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Long time behaviour of Ricci flow on open 3-manifolds

Laurent Bessieres, Gérard Besson and Sylvain Maillot*

Abstract. We study the long time behaviour of the Ricci flow with bubbling-off on a possibly
noncompact 3-manifold of finite volume whose universal cover has bounded geometry. As an
application, we give a Ricci flow proof of Thurston’s hyperbolisation theorem for 3-manifolds
with toral boundary that generalises Perelman’s proof of the hyperbolisation conjecture in the
closed case.

Mathematics Subject Classification (2010). 57M50, 53C44, 53C21.
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1. Introduction

A Riemannian metric is hyperbolic if it is complete and has constant sectional
Curvature equal to —1. If N is a 3-manifold-with-boundary, then we say it is
hyperbolic if its interior admits a hyperbolic metric. In the mid-1970s, W. Thurston
stated his Hyperbolisation Conjecture, which gives a natural sufficient condition on
the topology of a 3-manifold-with-boundary N which implies that it is hyperbolic.
Recall that N is irreducible if every embedded 2-sphere in N bounds a 3-ball. It is
atoroidal if every incompressible embedded 2-torus in N is parallel to a component
of AN or bounds a product neighbourhood 72 x [0, 1) of an end of N. A version of
Thurston’s conjecture states that if N is compact, connected, orientable, irreducible,
and 7y N is infinite and does not have any subgroup isomorphic to Z?2, then N
is hyperbolic. If one replaces the hypotheses on the fundamental group by the
assumption that N is atoroidal then one gets the conclusion that N is hyperbolic
or Seifert fibred.

' Thurston proved his conjecture for the case of so-called Haken manifolds, which
Includes the case where dN is nonempty. The case where N is closed was solved by
G. Perelman [17, 18] using Ricci flow with surgery, based on ideas of R. Hamilton.

*“The authors acknowledge the support of the Agence Nationale de la Recherche through Grant ANR-
12-BS01-0004. Gérard Besson is also supported by ERC Avanced Grant 320939, Geometry and Topology
of Open Manifolds (GETOM).
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It is natural to ask whether the Hamilton-Perelman approach works when
dN # 0. The interior M of N, on which one wishes to construct a hyperbolic metric,
is then noncompact. This question can be divided into two parts: first, is it possible
to construct some version of Ricci flow with surgery on such an open manifold
M , under reasonable assumptions on the initial metric? Second, does it converge
(modulo scaling) to a hyperbolic metric? A positive answer to both questions would
give a Ricci flow proof of the full Hyperbolisation Conjecture logically independent
of Thurston’s results.

A positive answer to the first question was given in [5], for initial metrics of
bounded geometry, i.e. of bounded curvature and positive injectivity radius. If one
considers irreducible manifolds, surgeries are topologically trivial: each surgery
sphere bounds a 3-ball. Hence a surgery splits off a 3-sphere. In this situation we
can refine the construction of the Ricci flow with surgery so that it is not necessary
to perform the surgery topologically. We obtain a solution which is a piecewise
smooth Ricci flow on a fixed manifold; at singular times, one performs only a metric
surgery, changing the metric on some 3-balls. This construction was defined in [4] in
the case of closed irreducible nonspherical 3-manifolds, and called Ricci flow with
bubbling-off. One can extend it to the setting of bounded geometry. The purpose of
this paper is to answer the second question, in the situation where the initial metric
has a cusp-like structure.

Definition 1.1. We say that a metric g on M has a cusp-like structure, or is
a cusp-like metric, if M has finitely many ends (possibly zero), and each end
has a neighbourhood which admits a metric gcup homothetic to a rank two cusp
neighbourhood of a hyperbolic manifold such that g — geusp goes to zero at infinity
in C*-norm for all positive integers k. (Thus if M is closed, any metric is cusp-like.)

Note that such a metric is automatically complete with bounded curvature and of
finite volume, but its injectivity radius equals zero hence it does not have bounded
geometry. However, except in the case where M is homeomorphic to a solid torus,
its universal covering does have bounded geometry (see Lemma 2.21). Since solid
tori are Seifert fibred, we will assume that M is not homeomorphic to a solid torus
when necessary. Also note that if M admits a cusp-like metric, then M admits
a manifold compactification whose boundary is empty or a union of 2-tori. This
compactification is irreducible (resp. atoroidal, resp. Seifert-fibred) if and only if M
is irreducible (resp. atoroidal, resp. Seifert-fibred).

[n section 2 we construct a Ricci flow with bubbling-off on M, for any cusp-
like initial metric, by passing to the universal cover and working equivariantly. For
simplicity we restrict ourselves to the case where M is nonspherical. This is not a
problem since spherical manifolds are Seifert fibred. We also prove that the cusp-like
structure is preserved by this flow (cf. Theorem 2.22).

Using this tool, we can adapt Perelman’s proof of geometrisation to obtain the
following result:
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Theorem 1.2. Let M be a connected, orientable, irreducible, atoroidal 3-manifold
and gy be a metric on M which is cusp-like at infinity. Then M is Seifert-fibred, or
there exists a Ricci flow with bubbling-off g(-) on M defined on [0, 00), such that
g(0) = go, and as t goes to infinity, (4t)"'g(t) converges smoothly in the pointed
topology for appropriate base points to some finite volume hyperbolic metric on M.
Moreover, g(-) has finitely many singular times, and there are positive constants
T,C such that |Rm| < Ct= forallt > T,

If N is a compact, connected, orientable 3-manifold such that dN is empty or a
union of 2-tori, then M = int N always carries a cusp-like at infinity metric. Thus
we obtain:

Corollary 1.3 (Thurston, Perelman). Let N be a compact, connected, orientable
3-manifold-with-boundary such that ON is empty or a union of 2-tori. If N is
irreducible and atoroidal, then N is Seifert-fibred or hyperbolic.

Note that it should be possible to obtain this corollary directly from the closed
Case by a doubling trick. The point of this paper is to study the behaviour of Ricci
flow in the noncompact case.

Let us review some results concerning global stability or convergence to finite
volume hyperbolic metrics. In the case of surfaces, R. Ji, L. Mazzeo and N. Sesum
[11] show that if (M, go) is complete, asymptotically hyperbolic of finite area with
X(M) < 0, then the normalised Ricci flow with initial condition go converges
eXponentially to the unique complete hyperbolic metric in its conformal class. G.
Giesen and P. Topping [7, Theorem 1.3] show that if go, possibly incomplete
and with unbounded curvature, is in the conformal class of a complete finite area
hyperbolic metric Zhyp- then there exists a unique Ricci flow with initial condition go
Which is instantaneously complete and maximaly stretched (see the precise definition
in [7]), defined on [0, +00) and such that the rescaled solution (2/) "' g (1) converges
smoothly locally to g ast — co. Moreover, if gg < C gnyp for some constant C > 0
then the converence is global: for any k € N and p € (0, 1) there exists a constant
C > 0 such that forall > 1, [(21) 'g(t) — g.,yp]Ck(M,ghyp) < ,1% In dimensions
greater than or equal to 3, R. Bamler [3] shows that if g¢ is a small C°-perturbation
of a complete finite volume hyperbolic metric gyyp, that is if |go— Zhyplco( Mgny) <€
Where ¢ = ¢(M, ghyp) > 0, then the normalised Ricci flow with initial condition g
is defined for all time and converges in the pointed Gromov-Hausdorft topology to
&hyp- In dimension 3 at least, there cannot be any global convergence result. Indeed,
consider a complete finite volume hyperbolic manifold (M3, Zhyp) With at least one
Cusp. Let go be a small C O pertubation of Zhyp such that go remains cusp-like at
Infinity but with a different hyperbolic structure in the given cusp (change the cross-
Sectional flat structure on the cusp). By Bamler [3] a rescaling of g(¢) converges in
the pointed topology to gnyp. The pointed convergence takes place on balls of radius
R for a]l R; however, our stability theorem 2.22 implies that, out of these balls, the
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cusp-like structure of gg is preserved for all time, hence is different from the one of
the pointed limit. Thus the convergence cannot be global.

The paper is organised as follows. In Section 2 we introduce the necessary
definitions and we prove the existence of a Ricci flow with bubbling-off which
preserves cusp-like structures. Section 3 is devoted to a thick-thin decomposition
theorem which shows that the thick part of (M, (4t)~1g(t)) (sub)-converges to a
complete finite volume hyperbolic manifold. We give also some estimates on the
long time behaviour of our solutions. In Section 4 we prove the incompressibility of
the tori bounding the thick part. Section 5 1s devoted to a collapsing theorem, which
is used to show that the thin part is a graph manifold. Finally the main theorem 1.2
is proved in Section 6. To obtain the curvature estimates on the thin part, we follow
[1]. An overview of the proof is given at the beginning of that section.

Throughout this paper, we will use the following convention: all 3-manifolds are
connected and orientable.

2. Ricci flow with bubbling-off on open manifolds

2.1. Definition and existence. In this section we define Ricci flow with bubbling-
off and state the main existence theorem.

For convenience of the reader we recall here the most important definitions
involved, and refer to Chapters 2, 4, and 5 of the monograph [4] for completeness.

Definition 2.1 (Evolving metric). Let M be an n-manifold and / C R be an interval.
An evolving metric on M defined on I is a map t — g(¢) from [ to the space of
smooth Riemannian metrics on M. A regular time is a value of ¢ such that this
map is C '-smooth in a neighbourhood of . If ¢ is not regular, then it is singular.
We denote by g4 (¢) the right limit of g at ¢, when it exists. An evolving metric is
piecewise C! if singular times form a discrete subset of R and if r + g(¢) is left
continuous and has a right limit at each point. A subset N xJ C M x I is unscathed
if t — g(t) is smooth there. Otherwise it is scathed.

If g is a Riemannian metric, we denote by Rpin(g) (resp. Ryax(g)) the infimum
(resp. the supremum) of the scalar curvature of g. For any x € M, we denote by
Rm(x) : A2TxM — A>T M the curvature operator defined by

(Rm(X AY),ZAT) =Riem(X,Y, Z,T),

where Riem is the Riemann curvature tensor and A and (-, -) are normalised so that
{e; Aej | i < j}isan orthonormal basis if {e;} is. In particular, if A > @ > v
are the eigenvalues of Rm, then A (resp. v) is the maximal (resp. minimal) sectional
curvature and R = 2(A + p +v). !

IThis convention is different from that used by Hamilton and other authors.
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Definition 2.2 (Ricci flow with bubbling-off). A piecewise C! evolving metric
I' g(t) on M defined on [ is a Ricci flow with bubbling-off if

(i) The Ricci flow equation 28 = —2 Ric is satisfied at all regular times;
q Dl g

(i) for every singular time ¢ € [ we have

(a) Rmin(g+ (I)) 2 Rmin (g(t))v and
(b) g1(r) < g(1).

Remark 2.3, If g(-) is a complete Ricci flow with bubbling-off of bounded sectional
Curvature defined on an interval of type [0, 7] or [0,00), and if g(0) has finite
volume, then g(r) has finite volume for every .

A parabolic neighbourhood of a point (x,t) € M x [ is a set of the form
P(x,t,r,—At) ={(x".t'y e M x I | x" € B(x,t,r),t" €[t — At,1]}.

Definition 2.4 (k-noncollapsing). For k,r > 0 we say that g(-) is k-collapsed at
(x,7) on the scale r if for all (x’,¢') in the parabolic neighbourhood P(x,t,r, —r?)
We have |Rm(x’,t")| < r~2 and vol(B(x.t,r)) < kr". Otherwise, g(-) is k-
Noncollapsed at (x,t) on the scale r. If this is true for all (x,7) € M x I, then
We say that g(-) is k-noncollapsed on the scale r.

Next is the definition of canonical neighbourhoods. From now on and until the
end of this section, M is a 3-manifold and &, C are positive numbers.

Definition 2.5 (e-closeness, e-homothety). If U C M is an open subset and g, go
are two Riemannian metrics on U we say that g is e-close to go on U if

”g_gOH[e'l,U,gn] <&

Where the norm is defined on page 26 of [4]. We say that g is e-homothetic to go on
U if there exists A > 0 such that Ag is e-close to go on U. A pointed Riemannian
Manifold (U, g, x) is e-close to another Riemannian manifold (Uy. go. Xo) if there
eXists a Cl*™' 1 _diffeomorphism ¥ from Up to U sending X to x and such that the
Pullback metric Y*(g) is e-close to go on U. We say that (U, g, x) is e-homothetic
to (Uy, gy, Xo) if there exists A > 0 such that (U, Ag, x) is e-close to (Uyp, go, Xo).

Definition 2.6 (e-necks, e-caps). Let g be a Riemannian metric on M. If x is a
Point of M, then an open subset U C M is an e-neck centred at x if (U, g, x) is
&-homothetic to ($2 x (—e~!, e "), Zeyls (%, 0)), where gey is the standard metric
Wfth unit scalar curvature. An open set U is an e-cap centred at x if U is the union
of two sets V, W such that x € int V, V is a closed 3-ball, W N 'V = 9V, and W is
an e-neck.
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Definition 2.7 ((¢, C)-cap). An open subset U C M is an (g, C)-cap centred at x if
U is an e-cap centred at x and satisfies the following estimates: R(x) > 0 and there
exists r € (C'R(x)"Y2, CR(x)~"2) such that

(1) B(x,r)c U C B(x,2r),

(ii) The scalar curvature function restricted to U has values in a compact subinter-
val of (CT'R(x), CR(x));

(iii) vol(U) > C7'R(x)™*? and if B(y,s) C U satisfies |Rm| < 572 on B(y, s)

then
1 _ VvolB(y,s)
C < S—3 s
(iv) On U,
IVR| < CR? |
(v) On U,
|AR + 2| Ric|?| < CR?, (2.1)
(vi) On U,

IVRm| < C|Rm|? ,

Remark 2.8. If r — g(¢) is a Ricci flow, then %—f = AR + 2| Ric |? hence equation

dR
(2.1) implies that |E| < CR?.

Definition 2.9 (Strong e-neck). We call cylindrical flow the pointed evolving
manifold (S? x R, {gey1(!)}re(—00,0]), Where geyi(+) is the product Ricci flow with
round first factor, normalised so that the scalar curvature at time 0 is 1. If g(-) is an
evolving metric on M, and (xo,#p) is a point in spacetime, then an open subset
N C M is a strong e-neck centred at (xy,ty) if there exists Q@ > 0 such that
(N, {g(t)}1ery—0—1 1] Yo) is unscathed, and, denoting g(1) = Qg(to +tQ~") the
parabolic rescaling with factor Q > 0 at time fo, (N, {g(¢)}se[—1,0], X0) is e-close to
(Sz x (—e~1 e, {8ey1 () re[—1,00- %)

Remark 2.10. A strong e-neck satisfies the estimates (i)—(vi) of Definition 2.7 for
an appropriate constant C = C(¢), at all times, that is on all N x [tg — Q !, t] for
any Q > 0 as above.

Definition 2.11 ((&, C)-canonical neighbourhood). Let {g(¢)},e;) be an evolving
metric on M. We say that a point (x, ) admits (or is centre of) an (e, C)-canonical
neighbourhood if x is centre of an (¢, C)-cap in (M, g(t)) or if (x,t) is centre of a
strong e-neck N which satisfies (i)—(vi) at all times.

In [4, Section 5.1] we fix constants &g, Cg. For technical reasons, we need to take
them slightly different here; this will be explained in the proof of Theorem 2.17.
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Definition 2.12 (Canonical Neighbourhood Property (CN),). Let r > 0. An
evolving metric satisfies the property (CN), if, for any (x.t), if R(x,t) > r~2
then (x, 1) is centre of an (&g, Cy)-canonical neighbourhood.

Next we define a pinching property for the curvature tensor coming from work

of Hamilton and Ivey [8, 10]. We consider a familly of positive functions (Dr)e>0
9
2

defined as follows. Set s, := 177 and define

¢, i [—2.91, +OO) —> [S[‘ +OO)
as the reciprocal of the increasing function
s+ 2s(In(s) + In(1 +¢) — 3).

Compared with the expression used in [8, 10], there is an extra factor 2 here. This
comes from our curvature conventions. A key property of this function is that

?lfi) —> 0ass - +o0.

Definition 2.13 (Curvature pinched toward positive). Let I C [0, 00) be an interval
and {g(f)},es be an evolving metric on M. We say that g(-) has curvature pinched
loward positive at time t if for all x € M we have

6
_ 2.2
R(x.t) 2 — (2.2)
Rm(x,t) =2 —¢(R(x,1)). (2.3)

We say that g(-) has curvature pinched toward positive if it has curvature pinched
toward positive at each t € /.

This allows in particular to define the notion of surgery parameters r,§ (cf. [4,
Definition 5.2.5]). Using [4, Theorem 5.2.4] we also define their associated cutoff
parameters h,®. Using the metric surgery theorem, we define the concept of a
metric gy being obtained from g(-) by (r.8)-surgery at time to (cf. [4, Definition
5.2.7)). This permits to define the following central notion:

Definition 2.14 (Ricci flow with (r, §)-bubbling-off). Fix surgery parameters r,§
and let /1, ® be the associated cutoff parameters. Let / C [0, 0o) be an interval and
t8(t)}rer be a Ricci flow with bubbling-off on M. We say that {g(t)};es is a Ricci
flow with (r, § )-bubbling-off if it has the following properties:
(i) £(-) has curvature pinched toward positive and satisfies R(x,7) < © for all
(x.1) e M x I;
(ii) For every singular time fy € I, the metric g4 (fo) is obtained from g(-) by
(r, 8)-surgery at time 7g:

(i) g(-) satisfies property (CN),.
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Definition 2.15 (Ricci flow with (r, §, k)-bubbling-off). Let x > 0. A Ricci flow
with (r, 8)-bubbling-oft g(-) is called a Ricci flow with (r,§, k)-bubbling-off if it is
x-noncollapsed on all scales less than or equal to 1.

Definition 2.16. A metric ¢ on a 3-manifold M is normalised if it satisfies
tr Rm? < 1 and each ball of radius 1 has volume at least half of the volume of the
unit ball in Euclidean 3-space.

Note that a normalised metric always has bounded geometry. At last we can state
our existence theorem:

Theorem 2.17. There exist decreasing sequences of positive numbers ri, k. > 0
and, for every continuous positive function t v+ 8(t), a decreasing sequence of
positive numbers 8 with 8; < 8(-) on |k, k 4+ 1] with the following property. For any
complete, normalised, nonspherical, irreducible Riemannian 3-manifold (M, go),
one of the following conclusions holds:

(i) There exists T > 0 and a complete Ricci flow with bubbling-off g(-) of bounded
geometry on M, defined on [0, T, with g(0) = g, and such that every point
of (M, g(T)) is centre of an eg-neck or an gy-cap, or

(i1) There exists a complete Ricci flow with bubbling-off g(-) of bounded geometry
on M, defined on [0,+00), with g(0) = go, and such that for every
nonnegative integer k, the restriction of g(-) to lk, k + 1] is a Ricci flow with
(ric, O, ki )-bubbling-off.

Definition 2.18 (Ricci flow with (r(-), §(-))-bubbling-off). We fix forever a function
r(-) such that r (1) = r on each interval |k, k + 1]. Given §(-) satisfying §(¢) = 8¢
onall ]k, k + 1], we call a solution as above a Ricci flow with (r(-), §(-))-bubbling-off.
We define similarly /2(-) and ©(-) their associated cutoff parameters.

Addendum 2.19 (Ricci flow with bubbling-off on the quotient). With the same
notation as in Theorem 2.17 and under the same hypotheses, if in addition (M, gy) is
a Riemannian cover of some Riemannian manifold (X, go), then in either case there
exists a Ricci flow with bubbling-off g(-) on X such that for each t, (M, g(t)) is a
Riemannian cover of (X, g(t)), and in Case (ii), the restriction of g(:) to |k, k + 1]
is a Ricci flow with (ry, 6k )-bubbling-off for every k.

The only differences between Theorem 2.17 and Theorem 11.5 of [5] is that M
is assumed to be irreducible, that ‘surgical solution’ is replaced with ‘Ricci flow with
bubbling-off’, and that there is the alternative conclusion (i).

Theorem 2.17 follows from iteration of the following result, which is analogous
to [5, Theorem 5.6]:

Theorem 2.20. For every Qo.po and all 0 < Ty < Tg < +00, there exist r,k >
0 and for all 5§ > 0O there exists § € (0,8) with the following property. For any
complete, nonspherical, irreducible Riemannian 3-manifold (M, go) which satisfies
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|Rm| < Qy, has injectivity radius at least pg, has curvature pinched toward positive
at time T4, one of the following conclusions holds:

(i) There exists T € (T4, Tq) and a Ricci flow with bubbling-off g(-) on M,
defined on [Ty, T, with g(T4) = go, and such that every point of (M, g(T))
is centre of an eg-neck or an ey-cap, or

(ii) There exists a Ricci flow with (r. 8, «)-bubbling-off g(-) on M, defined on
(T4, Tq), satisfying g(T4) = go.

The proof of Theorem 2.20 is the same as [5, Theorem 5.6]. It follows from
three propositions, which we do not write here, analogous to Propositions A, B,
C of [5] (see the propositions page 949). The only notable difference is that we
have to modify Proposition A to add the alternative conclusion that in (M, g (b)),
every point is centre of an gp-cap or an gg-neck. Let us explain the proof of this
adapted proposition A (see [3] pages 959-961). It uses the surgical procedure of the
monograph [4] rather than that of [5]. If the curvature is large everywhere, that is if
R >2r=2on (M, g(b)) where r is the surgery parameter, then by property (CN),
(Definitions 2.10 and 2.12 (iii)) every point has a canonical neighbourhood, so the
alternative conclusion holds. Otherwise, we partition M in three sets of small, large
or very large curvature. Precisely, as in [4, page 89], we define G (resp. O, resp. R)
as the set of points of M of scalar curvature less than 2r 2, (resp. € [2r72,0/2),
resp. > @/2) By the assumption that Rmin(b) = 2’._2 and Rmax(b) = G)’ these sets
are nonempty. One can find a locally finite collection of cutoff' §-necks {N;} in O
which separates G from R, in the sense that any connected component of M \ {N; }
is contained in G U @ or in @ UR. Since M is irreducible and not homeomorphic to
S3, the middle sphere of each N; bounds a unique topological 3-ball B;. Then one
of the following cases occurs:

Case 1 Each B; is contained in a unique maximal 3-ball B;.

It O is contained in the union of maximal B;’s, we can perform the surgical
procedure using the Metric surgery theorem 5.2.2 of [4] on each maximal cap B,
yielding a metric which has the desired properties. Otherwise one can see that each
point of M is centre of e-cap. Hence the alternative conclusion holds.

Case 2 M is the union of the B;’s.
Then each point is separated from infinity by a cutoff neck, so each point is centre
of a cap. Hence the alternative conclusion holds.

Finally, we need to explain how the addendum is proved. We already remarked
in [S] Section 11 that the construction can be made equivariant with respect to a
properly discontinuous group action, by work of Dinkelbach and Leeb [6]. The
only thing to check is that we still have the Canonical Neighbourhood Property for
the quotient evolving metric 2(-). This is not obvious, since the projection map
P M — X might not be injective when restricted to a canonical neighbourhood.
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We use a classical trick: by adjusting the constants, we may assume that g(-)
has the stronger property that each point (x, ) such that R(x,t) > r~2 has an
(g9/2. Cy)-canonical neighbourhood. Take now (x,¢) € X x [ such that R(x,t) >
r~2. Choose ¥ € M such that p(¥) = x. Then R(x,t) = R(x.,t) > r=2, so
(x.?) has an (g9/2. Cp)-canonical neighbourhood U. By truncation, it also has an
(g9. Co)-canonical neighbourhood U’ contained in U (see figure below) :

—2g71 2671

Precisely, if U is an £9/2-neck with parametrisation ¢ : §% x (—2¢5", 2e51) — U,
we set U’ 1= ¢(S? x (—ey' ey")). If U is a cap, then U is the union of two sets
V.W,where WNV = dV and W is an g¢/2-neck with parametrisation ¢. Then we
set W= ¢(S? x (0,265 ")) and U' := VU W',

Claim 1. The restriction of the projection map p to U’ is injective.

Once the claim is proved, we can just project U’ to X and obtain an (&g, Cy)-
canonical neighbourhood for (x, ), so we are done.
To prove the claim we consider two cases:

Case 1. U and U’ are caps.

Assume by contradiction that there is an element y in the deck transformation
group, different from the identity, and a point y € U’ such that yy € U’
Following [6], we consider the subset N, of M consisting of points which are
centres of gg-necks. According to [6, Lemmas 3.6, 3.7] there is an open supset
F O N, which has an equivariant foliation F by almost round 2-spheres. All
points sufficiently close to the centre of W are centres of £y-necks.

Pick a point z in No, N W \ W’ sufficiently far from W’ so that the leaf S
of F through z is disjoint from U’. By Alexander’s theorem, S bounds a 3-ball
B C U. Note that B contains U’. If § = yS,then B = yBorM = B U
yB. The former possibility is ruled out by the fact that the action is free, while any
self-homeomorphism of the 3-ball has a fixed point. The latter is ruled out by the
assumption that M is not diffeomorphic to S3.
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Hence S # yS. Since S and yS are leafs of a foliation, they are disjoint. Then
we have the following three possibilities:

Subcase a. yS is contained in B.

Then we claim that yB C B. Indeed, otherwise we would have M = B U yB,
and M would be diffeomorphic to S3. Now y acts by isometry, so volB = volyB.
This is impossible since the annular region between S and yS has nonzero volume.

Subcase b. S is contained in yB. This case is ruled out by a similar argument
exchanging the roles of § and yS (resp. of B and yB.)

Subcase ¢. B and yB are disjoint.

Then since U’ C B, the sets U’ and yU' are also disjoint, contradicting the

existence of y.
Case 2. U and U’ are necks. Seeking a contradiction, let y be an element of the
deck transformation group, different from the identity, and y be a point of U’ such
that yy € U’. Consider again the set N, defined above and the equivariant foliation
F. Since U’ is contained in the bigger set U, each point of U’ is centre of an
€o-neck. Let S (resp. yS) be the leaf of F passing through y (resp. yy.) Since
M is irreducible, S (resp. ¥S) bounds a 3-ball B (resp. By). As in the previous
case, we argue that one of these balls is contained into the other, otherwise we could
cover M by B, B, and possibly an annular region between them, and get that M is
diffeomorphic to S3. Since y acts by an isometry, we must in fact have B = B,,
and y has a fixed point, contradicting our hypotheses. This finishes the proof of the
claim, hence that of Addendum 2.19.

2.2 Stability of cusp-like structures. In this section, we prove the stability of
cusp-like structures under Ricci flow with bubbling-off. We consider a (nonspherical,
irreducible) 3-manifold M , endowed with a cusp-like metric go. To begin we remark
that the universal cover of M has bounded geometry, except in the case of solid tori:

Lemma 2.21. Assume that M is not homeomorphic to a solid torus. Let (M, &)
denote the universal cover of (M, go). Then (M, go) has bounded geometry.

Proof. Sectional curvature is bounded on (M, go), hence on the universal cover
(M, go) by the same constant. Observe that for any lift X € M of some x € M,
the injectivity radius at ¥ is not less than the injectivity radius at x. Fix a compact
Subset K C M such that each connected component C of M \ K is e-homothetic
to a hyperbolic cusp neighbourhood, for some small € > 0. Let K denote any lift of
K to M. Then the 5-neighbourhood of K has injectivity radius bounded below by
io > 0, the injectivity radius of the (compact) 5-neighbourhood of K. Now consider
alift C of a cuspidal component C. The boundary dC is incompressible in M,
otherwise M would be homeomorphic to a solid torus (see Theorem A.3.1 in [4]). It
follows that C is simply connected with an incomplete metric of negative sectional
Curvature. Arguing as in the proof of the Hadamard theorem, it follows that the
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injectivity radius at a given point p € C is not less than d(p, dC). Together with the
previous estimate, this implies that inj(M, go) > min{io, 5} > 0. O

Let us denote by g, a metric on M which is hyperbolic on the complement of
some compact subset of M, and such that, for each end E of M there is a factor
Ag > 0 such that Az go — g, goes to zero at infinity in the end, in C*-norm for
each integer k. Let g(-) be a Ricci flow with (r(-), d(-))-bubbling-oft on M such that

2(0) = go, defined on [0, T'] for some T > 0. Set Ag(¢) = l-F):l—]):Et We then have:

Theorem 2.22 (Stability of cusp-like structures). For each end E of M, A (t)g(t)—
ge goes to zero at infinity in this end, in C k-norm for each integer k, uniformly for
t €[0,T].

Proof. Let us first explain the idea. It is enough to work on each cusp. The main tool
is the Persistence Theorem 8.1.3 from [4], which proves that a Ricci flow remains
close, on a parabolic neighbourhood where it has a priori curvature bounds, to a given
Ricci flow model, if the initial data are sufficiently close on some larger balls. The
model we use now is a hyperbolic Ricci flow on 72 x R. To obtain the required
curvature bounds, we shall consider an interval [0, /] where the closeness to the
hyperbolic flow holds, and o > 0 fixed small enough so that Property (CN),, which
prevents scalar curvature to explode too fast, gives curvature bounds on [0, 7 + o].
The Persistence Theorem then gives closeness to the hyperbolic flow until time 7 + ¢
on a smaller neighbourhood of the cusp. One can iterate this procedure, shrinking
the neighbourhood of the cusp by a definite amount at each step, until time 7.

Let us now give the details. Let £ be an end of M and U be a neighbourhood of
E such that (U, g.) is isometric to (T? x [0, +00), Bhyp = e_z’"gTz + dr?), where
gqy2 1s flat. Let ¢ : T? x [0, +00) — U be an isometric parametrisation (between
g and gnyp.) Then A g™ go — gnyp and its derivatives go to zero at infinity. We may
assume for simplicity that A = 1, and we define g(¢) := ¢*g(¢) to be the pullback
Ricci flow with bubbling-off on T? x [0, +00). Let Zhyp(+) denote the Ricci flow on
T? x R such that Zhyp(0) = e > gp2 + dr?,ie. Shyp(t) = (1 + 41)gnyp. We use it
as the Ricci flow model, in the sense of [4, Theorem 8.1.3.]. Our goal is to compare
Zhyp(L) to g(1).

By definition of our Ricci flow with bubbling-off, r(-) and ®(-) are piecewise
constant. More precisely, there exist 0 = typ < f; < -+ < ty = T such that
r(t) = r; and ®(r) = O; on (¢;, ti+1]. In fact, we can choose t; = i fori < N (cf.
Definition 2.18). In particular, g(¢) satisfies the canonical neighbourhood property
at scale r; on this interval (every point at which the scalar curvature is greater than
ri”2 is centre of an (&g, Cp) canonical neighbourhood) and the scalar curvature is

bounded above by ®;. The pinching assumption (cf. Definition 2.13) then implies
that the full curvature tensor is bounded by some K; on the same interval.
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Set K :=sup;_; . y_; {Ki}. Define a small number o > 0 by setting
2 2
o=2Ld <L vi=0,....N-1
2Cy 2C

This number is small enough so that g(-) cannot develop a singularity on a cusp on
[t,t + o] if R < 0 at time /. Precisely, let us put Cs = T? x [s, +00), for s > 0.
Then we have:

Lemma 2.23. If g() is unscathed on Cg x [0, A] and has scalar curvature R < 0
there, then it is also unscathed on Cy x [0, A + o] and has curvature tensor bounded
by K.

Proof. We know that singular times are discrete. Let ¢ € [0, o] be maximal such that
Cs x [0, A + ] is unscathed for 2(-) (possibly 1 = 0).
We prove first that for x € Cy and 1’ € [A, A + t] we have

Rix,t")y = 2¢ @) 2 << h@) 2

Indeed, since r(-) is nonincreasing, g(-) satisfies (CN)pa+r on [A,¢]. If
R(x,A) < 0and R(x,1’) > 2r(t/)"2, then we can find a subinterval [t;,7,] C
[A,#] such that for u € [y, 6], R(x,u) > r(t)72 r(x,t1) = r(t')~2, and
r(x,ty) = 2r(t")2.

Then the inequality I%—fl < CoR? holds on {x} x [t1, 2], thanks to Property (2.1)
of canonical neighbourhoods (cf Remark 2.8). The contradiction follows by
integrating this inequality and using the fact that t, — 1) < 0.

Assume now that 1 < o. Then there is a surgery at time A + ¢ and, by definition
of the maximal time, ¢ (Cy) is scathed at time A + . The surgery spheres are disjoint
from ¢ (Cy), as they have curvature ~ (h(A + 1))~2, where (A + ¢) is the cutoff
parameter, and curvature on ¢(Cy) is less than 2r(1')™* << (h(A + 1))™2. By
definition of our surgery, this means that ¢(Cy) C M is contained in a 3-ball where
the metric surgery is performed. But a cusp of M cannot be contained in a 3-ball of
M, hence we get a contradiction. We conclude that t = o and R(x,t') < 2r(t")72,
Vi' € [A, A+ o). The pinching assumption then implies | Rm | < K there. O

Forevery 4 > 0, let pa = p(A, T, K) be given by the Persistence Theorem 8.1.3
of [4]. The proof of Theorem 2.22 is obtained by iteration of Lemma 2.23 and the
Persistence Theorem as follows.

Fix 4 > 0. Let 59 > 0 be large enough so that g(0) is p;l-close to ghyp(0)
on Cy,. In particular R < 0 there, so by Lemma 2.23, g(:) is unscathed on
Cso X [0, ], with curvature tensor bounded by K. The above-mentioned Persistence
Theorem applied to P(q,0.A.0), for all ¢ € Cs,+p,, shows that g(¢) is A7 -close
0 gnyp(7) there. Hence on Cy,yp,—a % [0,0], §() is A~ -close to gnyp(-), and in
particular R < 0 there. We then iterate this argument, applying Lemma 2.23 and the
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Persistence Theorem, n = [T /o] times and get that g(-) is A~ !-close to ghyp(+) on
Csg+n(pa—a) x [0.T].

By letting A go to infinity and rescaling appropriately, this finishes the proof of
Theorem 2.22. O

3. Thick-thin decomposition theorem

Let (X, g) be a complete Riemannian 3-manifold and € be a positive number. The
e-thin part of (X, g) is the subset X~ (¢) of points x € X for which there exists
p € (0, 1] such that on the ball B(x, p) all sectional curvatures are at least —p ™2
and the volume of this ball is less than gp. Its complement is called the e-thick part
of (X, g) and denoted by X (g). The aim of this section is to gather curvature and
convergence estimates on the e-thick part of (M, (41)"1g(t)) as t — oo, when g(-)
is a Ricci flow with (r(-), 6(-))-bubbling-off for suitably chosen surgery parameters
r(-) and 8(-). In fact for simplicity we will consider the rescaling t ' g(¢). Here, we
assume M irreducible, nonspherical and not Seifert fibred. We assume also that M is
not homeomorphic to R*, which does not have cusp-like metrics. As a consequence,
M does not have a complete metric with Rm > 0. In the compact case, this follows
from Hamilton’s classification theorem (Theorem B.2.5 in Appendix B of [4]). In
the noncompact case, this follows from the Cheeger-Gromoll theorem and the Soul
theorem (cf. B.2.3 in [4]).

Recall that r(-) has been fixed in Definition 2.18. In [4, Definition 11.1.4],
we define a positive nonincreasing function 6(:) such that any Ricci flow with
(r(-).8(-))-bubbling-off satisties some technical theorems — Theorems 11.1.3 and
11.1.6, analoguous to [ 18, Propositions 6.3 and 6.8] —if § < § and the initial metric
is normalised.

Both Theorems 11.1.3 and 11.1.6 remain true for a Ricci flow with (r(-), 5(+))-
bubbling-off on a noncompact nonspherical irreducible manifold, with the weaker
assumption that the metric has normalised curvature at time 0, i.e. trRm? < | for
the initial metric, instead of being normalised in the sense of Definition 2.16. In
particular it applies to metrics which are cusp-like at infinity. Indeed, the proofs
of theorems 11.1.3 and 11.1.6 do not use the assumption on the volume of unit
balls for the initial metric; it only uses the assumption on the curvature, mainly
through the estimates (2.2)—(2.3). It uses neither the compactness of the manifold,
the finiteness of the volume nor the particular manifold. We recall that the core
of Theorem 11.1.3 is to obtain x-noncollapsing property, canonical neighbourhoods
and curvature controls relatively to a distant ball satisfying a lower volume bound
assumption. The parameters then depend on the distance to the ball and on its
volume, not on time or initial data. These estimates are then used to control the
thick part (Theorem 11.1.6).
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| We gather below results following mainly from Perelman [18, 6.3, 6.8, 7.1-3].
We need some definitions.
Given a Ricci flow with bubbling-off on M, we define

p(x,t) :==max{p >0 : Rm=> —p 2 on B(x,t,p)}

and p 7 := min{p(x,1), v/1}. We denote by M the universal cover of M and g(1)
the lifted evolving metric, which is by Addendum 2.19 a Ricci flow with (r(-), §(-))-
bubbling-oﬂ' if g(r)is. If x € M, we denote by X € M alift of x and by B~’(.T‘. t,r)
the r-ball in (M, #(1)) centered at . An evolving metric {g(f)};e; on M is said to
have finite volume if £(1) has finite volume for every t € I. We denote this volume
by V(r). We then have:

P_l‘0p0§iti0n 3.1. Forevery w > 0 there exists 0 < p(w) < F(w) < 1, T = T(w),
K=Kw)>0 such that for any Ricci flow with (r(-), 8(-))-bubbling-off g(-) on M
Such that §(-) < §(-) and with normalised curvature at time 0, the following holds:

() Forallx e M, t > T and 0 < r < min{p(x. 1), F/1}, if vOIB(Z,1,r) = wr?
for some lift & of x then |[Rm| < Kr~2, [VRm| < Kr~3 and |V?Rm| <
Kr=%on B(x.t.r).

(i) Forallx €e M andt > T, if volé(.{'.[, r) = wr? for some lift X of x where
r = p(x,1), then p(x.t) = pa/1.

(iii) If g(-) has finite volume, then:

(a) There exists C > 0 such that V(1) < C 132,

(b) Let w > 0, x, € M and t, — +oo. If x, is in the w-thick part
of (M, 1,/ g(ty)) for every n, then the sequence of pointed manifolds
(M, 1, g(ty), x,) subconverges smoothly to a complete finite volume
pointed "hyperbolic’ 3-manifold of sectional curvature —1/4.

Proof. Note that vo]B~(f. t,r) > volB(x,t,r). Properties (i), (ii) with the stronger
assumption volB(x,1,r) > wr3 correspond to Perelman [18, 6.8, 7.3]). For the
€xtension to the universal cover see [1, propositions 4.1, 4.2]. We remark that
We extend the curvature controls to the full ball, as in [4, Sec. 11.2.3] (cf. [4,
Remark 11.2.12)). Property (iii) follows from Perelman [18, 7.1,7.2]. For more
details one can see Section 11.2 in [4], using technical theorems 11.1.3 and 11.1.6.
The assumption on the volume is used to prove that limits of rescaled parabolic

neighbourhoods are hyperbolic (cf Proposition 11.2.3). O

Rfémark 3.2. The hypothesis that M is irreducible is not essential here, but since our
Ricei flow with (r(-), 6(-))-bubbling-off is defined for this situation, it makes sense
1o keep this assumption throughout.
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For later purposes, namely to prove that cuspidal tori in the appearing hyperbolic
pieces are incompressible in M, we need the following improvement of Proposi-
tion 3.1(ii1)(b), which gives convergence of flows rather than metrics. With the
notations of Proposition 3.1, we define g, := t, 'g(t,) and g, (1) := 1, g(tt,),
the latter being a Ricci flow with bubling-off such that g, (1) = g,. If gy, denotes
the ‘hyperbolic” metric of sectional curvature —1/4, then the Ricci flow gyyp(7)
satistying gnyp(1) = gnyp is simply gnyp(f) = 1 &hyp. Consider w > 0, 1, — oo and
Xy in the w-thick part of (M, g,). By Proposition 3.1 there exists a (sub)-sequence
of (M. gn, xp) converging smoothly to (H, gnyp, Xeo). By relabeling, we can assume
that the sequence converges. Then we have:

Proposition 3.3. The sequence (M x [1,2], gn(t), (xn, 1)) converges smoothly to
(H % [1.2]. ghyp(1). (Xoo. 1)).

Proof. We need to show that, for all A > 0, for all n large enough, the rescaled
parabolic ball B(%,.1,4) x [1,2] is A~ !-close to B(xeo, 1, A) x [1,2]. In what
follows we put a bar on x,, to indicate that the ball is w.r.t g, (¢).

We use the Persistence Theorem [4, Theorem 8.1.3], the hyperbolic limit
(H x [1.2]. gnyp(1). (Xoo. 1)) being the model My in the sense of [4, page 89].
Fix A > 1 and let p := p(My, A, 1) > A be the parameter from the Persistence
Theorem. By definition of (H, ghyp. Xoo), note that (B(X,, 1, p). gn) is p~'-close
to (B(xso. I, p). gnyp) for all sufficiently large n, satisfying assumption (ii) of [4,
Theorem 8.1.3]. To verify the other assumptions, we adapt arguments of [12,
Lemma 88.1] to our situation. In particular we have to take care of hyperbolic pieces
appearing in a large 3-ball affected by a metric surgery. This is ruled out by a volume
argument.

So we consider for each n, T,, € [t,, 2t,] maximal such that

(i) B(xn.ty, p/tn) X [tn. Ty] 1s unscathed,
(i) |21 Ric(x.1) + g(x.1)] gy < 107 there.

The case T, = t,, where t, is a singular time and a surgery affects the ball
just at that time, is not a priori excluded. Note that (ii) implies |Rmg, | < 1 on
the considered neighbourhood: one has Ricg() & —%g(l‘) fort € [t,, Ty, or

. 1 ~ . .
Ricg(r,) ~ —5;-g(ttn) for t € [1.Ty/tn], and then Ricg, () = Ric,

~
~

-1
n &tty)
—#[”g(tt,,) = —zl—tg,,(!). Thus the sectional curvatures of g,(f) remain in [—% —
T —% + l—(l)()] for A large enough.
We let 7, := T,/t, € [1,2] denote the rescaled final time. The assumptions

of [4, Theorem 8.1.3] beirgg satisfied on B(x,,1,p) x _[1,7-“”], the conclusion
holds on B(Xn, 1, A4) x [1.7,], that is (B(Xu. 1. A) x [1,T,], ga(2)) is A" -close
to (B(xoo. 1. A) x [1. Ty]. ghyp(f))-

Claim 2. Forall n large enough, T,, = 2.
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Proof of Claim 2. We first prove that there are at most finitely many integers n such
that 7,, is a singular time where B(x,.1,.p+/In) is scathed, that is g4 (x,T,) #
g(x,Ty) for some x € B(xp. 1y, px/In).

We first describe the idea of the proof. Assume that 7, is such a singular time.
By definition of our (r, §)-surgery, there is a surgery 3-ball B 3 x whose boundary
9B is the middle sphere of a strong §-neck with scalar curvature ~ h=2(T},) >> 0,
where /1(7},) is the cutoff parameter at time 7,. By assumption (ii) above, R < 0
at time 7,, on B(xp, ty, p/1y), hence 0B N B(xy, ty, ps/In) = @. It follows that
B(xy.t,, p\/ty) C B, which is an almost standard cap for g4 (7). For the pre-
surgery metric, the persistence theorem implies that (B(x,,t,, AVty), g(T,)) is
almost homothetic to a (large) piece of the hyperbolic manifold H. Hence the
surgery shrinks this piece to a small standard cap, decreasing volume by a definite
amount. As moreover ¢~ 'g(¢) is volume decreasing along time, volume would
become negative if there were too many such singular times, yielding a contradiction.
We now go into the details.

Let st > 0 be the volume of the unit ball in (H, ghyp(1)) centred at Xo0, Bpy, 1=
B(xoo,1,1). Forany t > 1 we then have volg, ) (Bnyp) = t3/?volg, (Byy,) =
321 We assume A > I, so that for n large enough, by closeness at time 7,
between g, (-) and Zhyp(-) we have:

2 ! 7 \3/2 4
Olg”(f”)(B(x”, L A)) 2 EVOIgh)_p('[_‘”)(Bhyp) = (Tn) / 5

Assume that T}, is a singular time such that g4 (x, 7,) # g(x,T,) for some x €
B(xp, 1y, p/T,) and let B > x be a surgery 3-ball as discussed above. As B contains

B(x,, 1, p) and p > A, we also have

i

T3/2
y(B) > A

gn(Tn
For the unscaled metric 2(Ty) = thgn(Tu/tn) = 1ngn( 7_“,1) we then have, before
: 3/2
surgery, voly (7,)(B) = [,?lzvolg”(f”)(B) > (taTn)¥/?8 = T 5. After surgery,
volg . 7,y (B) is comparable to 43(T},). Computing the difference of volumes gives:

) — 7‘};’)/2& < 32k

Vol&’-f(Tfi)(B) - VO]K(TH)(B) S (.'123("‘!"! 2 n 4 *

for all » large enough. Since g4 (1) < g(¢) on the whole manifold, we have

1u‘
volg (7, (M) = volg (1, (M) < —T,?/ZZ- 3.1)
for dll n large enough. Now the proof of [4, Proposition 11.2.1] shows that (1 4
‘) 'g(1) is volume non- increasing along a smooth Ricci flow. Since g1 < g at
singular times, this monotonicity holds for a Ricci flow with bubbling-off. One easily
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deduces by comparing the (r+1/4)~ " and the ¢ ~! scaling that t ! g () is also volume
decreasing. Precisely, let us now set (1) := ¢t~ 'g(¢), then for all ¢’ > ¢:

t'+1/4 1
t" t+1/4

3/2
Volg(tr)(M) < ( ) VOlg(t)(M) < VOlg(t)(M).

It particular, the sequence volg(,,)(M) is decreasing. Moreover, if [, 1,,] contains a
singular time 7}, as above, then using (3.1) in the second inequality, we get:

n n
volg(z,) (M) < volg (1, (M) < volg(7,)(M) — 7 < volg ) (M) — 1

On the other hand, volz, (M) > 0. Thus there are at most finitely many such
singular times. We conclude that B(xy,, ty, p+/1,) is unscathed at time T}, for all n
large enough.

From now on we suppose n large enough such that B(x,, t,, ps/tn) X [tn, Tn] is
unscathed. Recall that singular times form a discrete subset of R, hence there exists
o, > 0 such that B(x,,t,, ps/ty) is unscathed on [t,, T, + 0,]. By maximality of

T,, when T, < 2 we must have |27 Ric(x,t) + g(x,1)|g¢) = 107° at time T}, for
some x € B(xy.ty. p/1;). Otherwise by continuity we find o,, small enough such
that (i) holds on [t,. T, + 0] C [tn, 2t,], contradicting the maximality of T;,.

We now show that for all large n, |2fRic(x,7) + g(x,0)|gy < 107¢ at
time Ty, on B(xn.tn, py/In), which will imply that 7, = 2 by the discussion
above. Using the A~ '-closeness of the rescaled parabolic ball B(X,, 1, A) x [1, T;]
with B(Xeo. 1, A) x [1.T,], one can check that x, is in the w’-thick part of
(M. T, 'g(Ty)), for some fixed w’ > 0, for all n large enough. Proposition 3.1(b)
then implies that T,,_lg(T,,) becomes arbitrarily close to being hyperbolic on any
fixed ball (w.r.t T, 'g(7},)) centred at x,,, when n — o0. Controlling the distortion
of distances on B(x,, 1y, po/1y) X [ty, Ty] (with the estimates (ii)), one can conclude
that |2t Ric(x. 1) + g(x.1)|gy < 107% on B(xp, ty, p/1y) at time T, for n large
enough. The details are left to the reader. Together with the first part of the proof
and the maximality of Ty, this implies that 7, = 2 for n large enough, proving
Claim 2. O

As already noted, we then have, by the Persistence Theorem, that B(x,, 1, A) x
[1,2], with the rescaled flow g,(t), is A~ !-close to B(xeo, 1, 4) x [1,2] for all n
large enough. This concludes the proof of Proposition 3.3. O

From Proposition 3.3 one easily obtains:

Corollary 3.4. Given w > 0 there exist a number T = T(w) > 0 and a
nonincreasing function B = By @ [T, +00) — (0, +00) tending to O at +o0 such
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that if (x,t) is in the w-thick part of (M, 17 Yg(t)) witht > T, then there exists a
pointed hyperbolic manifold (H, gy, %) such that:

(D) P(x, 1, B(r)" /1, 1) is B(t)-homothetic to P(x.1,8(t)"", 1) C H x [1,2],
endowed with gy, (s) = sgnyp(1)),

(i) Forally € B(x,t.8(1)"" V1) and s € [z, 2¢],
l

where the norm is in the C [ﬂ*']-r()p()ing__v w.r:t the metric g(t) = t~! g(r).

gy.s)—gly.0ll < B,

4. Incompressibility of the boundary tori

We prove that under the hypotheses of the previous section the tori that separate the
thick part from the thin part are incompressible.

More precisely, we consider M nonspherical, irreducible, not homeomorphic to
R3, endowed with a complete finite volume Ricci flow with (r(-), §(-))-bubbling-off
g(-) such that §(-) < 8(-), and whose universal cover has bounded geometry (for each
time slice). We call hyperbolic limit a pointed “hyperbolic’ manifold of finite volume
and sectional curvature —1/4 that appears as a pointed limit of (M, 1, 'g(t,), x,) for
Some sequence t, — oo. [In this section, we assume the existence of at least one
hyperbolic limit (H, Shyp- *), which is supposed not to be closed.

_ Given a hyperbolic limit H, we call compact core of H, a compact submanifold
H C H whose complement consists of finitely many product neighbourhoods of the
cusps. Then for large 1, we have an approximating embedding f, : H — M which
is almost isometric with respect to the metrics gpyp, and fn_l g(fy). The goal of this
section is to prove the following result:

Proposition 4.1. If n is large enough, then for each component T of 0H , the image
In(T) is incompressible in M.

We argue following Hamilton’s paper [8]. A key tool is the stability of the
hyperbolic limit H: it is a limit along the flow, not just along a sequence of times.
We give a statement following Kleiner-Lott (cf. [12, Proposition 90.1].)
Proposition 4.2 (Stability of thick part). There exist a number Ty > 0, a
nonincreasing function o« [Ty, +00) — (0, +400) tending to 0 at +00, a finite
collection {(H,,x,),...,(Hy, ki )} of hyperbolic limits and a smooth family of

sSmooth maps
k

f(ty: B =\ ) Bxia()™)y = M
i=1
defined for ¢ ¢ [Ty, +00), such that
() The Cle®O™"1_,0m of t7V (1) g(1) — gnyp is less than a(t);
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(ii) Foreveryty = To and every xo € By,, the time-derivative at ty of the function
. 12
t = f(t)(xo) is less than a(to)t, 2

(i) f(t) parametrises more and more of the thick part: the «(t)-thick part of
(M.t g(1)) is contained in im( f(1)).

The proof of [12] transfers directly to our situation, using Corollary 3.4.

Remark 4.3. Any hyperbolic limit H is isometric to one of the H;. Indeed, let
* € H and w > 0 be such that x € H " (w). Then x, is in the w/2-thick part of
(M, t;'g(tn)) for n large enough. Assume that f(t) " (xn) € B(xi,a(t,)™") for
a subsequence. Then f(f,)”'(x,) remains at bounded distance of *;, otherwise it
would go into a cusp contradicting the w/2-thickness of x,. It follows that (M, x,,)
and (M, f(t,)(*;)) will have the same limit, up to an isometry.

4.1. Proof of Proposition 4.1. The proof of Hamilton [8] is by contradiction.
Assuming that some torus is compressible, one finds an embedded compressing disk
for each time further. Using Meeks and Yau [15, 16], the compressing disks can
be chosen of least arca. By controlling the rate of change of area of these disks,
Hamilton shows that the area must go to zero in finite time — a contradiction.

Due to the possible noncompactness of our manifold, the existence of the least
area compressing disks is not ensured: an area minimising sequence of disks can go
deeper and deeper in an almost hyperbolic cusp. We will tackle this difficulty by
considering the universal cover, which has bounded geometry (cf. Lemma 2.21 and
Addendum 2.19), when necessary.

Let us fix some notation. For all small ¢ > 0 we denote by H, the compact core
in H whose boundary consists of horospherical tori of diameter a. By Proposition
4.2 and Remark 4.3, we can assume that the map f(¢) is defined on B(*, «(t)™!) D
H, for t larger than some 7, > 0. For all t > T, the image f(t)(H,) is well
defined and the compressibility in M of a given boundary torus f()(dH,) does not
depend on ¢ or a. We assume that some torus T of d H, has compressible image in
M . Below we refine the choice of the torus T.

We define, for some fixed a > 0,

Y, i= f(O)(Hy), T,:= f(t)(T) and W, := M —int(¥,).

Our first task is to find a torus in dY, which is compressible in W,. Note that T,
is compressible in M, incompressible in ¥, which is the core of a hyperbolic 3-
manifold, but not necessarily compressible in W;: for example ¥; could be contained
in a solid torus and T, compressible on this side.

Consider the surface dY; C M (not necessarily connected). As the induced map
m(T;) — m (M), with base point choosen in T,, is noninjective by assumption,
Corollary 3.3 of Hatcher [9] tells that there is a compressing disk D C M, with
dD C dY, homotopically non trivial and int(D) € M — dY;. As int(D) is not
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contained in Y;, one has int(D) C W,. Rename T, the connected component of dY;
which contains 9D and T C 9 H,, its f(t)-preimage. Then T, is compressible in ;.

Let X, be the connected component of W; which contains D. Using [4, Lemma
A.3.1] we have two exclusive possibilities:

(i) X, is a solid torus. It has convex boundary, hence Meeks-Yau [15, Theorem 3]
provide a least area compressing disk D,2 C X, where 0D? C T, is in a given
nontrivial free homotopy class.

(ii) T, does not bound a solid torus and ¥, is contained in a 3-ball B. Then Y, lifts
1sometr1cally to a 3-ball in the universal cover (M, 2(1)). Let ¥; be a copy of ¥;
in M. By [9] again, there is a torus T, C Y, compressnble in M — dY,, hence
in M — Y; We denote by X, the connected component of M —mt(Y,) in which
T, is compressible. As (M, 3(1)) has bounded geometry, by [16, Theorem 1]
there is a compressing disk D? C X, of least area with dD? C T, in a given
nontrivial free homotopy class.

We define a function 4 : [T, +00) — (0. +00) by letting A(¢) be the infimum
of the areas of such embedded disks. Similarly to [12, Lemma 91.12] we have

Lemma 4.4. For every D > 0, there is a number ag > 0 with the following property.
Given a € (0, ay) there exists T, > 0such that for all ty > T, there is a piecewise
smooth function A defined in a neighbourhood of ty such that A (1) = A(tg), A > A
everywhere, and

_ 3 1
A'(to) < Z( +1) Altg) =27 + D

Io + 3
if Ais smooth at to, and 1im; 4, r>1, A@t) < A_(fo) if not.

Proof. The proof is similar to the proof of [12, Lemma 91.12], and somewhat
simpler as we don’t have topological surgeries. Recall that our Ricci flow with
bubbling-off g(¢) is non increasing at singular times, hence the unscathedness
of least area compressing disks ([12, Lemma 91.10]) is not needed: we have
hmr—»m t>19 A(t) < A(tp) if 1y is singular. However, something must be said about
[12, Lemma 91.1 1]. This lemma asserts that given D > 0, there is ag > 0 such that
fora € (0,ap) and T C H a horospherical torus of diameter a, for all 7 large enough
.[81),2 Kyp2ds < % and length(dD?) < % J1, where Kyp? is the geodesic curvature
of 30,2. Its proof relies on the fact that an arbitrarily large collar neighbourhood of
T, in W, is close (for the rescaled metric t ~'g (1)) to a hyperbolic cusp if 7 is large
enough. In case (1) above, this holds on X; N f(t)B(*,a(r)"1)) by Proposition
4.2. In case (2) observe that f(r)(B(*,a(t)"")) is homotopically equivalent to the
compact core H,, hence lifts 1somelncally to (M 2(1)). It follows that X, also has
an arbitrarily large collar neighbourhood of T, close to a hyperbolic cusp.

The rest of the proof is identical to the proof of [12, Lemma 91.12] and hence
omitted, O
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In particular A is upper semi-continous from the right. Note also that as A4 is
defined as an infimum and g(¢) and g(¢) are (1 + &¢)-bilischitz when times #;, " ¢,
for some g, — 0, A is lower semi-continuous from the left.

Fix D < 2m, a € (0,ap) and T, as in Lemma 4.4. Then consider the solution
A :[T], +00) — R of the ODE

A 3 | &
t+ 3

with initial condition A(7!) = A(T!). By a continuity argument, A(t) < A() for
allt > T,. However, from the ODE we have

R 374 [\ /4
A(t) (I + Z) =4(-27 + D) (t + Z) + const,

which implies that A(t) < 0 for large ¢, contradicting the fact that A(¢) > 0.
This finishes the proof of Proposition 4.2.

5. A Collapsing Theorem

[n this section we state a version of the collapsing theorem [14, Theorem 0.2] in the
context of manifolds with cusp-like metrics.
Let (M, gn) be a sequence of Riemannian 3-manifolds.

Definition 5.1. We say that g, has locally controlled curvature in the sense of
Perelman if for all w > 0 there exist F(w) > 0 and K(w) > 0 such that for n
large enough , if 0 < r < F(w), if x € (M,, g,) satisfies volB(x,r) > wr3
and sec > —r~2 on B(x,r) then |[Rm(x)] < Kr72, [VRm(x)| < Kr~2 and
|VZRm(x)| < Kr~*on B(x,r).

Remark 5.2. Note that if g, = t, 'g(t,), where g(-) is as in Proposition 3.1 and
t, — oc, then g, has locally controlled curvature in the sense of Perelman.

Definition 5.3. We say that (g,) collapses if there exists a sequence w, — 0 of
positive numbers such that (M,,, g,) is wy,-thin for all n.

From [ 14, Theorem 0.2] we obtain:

Theorem 5.4. Assume that (M,,, g,) is a sequence of complete Riemannian oriented
3-manifolds such that

(1) gp is a cusp-like metric for each n,
(i1) (gn) collapses,
(iii) (gn) has locally controlled curvature in the sense of Perelman,

then for all n large enough M,, is a graph manifold.
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The manifolds in [14, Theorem 0.2] are assumed to be compact and may have
convex boundary. Our cusp-like assumption (i) allows to apply their result by the
following argument. First we deform each gn so that the sectional curvature is —% on
some neighbourhood of the ends, assumptions (ii), (iii) remaining true. Let w, — 0
be a sequence of positive numbers such that g, is w,-thin. For each n, we can take a
neighbourhood U, of the ends of M, with horospherical boundary, small enough so
that the complement M, = M, \ int U, satisfies assumptions of [14, Theorem 0.2]
with collapsing numbers w,, except for the convexity of the added boundary. Then
we deform the metric on M, near the boundary into a reversed hyperbolic cusp
S0 that the boundary becomes convex. It follows that M, hence M,, is a graph
manifold for all n large enough. In fact it should be clear from Morgan-Tian’s proof
that the convexity assumption is not necessary in this situation (see the more general
[2, Proposition 5.1]).

6. Proof of the main theorem

Here we prove Theorem 1.2. We sketch the organisation of the proof. Let (M, go)
be a Riemannian 3-manifold satisfying the hypotheses of this theorem. We also
assume that M is not a solid torus, is nonspherical and does not have a metric with
Rm > 0, otherwise it would be Seifert fibred and conclusion of Theorem 1.2 holds.
We first define on M a Ricci flow with (r(+), 6(-))-bubbling-off g(-), issued from gy
and defined on [0, +-00). As mentioned before, we may have to pass to the universal
cover. By existence Theorem 2.17 g(-) exists on a maximal interval [0, Tinax). The
case Tnax < 400 is ruled out using the fact that (M. g(Tmay)) is covered by canonical
neighbourhoods (see claim 3 below). Proposition 3.1 then provides a sequence
In /" 400 and connected open subsets H,, C M, = (M, th lg(tn)), diffeomorphic
to a complete, finite volume hyperbolic manifold H (possibly empty) of sectional
Curvature —1/4. We set G, := M, \ H,. Proposition 4.1 proves that the tori of
dH, (if H # ) are incompressible in M for large n. In this case, the atoroidality
assumption on M implies that H, is diffeomorphic to M and that each component
of G, is a cuspidal end 72 x [0, co) of M. Then t~1g(1) converges (in the pointed
topology) to a complete, finite volume hyperbolic metric on M of sectional curvature
—1/4. In both cases (H = @ or H # ), G, collapses with curvature locally
controlled in the sense of Perelman. If H = @, we conclude by collapsing theorem
S4that M, = G, is a graph manifold (hence Seifert fibred) for all n large enough.
It i, # 0, Proposition 4.2 gives a continuous decomposition M = H, U G, where
H, is diffeomorphic to M, g(¢) is smooth and |[Rm| < Ct~! there, and G, is a(r)-
thin. We then use the topological/geometric description of the thin part presented in
[11» 2] to obtain that |[Rm| < Cr~! on G, by the same argument as in [1, Theorem
iy
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6.1. Setting up the proof. Let (M, go) be the Riemannian universal cover of
(M, go). By Lemma 2.21 it has bounded geometry. Without loss of generality,
we assume that it is normalised. If M is compact, we can even assume that g itself
is normalised.

We now define a Riemannian 3-manifold (M, go) by setting (M, go) := (M, go)
if M is compact, and (M, o) = (M, go) otherwise. In either case, g is complete
and normalised. By [13], M is irreducible. If M is spherical, then M is spherical,
contrary to the assumption. Henceforth, we assume that M is nonspherical.

Thus Theorem 2.17 applies to (M, 2o), where 5(-) is chosen from Theorem 3.1.
Let g(-) be a Ricci flow with bubbling-off on M with initial condition go. By
Addendum 2.19, we also have a Ricci flow with bubbling-off g(-) on M with initial
condition go covered by g(-).

Claim 3. The evolving metrics g(-) and g(-) are defined on [0, +00).

Proof. If this is not true, then they are only defined up to some finite time 7', and
every point of (M, g(T)) is centre of an gg-neck or an go-cap. By Theorem 7.4
of [5], M is diffeomorphic to S3, §2 x S, 2 x R or R3.2 Since M is irreducible
and nonspherical, M is diffeomorphic to R®. The complement of the neck-like
part (cf. again [6]) is a 3-ball, which must be invariant by the action of the deck
transformation group. Since this group acts freely, it is trivial. Thus M = M.
Being covered by g(-), the evolving metric g(-) is complete and of bounded
sectional curvature. Hence by Remark 2.3, (M, g(T)) has finite volume. By
contrast, (M, g(T)) contains an infinite collection of pairwise disjoint £g-necks of
controlled size, hence has infinite volume. This contradiction completes the proof of
Claim 3. O

It follows from Claim 3 that M carries an equivariant Ricci flow with bubbling-
oftf g(-) defined on [0, +o0) with initial condition go. We denote by g(-) the quotient
evolving metric on M. By Addendum 2.19, it is also a Ricci flow with (r(-), §(-))-
bubbling-off. By Theorem 2.22, ¢(-) remains cusp-like at infinity for all time. Now
consider the alternative that follows the conclusion of Proposition 3.1 part (iii):
Either

(i) there exist w > 0, f, — oo such that the w-thick part of (M, z,,‘lg(tn)) 18
nonempty for all n, or

(ii) there exist w, — 0, t, — oo such that the wj,-thick part of (M, tn"g(t,,)) is
empty for all n.

We refer to the first case as the noncollapsing case and to the second as the
collapsing case.

2This list is shorter than the corresponding list in [5] since we do not consider caps diffeomorphic to
the punctured R P?3.
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We denote by g, the metric f, ! g(ty). Note that g, has curvature locally
controlled in the sense of Perelman (cf. Remark 5.2). We denote by M, the
Riemannian manifold (M, gn), M, (w) its w-thick part, and M, (w) its w-thin part.
In the collapsing case, M,, = M, (wy) fits the assumptions of Theorem 5.4. Hence
it is a graph manifold for n large enough.

Let us consider the other case.

6.2. The noncollapsing case. By assumption, there exist w > 0 and a sequence
ln = — o0 such that the w-thick part of M, is nonempty for all n. Choose
a sequence x, € M, (w). Up to extracting a subsequence, by part (iii) of
Proposition 3.1, (M,. Xn) converges to a complete hyperbolic manifold (H, *)
of finite volume whose metric gy has sectional curvature —1/4. By definition
of the convergence, there exist an exhaustion of H by compact cores H, C H
and embeddings f,, : (H,,*) — (M, x,) such that |gyg — S gnl goes to zero.
Proposmon 4.2 (stability of the thick part) gives 7o > 0 and a nonincreasing function
b [Ty, 00) — (0, 00) tending to zero at infinity, and for 1 > Ty embeddings

f(t) P B(x,a(t)™") € H — M satisfying conclusions (i)—(iii) of this proposition.
If H is closed, the desired conclusion follows. From now on we assume that H is not
closed. By Proposition 4.1, for each m € N, for all n large enough, each component
of f,(dH,,) is an incompressible torus in M. Relabeling the f, we can assume
that the property holds for f,, (9 H,,) for all m. By atoroidality of M, it follows that
H, := int fo(Hy) C M is diffeomorphic to M forall n, and G, := M \ H, is a
disjoint union of neighbourhoods of cuspidal ends of M, . For large t > Tj, choose a
compact core H, C B(x, «(t)"!) such that d H, consists of horospherical tori whose
diameter goes to zero as ¢ — oo. We assume moreover that t — H, is smooth.
Set H, := Ff(t)H,) ¢ M and G, := M \ H,. Then H, is diffeomorphic to M,
I+ g(t) is smooth there and |[Rm| < Ct~! by closeness with H. On the other
hand, G, is w(¢)-thin for some w(t) — 0 as ¢ — oo. There remains to prove that
G, satisfies |Rm| < Ct~! also, which will imply its unscathedness.
_ Consider a connected component C(1) of G,. For all large ¢, dC(¢) is an
Incompressible torus in M with a collar neighbourhood «(7)-close, w.r.t t ~1g(1),
t0 a collar neighbourhood of a horospherical torus in H. On the other hand, C(¢) is
diffeomorphic to 72 x [0, 00) and its end has a cusp-like structure, hence curvature
also bounded by Ct~!. There remains to control what happens in the middle of C(¢).

We apply the topological/geometric description of the thin part obtained in [2,
Proposition 5. I] to a compact subset C'(1) C C(t) which we define as follows.

By Theorem 2.22 there is an embedding feusp T? x [0,4+00) — M and a
function p - [0, +00) — [0, 00) such that

|(41)71 f “\pg(t) Ehyp| T2 (b (1), +o0) < W)

and foun (T2 x [b(1), —+—oo)) C C(t) is a neighbourhood of its end. Here gpy,, denotes
a hyperbolic metric ¢~ 25 el + ds? (with sectional curvature —1) on T2 x [0, +00).
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The metric 4g,y, may differ from the one on /. We can assume b(r) — oco. We
define Ceysp(r) = feusp(T? x [b(1) 4+ 2, +00)) and

) =B}, gl

Now we fix functions 7, K given by Proposition 3.1, ;¢; > 0 given by [2, Lemma
5.2], wy = wy(puy. 7, K) > 0 given by [2, Proposition 5.1].

The closed subset C'(t) satisfies the assumptions of the latter proposition for
t > T large enough such that w(r) < w;. We now follow the proof of [I,
Theorem 1.1 on p. 23]. Decompose C’(¢) into closed subsets Vi, V5, V; as given by
the proposition. The two boundary components of C'(¢) have to bound components
of V,. Either C'(t) = V; or the boundary components of C’(¢) bound components
Cy.Cs of V;, which are diffeomorphic to 72 x I and there is a component C3 of V5
adjacent to C;. We prove that only the first case occurs, for all ¢ large enough.

Lemma 6.1. For all t large enough, C'(t) = V1.

Before proving this lemma, we explain how to conclude the proof of the theorem.
First [2, Lemma 5.2(ii)] applies to any x € Vi, giving wy = wy (i, 7, K) > 0 such
that

VolB(X. 1. p f7(x.1)) = wi(p sz (x, 1)),

for any lift ¥ € M of x. Let p = p(w;) > 0 be given by Proposition 3.1. If
pyi(x.t) < p(x.1) then p(x.1) = Jt > pa/t. Ifnot, p(x.t) = pi(x,t) and
Proposition 3.1 (ii) implies

pyi(x.1) = pt

if ¢ is large enough (larger than 7 = T(wy)). In both cases, Py = p+/t. Then
Proposition 3.1(i) with r = p ;(x,¢) implies [Rm| < C(wy)r ™" at (x, 1) for some
C = C(w;) > 0. Thus the proof of the theorem is finished if C'(t) = V; for all
large 1.

We now prove Lemma 6.1, arguing by contradiction. Set T := max{To, T1, T}.
Assume that there exist arbitrarily large times ¢ > 75 such that C'(t) # V;. Atany
of these times, the S'-fibres of C3 are homotopic to a fibre of Cy, by [2, Proposition
5.1(b2)]. By incompressibility of dCy in M, this curve generates an infinite cyclic
subgroup in 7y (M). Then [2, Lemma 5.2(i)] applies to any x € C3 N V3 1, and gives

volé(,f‘.t,p\/;(x‘ 1) > wl(P\/?(XJ)){

for any lift x of x, and hence p ﬁ(,r. Al ,6\/1,'_ as above. Moreover [2, Proposition
5.1(¢3)] gives s = s2(py. 7. K) € (0, 1/10), an open set U such that

1
B(x.t, E.s'pﬁ(,t.t)) cUcC B(x,t,.vpﬁ(x,t)), (6.1)
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and a 2-Lipschitz map p : U — R? whose image contains B(0, %sp\/;(x, t)) C R?
and whose fibres are homotopic to fibres of C3, hence noncontractible in M.

Now consider any noncontractible loop y C C'(T»). Define for all ¢ > T,
yi(t) € 9C(t) freely homotopic to y such that £(r)~" o y; () is geodesic in dH,
and evolves by parallel transport in H w.rt. t. On the side of the cusp, define
V2(t) C 0Ceyup(1) freely homotopic to y such that _f;,;}, oya(t) C T2 x{b(t)+2}is
geodesic in (T2, goue) and evolves by parallel transport (at speed b").

In particular y, (1) C C, and y2(t) C C, at each time when these sets are defined
(that is when C’(1) # V1) and these loops are freely homotopic in C'(¢). Let A(t)
be the infimum of the areas of all smooth homotopies H : S' x [0,1] — C'(1)
connecting y; (1) to y2(1).

Claim4. /=1 A(t) > Oas t — oco.

Proof. 1t is identical to [1, Lemma 8.2], except that we have to account for the fact
that 9, (1) may a priori not be bounded. This estimate appears when we compute
the area added to the homotopy by moving the boundary curves. The infinitesimal
added area to the homotopy due to the deplacement of y; is negative (we can
assume o’ > (), hence neglected. The contribution of y,, by closeness with the
hyperbolic cusp, is bounded by Cr.e~?h’. On the other hand, the normalised length
[‘1/25(%‘) — 0 and the normalised geodesic curvature fx(y; (1)) < C, by closeness
with the hyperbolic situation. Let us denote L(1) = t~V2(L(y1(t)) + L(y2(1)).
Computations in [1, Lemma 8.2] give (compare with equation (8.1) there)

d At L(t -
dt—+(f_1A(f)) < —% +C (¥ +& bb’) :
Denoting y (1) = ¢=! A(r) this gives the differential inequality

d — —b .1
___y<_v4(+C[ll,+e b").
11 y=-y/ ( )

Using the standard method, one obtains that y (1) = K(z)t_'/4 where

d 1/4 ( ,—1 ,—bpr

We can assume that L(1) is almost nonincreasing, that is that for any 7, < a <1,
one has L.(1) < 2L(a). Thenfor T» < a <1,

K(t)— K@) = C (/’ (11_3/4L(u) + 2.11/4e_bb’) du)

a

! 4
C (ZL((I)f w34 du +r‘/4/ e_bb’du)
a a

C (8L(u)t”4 +r'/4e_b(“)) ,

A

[A
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hence
K(a K(t)— K(a
oy = K@ KO-K@
! l
K(a) _
which is arbitrary small by taking « then ¢ large enough. ]

We conclude the proof of Lemma 6.1. The argument is the same as the one given
in [1]. Consider smooth loops y. B in C'(t) generating 7r1C’(¢). Let y; (1), resp. Bi (1),
i = 1,2, defined as above, freely homotopic to y, resp. B. Let A(t), resp. B(t), be
the infimum of the areas of all smooth homotopies connecting y;(¢) to y(t), resp.
B1(t) to B2(t). By Claim 4,

YA+t 'B(t) = 0 (6.2)

as t — oo. On the other hand let Hy, resp. Hg, be any of these homotopies.
At any time ¢ where Cs is defined, any fibre of the projection p : U — R? is a
noncontractible loop C Cs, hence it intersects at least once the homotopies H,,,Hg.
For all such times r large enough one has, using the fact that p is 2-bilipschitz and
equation (6.1), that

1
area(H,) + area(Hg) > Zvol(p(U)) > csz,ét,

for some constant ¢ = ¢(s, p) > 0. This contradicts (6.2).
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