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Abstract commensurators of lattices in Lie groups

Daniel Studenmund

Abstract. Let F be a lattice m a simply-connected solvable Lie group. We construct a Q-
defined algebraic gioup A such that the abstract commensuiatoi ot T is isomorphic to ,4(Q)
and Aut(F) is commensurable with A(Z). Our proof uses the algebraic hull construction, due

to Mostow, to define an algebraic group H so that commensurations of F extend to Q-defined
automorphisms of H. We prove an analogous result tor lattices in connected linear Lie groups
whose sentisimple quotient satishes supenigidity.

Mathematics Subject Classification (2010). 22E40, 20E36, 20F16.
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1. Introduction

Given a group T, its abstract commensurator Comm(r) is the set of equivalence
classes of isomorphisms between finite index subgroups of T, where two isomorphisms

are equivalent if they agree on a finite index subgroup of T. Elements of
Comm(r) are called commensurations of T. The abstract commensurator forms a

group under composition.
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The computation of Comm(T) is a fundamental problem. Commensurations play
an important role in the study of rigidity, see e.g. [35] and [21]. Commensurations
also arise in classification problems in geometry and topology, e.g. [25], [13], [14],
[19], and [2],

The structure of Comm(T) is often much richer than that of Aut(T). For

example, Aut(Z") ^ GL„(Z) while Comm(Z") GL„(Q). There are a few notable

exceptions, which include the cases that T is a higher genus mapping class group,
that T Out(F„) for n > 4, or that F is a nonarithmetic lattice in a semisimple
Lie group without compact factors and not locally isomorphic to PSL2(K). In these

cases, Comm(r) is virtually isomorphic to T; see [ 18], [10], and [21], respectively.
This paper is motivated by the following problem.

Problem. Let G be a (connected, linear, real) Lie group and letT < G be a lattice.

Compute Comm(T).

Standing Assumption. Unless otherwise noted, in this paper every Lie group
is assumed to be real and connected, and to admit a faithful continuous linear
representation. In particular, semisimple Lie groups have finite center.

Every Lie group G satisfies a short exact sequence

1 -> Rad(G) -> G -> Gss -» 1,

where Rad(G) is the maximal connected solvable normal Lie subgroup of G, and

Gss is semisimple. The study of Lie groups therefore roughly splits into three pieces:

one for solvable groups, one for semisimple groups, and a final piece to combine the

previous two. Our computation of Comm(T) follows this outline.

Semisimple G. Suppose G is a connected semisimple Lie group, not locally
isomorphic to SL2(M), and T < G is an irreducible lattice. Then the computation of
Comm(r) is a result of work by Borel, Mostow, Prasad, and Margulis. Recall that
the relative commensurator of T in G is defined as

CommcfP) {g G G | T O gTg-1 is of finite index in T and gTg-1}.

• If T is abstractly commensurable to G(Z) for some Q-defined, adjoint semisim-
ple algebraic group G with no Q-defined normal subgroup N such that N(M) is

compact, then Comm(;(r) G(Q) [7], (Such a lattice T is called arithmetic.)
For example, if T PSL„ (Z) for n > 2, then V is abstractly commensurable
with the group G(Z), where G is the semisimple algebraic group G PGL„,
and so CommG(F) ^ G(Q); see §7.3 for details.

• A major theorem of Margulis [211 says that V is arithmetic if and only if
[Commc(r) : T] oo, which occurs if and only if Commo(r) is dense in G.

• If G has no center and no compact factors, then every commensuration of T

extends to an automorphism of G by Mostow-Prasad-Margulis rigidity [24].
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• The inner automorphisms of a semisimple real Lie group are finite index in the

automorphism group. Therefore

where H K if and only if H and K are abstractly commensurable, i.e.
contain isomorphic finite index subgroups. See Theorem 7.5 for a more precise
statement.

Remark 1.1. In the case G PSL2(M), every lattice is either virtually free or
virtually the fundamental group of a closed surface. In either case, the abstract
commensurator is not linear; see Proposition 7.6. The abstract commensurator of a

surface group has been studied in [26] and [6], and may be described as a certain
subgroup of the mapping class group of the universal 2-dimensional hyperbolic
solenoid.

Solvable G. Suppose G is a connected, simply-connected solvable real Lie group
and T < G is a lattice. In contrast with the semisimple case, Aut(T) is not
typically abstractly commensurable with T. On the other hand, the fact that Aut(T)
is commensurable with the Z-points of a Q-defined algebraic group holds for both
arithmetic lattices in higher rank semisimple groups and lattices in simply-connected
solvable groups, at least on passage to a subgroup of finite index in T; see [4, 1.12]
and [30, Ch 8],

In the case that T is a lattice in a simply-connected nilpotent group, arithmeticity
of Aut(T) is a classical result of Baumslag and Auslander. Merzljakov [22] showed
that Aut(T) embeds in some GL,,(Z) for any polycyclic group T, and this was
extended to virtually polycyclic groups by Wehrfritz [33]. For more history and
a detailed discussion of arithmeticity results see |4], whose Theorem 1.3 provides a

deeper statement on the structure of Aut(T) for virtually polycyclic T.
This similarity between arithmetic semisimple lattices and solvable lattices is

reflected in their abstract commensurators. For example, consider G R" and
T Z". Then Aut(Z") GL„(Z) is arithmetic in the Q-defined real algebraic
group Aut(M") GL„(R), and Comm(r) GL„(Q). Our first main theorem
extends this to lattices in arbitrary simply-connected solvable groups, following
techniques of [4|.

Theorem 1.2. Let V be a lattice in a connected, simply-connected solvable Lie group
G. Then there is some Q-defined algebraic group Ar such that

G(Q) if F is arithmetic

T if T is non-arithmetic,

Comm(T) -4r(Q)

und the image q/,Aut(T) in -4r(Q) is commensurable with Ar(%)-
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Remark 1.3. If G is 'sufficiently nice' then .4r(K) Aut(G). This is proved in

Theorem 4.2 in the case that G is nilpotent. See Proposition 6.4 for a more general
result.

Remark 1.4. Any virtually polycyclic group contains a subgroup of finite index that

embeds as a lattice in a connected, simply-connected solvable Lie group. Therefore
Theorem 1.2 describes Comm(T) for any virtually polycyclic group T.

A fundamental difficulty in dealing with lattices in solvable groups is lack of
rigidity; automorphisms of a lattice may not extend to automorphisms of its ambient
Lie group, even virtually. There are a number of results addressing this to some

extent, most notably |34J. Instead of applying results providing rigidity in the

ambient Lie group, our proof of Theorem 1.2 uses methods developed by Baues

and Grunewald in [4], following work of Grunewald and Platonov [16, 15].

Our proof utilizes the virtual algebraic hull, a connected solvable Q-defined
algebraic group H in which T virtually embeds as a Zariski-dense subgroup. The

construction of the virtual algebraic hull is due to Mostow [23], (See [29, §4] for an

alternate construction.) There is a natural map

£ : Comm(r) Aut(H)

such that £([</>]) is Q-defined for each [<p] Comm(T). The automorphism group
Aut(H) naturally has the structure of a Q-defined algebraic group, and we set Ar
equal to the Zariski-closure of ^(Comm(T)) in Aut(H). Note that our map f extends

the map Aut(T) -> Aut(H) defined in [4, §4.1] for some subgroup T < T of finite
index.

Remark 1.5. Baues extends Mostow's algebraic hull construction to certain virtually
polycyclic groups T in [3], and this hull is applied in [4] to describe Aut(T) and

Out(T). Though our proof of Theorem 1.2 is heavily based on the techniques in [4],
we use only the identity component of the algebraic hull. This is because Comm(T)
only depends on T up to commensurability.

Remark 1.6. Though the group ,4r of Theorem 1.2 is defined abstractly, a finite
index subgroup of Comm(T) can be understood fairly concretely. There is a unique
maximal normal nilpotent subgroup Fitt(T) < T. Let F denote the Zariski-closure
of Fitt(T) in H. Define CommH|F(0 to be the group of commensurations trivial
on T/ Fitt(T). By rigidity of tori, CommH|F is of finite index in Comm(T). The

group CommH|F decomposes as the product of the group of commensurations arising
from conjugation by elements of F(Q) and the group of commensurations fixing a

maximal Q-defined torus T < H. See §5.5 and §6 for details.

General G. When G is not necessarily either semisimple or solvable, we prove:

Theorem 1.7. Suppose G is a connected, linear Lie group with connected, simply-
connected solvable radical. Suppose T < G is a lattice with the property that there



Vol. 90 (2015) Abstract commensurulors of lattices in Lie groups 291

is no surjection cp : G —> H to anv group H locally isomorphic to any SO(l,n) or
SU(l,n) so that <p(V) is a lattice in H. Then

(1) T virtually embeds in the group of Q)-points of a -defined algebraic group
G with Zariski-dense image so that every commensuration [cp] £ Comm(r)
induces a unique Q-defined automorphism of G virtually extending <p.

(2) There is a Q-defined algebraic group B so that

Comm(r) B(Q)

and the image o/AutfT) in B is commensurable with B(Z).

The group G of Theorem 1.7 is, roughly speaking, constructed as the semidirect
product of the virtual algebraic hull H of the "solvable part" of T and a semisimple
group S such that S(Z) is commensurable with the "semisimple part" of T. The
technical work comes first in making this precise, and second in constructing an
action of S on H compatible with the group structure of T.

The hypothesis that T does not surject to a lattice in either SO(l,«) or SU(l,/7)
is used to apply the superrigidity results of Margulis and Corlette, which are used
to extend commensurations of T to automorphisms of G. In the case that T surjects
to a non-superrigid lattice, our construction may fail to produce a candidate group
G. Even in the presence of such a candidate group G, commensurations do not

generally extend to automorphisms of G. Additional commensurations arise from
the nontriviality of H1 (T, <Q>); see the remark at the end of §8.

Remark 1.8. If A is a Q-defined algebraic group, then there is a natural map
2 : Autq)(A) -» Comm(A(Z)). If A is unipotent, or if A is Q-simple, semisimple,
and such that A(R) is not compact and has no factor isogenous to PSL2(M), then
3 is injective because A(Z) is Zariski-dense in A, and S is surjective because

A(Z) is strongly rigid in A by results of Malcev and Mostow-Prasad-Margulis (see
Theorems 4.2 and 7.3). See [161 for analogous results in the case that A is solvable.

The difficulty in proving our results comes from the fact that lattices in solvable
Lie groups need not be commensurable with the Z-points of any algebraic group; see

[30] for an example. When T is a lattice in a simply-connected solvable group, the

algebraic hull construction provides an algebraic group H so that T virtually embeds
in H(Z) as a Zariski-dense subgroup, but in general the image of this embedding may
be of infinite index. Despite this, automorphisms of H extending commensurations
of T may be understood in terms of the algebraic structure of H.

Outline. We review basic results in the theory of linear algebraic groups in §2. We
define and review basic properties of the abstract commensurator in §3, including
definitions of commensuristic and strongly commensuristic subgroups.

In §4 we prove Theorem 1.2 for nilpotent G using classical rigidity of nilpotent
lattices. In §5, we review the basic theory of polycyclic groups and the definition
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of the algebraic hull. Our exposition largely follows [4]. We define the unipotent
shadow and discuss the algebraic structure of Aut(H). In §6 we prove Theorem 1.2.

In §7 we review results on commensurations of lattices in semisimple Lie groups,
which are due primarily to Borel, Mostow, Prasad, and Margulis. In §8 we combine
the solvable and semisimple cases to prove Theorem 1.7.

Acknowledgements. I am pleased to acknowledge helpful conversations with
Matt Emerton, Wouter van Limbeek, Madhav Nori, John Sun, Preston Wake, Alex
Wright, and Kevin Wortman. I am deeply grateful to Dave Morris for many helpful
conversations and correspondences about lattices in Lie groups. Benson Farb and

Wouter van Limbeek provided helpful comments on early drafts of this paper.
The anonymous referee provided many comments and suggestions that significantly
improved the exposition of this paper. Above all, I am immensely thankful to Benson
Farb for setting me on my feet and providing me with support and encouragement as

I learned to walk.

2. Notation and preliminaries

If g, h are elements of a group, their commutator is written [g, h\ ghg~lh~l. A
group T virtually has a property P if there is a finite index subgroup of T with P.
In particular, if T < G, say that a homomorphism f : T -> H virtually extends to
a homomorphism O : G -> H if there is a finite index subgroup T0 < T so that

^lr(l °lr„-

2.1. Algebraic groups. We use the basic theory of linear algebraic groups. A good
general reference is [8], Our preliminaries overlap with those in [4],

Let K C C be a subfield. A linear algebraic group A is a subgroup of GL„(C)
for some natural number n that is closed in the Zariski topology. An algebraic group
A is K-defined if it is closed in the Zariski topology with closed subsets those defined
by polynomials with coefficients in a subfield K of C. A A"-defined algebraic group
is called a K-group. A K-group is K-simple if it has no connected normal /f-defined
subgroup, and absolutely simple if it has no connected normal subgroup defined over
C. (Such groups are sometimes called "almost /C-simple" or "absolutely almost
simple", respectively.)

If R is a subring of C, then define A (R) An GL„(/?) c GL„(C). If V
is a complex vector space with a fixed basis, then V(R) denotes the collection of
/^-linear combinations of basis vectors. Every algebraic group has finitely many
Zariski-connected components. The connected component of the identity A0 is a

finite index subgroup of A.

Proposition 2.1 (cf. [8, 1.31). It A- is K-defined and T < A(K) is a subgroup, then
the Zariski-closure of T is a K-defined subgroup.
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Proposition 2.2 (cf. [8, 18.31). //A's " connected K-defined algebraic group, then

A(A") is Zariski-dense in A.

A homomorphism of algebraic groups is a group homomorphism that is also a

morphism of the underlying affine algebraic varieties. If both varieties are AT-defined
and the variety morphism is defined over K, then we say that the homomorphism of
algebraic groups is K-defined. A K-defined isomorphism is a K-defined morphism
of algebraic groups with an inverse that is also K-defined. Let Aut(A) denote the

group of automorphisms of A as an algebraic group, and Aut^(A) denote the group
of A-defined automorphisms of A.

Quotients and semi-direct products of A'-defined algebraic groups exist:

Lemma 2.3 (cf. [8, 6.81). Suppose G is a K-defined algebraic group and H < G is

anormal, closed, K-defined subgroup. Then G/H is a K-defined algebraic group,
and the quotient map n G —> G/H is K-defined.

Lemma 2.4 (cf. [8, 1.11|). Suppose G and H are K-defined algebraic groups.
Suppose G acts on H, and the action map a : G x H —»• H is K-defined. Then
the semi-direct product H x G naturally has the structure ofa K-defined algebraic
group.

A torus is an algebraic group isomorphic to (C*)" for some n. Because the

automoiphism group of a torus is discrete, we have:

Lemma 2.5 (cf. [8, 8.10]). Let T be any torus and A any algebraic group acting on
T by homomorphisms, so that the map AxT—>T is a morphism of varieties. Then
A0 acts trivially on T.

Let A be a K-defined algebraic group. The unipotent radical Ua of A is the

unique maximal closed unipotent normal subgroup of A. The solvable radical
Rad(A) of A is unique maximal connected closed solvable normal subgroup of A.
Both Ua and Rad(A) are A'-defined subgroups of A. Say A is reductive if Ua is

trivial, and semisimple if Rad(A) is trivial. A Levi subgroup is a connected reductive

subgroup L < A so that A Ua xi L.

Theorem 2.6 (Mostow, see [27, Theorem 2.3 ]). For any K-defined algebraic group
A, there is a K-defined Levi subgroup L. Moreover, any reductive K-defined
subgroup is conjugate by an element of UA (K) into L.

The following summarizes some standard results concerning solvable algebraic

groups.

Proposition 2.7 (cf. [8, 10.6]). Let H be a Q-defined connected solvable algebraic
group. Then:

(1) Uh consists ofall unipotent elements ofW.

(2) [H, H] c UH.

(3) There is a Q-defined maximal torus T < H.
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(4) Any two maximal Q-defined tori are conjugate by an element of[H, H](Q).

(5) IfT is a Q-defined maximal torus, then H is a semidirectproduct H Um x T.

(6) IfD is the centralizer ofa maximal torus and F < Uh is any normal subgroup

containing [H, H], then H F • D.

2.2. Semisimple Lie and algebraic groups. A general reference for the theory of
semisimple algebraic groups used here is [21, Chapter 1],

If A is an M-defined algebraic group, then A(M) is a real Lie group with finitely
many connected components. We always consider A(R) with its topology as a Lie

group. In particular, A(M)° denotes the connected component of the identity in the

Lie group topology. Every connected semisimple Lie group with trivial center is of
the form S(R)° for some Q-defined semisimple algebraic group S; for proof see [35,
3.1.6J.

An isogeny of algebraic groups is a surjective morphism with finite kernel. An
isogeny is central if its kernel is central. A connected semisimple algebraic group
S is simply-connected if every central isogeny <f> : S' —» S is an isomorphism. For

every connected A'-defined semisimple algebraic group S, there is a unique simply-
connected A'-defined semisimple algebraic group S and central Ai-defined isogeny

p : S -» S. Every simply-connected semisimple Ai-group decomposes uniquely into
a product of Ai-simple simply-connected Ai-groups.

Proposition 2.8 (cf. [21, 1.2.6.51). Suppose A is an R-defined algebraic group, and
S is a simply-connected semisimple R-defined algebraic group. Let p : S(M)° —>

A(M) be a continuous representation. Then p extends to an R-defined morphism

p : S —» A.

A Q-defined semisimple algebraic group S is without Q-compact factors if there

is no nontrivial Q-defined connected normal subgroup N < S such that N(M) is

compact. (This terminology is not standard.)

Theorem 2.9 (Borel Density Theorem [7]). Suppose S is a connected, Q-defined
semisimple algebraic group without Q-compact factors. Then S(Z) is Zariski-dense
in S.

Definition 2.10. Let S be an M-defined semisimple algebraic group. The real rank
of S, denoted rankm(S), is the maximal dimension of an abelian M-defined subgroup
diagonalizable over M. If 5 is a connected semisimple Lie group with finite center,
define rank^S) to be the real rank of the Q-defined algebraic group S satisfying
S(R)° S/Z(S).

Our results use strong rigidity of Mostow, Prasad, and Margulis, and superrigidity
results of Margulis, Corlette, and Gromov-Schoen. The following statement is an

immediate corollary of [15, 2.6].
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Theorem 2.11 (cf. [15)). Suppose Si and S2 are connected, simply-connected, Q-
defined, Q-simple semisimple algebraic groups with rankR(Si) > 0 andranki(S2) >
0. Suppose T1 and 1^ are finite index subgroups of Si (Z) and S2CZ), respectively.
Assume that Si(M)° has no simple factor locally isomorphic to SL2(M) such
that the projection of T1 fl S1 (K)0 into this factor is discrete. Then every
isomorphism Tj —> ^ virtually extends to a Q-defined isomorphism of algebraic
groups Si S2.

3. The abstract commensurator

Let T be an abstract group. In this section we will define the abstract commensurator
Comm(r) and review its basic properties.

A partial automorphism of T is an isomorphism 0 : Ti —> T2 where r 1 and
E2 are finite index subgroups of T. Two partial automorphisms 0 and 0' of T are

equivalent if there is some finite index subgroup T3 < T so that 0 and 0' are both
defined on T3 and 0|r^ 0'|r If 0 : Ti -> T2 is a partial automorphism of
r, its equivalence class [0] is called a commensuration of T. There is a natural

composition of commensurations. If 0 : Tj -> T2 and 0' : T{ -> V'2 are partial
automorphisms of T, then we define

[0']°[0] [0'°0|0-,(r2nr;)

This definition is independent of choice of representatives of equivalence classes [0]
and [0'].
Definition 3.1. Given a group T, the abstract commensurator Comm(r) is the group
of commensurations of T under composition.

Example 3.2. Comm(Z") s GL,,(Q)
Two subgroups A[, A2 A T are commensurable if [A] : A1 fl A2] < 00 and

[A2 : A, n A2 ] < 00. Define an equivalence relation on the set of subgroups
of T by Aj ~ A2 if and only if A] and A2 are commensurable. Let [A] denote
the equivalence class of a subgroup A < T under this relation. The abstract

commensurator Comm(T) acts on the set of commensurability classes of subgroups
°f T in an obvious way; given a partial automorphism 0 : T| —> T2 of T, define

[0] - [A] [0(A n r,)].
Clearly this is independent of choice of representatives 0 and A.

Definition 3.3 (Commensuristic subgroup). A subgroup A < T is commensuristic
'f [0] • [A] [A] for every [0] e Comm(T). A subgroup A < T is strongly
commensuristic if, for every partial automorphism 0 ; T] ->• T2 of T,

0(r, n A) r2 n A.
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Every strongly commensuristic subgroup is both characteristic and commensu-
ristic. Neither converse holds.

Example 3.4. Consider the group

r x,y Z and z e -Z \ < GL3(Q).

Note that T is a lattice in the real Heisenberg group. Denote elements of T by
triples (x, y, z) where x, y, and z are as above. The center Z(T) is infinite cyclic,
generated by (0.0, ^), and contains the commutator subgroup [T, T] with index 2.

By Proposition 4.1, the center Z(T) is strongly commensuristic and the commutator
subgroup [T, T] is commensuristic. Further, [T, T] is evidently characteristic.

Now consider the subgroup r2 < T generated by (2,0,0), (0,2,0), and (0,0,2).
Then the map 0 : T ->• T2 defined by <p{x,y,z) (2x,2y,4z) is a partial
automorphism of T. But 0 takes [F, T] to [T2, T2], which is the infinite cyclic group
generated by (0,0,4). Therefore [T, T] is not strongly commensuristic.

Question. Let T be a finitely generated group. Is every characteristic subgroup of
T commensuristic? Is every commensuristic subgroup of T commensurable with a
characteristic subgroup? Is every commensuristic subgroup of T commensurable
with a strongly commensuristic subgroup?

The notions of 'commensuristic' and 'strongly commensuristic' are motivated by
the following lemma.

Lemma 3.5. If A < T is commensuristic, then restriction induces a homomorphism

Comm(T) —> Comm(A).

If A is normal in T and strongly commensuristic, then there is a homomorphism

Comm(r) ->• Comm(r/A).

Proof Suppose A < T is commensuristic. Let tf> : Tj —>• T2 be a partial
automorphism of T. Then 0(A n Fi) is commensurable with A, and so Ai
0~'( A Fl 0(A n Fi)) is a finite index subgroup of A. The restriction of 0 to Ai
defines a partial automorphism of A. Restriction clearly respects the equivalence
relation on partial automorphisms and is compatible with composition, so this
determines a well-defined homomorphism Comm(r) -> Comm(A).

Suppose now that A < T is strongly commensuristic and normal, and let 0 :

Ti —>• r2 be a partial automorphism of T. Then 0 descends a map 0 : Ti ->
r2/(r2 fl A). Because A is strongly commensuristic, the kernel of this map is

precisely Ti fl A. There is then an isomorphism

0*: r1/(r1 n A) - r2/(r2n A).
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The map 0# is a partial automorphism of V/A. If <p\ and 02 are equivalent partial
automorphisms, then 0i and 02 agree on some finite index subgroup of Ti. It follows
that (0i)* and (02)* are equivalent partial automorphisms of T/A. Therefore
there is a well-defined map Comm(T) -» Comm(r/A), which is obviously a

homomorphism.

Remark 3.6. Lemma 3.5 is inspired by the methods of [20J, where the result is

applied with Y Bn, the braid group on n strands, and A Z(Bn) as a step in the

computation of Comm(ß„) for n > 4.

We will often use the following corollaries implicitly in this paper. Two groups Y

and A are called abstractly commensurable, written T A A, if there are finite index

subgroups Ti < T and Ai < A such that Ti s Aj.
Corollary 3.7. //'[T : T'] < oo then Comm(F') s Comm(r).

Corollary 3.8. IfY A Comm(r) s Comm(A).

There is a weaker notion of equivalence similar to that of abstract commensu-
rability. Define a relation on groups by H ~ T2 if there is a homomorphism
0 : Fj —^ r2 with finite index image and finite kernel. Say that Ti and T2 are

commensurable up to finite kernels if they lie in the same equivalence class of the

equivalence relation generated by ~. In general, groups which are commensurable

up to finite kernels need not be abstractly commensurable.
Recall that a group Y is residually finite if the intersection of all finite index

subgroups is trivial. It is a theorem of Malcev that finitely generated linear groups
are residually finite. The following is an easy exercise that will be used in §7 and §8;
see 19] for proof.

Proposition 3.9. 7vvo residually finite groups are abstractly commensurable if and
only if they are commensurable up to finite kernels.

4. Commensurations of lattices in nilpotent groups

4.1. Example: the Heisenberg group. Consider the (2n + l)-dimensiona
Heisenberg group

<\ x z
'H2n + l \ I 0 In y'

tO 0 1

x, y e C" and z C > < GL„+2(C).

Then N 772n+1(M) is a simply-connected, 2-step nilpotent Lie group in which
T 7f2n + 1(Z) is a lattice. Let Z Z(N) denote the center of N\ note that
Z ^ E and that N/Z ^ R2". The group commutator induces a map N/Z ^ Z by
[*.y] co(\, y), where co is the standard symplectic form on M2".
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Suppose 0 : H —» T2 is a partial automorphism of T. We will see that tp(Yi n
Z) r2 n Z, and so [tp] induces a commensuration [<p] of Y/Z(Y) s I?". The

induced map (p e GL2„(Q) has image in the general symplectic group GSp2n(Q),
defined as

GSp2„(Q) }d e GL„(Q) | co(Au, Av) aa>(u, v) for some a e Q*}.

In fact the induced map 0 : Comm(r) GSp2„(Q) is surjective. Each partial

automorphism (p : rj -> F2 such that [cp] e ker(0) is trivial on Z, hence is

determined by an element of H1 (;r(r i), Z), where n :Y —> Y/(Z D T) denotes the

natural projection. One can check that

ker(0) lim Hl(n(H),Z) ^ Hx (n(Y),Q) ^ QZn.

[r h]<oo

Therefore Comm(T) satisfies the short exact sequence

1 Q2" - Comm(T) ^ GSp2„(Q) - 1.

The action of GSp2„ (Q) on Q2n is the tensor product of the dual representation with
the 1-dimensional representation ß : GSp2n(Q) Q* defined by co(Au.Av)
fi(A)a)(u, v).

4.2. Commensuristic subgroups. Lattices in simply-connected nilpotent Lie

groups provide a source of examples of commensuristic and strongly commensuristic

subgroups. Recall that the upper central series y'(G) and lower central series

y,(G) of a group G are defined inductively as follows. Let y°(G) 1. Suppose
that y'(G) is a normal subgroup of G, and let n : G —> G/y'(G). Define

yl + x(G) 7T_1 (Z{G/y' (G))). Now let yo(G) G. Supposing y, (G) is defined,
set y, + i(G) [G. y,(G)].

Proposition 4.1. Let T < N be a lattice in a simply-connected nilpotent Lie group.
The upper central series of Y is strongly commensuristic in T. The lower central
series of T is commensuristic.

Proof. A discrete subgroup A < N is a lattice in N if and only if A is Zariski-dense
in some (equivalently, any) faithful unipotent representation of N into GL„(M); see

[29] for a proof. Using this it is easy to show by induction that yk(Y) T fl yk(N)
for all k. Now suppose (p : Ti —> T2 is a partial automorphism of T. Both Ti and

T2 are lattices in N, so yk{Yj) T, fl yk{N) for j 1,2. It follows that

yk(Yj) T7 n yk{Y) for y 1,2.

Clearly, tp(yk(Y\)) y^(T2) for all k, from which it follows that yk{Y) is strongly
commensuristic for all k.
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Consider the lower central series Yk(H- Then yyt(L) is Zariski-dense in Yk{N)
for all A: by 18, 2.41. Now suppose (p : T| —> V2 is a partial automorphism of T.
Then Yk(Pj) is a lattice in Yk(N) for all k for j 1,2. Since Yk(Pj) < Lfc(T), it
follows that Yki^j) < Zt(T) is of finite index for all A for j 1,2. Since (p clearly
takes Yk(^i) to Yki^2) for all k, it follows that [</>] [^(F)] [y^(r)] for all A.

4.3. Commensurations are rational. Let /V be a simply-connected nilpotent Lie
group containing a lattice T. Let n denote the Lie algebra of N. Then n admits
rational structure constants by [29, 2.12], It follows that n admits a basis, unique up
to Q-defined isomorphism, so that log(T) c n(Q). Further, Aut(n) is identified with
A(R) for a Q-defined algebraic subgroup A < GL(n <8> C) unique up to Q-defined
isomorphism. It is a standard fact of Lie theory that the exponential map identifies

Aut(iV) with Aut(n). This identifies Aut(A) with the real points of a Q-defined
algebraic group A. By abuse of notation, we write Aut((V)(Q) for the subgroup of
Aut(A) corresponding to A(Q). The group Aul(A)(Q) depends only on N and T.

Theorem 4.2. Let V < N be a lattice in a simply-connected nilpotent Lie group.
Identify Aut (N) with the real points of a Q-defined algebraic group as above. Then

there is an isomorphism

£ : Comin(T) -> Aut(/V)(Q).

To prove this theorem we will use the fact, due to Malcev, that lattices in nilpotent
groups are strongly rigid:
Theorem 4.3 ([29, 2.11 ]). Let Ny and N2 be two simply-connected nilpotent Lie

groups, with lattices < Ny and < N2- Then every isomorphism Ti -> T2

extends uniquely to an isomorphism Ny N2.

Proofof Theorem 4.2: Suppose (p : Ti ^ F2 is a partial automorphism of T.
Then cp extends to an automorphism <f> G Aut(A) by Theorem 4.3. Since log(T)
is contained in n(Q), this extension is in Aut(A)(Q). This gives an injective
homomorphism

^ : Comm(T) -» Aut(A)(Q).
Now suppose 4> e Aut(A)(Q). It is well-known (for example, see [29,

Chapter 2]) that there is a Q-defined unipotent algebraic group U so that N s U(K)
and T is commensurable with U(Z). Then 4 extends to a Q-defined automorphism
of U. By [29, 10.14] the group <E>(T) is commensurable with T, hence O induces a

commensuration of T. It follows that ^ is surjective.

5. The algebraic hull of a polycyclic group

5.1. Polycyclic groups. We briefly review the general theory of lattices in solvable
Lie groups. See [29] for a general reference, and [30] for the theory of polycyclic
groups.
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Definition 5.1. A group T is polycyclic if there is a subnormal series

1 O H <1 r2 < ••• <3 T (5.1)

so that T; / r,_ i is cyclic for each i.

The Hirsch number of T, denoted rank(T), is the number of i such that T,/ T,_i
is infinite cyclic. Hirsch number is independent of choice of such subnormal series,

and is invariant under passage to finite index subgroups. Every polycyclic group
contains a finite index subgroup admitting a subnormal series (5.1) such that each

r,-/ r,_i is infinite cyclic. Such a group is called strongly polycyclic. It is well-
known that every lattice in a connected, simply-connected solvable Lie group is

strongly polycyclic.
Every polycyclic group T admits a unique maximal normal nilpotent subgroup,

called the Fitting subgroup, denoted Fitt(T). If T is a strongly polycyclic group,
then Fitt(T) is isomorphic to a lattice in a simply-connected nilpotent Lie group N.
By Theorem 4.3 conjugation extends to a representation ö : T —» Aut(A). If n is

the Lie algebra of N, then by identifying Aut(A) with Aut(n) c GL(n) we have a

representation a : T —> GL(n).

Proposition 5.2 ([29, 4.10]). Let T be strongly polycyclic, and o : T —» GL(n) as

above. Then

Filt(T) {y e T | a(y) is unipotent}.

Lemma 5.3. Let T be a strongly polycyclic group with Ti < T a subgroup offinite
index. Then Fitt(Fj) Fitt(T) Fl Tj.

Proof. It is clear that Fitt( Ti)nr < Fitt(F), so we have only to show that Fitt(Ti) <
Fitt(T). Let N be the Lie group containing Fitt(T) as a lattice, and let N\ be the Lie

group containing FittfTi) as a lattice. Then Ti fl Fitt(r) is a lattice in AL It follows
that the inclusion Ti Fl Fitt(T) —> Fitt(Ti) extends to an embedding of Lie groups
/ : N —» jVi by (29, 2.111. This gives an embedding of n as a Lie subalgebra of n^
Let a : T —> GL(n) and o\ : T[ —» GL(ni) be as above. Then n is invariant under

oifT,) because Fitt(T) is normal in T. Suppose y e Fitt(Ti). Then by Proposition
5.2, <7i (y) is unipotent. It follows that o(y) is unipotent, and so y Fitt(T) by
Proposition 5.2.

Corollary 5.4. If V is strongly polycyclic then Fitt(r) is strongly commensuristic
in T.

5.2. Algebraic hulls. Our main tool for understanding commensurations of a

polycyclic group F will be its algebraic hull. Roughly speaking, the algebraic
hull is algebraic group in which T embeds Zariski-densely that has minimal torus

while having maximal unipotent radical. The extremality conditions are important
for the extension of commensurations to algebraic automorphisms. The original
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construction is due to Mostow (231, with an alternate construction in [291. More

recently, algebraic hulls have been constructed for certain virtually polycyclic groups
by Baues in [3], We will need only the classical algebraic hull.

Definition 5.5 (Algebraic hull). Suppose F is a strongly polycyclic group. An
algebraic hull of T is a Q-defined algebraic group H with an embedding / : T —
H(Q) so that

(Hl) /(T) is Zariski-dense in H,

(H2) Zh(Uh) < Uh, where Hh is the unipotenl radical of H,

(H3) dim(UH) rank(T), and

(H4) /(T) fl H(Z) is of finite index in /(T).

Algebraic hulls exist for all strongly polycyclic groups; see [29] for a construction.

The importance of the algebraic hull is its uniqueness:

Lemma 5.6 ([29,4.41 ]). Suppose F i and F2 are two strongly polycyclic groups, and
4> ' F| —> r2 is an isomorphism. Let i\ : Tj —> Hi and (2 : T2 —>• H2 be algebraic
hulls for T1 and r2, respectively. Then (j> extends to a Q-defined isomorphism 4> :

H, H2.

We wish to use rigidity of the algebraic hull to construct an embedding of
Comm(r) into Autqi(H) analogous to the use of Malcev rigidity in Theorem 4.2.
For this, the natural setting is the Zariski-connected component of the identity of the

algebraic hull.

Definition 5.7 (Virtual algebraic hull). Let F be a virtually polycyclic group. A
virtual algebraic hull of T is a triple (H, A, /), where H is a Q-defined algebraic

group, A is a finite index subgroup of T, and i : A —>• H(Q) is an injective
homomorphism so that

(1) His connected, and

(2) H with the embedding i is an algebraic hull of A.

Lemma 5.8. Every virtually polycyclic group has a virtual algebraic hull.

Proof. Suppose T is virtually polycyclic. Let T < F be any finite index strongly
polycyclic subgroup. Let H be an algebraic hull for T. Then the identity component
H° is of finite index in H. Let A T F H° and H H°. It is easy to verify that H
with the given inclusion of A in H(Q) is a virtual algebraic hull of T.

We will often abuse notation and refer to the algebraic group H of Definition 5.7
as the virtual algebraic hull of T, leaving the subgroup A and the inclusion i : A ->
H(Q) implicit.

Lemma 5.9. Let V be virtually polycyclic with virtual algebraic hull (H, A, /). The

algebraic group H is unique up to Q-defined isomorphism.
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Proof. Suppose (Hi, Ti,/1) and (H2, r2,/2) are two virtual algebraic hulls of T.

Then T] n T2 is of finite index in both T1 and T2. Because H[ and H2 are connected,
both t'i |r nr and '21r, nr, satisfy (H1)-(H4) for Ti n T2 in place of T. It follows
from Lemma 5.6 that there is a Q-deftned isomorphism <J> : H] H2 extending

'2°'llrinr2 • ^

Definition 5.10 (Fitting subgroup). Suppose (H, A, /) is a virtual algebraic hull of
a virtually polycyclic group T. Dehne Fitt(H), the Fitting subgroup of H, to be the

Zariski-closure of Fitt(A) in H. Note that Fitt(H) depends the inclusion /' : A —>

H(Q); we suppress this dependence from our notation as the embedding i is implicit
in the choice of virtual algebraic hull H.

Note that [H, H] < Fitt(H), by [4, 4.6].

Lemma 5.11. Suppose T is virtually polycyclic with virtual algebraic hull (H, A, /').

There is an embedding
£ : Comm(r) Aut{j(H). (5.2)

Proof. Suppose <p : Ai -» A2 is a partial automorphism of A. Then H is

an algebraic hull for both A[ and A2 by connectedness, so (p extends to 4>

AutQ(H). Equivalent partial automorphisms clearly give rise to equal extensions.

The assignment cp h>- 4> gives an injective homomorphism Comm(A) -> AutQ(H)
by density of Ai and A2. The proof is complete since Comm(r) s Comm(A).

There is an analogous construction of algebraic hulls for simply-connected
solvable Lie groups G, though they are only R-dehned rather than Q-dehned.

Definition 5.12 (Algebraic hull). Suppose G is a simply-connected solvable Lie

group. A real algebraic hull of G is an M-dehned algebraic group H with an

embedding / : G —>• H(R) so that

(1) i(G) is Zariski-dense in H,

(2) Zh(Uh) < Uh, where Uh is the unipotent radical of H, and

(3) dim(Un) dim(G).

The real algebraic hull of the group G may be strictly larger than the algebraic
hull of a lattice V < G. See [5| for a detailed discussion of the relationship between
the algebraic hull of a lattice and the real algebraic hull of the ambient Lie group.
We use this theory in §8.

5.3. Unipotent shadow. Much of the theory of lattices in solvable Lie groups builds

on the much easier theory of lattices in nilpotent Lie group. A common tool is the

unipotent shadow. The following proposition summarizes the theory of unipotent
shadows of strongly polycyclic groups in algebraic hulls, as explained in Sections 5

and 7 of [4], For the reader's convenience we include a sketch of a proof.
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Proposition 5.13 (14]). Suppose Y is a virtually polycyclic group with virtual
algebraic hull H. Let F be the Fitting subgroup of H. There is a strongly polycyclic
subgroup A < H(Q) abstractly commensurable with T so that:

(1) There is a nilpotent subgroup C < A so that A Fitt(A) C.

(2) There is a Q-defined maximal torus T < H with centralizer D < H so that
C A fl D and C is Zariski-dense in D.

(3) The subgroup 9 < Uh(Q) generated by Fitt(A) and Cu, the group of
unipotent parts of elements of C, is a finitely generated subgroup Zariski-
dense in UH, such that Fitt(A) 0 OF.

Sketch ofproof. Let A be a strongly polycyclic subgroup of T so that H is an

algebraic hull of A. Fix any maximal Q-defined torus T < H, and let D be the

normalizer of T in H. Then D is a connected nilpotent Q-defined subgroup of H
that centralizes T. By replacing Fitt(A) with a finite index supergroup, we obtain a

strongly polycyclic group A < H(Q) commensurable with A for which the group
C A n D is Zariski-dense in D and satisfies A Fitt(A) • C. The group A is

called a thickening of A, and C is called a nilpotent supplement in A.
We now want to construct the group 9 by taking the unipotent parts of elements

of A. For every c <= D, let cs and cu denote the semisimple and unipotent parts,
respectively, of its Jordan decomposition in D. Because D centralizes T, the map
c i-> cu is a homomorphism D -> Uh- Define 9 to be the subgroup of Uh(Q)
generated by Fitt(A) and Cu. By replacing A with a further thickening, we can

guarantee that 0flF Fitt(A). Such a group 9 is called a good unipotent shadow.

5.4. Algebraic structure of Aut(H). Suppose T < G is a lattice in a simply-
connected solvable Lie group, and let H be its virtual algebraic hull. We recall the

structure of AutQ(H) explained in Section 3 of [4], Let U be the unipotent radical of
H. Fix a defined maximal torus T H. Theie is a decomposition H — LI x X.
Define

Aut(H)T j$£ Aut(H) | <t>(T) T}. (5.3)

By property (H2) of the algebraic hull, the restriction map Aut(H)T -> Aut(U) is

injective. Its image is a Q-defined closed subgroup of Aut(U). The map

0 : U x Aut(H)T -> Aut(H)
(5.4)

(m, 4) lnn„ o<J)

is a surjection with Q-defined kernel. The quotient U x Aut(H)x/ ker(0) is a Q-
defined algebraic group, which gives Aut(H) the structure of a Q-defined algebraic
group. Because ker((M)) is unipotent, it follows from the discussion of [27, 2.2.3] (see
also [4, 3.6]) that there is a group isomorphism

Autg(H) ^ U(Q) x Aut(H)T(Q)/(ker0)(Q). (5.5)

Thus the algebraic structure of Aut(H) is such that AutQ(H) Aut(H)(Q).
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5.5. A finite index subgroup of Comm(r). Let T, H, and U be as above. Let
F Fitt(H). Define

*4h|u |d> e Aut(H) Wh/u| • (5.6)

Lemma 5.14. The subgroup Ai|u L Aut(H) is offinite index.

Proof. The quotient H/U is a Q-defined torus. By Lemma 2.5, the identity
component Aut(H)0 acts trivially on the torus H/U, and so Aut(H)0 < *4h|u- The

claim follows since [Aut(H)° : Aut(H)] < oo.

Let AAu,(h)(F) denote the subgroup of Aut(H) preserving F. Define

*4h|f |d> e AAut(H)(F) ^IH/F ^H/F} • (5-7)

By Corollary 5.4, the image of the map £ : Comm(F) -»• Aut(H) preserves F.

Define

CommH|F(T) ^-1(^h|f)- (5.8)

Lemma 5.15. [Comm(F) : CommH|F(T)] < oo.

Proof. By Lemma 5.14, it suffices to show that CommHjF(r) Comm(r) PI .4h|u-
Since *4h|f < «4h|u. d ls c'ear that CommH|F(r) < Comm(r) D «4h|u- On the other

hand, suppose that [</>] e ComrffiT) D -4h|u- Without loss of generality, assume
that (p is a partial automorphism of a finite index subgroup A < T for which H is

an algebraic hull. By Proposition 5.2, we have that A CI U Fitt(A). It follows
that if 4>{y)y~i e U for some y e A, then </>(y)y~l e Fitt(A). Therefore [fi] e

CommH|F(r).

The structure of *4h]f can he made more explicit, following Section 3.3 of [4],
Let T denote a maximal Q-defined torus in H. Define

A[ {Oe v4H|F I ffiiT) T, d>|T idx}, (5.9)

Inn" {<!)£ Aut(H) | 4>(x) fxf~l for some /eFj. (5.10)

Clearly Inn" and A\ are both Q-defined subgroups of -4h|f> and Inn" is normal in

*4H|F. Let («4h|f)q denote the group of Q-defined automorphisms in ^4h|f- Because

any two maximal Q-defined tori are conjugate by an element of [H, H](Q) < F(Q),
we have

Lemma 5.16. _4.h|f Inn" -A\. Moreover. (Xh|f)q Inn"(Q) • A|.(Q).

Proof. See [4, 3.13], The latter statement follows from equation (5.5); cf. [4, 3.6],
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6. Commensurations of lattices in solvable groups

6.1. Example: Sol lattice. Let 0 : Z2 ->• Z2 be the automorphism defined by
0(1,0) (2, 1) and 0(0, 1) (1, 1). Let C be the infinite cyclic group generated
by 0, and define T Z2 xt C. Note that V is a lattice in 3-dimensional Sol geometry.
We have that Fitt(r) Z2, so there are induced maps

r : Comm(r) —> Comm(Z2) GL2(Q)

and

n : Comm(F) Comm(C) Q*.

Suppose 0 : H -> r2 is a partial automorphism of T. There are nonzero p,q so

that jt(0)[09] W)- Using the fact that 0 is an isomorphism, we have

(p(f{v)) ij/p((p{v)) (6.1)

for all u e Ti fl Z2. Since Ti fl Z2 spans Z2 <8> Q, it follows that r(0) conjugates
09 to ij/p in GL2(Q). Therefore p — ±q since \j/ has an eigenvalue not on the unit
circle. It follows that there is an index 2 subgroup Comm+(T) so that ix is trivial
when restricted to Comm+(T).

Let ZGL2(Q)(Vf) denote the centralizer of xfr in GL2(Q). From (6.1) we see that

''(0) e ZGl2(Q)(1A) f°r all 0 e Comm+(r). Moreover, it is clear that the induced

map r : Comm+(r) -> ZGL2(q)(0) is surjective. Let K ker(r). Every 0 e K
is of the form 0(v, typ) (u + p(0/'), irp) for a cocycle p : H -» Z2 defined on

some finite index subgroup H < C. One can show that

K= lim H[(H,Z2) =* Hl(C,Q2) s Q2.

[C://]<oo

Therefore Comm+(r) satisfies the short exact sequence

1 ->• Q2 Comm+(r) -» ZGL2(q)(0) 1.

This sequence splits, and the action of ZGL2(q)(0) on Q2 is the standard action.

6.2. Commensurations of solvable lattices are rational. We continue to use
the notation developed in §5. Given a lattice T in a connected, simply-connected
solvable Lie group, let H denote its virtual algebraic hull with Fitting subgroup F
and Q-defined maximal torus T. Then ^4h|f denotes the group of automorphisms of
H preserving F and trivial on H/F. Let Inn" denote the group of automorphisms
of H induced by conjugation by elements of F, and A\ denote the group of
automorphisms fixing T.
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Theorem 6.1. Let V be a virtually polycyclic group. Let H be the virtual algebraic
hull of T, with F Fitt(H). The map £ : Comm(r) —» Aut(H) induces an

isomorphism of groups
CommH|K(r) ^ (-4h|f)q-

The proof of the theorem is in two steps. First we show that Innp(Q) <

£(Comm(r)), and second that A}.(Q) < £(Comm(r)). The unipotent shadow will
be our main tool. Before we start the proof of Theorem 6.1, we note the following
technical lemma, which will be used again in §8.

Lemma 6.2. Let U be a Q-defined unipotent algebraic group and 9' < U(Q) be

a finitely generated, Zariski-dense subgroup. Let P be a group acting on U by

algebraic group automorphisms preserving 9'. Suppose f U(Q). There is some

finite index subgroup P" < P so that f(p f~l) £ 9' for all p G P".

Proof. Let A be the group generated by 9' and /. Then A is commensurable with
U(Z), hence contains 9' as a subgroup of finite index d. It is not hard to see that there

are finitely many subgroups of U(Q) containing 9' with index d (see [30, Ch 6] and

[4, 6.3]). The group P permutes these subgroups, hence there is a subgroup P' < P

preserving A. Because 9' has finite index in A and is preserved by P, there is a

further finite index subgroup P" < P that acts trivially on the coset space A/9'.
This completes the proof.

Proofof Theorem 6.1. Given T and H as in the theorem, let U Uh- Find a

strongly polycyclic subgroup A < H(Q) abstractly commensurable with T, along
with T, D, C, and 9 as in Proposition 5.13. That is, T is a maximal Q-defined torus,
D is the centralizer of T containing C A fl D as a Zariski-dense subgroup, and

9 < U(Q) is a good unipotent shadow of A.

By Lemma 5.11 there is an embedding

£ : Comm(F) -»• AutQ(H).

By definition of CommH|K(r), this restricts to an embedding

£ : CommH|p(r) — (-4H|f)q-

There is a decomposition (ZIh|f)q Innp(Q) • .Aj.(Q) by Lemma 5.16. We have

only to show that both Inn"(Q) and -4|(Q) are in the image of £.

Claim 1. Innp(Q) < £(Comm(F)).

Proofof Claim 1. Suppose O G Innp(Q). Then there is some / G F(Q) so that

4>(x) fxf~x for all .v G H. Because 9 is Zariski-dense in U, conjugation by

/ induces a commensuration of 9 by Theorem 4.2. Let 9\ and 92 be finite index

subgroups of 9 so that <F(0i) 92. Let C' < C be a finite index subgroup
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normalizing both 0\ and 02. By Letntna 6.2, applied with 6' 9\ D 02 and P C',
there is some finite index subgroup C" < C' so that

fcf~XC~X 0] n 02 (6.2)

for all c e C". Because F is normal in U, for all c £ C" we have fcf~xc~x £ F.

By (6.2) and the fact that 0 OF Fitt(A), for all c £ C" we have

fcf~xc~x £ Fitt(A) n 0] n 02. (6.3)

Let F\ 0i fl Fitt(A) and F2 92 D Fitt(A). Then O induces an isomorphism
Fi -» F2. Because C" normalizes both F\ and F2, we may form subgroups Ai
FjC" and A2 F2C", both of which are of finite index in A. We claim that

induces an isomorphism Ai -» i\2. Suppose f\ £ F\ and ci £ C". Then

ff\ f~X F2 by definition of 0i and 02, and fc\f~x f2C\ for some f2 £ F2 by
(6.3). Therefore

//tCt/-1 - fhrxfc,rx e F2c".

It follows that <f> induces an injection A i -» A2. Note that (6.3) holds for all c £ C"
with / replaced by f~x. Similar reasoning then gives that d>_1 induces an injection
A2 —> A1. Thus O induces a partial automorphism Ai -> A2 of A, and so induces

a commensuration of T. This completes the proof of Claim 1.

Claim 2. A}.(Q) < ^(Comm(r)).

Proofof Claim 2. Suppose <t> £ A'r(Q). Then <t> corresponds to a Q-defined map
under the restriction A\ Aut(U), so O induces a partial automorphism 0i 02

of 0 by Theorem 4.2. The map C —> Cu is a homomorphism. Define a finite index

subgroup

Ci={reC| cv £ 0i} < C.

Take any c'i £ Cj, and write c'i 11 \s for u\ £ 01 and s £ T. Since 4> £ Xh|f>
there is some / £ F(Q) so that 0(tt 1) /u 1. Since O £ A\, we have

<t>(ci) $(w,)0(.s) fu\s fa.
Both O(ui) and it\ are in 0, so / £ 0 n F Fitt(A). Therefore <J>(c 1) £ A. Since

$ preserves T, it also preserves D. Therefore <t>(Ci) < C since AflD C.
Define

c2 {f £ C I Cu £ 02} < C.

It is evident from the definitions of 9\ and 02 that O(Ci) < C2. Applying the same

logic as above to we conclude that ^(Ci) C2. Therefore O induces a partial
automorphism Ci -> C2 of C.

Since O preserves F, it induces a partial automorphism F\ —^ F2 of Fitt(A).
Without loss of generality, suppose Fj is characteristic in Fitt(A). Then FjCi and
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F2C2 are both finite index subgroups of A. So O induces a partial automorphism
F[C2 F2C2 of A, and hence a commensuration of T. This completes the proof
of Claim 2.

Claims 1 and 2 show that £ is surjective, and therefore £ exhibits an isomorphism

CommH|F(r) Mh|f)q- This completes the proof of Theorem 6.1.

Proofof Theorem 1.2. Let H be the virtual algebraic hull of T. By Lemma 5.11

there is an embedding
£ : Comm(T) -> Aut(H)(Q),

where Aut(H) has the structure of an algebraic group as described in Section 5.4.

Let Zlr be the Zariski-closure of £(Comm(T)) in Aut(H). Then At is a Q-defined

algebraic group by Proposition 2.1. Now take any O G Zlr(Q). Take any element

0 G ^(Comm(T)) so that O o O-1 e Zlp(Q). We have Zip < ZlH|u by Lemma 5.14

and then Zip < ZIh|f by Lemma 5.15. Therefore 4> o O-1 zIh|f(Q)- It follows
from Theorem 6.1 that 4* ^(Comm(T)), hence the isomorphism

Comm(T) s Zlr(Q).

We have only to show that the image of Aut(T) in Aut(H) is commensurable

with Zlr(Z). Let F Fitt(T) and define

<P\t/F ^Ir/fAt\f w e Aut(T)

The proof of Lemma 5.15 shows that At\f is finite index in Aut(T); see also [4,

9.1], The group Ar|F is commensurable with zIh|f(^) by [4, 8.9], so the result

follows.

We conclude this section with a result relating the structure of Zlr to that of
Aut(G) for certain solvable groups G. This strengthens the analogy with semisimple

groups; compare with Theorem 7.5 below.

Definition 6.3. Let Nil(G) denote the maximal normal nilpotent subgroup of G. A
solvable Lie group G is unipotently connected if Nil(G) is connected.

Proposition 6.4. Suppose G is a connected, simply-connected, unipotently
connected solvable Lie group. Let T < G be a Zariski-dense lattice and let Zlr be

the group such that zlr(Q) Comm(T). Then

Zlr(®0 Aut(G).

Proof Let H be the real algebraic hull of G. By [5, 3.11] the group H is also an

algebraic hull for T. It further follows that F(M) Nil(G) by [5, 5.4], For any
G -Ah!f(®0> there is some / e F(R) such that 0(g) fg for all g G H.

Therefore zIh|f(®0 preserves G < H(M), and so zIh|f(®0 < Aut(G). In fact,

[Aut(G) : ZIh|f(®0] < oo by [5, 6.9], The result follows because zIh|f is a subgroup
of finite index in Zlr-
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Every lattice in a connected, simply-connected solvable Lie group virtually
embeds as a Zariski-dense lattice in a connected, simply-connected, unipotently
connected solvable Lie group G' (cf. [5, 5.3J). Therefore we have:

Corollary 6.5. Let T be a lattice in a connected, simply-connected Lie group G. Let
Ar denote the algebraic group such that _4r(Q) Comm(r). Then T virtually
embeds as a lattice in a Lie group G' such that ^4p(M) Aut(G').

7. Commensurations of lattices in semisimple groups

Abstract commensurators of lattices in semisimple Lie groups not isogenous to
PSL2(M) are fairly well understood, by work of Borel, Mostow, and Margulis. For
example, see the first section of [ 1 ]. We recall the basic results here for completeness.

7.1. Arithmetic lattices in semisimple groups.
Definition 7.1. Suppose F < S is a lattice in a semisimple Lie group with trivial
center and no compact factors. We say that F is arithmetic if there is a Q-defined
semisimple algebraic group S and a surjective homomorphism / : S(M)° -»• S with
compact kernel such that /(S(Z) Fl S(E)°) and T are commensurable.

Note that S may be chosen to be simply-connected, and that T S(Z) by
Proposition 3.9. Hence, to compute the abstract commensurators of arithmetic
lattices in semisimple Lie groups, it suffices to consider groups of the form S(Z)
for a simply-connected Q-defined semisimple algebraic group S.

Recall that a Q-defined, connected, semisimple algebraic group S is without Q-

compact factors if there is no nontrivial, Q-defined, connected, normal subgroup
N < S such that N(M) is compact. Note that given any Q-defined connected, simply-
connected, semisimple algebraic group, there is a Q-defined, connected, simply-
connected, semisimple algebraic group S' without Q-compact factors such that S(Z)
and S'(Z) are abstractly commensurable.

If S is a Q-defined semisimple algebraic group, then Aut(S), the group of
automorphisms of S as an algebraic group, has the structure of a Q-defined algebraic
group such that Aut(S){j ^ Aut(S)(Q); see [32, 5.7.2].

Proposition 7.2. Suppose S is a Q-defined, connected, simply-connected, semisim-
ple algebraic group without Q-compact factors. Then there is a canonical inclusion

3 : Aut(S)(Q) <-> Comm(S(Z)).

Proof. If $ e Aut(S)(Q), then O is a Q-defined automorphism of S. Arithmetic
groups are mapped to arithmetic groups under Q-defined isomorphism of algebraic
groups (see e.g. [29, 10.141), so induces a commensuration of S(Z). Because

S(Z) is Zariski-dense in S by Theorem 2.9, the induced map 3 : Aut(S)(Q)
Comm(S(Z)) is injective.
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The following consequence of Mostow-Prasad-Margulis rigidity is likely known

to experts. We include a proof, having found no reference in the literature, using the

techniques of [15].

Theorem 7.3. Let S be a Q-defined, connected, simply-connected, semisimple

algebraic group without Q-compact factors. Suppose that if F is a factor of S(R)°
locally isomorphic to PSL2(R) then S(Z) projects to a non-discrete subgroup of F.
Then the inclusion

3 : Aut(S)(Q) ->• Comm(S(Z))

is an isomorphism.

Proof Let Si,..., S„ be the Q-simple factors of S, so that

S S, -S2 S„_, -S„.

For each j, let itj : S — S7 be the canonical projection.

Suppose [<£] e Comm(S(Z)). Without loss of generality, we may assume that

0 : Ti -» T2 is a partial isomorphism of S(Z) where

ri (r, ns,).(r, ns2) (n ns„).

Let

H,, T! ns, and TJ Ti(i rj^-i-Tqj + i ^i,n-

Note that each Tij( is of finite index in S, (Z).
Given any i, choose some j such that it} (<^>(Tr,,)) is infinite. Let Ai be the

Zariski closure of it[_,)) in S7, and A2 be the Zariski closure of (0(Tj))
in Sj. Replacing T i with a finite index subgroup if necessary, we may assume both

A] and A2 are connected. Then Ai commutes with A2 because Ti,, commutes with
P,. Note that itj (fir^,))-itj (0 (T j)) is commensurable with S, (Z), hence Zariski-
dense in S7 by Theorem 2.9. Therefore Ai A2 S7. Since itj (t/>(r ij()) is infinite
and Q-defined, and S7 is Q-simple, it must be that Ai S7. Since Ai commutes
with A2 and A2 is connected, it follows that A2 is trivial. Therefore itj (^(Tj)) must
be trivial.

It follows that, after replacing Ti with a subgroup of finite index, for each i
there is exactly one j so that ttv (0(Ti,,)) is nontrivial. Therefore for each i there

is exactly one j so that the image of rj:, under tf> is a subgroup of S7 of finite
index in S;(Z). It follows from Theorem 2.11 that 0|F| virtually extends to an

isomorphism O, : S, -»• Sj. The map <t> : S —» S defined by <F|S is a

Q-defined automorphism virtually extending 0, and so 3 is surjective.



Vol.90 (2015) Abstract commensurators of lattices in Lie groups 311

7.2. More general lattices in semisimple groups. A lattice T in a connected

semisimple Lie group S with finite center is irreducible if the projection of T to

S/N is dense for every nontrivial connected normal subgroup N < S. Let T < S
be an irreducible lattice in a connected semisimple Lie group with trivial center and

no compact factors. The relative commensurator Comms(r) satisfies a dichotomy
(see [351): either Comms (T) contains T as a subgroup of finite index, or Comms (T)
is dense in S. In fact, it is a celebrated theorem of Margulis that this is precisely the

dichotomy of arithmeticity versus non-arithmeticity.

Theorem 7.4 (Margulis, see [351, [21 ]). Let V < S be an irreducible lattice in a
connected semisimple Lie group with trivial center and no compact factors. Then

Comms (T) '-v dense in S ifand only i/T is arithmetic.

We summarize the above results:

Theorem 7.5. Let T be an irreducible lattice in a noncompact connected semisimple
Lie group S. Assume that S is not locally isomorphic to PSL2(M). One of the

following holds:

(1) T is arithmetic and there is a Q-defined, connected, simply-connected, Q-
simple, semisimple algebraic group S so that

Comm(T) s Aut(S)(Q).

Moreover, the group Aut(T) is commensurable with Aut(S)(Z).

(2) T is not arithmetic and Comm(r) T.

Proof. Suppose T is arithmetic. Then there is a Q-defined, connected, simply-
connected, semisimple algebraic group S without Q-compact factors so that
T S(Z). Since T is irreducible in S, the group S is Q-simple. The isomorphism
Comm(T) s Aut(S)(Q) follows from Theorem 7.3. Since Aut(T) is commensurable

with T and T is commensurable with S(Z), the result follows since S(Z) is

commensurable with Aut(S)(Z).
Now suppose T is not arithmetic. Let S' S/Z(S) and n : S -* S' the

canonical projection. There is a finite index subgroup of T taken faithfully to a

lattice r < S'. Let N be the maximal compact factor of S' and S" S'/N.
Then T' contains a finite index subgroup T" mapping isomorphically to a lattice
r" < S". By Mostow-Prasad-Margulis rigidity (cf. [24]), every commensuration
of T" extends to an automorphism of S". Since [Aut(S"') : Inn(S")] < oo, where
Inn(S") is the group of inner automorphisms of S", it follows that [Comm(r") :

Comiri5''/(r")] < oo, and hence [Comm(T") : T"] < oo by Theorem 7.4. Since T"
is of finite index in T, the result follows.

The case that S PSL2(M) is dramatically different.

Proposition 7.6. Suppose S is locally isomorphic to PSL2(K) and T < S is a
lattice. Then there is no faithful embedding Comm(r) GLyv(C) for any N.
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Proof. F is either virtually free or virtually the fundamental group of a closed

surface. All finitely generated free groups are abstractly commensurable to each

other, as are all closed surface groups. Therefore we have that Comm(T) is

isomorphic either to Comm(F2) or to Commfjri (S2)), where Fn is the free group
on it letters and is a closed surface of genus g.

A group G has the unique root property if xk yk implies x y for all

x, y 6 G and nonzero k. If G has the unique root property and H < G is a finite
index subgroup, then the natural map Aut(H) -» Comm(G) is faithful (see [26]).
It is easy to see that free groups and closed surface groups have the unique root

property. Therefore Aut(F„) < Comm(F2) for all n > 2, and Aut(;ri(Sg)) <
Comm(7ri (E2)) for all g > 2.

In [12] it is shown that Aut(F„) is not linear for any n > 3. Therefore Comm(F2)
cannot be linear. On the other hand, the proof of [ 11, 1.6] shows that for each N there

is some go so that if g > go then Mod±(Sg;i), the extended mapping class group
of the punctured surface of genus g, has no faithful complex linear representation of
dimension less than or equal to N. Since Mod±(S^ii) s Aut(;ri(Eg)), it follows
that Comm(jri (S2)) is not linear.

Nonarithmetic irreducible lattices can occur only in groups isogenous to SO( 1, n)
or SU( 1, n) up to compact factors. We will use this fact in §8.

Theorem 7.7 (see [21 ],[ 17]). Let S be a connected semisimple Lie group with

trivial center and no compact factors. Suppose either S Sp(1, n) for n > 2,

or S Ff20, or rankjid.S') > 2. Then every irreducible lattice in S is arithmetic.

7.3. Example: PGL„(Z). Consider the algebraic group PGL„ for n > 3. The

group PGL„(M)° is a semisimple Lie group, containing PGL„(Z) fl PGL„(M)° as a

lattice. By Theorem 7.3 we have

Comm(PGL„(Z)) =s Aut(PGL„)(Q).

Let r : PGL„ -» PGL„ be the automorphism given by x{A) {A~x)'. Then PGL„
acts on itself faithfully by conjugation, and there is a decomposition

Aut(PGL„) PGL„ x (r).

Since r preserves PGL„(Z), there is an isomoiphism

Comm(PGLn(Z)) ^ PGL„(Q) x (r). (7.1)

Remark 7.8. Note that PSL„(M) PGL„(M)° and PSL„(Z) PGL„(Z), so it
follows from equation (7.1) the above that

Comm(PSL„(Z)) PGL„(Q).
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In particular, Comm(PSL„(Z)) is not commensurable with the group

PSL„ (Q) SL„(Q)/Z(SL„(Q)).

To understand this precisely, consider the Q-defined surjection of algebraic groups
n : SL„ —> PGL„. The kernel of n is isomorphic to the multiplicative group of
order n, denoted /in. By definition, PSL„(Q) 7r(SL„(Q)). As in [27, 2.2.3], the

exact sequence of Q-defined algebraic groups

1 -»• ji„ -> SL„ —> PGL„ 1

gives rise to a long exact sequence of cohomology groups

1 MQ) -* SL„(Q) PGL„(Q) Hl(Q/Q,ii„) -* 1.

There is an isomorphism Hl (Q/Q, p,n) Q*/(Q*)n. This is infinitely generated
for/7 > 2, hence [PGL„(Q) : PSL„(Q)] oo.

8. Commensurations of general lattices

Suppose T is a lattice in a connected Lie group G which is not necessarily either
solvable or semisimple. Our main result is:

Theorem 1.7. Suppose G is a connected, linear Lie group with connected, simply-
connected solvable radical. Suppose T < G is a lattice with the property that there
is no surjection (p : G —» H to any group H locally isomorphic to any SO( 1,«) or
SU( 1, n) so that (p(T) is a lattice in H. Then:

(1) T virtually embeds in a Q-defined algebraic group G with Zariski-dense

image so that every commensuration [<p] G Comm(r) induces a unique Q-
defined automorphism of G virtually extending (p.

(2) There is a Q-defined algebraic group B so that

Comm(r) B(Q)

and the image o/Aut(T) in B is commensurable with B(Z).

The proof of Theorem 1.7 proceeds in four steps:

(1) Construct the algebraic group G, called the virtual algebraic hull of T, such

that T virtually embeds in G with Zariski-dense image.

(2) Show that commensurations of T induce (Q-defined automorphisms of G.

(3) Show that Aut(G) has the structure of an algebraic group, and that Comm(T)
is realized as the Q-points of a Q-defined subgroup of Aut(G).

(4) Show that the image of Aut(T) in Aut(G) is commensurable with B(Z).
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Proofof Theorem 1.7. Let T be as in the theorem. Let R be the solvable radical of
G.

Step 1: (Construction of virtual algebraic hull). We will construct G as the

semidirect product of a solvable group H with a semisimple group S. Roughly
speaking, H is the virtual algebraic hull of the "solvable part" of V, while S is a

Q-defined semisimple group without Q-compact factors such that the "semisimple
part" of T is abstractly commensurable with S(Z). To make this precise, we modify
the Lie group G and lattice F as follows.

Because G is linear, there is a connected semisimple subgroup S < G so that

G R x S. Let S' be a Q-defined linear algebraic group so that S S'(M)°.
There is a simply-connected algebraic group S' and a surjection jr : S' —> S' with
finite central kernel. Let S S'(M)°. Then n : S -> S is a finite covering map
with central kernel. The lattice T < R x S lifts to a lattice f < R x S, which is

commensurable with T by Proposition 3.9. Replacing R xi S by R xi S and F by

f, we may assume that no finite cover of the semisimple quotient of G has a linear

representation, i.e. that G is algebraically simply-connected (cf. [34, 9.4]).
Let K be the maximal compact quotient of S such that T projects to a finite

subgroup of K. Because G is algebraically simply-connected, K may be identified
with a subgroup of S, and there is a subgroup S' < S so that S S' x K.
Then T fl (R x S') is of finite index in T, so we may replace S by S' and assume

that T projects densely into the maximal compact factor of S. It follows by [31,

4.5] that, passing to a finite index subgroup of T, we have chosen S < G so that

T (T Fl R)(T n 5). Let rr r Fl R and rs r n S. This makes precise our
notions of "solvable" and "semisimple" parts of T.

We now want to find a Q-defined algebraic group S without Q-compact factors

so that T, is abstractly commensurable with S(Z). Because S is algebraically
simply-connected, there is a decomposition S Si x • • x S* so that virtually
decomposes as F^i x ••• x T^, where T^,- < S, is an irreducible lattice for
each i. Since each T^, does not project to a lattice in SO(l,«) or SU(l,n), it
follows from Theorem 7.7 that for each i there is a connected Q-defined semisimple
algebraic group S, and a surjection n, : S, (M)° -> S, with compact kernel so that

jr, (S; (Z) Fl S, (M)°) is commensurable with Set

k

S Si x ••• xSk and r's f] S, (Z) Fl S; (R)°.
t 1

Each S, is Q-simple and S, (R)° is not compact, so S is without Q-compact factors.

Our next goal is to define an action of S on the virtual algebraic hull of Tr. To

do this, we use the fact that the virtual algebraic hull of Fr is a real algebraic hull
for any unipotently connected, simply-connected solvable Lie group R containing
Tr as a Zariski-dense lattice. A classical construction may be used to produce
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a simply-connected solvable Lie group R' so that Tr is Zariski-dense in R' and
R' is unipotently connected. To ensure that we can apply this construction while
respecting the action of S, we present a proof based on ideas in 15].

Lemma 8.1. Suppose G R x S is a connected linear Lie group with R simply-
connected solvable and S semisimple. Let F (F fl /?)(T fl S) be a lattice, and
set Tr FDR and Fj. F fl S. There is a finite index subgroup F < T of the

form F' ~ T'r A r, and a simply-connected solvable Lie group R' so that F' is a
lattice in R' x S with the property that \ 'r is Zariski-dense in R' and R' is unipotently
connected.

Proof. Let Hß be the real algebraic hull of R and Hp the virtual algebraic hull of Tr.
There is a finite index characteristic subgroup < Tr so that Hp is the algebraic
hull of r;. By [5, 5.3] we may moreover assume that there is some simply-connected
solvable Lie group R' that is unipotently connected and so that is Zariski-dense in
R'. The algebraic group Hp is a real algebraic hull for R' by [5, 3.11], In particular,
we identify R' with a subgroup R' < Hp(R) containing T'r.

By [5, 3.9], the inclusion T'r < R extends to an R-defined embedding Hp -»• Hß.
The action of S on R extends to an action of S on Hß by R-defined algebraic
automorphisms. Let 4> be an R-defined automorphism of Hß induced by some
s e S. We would like to show that preserves R'.

Let N be the maximal connected nilpotent normal subgroup of R, and let F
denote the Zariski-closure of Fitt(T) in Hß. We have N < F by a classical result
of Mostow. It follows from [5, 3.3] that N < Hß(R) is normal. Because S is

connected, the action of S on R/N is trivial by [5, 6.9]. It follows that 0(F) F.

By density of R < Hß, we conclude that O is trivial on the quotient Hß/F.
Let N' be the maximal normal nilpotent subgroup of R'. Then F(R) N' in

Hp because R' is unipotently connected. It follows that 0(/?') c /?'F(R) R',
and so O induces an automorphism of R'. This agrees with the given action of
on r;, so we may form the semidirect product G' R' x S containing the lattice
r' r; x r,.

We may therefore assume that the radical R of G is unipotently connected and

rr is Zariski-dense in R. Let H be the virtual algebraic hull of Tr. Because R is

unipotently connected and Tr is Zariski-dense in R, [5, 3.11] implies that H has the

structure of a R-defined connected algebraic hull of R. There is a representation
p : S -> Aut«(H) by the automorphism extension property of the algebraic hull.
Because S is simply-connected, p extends to an R-defined representation p : S -»
Aut(H) by Proposition 2.8. Since r5 preserves Tr, we have that p(y) is Q-defined
for every y e rs. Because S is without Q-compact factors and connected, we know
Fy is Zariski-dense in S by Theorem 2.9. It follows from a standard fact, e.g. [21,
F0.11], that the representation p : S -» Aut(H) is Q-defined.
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The definition of the variety structure on Aut(H) implies that the action map

a : H x Aut(H) ->• H is a Q-defined map of varieties. It follows that the action map

HxS^H is Q-defined. The semidirect product of groups

G HxS (8.1)

therefore has the structure of a Q-defined algebraic group. It is evident from the

construction that T embeds in G(Q) as a Zariski-dense subgroup. This concludes

the first step of the proof.

Step 2: (Extension of commensurations). We now construct a map

£ : Comm(T) —» AutQ(G).

Let A be a thickening of Tr in H with nilpotent supplement C and good unipotent
shadow 0, as in Proposition 5.13. The action of T^ on Tr extends to an action on

A. Then AxT, is a Zariski-dense subgroup of G(Q) containing T as a finite index

subgroup.

Lemma 8.2. Let U denote the unipotent radical of H. Suppose u G U(Q). Then

conjugation by u induces a commensuration of T.

Proof. Suppose u U(Q). Let F Fitt(H). Conjugation by u induces two

partial automorphisms: a partial automorphism <j)Q : 9\ —> 02 of 0, and a partial

automorphism 0« : A i -» A 2 of Tr by Theorem 6.1. As in the proof of Theorem

6.1, we may choose 9\, 02, A1, and A2 so that 0, n F Fitt(A,) for i 1,2. We

want to find some finite index subgroup T" < so that conjugation by u induces

an isomorphism AjT" -» A2r".
Let N be the maximal connected, normal, nilpotent subgroup of R. Because S

is connected, the action of S on R is trivial on R/N (see [5, 6.91). Since we have

assumed that R is unipotently connected, N is Zariski-dense in the Fitting subgroup
F < H by [5, 5.4], and so the induced action of on H is trivial on the quotient
H/F. Therefore for any ,v g Tv we have

sus~lu~{ G F. (8.2)

Restricting our attention to A, we see that for any s 6 T, and c e C, there is some

/ G Fitt(A) so that scs~l fc. It follows that conjugation by s e rs preserves 0.

Let Fj £ Tj be a finite index subgroup normalizing both A\ and A2. Then Tj also

normalizes both 9\ and 02. By Lemma 6.2, there is a finite index subgroup T" < Tj
so that usu~is~l G 0i n 02 for all i G T". Combining this with (8.2), for all s G T"
we have

usirls~l G Fitt(Ai) n Fitt(A2). (8.3)

The same arguments as in Claim 1 of the proof of Theorem 6.1 show that conjugation
by u induces a partial isomorphism A1T" ->• A2T" of A xi rs.
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Proposition 8.3. Every commensuration [0] £ Comm(r) induces a unique Q-
defined automorphism of G virtually extending fi. Hence there is an injective
homomorphism

£ : Comm(r) -» AutQ(G).

Proof. Suppose there are finite index subgroups H and F2 of A x Tj with (f> :

Ti -» r2 a partial automorphism representing [</>]. Passing to a finite index subgroup
so that r, n Z(S) is trivial, we may assume that T, Pi H is the unique maximal
normal solvable subgroup of T, for / 1,2 (cf. 128, Lemma 6]). It follows that

0(Fi nH(K)) T2 P H(M), and so </> induces a commensuration [0^] e Comm(A)
by Lemma 3.5. It follows from Lemma 5.11 that 4>r extends to an automorphism
$>/? £ AutQ(H).

Now let L be the Zariski-closure of 0(Ti n IV) in G. Then L is Q-defined, and is

semisimple by [31, Theorem 2], (Note that here we are using the assumption that Ty

does not surject to a lattice in any SU( 1,//) or SO(l,n).) There is some u £ U(Q)
conjugating L into S by Theorem 2.6. It follows from Lemma 8.2 that Innu o<p

virtually restricts to a partial automorphism <ps A2 of Ty. The partial
automorphism tps virtually extends to a Q-defined automorphism e AutQ(S) by
Theorem 7.3.

Define an automorphism 4> 6 Aut(G) by

<t>(/\ s) Inn„-i (Innu oOR(r), $sC0) •

Then <t> virtually extends the partial automorphism <p. This extension is unique up
to choice of it e U(Q) conjugating L to S. However, any two such u differ by an

element of U(Q) centralized by S, hence O is unique.

Step 3: (Algebraic structure). We now show that the image of £ : Comm(T) —»

AutQ(G) has the structure of the Q-rational points of a Q-defined algebraic group.
We first show that Aut(G) in fact has the structure of a Q-defined algebraic group.

Definition 8.4. A pair of automorphisms (<T«, O5) £ Aut(H)xAut(S) is compatible
if there is some O £ Aut(G) preserving S with 4>|H <S>r and 4>|s 4>5. Let
C(G) c Aut(H) x Aut(S) be the set of compatible pairs of automorphisms.

As both Aut(H) and Aut(S) have structures of Q-defined algebraic groups, their
product Aut(H) x Aut(S) is a Q-defined algebraic group.

Lemma 8.5. C(G) is a Q-defined subgroup of Aut(H) x Aut(S).

Proof. Let p : S -» Aut(H) be the Q-defined representation by conjugation. Any
automorphism $ e Aut(G) preserving S must satisfy

[<J> o p(s)](r) <J>(x/\y~') <J>(.v)<L(;-)<f>(.s)_1 [p(<t(x)) o <!>](/•)

for all ;• e H and all s £ S.



318 D. Studenmund CMH

From this it is clear that any (&R, e C(G) satisfies

$>R o p(s) o o p(05(^))_1 Id e Aut(H) (8.4)

for all s S. Conversely, suppose a pair (<1>ä, O5) e Aut(H) x Aut(S) satisfies (8.4)
for all s S. Then the function 0 : G G defined by 4>(r, .s)

is an automorphism of G, and so (<f>/?, 4>s) e C(G). Thus C(G) is equal to the set

of pairs (<£/?, O5) satisfying (8.4) for all e S(Q). For a fixed element s e S, the

solution set of equation (8.4) is a Q-defined closed subset of Aut(H) x Aut(S). It
follows that C(G) is a Q-defined subgroup.

Lemma 8.6. The map

0 : U x C(G) -> Aut(G)
(8.5)

(u. 4>«, 4>s) !->• InnM o4>Ä o cj>5

is a surjective group homomorphism with Q-defined unipotent kernel. Hence Aut(G)
has the structure of a Q-defined algebraic group, such that

AutQ(G) Aut(G)(Q) S U(Q) x C(G)(Q)/(ker0)(Q). (8.6)

Proof. This follows from standard arguments. Compare to §5.4 and [4, §3.1], for
example.

We will now show that the image of

£ : Comm(r) —» Aut(G)

is equal to the Q-points of a Q-defined subgroup of Aut(G). Let Arr < Aut(H) be

the Q-defined subgroup such that _4r,. (Q) Comm(rr), as in Theorem 1.2. Define

B {d> e Aut(G) I <J>|H e .Ar,} •

Then B is evidently a Q-defined subgroup of Aut(G). It is clear that £(Comm(r)) <
B(Q).

Proposition 8.7. The map £ : Comm(r) —> B(Q) is an isomorphism.

Proof. Clearly £ is injective. Suppose 4> e B(Q). By Theorem 2.6 there is

some u U(Q) such that Inn„ o<J> preserves S. Since InnM e Arr, it follows that

Inn„ ocfi e B(Q). Therefore there are 6 -4ry(Q) a°d 6 Aut(S)(Q) such that

Inn,, o4> <t>R o 4)5.
We have that <$>R induces a partial automorphism fR : A\ -»• A2 of A by

Theorem 1.2, and <f>s induces a partial automorphism fis : —> ri>2 of
by Proposition 7.2. We may choose A] to be characteristic in A, and then choose

r,,2 to normalize A2 < A. It follows that there is a well-defined isomorphism
0 : A^.,1 —> A2rii2 defined by <p{r, s) 4>fl(/")<t>s(.y), which clearly satisfies

f([0]) 0 ^5- Since Inn,, e £(Comm(r)) by Lemma 8.2, it follows that
4> e £(Comm(r)).
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Step 4: (Aut(r) commensurable with B(Z)). It remains only to show that Aut(r)
is commensurable with ß(Z). For this, we first show that the element u e U(Q)
arising in the proof of Proposition 8.3 can be chosen in a controlled way. Given
a vector space V of finite dimension over a field of characteristic 0, we say that a

subset L c V is a vector space lattice if L is a finitely generated Z-submodule of
F(Q) spanning V.

Lemma 8.8. Let P be any group acting nontrivially and irreducibly on a vector
space V M". Suppose P preserves a vector space lattice L' c K(Q). Then there
is a vector space lattice L C K(Q) such that if v F(Q) satisfies v — p v 6 L' for
cdl p e P then v e L.

Proof. The action of P descends to an action of P on the torus V/L'. It suffices to
show that this action has finitely many fixed points, as the fixed points of 1/(Q)/L'
lift to the desired vector space lattice L c V. To see this, simply note that the fixed
point set X of the action of P is a closed, hence compact, Lie subgroup of V/L'.
The dimension of X must be zero by the assumption that P acts irreducibly and

nontrivially on V. Therefore X is finite.

Lemma 8.9. There is a subgroup A < U(Q) commensurable with U(Z) such that if
0 Aut(T) virtually extends to <t> e Aut(G) then there is some u 6 A such that

(InnM ocf>)(S) c S.

Proof Let ti denote the Lie algebra of U. The action of T5 on U induces a linear
action of Ts on u. Let 0 be a good unipotent shadow of Tr. Fix a vector space lattice
L' c u(Q) containing log(0) preserved by the action of on u.

Suppose 0 e Aut(T) virtually extends to O e Aut(G). By Theorem 2.6, there is

some u U(Q) so that

(Inn„o4>)(S) CS. (8.7)

Define 0i : F^ —>• Tr and 02 : T., -> by

0(0, yj (0l(Ks).02(Xs))-

Take any ys e Fs. It follows from equation (8.7) that 0i(y.v) e Ufl Fr, and so
01 (ys) e 0. From this we conclude that

u(ys u~l) 0,

and therefore

log(tf) - ys log(w) e L'.

Because S is semisimple, the action of on u is completely reducible. Applying
Lemma 8.8 to each irreducible component of this representation of we find a

vector space lattice L c u(Q) with the property that any it U(Q) satisfying
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equation (8.7) satisfies log(u) L. Let A < U(Q) be any subgroup such that

log(A) is a vector space lattice containing L with finite index. Such a subgroup
exists by the methods of [30, §6B[. The fact that A is commensurable with U(Z) is

immediate from the fact that log(A) c u(Q) is a vector space lattice.

Now let

Aa,h {O g ^4H|f I 4>(A) c A}.

Then Aa,h is commensurable with *4H|F(Z) by [4, 8.1], hence is commensurable

with Aut(Fr). Define a Q-defined subgroup of C(G) by

Cr(G) {(Or, <I>s) e C(G) | Or g Arr},

and

Aa {(Or, Os) g Cr(G) | Or e Aa,h and Or(Tj) T,}.

Then Aa is commensurable with Cr(G)(Z). Note that the map 0 of Lemma 8.6

descends to a map
0 : U x Cr(G) -> Aut(G),

and there is an isomorphism of algebraic groups

B =s U x Cr(G)/ker(0).

Let

AutA(F) {</>£ Aut(T) </>|pr G Aa,h|

Note that [Aut(T) : AutA(T)] < oo. By Lemma 8.9 there is a map

£ : AutA(r) ->Ax AA/ker(0).

This map is clearly injective, and the preceding discussion shows that its image is of
finite index. Therefore the image of Aut(T) in B is commensurable with B(Z). This

completes the proof.

Remark 8.10. The assumption that the lattice T is superrigid in S cannot be

removed from Theorem 1.7. Consider for example S SO(l,«) for n >2 with
a lattice T < S such that r/[T, T] is infinite. Let r : T —> Z be any nontrivial

homomorphism. Then <pT : Z x F — Z x T defined by

0r(Ly) (t + t(y),y)

is an automorphism of Z x T, which is a lattice in R x S. However, (pr neither is

induced by conjugation by an element ofQ c R nor preserves S in any sense, and

cj)T cannot be extended to an automorphism of M x S.
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Automorphisms of the form 0r as above are in one-to-one correspondence with
elements of Hl(F, Z). If A < T is a finite index subgroup and a e //'(A,Z), then

defines a partial automorphism of Z x T. In this way we identify the inverse limit

C fim {//1 (A, Z) | [r : A] < oo}

with a subgroup of Contm(Z x T). Nontrivial commensurations in C do not virtually
extend to automorphisms of M x S. For any finite index subgroup A < T, we may
identify Hl(A,Q) as a subgroup of C. In this way, the virtual first rational Betti
number of the semisimple quotient of a lattice may be seen as an obstruction to the

realization of commensurations as automorphisms of an algebraic group.
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