(f2.8.1") = Oc20/(f1 f2.8.1) = Oc2,4/(f1.8) = 0.

Proof. Part (a) is well known as the additivity property of the local intersection
number of plane curves, see e.g. [S]. The proof of part (b) is similar. O

Using these lemmas the codimension of J can be calculated, and it is 4n? 4 12n—
I. Hence, the Smale invariant of the covering S* — {link of the D, ;,—singularity}
is —(4n? + 12n — 1).

Example 7.1.5. Assume that the three components of ® are weighted homogeneous
of weights wy and w, and degree d,, d» and d3. Then, cf. [18],

C(P) = {dydy+dyds+dsdy—(w; +wz)(d, —|—d2—|—d3—w1——wz)—wlwz}/wlwz_

Mond proved this identity for germs with finite right-left codimension, but the same
proof works for germs with finite O¢2 /J.

For example, if ® : (C%,0) — (C2,0)/G < (C3,0) is as in Example 1.4.1,
then all three components are homogeneous (w; = wy = 1). In the case of Ay_;
and Dy 4+ the degrees are (k, k,2) and (4, 2n, 2n +2) respectively. Hence the values
C(®) from Examples 7.1.2 and 7.1.3 follow in this way as well.

For Eg¢, E7 and Eg singularities the degrees are (6,8,12), (8,12, 18) and
(12,20, 30) respectively, see [23, 4.5.3-4.5.5], hence the corresponding values
—§2(f) are 167, 383, 1079.
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8. Smale invariant via Seifert surfaces

8.1. In this section we review three important topological formulae targeting the
Smale invariant in terms of the geometry of oriented Seifert surfaces. They are stated
and proved only up to a sign ambiguity. In the next section we will show that the
sign-refined Smale invariant appears in all these expressions with a unique well-
defined sign, and we determine it simultaneously for all formulae. The discussion
has an extra output as well: the topological ingredients in the formulae below
will get reinterpretations in terms of complex analytic invariants, provided that the
immersion is induced by a holomorphic germ ®.

In the spirit of the discussion of Subsection 2.4, in this section we will write S3
for an ‘oriented abstract S**. Q( /) will denote the Smale invariant (given by any
of its definitions, still having its sign—ambiguity). Note that in the next statements
we need to fix a ‘boundary convention’, in order to have the notion of oriented dM .
(Nevertheless, the sign—corrected formulae will be ‘boundary convention’ free, cf.
Theorem 9.1.6.)

T~he0rem 8.1.1 (Hughes, Melvin [10]). Let f : S* < R> be an embedding and
J i M* < RS be a Seifert surface of f, i.e. M* is a compact oriented 4-manifold
with boundary dM* = S and f is an embedding such that floags = f. Leta(M*)
be the signature of M*. Then

Qf) = i%G(M“)- (8.1.2)

For arbitrary immersions Ekholm and Sziics generalized the formula via generic
singular Seifert surfaces, and in two different ways: mapped either in R® or in Rﬁ_
[3], see also [4, 21].

If M*isa compact oriented 4-manifold and g : M* > Risa generic C°° map,
then g has isolated £''—points (cusps), each endowed with a well-defined sign. Let
#Z11(g) be their ‘algebraic’ number (cf. [3]).

Theorem 8.1.3 (Ekholm, Sziics [3]). Let f : S? & R be an immersion and M* be
a compact oriented 4-manifold with boundary S°. Let f : M "+ RV baa generic
map such that ./”-|3M4 is regular homotopic to [ and f has no singular points near
the boundary. Then

Q) = +1(0(M") +#E1 (). (8.1.4)

The last formula, the most important from the point of view of this note, uses
generic C*® maps g : M4 — R defined on compact oriented 4-manifolds M*.
Itinvolves three topological invariants associated with such a map. Next we review
their definitions. They will be computed for two concrete holomorphic maps in order
10 identify the missing sign.
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If g is as above, then it has isolated triple values (three local sheets of M*
intersecting in general position). Such a point is endowed with a well-defined sign
[3; 2.3]).

Definition 8.1.5 ([3]). ¢(g) denotes the algebraic number of the triple values of g.

Next, assume that IM* = 8% and g : (M*, 0M*) — (RS ,BRﬁ_) is generic, it
is nonsingular near the boundary, and f‘l(aRi) = dM*. Here ]Ri is the closed
half-space of IR®. The set of double values of g is an immersed oriented 2-manifold,
denoted by D(g). Its oriented boundary consists of two parts, the intersection of
D(g) N RS, and the other, disjoint with dRS, is the set of singular values £(g)
of g. Let X'(g) be a copy of X(g) shifted slightly along the outward normal vector
field of £(g) in D(g). Then £'(g) N g(M*) = 0.

Definition 8.1.6 ([3]). /(g) denotes the linking number of g(M*) and ¥'(g) in
(RS, ORS).

For a generic (self-transverse) immersion f : S* 9+ IR® one defines an integer
L(f) as follows [3, 2.2], [21, 2.2]. f has a normal framing (v, v,) which is unique
up to homotopy. In any double value y = f(x1) = f(x2) set N(y) = vi(x1) +
v1(x2). Let D'( /) be a copy of the set of double values D( f) of f shifted slightly
along the vector field N. D(f) (hence D'(f) too) is a I-manifold and D'(f) N

£(8%) = 0.

Definition 8.1.7 ([2, 3, 21]). L(f) is a the linking number of f(S°) and D'( f)
in R>.

Remark 8.1.8. One can define L( f) without any reference to vy in the following
way. Take an arbitrary normal vector field w of f, and in a double value y =
f(x1) = f(x2) one defines N(y) = w(xy) + w(xz) and D'(f) and L(f) as
above. Then L( f) does not depend on the choice of w. Indeed, take two normal
vector fields wy and w;. In a certain trivialisation of the normal bundle of f they
are represented by two maps wg, w; : §* — S!, thus there is a homotopy w;
connecting them (w; : 8 — S', ¢ € [0, 1]). We can define in a continuous way
N;(y) and D;(f) using the normal vector field w, and the compactness of [0, 1].
Then D] (f)N £(S*) = @, thus the linking number of f(S*) and D/( f) in R? is the
same for all ¢ € [0, 1].

Theorem 8.1.9 (Ekholm, Sztics [3]). Let f : S & R be an immersion and
M* be a compact oriented 4-manifold with boundary IM* = S3. Let f
(M*, 0M*) — (Ri. BR‘_S}_) be a generic map nonsingular near the boundary, such
that fT_l(aRi) = M * and leaM-l is regular homotopic to f. Then

X 1 - - -
Qf) = 5o (M*) +30(/) = 31(/) + L(fla)) (8.1.10)
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9. Ekholm-Sziics formulae for holomorphic germs @

In this section, from a holomorphic deformation of ® we construct a singular
Seifert surface, and we express the topological summands of (8.1.10) in terms of
holomorphic invariants. As a corollary we specify the sign in the formulae (8.1.2),
(8.1.4) and (8.1.10).

9.1. Singular Seifert surface associated with an analytic deformation.

Let ® : (C2,0) — (C3,0) be a holomorphic germ singular only at the origin
and let f : §® 95 S° be the immersion associated with ®. We take an € as in
Corollary 2.1.1, that is, we fix in the target a ball BS. We also consider a holomorphic
generic deformation @, of &y = P, and we fix A sufficiently small, 0 < |A]| < e,
such that the cross caps and (if 7(®P) < oc) the triple points of ®;, sitin BS. We
set ‘B:A = CDII(BE), it is a C® non-metric ball in C?. Its boundary is GE,A =
®71(82), it is canonically diffeomorphic to S3.

The map &, is generic as a holomorphic map, but it is not generic as a C * map.
The C*° genericity is obstructed by its cross cap points. We will modify ®; in the
neighborhood of these points according to the following local model.

Let us fix local holomorphic coordinate systems in the source and the target such
that @, in the neighborhood of a cross cap has local equation ®/°¢ (s, 1) = (s2, st,1).
We consider its real smooth deformation (with 0 < © < |A|):

®Lo¢(s, 1) = (s + 25, 5t + 15, 1). (9.1.1)

Since the restriction of ®'°¢ near the boundary of the local 4-ball is stable, by a
C° bump function the local deformation can be glued to the trivial deformation
of @, outside of local neighborhoods of the cross caps. This gives a C* global
deformation ®; , of ®; and ®. The map f = @y, : (B},,62,) — (B, S?)
18 the singular Seifert surface we will consider. Its restriction, f = ®) ;|3 , =
€,

Pl es R is the immersion associated with @ .

€,
Proposition 9.1.2.
(a) f: : ‘B? g = C3 is a generic smooth map, nonsingular near the boundary.

b) fiisa generic immersion and it is regular homotopic to f .

(©) If f is a generic immersion, then f5 is regular homotopic to f through generic
immersions. In this case L( ) = L( f3).

Proof. (a) First one checks that the local ®°¢ is generic. This follows from the
computation from Section 10.1. Its most complicated singularities are -9 (fold)
Points, the singular values constitute an S, which — together with the double values
of the image of the boundary of the local ball — bounds the 2-manifold of the double
values. Cf. [3,2.3.].
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In the complement of local balls @, , agrees with ®;, hence it has only simple
points, self-transverse double points and isolated triple points. All of them are
generic. Hence _fN' has all the local property of a generic map (and, in fact, this is
enough in the determination of all the invariants, cf. [3]).

(b) (D)ng,.: . is generic in real sense too: it has only simple points and generic
self-transversal double points. <:D;,,1|6_2 R is a regular homotopy between f and f)
(h € [0, 1]). '

(c) Being a generic immersion is an open condition (cf. [3, 2.1.]). Furthermore,
L is constant along a regular homotopy through generic immersions, cf. [2]. O

Next, we return back to the formula (8.1.10), applied for f'. Clearly, s (M*) = 0.

Theorem 9.1.3. Let ®; be a holomorphic generic deformation of ® with fixed A # 0
and the corresponding maps f and f; as above. Then the following facts hold.

@) ((f) = T(Py) (cf. 2.3).
(b) I(f) = C(D).
(©) L(f1) = C(®)—3T(dy).

For the proof see 9.2.

Note that L( f3) is an analytic invariant of @, since it is defined as a (topological)
invariant of an analyric deformation. Recall from Subsection 2.3 that if 7 (®) < oo,
then 7'(d;) is independent of the deformation @, and is equal to 7'(P).

Corollary 9.1.4. If T(®) < oc, then t(f’) =T(®)and L(f) = C(P) — 3T (D) is
also independent of the analytic deformation @), of ®.

Remark 9.1.5. Assume that ®|s3 = f is a generic immersion. Then T'(®) is
finite, by [17], and for any holomorphic deformation ®, one has L( fy) = L(f) (cf.
Proposition 9.1.2), hence C(®) — 3T(P) = L(f).

Note that if the restriction ®|53 = f of a germ @ is a generic immersion, and
the holomorphic germ @ is C* left-right equivalent with & (see Corollary 6.1.2
for precise definition), then the immersion f' associated with @’ is also generic
immersion and L( f) = L(f’). Therefore by Corollaries 6.1.2 and 9.1.4 we have
T(®) = T(P) too.

More generally, @ and ®” are topological left-right equivalent, and also f and f"
are generic immersions, then L( /) = L(f"), hence Corollary 1.6.2 follows too.

Theorem 9.1.6. With our sign—convention, if in the left hand side of the formulae
(8.1.2), (8.1.4) and (8.1.10) we put the sign—refined Smale invariant Q°( f'), then the
formulae are valid if we put the positive sign on the right hand sides.

In particular, the validity of these sign—corrected formulae (e.g., Q(f) =
%U(M 4)) is independent of the ‘boundary convention’: changing the boundary
convention changes the sign in both sides of the formulae simultaneously.

The proof will appear in 9.2.
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Remark 9.1.7. The formula (8.1.4), involving the (algebraic) number of real cusps
of maps g : M* — R’ is the real analogue of our theorem Q(f) = —C(®P),
involving the number of cross caps of holomorphic deformations. This suggests that
if we replace a holomorphic deformation by a smooth generic map, then we trade
each cross cup by —2 real cusps.

9.2.  We prove Theorems 9.1.3 and 9.1.6 simultanously (see also the discussion
from Subsection 2.4).

Proof. In the definitions of the invariants 7, / and L one uses very specific
sign/orientation conventions, based on the orientation of the involved subspaces in
their definition.

For a triple value, the sign is determined in such a way that it is +1 whenever the
triple value is obtained from a holomorphic triple point (hence the orientations agree
with the complex orientations).

Since in the local deformation CDII"C we do not create any new triple value, see
e.g. the computation of Section 10, all the triple values of f come from the complex
triple points of the holomorphic @}, hence (a) follows.

The proof of the remaining parts is based on computations of the invariants C(®),
T(D), l(f) and L( f') for two concrete cases. For the integers / and L the definitions
(orientation conventions) are not immediate even in simple cases. Therefore, in our
computation we determine them only up to a sign. The point is that computing
‘sufficiently many’ examples, the formula (8.1.10), even with its sign ambiguity in
front of the right hand side, and even with the (new) sign ambiguities of the integers
[ and L, determine uniquely all these signs. (This also shows that, in fact, there is a
unique universal way to fix the orientation conventiones and signs in the definitions
of [ and L such that (8.1.10) works universally.)

In Section 10 we will determine the following data:

(i) For cross cup: C(®) =1, T(®)=0. [==xI, L==xlI ©2.1)
(i1) ForA;: C(®)=3, T(P)=1, L=0. o
(b) The singular values of / are concentrated near the cross caps of ®;. For
(blr’ic the value / is £1, see (i). Since the sign is the same for all cross caps,
I(f) = +C(0).

We introduce the notation

Q(fy) = %(3!(/ )= 3(F) + L(f1)- 9.2.2)

Q'( f3) agrees with Q( f) up to sign, thus Q'(f3) = £C(P). Substituting this
and the data (i) of the cross cap in (9.2.2) we conclude that /() = —Q'(f3) and
L(f) = £C (@) — 37 (Dy).



536 A. Némethi and G. Pintér CMH

Next, using the date (ii) for Ay, all the remaining sign ambuguities can be
eliminated: L(f)y) = C(®) —3T(dy), I(f) = C(P) and Q'(fy) = —C(P) =
$2(f).

The universal signs in formulae (8.1.2), (8.1.4) and (8.1.10) are related by
common examples, hence one of them determines all of them.

10. Calculations. The proof of (9.2.1).

We show the main steps of the computations, with their help the reader can fill in
the details. Note that if the germ & is weighted homogeneous, then €p = 1 can be
chosen.

10.1. The case of cross cap. For the computation of 7(®P) see e.g. [16, 17];
C(®) is clear. Next we compute l and L. Set ®(s,t) = (s?,st,¢) and the
smooth perturbation f(s.f) = (52 4 23,5t + €5.1). The singular locus is
={(s.t)|s=1t,]s|=t| =€ = S
b |s has no singular point, hence £ has no cusp points. The most complicated
singularities of f are ©1% (or fold) points. The closure of the set of the double
points D off IS

(D) ={(s.t) e C?|(s—t)t + (5 —1) =0}

with the involution (s,7) — (s'.1) = (2t — s, t). The fix point set of the involution
is {s = t}. Thus the set of the double points is

={(s.)eC?|(s—t)t+eGG—1)=0}\{s =1}.

Each double point has exactly one pair with the same value, hence f' has no triple
point.

A parametrization of D is (p,a) — (—ee‘zai +pei“, —ee‘zo‘i), where p € R,
a € [0,2m).

The parametrization shows that the closure of D is a Mébius band. For p=20
we get 3, which is the midline of the Mobius band. The set of double values is

= f(D) = {(s? + 2€5, 5t + €5.t) |(.S'.t)€5}
{(pZ(JZJa + E26,21&( —2).62(6_4ia _€2ia)’_ée-2oti)

| p e Ry, a €(0,2m)}.

Writing p = 0 we get the singular values of f

B )['(i) — {(62()210:( —6ict —2).62(6’—4m _()Zia)‘_ee—zai)}_
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The inward normal field of £ in D is the derivative of the curve
},([) — (teZia 4 62€2ia(e—6ia - 2)&2(()—4,@ _ eZia), —66_2aj)

atz = 0, thatis y'(1)]r=o = (¢*'®,0,0). The pushing out of X (cf. Definition 8.1.6)
is
Y =28y (1)]r=0 = {(=8eX ¥ +€2e? ¥ (e -2), 2 (eTHY 1Y), —ceT2)}

where 0 < § <« €. By Definition 8.1.6 we need the linking number of f(IR“) and X’
in R®. To calculate it we fill in ¥’ =~ S with a ‘membrane’, which here will be the
disc

= {(=8w + €2(w* — 2w). * (0% — w), —ew) |w € C,

l(f) is the algebraic number of the intersection points of H and f(R“) The only
solution is w = 0, (s,1) = (0,0), and the intersection at this point is transversal.
Hence, for the smooth perturbation f of the cross cap I(f) = 1.

Next we compute L. The set of the double points of ® is D = {(s5,0) | s # 0} C
C2.

The set of the double values is D = &(D) = {(s2,0,0) | s # 0} C C3, and the
set of the double values of f is Dy = D N S° = {(s2,0,0) | |s| =1} C S°.

The sum of the normal vectors at (s2.0,0) is (0,0, 52). Hence the shifted copy
of D along N is D' = Dy + 8N = {(s2,0,85%) | |s| = 1}.

Since D’ does not intersect ®(C?) for § € (0, 1], we can choose § = 1. An
injective parametrization of D s + 8N is D' = {(z,0,2) | |z| = 1}, where z = 52,
To calculate the linking number of ®(C?) and D' in R®, we need a membrane which
fills in D. We take

H={z1-|z]2.2) ||zl <1} = D?.

L(f) is the algebraic number of the intersection points of ®(C?) and H. But there

is only one such point, namely P := ®( \/_ £) = (&, Ef £,£), where £ is the real
root of g(z) := z3 + z2 — 1 = 0. Moreover, this intersection is transversal.

10.2. The A, singularity. By 7.1.2 it is given by ®g(s,1) = (s2,t2,5t). The
Immersion fo associated with @ is not generic, fo is the 2-fold covering of the
Projective space composed with the inclusion. Thus all points of S3 are double
points of the immersion /.

On the other hand, by 7.1.2, C(®y) = 3, and a similar calculation of the
codimension of the second fitting ideal shows that 7(®y) = 1. The finiteness of
these invariants shows that the number of cross caps and triple points of a generic
deformation of ®, are independent of the chosen deformation. Below we give a
concrete deformation ®, of @, and we calculate the invariant L of the generic
1mmerslon fe associated with ®,.
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The deformation is (s, 1) = ((s —€)s, (t — €)t, st). The vector field

i 1(2t —€)
N(s.t) = 0,0, (0. 1) X 0,5 0) = | —5(25 —€)
(25 —€)(2t —€)

is 0 at the points (0. €/2), (¢/2.0) and (¢/2, €/2). These are the cross caps.
The defining equation @, (s, 1) = P (s',t") (where (s,1) # (s,¢)) of the double
points leads to the system of equations

s—sVYs+s5-e)=0, -ty +y —€e)=0, st=s't.
Thus the double locus D has three parts and these parts correspond to the three cross
caps. The first part comes from the solution s = s and ¢’ = € — t, which implies
s = 0,hence Dy = {(0.1) | t # €/2} with (0,1) = P(0,€ — 1). This provide
the double value set

Dy = ®c(Dy) = {(0,1(t —€).0) | 1 5 €/2}.

The second part comes from the solution s’ =e—sandt’ = t, which implies t = 0,
and Dy = {(5.0) | s # €/2} with ®(s,0) = P(e —s,0). The set of double values
is

Dy = ®c(D3) = {(s(s —€).0.0) | 5 # €/2}.

The third part comes from the solution s" = € — s and t" = € —t, which implies
s+t =¢,and D3 = {(s,€ —s)} | s # €/2} with ®(s,€ —5) = Pc(e —5,5). The
set of double values is

D3 = d(D3) = {(s(s —€),s(s —€),—s(s —€)) | s # €/2}.

Dy, D, and D intersect each other in the unique triple value ®.(0,0) = d(¢€,0) =
®.(0,€) = (0,0,0).

Let D;(f) = D; NS> (i = 1,2,3) denote the disjoint components of the set of
the double values of /. Clearly L(f) = Li(f)+ L2(f)+ L3(f), where L;( f) is
the linking number corresponding to the component D; (). But L{(f) = La2(f) =
L3(f). Indeed, D and D, is interchanged via the transformations ¢ (s, 1) = (¢, s)
(of CHand y(X. Y. Z)= (Y. X, Z) (of C?), and D3 and D, via (s, 1) = (e —s5 —
t.)and (X, Y. Z) = (X +Y +2Z.Y,—Y — Z). Thus, it is enough to calculate
L(f). The needed vector field along Dy is

NO.1(t —€),0) = N(0.t) + N0, e — 1) = ((2f — €)%,0,0).
The set of the double values of f corresponding to D is

Di(f)=DiNS>={0.1(t —€).0)| |t(t —€)] = 1}.
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The shifted D (/) along N is
Dy = Di(f) + 8N = {(8Q2f —€)*.1(t —€),0) | [t(r —€)| = 1},

where § is small enough. Nevertheless, we can choose § = 1, because D’lﬂCD((CZ) =
@ for any § € (0,1]. With the notation z = 1(t — €) we give an injective
parametrization D} = {(4Z + €2,2,0) | |z| = 1}. We fill it with the membrane

H={@4zi+ez,i/1-1z2)||z] <1}.

Computing the intersection points of H and ®(C?) leads to the equations

42+ e =ala—ce), z=bb—c¢€), i1 - 2] = ab,

with |z| < 1 and € small. The first two equations imply that |a| < 5 and |b| < 2.
Multiplying the first two equations one gets

z(4Z + €2) = a*h? — a’be — ab®e + abe?.
>From the third equation follows a?b? = |z|*> — 1, hence
3z|> = —1 — ze? — a?be — ab®e + abe?,

and the right hand side is negative if € is small enough. Hence H N ®(C?) = @, and
L(f)=o.

11. Final remark. The real version in arbitrary dimension.

11.1.  There is a real version of part (b) of Theorem 1.2.2 which follows directly
from the result of Whitney and Smale.

Let  : (R"*!,0) — (R2"*! 0) be a real analytic germ singular only at 0. With
the same method as in the complex case we can associate an immersion f : §” 9=
S2" with & (see 2.1). A generalization of Whitney’s double point formula valid for
Plane curve immersions [26] shows that the Smale invariant of f (more precisely, of
a generic immersion regular homotopic to f') equals the algebraic number of self-
Intersection points (mod 2 if n is odd).

A generic perturbation ¢ of ® has only cross cap type singularities, i.e. locally
right-left equivalent with germs of the form (s, 1) > (s%.s¢,1), where s € R and
L € R". These cross caps are isolated, and if n is even, we can associate a sign for
€ach of them. @’ restricted to the boundary is a generic immersion FlaStins 520
J"and f are regular homotopic, and f” has two kinds of double values:

(@) double values related to a cross cap (that is, they are connected by a segment
consisting of double values of @'),
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(b) double values not related to a cross cap.

When »n is even, the sign associated to a cross cap agrees with the sign associated
with the self intersection point of f’ related to the cross cap. Thus the algebraic
number of such cross caps is equal to the algebraic number of double values of
type (a) (mod 2 if n is odd). The double points of type (b) are pairwise joined up
by segments of the double values of &', thus the algebraic number of them is 0.
Moreover, it can happen that two cross caps are joined by a segment consisting of
double values of @', but then they will have different algebraic sign, hence they will
not contribute in the sum. Hence, we proved:

Proposition 11.1.1. The Smale invariant of | agrees with the algebraic number of
the cross cap points appearing in a generic perturbation of ® (mod 2 if n is odd).
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