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Discrete harmonic maps and convergence to conformal maps, I:
Combinatorial harmonic coordinates

Sa’ar Hersonsky

Abstract. In this paper, we provide new discrete uniformization theorems for bounded, m-
connected planar domains. To this end, we consider a planar, bounded, m-connected domain
2, and let 9 be its boundary. Let 7 denote a triangulation of U dQ2. We construct a new
decomposition of 2 U d€2 into a finite union of quadrilaterals with disjoint interiors. The
construction is based on utilizing a pair of harmonic functions on T and properties of their
level curves. In the sequel [26], it will be proved that a particular discrete scheme based on these
theorems converges to a conformal map, thus providing an affirmative answer to a conjecture
raised by Stephenson [41, Section 11].

Mathematics Subject Classification (2010). 53C43; 57M50, 39A12, 30G25.

Keywords. Planar networks, harmonic functions on graphs, flat surfaces with conical
singularities, discrete uniformization theorems.

1. Introduction

L.1. Perspective. The Uniformization Theorem for surfaces says that any simply
connected Riemann surface is conformally equivalent to one of three known
Riemann surfaces: the open unit disk, the complex plane or the Riemann sphere.
This remarkable theorem is a vast generalization of the celebrated Riemann Mapping
Theorem asserting that a non-empty simply connected open subset of the complex
plane (which is not the whole of it) is conformally equivalent to the open unit disk.

Our work in this paper is motivated by the following fundamental question:

Given a topological surface endowed with some combinatorial data,
such as a triangulation, can one use the combinatorics and the
topology to obtain an effective version of uniformization theorems, or
other types of uniformization theorems?

The nature of the input suggests that one should first prove discrete uniformiza-
tion theorems, i.e., first provide a rough approximation to the desired uniformization
Mmap and target. Experience shows that this step is not easy to establish, since the
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input is coarse in nature (such as a triangulation of the domain), and the output
should consist of a map from the domain to a surface endowed with some kind of a
geomeltric structure.

Ideally, the approximating maps should have nice properties and if this step is
successfully completed, one then tries to prove convergence of these maps and the
output objects attained, under suitable conditions, to concrete geometric objects.

Let us describe two examples exploiting the usefulness of such an approach (see
for instance [33] and [20] for other important results). A beautiful and classical result
which was first proved by Koebe [31], The Discrete Circle Packing Theorem, states:

Given a finite planar graph (without multiple edges or loops), there
exists a packing of Euclidean disks in the plane, enumerated by the
vertices of the graph, such that the contact graph of the packing looks
exactly like the given graph, that is, the two graphs are isomorphic.

This theorem was later rediscovered by Thurston [43, Chapter 13] as a conse-
quence of Andreev’s Theorem [2, 3] concerning hyperbolic polyhedra in terms of
circles on the Riemann sphere. Thurston envisioned [42] a remarkable application
to the theory of conformal mapping of the complex plane and the Riemann sphere.
Thurston conjectured that a discrete scheme based on the Discrete Circle Packing
Theorem converges to the Riemann mapping. The conjecture which was proved in
1987 by Rodin and Sullivan [36] provides a refreshing geometric view on Riemann’s
Mapping Theorem.

Thurston suggested to Schramm to study the case where the sets in the plane
that form the tiles in the packing are squares. This resulted in The Finite Riemann
Mapping Theorem which was proved by Schramm [38] and independently by
Cannon, Floyd and Parry [13], in the period 1986-1991:

Let T be a triangulation of a topological planar quadrilateral. Then
there is a tiling of a rectangle by squares, indexed by the vertices of T,
such that the contact graph of the packing looks exactly like the given
graph, that is, the two graphs are isomorphic.

The problem of tiling a rectangle by squares, as provided by the theorem above,
is in some sense a discrete analogue of finding a conformal map from a given
quadrilateral to a rectangle (taking corners to corners and boundary to boundary).
In this scheme, each vertex is expanded to a square, the width of the square is a
rough estimate to the magnitude of the derivative of the uniformizing analytic map
at that vertex. In [13] and in [38], it was proved that all the information which is
required to get the square tiling above, is given by a solution of an extremal problem
which is a discrete analogue of the notion of extremal length from complex analysis.

The actual theorem proved by Cannon, Floyd and Parry ([13, Theorem 3.0.1]) is
a bit different and slightly more general than the one stated above. Their solution is



Vol. 90 (2015) Combinatorial harmonic coordinates 327

also based on discrete extremal length arguments. Another proof of an interesting
generalization of [38] was given by Benjamini and Schramm [9] (see also [10] for a
related study).

The theme of realizing a given combinatorial object by a packing of concrete
geometric objects has a fascinating history which pre-dated Koebe. In 1903, Dehn
[17] showed a relation between square tilings and electrical networks. Later on, in
the 1940s, Brooks, Smith, Stone and Tutte explored a foundational correspondence
between a square tiling of a rectangle and a planar multigraph with two poles,
a source and a sink [11]. In 1996, Kenyon generalized Dehn’s construction and
established a correspondence between certain planar non-reversible Markov chains
and trapezoid tilings of a rectangle [29].

In [24] and [25], we addressed (using methods that transcend Dehn’s idea) the
case where the domain has higher connectivity. These papers provide first steps
towards an approximation of conformal maps from such domains onto a certain class
of flat surfaces with conical singularities.

1.2. Motivation and the main ideas of this paper. In his attempts to prove
uniformization, Riemann suggested considering a planar annulus as made of a
uniform conducting metal plate. When one applies voltage to the plate, keeping one
boundary component at voltage k and the other at voltage 0, electrical current will
flow through the annulus. The equipotential lines form a family of disjoint simple
closed curves foliating the annulus and separating the boundary curves. The current
flow lines consist of simple disjoint arcs connecting the boundary components, and
they foliate the annulus as well. Together, the two families provide “rectangular”
coordinates on the annulus that turn it into a right circular cylinder, or a (conformally
equivalent) circular concentric annulus.

In this paper, we will follow Riemann’s perspective on uniformization by
constructing “rectangular” coordinates from combinatorial data. The foundational
modern theory of boundary value problems on graphs enables us to provide a unified
framework to the discrete uniformization theorems mentioned above, as well as to
more general situations. The important work of Bendito, Carmona and Encinas (see
for instance [6],[7] and [8]) is essential for our applications, and parts of it were
utilized quite frequently in [23], [24], [25], this paper, and its sequels [26, 27].

Consider a planar, bounded, m-connected domain €2, and let 92 be its boundary
which comprises Jordan curves. Henceforth, let 7 denote a triangulation of Q U 9%2.
We will construct a new decomposition of QU3 into R, a finite union of piecewise-
linear quadrilaterals with disjoint interiors. We will show that the set of quadrilaterals
can be endowed with a finite measure thought of as a combinatorial analogue of the
Euclidean planar area measure.

Next, we construct a pair (Sq, f) where Sq is a special type of a genus 0,

singular flat surface, having m boundary components, which is tiled by rectangles
and is endowed with j, the canonical area measure induced by the singular flat
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structure. The map [ is a homeomorphism from (€2, 0€2) onto Sq. Furthermore,
each quadrilateral is mapped to a single rectangle, and its measure is preserved.

The proof that f is a homeomorphism, as well as the construction of a measure
on the space of quadrilaterals, depends in a crucial way on the existence of a pair of
harmonic functions on 79, and a few properties of their level curves.

The motivation for this paper is two fold. First, recall that in the theorems
proved in [24] (as well as in [25]), the analogous mapping to f was proved to be
an energy-preserving map (in a discrete sense) from T onto a particular singular
flat surface. Hence, it is not possible to extend that map to a homeomorphism defined
on the domain. Furthermore, the natural invariant measure considered there is one-
dimensional (being concentrated on edges). So that measure is not the one which we
expect to converge, as the triangulations get finer, to the planar Lebesgue measure.

Second, it is shown in [38, page 117] that if one attempts to use the combinatorics
of the hexagonal lattice, square tilings (as provided by Schramm’s method) cannot
be used as discrete approximations for the Riemann mapping. There is still much
effort by Cannon, Floyd and Parry to provide sufficient conditions under which
their method will converge to a conformal map in the cases of an annulus or a
quadrilateral.

Thus, the outcome of this paper is the construction of one approximating map to
a conformal map from . In [26], which relies on our work in this paper, we will
show that a scheme of refining the triangulation, coupled with a particular choice
of a conductance function in each step (see Section 2.1 for the definition), leads
to convergence of the mappings constructed in each step, to a canonical conformal
mapping from the domain onto a particular flat surface with conical singularities.
This will, in particular, affirm a conjecture raised by Stephenson in 1996 [41, Section
11] (see also [27]).

1.3. The results in this paper. We now turn to a more detailed description of
this paper. In order to ease the notation and to follow the logic of the various
constructions, let us focus on the case of an annulus. A s/if in an annulus is a fixed,
simple, combinatorial path in 7, along which g is monotone increasing which
joins the two boundary components (Definition 3.1).

Let g denote the solution of a discrete Dirichlet boundary value problem defined
on T© (see Definition 2.4). We will start by extending g to the interior of the
domain: affinely over edges in 7(") and over triangles 7). We will often abuse
notation and will not distinguish between a function defined on 7(® and its extension
over | 7.

For the applications of this paper and its sequels [26, 27], first in creating
“rectangular” coordinates in a topological sense, and second in [26, 27] to prove
convergence of maps, similar to those constructed in Theorem 1.3 and Theorem 6.3,
to conformal maps, it is necessary to introduce new functions on 7@, For
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instance, one of these functions, /1, will be defined on an annulus minus a slit (i.e. a
quadrilateral) and will be called the harmonic conjugate function; h is the solution
of a particular Dirichlet-Neumann boundary value problem.

In fact, another function g* must first be constructed. This function will have the
same domain as & and will be called the conjugate function of g. It is obtained by
integrating (in a discrete sense) the normal derivative of g along its level curves
(Definition 2.1). Whereas the normal derivative of g is initially defined only at
vertices that belong to 92, the simple topological structure of the level curves
of g permits the extension of the normal derivative to the interior, and thereafter
its integration. These level curves are simple, piecewise-linear, closed curves that
Separate the two boundary components and foliate the annulus. Definition 3.4 will
formalize this discussion.

There is a technical difficulty in this construction (and others appearing in
this paper) if a pair of adjacent vertices of 7® has the same g-values. One
may generalize the definitions and the appropriate constructions, as one solution.
For a discussion of this approach and others, see [29, Section 5]. Experimental
evidence shows that in the case that the triangulation is complicated enough such
equality rarely happens. Henceforth in this paper, we will assume that no pair of
adjacent vertices has the same g-values (unless they belong to the same boundary
component).

The analysis of the level curves of g* is the subject of Proposition 3.10. Their
interaction with the level curves of g is described in Proposition 3.11. The level
curves of g form a piecewise-linear analogue of the level curves of the smooth
harmonic function u(r, ¢) = log(r), and those of i form a piecewise-linear analogue
of the level curves of the smooth harmonic function v(r, ¢) = ¢.

For any function defined on 7, and any ¢ € R, we let /, denote the level curve
of its affine extension corresponding to the value ¢.

Definition 1.1 (Combinatorial orthogonal filling pair of functions). Let (2,92, 7)
be given, where € is an annulus minus a slit. A pair of non-negative functions ¢ and
¥ defined on 7@ will be called combinatorially orthogonal filling, if for any two
level curves Iy and /g of ¢ and ¥, respectively, one has

e N g| = 1, (1.1)

where | - | denotes the number of intersection points between /, and /g. Furthermore,
it is required that each one of the families of level curves is a non-singular foliation
of (2,900, 7).

Note that level curves are computed with respect to the affine extensions of ¢ and
¥, respectively.

By a simple quadrilateral, we will mean a triangulated, closed topological disk
with a choice of four distinct vertices on its boundary. It follows that a combinatorial
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orthogonal filling pair of functions induces a cellular decomposition 7R of 2 U 92
such that each 2-cell is a simple quadrilateral, and each 1-cell is included in a level
curve of ¢ or of Y. Such a decomposition will be called a rectangular combinatorial
net.

We now record the essential properties of the pair {g, 4} in £2, an annulus minus
a slit.

Theorem 1.2. Assume that for every € > 0, every leaf of g is e-close to a leaf of
h*, where h* is the conjugate function of h (Definition 4.3). Then the pair {g, h} is
combinatorially orthogonal filling.

The metric which we consider is the Gromov—-Hausdor{f metric. The assumption
will make the construction of the rectangular net described below easier to carry.
In [26, 27], we will show how to modify our construction once this assumption is
removed.

We now turn to stating one of our main discrete uniformization theorems. In
the course of the proofs of our main theorems, we will first construct a new
decomposition of €2 into a rectangular net, R, the one induced by {g, i}; then a
model surface which is, when m > 2, a singular flat surface tiled by rectangles.
Finally, we will construct a map between the domain and the model surface and
describe its properties.

Let us start with the fundamental case, an annulus. Given two positive real
numbers r; and r,, and two angles ¢, ¢, € [0,2n), the bounded domain in the
complex plane whose boundary is determined by the two circles, u(r, ¢) = ry, and
u(r,¢) = ra, and the two radial curves v(r,¢p) = ¢1, and v(r,¢p) = ¢,, will
be called an annular shell. Let j denote Lebesgue measure in the plane. In the
statement of the next theorem, the measure v which is described in Definition 5.1
is determined by g, ¢* and . The quantity period(g*) is an invariant of g* which
encapsulates integration of the normal derivative of g along its level curves (see
Definition 3.9).

Our first discrete uniformization theorem is:

Theorem 1.3 (Discrete uniformization of an annulus). Let A be a planar annulus
endowed with a triangulation T, and let 0. A = EU E». Let k be a positive constant
and let g be the solution of the discrete Dirichlet boundary value problem defined on
(A, 0.A.T) (Definition 2.4).

Let S be the concentric Euclidean annulus with its inner and outer radii

satisfying

tri.ra} = {1 exp (

2
peer(g*)k)}' (1.2)

Then there exists

(1) atiling T of S by annular shells,
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(2) a homeomorphism
(A 0AR) = (54,054, T),

such that f is boundary preserving, it maps each quadrilateral in R®@ onto
a single annular shell in S 5, furthermore, f preserves the measure of each
quadrilateral, i.e.,

V(R) = u(f(R)), forall R € R®.

The dimensions of each annular shell in the tiling are determined by the boundary
value problem (in a way that will be described later). In our setting, boundary
preserving means that the annular shell associated to a quadrilateral in R with an
edge on 02 will have an edge on a corresponding boundary component of S 4.

Our second discrete uniformization theorem is Theorem 6.3 which provides a
geometric mapping and a model for the case m > 2. The model surface that
generalizes the concentric annulus in the previous theorem first appeared in [24].
It is a singular flat, genus 0, compact surface with m > 2 boundary components
endowed with finitely many conical singularities. Each cone singularity is an integer
multiple of /2. Such a surface is called a ladder of singular pairs of pants.

In order to prove this theorem, we first construct a topological decomposition of
2 into simpler components; these are annuli and annuli with one singular boundary
component, for which the previous theorem and a slight generalization of it may be
applied. The second step of the proof is geometric. We show that it is possible to glue
the different components which share a common boundary in a length preserving
way. This step entails a new notion of length which is the subject of Definition 4.11.

1.4. Organization of the paper. From [24], we use the description of the
topological properties of singular level curves of the Dirichlet boundary value
problem. The most significant one is a description of the topological structure of
the connected components of the complement of any singular level curve of the
solution. A study of the topology and geometry of the associated level curves and
their complements is carried out in [24, Section 2]. From [25], we will use the
description of the topological properties of level curves of the Dirichlet~-Neumann
boundary value problem on a quadrilateral. A modest familiarity with [24, 25] will
be useful for reading this paper.

For the purpose of making this paper self-contained, a few basic definitions and
some notations are recalled in Section 2, and results from [24, 25] are quoted as
needed. In Section 3, the first main tool of this paper, a conjugate function to g
is defined. In Section 4, the second main tool of this paper, a harmonic conjugate
function and thereafter a rectangular net, are constructed on an annulus minus a slit.
In Section 5, the cases of an annulus and an annulus with one singular boundary
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component are treated, respectively, by Theorem 1.3 and Proposition 5.8. Due
to the reasons we mentioned in the paragraph preceding this subsection, these are
foundational for the applications of this paper and of [26, 27] as well. Section 6 is
devoted to the proof of Theorem 6.3.

Convention. In this paper, we will assume that a fixed affine structure is imposed
on (£2,0€2,7). The existence of such a structure is obtained by using normal
coordinates on (2,0, 7T) (see [40, Theorem 5-7]). Since our methods depend
on the combinatorics of the triangulation, the actual chosen affine structure is not
important.

Acknowledgements. It is a pleasure to thank Ted Shifrin and Robert Varley for
enjoyable and inspiring discussions related to the subject of this paper. Rich
Schwartz graciously helped in formulating the assumption in Theorem 1.2 and in
showing its importance. We are indebted to Bill Floyd and the referee, for their
careful reading, comments, corrections, and questions leading to improvements on
an earlier version of this paper.

2. Finite networks and boundary value problems

In this section, we briefly review classical notions from harmonic analysis on graphs
through the framework of finite networks. We then describe a procedure to modity
a given boundary problem and 7. The reader who is familiar with [24] or [25] may
skip to the next section.

2.1. Finite networks. In this paragraph, we will mostly be using the notation of
Section 2 in [5]. Let I' = (V, E,c¢) be a planar finite network; that is, a planar,
simple, and finite connected graph with vertex set V' and edge set E, where each edge
(x,y) € E is assigned a conductance c¢(x,y) = c(y,x) > 0. Let P(V) denote the
set of non-negative functions on V. Given F C V, we denote by F¢ its complement
inV.Set P(F)=1{ueP(V):Su) C F}, where S(u) = {x € V : u(x) # 0}.
The set 6F = {x € F'°: (x,y) € E forsome y € F} is called the vertex boundary
of F.Let F = FUGSF,andlet E = {(x,y) € E:x € F}. Let '(F) = (F, E, ¢)
be the network such that ¢ is the restriction of ¢ to E. We write x ~ y if (x, y)e E.

The following operators are discrete analogues of classical notions in continuous
potential theory (see for instance [19] and [15]).

Definition 2.1. Letu € P(F). Then for x € F, the function

Au(x) = ) e(x, y) (u(x) —u(y)) 2.1

y~X



Vol. 90 (2015) Combinatorial harmonic coordinates 333

is called the Laplacian of u at x. For x € §(F), let {y1, ya2...., Ym} € F be its
neighbors enumerated clockwise. The normal derivative of u at a point x € §F with
respect to a set F is

%:—(F)(x) = 3" e(x. Y () — u(y), (22)

y~x, yeF

Finally, u € P(F) is called harmonic in F C V if Au(x) =0, forall x € F.

2.2. Harmonic analysis and boundary value problems on graphs. Consider a
pPlanar, bounded, m-connected region 2, and let 92 be its boundary (m > 1). Let T
be a triangulation of QU Q. Let 1Q = E, U E,, where £ and E, are disjoint, and
E, is the outermost component of 3$2. Invoke a conductance function C on 7,
thus making it a finite network, and use it to define the Laplacian on 7@,

Notation 2.2. Henceforth, forany F C V and g : F — R, we let fveF g(v) denote
> ver €(v). Similarly, forany X € E and h : X — R, we let [,_, h(e) denote
ZeeX h(e).

We need to fix some additional data before describing the discrete boundary value
problems that will be employed in this paper. To this end, let {oy,...,q;} be a
collection of closed disjoint arcs contained in £, and let {B;. ..., Bs} be a collection
of closed disjoint arcs contained in E; let k be a positive constant.

Definition 2.3. The Discrete Dirichlet-Neumann Boundary Value Problem is deter-
mined by requiring that

(D) g(TONew) =k, foralli = 1,.... [,and g(T® N B;) =0, forall j =
1...s,

(2) gi_’(Tm) N(E\ (1 U...Uap))) = %(T“’) N(E2\ (B1U...UBy))) =0,
foralli =1,... 80d | = Lyl %,

(3) Ag = 0 at every interior vertex of TO ie. giscombinatorially harmonic, and

@) [icronag 2E(@RQ)(x) = 0, where (4) is a necessary consistent condition.

Definition 2.4. The Discrete Dirichlet Boundary Value Problem is determined by

requiring that

(D) g(TONE) =k, g(TONE,) =0, and

(2) Ag = 0 at every interior vertex of 7.

These data will be called a Dirichlet data for .

In figure 2.4 below, E; is depicted by the red curve, E is depicted by the three
blue curves, and V consists of all the vertices that do not belong to £, U E5.

A fundamental property which we often will use is the discrete maximum-
Minimum principle, asserting that if u is harmonic on V' C V, where V is a
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connected subset of vertices having a connected interior, then u attains its maximum
and minimum on the boundary of V"’ (see [39, Theorem 1.35]).

The following proposition (cf. [5, Prop. 3.1]) establishes a discrete version of
the first classical Green identity. It played an important role in the proofs of the main
theorems in [23, 24|, and it also plays an important role in this paper and in its sequel
[26].

Proposition 2.5 (The first Green identity). Let F C V and u,v € P(F). Then we
have that

f( (o y)ux) —u(y))(v(x) —v(y))

X, y)EE

)
:[ Au(x)v(x)—l—f MR ux). 23)
xeF

xes(F) On

3(V)

<

Figure 2.4. An example where V' consists of all the vertices in the topological interior.

2.3. Piecewise-linear modifications of a boundary value problem. We will often
need to modify a given cellular decomposition, and thereafter to modify the initial
boundary value problem. The need to do this is twofold. First assume, for example,
that L is a fixed, simple, closed level curve of the initial boundary value problem.
Since L N T is not (generically) a subset of 7, Definition 4.11 may not be
employed directly to provide a notion of length to L. Therefore, we will add vertices
and edges according to the following procedure. Such new vertices will be called
type I vertices.

Let Oy, O, be the two distinct connected components of the complement of L.
in £2, with L being the boundary of both (these properties follow by employing the
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Jordan curve theorem). We will call O; an interior domain if all the vertices which
belong to it have g-values that are smaller than the g-value of L. The other domain
will be called the exterior domain. Note that by the maximum principle, one of
O1, O, must have all of its vertices with g-values smaller than the g-value of L.

Lete € T, and assume that x = ¢ N L is a vertex of type I. Thus, two new
edges (v, v) and (u, x) are created. We may assume that v € Oy and u € ;. Next,
define conductance constants ¢ (v, x) = &(x, v) and é(x,u) = ¢(u, x) by

_ c(v,u)(g(v) — gu)) and &(u.x) = c(v,u)(g(u) —g(v)). @.5)

g) —g(x) g(u) — g(x)

c(v, x)

By adding to 7 all such new vertices and edges, as well as the piecewise arcs of
L determined by the new vertices, we obtain two cellular decompositions, 7o, of
O, and To, of O,. Note that in general, new two cells that are quadrilaterals are
introduced.

Two conductance functions, Co, and Cp,, are now defined on the one-skeleton
of these cellular decompositions, by modifying according to Equation (2.5) the
conductance constants that were used in the Dirichlet data for g (i.e., changes are
occurring only on new edges, and on L the conductance is defined to be identically
zero). One then defines (see [24, Definition 2.7]) a natural modification of the
given boundary value problem, the solution of which is easy to control by using the
existence and uniqueness theorems in [5]. In particular, it is equal to the restriction
of gto O;, fori =1, 2.

Another technical point which motivates the modification described above will
manifest itself in Subsection 4.3. Proposition 2.5 will be frequently used in this
Paper, and it may not be directly applied to a modified cellular decomposition, and
the modified boundary value problem defined on it. Formally, in order to apply
Proposition 2.5 to a meaningful boundary value problem, the modified graph of the
network needs to have its vertex boundary components separated enough in terms
of the combinatorial distance. Whenever necessary, we will add new vertices along
edges and change the conductance constants along new edges in such a way that
the solution of the modified boundary value problem will still be harmonic at each
new vertex, and will preserve the values of the solution of the initial boundary value
problem at the two vertices along the original edge. Such vertices will be called type
Il vertices.

Formally, once such changes occur, a new Dirichlet boundary value problem is
defined. The existence and uniqueness of the solution of a Dirichlet boundary value
problem (see [5]) allows us to abuse notation and keep denoting the new solution
by g. We will also keep denoting by 7 any new cellular decomposition obtained as
described above.
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3. Constructing a conjugate function on an annulus with a slit

This section has two subsections. The first subsection contains the construction of
the conjugate function g* to the solution of the initial Dirichlet boundary value
problem defined on an annulus. The second subsection is devoted to the study of
the level curve of the conjugate function. In particular, to the interaction between
these and the level sets of g.

3.1. Constructing the conjugate function ¢g*. In this subsection, we will construct
a function, g*, which is conjugate in a combinatorial sense to g (the solution of a
Dirichlet boundary value problem defined on an annulus). The conjugate function
will be single valued on the annulus minus a chosen s/it.

Keeping the notation of the previous section and the introduction, let (A, Q2 =
E{ U E3,T) be an annulus endowed with a cellular decomposition in which each
2-cell is either a triangle or a quadrilateral. Let k be a positive constant, and let g
be the solution of a Dirichlet boundary value problem as described in Definition 2.4.
Note that all the level curves of g are piecewise, simple, closed curves separating £
and £, (see Lemma 2.8 in [24] for the analysis in this case and the case of higher
connectivity) which foliate A.

Before providing the definition of the conjugate function, we need to make a
choice of a piecewise linear path in A.

Definition 3.1. Let slit(.4) denote a fixed, simple, combinatorial path in 7" which
joins £y to E,. Furthermore, we require that the restriction of the solution of the
discrete Dirichlet boundary value problem to it is monotone decreasing.

Remark 3.2. The existence of such a path is guaranteed by the discrete maximum
principle.
Let
L = {L(vg),..., L(vg)} (3.1)

be the collection of level curves of g that contain all the vertices in 7@ arranged
according to increasing values of g. It follows from Definition 2.4 that L(vy) = E;
and L(vg) = E,. Wealso add vertices of Type II so that any two level sets in £ are at
(combinatorial) distance equal to two. This can be done in various ways, henceforth,
we will assume that one of these is chosen.

We wish to construct a single valued function on A. In order to do so, we will
start with a preliminary case. To this end, let © g;, denote the quadrilateral obtained
by cutting open A along slit(.A) and having two copies of slit(A4) attached, keeping
the conductance constants along the split edges. Since an A orientation is well
defined, we will denote one of the two copies by 0Q s, and the other by 9Q (qp.
In other words, from the point of view of A, points on slit(.4) may be endowed
with two labels, recording whether they are the starting point of a level curve (with
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winding number equal to one) or its endpoint. We keep the values of g at the vertices
unchanged. Thus, corresponding vertices in 0Q e and 0Q wop have identical g-
values. By abuse of notation, we will keep denoting by T the 0-skeleton of Q slit-

For v € A\ E,, which is in 7 or a vertex of type I, let L(v) denote the
unique level curve of g which contains v. Let Q, be the interior of the piecewise-
linear quadrilateral whose boundary is defined by 9Q pase, 0Q (op, L(v) and E;. For
v € FE,, which is in T or a vertex of type I, QU is defined to be (the interior of)

Q slit»

slit(A)

Figure 3.2. An example of a quadrilateral Q.

Remark 3.3. Recall that a vertex of type I is introduced whenever the intersection
between an edge and the level curve does not belong to TO©,

We now make

Definition 3.4 (A conjugate function of g.). Let v be a vertex in 7 or a vertex of
type I. Let
m(v) = L(U) N 0Q pase- (3.3)

We define g*(v), the conjugate function of g, as follows.
First case. Suppose that v ¢ 5 U dQ (. Then

v
g* () = f a—g(Qv)(u). (3.4)
z(v) n
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where the integration is carried along (the vertices of) L(v) in the counter-clockwise
direction.
Second case. Suppose that v € E; \ 9Q (op. Then we define g*(v) by

v

V' dg - o -
() = [ _%8 Q) () = f 1288,
w(v) an w(v) J

n

; (3.5)

where the integration is carried along (the vertices of) E3 in the counter-clockwise
direction.

On edges in 0Q p, we record the conductance constants induced by A. In
order to define g* on 9Q ), we consider the vertices on dQ ., as vertices in A.
For the single vertex 9Q o, N E», the integration above is modified to include the
contribution of its normal derivative from its rightmost neighbor in dQ ,,. For any
other vertex in dQ p, the integration above is modified to include the contribution
of its normal derivative from its leftmost neighbor in Q ,. Finally, for a point
z € Q gy which is not a vertex, g*(z) is defined by extending g* affinely over edges
and triangles, and bi-linearly over quadrilaterals.

Remark 3.5. The absolute value of the normal derivative of g at a vertex which
appears in Equation (3.5), is due to the maximum principle. The continuity of g*
from the right on £, follows from similar arguments to those appearing in the proof
of Proposition 3.7 below.

Remark 3.6. Henceforth, we will denote by Q(£;), and by Q(E,), the two
boundary components of Q g, which correspond to their counterparts £, and E»,
respectively, in A.

We now turn to studying topological properties of the level curves of g*.

By definition, dQ s is the level curve of g* which corresponds to g* = 0. We
will prove that dQ , is also a level curve of g*. In other words, computing the
value of g* at the endpoint of a level curve emanating from 9Q pu is independent
of the level curve chosen. The proof is an application of the first Green identity (see
Proposition 2.5).

Proposition 3.7. The curve 0Q op is a level curve of g*.

Proof. Let L and L, be any two level curves of g which start at dQ v, and have
their endpoints xy, and x2, on dQ (p, respectively. Let Az, 1.,y denote the (interior
of) the annulus whose boundary components are L, and L, respectively. Without
loss of generality, assume that the g-value of L is bigger than the g-value of L.
We must show that

g*(x1) = g (x2). (3.6)

We now add vertices of type I and II according to the procedure defined in
Subsection 2.3, so that the first Green identity, Proposition 2.5, may be applied to
a Dirichlet boundary value problem on the network induced on Ay, 1.,).
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Let w = 1 be the constant function defined in A, 1,). The assertion of
Proposition 2.5, applied with the functions w and g on the induced network in
A(L] ,L2)> yields

g
f _(A(L] .Lg))(x) = 0. (37)
xET(“)ﬂaA(LI L) dan

Hence, it follows that

d 0
/ —g(A(L.,Lz))(-\‘) + j —S(A(LI,LQ))()’) = 0. (3.8)

eTnL, On yeTOn, on

(Note that vertices of type I appear in both of the integrals, so one must apply
Equation (2.5) and the discussion preceding it to justify this equality.) It follows
from Definition 3.4 that the second term in the above equations is equal to g*(xy).
Furthermore, since g is harmonic in 7 N A, and since L, is a level curve of g, it
follows that

dg dg
Hor X —(A x) = 0. 3.9
/;ET(U)HLQ an (A1,L2))00 + /J;E’T(U)F]Lz an( (E2,L2))(X) (3.9)

As above, it follows from Definition 3.4 that the second term in the above
equations is equal to —g*(x;). Therefore, Equations (3.8) and (3.9) imply that

g7 (x1) = g7 (x2). (3.10)
This ends the proof of the Proposition. U

Remark 3.8. With easy modifications, the proof goes through when L, = E5.
We now make

Definition 3.9. The period of g* is defined to be the g* value on Q wop- that is,

period(g*) = g*(0Q top N T(O)) = [ g—g'(-A(Ez,El))(”)- (3.11)

ueTONE, 0N

Following similar arguments to these in the proof above, it is easy to check that

period(g*) is independent of the choice of the added vertices of type II. Also, note

that period(g*) is independent of the choice of the level curve chosen or the slit

chosen. Indeed, it follows from Proposition 3.7 that for a fixed slit the computation
of the period is independent of the points chosen on the slit.

Assume now that a different slit is chosen, and let n be the conjugate function
corresponding to the new slit. It readily follows that period(n) = period(g*).
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Indeed, start with any point x on any of the two slits, let /., the (unique) level
curve of g passing through x. The computation of both periods is done by summing
the normal derivative of g along (the whole of) /,, hence, they are equal. In fact,
their common value is the integral of the normal derivative of g along £, (unless £
is chosen so an absolute value needs to be applied to the end result).

We now continue the study of the level curves of g*. Note that by the maximum
principle (applied to g), and its definition, g* is monotone strictly increasing along
level curves of g.

This property will now be used in the following proposition.

Proposition 3.10. Each level curve of g* has no endpoint in the interior of Q g,
is simple, and joins Q(E1) to Q(E2). Furthermore, any two level curves of g* are
disjoint.

Proof. Suppose that a level curve of g* which starts at s € Q(E3) has an endpoint
fin T € T®, where T lies in the interior of A. Let [s, £] be the intersection of
this level curve with the interior of A. Let L¢ denote the level curve of g that passes
through £. Since the level curves of g foliate A, there exists a level curve Ly of g,
which is as close as we wish to L, and such that its intersection with [s, £] is empty.
Since g* is monotone increasing and continuous along L., it assumes all values
between 0 and period(g*). Hence, it will assume the value g*(£). This shows that
no level curve of g* can have an interior endpoint.

Assume that one of the level curves of ¢g* is not simple. Let D be any domain
which is bounded by it. Since the level curves of g foliate the annulus, one of these
intersects the boundary of D in at least two points. The monotonicity of g* along
the level curves of g renders this impossible.

Assume that there exists a level curve of g*, L(g*), which does not join Q(E;)
to Q(E2). Since each level curve of g* does not have an endpoint inside A and
its intersection with each 2-cell is a segment (or a point). Hence, both endpoints
of L(g*) must lie on Q(E;) or on Q(FE,). Without loss of generality, assume that
both endpoints are on Q(E). Hence, there must be a level curve of g that intersects
L(g*) in at least two points. Reasoning in a similar way to the paragraph above, this
easily leads to a contradiction.

The fact that level curves of g* that correspond to the same value may not
intersect each other follows from similar arguments to those appearing in the first
parts of the proof. [

Of special importance is the interaction between the level curves of g* and
the level curves of g. The following proposition states that, from a topological
point of view, the union of the two families of level curves resembles a planar
coordinate system. This proposition is one topological prerequisite for the proof
of Theorem 1.2, which will appear in the next subsection. It will also be used in
[26, 27].
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Proposition 3.11. The number of intersections between any level curve of g* and
any level curve of g is equal to 1.

Proof. 1t readily follows from the proof of Proposition 3.10 that the number of
intersections of any level curve of g with any level curve of g* is at most equal
to one. Since both families of level curves foliate Q ., this number is equal to
one. ]

4. Constructing a harmonic conjugate and the proof of Theorem 1.2

This section has three subsections. In the first, we define the harmonic conjugate
Junction h and study its immediate properties. In the second, we provide the proof
of Theorem 1.2. In the third, we define the pair-flux metric and its induced length.
These notions will be essential to the proof of Theorem 6.3 in which gluing two
components of the complement of a singular level curve of the solution takes place.

4.1. A harmonic conjugate function. We keep the notation of the previous section
and modify Definition 2.3 to the case of Q ;.

Definition 4.1. The harmonic conjugate function / is the solution of the discrete
Dirichlet-Neumann boundary value problem defined by

(1) I?(T(O) N BQ l()p) = Period(g*), and h (T(O) N BQ husc) =0,

(2) ?(7’(0) NQ(E)) = 3_1(7-(0) N Q(E,)) = 0 (other than at the four corners of
n

1
n
Q aiv),

(3) Ah = 0 at every (interior) vertex of 7 N Q g, and

dh

4) j;:eT(())nao N 5, (08)(x) = 0, where (4) is a necessary consistent condition.

Consider now
M ={M(vp),..., M(vp)}. 4.1)

the collection of level curves of /, that contain all the vertices in 7 arranged
according to increasing values of /. It follows from the definition of 4 that M(vy) =
Q base and M(Up) = Q top-

We will now define the conjugate function of h, which will be denoted by h*,
to the case of the quadrilateral Q g it is a straightforward modification of the
definition of g* (Definition 3.4).

Indeed, one recalls that by [25, Proposition 2.1] the level curves of & are disjoint,
piecewise-linear simple curves that foliate Q i, and join Q(E;) to Q(E>).
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Forv € Q gy \ @ buse, Which is in TO) or a vertex of type I, let M(v) denote
the unique level curve of & which contains v. Let P, be the piecewise-linear
quadrilateral whose boundary is defined by Q(E), M(v), Q(E>2) and Q pus. For
v € Q puse, recall that Q e = M (vg) is the unique level curve of & which contains
v. Let 75:) be equal to Q .

Remark 4.2. Note that a vertex of type I is introduced whenever the intersection
between an edge and the level curve does not belong to TO,

Definition 4.3 (The conjugate function of ). Let v be a vertex in TO N Q olit OT 4
vertex of type I. Let

m(v) = M(v) N Q(E). (4.2)

We define 7*(v), the conjugate function of /4, as follows.
First case. Suppose that v & Q .. Then

voo9l
B (v) = f 2 Pow. “3)
7(v) n

where the integration is carried along (the vertices of) M (v) (from 7 (v) to v).
Second case. Suppose that v € Q ... Then we define 2* (v) by

voooh -
h*(v) = f ]a—(’PU)(u)l, (4.4)
7(v) n

where the integration is carried along (the vertices of) Q puse (from m(v) to v).

For a point z € @ g, which is not a vertex as above, h*(z) is defined by
extending 2™ affinely over edges and triangles, and bi-linearly over quadrilaterals.

We now turn to studying a few topological properties of the level curves of A*
and their interaction with the level curves of 4. The statements and the proofs are
immediate generalizations of their counterparts in Section 3, and therefore we omit
the proofs. The interaction between the level curves of g and those of / is subtle and
will be treated in the next subsection.

By definition, Q(£) is the level curve of &* which corresponds to #* = 0. It
will follow that Q(E>) is also a level curve of h*. In other words, computing the
value of #™* at the endpoint of a level curve emanating from Q(FE,) is independent
of the level curve chosen. We recall this property in

Proposition 4.4. The curve Q(E>) is a level curve of h* in Q g

The proof is an application of the first Green identity (see Proposition 2.5) and is
a direct generalization of the method of proof of Proposition 3.7 applied to P, where
v € E>. Although not used in this paper, as a consequence of this proposition, we
can now make the following definition.
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Definition 4.5. The width of h* is defined to be the /2* value on Q(E>), that is,

width(h*) = h*(Q(E2) N TO). (4.5)

Note that by the maximum principle (applied to /), and by its definition, i* is
monotone strictly increasing along level curves of /1. This property is used in proving
the following proposition in exactly the same way that the analogous property for the
pair {g, g*} was used in the proof of Proposition 3.10.

Proposition 4.6. Each level curve of h™ has no endpoint in the interior of Q g,
is simple, and joins Q pyse 10 Q \op. Furthermore, any two level curves of h* are
disjoint.

Of special importance is the interaction between the level curves of 2* and the
level curves of /. The following proposition will show that, from a topological point
of view, the union of the two families of level curves of {h, h*} resembles a planar
coordinate system. This proposition is another topological prerequisite for the proof
of Theorem 1.2, which will appear in the next subsection.

Proposition 4.7. The number of intersections between any level curve of h* and any
level curve of h is equal to 1.

The proof is an immediate modification of the proof of Propostion 3.11 to the
case of the pair {h, h*}.

4.1.1. Viewing /i from a PDE perspective. The term “harmonic conjugate”
associated with h is motivated by the first three properties used to define h
(Definition 4.1). Hence, / satisfies the combinatorial analogues of the analytical
properties of the polar angle function v(r,¢) = ¢ in the complex plane, which is
known to be, when it is single-value defined, the harmonic conjugate function of

u(r,¢) = log(r).

4.1.2. Related work. Our definition of the harmonic conjugate function is moti-
vated by the fact that, in the smooth category, a conformal map is determined by its
real and imaginary parts, which are known to be harmonic conjugates. The search
for discrete approximation of conformal maps has a long and rich history. We refer
to [34] and [ 14, Section 2] as excellent recent accounts.

We should also mention that a search for a combinatorial Hodge star operator
has recently gained much attention and is closely related to the construction of a
harmonic conjugate function. We refer the reader to [28] and to [35] for further
details and examples for such combinatorial operators.
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4.2. The proof of Theorem 1.2. Each vertex in 7© (which is now a modification
of the original one by adding all the vertices of type I in Q ;) belongs to one and
only one of the level curves of /1. Let

M = (M(vo)..... M(v,)} (4.6)

be defined according to Equation (4.1); this is the set of level curves of h, arranged
according to increasing values of i, which contain all of the vertices mentioned
above. Recall that M (vg) = Q pase and M (v) = Q ,p. Let

L = {L(vy),..., L(vp)} (4.7)

be defined according to Equation (3.1); this is the set of level curves of g, arranged
according to increasing values of g, which contain all of the vertices mentioned
above. Recall that Q(E>2) C L(vg) and Q(E,) C L(vg).

We will now study the following decomposition of 2 U 9€2.

Definition 4.8. Let R be the decomposition of 2 U 92 induced by the intersection
of the sets { M. L}.

Since each one of the sets of level curves of g, &, respectively, is clearly dense in
Q U 0, in order to prove Theorem 1.2 it suffices to establish

Proposition 4.9 (A rectangular net). The number of intersections between any level
curve of g and any level curve of h is equal to 1.

Once this proof is furnished, it will follow that the each 2-cell in R is a
quadrilateral, where each pair of opposite boundaries is contained in successive level
sets of & or in successive level sets of g. Note that a vertex is formed in RO
whenever a level set of g and a level set of / intersect.

Proof of Proposition 4.9. We argue by contradiction. It follows from [24, Lemma
2.8] and [25, Proposition 2.1] that the level curves of g as well as the level curves of
h foliate Q ;; hence, the number of intersections between a level curve of g and a
level curve of 4 is at least one.

By Proposition 4.7, the number of intersections between any level curve of &
and any level curve of 2™ is exactly one. Hence, the proof of the Proposition will
readily follow from the following lemma, where the level curves of g* and 4* play
an important role.

Lemma 4.10. Suppose that a g-level curve L(v;) intersects an h-level curve M(v ;)
in at least two points. Then there exists a level curve of h* which intersects M(v;)
in at least two points.

Proof. There are several cases to consider. First, assume that u, v are the first two
intersection points of L(v;) and M(v,), arranged by their increasing g-values. Let
L([u,v]) € L(v;) be the arc (on L(v;)) which joins u to v, and let M(Ju, v]) C
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M (v;) be the arc (on M(v;)) which joins them. Further assume that these arcs are
disjoint other than their endpoints.

Assume now that the disc D(u, v) whose boundary is L([u, v]) U M([u, v]) is
to the left or to the right of L(v;). Each level curve of h* is simple, joins Q pase tO
Q pase, and the union of which foliates Q ;.

L)~ Qup

Q base

Figure 4.8.

Since Q g is planar, standard arguments employing the Jordan Curve Theorem
imply that there exists (at least) one level curve of 1*, Ly (v;), close (in the HausdorfF
distance) to L(v;), which intersects M(v;) in at least two points. This contradicts
the assertion of Proposition 4.7. The case in which L([u, v]) = M([u, v]) follows
by a simple modification of the above argument.

Analogous cases, in which the disc D (u, v) lies under or above L(v;), are treated
by employing a nearby (to M(v;)) level curve of g* which yields a contradiction to

the assertion of Proposition 3.11. O
Thus, the proof of Theorem 1.2 is now complete.

4.3. The pair-flux length. In this subsection, we will define a notion of length for
the level curves of g and of g*. To give some perspective, recall that in [18], Duffin
defined a metric to be a function t : £ — [0, oc]. More recently, in [12], Cannon
defined a discrete metric to be a function p : ¥V — [0, 00). The length of a path is
then given by integrating 7, p along it, respectively.
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In [24, Definition 1.9], we defined a metric (in Cannon’s sense) which utilized g,
the solution of the boundary value problem, alone.

Motivated by the planar Riemannian case (see Equation (4.12)), we will define
new notions of metric and length for level curves of g in Q g and thereafter in A.
These notions will incorporate both g and g*. (We will of course consider these
notions for level curves that are given in their minimal form.)

Definition 4.11. With the notation of the previous sections, we define the following:

(1) Fore = [e .et], let ¥ (¢) = e~ be the map which associates to an edge its
initial vertex. The pair-flux weight of e is defined by

2
ple) = —L- p (—L—g(l,b(e))) |dh(e)]|

period(g*) X period(g*)
2 2
= ——g(e” dh(e)|, 4.
period(g*)eXp(period(g*)g(e )))l el e

where dh(e) = h(e™) — h(e™).

(2) Let L be any path in R; then its /length with respect to the pair-flux weight is
given by integrating p along it,

Length(L) = f

ee

ple). (4.10)
L

In the applications of this paper, we will use the pair-flux weight to provide a
notion of length to level curves of g. Thus, by the assertion of Proposition 3.7, we
may now deduce

Corollary 4.12. Let L(v) be a closed level curve of g (oriented counter-clockwise),
andlet 0 <m = g(L(v)) < k; then we have

2n

Length(L(v)) = 2w exp (m m) ; 4.11)

The definition of the pair-flux length is one of the new advances of this paper.

Whereas in [24, 25, 26] other notions of lengths utilizing only the solution g were

introduced, the pair-flux length incorporates the pair {g, #}. This appealing feature is

motivated by the case in the smooth category, i.e., for z = r exp (i) in the complex
plane, we have

dz =irexp(i0)d6 + exp (i0)dr. (4.12)

We will now provide a notion of length to the level curves of h in Q g, and
thereafter in A. Keeping the analogy with the planar Riemannian case, the restriction
of the Euclidean length element to level curves of the function v(r, ¢) = ¢y, has the
form

|dz| = dr. (4.13)
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Definition 4.13. Let L(h) = (vy. ..., vi) be a level curve of h with vg € E, and
Vg € Ey, then its length is given by
Length(L(h)) = exp(g(vr)) —exp(g(vo)) = exp(k) — 1. 4.14)

Remark 4.14. It is a consequence of Proposition 4.4 that any two level curves of /1
have the same length.

5. The cases of an annulus and an annulus with one singular boundary
component

5.1. The case of an annulus. In this subsection, we study the important case of an
annulus. It is the first case, in terms of the connectivity of the domain €2, of the one
described in Definition 2.4 (Subsection 2.2). Let R be the rectangular net associated
with the combinatorial orthogonal filling pair {g,/} which was constructed in the
proof of Theorem 1.2.

We use the term measure on the space of quadrilaterals in R to denote a non-
negative set function defined on R®. An example of such, which will be used in
Theorem 1.3, is provided in

Definition 5.1. For any R ¢ R@ | et R op. R pase be the pair of its opposite
boundaries that are contained in successive level sets of g; we will denote them by
the top and base boundaries of R, respectively (where the top boundary corresponds
to a larger value of g). Let t € R([?,?, and b € R be any two vertices. Then we let

base

VR=3 (e"p (period(g*)g“)) P (periodcgr*)g(’) period(g*)
(5.1)

Remark 5.2. By the construction of R, all the vertices in R p (R pase) have the
same g values and dii(R pase) = dh(R op).

We now turn to the

Proof of Theorem 1.3. Recall (see the discussion preceding the proof of Theo-
rem 4.9) that the vertices in R(?) are comprised of all the intersections of the level
curves of g (the family £) and the level curves of s (the family M). Thus, the
vertex (i, j) will denote the unique vertex determined by the intersection of L(v;)
and M(v;); the existence and uniqueness of this intersection are consequences of
Theorem 4.9.

The harmonic conjugate function h is single-valued on Q g, and multi-valued
with a period which is equal to period(g*), when extended to .A. This means that

h(z1) = h(zo) + period(g™). (5.2)
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whenever z; € L(zg) is obtained from zg € slit(.4) by traveling one full cycle along
the g- level curve L(zg). Hence, the function

2
— h(v)), ve ANRO 5.3
period(g*) (g(”) +i (”)) y (5.3)
has period 27/ when defined on A. Therefore,
2
exp (—_”—(g(u) + ih(v))) L veANRO (5.4)
period(g™)

is single-valued on A.
We now turn to the construction of the tiling 7.

The tiling 7 of S4 is determined by all the intersections of the family of
concentric circles, C, defined by

2
i = exp (—_—ﬂ—g(vi)), fori =0....,k, (55)
period(g*)

with the family of radial lines I", defined by

27

= —«—h(v;), for j =0,...,p, .
period(g*) o), tor J P ©:6)

0y
where each annular shell in the tiling is uniquely defined by four vertices that lie on
two consecutive members of the families above.

Let fr be a homeomorphism which maps the quadrilateral R € R determined
by the counterclockwise oriented ordered set of vertices

GG+ 1L ).+ 1L+ DG J+ D} (3.7)

fori =0,..., k—1,and j =0,..., p — 1, onto the annular shell T determined
by the counterclockwise oriented ordered set of vertices

{riexp(ig;).riqiexp ;). rigrexp(igjr1).riexp(igjr1)} (5.8
and that preserves the order of the vertices.

We will now show how to choose the fg’s so that the induced extension of f
is a homeomorphism on the whole of 2. Let Q and R be adjacent quadrilaterals
in the layer between £, and L(vy). One can easily show that by choosing fg
to agree with fp on QO N R, fo U fr is a homeomorphism on their intersection.
Continuing counterclockwise in the fashion described above, it follows that the full
layer between F» and L(v;) is mapped via a homeomorphism onto its image.

Let O be the adjacent quadrilateral to Q from above. Choose fQ so that it

agrees with fp on O N Q. Continue counterclockwise so that for each quadrilateral
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0j+1 ¢j,
) by X
i+ 1% +1)
o %
i+1,)) \
fr \\ ,' ri
\ i
L(vi1) B
N/
®

L(v;)

Figure 5.9. Constructing one annular shell.

the chosen homeomorphism agrees with the choice of the previous homeomorphism
(in this layer) on its right edge, and also agrees on its base, with the choice of the
homeomorphism for the quadrilateral under it (on its top).

For the last quadrilateral in this layer, a homeomorphism can be chosen to
agree with the first chosen homeomorphism (in this layer) on its left side, with the
homeomorphism chosen before it on its right side, and agrees (on its base) with
the homeomorphism chosen for the quadrilateral lying under it. We continue this
process, a layer by layer, until the domain is exhausted.

Let

r=U (5.10)

Rer(?

It is clear from (5.7) and (5.8) that f maps any edge in R N dQ homeomor-
phically onto an arc in S 4. Therefore, f is indeed boundary preserving.

[t remains to prove that the map f = Ug fg which is assembled from the
individual maps as defined above is a homeomorphism onto S4. To this end, first
observe that by the maximum principle, the map [ is into S4.

By the definitions of v, it and Tg, we have for all R € R that
V(R) = w(TR). (5.11)

It is clear from the construction of R that any two quadrilaterals in R® have
disjoint interiors and that their intersection is either a single vertex or a common
edge. Also recall that by definition each quadrilateral has its top and bottom edges
situated on two successive level curves in £, and its right and left edges situated on
two successive level curves in M.
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Since the union of the quadrilaterals in R® tile A, the total v-measure of their
union, which we define to be v(.A), satisfies the following

v(A) = v(Uger@a R = > v(R). (5.12)

ReR(2)
Starting from the quadrilaterals that lie between L(vg) and L(vy), we sum the
v-measure of all the quadrilaterals in the layer defined in between successive level
curves of g, until we reach L(vg). By employing Definition 5.1 an easy computation

shows that 5
_ 2 il _
Ay = (exp (period(g*) k) l) . (5.13)

By the construction of the annular shells and the definition of the map f,
each quadrilateral R is mapped onto a unique annular shell 7g. No two different
quadrilaterals are mapped onto the same annular shell, and the collection of their
images tiles a subset of S 4.

Hence, by applying the above paragraph, (5.12), (5.11), (5.13) and the definition
of S 4, we obtain that

v(A) = Y p(Tr)=pn( | Tr) = u(Sa). (5.14)

ReR(2) ReR(2)

Hence, there are no gaps nor overlaps in the tiling of S 4 and therefore f is onto.

This concludes the proof of the theorem. O

Remark 5.3. The proof shows that each curve in set £ is mapped homemorphically
onto a (unique) level curve in the family u(r,¢) = r;, and that each curve in
the set M is mapped homeomorphically onto a (unique) level curve in the family
v(r,¢) = ¢;. Also, the discussion following Definiton 3.9 guarantees that the
dimensions of S 4 are independent of the choice of the slit chosen.

5.1.1. Relation of Theorem 1.3 to works by Schramm and Cannon-Floyd-
Parry. It is imperative to relate this theorem to Theorem 1.3 in [38], and Theo-
rem 3.0.1 in [13]. While Schramm, and Cannon, Floyd, and Parry used discrete
extremal lengths arguments in their proofs, their arguments as well as their results
are different. Schramm’s proof seems to work for a quadrilateral but not directly for
an annulus. The methods of Cannon, Floyd and Parry work for both a quadrilateral
and an annulus. Furthermore, Schramm’s input is a triangulation with a contact
graph that will (more or less) be preserved. The input for Cannon, Floyd and Parry
is more flexible. They consider a covering of a topological quadrilateral (annulus)
by topological disks. We refer the reader to the papers above for details. Upon
applying a Dirichlet-Neumann boundary value problem, our methods of the proof
of Theorem 1.3 may be adapted to work for the quadrilateral case as well.



Vol. 90 (2015) Combinatorial harmonic coordinates 351

While our proof of Theorem 1.3 does not use the machinery of extremal length
arguments, it is worth recalling that in the smooth category there are celebrated
connections between boundary value problems and extremal length (see for instance
[1, Theorem 4.5]).

The common theme of our methods and those of Cannon, Floyd and Parry in [13]
is the construction of a new coordinate system on a topological annulus. As stated in
the introduction, this powerful idea goes back to Riemann.

5.2. The case of an annulus with one singular boundary component. In this
subsection, we will generalize Theorem 1.3 by providing a geometric model for an
annulus with one singular boundary component. The singular boundary component
is of a special type. It is determined by the topological structure of a singular level
curve of the solution of a Dirichlet boundary value problem imposed on a planar
embedded m-connected domain, where m > 1.

We start with two definitions; the first one appeared in [24, page 9].

Definition 5.4. A generalized bouquet of circles will denote a union of bouquets of
piecewise-linear circles where the intersection of any two circles is at most a vertex.
Moreover, all such tangencies are required to be exterior, i.e., no circle is contained
in the interior of the bounded component of another.

Recall that Theorem 2.15, which was proved in [24], asserts the following.

Theorem 5.5 (The topology of a level curve). Let L be a level curve for g. Then
each connected component of L is a generalized bouquet of circles.

It is convenient to present the singular boundary component as a quotient space.
In the following definition, a circle will mean either a round circle or a piecewise
linear circle.

We are now ready to make

Definition 5.6. An embedded planar circle with finitely many distinguished points
on it will be called a labeled circle. If in addition, equivalence relations among these
points are given, so that the quotient of the labeled circle is a generalized bouquet
of circles, then we call the quotient a labeled bouquet, and the labeled circle will be
called good.

Remark 5.7. Note that if a labeled round bouquet, i.e., one which consists of only
round circles, has more than two round circles tangent at one point, it will no longer
embed in R2,

We will now define the object of study in this subsection. By a generalized
j‘ingular annulus, A jno, we will mean a subset of the plane, whose interior
1S homeomorphic to the interior of an annulus, and whose boundary has two
components: one of which is homeomorphic to S' and the other is a generalized
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bouquet of circles. The subscript denotes the set of tangency points in the
generalized bouquet of circles. Let us also assume that a cellular decomposition 7 of
(A sing- dA sing) 18 provided, where each 2-cell is either a triangle or a quadrilateral.

Topologically, A sing may be presented as the quotient of a planar annulus A,
where A = E; U E,, and E; is a good labeled circle (see Definition 5.6).
Henceforth, we will let 7 denote the quotient map. We will let E, denote the singular
boundary component of d.A gjpg.

Note that the cellular decomposition T can be lifted to a cellular decomposition
T of (A, BA) where each 1-cell, 2-cell in T, respectively, is the unique pre-image,
under 7', of a unique l-cell, 2-cell in 7T, respectively. The difference between
the two cellular decompositions manifests in the addition (in comparision to EZ) of
vertices in E5. Specifically, for each vertex v in the singular part of d.A g, there
are m(v) vertices in E,, where m(v) is the number of circles that are tangent at v.

We will now apply Theorem 1.2 and Theorem 1.3 to (A4, 0.4, '7') In the following
proposition, recall that the existence of R is provided by Theorem 1.2, and that 4 is
the conjugate harmonic function to g, the solution of the imposed discrete Dirichlet
boundary value problem on (A, d.A, T) (see Definition 2.4).

With the above notation and setting in place, and with £ denoting the set of level

curves of g as in Equation (3.1), we may now state the main proposition of this
subsection.
Proposition 5.8 (Discrete uniformization of an annulus with a singular boundary).
Let (A sing 0A sing = E1U E,) be a generalized singular annulus endowed with a
cellular decomposition T. Let k be a positive constant, and let g be the solution of
the discrete Dirichlet boundary value problem defined on (A, d.A, T).

Let S 4 be the concentric Euclidean annulus with its inner and outer radii
satisfying
2n

{ri,r} = {l,exp(m

k)}. (5.15)

Then there exist
(1) atiling T of S by annular shells,

(2) a set denoted by sing(S _4) consisting of finitely many points which is contained
in the inner boundary of S 4,

(3) a homeomorphism
f (A DA\ 77 (sing(A)), R) — (54,054 \ sing(S4), T)

such that f maps the interior of each quadrilateral in R onto the interior of a
single annular shell in S 4, f preserves the measure of each quadrilateral, i.e.,

v(R) = (f(R)), forall R € R,

and f is boundary preserving.
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Proof. The proof is a straightforward modification of the non-singular boundary
case. Let R be the rectangular net constructed in Theorem 1.2. Let / be the conjugate
harmonic function constructed on (A,d.A,T), let / be the homeomorphism
constructed in Theorem 1.3, and let 7" be the tiling of S 4 provided by Theorem 1.3.

For each t; € sing(A) C E,, i = 1,...p, there are precisely m(t;) vertices on
E5 in the equivalence class corresponding to #;. Let

V() = (L yoe o LDty b i = 1o p (5.16)

be the level curves of 4 that have one of their endpoints at one of these vertices. With
this notation, and since the level curves of /1 are “parallel”, it follows that

Vsing() = Ljvm (5.17)

i=1

comprises of all the level curves of /1 that have an endpoint in the pre-image of

sing(A).
Set

p
sing(S.4) = f(E2) () S V), (5.18)

i=1

then sing(S 4) is the image under f of all the vertices in the pre-image of sing(.A).

Furthermore, recall that J (Vsing(s.yy) is a set of radial arcs in S4.

To finish proving the statement in (3), note that any quadrilateral in R?) whose
vertices are disjoint from sing(S4) is mapped homemorphically onto a shell in
S4. Since by construction the image of 7! (sing(A)) is precisely sing(S.,4), it
follows that f will map the interior of each one of the rest of the quadrilaterals
homemorphically onto the appropriate shell, with punctures at the corresponding
vertices. This ends the proof of the proposition. O

A geometric model to (Asmg Asing' T) is now easy to provide since the first
part of (3) in the proposition above allows us to label the vertices in sing(S 4)
isomorphically to the labeling of the vertices in sing(.4). We will keep denoting
by 7 the quotient map which is thereafter induced on S 4. Such a quotient annulus
will be called a generalized Euclidean annulus and will be denoted by C 4. The proof
of the following corollary is straightforward.

Corollary 5.9. With the assumptions of Proposition 5.8, and with C4 = S4/n,
there exist

(1) atiling T of C 4 by annular shells, and
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(2) a homeomorphism
f : (Asing« ()Aglngw R) - (C.A’ aC.Aq T),

such that f(sing(A)) = sing(S4)/m, f maps the interior of each quadrilateral
in R onto the interior of a single annular shell in C 4, f preserves the measure
of each quadrilateral, i.e.,

V(R) = p(f(R)), forall R € R,
and f is boundary preserving.

In the next section, we will work with a general m-connected planar domain
(m > 2) that will be cut along singular level curves of a Dirichlet boundary value
problem imposed on it. In order to allow gluing along components of a singular level
curve, we will utilize Euclidean cylinders and Euclidean cylinders with one singular
boundary component. To this end, recall that a conformal homeomorphism, from
a concentric annulus of radii a, b where R = b/a > 1, to a Euclidean cylinder of
height equal to 1, and radius equal to 1/ log(R), is defined by

cos(@) ,_sin(@) log(r)
log(R)" " Tog(R) " log(R)

),a<r<bh 0<¢<2m,

(5.19)

F(rexp(ig)) = (2n

where (r, ¢) denote polar coordinates in the plane.

[t easily follows that the image of an annular shell under the map F is a Euclidean
rectangle. We will abuse notation and will keep the same notation for S4 and its
image under the mapping F.

We now define a variation of the measure v (see Equation (5.1)) in order to adjust
our statements to working with such cylinders.

Definition 5.10. For any R € RP et R top» R base be the top and base boundaries
of R, respectively. Lett € R® and b € R

top base
A(R) = Mlo N
period(g*) rp

be any two vertices. Then let

(5.21)

where

rr = exp (_er_ ¢(t)) and rp = exp ( g(h)), (5.22)

period(g*) ° period(g*)

following Equation (5.5)

By applying the map F and the measure A, we may state Theorem 1.3,
Proposition 5.8 and Corollary 5.9 in the language of Euclidean cylinders. We end
this subsection by summarizing this in the following remark which will be applied
in the next section.
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Figure 5.20. An example of the map .

Remark 5.11. Under the assumptions of Theorem 1.3, Proposition 5.8, and
Corollary 5.9, all the assertions therein hold if one replaces S 4, generalized S 4, by
a Euclidean cylinder, generalized Euclidean cylinder, respectively; f by m o F o f
and an annular shell by its image under F, F o m, respectively, and the measure v
by the measure A.

6. planar domains of higher connectivity

In this section, we prove the second main theorem of this paper. We generalize
Theorem 1.3 to the case of bounded planar domains of higher connectivity. Let us
Start by recalling an important property of the level curves of the solution of the
discrete Dirichlet boundary value problem (see Definition 2.4). This property will
be essential in the proof of Theorem 6.3. In the course of the proof, we will need to
know that there is a singular level curve which encloses all of the interior components
of 9Q, where € is the given domain. This unique level curve is the one along which
we will cut the domain. We will keep splitting along a sequence of these singular
level curves in subdomains of smaller connectivity until the remaining pieces are
annuli or generalized singular annuli. Once this is achieved, we will provide a gluing
scheme in order to fit the pieces together in a geometric way.

Before stating the second main theorem of this paper, we need to recall a
definition and a proposition. Consider f : V — R U {0} such that any two adjacent
vertices are given different values. Let {w;, ws. . ... wy} be the adjacent vertices to
U € V. Following [4] and [32, Section 3], consider the number of sign changes in

the sequence { f(w1) — £(v). f(w2) = f(V)..... f(wp) = f). fwr) = f)},
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which is denoted by Sgc ¢ (v). The index of v is then defined by

See, ()

) (6.1)

Inds(v)=1-
Definition 6.1. A vertex whose index is different from zero will be called singular;
otherwise the vertex is regular. A level set which contains at least one singular vertex
will be called singular; otherwise the level set will be called regular.

The following proposition first appeared (as Proposition 2.28) in [24].

Proposition 6.2. There exists a unique singular level curve which contains, in the
interior of the domain it bounds, all of the inner boundary components of 9€2.

Such a curve will be called the maximal singular level curve with respect
to €2. Recall that the notion of an interior of such a domain was discussed in
Subsection 2.3.

Throughout this paper, we will not distinguish between a Euclidean rectangle and
its image under an isometry. Recall (see the end of Subsection 1.3) that a singular
flat, genus zero compact surface with m > 2 boundary components with conical
singularities is called a ladder of singular pairs of pants.

We now prove the second main theorem of this paper.

Theorem 6.3 (A Dirichlet model for an m-connected domain). Let (2,02 = E, U
E»,T) be a bounded, m-connected, planar domain with E, = E21 U E% L.y Eg’_l.
Let g be the solution of the discrete Dirichlet boundary value problem defined on
(2,092, 7). Then there exists

(1) a finite decomposition with disjoint interiors of 2, A = U; A;, where for all i,
Aj is either an annulus or an annulus with one singular boundary component;

(2) for all'i, a finite decomposition with disjoint interiors R 4,, of A;, where each
2-cell is a simple quadrilateral;

(3) for alli, a finite measure A; defined on'R 4;; and
(4) a ladder of singular pairs of pants Sq with m boundary components, such that
(a) the lengths of the m boundary components of Sq are determined by the
Dirichlet data,

(b) there exists a finite decomposition with disjoint interiors of Sq = U;Cy;,
where each C 4, is either a Euclidean cylinder or a generalized Euclidean
cylinder, equipped with a tiling T; by Euclidean rectangles where each one
of these is endowed with Lebesgue measure; and

(¢c) a homeomorphism

J1(R,02,U;A4;) = (Sa.0Q,UiR4;),
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such that f maps each A; homeomorphically onto a corresponding C Ay
and each quadrilateral in R 4; onto a rectangle in C 4, while preserving
its measure. Furthermore, f is boundary preserving (as explained in
Theorem 1.3).

Proof. The first part of the proof is based on a splitting scheme along a family of
singular level curves of g which will be proven to terminate after finitely many steps.
We will describe in detail the first two steps of the scheme, explain why it terminates,
and leave the “indices” bookkeeping required in the formal inductive step to the
reader. The outcome of the first part of the proof is a scheme describing a splitting
of the top domain, €2, to simpler components, annuli and singular annuli.

The complement of L(£2), the maximal singular curve in €, has at most m-
connected components, all of which, due to Proposition 6.2, have connectivity which
is at most m — 1, or are annuli, or generalized singular annuli. By the maximum
principle, one of these components has all of its vertices with g-values that are
greater than the g-value along L(£2). In Subsection 2.3, such a domain was denoted
by O5(L(£2)) and was called an exterior domain. Its boundary consists of E; and
L(). It follows from Proposition 6.2 and Theorem 5.5 that it is a generalized
singular annulus which will be denoted by A(E1, L(2)).

Let the full list of components of the complement of L(£2) in £ be enumerated

as
CCy ={CC11(L(Q)). CCro(L(2)). ... CCyp(L(Q)) = A(Ey, L(2))}.
(6.2)
By definition, foreach j = 1,. .., p—1, the g-value on the boundary component
d1,; = dCCy ;(L(82)) N L(§2) (6.3)

is the constant which equals the g-value on L(R). The other components of
aCCl,j(L(SZ)), j = 1,...,p — 1, are kept at g-values equal to 0. Hence, we
now impose a (discrete) Dirichlet boundary value problem with these values on each
element in the list CC; \ A(E;, L(Q)). On A(E;, L()), the induced Dirichlet
boundary value problem is determined by the value of g restricted to £y (which
is equal to k), and the value of g restricted to L(£2). Note that imposing these
boundary value problems in general will require introducing vertices of type I and
of type II and changing conductance constants along new edges, as described in
Subsection 2.3. These modifications are done in such a way that the restriction of
the original g solves the new boundary value problems.

Forj=1,....,p—1,let k j denote the connectivity of CCy ; (L(£2)). We now
Iepeat the procedure described in the first paragraph of the proof in each one of the
connected components CCy j(L(2)), at most k; — 2 times, for j = 1,..., p — 1,
excluding those indices that correspond to annuli.
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We will now describe the second step of the splitting scheme. For each j €
{1,..., p—1} whose corresponding component is not an annulus, a maximal singular
level curve

L;j(CCy ) = L(CCy (L)) (6.4)

with respect to the component CCy ;i (L(£2)), is chosen. This is possible because at
the end of the previous step, we imposed a Dirichlet boundary value problem on each
one of these domains. Hence, the assertions of Proposition 6.2 and Theorem 5.5 may
be applied to these domains as well.

Therefore, a new list consisting of connected components of the complement of
L;(CCy,;)in CCy;(L(2)), of cardinality at mostm — 1,

CCy,j ={CCj(Lj(CCy ;). CCyja(Li(CCj)),....CCjw(Li(CCyj )}

(6.5)
j as chosen above is generated. We will let the last element in this list denote
the exterior domain to L;(CCy ;) in CCy ;. It is, as in the first step of the
scheme, a generalized singular annulus denoted by A(d;,j, L;j(CCy,;)). The other
components have connectivity which is at most (m — 2), or are annuli. Note that
in this step the exterior domain from the first step in the scheme, CCy ,(L(S2)) =
A(Eq, L(2)), is left without any further splitting, since it is a generalized singular
annulus.

Figure 6.6. An example of a splitting scheme.
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By definition, for each j chosen as above, and each i = 1, ... v, the g-value on
the boundary component

01,5 = 0CCy,;i(L;(CCy,;)) NL;(CCy,j) (6.7)

is the constant which equals the g-value on L;(CCy,;). The other components
of dCCy ;;(L(R)) are kept at g-values equal to 0. Hence, we now impose a
(discrete) Dirichlet boundary value problem with the above values on each connected
Component in the list

CCi \ Ay, Li(CCy ). (6.8)

On A(d,,;, L;(CCy,;)), the induced (discrete) Dirichlet boundary value problem
is determined by the value of g restricted to d;_;, and the value of g restricted to
L;j(CCy ;). Addition of vertices of type I and II, and modifications of conductance
constants, will be applied in this step as in the previous one. By abuse of notation,
we will denote the solution by g.

It follows that in each step of the splitting scheme either a domain with fewer
boundary components than the one that was split, or a singular annulus, or an
annulus, is obtained. Hence, the connectivity level of each connected component
after the split is either the constant number two, the constant number three, or
it decreases. Therefore, the splitting scheme will terminate once all the obtained
components have connectivity which equal to two or three, i.e., when the union of all
the final generated lists is a list of lists, each containing only annuli and generalized
singular annuli.

We now turn to the second part of the proof. Here, we will show that it is possible
to reverse the splitting scheme, i.c., starting at the final lists generated in the splitting
scheme up to the first one, CC;, we will glue the pieces in a geometric way; that is,
S0 that the lengths of glued boundary components are equal. It is in this step where
the pair-flux length (Section 4.3) will be used (whenever the term “length” appears).

By the structure of the lists obtained in the first part of the proof, it is sufficient
to show how to
(I) glue in a geometric way elements in a list, say CC\j,..k;» that contains only
annuli and a generalized singular annuli so as to form a ladder of singular pair
of pants denoted by St,j,..k,;»and
(2) glue in a geometric way Sy ;. k; to the singular boundary component of the
generalized singular annulus in the list from which CCy ;. ¢, was formed.
Note that, if all the elements in the list C Cy, jo.k; are annuli, we can apply case
(2), since we will map each annulus via Theorem 1.3 to a Euclidean cylinder (by
first applying Theorem 1.3 and then Remark 5.11).
. In order to ease the notation, let us show steps (1) and (2) for the lists produced
In the first part of the proof.
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Fixaj e{l,..., p—1},andfori =1,...,v— 1, we apply Theorem 1.3 to

Ai =CCy ;. (6.9)

which by the assumption of step (1) is an annulus. This yields a collection of
concentric Euclidean annuli {Sy, ..., Sv—1} where, in the notation of Theorem 1.3,
S; = S4,. Furthermore, foreachi = 1,...,v — 1, we have

rirh} = {1,exp( g(d1,5.0))}, (6.10)

T
period(g})
where g is the period (Definition 3.9) of the conjugate function to g, the solution
of the Dirichlet boundary value problem defined on CCy j,;; and A; is the harmonic
conjugate of g.

We now apply the map F defined in Equation (5.19) to obtain a corresponding
sequence of Euclidean cylinders {Cy, ..., Cy—1}. All of these have heights equal to
the constant 1, and their radii are given respectively by

. 25

Tl = g(01.74). A1
R P (6.11)

Recall that the last component in the list CCy ; is the generalized singular
annulus A(d,j, L;(CCy;)). Let hy ; be the conjugate harmonic function to g, the
solution of the Dirichlet boundary value problem induced on it (see the paragraph
preceding Proposition 5.8). Then, following Remark 5.11, we now map it to a
generalized Euclidean cylinder, Caa, ;,L;(cc; ;))-

Computing the length of d; ;;, which is joint to d.A(d1,;, L;(CCy,;)) and to
dCCy,j,i, with respect to the pairs (g, hy,;) and (g, h;), respectively, yields the
sequence of ratios

Lengthg’hl‘j(al,j,,-)

Length, , (91,j,i) ’ 6.12)
fori = 1,.-+; v — 1. The expression on the righthand side may be computed by
applying Equation (4.10) and Equation (4.11).

Let
fi(z) = fr;(2) = Riz (6.13)

be the conformal homeomorphism acting on the Euclidean cylinder C; = w o F o
S(CCy,j,;), where z is the standard complex parameter on C Cy,; ;. Hence, we may
glue f;(C;) along one of its boundary components to the corresponding component
in the singular boundary component of C 43, ;,L;(cc, ;) s0 that the length of the
two boundaries are the same.

This establishes step (1).
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We will now show how to establish step (2). The completion of step (1) yields
a ladder of singular pairs of pants which we will denote by S; ;. This ladder has
(m—1) components; one corresponds to d; ; and the others comprise one boundary
component of each one of the cylinders fioCj,i = 1,...m—2, after these cylinders
are attached. Recall that 9, ; is the intersection of the generalized singular annulus
A(Ey, L()), with the generalized singular annulus in the list CCy ;, which is
A(d1,j, Lj(CCy ).

Let g be the solution of the induced Dirichlet boundary value problem on
A(Ey, L(R)), and let h be the harmonic conjugate function to g (see the paragraph
preceding Proposition 5.8). Let

L
~ Length, ;,(di,;)

T; (6.14)
where /; denotes the length of the boundary component that corresponds to
di,; in S1,j, and C 4k, (@) is the generalized Euclidean cylinder constructed
for A(Ey, L(R)) (see Remark 5.11). After applying a conformal expansion of
Magnitude 7; to Sy, it then may be glued along this boundary component to
Ca, ,L(%)) in such a way that the length of the corresponding circle in the round
bouquet IC A(E,,L(x)) has the same length. This establishes step (2).

By construction, it is clear that the pair-flux length of the boundary component
of Sg that corresponds to E; is equal to

2n
2 ——k ), - 6.15
7 exp (period(g*) ) )

Where /1 is the harmonic conjugate to g, the solution of the Dirichelt boundary value
problem induced on A(E;, L(R2)) (recall from Definition 2.4 that k is the value of
g restricted to E). The lengths of the remaining (m — 1) boundary components of
Sq, which correspond to the m — 1 boundary components of E», are determined by
the process described in the previous part of the proof.

The length of a component in Sg which corresponds to By i€fl...om— L},
measured with respect to the pair-flux metric, is obtained by successively multiplying
4 sequence of ratios of lengths. These ratios are uniquely determined as in
Equation (6.12), and Equation (6.14), and present the expansion factor needed in
order to match the gluing of a (generalized) cylinder to the one which induced it in
the splitting process.

Cone angles are formed whenever more than two cylinders meet at a vertex;
viewed in 2, this will occur whenever more than two circles in a generalized bouquet
Mmeet at a vertex. The computation of the cone angles is solely determined by g and
T This analysis first appeared in Theorem 0.4 in [24]. Specifically, the cone angle
¢(v) at a singular vertex v, which is the unique tangency point of n 4+ 1 Euclidean
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cylinders, satisfies

() =20n+ ). (6.16)

The proof of the theorem is thus complete, with f defined to be the union of the
individual maps constructed at each stage. U
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