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Long time behaviour of Ricci flow on open 3-manifolds

Laurent Bessieres, Gerard Besson and Sylvain Maillot*

Abstract. We study the long time behaviour of the Ricci How with bubbling-off on a possibly
noncompact 3-manifold of finite volume whose universal cover has bounded geometry. As an

application, we give a Ricci flow proof of Thurston's hyperbolisation theorem for 3-manifolds
with toral boundary that generalises Perelman's proof of the hyperbolisation conjecture in the
closed case.

Mathematics Subject Classification (2010). 57M50, 53C44, 53C21.
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1. Introduction

A Riemannian metric is hyperbolic if it is complete and has constant sectional

curvature equal to -1. If N is a 3-manifold-with-boundary, then we say it is

hyperbolic if its interior admits a hyperbolic metric. In the mid-1970s, W. Thurston
stated his Hyperbolisation Conjecture, which gives a natural sufficient condition on
the topology of a 3-manifold-with-boundary N which implies that it is hyperbolic.
Recall that N is irreducible if every embedded 2-sphere in N bounds a 3-ball. It is

atoroidal if every incompressible embedded 2-torus in N is parallel to a component
of dN or bounds a product neighbourhood T2 x [0, 1) of an end of N. A version of
Thurston's conjecture states that if N is compact, connected, orientable, irreducible,
and jixN is infinite and does not have any subgroup isomorphic to Z2, then N
!s hyperbolic. If one replaces the hypotheses on the fundamental group by the

assumption that N is atoroidal then one gets the conclusion that N is hyperbolic
°r Seifert fibred.

Thurston proved his conjecture for the case of so-called Haken manifolds, which
'ncludes the case where dN is nonempty. The case where N is closed was solved by
d. Perelman [17, 18] using Ricci flow with surgery, based on ideas of R. Hamilton.

*The authors acknowledge the support of the Agence Nationale de la Recherche through Grant ANR-
12-BS01 -0004. Gerard Besson is also supported by ERC Avanced Grant 320939, Geometry and Topology
of Open Manifolds (GETOM).
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It is natural to ask whether the Hamilton-Perelman approach works when

dN ^ 0 The interior M ot N, on which one wishes to construct a hyperbolic metric,
is then noncompact This question can be divided into two parts first, is it possible
to constiuct some version of Ricci flow with surgery on such an open manifold

M, under reasonable assumptions on the initial metric7 Second, does it converge
(modulo scaling) to a hyperbolic metric7 A positive answer to both questions would

give a Ricci flow pi oof of the full Hyperbohsation Conjecture logically independent
ot Thurston's results

A positive answer to the hrst question was given in [5], for initial metncs of
bounded geometiy, i e of bounded curvature and positive injectivity radius If one
considers irreducible manifolds, surgeries are topologically trivial each surgery
sphere bounds a 3 ball Hence a surgery splits off a 3-sphere In this situation we

can rehne the construction of the Ricci flow with surgery so that it is not necessary
to perform the surgery topologically We obtain a solution which is a piecewise
smooth Ricci flow on a fixed manifold, at singular times, one performs only a metric

surgery, changing the metric on some 3-balls This construction was defined in [4] in
the case ot closed ineducible nonsphencal 3-manifolds, and called Ricci flow with
bubbling oft One can extend it to the setting of bounded geometry The purpose of
this paper is to answer the second question, in the situation where the initial metric
has a cusp like structure

Definition 1.1. We say that a metric g on M has a cusp-like structure, or is

a cusp like metric, it M has finitely many ends (possibly zeio), and each end

has a neighbourhood which admits a metric gcusp homothetic to a rank two cusp
neighbourhood of a hypeibohc manifold such that g — gcl|Sp goes to zero at infinity
in Ck noun for all positive integers k (Thus if M is closed, any metric is cusp-like

Note that such a metric is automatically complete with bounded curvature and of
hmte volume, but its injectivity radius equals zero hence it does not have bounded

geometry However except in the case where M is homeomorphic to a solid toius,
its universal covering does have bounded geometry (see Lemma 2 21) Since solid
ton are Seifert hbred, we will assume that M is not homeomorphic to a solid torus
when necessary Also note that if M admits a cusp-like metnc, then M admits

a manifold compactihcation whose boundary is empty or a union ot 2-tori This

compactihcation is irreducible (resp atoroidal, resp Seifert-fibred) if and only if M
is irreducible (resp atoroidal, resp Seifert-hbred)

In section 2 we construct a Ricci flow with bubbhng-off on M, for any cusp-
like initial metric, by passing to the universal cover and working equivariantly For

simplicity we restrict ourselves to the case where M is nonsphencal This is not a

problem since spherical manifolds are Seifert hbied We also prove that the cusp-like
structure is preserved by this flow (cf Theorem 2 22)

Using this tool, we can adapt Perelman's proof of geometrisation to obtain the

following result
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Theorem 1.2. Let M be a connected, orientable, irreducible, atoroidal 3-manifold
und g0 be a metric on M which is cusp-like at infinity. Then M is Seifert-fibred, or
there exists a Ricci flow with bubbling-off g(-) on M defined on [0, oo), such that
g{0) go, und as t goes to infinity, {At )~x g{t) converges smoothly in the pointed
topology for appropriate base points to some finite volume hyperbolic metric on M.
Moreover, g(-) has finitely many singular times, and there are positive constants
T, C such that | Rm | < Ct_1 for all t > T.

If /V is a compact, connected, orientable 3-manifold such that dN is empty or a

union of 2-tori, then M int N always carries a cusp-like at infinity metric. Thus
we obtain:

Corollary 1.3 (Thurston, Perelman). Let N be a compact, connected, orientable
3-manifold-with-boundary such that dN is empty or a union of 2-tori. If N is

irreducible and atoroidal, then N is Seifert-fibred or hyperbolic.

Note that it should be possible to obtain this corollary directly from the closed
case by a doubling trick. The point of this paper is to study the behaviour of Ricci
flow in the noncompact case.

Let us review some results concerning global stability or convergence to finite
volume hyperbolic metrics. In the case of surfaces, R. Ji, L. Mazzeo and N. Sesum

[II] show that if (M, g0) is complete, asymptotically hyperbolic of finite area with
X{M) < 0, then the normalised Ricci flow with initial condition go converges

exponentially to the unique complete hyperbolic metric in its conformal class. G.

Giesen and R Topping [7, Theorem 1.3] show that if g0, possibly incomplete
and with unbounded curvature, is in the conformal class of a complete finite area

hyperbolic metric ghyp, then there exists a unique Ricci flow with initial condition g0
which is instantaneously complete and maximaly stretched (see the precise definition
in 17]), defined on [0, +oo) and such that the rescaled solution (2t)~'g(t) converges
smoothly locally to go as t -> oo. Moreover, if go < Cghyp for some constant C > 0

then the converence is global: for any k e N and p 6 (0, 1) there exists a constant
C > 0 such that for all t > 1, |(20_1g(0 - ghy?\cHM,g],w) < J&U- In dimensions

greater than or equal to 3, R. Bamler [3] shows that if go is a small C"-perturbation
°f a complete finite volume hyperbolic metric g|iyp, that is if |go-ghyplc°(M,g,,yp) < £

where e e(M, ghyp) > 0, then the normalised Ricci flow with initial condition go
is defined for all time and converges in the pointed Gromov-HausdorflF topology to
Shyp. In dimension 3 at least, there cannot be any global convergence result. Indeed,
consider a complete finite volume hyperbolic manifold (A/3, ghyp) with at least one
cusp. Let go be a small C° Pertubation of ghyp such that g0 remains cusp-like at

infinity but with a different hyperbolic structure in the given cusp (change the cross-
sectional flat structure on the cusp). By Bamler [3] a rescaling of g(t) converges in
the pointed topology to g|lyp. The pointed convergence takes place on balls of radius
^ for all R-, however, our stability theorem 2.22 implies that, out of these balls, the
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cusp-like structure of go |S preserved for all time, hence is different from the one of
the pointed limit. Thus the convergence cannot be global.

The paper is organised as follows. In Section 2 we introduce the necessary
definitions and we prove the existence of a Ricci flow with bubbling-off which

preserves cusp-like structures. Section 3 is devoted to a thick-thin decomposition
theorem which shows that the thick part of (M, (4l)~1g(i)) (sub)-converges to a

complete finite volume hyperbolic manifold. We give also some estimates on the

long time behaviour of our solutions. In Section 4 we prove the incompressibility of
the ton bounding the thick part. Section 5 is devoted to a collapsing theorem, which
is used to show that the thin part is a graph manifold. Finally the main theorem 1.2

is proved in Section 6. To obtain the curvature estimates on the thin part, we follow
[1). An overview of the proof is given at the beginning of that section.

Throughout this paper, we will use the following convention: all 3-manifolds are
connec ted and orientable.

2. Ricci flow with bubbling-off on open manifolds

2.1. Definition and existence. In this section we define Ricci flow with bubbling-
off and state the main existence theorem.

For convenience of the reader we recall here the most important definitions
involved, and refer to Chapters 2, 4, and 5 of the monograph [4] for completeness.

Definition 2.1 (Evolving metric). Let M be an «-manifold and / C R be an interval.
An evolving metric on M defined on / is a map t h» g{t) from / to the space of
smooth Riemannian metrics on M. A regular time is a value of t such that this

map is C '-smooth in a neighbourhood of t. If t is not regular, then it is singular.
We denote by g+(t) the right limit of g at t, when it exists. An evolving metric is

piecewise C' if singular times form a discrete subset of R and if t hs g(f) is left
continuous and has a right limit at each point. A subset iV x c M x / is unscathed

if t g(t) is smooth there. Otherwise it is scathed.

If g is a Riemannian metric, we denote by Rmin(g) (resp. /?max(^)) the infimum
(resp. the supremum) of the scalar curvature of g. For any x e M, we denote by
Rm(.r) : k2TxM k2TxM the curvature operator defined by

(Rm(A a Y), Z aT) Riem(A\ Y, Z, T),

where Riem is the Riemann curvature tensor and a and (-, are normalised so that

{e, A ej \ i < j } is an orthonormal basis if {e,} is. In particular, if A > it > v

are the eigenvalues of Rm, then A (resp. v) is the maximal (resp. minimal) sectional

curvature and R 2(X + p + v) 1

'This convention is different from that used by Hamilton and other authors
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Definition 2.2 (Ricci flow with bubbling-off). A piecewise C1 evolving metric
t ff(0 on M defined on / is a Ricci flow with bubbling-off if

(i) The Ricci flow equation —2Ric is satisfied at all regular times;

(ii) for every singular time t e / we have

(a) ^min (ff+(0) ^ Xmin(g(0), and

(b) g+(f) < g(f).

Remark 2.3. If g(-) is a complete Ricci flow with bubbling-off of bounded sectional
curvature defined on an interval of type [0. T] or [0, oo), and if g(0) has finite
volume, then g(t) has finite volume for every t.

A parabolic neighbourhood of a point (x,t) e M x / is a set of the form

P(x, t, r,-At) {(x', l') <= M x I \ x' e B(x, t, r), t' [t - At,;]}.

Definition 2.4 (tc-noncollapsing). For tc.r > 0 we say that g(-) is K-collapsed at
(x. t) on the scale r if for all (x\ t') in the parabolic neighbourhood P(x, t, r, —r2)
we have | Rm(x', t')\ < r~2 and vol(B(x.t,r)) < Kr". Otherwise, g(-) is k-
noncollapsed at (x, t) on the scale r. If this is true for all (x,t) e M x /, then
we say that g(-) is K-noncollapsed on the scale r.

Next is the definition of canonical neighbourhoods. From now on and until the
end of this section, M is a 3-manifold and s, C are positive numbers.

Definition 2.5 (e-closeness, e-homothety). If U C M is an open subset and g, g0
are two Riemannian metrics on U we say that g is e-close to go on U if

I Iff ~ ffo 11 [£-',(/,£„] < A

where the norm is defined on page 26 of [4]. We say that g is e-homothetic to g0 on
^ if there exists A > 0 such that Ag is e-close to g0 on U. A pointed Riemannian
manifold (U,g,x) is e-close to another Riemannian manifold (t/o.ffo.-Vo) if there
exists a CiE l+I-diffeomorphism from Uo to U sending xo to x and such that the
Pullback metric fl*{g) is e-close to go on U. We say that (U, g, x) is e-homothetic
to U0

- ffo, x0) if there exists A > 0 such that (U, Ag, x) is e-close to {Uq, go, -Xo).

Definition 2.6 (e-necks, e-caps). Let g be a Riemannian metric on M. If x is a

Point of M, then an open subset U c M is an s-neck centred at x if (£/, g, x) is
e-homothetic to (ff2 x (—e_l, e_1), gcy], (*.0)), where gcyi is the standard metric
with unit scalar curvature. An open set U is an e-cap centred at x if U is the union
°f two sets V, W such that x e int V, V is a closed 3-ball, W fl V dV, and W is
an e-neck.
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Definition 2.7 ((e, C)-cap). An open subset U C M is an (e,C)-cap centred at x if
U is an e-cap centred at „v and satisfies the following estimates: R(x) > 0 and there

exists r (C-1 R(x)~'/2, CR(x)~^2) such that

(i) B{x,r) C U C B(x,2r);

(ii) The scalar curvature function restricted to U has values in a compact subinter-
val of (C~l R(x),CR(x))-,

(iii) vol(C) > C~l R(x)~3/2 and if B(y, s) C U satisfies | Rm | ^ s~2 on B(y, s)
then

__
volß(y,e)

sJ

(iv) OnU,
|VR| < CR2

(v) On U,
|AR + 2|Ric|2| < CR2 (2.1)

(vi) OnU,
| V Rm | < C|Rm|3

Remark 2.8. If t m- g(t) is a Ricci flow, then AR + 2\ Ric |2 hence equation
0Ä ^(2.1) implies that | — | < CR
at

Definition 2.9 (Strong e-neck). We call cylindrical flow the pointed evolving
manifold (S2 x R. {gCyi(0}/e(-oo,o])> where gcyi(-) is the product Ricci flow with
round first factor, normalised so that the scalar curvature at time 0 is 1. If g(-) is an

evolving metric on M, and (xqJo) is a point in spacetime, then an open subset

N C M is a strong e-neck centred at (xo.fo) if there exists Q > 0 such that

(N, MOKepo-e-',;<)]•-vo) is unscathed, and, denoting g(t) Qg(t0 + tQ~x) the

parabolic rescaling with factor Q > 0 at time to, (N, {g(f)}«e[-i,o]> *o) is e-close to

(A2 x (—£~', £—'), {gCyl(f )}re[-l,0]- *)
Remark 2.10. A strong e-neck satisfies the estimates (i)-(vi) of Definition 2.7 for
an appropriate constant C C(e), at all times, that is on all N x[t0 — Q~', /o] for

any Q > 0 as above.

Definition 2.11 ((e. C(-canonical neighbourhood). Let {g(0}re/) be an evolving
metric on M. We say that a point (x, t) admits (or is centre of) an (e, C)-canonical
neighbourhood if x is centre of an (e, C)-cap in (M, g(t)) or if (x, t) is centre of a

strong e-neck N which satisfies (i)-(vi) at all times.

In [4, Section 5.1 J we fix constants eo, Co. For technical reasons, we need to take

them slightly different here; this will be explained in the proof of Theorem 2.17.
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Definition 2.12 (Canonical Neighbourhood Property (CN)r). Let /• > 0. An
evolving metric satisfies the property (CN)r if, for any (x,t), if R(x,t) > r~2
then (x, t) is centre of an (e0, Co)-canonical neighbourhood.

Next we define a pinching property for the curvature tensor coming from work
of Hamilton and Ivey [8, 10|. We consider a familly of positive functions o

defined as follows. Set s, := and define

Compared with the expression used in 18, 10], there is an extra factor 2 here. This
comes from our curvature conventions. A key property of this function is that
— > 0 as .v -4- Too.

Definition 2.13 (Curvature pinched toward positive). Let / C [0, oo) be an interval
and {g(/)},<=/ be an evolving metric on M. We say that g(-) has curvature pinched
toward positive at time t if for all x e M we have

We say that g(-) has curvature pinched toward positive if it has curvature pinched
toward positive at each tel.

This allows in particular to define the notion of surgery parameters i\ 8 (cf. [4,
Definition 5.2.5]). Using [4, Theorem 5.2.4] we also define their associated cutoff
parameters h. 0. Using the metric surgery theorem, we define the concept of a
metric g+ being obtained from g(-) by (r.8)-surgery at time t0 (cf. [4, Definition
5.2.7]). This permits to define the following central notion:

Definition 2.14 (Ricci flow with (/•, 5)-bubbling-off). Fix surgery parameters r, 8

and let h. 0 be the associated cutolf parameters. Let I C [0. oo) be an interval and
be a Ricci (low with bubbling-off on M. We say that {t?(f)}re/ is a Ricci

flow with (/-, 8)-bubbting-off if it has the following properties:

(i) £() has curvature pinched toward positive and satisfies R(x.t) ^ 0 for all
U, t) e M x /;

(fi) For every singular time /0 e /, the metric g+(/o) is obtained from g(-) by
(>'• (i)-surgery at time t0;

(üi) g(-) satisfies property (CN)r.

<t>, : [—2s,, +oo) —> [jy. Too)

as the reciprocal of the increasing function

v 2.y(ln(.v) + ln(l +/)-3).

(2.2)

Rm(.v.t) ^ —<p,(R(x.t)). (2.3)
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Definition 2.15 (Ricci flow with (r, 8, /c)-bubbling-off). Let k > 0. A Ricci flow
with (r, <5)-bubbling-off g(-) is called a Ricci flow with (r, 8, K)-bubbling-ojf if it is

/c-noncollapsed on all scales less than or equal to 1.

Definition 2.16. A metric g on a 3-manifold M is normalised if it satisfies
trRm2 < 1 and each ball of radius 1 has volume at least half of the volume of the

unit ball in Euclidean 3-space.

Note that a normalised metric always has bounded geometry. At last we can state

our existence theorem:

Theorem 2.17. There exist decreasing sequences ofpositive numbers > 0

and, for every continuous positive function t \-r 8(t), a decreasing sequence of
positive numbers 8^ with 8k 8(-) on]k,k + 1] with the following property. For any
complete, normalised, nonspherical, irreducible Riemannian 3-manifold (M, go).

one of the following conclusions holds:

(i) There exists T > 0 and a complete Ricci flow with bubbling-ojfg(-) ofbounded

geometry on M, defined on [0, T], with g(0) go. and such that every point
of(M, g(T)) is centre of an So-neck or an e0-cap, or

(ii) There exists a complete Ricci flow with bubbling-ojf g(-) of bounded geometry
on M, defined on [0, +oo), with g(0) go, and such that for every
nonnegative integer k, the restriction of g(-) to }k, k + 1] is a Ricci flow with
Irk,8k,Kk)-bubbling-off.

Definition 2.18 (Ricci flow with (r(-), 5(-))-bubbling-off). We fix forever a function

r(-) such that r(t) r^ on each interval ]k,k + 1]. Given (>(•) satisfying 8(t) 8^

on all ]k. k + 1], we call a solution as above a Ricciflow with (r (•), 8(-))-bubbling-ojf.
We define similarly /;(•) and 0(-) their associated cutoff parameters.

Addendum 2.19 (Ricci flow with bubbling-off on the quotient). With the same
notation as in Theorem 2.17 and under the same hypotheses, if in addition (M, go) is

a Riemannian cover of some Riemannian manifold (X, go), then in either case there

exists a Ricci flow with bubbling-ojf g(-) on X such that for each t, (M,g{t)) is a

Riemannian cover of (X, g{t)), and in Case (ii), the restriction of g(-) to }k, k + 1]

is a Ricci flow with (r8k)-bubbling-ojffor every k.

The only differences between Theorem 2.17 and Theorem 11.5 of [5] is that M
is assumed to be irreducible, that 'surgical solution' is replaced with 'Ricci flow with

bubbling-off', and that there is the alternative conclusion (i).
Theorem 2.17 follows from iteration of the following result, which is analogous

to [5, Theorem 5.6|:

Theorem 2.20. For every Qo, po and all 0 < Ta < 7'q < +oo, there exist r,K >
0 and for all 8 > 0 there exists 8 (0, 5) with the following property. For any
complete, nonspherical, irreducible Riemannian 3-manifold (M, go) which satisfies
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| Rm | < Q o, has injectivity radius at least po, has curvature pinched towardpositive
at time TA, one of the following conclusions holds:

(i) There exists T ('If, Tq) and a Ricci flow with hubbling-off g(-) on M,
defined on [TA, T], with g(TA) g0, and such that every point of (M, g(T))
is centre of an £o-neck or an e^-cap, or

(ii) There exists a Ricci flow with (r,8,K)-bubhling-ojf g(-) on M, defined on
[Ta, 7n], satisfying g(TA) go-

The proof of Theorem 2.20 is the same as [5, Theorem 5.6]. It follows from
three propositions, which we do not write here, analogous to Propositions A, B,
C of [5] (see the propositions page 949). The only notable difference is that we
have to modify Proposition A to add the alternative conclusion that in (M,g(b)),
every point is centre of an e0-cap or an e0-neck. Let us explain the proof of this
adapted proposition A (see [51 pages 959-961). It uses the surgical procedure of the

monograph [4] rather than that of [5 ]. If the curvature is large everywhere, that is if
^ > 2r~2 on (M.g(b)) where r is the surgery parameter, then by property (CN)r
(Definitions 2.10 and 2.12 (iii)) every point has a canonical neighbourhood, so the
alternative conclusion holds. Otherwise, we partition M in three sets of small, large
or very large curvature. Precisely, as in [4, page 891, we define Q (resp. O, resp. 1Z)

as the set of points of M of scalar curvature less than 2r~2, (resp. [2r~2, 0/2),
resp. ^ 0/2). By the assumption that Rimn(b) < 2r~2 and Rmax(b) 0, these sets
are nonempty. One can find a locally finite collection of cutoff <5-necks {A,} in O
which separates Q from 1Z, in the sense that any connected component of M \ {A, }
is contained in Q U Ö or in ö U1Z. Since M is irreducible and not homeomorphic to
S3, the middle sphere of each A, bounds a unique topological 3-ball ß,. Then one
of the following cases occurs:

Case 1 Each ß, is contained in a unique maximal 3-ball Bj.
If O is contained in the union of maximal ß/'s, we can perform the surgical

procedure using the Metric surgery theorem 5.2.2 of [4] on each maximal cap Bj,
yielding a metric which has the desired properties. Otherwise one can see that each
point of M is centre of e-cap. Hence the alternative conclusion holds.

Case 2 M is the union of the ß, 's.

Then each point is separated from infinity by a cutoff neck, so each point is centre
°f a cap. Hence the alternative conclusion holds.

Finally, we need to explain how the addendum is proved. We already remarked
ln [5] Section 11 that the construction can be made equivariant with respect to a

properly discontinuous group action, by work of Dinkelbach and Leeb [6], The
only thing to check is that we still have the Canonical Neighbourhood Property for
the quotient evolving metric g(-). This is not obvious, since the projection map
P M —» X might not be injective when restricted to a canonical neighbourhood.
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We use a classical trick: by adjusting the constants, we may assume that g(-)
has the stronger property that each point (x,t) such that R(x,t) > r~2 has an

(eo/2, C0)-canonical neighbourhood. Take now (x, t) e X x / such that R(x, t) >
r~2. Choose x e M such that p(x) x. Then R(x,t) R(x,t) > r~2, so

(x. t) has an (eo/2. Co)-canonical neighbourhood U. By truncation, it also has an

(eo- Co)-canonical neighbourhood U' contained in U (see figure below):

—2e~' 0 2E~'

U

Precisely, if U is an e0/2-neck with parametrisation f : S2 x (—2eq1,2s^1) U,
we set U' := (j)(S2 x (—£qe^1)). If U is a cap, then U is the union of two sets

V, IV, where W n V dV and W is an e0/2-neck with parametrisation <p. Then we
set W' := (p{S2 x (0, 2^-'» and U' := V U W'.

Claim 1. The restriction of the projection map p to U' is injective.

Once the claim is proved, we can just project U' to X and obtain an (e0. Q))-
canonical neighbourhood for (x, t), so we are done.

To prove the claim we consider two cases:

Case 1. U and U' are caps.

Assume by contradiction that there is an element y in the deck transformation

group, different from the identity, and a point y e U' such that yy e U'.
Following [6], we consider the subset Ne() of M consisting of points which are

centres of £0-necks. According to [6, Lemmas 3.6, 3.7J there is an open supset
F D NE{) which has an equivariant foliation T by almost round 2-spheres. All
points sufficiently close to the centre of W are centres of e0-necks.

Pick a point r in Ne() C W \ W' sufficiently far from W' so that the leaf S

of T through z is disjoint from U'. By Alexander's theorem, S bounds a 3-ball
B C U. Note that B contains U'. If S yS, then B yB or M B U

yB. The former possibility is ruled out by the fact that the action is free, while any
self-homeomorphism of the 3-ball has a fixed point. The latter is ruled out by the

assumption that M is not diffeomorphic to 53.
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Hence S ^ yS. Since S and yS are leafs of a foliation, they are disjoint. Then
we have the following three possibilities:

Subcase a. yS is contained in B.
Then we claim that yB c B. Indeed, otherwise we would have M B U yB,

and M would be diffeomorphic to S3. Now y acts by isometry, so vol# vol yB.
This is impossible since the annular region between S and yS has nonzero volume.

Subcase b. S is contained in yB. This case is ruled out by a similar argument
exchanging the roles of S and yS (resp. of B and yB.)

Subcase c. B and yB are disjoint.
Then since U' C B, the sets U' and yU' are also disjoint, contradicting the

existence of y.
Case 2. U and V' are necks. Seeking a contradiction, let y be an element of the
deck transformation group, different from the identity, and y be a point of U' such
that yy e (J'. Consider again the set N£f) defined above and the equivariant foliation
F. Since U' is contained in the bigger set U, each point of U' is centre of an
£o-neck. Let S (resp. yS) be the leaf of T passing through y (resp. yy.) Since
M is irreducible, S (resp. yS) bounds a 3-ball B (resp. By). As in the previous
case, we argue that one of these balls is contained into the other, otherwise we could
cover M by B, By and possibly an annular region between them, and get that M is

diffeomorphic to S3. Since y acts by an isometry, we must in fact have B By,
and y has a fixed point, contradicting our hypotheses. This finishes the proof of the
claim, hence that of Addendum 2.19.

2.2. Stability of cusp-like structures. In this section, we prove the stability of
cusp-like structures under Ricci flow with bubbling-off. We consider a (nonspherical,
irreducible) 3-manifold M, endowed with a cusp-like metric go- To begin we remark
that the universal cover of M has bounded geometry, except in the case of solid tori:

Lemma 2.21. Assume that M is not homeomorphic to a solid torus. Let (M, go)
denote the universal cover of(M. g0). Then (M .go) has hounded geometry.

Proof. Sectional curvature is bounded on (M, go), hence on the universal cover
(M-go) by the same constant. Observe that for any lift x e M of some x e M,
the injectivity radius at x is not less than the injectivity radius at x. Fix a compact
subset K c M such that each connected component C of M \ K is e-homothetic
to a hyperbolic cusp neighbourhood, for some small e > 0. Let K denote any lift of
K to M. Then the 5-neighbourhood of K has injectivity radius bounded below by
'o > 0, the injectivity radius of the (compact) 5-neighbourhood of K. Now consider
a lift C of a cuspidal component C. The boundary dC is incompressible in M,
otherwise M would be homeomorphic to a solid torus (see Theorem A.3.1 in [4]). It
follows that C is simply connected with an incomplete metric of negative sectional
curvature. Arguing as in the proof of the Hadamard theorem, it follows that the



388 L. Bessieres, G. Besson and S. Maillot CMH

injectivity radius at a given point p e C is not less than d(p, 3C). Together with the

previous estimate, this implies that inj(M, go) > minji'o. 5} > 0.

Let us denote by gc a metric on M which is hyperbolic on the complement of
some compact subset of M, and such that, for each end E of M there is a factor

Xe > 0 such that XeSo ~ gc goes to zero at infinity in the end, in C^-norm for
each integer k. Let g(-) be a Ricci flow with (r(-), <5(-))-bubbling-off on M such that

g(0) go, defined on [0, T] for some T > 0. Set Ae(() \+4\Et • We then have:

Theorem 2.22 (Stability of cusp-like structures). For each end E ofM, Xß{t)g(t) —

gc goes to zero at infinity in this end, in Ck -norm for each integer k, uniformly for
t [0. T],

Proof. Let us first explain the idea. It is enough to work on each cusp. The main tool
is the Persistence Theorem 8.1.3 from [4], which proves that a Ricci flow remains

close, on a parabolic neighbourhood where it has a priori curvature bounds, to a given
Ricci flow model, if the initial data are sufficiently close on some larger balls. The
model we use now is a hyperbolic Ricci flow on T2 x R. To obtain the required
curvature bounds, we shall consider an interval [0, t] where the closeness to the

hyperbolic flow holds, and a > 0 fixed small enough so that Property (CN)r, which

prevents scalar curvature to explode too fast, gives curvature bounds on [0, t + o].
The Persistence Theorem then gives closeness to the hyperbolic flow until time t + a
on a smaller neighbourhood of the cusp. One can iterate this procedure, shrinking
the neighbourhood of the cusp by a definite amount at each step, until time T.

Let us now give the details. Let E be an end of M and U be a neighbourhood of
E such that (U, gc) is isometric to (T2 x [0, +oo), ghyp e~2rgTi + dr2), where

gT2 is flat. Let f : T2 x [0, +oo) —> U be an isometric parametrisation (between

gc and ghyp-) Then AE<P*go ~ ghyp and its derivatives go to zero at infinity. We may
assume for simplicity that Xe 1, and we define g(t) := <j>*g(t) to be the pullback
Ricci flow with bubbling-off on T2 x [0, +oo). Let ghypG) denote the Ricci flow on
T2 x R such that ghyp(0) e~2rgT2 + dr2, i.e. ghyP(0 (1 + 4f)ghyp- We use it
as the Ricci flow model, in the sense of [4, Theorem 8.1.3.]. Our goal is to compare
ghyp(0 tog(t).

By definition of our Ricci flow with bubbling-off, r(-) and ©(•) are piecewise
constant. More precisely, there exist 0 to < t\ < • < t^ T such that

r{t) ri and <r)(t) 0,- on (fi, fi+i]. In fact, we can choose i for i < N (cf.
Definition 2.18). In particular, g{t) satisfies the canonical neighbourhood property
at scale r, on this interval (every point at which the scalar curvature is greater than
r~2 is centre of an (£0. Co) canonical neighbourhood) and the scalar curvature is

bounded above by 0, The pinching assumption (cf. Definition 2.13) then implies
that the full curvature tensor is bounded by some Ki on the same interval.
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Set K := sup( 1 yv_1 {A',}. Define a small number a > 0 by setting

r2 r2
a := -£=! < V/ 0,..., N - \

2Co 2Co

This number is small enough so that g(-) cannot develop a singularity on a cusp on
[t, t + a] if R < 0 at time /. Precisely, let us put Cs := T2 x [j, +oo), for s > 0.
Then we have:

Lemma 2.23. If g(-) is unscathed on Cs x [0. A] and has scalar cur\>ature R f 0

there, then it is also unscathed on Cs x [0, A + a] and has curvature tensor bounded
by K.

Proof. We know that singular times are discrete. Let t [0. a] be maximal such that
Cs x [0, A + t] is unscathed for g(-) (possibly t 0).

We prove first that for ,v e Cs and /' e [A, A + t] we have

R(xj') < 2r(t'y2 « h{t')~2.

Indeed, since /-(•) is nonincreasing, g(-) satisfies (C/V)r(A-w) on [A,f']. If
R(x, A) < 0 and R{x,t') > 2r(t')~2, then we can find a subinterval [ti,t2] C
[A,?'] such that for u e [ti.tfl, R{x,u) > r(t')~2, r{x,t\) r(t')~2, and

r(x,t2) 2r(/')"2.
Then the inequality ||j| < CoR2 holds on {.v} x [t\,t2], thanks to Property (2.1)

of canonical neighbourhoods (cf Remark 2.8). The contradiction follows by
integrating this inequality and using the fact that t2 — t\ < a.

Assume now that t < a. Then there is a surgery at time A + t and, by definition
of the maximal time, <p(Cs) is scathed at time A +1. The surgery spheres are disjoint
from f(Cs), as they have curvature % (//(A + t)) 2, where h(A + t) is the cutoff
parameter, and curvature on cj>(Cs) is less than 2r(t')~2 << (h(A + t))~2. By
definition of our surgery, this means that <p(Cs) C M is contained in a 3-ball where
the metric surgery is performed. But a cusp of M cannot be contained in a 3-ball of
A/, hence we get a contradiction. We conclude that t a and R(x, t') < 2r(t')~2,
Vf' e [A, A + a]. The pinching assumption then implies | Rm | < K there.

For every A > 0, let pa p(A, T, K) be given by the Persistence Theorem 8.1.3
of [4j. The proof of Theorem 2.22 is obtained by iteration of Lemma 2.23 and the
Persistence Theorem as follows.

Fix A > 0. Let .?o > 0 be large enough so that g(0) is pjj'-dose to ghyp(0)
011 CS(). in particular R < 0 there, so by Lemma 2.23, g(-) is unscathed on

x [0. a], with curvature tensor bounded by K. The above-mentioned Persistence
Theorem applied to P(q, 0, A. a), for all q CS{)+PA, shows that g(t) is A-1-dose
to £hyp(0 there. Hence on CS{)+P4-a x [0, cr], g(-) is d~'-dose to ghyp(-), and in
particular R ^ 0 there. We then iterate this argument, applying Lemma 2.23 and the



390 L. Bessieres, G. Besson and S. Maillot CMH

Persistence Theorem, n [T/o] times and get that g(-) is /4_1-close to ghyp(0 on

CJo+n(p,|-/4) x [0. T],
By letting A go to infinity and rescaling appropriately, this finishes the proof of

Theorem 2.22.

3. Thick-thin decomposition theorem

Let (X, g) be a complete Riemannian 3-manifoId and s be a positive number. The

s-thin part of (X.g) is the subset X~(s) of points x X for which there exists

p e (0, 1] such that on the ball B(x, p) all sectional curvatures are at least —p~2

and the volume of this ball is less than sp3. Its complement is called the s-thick part
of {X, g) and denoted by A"+(e). The aim of this section is to gather curvature and

convergence estimates on the £-thick part of (A/, (4/)-1g(f)) as t —> oo, when g(-)
is a Ricci flow with (r(-). 5(-))-bubbling-off for suitably chosen surgery parameters
/•(•) and 5(-)- In fact for simplicity we will consider the rescaling t~1g(t). Here, we

assume M irreducible, nonspherical and not Seifertfibred. We assume also that M is

not homeomorphic to R3, which does not have cusp-like metrics. As a consequence,
M does not have a complete metric with Rm > 0. In the compact case, this follows
from Hamilton's classification theorem (Theorem B.2.5 in Appendix B of [4]). In
the noncompact case, this follows from the Cheeger-Gromoll theorem and the Soul

theorem (cf. B.2.3 in 141).

Recall that /•(•) has been fixed in Definition 2.18. In [4, Definition 11.1.4],

we define a positive nonincreasing function <!>(•) such that any Ricci flow with
('"(•)• 5(-))-bubbling-off satisfies some technical theorems — Theorems 11.1.3 and

11.1.6, analoguous to [ 18, Propositions 6.3 and 6.8] — if S < <5 and the initial metric
is normalised.

Both Theorems 11.1.3 and 11.1.6 remain true for a Ricci flow with (/"(), <5(-))-

bubbling-off on a noncompact nonspherical irreducible manifold, with the weaker

assumption that the metric has normalised curvature at time 0, i.e. trRm2 ^ 1 for
the initial metric, instead of being normalised in the sense of Definition 2.16. In

particular it applies to metrics which are cusp-like at infinity. Indeed, the proofs
of theorems 11.1.3 and 11.1.6 do not use the assumption on the volume of unit
balls for the initial metric; it only uses the assumption on the curvature, mainly
through the estimates (2.2)—(2.3). It uses neither the compactness of the manifold,
the finiteness of the volume nor the particular manifold. We recall that the core
of Theorem 11.1.3 is to obtain /c-noncollapsing property, canonical neighbourhoods
and curvature controls relatively to a distant ball satisfying a lower volume bound

assumption. The parameters then depend on the distance to the ball and on its

volume, not on time or initial data. These estimates are then used to control the

thick part (Theorem 11.1.6).
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We gather below results following mainly from Perelman [18, 6.3, 6.8, 7.1-3].
We need some definitions.

Given a Ricci flow with bubbling-off on M, we define

p(x,t) : max{p > 0 : Rm > -p~2 on B(x,t,p)}

and Pj~t '= min{p(x, t), }. We denote by M the universal cover of M and g(t)
the lifted evolving metric, which is by Addendum 2.19 a Ricci flow with (/"(•), 8(-))-
bubbling-off if g(t) is. If x G M, we denote by x e M a lift of a: and by B(x,t, r)
the r-ball in (M,g(l)) centered at x. An evolving metric {g(t)}fe/ on M is said to
have finite volume if g(t) has finite volume for every tel. We denote this volume
by V{t). We then have:

Proposition 3.1. For every w > 0 there exists 0 < p(w) < r(u>) <1,7' T(w),
K — K(w) > 0 such that for any Ricci flow with (/'(•). 8(-))-bubbling-ojf g(-) on M
such that 5(-) < 5(-) ancl with normalised curvature at time 0, the following holds:

(i) For all x e M, t ^ T and 0 < r < min{/o(.v, t). r*/t}, ifvolB(x,t,r) > wr3
for some lift x of x then | Rm | Kr~2, |VRm| sj Kr~3 and |V2Rm| ^
Kr~4 on B(x, t. r).

(ii) For all x M and t f T, if \<o\B(x, t,r) > wr3 for some lift x of x where

r p(x,t), then p(x.t) ^ p-/t.

(iü) Ifg(-) has finite volume, then:

(a) There exists C > 0 such that V(t) < Ct3^2.

(b) Let it; > 0, xn M and t„ +oo. If x„ is in the w-thick part
of (M,t~lg(t„)) for every n, then the sequence of pointed manifolds
(M,t~lg(tn),x„) subconverges smoothly to a complete finite volume

pointed 'hyperbolic' 7>-manifokl of sectional curvature —1/4.

Proof. Note that vo\B(x, t, r) > volB(x, t. r). Properties (i), (ii) with the stronger
assumption volB(x,t,r) > wr3 correspond to Perelman [18, 6.8, 7.3]). For the
extension to the universal cover see [1, propositions 4.1, 4.21. We remark that
we extend the curvature controls to the full ball, as in [4, Sec. 11.2.3] (cf. [4,
Remark 11.2.12]). Property (iii) follows from Perelman [18, 7.1,7.2], For more
details one can see Section 11.2 in [4], using technical theorems 11.1.3 and 11.1.6.
The assumption on the volume is used to prove that limits of rescaled parabolic
neighbourhoods are hyperbolic (cf Proposition 11.2.3).

Remark 3.2. The hypothesis that M is irreducible is not essential here, but since our
Ricci flow with (/-(•), <5(-))-bubbIing-off js defined for this situation, it makes sense
to keep this assumption throughout.
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For later purposes, namely to prove that cuspidal tori in the appearing hyperbolic
pieces are incompressible in M, we need the following improvement of Proposition

3.1 (iii)(b), which gives convergence of flows rather than metrics. With the

notations of Proposition 3.1, we define gn := t~lg(tn) and gn{t) '= t~xg{ttn),
the latter being a Ricci flow with bubling-off such that £«(1) gn• If ghyp denotes

the 'hyperbolic' metric of sectional curvature —1/4, then the Ricci flow ghyp(f)
satisfying ghyp( 1) £hyp is simply ffiiyp(/) tghyp. Consider w > 0, t„ -> oo and

x„ in the in-thick part of (M,gn). By Proposition 3.1 there exists a (sub)-sequence
of (M, gn, xn) converging smoothly to (H, ghyp. *oo)- By relabeling, we can assume
that the sequence converges. Then we have:

Proposition 3.3. The sequence (M x [1,2], g„ (t), (x„, 1)) converges smoothly to

{H x [l,2].ghyp(0, (-Voo. 1 ))•

Proof. We need to show that, for all A > 0, for all n large enough, the rescaled

parabolic ball B(xn. \.A) x [1.2] is /4_1-close to B(xoo, \,A) x [1,2], In what
follows we put a bar on xn to indicate that the ball is w.r.t gnU)-

We use the Persistence Theorem [4, Theorem 8.1.3], the hyperbolic limit
(H x [1,2], ghyP(0-(-Voo. 1)) being the model Mo in the sense of [4, page 89].
Fix A > 1 and let p := p(Mo. A. 1) > A be the parameter from the Persistence

Theorem. By definition of (H, ghyp, Xoo), note that (B(xn, 1 ,p),gn) is p^-close
to (ß(,Voo. 1 p).ghyp) for all sufficiently large n, satisfying assumption (ii) of [4,
Theorem 8.1.3]. To verify the other assumptions, we adapt arguments of [12,
Lemma 88.1 ] to our situation. In particular we have to take care of hyperbolic pieces

appearing in a large 3-ball affected by a metric surgery. This is ruled out by a volume

argument.
So we consider for each n,Tn e [tn. 2tn\ maximal such that

(i) B(xn. tn. Ps/tn) x [/„. T„\ is unscathed,

(ii) \2t Ric(.v, t + g(x. ^ 10-6 there.

The case Tn tn, where tn is a singular time and a surgery affects the ball

just at that time, is not a priori excluded. Note that (ii) implies | Rmftj | ^ 1 on
the considered neighbourhood: one has Ric^p) % —jjg(t) for t e [N.7],], or

Rictr(»„) * for ' e U'Tn/tn], and then RicÄll(f) Ric,-i^(„#() «
~2~hi8(!tn} ~ ~'hSnU)- Thus the sectional curvatures of gn(t) remain in [-| —

Tüö- ~£ + Tüöl tor A lar8e enough.

We let Tn := T„/tn e [1,2] denote the rescaled final time. The assumptions
of [4, Theorem 8.1.3] being satisfied on B(xn,\,p) x [1,T„], the conclusion
holds on B(xn. \,A) x [l,Tn], that is (B(x„, \,A) x [1, Tn\, gn(t)) is /l_l-close
to (B(xoo, 1. A) x [1. fn].gbyp(t)).

Claim 2. For all n large enough, Tn 2.
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Proofof Claim 2. We first prove that there are at most finitely many integers n such
that Tn is a singular time where B(x„,l„, p^ftn) is scathed, that is g+(x, T„) ^
g(x, Tn) for some x e B(xn. t„, pfT,,).

We first describe the idea of the proof. Assume that T„ is such a singular time.
By definition of our (r, S)-surgery, there is a surgery 3-ball B B x whose boundary
3B is the middle sphere of a strong 5-neck with scalar curvature ss h~2(T„) >> 0,
where h(Tn) is the cutoff parameter at time T„. By assumption (ii) above, R < 0
at time T„ on B(x„, tn, p^/tf), hence dB n B(x„, t„, pc%) 0. It follows that
B(x„, f«. Py/%) C B, which is an almost standard cap for g+(Tn). For the pre-
surgery metric, the persistence theorem implies that {B(x„, t„, A^/tf), g(Tn)) is
almost homothetic to a (large) piece of the hyperbolic manifold H. Hence the

surgery shrinks this piece to a small standard cap, decreasing volume by a definite
amount. As moreover f-1g(/) is volume decreasing along time, volume would
become negative if there were too many such singular times, yielding a contradiction.
We now go into the details.

Let fi > 0 be the volume of the unit ball in (//, gi,yp(l)) centred at Xqq, Z?hyp :=
B(Xoo, 1, 1). For any t ^ 1 we then have volgh>p(,)(ßhyp) 13/2vol^,yp(fihyp)
f3/2/z. We assume A > 1, so that for n large enough, by closeness at time tn
between gn(-) and ghyp(-) we have:

1^4)) ^ 2V°I^(f")('Ähyp'> ^3/2f'
Assume that Tn is a singular time such that g+{x. Tn) f g(x, Tn) for some a e
B(xn, tn, p^ftn) and let B 3 x be a surgery 3-ball as discussed above. As B contains
B{xn. 1, p) and p > A, we also have

> f»,2f •

For the unsealed metric g(Tn) t„gn(Tn/tn) tngn{Tn) we then have, before

surgery, vol^(r;i)(ß) t3/2vo\gn{fn)(B) > T3/2l±. After surgery,

V0W(t„)(B) is comparable to h3(T„). Computing the difference of volumes gives:

voW(L„)(ß)-vol,(7-„)(ß) < c.h3(t'„)-T^<-T„3'2^.
for all a large enough. Since g+(l) ^ g(l) on the whole manifold, we have

vo\g+(Tn)(M) -vo\g{Tn){M) < -F„3/2^, (3.1)

f°'" all n large enough. Now the proof of [4, Proposition 11.2.11 shows that (t +
4) g{t) is volume non-increasing along a smooth Ricci flow. Since g+ < g at
singular times, this monotonicity holds for a Ricci flow with bubbling-off. One easily
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deduces by comparing the (/+1/4) 1 and the t 1

scaling that t lg(t) is also volume

decreasing. Precisely, let us now set g(t) := t~[g(t), then for all t' > t:

It particular, the sequence volg(,/;)(M) is decreasing. Moreover, if [f„, tm\ contains a

singular time Tn as above, then using (3.1) in the second inequality, we get:

On the other hand, volg(t„){M) > 0. Thus there are at most finitely many such

singular times. We conclude that B(xn, tn, pV^n) 's unscathed at time Tn for all n

large enough.

From now on we suppose n large enough such that B(xn,t„, p^/tH) x [tn, Tn\ is

unscathed. Recall that singular times form a discrete subset of R, hence there exists

an > 0 such that B{x„,tn. p~JTn) is unscathed on [tn, Tn + a„\. By maximality of
f„, when tn < 2 we must have |2f Ric(x, t) + g(x, Olg(r) '0-6 at time T„ for

some .v 6 B(xn. tn, p*Jtn). Otherwise by continuity we find an small enough such

that (ii) holds on [tn. T„ + ct„] C [tn, 2t„], contradicting the maximality of tn.
We now show that for all large n, |2tRic(x,f) + g(x,t)\g(t) < 10-6 at

time Tn on B(xn,tn, Ps/h), which will imply that tn 2 by the discussion
above. Using the A~l-closeness of the rescaled parabolic ball B(xn, 1,^4) x [1, T„]
with B(x0o, 1,/t) x [1,T„], one can check that xn is in the w'-thick part of
(M, Tn~xg(Tn)), for some fixed w' > 0, for all n large enough. Proposition 3.1(b)
then implies that Tn~]g(Tn) becomes arbitrarily close to being hyperbolic on any
fixed ball (w.r.t T„~lg(Tn)) centred at xn, when n -> oo. Controlling the distortion
of distances on B(xn. tn, PsfQ) x [in - Tn] (with the estimates (ii)), one can conclude

that |2f Ric(.v.f) + g(-v.f)|?(,) < 10-6 on B(xn,tn, p-Jt^) at time Tn for ;; large

enough. The details are left to the reader. Together with the first part of the proof
and the maximality of Tn, this implies that fn 2 for n large enough, proving
Claim 2.

As already noted, we then have, by the Persistence Theorem, that B(xn, 1, A) x
[1,2], with the rescaled flow g„(t), is A_1-C|0se to B(xoo, \ ,A) x [1,2] for all n

large enough. This concludes the proof of Proposition 3.3.

From Proposition 3.3 one easily obtains:

t'+ 1/4 /
7' t + 1/4

volj(/)(A/) < vol

vol< volg+(T„){M) < volg(T„)(M) - ^ < vo\g{lll)(M) -

Corollary 3.4. Given w > 0 there exist a number T T(w) > 0 and a

nonincreasing function ß ßw : [T, +oo) —> (0, +oo) tending to 0 at +oo such
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that if (x, t) is in the w-thick part of (M, t~lg(t)) with t > T, then there exists a
pointed hyperbolic manifold (H, ^i,yp. *) such that:

(i) P(x, t, ß(t)~l *Jt, t) is ß(t)-homothetic to P(*, 1 ,ß(t)~l, 1) C H x [1,2],
endowed with ghyp(.v) .vghyp(l)),

(ii) For all y e B(x, t, ß(t)~[ s/t) and s [t,2t],

HtfOb .*)-£(v. Oil < ß,

where the norm is in the '-topology w.r.t the metric g(t) t~'g(t).

4. Incompressibility of the boundary tori

We prove that under the hypotheses of the previous section the tori that separate the
thick part from the thin part are incompressible.

More precisely, we consider M nonspherical, irreducible, not homeomorphic to
R3, endowed with a complete finite volume Ricci flow with (/"(•)> <5(-))-bubbling-off
#(') such that <?>'(•) < <$(•), and whose universal cover has bounded geometry (for each
time slice). We call hyperbolic limit a pointed 'hyperbolic' manifold of finite volume
and sectional curvature — 1 /4 that appears as a pointed limit of (M, tflg(tn), xn) for
some sequence t„ —> oo. In this section, we assume the existence of at least one
hyperbolic limit (H. ghyP, *), which is supposed not to be dosed.

Given a hyperbolic limit //, we call compact core of H, a compact submanifold
H C H whose complement consists of finitely many product neighbourhoods of the

cusps. Then for large n, we have an approximating embedding fn : H M which
is almost isometric with respect to the metrics #|iyp and tflg(tn). The goal of this
section is to prove the following result:

Proposition 4.1. If n is large enough, then for each component T ofdH, the image
Jn(T) is incompressible in M.

We argue following Hamilton's paper |8J. A key tool is the stability of the
hyperbolic limit H \ it is a limit along the flow, not just along a sequence of times.
We give a statement following Kleiner-Lott (cf. [ 12, Proposition 90.1].)

Proposition 4.2 (Stability of thick part). There exist a number T0 > 0, a

nonincreasing function a : [7o, +oo) —> (0,+oo) tending to 0 at +oo, a finite
collection {(//j, * j) (11^. */,)] of hyperbolic limits and a smooth family of
smooth maps

k

{jB{*i,a{t)~')^ M
i i

definedfor t e [To, +oo), such that

(i) The C^W) l].nonn of t~l f(t)*g(t) — gi,yp is less than a(t);
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(ii) For every to > To and every xo £ Bt(), the time-derivative at to of the function
1/2

t i—> /(f) (xo) is less than a(to)t0

(iii) f(t) parametrises more and more of the thick part: the a(t)-thick part of
(M, t~lg(t)) is contained in im(/(f)).

The proof of [ 12) transfers directly to our situation, using Corollary 3.4.

Remark 4.3. Any hyperbolic limit H is isometric to one of the Hi. Indeed, let

* e H and w > 0 be such that * £ H + (w). Then xn is in the io/2-thick part of
(M.tflg(tn)) for /i large enough. Assume that f{tn)~l{xn) e ß(*;,a(f„)-') for
a subsequence. Then f(tn)~l{xn) remains at bounded distance of *;, otherwise it
would go into a cusp contradicting the w/2-thickness of xn. It follows that (M, xn)
and (M, /(!„)(*,)) will have the same limit, up to an isometry.

4.1. Proof of Proposition 4.1. The proof of Hamilton [8] is by contradiction.

Assuming that some torus is compressible, one finds an embedded compressing disk
for each time further. Using Meeks and Yau [15, 16], the compressing disks can
be chosen of least area. By controlling the rate of change of area of these disks,
Hamilton shows that the area must go to zero in finite time — a contradiction.

Due to the possible noncompactness of our manifold, the existence of the least

area compressing disks is not ensured: an area minimising sequence of disks can go
deeper and deeper in an almost hyperbolic cusp. We will tackle this difficulty by
considering the universal cover, which has bounded geometry (cf. Lemma 2.21 and

Addendum 2.19), when necessary.
Let us fix some notation. For all small a > 0 we denote by Ha the compact core

in H whose boundary consists of horospherical tori of diameter a. By Proposition
4.2 and Remark 4.3, we can assume that the map /(f) is defined on B(*, a(t)~l) D

Ha for t larger than some Ta > 0. For all t / Ta the image f(t)(Ha) is well
defined and the compressibility in M of a given boundary torus f(t)(dHa) does not

depend on t or a. We assume that some torus T of 8Ha has compressible image in

M. Below we refine the choice of the torus T.
We define, for some fixed a > 0,

Yt f(t)(Ha), Tf := /(f)(T) and W, := M - int(Yt).

Our first task is to find a torus in 'dYt which is compressible in Wt. Note that T,
is compressible in M, incompressible in Yt which is the core of a hyperbolic 3-

manifold, but not necessarily compressible in Wt \ for example Yt could be contained
in a solid torus and T, compressible on this side.

Consider the surface dYt C M (not necessarily connected). As the induced map
fU(Tf) —> Jt\{M), with base point choosen in T(, is noninjective by assumption,

Corollary 3.3 of Hatcher [9] tells that there is a compressing disk D c M, with
dD C dYt homotopically non trivial and int(D) C M — dY,. As int(D) is not
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contained in Y,, one has int(D) c Wt. Rename T, the connected component of dYt
which contains 3D and T c 3Ha its /(r)-preimage. Then T, is compressible in Wt.

Let X, be the connected component of W, which contains D. Using [4, Lemma
A.3.1] we have two exclusive possibilities:

(i) Xt is a solid torus. It has convex boundary, hence Meeks-Yau [15, Theorem 3]
provide a least area compressing disk Df c X, where 3D2 c T, is in a given
nontrivial free homotopy class.

(") T, does not bound a solid torus and Y, is contained in a 3-ball B. Then Yt lifts
isometrically to a 3-ball in the universal cover (M,g(t)). Let Yt be a copy of Yt
in M. By [9) again, there is a torus T, C 3Y, compressible in M — 3Yt, hence
in M — Yt. We denote by X, the connected component of M — int(T,) in which
T, is compressible. As (M. g(t)) has bounded geometry, by [16, Theorem 1]

there is a compressing disk Df c X, of least area with 3D2 C T, in a given
nontrivial free homotopy class.

We define a function A : [Ta, +oo) —» (0, +oo) by letting A(t) be the infimum
of the areas of such embedded disks. Similarly to [ 12, Lemma 91.12] we have

Lemma 4.4. For every D > 0, there is a number a o > 0 with the following property.
Given a e (0, üq) there exists T'a> 0 such that for ail to X T'a there is a piecewise
smooth function Ä defined in a neighbourhood of to such that Ä(to) — A(to), Ä ^ A
everywhere, and

A'(fo) <71 f I ^(?o) — 2jt + D
4 Vo + i/

if A is smooth at to, and limr Ä{t) < Ä{tQ) if not.

Proof. The proof is similar to the proof of [12, Lemma 91.12], and somewhat
simpler as we don't have topological surgeries. Recall that our Ricci flow with
bubbling-off g(t) is non increasing at singular times, hence the unscathedness
of least area compressing disks ([12, Lemma 91.10]) is not needed: we have

A(t) ^ A(to) if to is singular. However, something must be said about
[12, Lemma 91.11], This lemma asserts that given D > 0, there is «0 > 0 such that
for a (0, a0) and T C H a horospherical torus of diameter a, for all t large enough
fdD? Kw}ds ^ y and length(3D,2) ^ -f \/l where k3D2 is the geodesic curvature
of 3D2. Its proof relies on the fact that an arbitrarily large collar neighbourhood of
Tf in W, is close (for the rescaled metric t~xg{t)) to a hyperbolic cusp if t is large
enough. In case (1) above, this holds on X, n f(t)B(*.a(t)~1)) by Proposition
4-2. In case (2) observe that f(t)(B(*. a(t)~1)) is homotopically equivalent to the

compact core Ht, hence lifts isometrically to (M,g(t)). It follows that Xt also has
an arbitrarily large collar neighbourhood off, close to a hyperbolic cusp.

The rest of the proof is identical to the proof of [ 12, Lemma 91.12] and hence
omitted.
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In particular A is upper semi-continous from the right. Note also that as A is

defined as an infimum and g(t^) and g(t) are (1 + e/t)-bilischitz when times t^ / t,
for some —» 0, A is lower semi-continuous from the left.

Fix D < 2tt, a (O.c/o) and T''a as in Lemma 4.4. Then consider the solution
A : [Tf +oo) -> R of the ODE

A — 2rr + D

with initial condition A(T^) A(T^). By a continuity argument, A(t) < A(t) for
alU ^ T'a. However, from the ODE we have

- 1\"3/4 ^1/4
4(/)lr + -l 4(-27T + D) 11 + - I + const.

which implies that A(t) < 0 for large t, contradicting the fact that A(t) > 0.

This finishes the proof of Proposition 4.2.

5. A Collapsing Theorem

In this section we state a version of the collapsing theorem [14, Theorem 0.2] in the

context of manifolds with cusp-like metrics.

Let (M„, gn) be a sequence of Riemannian 3-manifolds.

Definition 5.1. We say that gn has locally controlled curvature in the sense of
Perelnuin if for all w > 0 there exist r(w) > 0 and K(w) > 0 such that for n

large enough if 0 < r < r(w), if x G (Mn,gn) satisfies volB(x,r) > wr3
and sec > — r~2 on B(x,r) then |Rm(x)| < Kr~2, |VRm(x)| ^ Kr~3 and

|V2 Rm(.r)| sC Kr~4 on B(x,r).
Remark 5.2. Note that if gn t,rxg{tn), where g(-) is as in Proposition 3.1 and

tn -> oo, then gn has locally controlled curvature in the sense of Perelman.

Definition 5.3. We say that (g„) collapses if there exists a sequence wn 0 of
positive numbers such that (Mn,gn) is to,,-thin for all n.

From [14, Theorem 0.2] we obtain:

Theorem 5.4. Assume that (Mn, g„) is a sequence ofcomplete Riemannian oriented

3-manifolds such that

(i) gn is a cusp-like metric for each n,

(ii) (gn) collapses,

(iii) (gn) has locally controlled curvature in the sense of Perelman,

then for all n large enough Mn is a graph manifold.
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The manifolds in [14, Theorem 0.2] are assumed to be compact and may have
convex boundary. Our cusp-like assumption (i) allows to apply their result by the
following argument. First we deform each g„ so that the sectional curvature is — £ on
some neighbourhood of the ends, assumptions (ii), (iii) remaining true. Let wn — 0
be a sequence of positive numbers such that g„ is ic„-thin. For each /;, we can take a
neighbourhood Un of the ends of M„, with horospherical boundary, small enough so
that the complement M'n M„ \ int U„ satisfies assumptions of [14, Theorem 0.2]
with collapsing numbers w„, except for the convexity of the added boundary. Then
we deform the metric on M'n near the boundary into a reversed hyperbolic cusp
so that the boundary becomes convex. It follows that M'n, hence Mn, is a graph
manifold for all /; large enough. In fact it should be clear from Morgan-Tian's proof
that the convexity assumption is not necessary in this situation (see the more general
[2, Proposition 5.1]).

6. Proof of the main theorem

Here we prove Theorem 1.2. We sketch the organisation of the proof. Let (M, go)
be a Riemannian 3-manifold satisfying the hypotheses of this theorem. We also
assume that M is not a solid torus, is nonspherical and does not have a metric with
Rm > 0, otherwise it would be Seifert fibred and conclusion of Theorem 1.2 holds.
We first define on M a Ricci flow with (/-(•), <5(-))-bubbling-off g(-), issued from go
and defined on [0, +oo). As mentioned before, we may have to pass to the universal
cover. By existence Theorem 2.17 g(-) exists on a maximal interval [0, Tmax). The
case Tmax < +oo is ruled out using the fact that (M. g(rmax)) is covered by canonical
neighbourhoods (see claim 3 below). Proposition 3.1 then provides a sequence
ln / +oo and connected open subsets Hn c Mn — (M, tn~xg(tn)), diffeomorphic
to a complete, finite volume hyperbolic manifold H (possibly empty) of sectional
curvature —1/4. We set G„ := M„ \ H„. Proposition 4.1 proves that the tori of

(if // ^ 0) are incompressible in M for large n. In this case, the atoroidality
assumption on M implies that Hn is diffeomorphic to M and that each component
°f G„ is a cuspidal end T2 x [0, oo) of Mn. Then t~]g(t) converges (in the pointed
topology) to a complete, finite volume hyperbolic metric on M of sectional curvature
— 1/4. In both cases (H 0 or H ^ 0), G„ collapses with curvature locally
controlled in the sense of Perelman. If // 0, we conclude by collapsing theorem
5-4 that Mn G„ is a graph manifold (hence Seifert fibred) for all n large enough.
11 Hn 7^ 0, Proposition 4.2 gives a continuous decomposition M Ht U G, where
Ht is diffeomorphic to M, g(t) is smooth and | Rm | < C/~' there, and Gt is a(f)-
thin. We then use the topological/geometric description of the thin part presented in

2] to obtain that | Rm | < Ct~] on G,, by the same argument as in [1, Theorem
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6.1. Setting up the proof. Let (M,go) be the Riemannian universal cover of

(M, g0). By Lemma 2.21 it has bounded geometry. Without loss of generality,
we assume that it is normalised It M is compact, we can even assume that go itself
is normalised.

We now dehne a Riemannian 3-manitold (M, go) by setting (M, go) := (M. go)
if M is compact, and (A/, g0) := (A/, go) otherwise. In either case, g0 is complete
and normalised. By [13], M is irreducible. If M is spherical, then M is spherical,

contrary to the assumption Henceforth, we assume that M is nonspherical.
Thus Theorem 2 17 applies to (/W,g0), where S(-) is chosen from Theorem 3.1.

Let g(-) be a Ricci flow with bubbling-off on M with initial condition g0. By
Addendum 2.19, we also have a Ricci flow with bubbling-off g(-) on M with initial
condition go covered by g(-)

Claim 3. The evolving met)its g(-) and g(-) are defined on [0, +oo).

Proof If this is not true, then they are only defined up to some finite time T, and

every point of (M,g(T)) is centre of an eo-neck or an eo-cap. By Theorem 7.4

of [51, M is difieomorphic to S3, S2 x S1, S2 x R or R3.2 Since M is irreducible
and nonspherical, M is diffeomorphic to R3. The complement of the neck-like

part (cf. again [6]) is a 3-ball. which must be invariant by the action of the deck

transformation group Since this group acts freely, it is trivial. Thus M M.
Being covered by g(-), the evolving metric g(-) is complete and of bounded

sectional curvature Hence by Remark 2.3, (M,g(T)) has finite volume. By
contrast, (M, g(T)) contains an infinite collection of pairwise disjoint eo-necks of
controlled size, hence has infinite volume. This contradiction completes the proof of
Claim 3.

It follows from Claim 3 that M carries an equivariant Ricci flow with bubbling-
off g(-) defined on [0. +oo) with initial condition go. We denote by g(-) the quotient
evolving metric on M. By Addendum 2 19, it is also a Ricci flow with (/-(•), 5(-))-
bubbhng-off. By Theorem 2.22, g(-) remains cusp-like at infinity for all time. Now
consider the alternative that follows the conclusion of Proposition 3.1 part (in)-
Either

(i) there exist w > 0, —> oo such that the in-thick part of (M,t~lg(tn)) is

nonempty foi all n, oi

(n) there exist w„ -» 0, tn -» oo such that the n>„-thick part of g(tn)) is

empty for all n

We refer to the hrst case as the nontollapsing case and to the second as the

collapsing case.

2This lisl is shortei than the corresponding list in [S| since we do not consider caps dilteomoiphic lo
the punctured RP1
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We denote by gn the metric tn~lg(tn). Note that g„ has curvature locally
controlled in the sense of Perehnan (cf. Remark 5.2). We denote by Mn the
Riemannian manifold (M, gn), Mf (w) its in-thick part, and M~(w) its ui-thin part.
In the collapsing case, Mn fits the assumptions of Theorem 5.4. Hence
it is a graph manifold for n large enough.

Let us consider the other case.

6.2. The noncollapsing case. By assumption, there exist w > 0 and a sequence
ln -> oo such that the in-thick part of M„ is nonempty for all Choose
a sequence x„ e Up to extracting a subsequence, by part (iii) of
Proposition 3.1, (Mn,xn) converges to a complete hyperbolic manifold (77,*)
of finite volume whose metric gn has sectional curvature —1/4. By definition
of the convergence, there exist an exhaustion of 77 by compact cores Hn C 77

and embeddings fn : (//„,*) -» (M.x„) such that |gn — ffgn I goes to zero.
Proposition 4.2 (stability of the thick part) gives Tq > 0 and a nonincreasing function
a ' [7b, oo) -» (0, oo) tending to zero at infinity, and for t > T0 embeddings
/(') : B(*, a(t)~l) C 77 —> M satisfying conclusions (i)-(iii) of this proposition.
If 77 is closed, the desired conclusion follows. From now on we assume that H is not
closed. By Proposition 4.1, for each m e N, for all n large enough, each component
°I ,fn(dHm) is an incompressible torus in M. Relabeling the /„ we can assume
that the property holds for Jm(dHm) for all m. By atoroidality of M, it follows that
Hn '= int fn(H„) c M is diffeomorphic to M for all n, and Gn := M \ Hn is a

disjoint union of neighbourhoods of cuspidal ends of M„. For large t > 7o, choose a

compact core Ht c B{*. cz(f)—1) such that 3/7, consists of horospherical tori whose
diameter goes to zero as t —> oo. We assume moreover that t -» 77, is smooth.
Set 77, := f(t)(H,) c M and Gt := M \ 77,. Then 77, is diffeomorphic to M,
r g(t) is smooth there and | Rm | < Ct~l by closeness with 77. On the other
hand, G, is u;(t)-ihin for some w(t) 0 as t —oo. There remains to prove that
Gf satisfies | Rm | < Ct~l also, which will imply its unscathedness.

Consider a connected component C{t) of G,. For all large t, dC(t) is an

incompressible torus in M with a collar neighbourhood a(/)-close, w.r.t t~lg(t),
t0 a collar neighbourhood of a horospherical torus in 77. On the other hand, C(t) is

diffeomorphic to T2 x [0. oo) and its end has a cusp-like structure, hence curvature
also bounded by Ct~l. There remains to control what happens in the middle of C{t).

We apply the topological/geometric description of the thin part obtained in [2,
Proposition 5.1 ] to a compact subset C'(t) C C(t) which we define as follows.

By Theorem 2.22 there is an embedding /cusp : T2 x [0, +oo) -» M and a
function b : [0, +oo) -» [0, oo) such that

1(4') ./cuspg(') — ghypl7,2x[/;(,),+oo) < w(t)
dncI ,/cusp(T2 x [/;(;), Too)) C C(t is a neighbourhood of its end. Here ghyp denotes
a hyperbolic metric e-2i£Cuei + d*2 (with sectional curvature — 1) on T2 x [0, +oo).
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The metric 4ghyP maY differ from the one on H. We can assume b(t) —* oo. We

define Ceusp(/) := ./CUsP(T2 x [b(t) + 2, +00)) and

C'(t) \= C(t) \ intCcusp(0-

Now we hx functions r, K given by Proposition 3.1, /x 1 >0 given by [2, Lemma

5.2], tui u)\(p,\,r, K) > 0 given by [2, Proposition 5.1|.
The closed subset C'(t) satisfies the assumptions of the latter proposition for

t > T\ large enough such that w(t) < wy. We now follow the proof of [1,
Theorem 1.1 on p. 23]. Decompose C'{t) into closed subsets Vy, V2, V.2' as given by
the proposition. The two boundary components of C'{t) have to bound components
of Vy. Either C'(t) — Vy or the boundary components of C'(t) bound components
C1, Cj of Vy, which are diffeontorphic to T2 x / and there is a component C3 of V2

adjacent to C\. We prove that only the first case occurs, for all t large enough.

Lemma 6.1. For all t large enough, C'(t) V\.

Before proving this lemma, we explain how to conclude the proof of the theorem.

First [2, Lemma 5.2(H)] applies to any x e V\, giving wy wi(ßi, r, K) > 0 such

that

volB(x.t,p^{x,t)) > wi(p^j(x,t))3,

for any lift x e M of x. Let p — p(wy) > 0 be given by Proposition 3.1. If
p^/j(x,t) < p(x.t) then p(x,t) > *Jt > P\ß- If not, p(x,t) pjj(x,t) and

Proposition 3.1 (ii) implies

PfMJ) > P-Ji

if t is large enough (larger than f f(wy In both cases, p^- > p~Jt. Then

Proposition 3.1 (i) with r p^j(x, t) implies | Rm | < C(w\)t~x at (x,f) for some
C C(iui) > 0. Thus the proof of the theorem is finished if C'(t) Vy for all
large t.

We now prove Lemma 6.1, arguing by contradiction. Set T2 := max{7o, 7j, T}.
Assume that there exist arbitrarily large times t > T2 such that C'(t) V\. At any
of these times, the S1 -fibres of C3 are homotopic to a fibre of dC\, by [2, Proposition
5.1(b2)|. By incompressibility of dC 1 in M, this curve generates an infinite cyclic
subgroup in Then [2, Lemma 5.2(i)| applies to any x e C3 D V2,n;g and gives

\o\B(x.t, p^(x,t)) > wyip^ixj))3,

for any lift x of x, and hence p^/j(x, t) > p^/t as above. Moreover (2, Proposition
5.1 (c3)] gives s s2(p\,r, K) e (0, 1/10), an open set U such that

B{x,t,[-sp^(x,t)) CUC B{x,t,sp^{x,t)), (6.1)



Vol. 90 (2015) Longtime behaviour of Ricci flow 403

and a 2-Lipschitz map p :U R2 whose image contains ß(0, \sp^(x, t)) C R2

and whose fibres are homotopic to fibres of C3, hence noncontractible in M.
Now consider any noncontractible loop y C C'fä). Define for all t > T2,

Yi{t) c dC(t) freely homotopic to y such that /(f)-1 ° yi(t) is geodesic in 3Ht
and evolves by parallel transport in H w.r.t. t. On the side of the cusp, define
Y2U) C 3Ccusp(f) freely homotopic to y such that /,"}, o y2(t) C T2 x {b{t) + 2} is

geodesic in (T2, gcuc|) and evolves by parallel transport (at speed b').
In particular y 1 (t) c C\ and y2(t) C C2 at each time when these sets are defined

(that is when C'(t) ^ V\) and these loops are freely homotopic in C'(t). Let A(t)
be the infimum of the areas of all smooth homotopies H : Sl x [0, 1] C'(t)
connecting y, (/) to y2{t).
Claim 4. t~l A(t) 0 as t ->• 00.

Proof. It is identical to [ I, Lemma 8.2J, except that we have to account for the fact
that 3ty2(t) may a priori not be bounded. This estimate appears when we compute
the area added to the homotopy by moving the boundary curves. The infinitesimal
added area to the homotopy due to the deplacement of y\ is negative (we can
assume a' > 0), hence neglected. The contribution of y2, by closeness with the

hyperbolic cusp, is bounded by Ct.e~bb'. On the other hand, the normalised length
1 l/2t(Yi) 0 and the normalised geodesic curvature f/r(y, (f)) < C, by closeness
with the hyperbolic situation. Let us denote L(t) t~ ^2(i(y\(t)) + l(y2(t)).
Computations in fl, Lemma 8.2] give (compare with equation (8.1) there)

Denoting y(t) t
1

A(t) this gives the differential inequality

4-ry < ~y/4t + C(t~xL + e~bb').
/ t+J ~clt

Using the standard method, one obtains that y(t) K(t)t 1/4 where

We can assume that L(t) is almost nonincreasing, that is that for any T2 < a < t,
one has L(t) < 2L(a). Then for T2 < a < t,
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hence

_ ^ K(a) K(t)-K(a)
v(') ^ 7774-+ 774

< f^ + c(8^(«) + ^(a)),
which is arbitrary small by taking a then t large enough.

We conclude the proof of Lemma 6.1. The argument is the same as the one given
in [ 1 J. Consider smooth loops y. ß in C'(t) generating n\C'{t). Let y, (t), resp. ßi(t),
i 1,2, defined as above, freely homotopic to y, resp. ß. Let A(t), resp. B(t), be

the infimum of the areas of all smooth homotopies connecting y\{t) to yi^t), resp.
ß 1 (t) to ^2(0- By Claim 4,

rlA(t) + t~lB(t)^0 (6.2)

as t —s 00. On the other hand let Hy, resp. Hß, be any of these homotopies.
At any time t where C3 is defined, any fibre of the projection p : U -» R2 is a

noncontractible loop C C3, hence it intersects at least once the homotopies Hy,Hß-
For all such times t large enough one has, using the fact that p is 2-bilipschitz and

equation (6.1), that

1

area(Hy) + area (Hß) > -vol(/7(f/)) > cs pt,

tor some constant c o(.s\ p) > 0. This contradicts (6.2).

References

[1| Richard Bamler. Long-time analysis of 3 dimensional Ricci flow I. arXiv: 1112.5125,
Decembei 2011

[2] Richard Bamler. Long-time analysis of 3 dimensional Ricci flow II. arXiv: 1210.1845,
October 2012

131 Richard Bamler. Stability of hyperbolic manifolds with cusps under Ricci flow. Adv. Math.
263 (2014), 412-467. arXiv:1004 2058 Zbl 1303.53086 MR 3239144

[4] Laurent Bessieres, Gerard Besson, Michel Boileau, Sylvain Maillot, and Joan Porti.
Geometnsalion of 3-manifolds. EMS Tracts in Mathematics, 13, European Mathematical
Society (EMS), Zurich, 2010. Zbl 1244.57003 MR 2683385

151 Laurent Bessieres, Gerard Besson, and Sylvain Maillot. Ricci How on open 3-manifolds
and positive scalar curvature. Geom. Topol., 15 (2011), 927-975. Zbl 1237.53064
MR 2821567

[6] Jonathan Dinkelbach and Bernhard Leeb. Equivariant Ricci flow with surgery and

applications to finite group actions on geometric 3-manifolds. Geom. Topol., 13 (2009),
1129-1173. Zbl 1181.57023 MR 2491658



Vol.90 (2015) Longtime behavioui of Ricci flow 405

[2] Gregoi Giesen and Peter M. Topping Existence of Ricci flows of incomplete surfaces.
Comm. Partial Diffeiential Equations, 36 (201 I), no. 10, 1860-1880. Zbl 1233.35123
MR 2832165

[8| Richard S Hamilton. Non-singular solutions ol the Ricci flow on thiee-manifolds. Comm.
Anal Geom 7 (1999), no 4, 695-729. Zbl 0939.53024 MR 1714939

|9] Allan Hatcher Basic 3-manifold topology, 2005 Available at:

http: //www.math. Cornell. edu/~hatcher/3M/3Mdownloads.html
[10| Thomas Ivey. Ricci sohtons on compact Ihiee-manitolds. Diff. Geom. Appl., 3 (1993),

301-307. Zbl 0788.53034 MR 1249376

tll| Lizhen Ji, Rafe Mazzeo, and Natasa Sesum Ricci flow on surfaces with cusps. Math.
Ann 345 (2009), no. 4, 819-834 Zbl 1 176 53067 MR 2545867

112] Bruce Kleiner and John Loll Notes on Peielman's papers. Geom. TopoL, 12 (2008), no. 5,
2587-2855. Zbl 1204.53033 MR 2460872

[13] William H Meeks III, Leon Simon, and Shing-Tung Yau. Embedded minimal surfaces,
exotic spheres, and manifolds with positive Ricci cui vature. Annal of Mathematics, 116

(1982), 621-659. Zbl 0521 53007 MR 678484

114] John Morgan and Gang Tian Completion of the Proof ol the Geonietnzation Conjecture.
arXiv:0809.4040, September 2008.

[15] William H. Meeks, III and Shing Tung Yau Topology of three-dimensional manifolds
and the embedding problems in minimal suiface theory Ann. of Math. (2), 112, no 3,
441-484. Zbl 0458.57007 MR 595203

[16] W. H. Ill Meeks and S.-T. Yau. The cquivanant loop theoiem for three-dimensional
manifolds and a review of the existence theorems for minimal surfaces. The Smith

conjecture (New York. 1979), 153-163, Pure Appl Math., 112, Academic Press, Orlando,
FL, 1984 Zbl 0599.57005 MR 758467

[17] Gnsha Perelman The entropy loimula loi the Ricci flow and its geometric applications.
aiXiv.malh DG/0211159, November 2002

[18] Gnsha Perelman. Ricci flow with suigeiy on ihree-manilolds. arXiv:math.DG/0303109,
March 2003.

Received September 10, 2012; revised Decembei 09, 2013

L. Bessieres, Universite dc Bordeaux, Institut de Mathematiques de Bordeaux, UMR 5521
CNRS, batiment A33, 351 cours de la Liberation, 33405 Talence, Fiance
E-mail: lament.bessiercs@math u-bordeaux ti
G Besson, Umversite Joseph Founei, Institut Fourier, UMR 5582 CNRS,
100, rue des Maths, BP 74, 38402 St Maitin d'Heres, Fiance
E-mail: g.besson@ujl-grenoble.fi
S Maillot, Univeisite Montpellier II, Institut de Mathcmaliqueset de Modelisation
de Montpellier, UMR 5149 CNRS, Case courici 052, Place Eugene Bataillon,
34095 Montpellier Cedex, Fiance
E-mail- smaillot@math.univ-montp2.ti




	Long time behaviour of Ricci flow on open 3-manifolds

