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Connected components of the strata of the moduli space
of meromorphic differentials

Corentin Boissy

Abstract. We study the translation surfaces corresponding to meromorphic differentials
on compact Riemann surfaces. Such geometric structures naturally appear when studying
compaclifications of the strata of the moduli space of Abelian differentials.

We compute the number of connected components of the strata of the moduli space of
meromorphic differentials. We show that in genus greater than or equal to two, one has up to
three components with a similar description as the one of Kontsevich-Zorich for the moduli
space of Abelian differentials. In genus one, one can obtain an arbitrarily large number of
connected components that are distinguished by a simple topological invariant.
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1. Introduction

A nonzero holomorphic one-form (Abelian differential) on a compact Riemann
surlace naturally defines a fiat metric with conical singularities on this surface.
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Geometry and dynamics on such flat surfaces, in relation to geometry and dynamics
on the corresponding moduli space of Abelian differentials is a very rich topic and

has been widely studied in the last 30 years. It is related to interval exchange
transformations, billards in polygons, Teichmüller dynamics.

A noncompact translation suiface corresponds to a a one form on a noncompact
Riemann surface. The dynamics and geometry on some special cases of noncompact
translation sui faces have been studied more recently. For instance, dynamics on ld
covers of compact translation surfaces (see [8, 10, 5]), infinite square tiled surfaces

(see [II]), or general noncompact surfaces (see [2, 3, 19]).
In this paper, we investigate the case of translation surfaces that come from

meromorphic differentials defined on compact Riemann surfaces. In this case, we
obtain infinite area surfaces, with "finite complexity". Dynamics of the geodesic
flow on a generic direction on such surface is trivial any infinite orbit converges to
the poles. Also, SL2(M) action doesn't seem as rich as in the Abelian case (see

Appendix A).
However, it turns out that such structures naturaly appear when studying

compactifications of strata of the moduli space of Abelian differentials. Eskin,
Kontsevich and Zorich show in a recent paper [6] that when a sequence of
Abelian differentials (A',.«,) converges to a boundary point in the Deligne-Munford
compactification, then subsets (YtJ, corresponding to thick components of
the X,, after suitable rescaling converge to meromorphic differentials (see [6],
Theorem 10). Snnllie, in a work to appear, constructs a geometric compactification
of the strata of the moduli space of Abelian differentials, by using only flat geometry,
and where flat structures defined by meromorphic differentials are needed.

The connected components of the moduli space of Abelian differentials were
described by Kontsevich and Zoi ich in [14], They showed that each stratum has up to
three connected component, which are described by two invariants: hyperellipticity
and the parity of the spin structure, that arise under some conditions on the set

of zeroes. Later, Lanneau has described the connected components of the moduli
space of quadratic differentials. The main goal of the paper is to describe connected

components of the moduli space of meromorphic differentials with prescribed poles
and zeroes. It is well known that each stratum of the moduli space of genus zero
meromorphic differentials is connected. We show that when the genus is greater
than, or equal to two, there is an analogous classification as the one of Kontsevich
and Zorich, while in genus one, there can be an arbitrarily large number of connected

components.
In this paper, we will call translation surface with poles a translation surface

that comes from a meromorphic differential on a punctured Riemann surface, where
poles correspond to the punctured points. We describe in Section 2 the local
models for neighborhoods of poles. Similarly to the Abelian case, we denote by
Tf(n i nr,—pi —ps) the moduli space of translation surfaces with poles
that corresponds to meromorphic differentials with zeroes of degree ti\,...,nr
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and poles of degree p\...., ps. It will be called stratum of the moduli space of
meromorphic differentials. We will always assume that s > 0. A strata is nonempty
as soon as Yi "i ~^Lj Pj 2g—2, for some nonnegative integer g and Yj pj > 1.

For a genus one translation surface S with poles, we describe the connected

components by using a geometric invariant easily computable in terms of the flat
metric, that we call the rotation number of a surface. As we will see in Section 4, in
the stratum 7i(n i nr, —p\ —ps)< the rotation number is a positive integer
that divides all the //,-, pj.
Theorem 1.1. Let ft(n i ,nr,—p\ -ps). with pj > 0 and Yj Pj > 1

be a stratum of genus one meromorphic differentials. Denote by c be the number
of positive divisors of gcd(n i,..., nr. p\ ps). The number of connected

components of the stratum is:

• c — 1 ifr s 1. In this case n\ p\ gcd(/?i. p\) and each connected

component corresponds to a a rotation number that divides n i and is not n \.

• c otherwise. In this case each connected component corresponds to a rotation
number that divides gcd(/) i nr. p\ ps).

A consequence of the previous theorem is that, contrary to the case of Abelian
differentials, there can be an arbitrarily large number of connected components
for a stratum of meromorphic differentials (in genus 1). For instance, the stratum
77(24. —24) has 7 connected components since the positive divisors of 24 that are

not 24 are 1, 2, 3, 4, 6, 8 and 12.

The general classification uses analogous criteria as for Abelian differentials. We

recall that in this case, the connected components are distinguished by the following
(up to a few exception in low genera):

• liyperellipticity: if there is only one singularity or two singularities of equal
degree, there is a component that consists only of hyperelliptic Riemann
surfaces. For each translation surface, the hyperelliptic involution is an

isometry. Slightly abusing terminology, we usually call this component the

hyperelliptic component.

• the parity of the spin structure: If all singularities are of even degree, there

are two connected component (none of which is the hyperelliptic component)
distinguished by a topological invariant easily computable in terms of the flat
metric.

In Section 5, we define in our context the notion of hyperelliptic component and

spin structure.
In the next theorem, we say that the set of poles and zeroes is:

• of hyperelliptic type if the degree of zeroes are or the kind (2/)} or {»,/?}, for
some positive integer n, and if the degree of the poles are of the kind {—2p)
or {—p, —p), for some positive integer p.
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• of even type if the degrees of zeroes are all even, and if the degrees of the

poles are either all even, or are {—1, —1}.

Theorem 1.2. Let Li LL(n \ nr, — p\,..., — ps), with ttj, Pj > 0 be a stratum
ofgenus g > 2 meromorphic differentials. We have the following.

(1) If Hi Pi <s ancl greater than two, then Li is nonempty and connected.

(2) If Hi Pi 2 and g 2, then:

• if the set of poles and zeroes is of hyperelIiptic type, then there are two
connected components, one hyperelliptic, the other not (in this case, these

two components are also distinghished by the parity of the spin structure)

• otherwise, the stratum is connected.

(3) If Hi Pi > 2 or ifg > 2, then:

• if the set of poles and zeroes is of hyperelliptic type, there is exactly

one hyperelliptic connected component, and one or two nonhyperelliptic
components that are discribed below. Otherwise, there is no hyperelliptic
component.

• if the set of poles and zeroes is of even type, then Li contains exactly two

nonhyperelliptic connected components that are distinguished by the parity
of the spin structure. Otherwise Li contains exactly one nonhyperelliptic
component.

From the previous theorem, we see that there are at most three connected

component in genus greater than or equal to two. For instance, the stratum
7-^(4.4, — 1, — 1) contains a hyperelliptic connected component (zeroes and poles
are of hyperelliptic type) and two nonhyperelliptic components (the zeroes are

even and the poles are {-1,-1}). So it has three components. The stratum
Li(2,4, — 1, — 1, —2) is connected, since it does not have a hyperelliptic connected

component and the poles and zeroes are not of even type.
The structure of the paper is the following.

• In Section 2, we describe general facts about the metric defined by a

meromorphic differential and define a topology on the moduli space.

• In Section 3, we present three tools that are needed in the proof. The first two
ones appear already in the paper of Kontsevich and Zorich, and in the paper
ot Lanneau. The third one is a version of the well known Veech construction
for the case of translation surfaces with poles.

• In Section 4, we describe the connected components in the genus one case.
Some of the results in genus one will be very useful for the general genus.

• In Section 5, we describe the topological invariants for the general genus case,
i.e. hyperelliptic connected components and the parity of the spin structure.
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• In Section 6, we compute the connected components for the minimal strata,
which are the strata with only one conical singularity (and possibly several

poles).

• In Section 7, we compute the connected components for the general case.

Acknowledgements. I thank Martin Moeller for many discussions about meromorphic

differentials and about spin structures. I thank John Smillie for motivating
the work on this paper and interesting discussions. I am also thankful to Pascal
Hubert and Erwan Lanneau for the frequent discussions during the development of
this paper. This work is partially suported by the ANR Project "GeoDym".

2. Flat structures defined by meromorphic differentials.

2.1. Holomorphic one forms and flat structures. Let A be a Riemann surface and
let co be a holomorphic one form. For each zo £ X such that co(z0) ^ 0, integrating
w in a neighborhood of zo gives local coordinates whose corresponding transition
functions are translations, and therefore X inherits a flat metric, on T\S, where £
is the set of zeroes of co.

In a neighborhood of an element of £, such metric admits a conical singularity
of angle (k + 1)2^, where k is the degree of the corresponding zero of co. Indeed,
a zero of degree k is given locally, in suitable coordinates by co (k + 1 )zkdz.
This form is precisely the preimage of the constant form dz by the ramified covering
z —> zk+l. In terms of flat metric, it means that the flat metric defined locally by
a zero of order k appear as a connected covering of order k + 1 over a flat disk,
ramified at zero.

When X is compact, the pair (A'.co), seen as a smooth surface with such
translation atlas and conical singularities, is usually called a translation surface.

If co is a meromorphic differential on a compact Riemann X, we can consider the

translation atlas defined defined by co on X A"\£', where £' is the set of poles
of co. We obtain a translation surface with infinite area. We will call such surface
translation surface with poles.

Convention 2.1. When speaking of a translation surface with poles 5 (X, co).
The surface S equipped with the flat metric is noncompact. The underlying
Riemann surface A is a punctured surface and co is a holomorphic one-form on
X The corresponding closed Riemann surface is denoted by X, and co extends to a

meromorphic differential on X whose set of poles is precisely X\X.

Similarly to the case of Abelian differentials. A saddle connection is a geodesic
segment that joins two conical singularities (or a conical singularity to itself) with
no conical singularities on its interior.
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We also recall that it is well known that Xa=t ni ~ X!y=i Pj 2g — 2, where

{»I nr \ is the set (with multiplicities) of degree of zeroes of co and {p\ ps}
is the set (with multiplicities) of degree of the poles of co.

2.2. Local model for poles. The neighborhood of a pole of order one is an infinite
cylinder with one end. Indeed, up to rescaling, the pole is given in local coordinates
by co ^dz. Writing z ez>, we have co dz', and z' is in a infinite cylinder.

Now we describe the fiat metric in a neighborhood of a pole of order k >2 (see
also [20]). First, consider the meromorphic 1-form on C U {oo} defined on C by
co zkclz. Changing coordinates w 1/z, we see that this form has a pole P of
order k + 2 at oo, with zero residue. In terms of translation structure, a neighborhood
of the pole is obtained by taking an infinite cone of angle (k + 1)2jt and removing a

compact neighborhood of the conical singularity. Since the residue is the only local
invariant for a pole of order k, this gives a local model for a pole with zero residue.

Now, define Ur {z e C||z| > R} equipped with the standard flat metric. Let
Vr be the Riemann surface obtained after removing from Ur the ^-neighborhood of
the real half line R~, and identifying by the translation z -» z +12n the lines —inr +
R~ and in +M~. The surface Vr is naturally equipped with a holomorphic one form
co coming from dz on Vr. We claim that this one form has a pole of order 2 at infinity
and residue -1. Indeed, start from the one form on Ur> defined by (1 + \/z)dz and

integrate it. Choosing the usual determination of ln(z) on C\R~, one gets the map
z -»• z + ln(z) from Ur>\IR~ to C, which extends to a injective holomorphic map /
from Ur> to Vr, if R' is large enough. Furthermore, the pullback of the form co on
Vr gives (1 + 1 fz)dz. Then, the claim follows easily after the change of coordinate
tu 1/z

Let k >2. The pullback of the form (1 + 1 /z)dz by the map z -> zk~l gives
{{k - 1 )zk~2 + (k - 1 )/z)dz, i.e. we get at infinity a pole of order k with residue
—{k — 1). In terms of fiat metric, a neighborhood of a pole of order k and residue
—(k — 1) is just the natural cyclic (k — l)-covering of Vr. Then, suitable rotating
and rescaling gives the local model for a pole of order k with a nonzero residue.

For flat geometry, it will be convenient to forget the term 2m when speaking of
residue, hence we define the flat residue of a pole P to be f co, where yp is a small
closed path that turns around a pole counter clockwise.

2.3. Moduli space. If (X, co) and (X', co') are such that there is a biholomorphism

j : X -> X' with / *co' co, then / is an isometry for the metrics defined by co

and co'. Even more, for the local coordinates defined by co, co', the map / is in fact a

translation.
As in the case ot Abelian differentials, we consider the moduli space of

meromorphic differentials, where (A", co) ~ (X', co') if there is a biholomorphism / :

X X such that f*co' co. A stratum corresponds to prescribed degree of zeroes
and poles. We denote by RL(n { nr, —pi,..., —ps) the stratum that corresponds



Vol.90 (2015) Strata of meromorphic differentials 261

to meromorphic differentials with zeroes of degree n i,..., nr and poles of degree

P\,..., ps. Such stratum is nonempty if and only if 1 ni ~ Y?j i Pi 2g — 2

for some integer g > 0andif^y=1 pj > 1 (i.e. if there is not just one simple pole.).
A minimal stratum is a stratum with /' 1, i.e. which corresponds to surfaces with
only one conical singularity and possibly several poles.

We define the topology on this space in the following way: a small neighborhood
of S, with conical singularities £, is defined to be the equivalent classes of surfaces
S' for which there is a differentiable injective map / : S\E(£) —S' such that

V(£) is a (small) neighborhood of £, Df is close the identity in the translation
charts, and the complement of the image of / is a union on disks. One can easily
check that this topology is Hausdorff.

3. Tools

3.1. Breaking up a singularity: local construction. Here we describe a surgery,
introduced by Eskin, Masur and Zorich (see [7], Section 8.1) for Abelian differentials,

that "break up" a singularity of degree k\ + k2 > 2 into two singularities of
degree k\ > 1 and k2 > 1 respectively. This surgery is local, since the metric is

modified only in a neighborhood of the singularity of degree k\ + k2. In particular,
it is also valid for the flat structure defined by a meromorphic differential.

Figure 1. Breaking up a zero, after Eskin, Masur and Zorich

We start from a singularity of degree k i + k2. A neighborhood of such singularity
is obtained by gluing (2k i + 2k2 + 2) Euclidean half disks in a cyclic order. The

singularity breaking procedure consists in changing continuously the way these half
disks are glued together, as in Figure 1. This breaks the singularity of degree
^t + k2 into singularities of degree k\ and k2 respectively, and with a small saddle

connection joining them.
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3.2. Bubbling a handle. The following surgery was introduced by Kontsevich and

Zorich in [14]. Since it is a local construction, it is also valid for meromorphic
differentials. As before, we start from a singularity of degree k\ + k2 on a surface

S. We first apply the previous surgery to get a pair of singularities of degree k\ and

k2 respectively, and with a small saddle connection y joining them. Then, we cut the

surface along y and obtain a flat surface with a boundary component that consists

of two geodesic segments y\, y2. We identify their endpoints and the corresponding

segments are now closed boundary geodescis y[, y'2. Then, we consider a cylinder
with two boundary components isometric to y[, and glue each of these component to

y[. The angle between y\ and y'2 is (k\ + \)2n (and (k2 + 1 )27r)

Using a notation similar to the one introduced by Lanneau in [15], we will denote

by S®(k[ + 1) the resulting surface for an arbitrary choice of continuous parameters.
Different choices of continuous parameters lead to the same connected component
and from a path (S;)re[o,i]> one can easily deduce a continuous path St © {k\ + 1).

Hence, as in 115], the connected component of S © s only depends on s and on the

connected component of S. So, if S is in a connected component C of a stratum
of Abelian (resp. meromorphic) differential with only one singularity, C © s is

the connected component of a stratum of Abelian (resp. meromorphic) differentials
obtained by the construction.

Remark 3.1. The notation © slightly differs to the one introduced by Lanneau: since
he manipulates quadratic differentials, the angles can be any multiples of n, while
in our case, we only have multiples of 2n. So the surface we obtain would have been

written S © 2(k{ + 1) with the notation of Lanneau.

The following lemma is Proposition 2.9 in the paper of Lanneau [15], written in

our context. The ideas behind this proposition were also in the paper of Kontsevich
and Zorich [14],

Lemma 3.2. Let C be connected component ofa minimal stratum of the moduli space
of meromorphic differentials, of the form 'H(n, — p\ — pr). Then, the following
statements hold.

(1) C © ,?i © s2 C © s2 © .?i if 1 < s\,s2 < n + 1 and either Si | + 1 or
+ 1.

(2) C © .?i © s2 C © s2 — 1 © j'i + 1 if 1 < si < n + 1 and 2 < s2 < n + 2.

(3) C ffi i'i © s2 C © s2 — 2 © if 1 < .vi < n + 1 and 1 < s2 < n + 3 and
s2 — U > 2.

(4) C ffi s C ffi (n + 2 — s) for all s e {1,..., n + 1}

Remark 3.3. There is a small mistake in the statement of Lanneau: the condition
"either si ^ | + 1 or s2 ^ + 1" does not appear while it is necessary.

This leads to a gap in the proof of Lanneau's Lemma 6.13 in [15], but this gap is

easily solved by using Lemma A.2 of the same paper.
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3.3. The infinite zippered rectangle construction. In this section, we describe a

construction of translation surfaces with poles which is analogous to the well known
Veech zippered rectangle construction. We will call this construction the infinite
zippered rectangles construction.

We first recall Veech's construction.

3.3.1. The Veech construction of a translation surface. The Veech construction,
or zippered rectangle construction is usually seen as a way to define a suspension
over an interval exchange map (see 1211). We can also see it as a easy way to define
(almost any) translation surface. Consider a finite alphabet A {c*i,..., a</}, and a

pair on one to one maps JtfXb ' A ^ {1,..., d}. Let £ C-4 be a vector for which
each entry has positive real part.

The Veech construction can be seen in two (almost) equivalent ways. One with a

2d sided polygon, and one with d rectangles that are identified on their boundary.
We present the first one, which is simpler but not as general as the second one.

Consider the broken line Lt on C R2 defined by concatenation of the vectors

K„r\U) (in this order) for j 1,..., d with starting point at the origin. Similarly,
we consider the broken line Lb defined by concatenation of the vectors (in
this order) for j 1,..., d with starting point at the origin.

We assume that £ is such that the vertices of L, are always above the real line,
except possibly the foremost right (and of course the one at the origin), and that

similarly, the vertices of Lb are below the real line. Such £ is called suspension
datum (see [16]), and exists under a combinatorial condition on (nt,jib) usually
called "irreducibility".

If the lines Lt and Lb have no intersections other than the endpoints, we can
construct a translation surface X by identifying each side on L, with the side £7-

on Lb by a translation. The resulting surface is a translation surface endowed with
the form to — dz (see Figure 2).

Figure 2. Veech's construction of a translation surface
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Remark 3.4. The surface constructed in this way can also be seen as a union
of rectangles whose dimensions are easily deduced from Jtt,nb and £, and that

are "zippered" on their boundary One can dehne S directely in this way: the

construction works also if Lt, Lf, have other intersection points This is the zippered
rectangle construction, due to Veech ([21]) This construction coincides with the

first one in the previous case

3.3.2. Basic domains. Now we generalize the previous construction to obtain a

flat surface that corresponds to a compact Riemann surface with a meromorphic
differential Instead of having a polygon with pairwise identification on its boundary,
we will have a finite union of some "basic domains" which are half-planes and

infinite cylinders with polygonal boundaries (see Figure 3)

Let n > 0 Let £ 6 C" be a complex vector whose entries have positive real part
Consider the broken line L on C defined by concatenation of the following

• the half-line /1 that corresponds to R~,

• the broken line L, dehned as above, i e the concatenation of the segment
defined by the vectors (in this order) for j — 1,..., n with starting point
at the origin,

• the horizontal half line l2 starting from the right end of Lt, and going to the

right

We consider the subset D + (z\,. z„)(resp D~(z\, z„)) as the set of complex
numbers that are above L The line /] will be refered to as the left half-line, and l2
will be refered to as the right half-line We will sometime write such domains D +

or D tor short The sets are kinds of half-planes with polygonal boundaries
Note that n might be equal to 0, and in this case, D+ (resp D~) is just a half-plane
with a marked point on its (horizontal) boundary
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Similarly, if« > 1, we can define the subset C + (zt z„) (resp. C~(zi,..., z„))
as the set of complex numbers that are above L,. Its boundary consists of two infinite
vertical half-lines joined by the broken line Lt. The two infinite half-lines will be

identified in the resulting construction, hence C± is just an infinite half-cylinder with
a polygonal boundary.

3.3.3. An example: a surface with a single pole of order 2. The idea of the

construction is to glue by translation the basic domains together in order to get a

noncompact translation surface with no boundary components. Since the formal
description is rather technical, we first present a simple version of the construction.

Let A be a finite alphabet and nt. «7, : A -> {1 d} be one-to-one maps. Let

t e C-4 be such that Re(t,a) > 0 for all a e A.
We define a flat surface S as the disjoint union of the two half-planes D+

D + (V'(1 )••••'V(»)} aild D D (W" (l)'-"'glU6d °" thdr

boundary by translation: the left half line of D+ being glued to the left half-line
of D~ and similarly with the right half-lines, and a segment in D+ corresponding to

some £,• is glued to the corresponding one of D~.
Note that contrary to the case of compact translation surfaces, there is no

"suspension data condition" on £, hence, no combinatorial condition on n. The

only condition that we require is that Re(^j) > 0 for all Note also that we can
have ii 0, in this case S C.

D +

/.
h L i

D~

Figure 4. Construction of a translation surface with a degree 2 pole.

3.3.4. General case. We can generalize the above construction in order to have

several poles of any order. Instead of considering two half-planes D +, D~, we will
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do the same construction starting from 2d half-planes, + s~~ infinite cylinders,
and define identification on their boundary. More precisely:

Let £ C with positive real part. We consider the following combinatorial data:

• A collection n+ of integers 0 < < • • • < + "

• A collection n~ of integers 0 < n~^ < • • < nj+s- n

• A pair of maps nt, itf, : A ->• {1,..., n}

• A collection d of integers 0 do < d\ < dj < < dr d.

The resulting surface will have r poles of order greater than or equal to two, and

s+ + s~ poles of order 1.

For each / g {() ,d — 1}, we consider the basic domains as defined

before 0,+ (^-1(„+ H)...., ^-.(„f+i)) and D;{^(n-+xy For

i g {d,...,d + s+ - 1}, we define C + i(„++1)-For ' e

{d, ...,d+s~- 1}, we dehne („-+1),..., K+i)).

Figure 5. Constiuclion of a translation surface with a degree 3 pole.

Then, we glue these domains together on their boundary by translations:

• each segment corresponding to a parameter in a "+" domain is glued to the

unique corresponding one in a domain.

• each left line of a domain D(+ is glued to the left line of the domain D~.

• For each/ e {1 d}\{d[,..., dr} the right line of the domain D~ is glued
to one of the domain Dj.

• For each / d^, k > 0, the right line of the domain D~ is glued to one of
the domain Z)t

<4-1+1
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• For each C(-+ and Ct the two vertical lines are glued together.

The resulting surface S has no more boundary components, and is a flat
surface with poles and conical singularities. It might not be connected for a given
combinatorial data. We will consider only those that that give connected surfaces.

Note that such surface is easily decomposes into a finite union of vertical strips
and half-planes with vertical boundary (i.e. "infinite rectangle"), that are "zippered"
on their boundary.

Example 3.5. Figure 5 shows an example with d 2, s+ s~ 0, n + —

(0,2,4), n~ (0,2,4), 7tt Id, (jr^'(l) jt^1(ii)) (2,3,4,1) and
d (0, 2). One gets a surface in ft(—3, 5).

Figure 6 shows an example with the same data, except that d (0, 1,2). One

gets a surface in TL(—2, —2, 2, 2).

Figure 6. Construction of a translation surface with two poles of degree 2

Lemma 3.6. Let S be a genus g surface in Hin i nr, —p\ — ps), obtained
by the infinite zippered rectangle construction with a continuous parameter (eC".
Then

n 2g + r + s - 2

Proof. By construction, the surface (pole included) is obtained by gluing s disks on
their boundary. The resulting surfaces admits a decompositions into cells, with s

faces, n edges, and r vertices. So, we have 2 — 2g s — n + r, and the result
follows.

The following proposition will be very useful in the remaing of the paper. It is

analogous to the well-known fact that that any translation surface with no vertical
saddle connection is obtained by the Veech construction.



268 C. Boissy CMH

Proposition 3.7. An\ translation surface with poles with no vertical saddle connection

is obtained by the infinite zippered rectangle construction.

Proof. According to the book of Strebel [20] Section 11.4, when there are no vertical
saddle connections the vertical trajectories are of the following two types:

(1) lines that converge to a pole in each direction.

(2) half-lines starting (or ending) from a conical singularity and converging to a pole
on their infinite direction.

Furthermore, the set of non-singular vertical trajectories is a disjoint union of
half-planes and of vertical strips \J,Vt U, <Sy. The half-planes have one vertical

boundary component, and the strips have two vertical boundary component. We

choose these half-planes or strips as large as possible, so each boundary component
necessarily contains a conical singularity. This singularity is unique for each

connected component, otherwise there would be a vertical saddle connection on the

surface. This number of half-planes and strips is necessarily finite, since there is only
a finite number of conical singularities, and each conical singularities is adjacent to

a finite number of half-plane or strip.
We cut each half-plane Vl in the following way: the boundary of Vt consists of a

union of two vertical half-lines starting from the conical singularity. We consider the

unique horizontal half-line starting from this singularity and cut Vt along this half
line. It decomposes V, into two components V,+ (the upper one) and Vf (the lower
one).

We cut each strip S} in the following way: the boundary of <S, has two

components, each consists of a union of two vertical half-lines starting from a

conical singularity. There is a unique geodesic segment joining these two boundary
singularities. We cut Sj along this segment and obtain two components SJ1" and <S~.

The surface S is obtained as the disjoint union of the and Vf, glued to each

other by translation on their boundary components. Now we remark that the V,+ and

S^ are necessarily glued to each other along their vertical boundary components.
Under this identification, uVf U} SJ1" is a union of subsets of the type D+ and S +

as in the previous construction.
Similarly, gluing together along vertical sides the union of the Sj and Vfi, one

obtains a union of D~ and C~ type subsets.

So the surface is obtained by the infinite zippered rectangle construction.

Remark 3.8. Note that the parameters (£,), are uniquely defined (once the suitable
vertical direction is fixed) and the infinite zipperered rectangle construction defines
a triangulation of the surface for which the (£,) are the local parameters for the

strata. Hence, map S -» (£,), is a local homeomorphism. The corresponding saddle
connections form a basis of the relative homology Hi (S, E, Z), where S is the set

of conical singularities of S.
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Note that for any translation surface with poles, the set of saddle connections is at

most countable, so it is always possible to rotate the surface in such way that there are

no vertical saddle connections. Hence the previous theorem gives a representation
for any translation surface with poles. One important consequence this theorem is

Proposition 7.1, which is the analogous version of a key argument in [14],

4. Genus one case

4.1. Connected components. We first recall the following result in algebraic

geometry, which is a consequence of Abel's theorem.

Theorem. Let X C/ T be a torus and let D a, I\ be a divisor. Then there
exists a meromorphic differential whose divisor is D if and only if a, z,- G T,
where for each i, z; is a representative in C of P,.

Now we use this theorem to describe the connected components in the genus one
case.

Theorem 4.1. Let TL TL(n\ nr,—p\ —ps) be a stratum of genus one

meromorphic differentials. Let d gcd(ni nr.p\....ps), and let c be the

number ofpositive divisors of d. Then the number of connected components of Tl
is:

* c if r + s > 3.

• c — 1 if r =5 1.

Proof We first assume that r + s 2. Then TL TL{n,—n), for some n > 2

(the stratum TL(l. — 1) is empty). We have d n. An element in TL is given, up
to a constant multiple, by a pair (X, D), were X is a torus and D —nP+nQ
•s a divisor on X. One can assume that P 0, and from the previous theorem,
there is only a finite number of possibilities for Q, depending only on n. Hence, the

map (J, —nQ + nQ) (X.0) defines a covering from PTL to M 1,1, where M\%\
denotes the moduli space of genus one Riemann surfaces with a marked point.

Fix K0 e Afi,i a regular point, and choose Vj. V2 such that Xo C/(uiZ +
V2Z). An element (Ao, co) e TL is uniquely defined by the coordinates of Q, which
tire given in a unique way by a complex number of the form ^v\ + |u2, with

ip.q) ^ (0,0) and 0 < p.q < n. Since X0 is taken regular, there is a one to
one correspondance between such pairs (p.q) of integers and the elements of TL

whose underlying Riemann surface is Xq.
The monodromy of the covering PTL M.\p is generated by the two maps

01 : (p, q) —r (p + q.q) mod n and ' (P-d) iP-ci + P) mod n. We

remark that d' gcd(p. q, n) is invariant by this action and the condition on (p, q)
rmplies that 0 < d' < n. Hence d' is an invariant of the connected components of
H. The number of possible d' is c — 1. We claim that each {p.q) has a (unique)
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representative modulo these actions of the kind (d1,0). To prove the claim, we start

from an element (p,q) and do an algorithm similar to Euclid's algorithm. Without
loss of generality, one can assume that /) / 0 and <7^0. Applying </>[ for some

suitably chosen r, we can obtain (//, q) with 0 < p' < gcd(q, n). Similarly, we can

obtain (p, q') with 0 < q < gcd(/?, n). So if either gcd(<y,«) < p or gcd(p,n) < q,
we obtain (p',q') with p' + q' < p + q. Otherwise p < gcd(q,n) < q and

q — gcd(/?, n) < p. This implies p q d', and the result follows.
Now we assume r + q > 3. We proceed in a similar way as before: we fix

X0 C/ T and a basis iq, v2 of P. Then a meromorphic differential is given by a

a vector (z\ zr<z\ z's) e Cr+,s with pairwise different entries (modulo T),
and satisfying the linear equality Ei i n>zi ~ EEi P'zi Pvi + CIV2- One can
remark that:

• For each (p.q) the set of (z,),,(z^)7 satisfying the previous condition is

nonempty and connected.

• If we choose other representatives z,, z'j for the same differential co, this

changes (p,q) by (p + a,//, + YLjßjPj-l + E, a',n> + T,j ß'jPj)>
where (a,, ßj, a[, ß') can be any integers.

• The action of the two generators of the modular group changes (p, q) by (p +
q,q) and (p,q + p) respectively.

Then, by a proof very similar to the previous one, one can see that d'
gcd(/?, q, ii i nr, p\ ps) is an invariant of connected component and one

can find representative in each connected component satisfying (/?, q) (d', 0). So

the number of connected components is precisely c.
Note that the difference with the first case is that any pair (p, q) e 1? is possible.

4.2. Flat point of view: rotation number. The previous section classifies the

connected component of the moduli space of meromorphic differentials in the genus
one case from a complex analytic point of view.

But the invariant which is given is not easy to describe in terms of flat geometry.
The next theorem gives an interpretation in terms of flat geometry.

Let y be a simple closed curve parametrized by the arc length on a translation
surface that avoids the singularities. Then t —» y'(t) defines a map from §' to S1.

We denote by I nd(y) the index of this map.

Definition 4.2. Let S (X.to) e HOn nr, —p\, • • • — ps) be a genus one
translation surface with poles. Let (a, b) be a symplectic basis of the homology the

underlying compact Riemann surface X and ya, yt, be arc-length representatives of
a,b, with no self intersections, and that avoid the zeroes and poles of co. We define
the rotation number of S by:

rot (S) gcd (Ind(ya), Ind(yb),nu. ..nr,pu.. .,ps).
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Theorem 4.3. Let Li Li{n\,..., nr. — p\, • • — ps) be a stratum of genus 1

meromorphic differentials. The rotation number is an invariant of connected

components ofLi.

Any positive integer d which divides gcd(/i i nr. px ps) is realised by a

unique connected component ofLi, except for the case Li Lift, —n) where d n

doesn 't occur.

Proof. Let (a. b) be a symplectic basis of H\{X, Z). Let ya, y'a be representatives
of a that are simple closed curves and don't contain a singularity. Since A' is a torus,
ya and y'a are homotopic as curves defined on X. The index of ya doesn't change
while we deform ya without crossing a pole or a zero. It is easy to see that when

crossing a singularity of order k e Z, the index is changed by adding ±k. Hence the

rotation number only depend on the homology class of a and b.

If ya and yt, intersects in one point, then there is a standard way to construct a

simple closed curve representing a ± b. Its index is Ind(ya) ± Indf/b), and we
obtain representatives of the symplectic basis {a ± b, b) (or (a, a ± b)). The rotation
number doesn't change by this operation. With this procedure, we can obtain any
other symplectic basis of X.

Hence the rotation number is well defined for a given element of Li. Also, it
is invariant by deforming {X,co) inside the ambiant stratum, since by continuous
deformation, we can keep track of a pair of representatives of a basis, and the indices
are constant under continuous deformations.

To prove the last part of the theorem, we remark that a surface in Li{n, —p\,...,
~Ps) obtained from Li{n — 2,—pi, —ps) by bubbling a handle with parameter
k 6 {1 n — 1} has a rotation number equal to gcd{k, pi,..., ps) by a

direct computation. Since k < n, we have gcd(/c, p\ ps) < n so n is

never a rotation number. Now we break up the singularity of order n to get r
singularities of order tt\ nr. Since this doesn't change the metric outside a

small neighborhood of the singularity of order /;, we obtain a rotation number equal
to gcd. ,,nr,pi ps).

The previous construction gives at least as many connected component as the

number given by Theorem 4.1. So, we see each rotation number is realized by a

unique component, and that this component is realized by the bubbling a handle

construction.

Note that the last two paragraphs of the proof of the last theorem gives the

following description of the connected components of the minimal strata in genus
one.

Proposition 4.4. Let Li Li(n, —p\ —ps) be a minimal stratum of genus one

meromorphic differentials. Any connected component ofLi is of the form Lio © k, for
some 1 < k < n — 1, where Liois the connected stratum Lift — 2, —p\,..., —ps).
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Also, for 1 < k\, k2 < a — 1 we have:

fio ® k\ Ho © k-2

ifand only ifgcd(ku pu...,ps) gcd(k2, P\,..., ps).

Remark 4.5. It is shown in the appendix that there are some translation surface with
pole that do not contain any closed geodesic.

5. Spin structure and hyperelliptic components

Recall that in the classification of the connected components of strata of the moduli

space of Abelian differentials [ 14], the connected components are distinghished by
two invariants.

• "Hyperelliptic components": there are some connected components whose

corresponding translation surfaces all have an extra symmetry.

• "The parity of the spin structure", which is a complex invariant that can be

expressed in terms of the flat geometry by a simple formula.

5.1. Hyperelliptic components.

Definition 5.1. A translation surface with poles S is said to be hyperelliptic if there
exists an isometric involution r : S -» S such that S/z is a sphere. Equivalently,
the underlying Riemann surface X is hyperelliptic and the hyperelliptic involution r
satisfies r*co —w.

Remark 5.2. In the case of Abelian differentials, if the underlying Riemann surface
is hyperelliptic, then the translation surface is hyperelliptic since there are no nonzero
holomorphic one forms on the sphere. In our case, similarly to the case of quadratic
differentials, the underlying Riemann surface might be hyperelliptic, while the

corresponding translation surface is not.

Proposition 5.3. Let n, p he positive integers with n > p. The following strata
admit a connected component that consists only ofhyperelliptic translation surfaces.

• Ti(2n,—2p)

• TL(2n,-p,-p)
• Ti(n.n.-2p)
• H(n,n,~p.-p)

Furthermore, any stratum that contains an open set offlat surfaces with a nontrivial
isometric involution is in the previous list for some n > p > I.
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Proof. Let PL be a stratum and PLhyp c PL the interior of the set of elements of PL

that admit a nontrivial isometric involution.

Given a combinatoria datum a (n+, n~. n,. Tib. d) that defines an infinite
zippered rectangle construction, we denote by Ca the set of flat surfaces that are
obtained by this construction with parameter a, up to a rotation. Clearly, Ca is open
and connected.

We claim that for each a, the intersection between Ca and PLhyp is either
Ca or empty. Indeed, choose a generic parameter £ for the infinite zippered

rectangle construction, such that the corresponding surface S(a, £) is in PLhyp. Let
D+(z\ Zk) C S(ct, £) be a half-plane of the construction. Then, £ being generic,
an isometric involution r will necessarily send the segment corresponding to z,- to
itself. Hence if r is not the identity, it is easy to see that the set D + {z\,..., z^) will
be sent to D~(zk, Z/t-i, • • • > zi and therefore, we can define a similar involution
for any value of zi,...,z*. Since this argument is valid for any D± and C^1

components, we see that all flat surfaces obtained by the infinite zippered rectangle
construction with combinatorial datum a have a nontrivial isometric involution. This
proves the claim.

Now we remark that, by Proposition 3.7, PL UaCa, where the union is taken

°n all a that corresponds to PL. The previous claim implies that PLhyp and its

complement in PL are both unions of some Ca, so if PLhyp is nonempty, it is a

connected component of PL.

Now we check that if PLhyp is not empty, then the stratum PL is in the given list,
>-e. there is either one even degree zero (resp. pole) or two zeroes (res. poles) of
equal degree. Let £i be the continuous data in the infinite zippered rectangle

construction for an element S in PLhyp. The above condition implies that for each
£/, the middle of the corresponding segment in the surface is a fixed point for the
involution r. So, there are at least n fixed points. Let r be the number of conical
singularities, let s be the number of poles and let g' be the genus of S/r. We
must have #(Fix(r)) 2g + 2 — 4g', and 2g + r + s — 2 n < #(Fix(r))
(see Lemma 3.6). Since r,s > 1, this implies g' — 0, so S is hyperelliptic, and

#{Fix(r)) — n 4 — r — s. The fixed points of r in X that do not correspond to the
middle of a z; segment are necessarily either conical singularities or pole.

The above combinatorial condition on the infinite zippered rectangle construction
implies that S has either two equal degree poles that are interchanged by r or one
Pole of even degree that is preserved by r. So the condition #(F/.v(r))— // 4—/—s

implies that either there is one conical singularity which is fixed by r, or there are
two singularities Pi, P2 that are not fixed by r. By a similar argument as in the proof
°f Proposition l.\, P\,P2 are the endpoints of a saddle connection corresponding to
a parameter so they are interchanged by r, hence they are of the same degree.
Therefore, the stratum is necessarily one of the given list.
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The last step of the proof is to check that for the strata given in the statement,

nhyp is nonempty. This is an elementary check by using the infinite zippered
rectangle construction that satisfies the previous condition.

5.2. The parity of the spin structure for translation surfaces with even
singularities.

5.2.1. Spin structures on a surface. There are two equivalent definitions of spin
structure for a compact Riemann surface X commonly used.

The first one is topological: let P be the S1 bundle of directions of nonzero

tangent vectors to X. A spin structure on X is a two-to-one covering Q -> P,
whose restriction to a S1 fiber is the usual double covering S1 —> S1. It is equivalent
to a morphism £ : H\(P, Z/2Z) —> Z/2Z such that the image of the cycle z

corresponding to a fiber is one. Indeed, in this case the monodromy Jt\(P) —» Z/2Z
factors to a map £ : Hi(P, Z/2Z) ->• Z/2Z.

The second equivalent definition comes from algebraic geometry (see LI])- A
theta characteristic, is a solution of the equation 2D K in the divisor class group,
where K is the canonical divisor. Equivalently, it is a complex line bundle L such
that L <g> L ~ For such L, Atiyah and Munford showed independently
[1, 18] that the dimension modulo 2 of the vector space of holomorphic sections of
L is invariant by deformation of the complex structure. This is the parity of the spin
structure.

In [12], Johnson provides a topological way to compute this invariant. He first
constructs a lift C i-> C from H[(X, Z/2Z) to H\{P, Z/2Z). We refer [12] for
details on the construction of the lift. In our case, it is enough to observe that when

C [y] is the class of a simple closed curve, the lift of C is C [ y ] + z where y
is the natural lift obtained by framing y with its speed vector y', and z is the class of
a S1 fiber.

The composition of this lift with the map £ gives a quadratic form £2 :

H\(X,Z/2Z) —> Z/2Z, £2(C) := f(C). Johnson then shows that the parity of
the spin structure is equal to the Arf invariant of £2, i.e. for a symplectic basis

{ag,hg) of H\(X,Zj21j), the parity of the spin structure is

g

^£2 (a/)£2(Ä().
l \

5.2.2. The parity of the spin structure for translation surfaces with even
singularities. A translation surface (X,co) with even poles and zeroes naturally
gives a spin structure on X in the following way: let (cu) 2h/(V,- - Jfj 2p} P}
the divisor associated to to. Then D Y.niNi ~Y.j Pjpj satisfies 2D K.
From the results of Atiyah and Munford in [1, 18], it follows that the parity of the
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spin structure is a locally constant function on the strata where it is defined. Hence,
it is an invariant of connected components, for strata with even poles and zeroes.

The parity of the spin structure can be easily computed by using Johnson's
construction. Following [ 14], it is easy to see that the corresponding map £2 satisfies,
for y a simple closed curve, £2([y]) ind(y) + 1. Hence, the parity of the spin
structure for a translation surface (with poles) is:

g

^(ind{cii) + 1 )(ind(bj) + 1).
1

5.3. The parity of the spin structure for translation surfaces with only two
simple poles. Let S (A\ at) e Ti(2ii\ 2/7r, —1, —1) be a translation surface
with zeroes of even order and a pair of simple poles (and no other poles). Since there
are odd degree singularities, a> does not define a spin structure on X. However, one
can still define a topological invariant, that will be the parity of the spin structure on
another surface S'.

Recall that a neigborhood a simple pole is an infinite cylinder. Choose a pair
of waist curves yi, 72 on each cylinder associated to the two simple poles. Since
there are no other poles than the pair of simple poles, the two have opposite residues
by Stokes' theorem, hence yt, y2 are isometric. Now we cut the surface S along
V1 and y2. We obtain a compact translation surface with two geodesic boundary
components. The condition on the residues implies that gluing together these

boundary components by a translation gives a translation surface S', where the pair
of infinite cylinders in S corresponds to a finite cylinder C C S'. The surface
S' belongs to the stratum T~L(2n\ 2nr) where the spin structure was defined
by Kontsevich and Zorich. Note that other choices for y\, y2, and for the gluing
operation only change the length and twist of C, hence gives the same connected

component of 7i(2n 1,..., 2nr). We will call the parity of the spin structure ofS the

parity of the spin structure of the corresponding translation surface S'.

Remark 5.4. Note that one can also define the parity of the spin structure of S

(Jf, cu) in a more algebro-geometric way: we consider the stable curve X obtained
by gluing together the two poles. In |4], Cornalba extends to a large class of stable

curves (including this case) the notion of spin structure, and shows that the parity of
the spin structure is invariant by deformations. The one form co on X can then be

used to define on X a spin structure.

6. Higher genus case: minimal stratum

Recall that a minimal stratum correspond to the case where there is only one conical
singularity (and possibly several poles). As in the papers of Kontsevich-Zorich [14]
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and Lanneau [15], we first describe the connected components of minimal strata.

The idea is similar: show that each such strata is obtained by bubbling g cylinders
and compute the connected components in this case.

The first step is to find a surface obtained by bubbling a handle. In [14] and in

[15] is used a rather combinatorial argument. A similar approach is possible in our
case by using the infinite zippered rectangle construction, but this is quite technical.
Another possibility is to reduce the problem to the genus one case for which it was

proven in Section 4 that any minimal stratum contains a surface obtained by bubbling
a handle.

Proposition 6.1. Let C be a connected component of the stratum TL(n. —p\,..., —ps)
We assume that the genus g is nonzero. Then, there exists a flat surface in C which
is obtained by bubbling a handle from a genus g — 1 flat surface.

Proof. We start from a surface in C obtained by the infinite zippered rectangle
construction. It is defined by a combinatorial data and a continous parameter £ e C",
with n 2g + s - [.

Each defines a closed geodesic path y,- joining the conical singularity to itself.
The intersection number between any two such paths is 0 or ±1. The genus is

higher than zero and {yi, ,yn} generates the whole homology space H\{S,Z)
since the complement is a union of punctured disks. Hence, there is a pair y,-, y7-

whose intersection number is one.
Now we shrink until they are very small compared to all the other

parameters. Then, we observe that a neighborhood of y,-, yj is isometric to the

complement of a neighborhood of a pole for a surface in TL(n, —/;). Then, deforming
suitably the surface, using Proposition 4.4, one obtains the desired result.

We recall the notation introduced in Section 3.2. Let C is a connected component
of a minimal stratum U(n,~pu.. .,-ps)- Let s e {1,...,« + 1}. The set C © s

is the connected component of the stratum 7f(/z + 2, —p\,..., —ps) obtained by
bubbling a handle after breaking the singularity of order n into two singularities of
order (s - 1) and (n + 1 -.?).

The proposition that follows uses roughly the same arguments as in [14] and [15].
The only difference is the case when n is odd, which does not occur for Abelian or
quadratic differentials.

Proposition 6.2. Let Hin, —px — ps) be a stratum ofmeromorphic differentials
genus g > 2 surfaces, and denote by Co the unique component of TL{n —

2g, ~P l, • • •, —Ps)- The following holds:

• If n is odd, the stratum H(n, — px,..., — ps) is connected.

• If n is even, the stratum TL(npx,... ,—ps) has at most three connected
components which are in the following list:

- Co 0 +1)® + 2) 0 • • • © + g)
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-c0®i®---®iei
- C0 © 1 ffi • • ® 1 ® 2

Proof. Let C be a connected component of PL(n, — p\ — ps). By proposition 6.1,
there exist integers s\.... ,sg, such that:

C Co © s i ©••©$£
and for each i e {1,..., g}, 1 < .v, < n — 2g — 2 + 2/ + 1, since at Step /, the handle

corresponding to .s, is bubbled on a zero of degree n — 2g + 2{i — 1).
We assume for simplicity that g 2, and (ji,j2) 7^ ("~22g + L "~22g +2). Using

operations (1) and (3) of Lemma 3.2, one can assume that 1 < Si < j2 < Si + 1.

Then, if 1 ^ il5 using operations (1), (2), (3) and (1) (in this order), we have
Co ffi si ffis2 Co ffi (si — 1) ffi (s2 - 1). Repeating the same sequence of operations,
we see that C is one of the following:

• Co ffi (^ + 1) ffi (^ + 2)

• C0 © 1 © 1

• C0 ffi 1 ffi 2

If« is odd, then the first case doesn't appear. By operation (4) of Lemma 3.2, we
have

Co ffi si ffi S2 Co ® .?i ffi ((« — 2g + 2) + 2 — S2)

so we can assume that .sq and s2 are of the same parity. Then, using the previous
argument, we have:

C C0 0 1 ffi 1

The case g > 2 easily follows.

The above proposition uses purely local constructions in a neighborhood of a

singularity. The next proposition explains why the existence of suitable poles (at

infinity) will "kill" some components.

Proposition 6.3. Let 'H(n, —p\ps) be a stratum ofmeromorphic differentials
on surfaces of genus g > 2 with n even and s > 2, and denote by Co the unique
component ofH(n — 2g, —p\ — ps). The following holds:

(1) If there is a odd degree pole and Pi > 2, then:

C0 ffi 1 ffi ffi 1 =Co®lffi---0l©2

(2) Ifs > 2 or p\ p2, then:

Co ffi (~Y^- + © • • • © 22g + g) Co ffi 1 ffi • • © 1 ffi 5

for some s e {1, 2}.
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Proof. Case(l).
Note that s > 2 implies that we necessarily have pi > 2.

From Proposition 4.4, Co ® 2 Co © k if and only if gcd(k, pi,..., ps)
gcd(2, p\ ps). So, if there is an odd degree pole, gcd(2, p\ ps) 1

gcd(l, p\ ps), hence

(C0 © 1) ® 1 • • • ® 1 (C„ © 2) © 1 • • • ® 1 Co © 1 • • • ® 1 0 2,

which concludes the proof. Note that Co © 2 is well defined because £7 pi > 2.

Case (2).
As before, we use the classification in genus one. Since n — 2g — pi -2, we

have + 1 ^ p'. If s > 2 or p\ p2, then there exists i e {1,..., s} such

that + 1 > ph so gcd(^£ + 1, p\,..., ps) < + 1, hence there exists

k < + 1 such that Co © (^^^ + 1) Co © k. So we have

Co © + 1) © (^-y^- + 2) © • •' Co © k © + 2) ©

Then, as in the proof of Proposition 6.2,

C0 © k © ("~2g + 2) • • © (" ~ 2g +g)=C0ffil©---©l©5

for some s e {1,2}.

Putting together the last two propositions and the invariants, we have the

following theorem.

Theorem 6.4. LetPL 7i(n,—p\ ~Ps) be a minimal stratum of meromorphic
differentials on genus g >2 surfaces. We have:

(1) If n is even and s 1, then PL has two connected components if g — 2 and
Ps 2, three otherwise.

(2) IfPi PL(n, —p. —p), with p even, then PL has three connected components.

(3) IfPL PL(n,-1,-1), then PL has three connected components for g > 2, two
otherwise.

(4) IfPL PL(n, —p, —p), with p 1 odd, then PL has two connected components.

(5) If all poles are of even degree and we are not in the previous case, then PL has

two connected components.

(6) In the remaining cases, PL is connected.

Proof. From Proposition 6.2, when n is odd, which is part of Case (6), PL is

connected. So we can assume that n is even. Let C be a connected component
of PL. Let Co be the (connected) genus 0 stratum PLLn — 2g,—p\,... ,—ps)- From
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Proposition 6.2, we have one of the three following possibilities.

a) C C0 ® + 1)0 + 2) 0 • • • © |
b) C C0 0 1 © • • • © 1 0 1

c) C Co©l©---©l02
When H — ?i(n,—p) or % it is easy to see that case a)

corresponds to a hyperelliptic connected component, while case b) does not, and
neither c) (except for the case n — 2g 0 and g 2, where a) and c) are the same).

When all degree of zeroes (and poles) are even, then Lemma 11 in [14] shows that
cases b) and c) correspond to different spin structures, so are a different connected

components. This is also true for bL(n. — 1, — 1) by Section 5.3.

The arguments of the two previous paragraphs proves the result for Cases (1), (2)
and (3). Remark that (// — 2g) — p{ —2.

For Case (4), Proposition 6.3 shows that there are at most two connected

components. Since n — 2g 2p — 2 > 0, Case a) corresponds to a hyperelliptic
component while ft)and c) do not correspond to a hyperelliptic component. So there
are at least two components. Since there are odd degree poles, b) and c) correspond
to the same component by Proposition 6.3. So there are two components.

For Case (5), Proposition 6.3 shows that a) is in the same connected component
as b) or c), while Lemma 11 in [14] shows that b) and c) have different spin
structures.

For Case (6), when n is even: this corresponds to having at least one odd pole,
and either at least three poles or two poles of different degree. Then a direct
application of Proposition 6.3 shows that a), b) and c) are the same connected

component.
This concludes the proof.

7. Higher genus case: nonminimal strata

The remaining part of the paper uses similar arguments as in Sections 5.2-5.4 in
[14], We quickly recall the three main steps.

• Each stratum is adjacent to a minimal stratum, and we can bound the

number of connected components of a stratum by the number of connected

components of the corresponding minimal one.

• We construct paths in suitable strata with two conical singularities that join
the different connected components of the minimal stratum.

• We deduce from the previous arguments upper bounds on the number of
connected component of a stratum, lower bounds are given by the topological
invariants.
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The following proposition is analogous to Corollary 4 in [14] It is proven there

by constructing surfaces with a one cylinder decomposition Such surfaces never
exist in our case, we use the infinite zippered rectangle constiuction instead

Proposition 7.1. Am connected component of a stratum of meromorphic
differentials is adjacent to the minimal stratum obtained by collapsing together all the

zeroes

Proof Let S be in a stratum TL ol meromorphic diffeientials We prove the result
by induction on the number of conical singularities of S We can assume that
S is obained by the previous construction By connectivity of 5, there is a D±
component or a C11 component that contains two different conical singularities
on its boundaiy, hence, there is a paiameter If, whose conesponding segment on
that component joins two different conical singularities The segment is on the

boundary of two components Assume for instance, that it is a D+ and a C~
component Now we just need to check that the surface obtained by shrinking If,

to zero is nondegenerate Hence it will correspond to an element in a stratum with
one conical singularity less The set D'+ obtained by shrinking If, to zero from D +

is still a domain as dehned in Section 3 3 2 The set C'~ obtained by shrinking
If, to zero from C~ is also a domain as defined in Section 3 3 2 except if we have
C~ C~(f,) But in this case, since the two vertical lines of C~ are identified
together, the two endpoints of the segment defined by if, are necessarily the same

singularity, contradicting the hypothesis
So, in any case, we obtain a surface S' with fewer conical singularities

The following proposition is analogous to Corollary 2 in [ 14], and is the first step
of the proof described in the beginning of this section The proof ot Kontsevich and
Zonch uses a deformation theory argument We propose a proof that uses only flat
geometry

Proposition 7.2. The number of connected component ofa stratum is smaller than or
equal to the number of connected component of the corresponding minimal stratum

Proof From the previous proposition, any connected component of a stratum
ft H(k\, ,kr,—pi, ,—ps) is adjacent to a minimal stratum %min
ki{ki+,- + kr,—pi — ps) by collapsing zeroes It is enough to show that
if (Sn), (S'n) are two sequences in TL that converge to a surface S e TLmin, then Sn
and S'n are in the same connected component of TL for n large enough

By definition of the topology on the moduli space of meromorphic differentials,
for n large enough, the conical singularities of Sn (resp S'n) are all in a small disk
Dn (resp D'n) which is embedded in the surface Sn (resp S'n), and whose boundaiy
is a covering of a metric circle

Note that Dn and D'n can be chosen arbitrarily small it n is large enough, and
we can assume that they have isometric boundaries Replacing D„ by a disk with a
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single singularity, one obtains a translation surface S„ which is very near to S, hence
in the same connected component, and similarly for S'n.

Now we want to deform D„ to obtain D'n. It is obtained in the following way:
Dn can be seen as a subset of a genus zero translation surface S) in the stratum

Fl(ki kr,—2 — Xa t we just "g'ue" a neighborhood of a pole to the

boundary of the disk Dn. We proceed similarly with the disk D'n and obtain a

translation surface S2 in the same stratum as S[. This stratum is connected since
the genus is zero. Hence we deduce a continuous transformation that deform Dn to
D'n-

From the last two paragraphs, we easily deduce a continuous path from Sn to S'„,
which proves the proposition.

The following proposition is the second step of the proof. It is the analogous of
Proposition 5 and Proposition 6 in [14J. Our proof is also valid for the Abelian case,
and gives an interesting alternative proof.

Proposition 7.3.

(1) Let Li — Hin, — p\,..., — ps) be a genus g > 2 minimal stratum whose poles
are all even or the pair (-1,-1). For any n \. 112 odd such that n 1 + n2 n,
there is a path y(t) e FL{n\.n2.—p\ — Ps) such that y(0),y(\) e Hand
have different parities of spin structures.

(2) Let Fl H(n,-pi,... ,-ps) be a genus g > 2 minimal stratum that
contains a hyperelliptic connected component. For any n \ 112 such that

m + ii2 n, there is a path y(t) e 'H(n 1, n2, —p\,..., —ps) such that y(0) is

in a hyperelliptic component of Fl and y (1) is in a nonhyperelliptic component
of Fl.

Proof. Case (1): Let Co Fl(n — 2g.-p\ —ps)- The connected components
of FL given by Co 0 1 © 1 © 1 and Co © 1 • © 1 © 2 have different parities
of spin structures. We can rewrite these components as C © 1 and C © 2, where
C Co © 1 • • © 1.

Fix e C. For a surface Si e FL(n.—n), one can get a surface S in

FL(n. —pi,..., —ps) by the following surgery:

• Cut Sg-1 along a small metric circle that turns around the singularity of
degree n — 2, and remove the disk bounded by this circle

• Cut Si along a large circle that turns around the pole of order /;, and

rescale Si such that this circle is isometric to the previous one. Remove the

neighborhood of the pole of order n bounded by this circle.

• Glue the two remaning surfaces along these circle, to obtain a surface S e

H(n.-pi,...,-ps).
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All choices in previous construction lead to the same connected component of
TL(n, —p\,..., ~Ps), once Sg-1, Si are fixed. Similarly, we can do the same starting

from a surface in Si TL{ti\, n2, —«) and get a surface mTL(n\,n2, —p 1,..., ~Ps)-
Now we start from a surface Si,i TL(n,—n) obtained by bubbling a handle

with angle 2ir, i.e. Si,i e TL(n — 2, —n) 0 1. The rotation number of this surface is

gcd(l,rc) 1. Breaking up the singularity into two singularities of order «i, «2, the

rotation number is still 1. Similarly, start from £1,2 e TL(n — 2, —n) 0 2. Its rotation
number is gcd(2, n) 2. Breaking up the singularity into two singularities of order

n i, n2, the rotation number becomes gcd(2, n 1, «2) 1 since n 1, n2 are odd. Hence
there is a path in TL{n\,n2,—n) that joins Si,i 6 7l{n - 2,—n) 0 1 to Si,2
TL(n — 2, —n) © 2. From this path, we deduce a path in TL{n\,n2, ~P\,..., —ps)
that joins C © 1 to C 0 2. So Part (1) of the proposition is proven.

Case (2): The proof is similar as the previous one: the hyperelliptic component of
TL(n, —p\,..., —ps) is of the kindC© for some component C. Any component of
the kind C © k, with k ^ | is nonhyperelliptic. As before, we use the case of genus
one strata. A surface in TL(n — 2,—n) © | is of rotation number gcd(|,n) |.
Breaking up the singularity of degree n into two singularities of degree n\,n2, one
obtains surface in TL(n x, n2, —n) of rotation number gcd(|, n 1, n2). Since n \ +n2
n and nx ^ n2, this rotation number is not but some integer k e {1,..., | - 1}.

Hence there is a path in Ti{n\,n2, —n) that joins H(n—2, —«)© | to H(n—2, —«)©
k. From this, we deduce the required path in T-L{n\,n2,—p\,..., —ps).

Now we have all the intermediary results to prove Theorem 1.2.

Proofof Theorem 1.2. Let ft TL(n 1,..., nr, — Pi,. — ps) be a stratum of
genus g >2 surfaces. Denote by 'Hm,„ the minimal stratum obtained by collapsing
all zeroes. Recall that by Proposition 7.2, the number of connected components of
TL is smaller than, or equal to the number of connected components of TLmin.

If Hi Pi's °dd, then the minimal stratum is connected and therefore the stratum
is connected. So we can assume that /?,- is even.

Assume that H Pi > 2 or g > 2. From Theorem 6.4, TLmin, hence TL has at
most three components.

We fix some vocabulary: we say that the set of degree of zeroes (resp. poles) is

ot hyperelliptic type if this set is {«, n) or {2n} (resp. {—p, —p] or {—2p}), i.e. it is
the set of degree of zeroes or poles of a hyperelliptic component. Note that the set

of degree of poles are of hyperelliptic type if and only if the corresponding minimal
stratum contains a hyperelliptic connected component. We will also say that the set
of degree of poles is of even type if the degrees of the zeroes are all even or if they are
{—1, — 1}- This means that the underlying minimal stratum has two nonhyperelliptic
components distinghished by the parity of the spin structure.

• If the stratum is TL{n,n, —2p) or TL(n,n, —p, —p). There is a hyperelliptic
connected component. The corresponding minimal stratum TL(2n, *) has one
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hyperelliptic component and at least one nonhypereliptic component. It is

easy to see that breaking up the singularity of degree 2n into two singularities
of degree n, from a nonhyperelliptic translation surface gives a surface in

a nonhyperelliptic connected component. So, the stratum 7-L(n,n,*) has

one hyperelliptic connected component and at least one nonhyperelliptic
connected component.

• If the set of degrees of poles and zeroes is of even type, we know from
Theorem 6.4 that the minimal stratum has two nonhyperelliptic components
(and possibly one hyperelliptic). Breaking up the singularity into even degree

singularities preserves the spin structure, which therefore gives at least two

nonhyperelliptic components in the stratum.

From the above description, we obtain lower bounds on the number of connected

components. In particular, we see that if the degrees of zeroes and poles are both of
hyperelliptic and even type, % as at least, so exactly, three connected components.
Also, if the set of degrees of zeroes and poles is of hyperelliptic or even type, H has

at least two connected components.
Now we give upper bounds.

(1) Assume that the poles are of hyperelliptic and even type, i.e. the minimal
stratum has three connected components. Denote respectively by Chyp ,Codd

and Ceven the connected components of H that are adjacent respectively to

the three connected components of Hmin, anc* ^-mi"• ^or any

j {1, ...,/•}, the stratum Hin, ,—ps) is adjacent to

7~Lmin-

• If the zeroes are not of hyperelliptic type, we can choose, nt so that «,• ^
ni> a°d by Proposition 7.3 there is a path in H(>ij. ni< ~Pi>

—ps) joining the hyperelliptic component of 7-Lmin to a nonhyperelliptic

connected component. Breaking up the singularity of order ni
along this path into singularities of order (n,),^, we obtain a path in %

that joins a neighborhood of 'Hl^lpn to a neighborhood of a nonhyperelliptic
component of Hmin- Hence, we necessarily have Chyp Codd or
Qhyp _ Qeven

• If the zeroes are not even, we conclude similarly that Codd Ceven.

• Note that if the zeroes are neither of hyperelliptic type nor of even type,
then Ceve" Codd Chvp, so there is only one component for 7-t.

(2) Assume that the poles are of hyperelliptic type but not of even type. The minimal
stratum has two connected components, so there are at most two connected

components for %. If the zeroes are of hyperelliptic type, we have already seen

that there are two components.
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Assume the zeroes are not of hyperelliptic type. Denote respectively by
£hyp Qnonhyp connectecj components of 77 that are adjacent respectively
to the hyperelliptic and the nonhyperelliptic component of Hmin. By the same

argument as in (1), using Proposition 7.3 we have Chyp Cnonhyp, so 77 is

connected.

(3) Assume that the poles are of even type but not of hyperelliptic type. The minimal
stratum has two connected components distinguished by the parity of the spin
structure. So there are at most two components for 77. If the zeroes are of even

type, there are exactly two connected component for 77, that are distinguished
by the parity of the spin structure.

If the zeroes are not of even type, denote respectively by codd,Ceven the

connected components of 77 that are adjacent respectively to the two components
of 77min- By the same argument as in (1), using Proposition 7.3 we have
Qodd _ Qeven

(4) Assume that the poles are neither of hyperelliptic nor of even type, then the

minimal stratum is connected, so 77 is connected.

It remains to prove the theorem when g 2 and pi 2. The minimal
stratum has two connected components. In this case, it is equivalent to say that the

zeroes are of hyperelliptic type or to say that they are of even type. If 77 77(2,2,*)
or 77(4, *), the stratum has at least two components, so exactly two. Otherwise,
the stratum is adjacent to 77(3, 1, *), which connects %odidn to 77^"*"> hence 77 is

connected.

A. Negative results for meromorphic differentials

In this section, we quickly give some examples to show that many well known results
for the dynamics on translation surfaces are false in the case of translation surfaces

with poles.

A.l. Dynamics of the geodesic flow. On a standard translation surface, the

geodesic flow is uniquely ergodic for almost any directions. From the result of
Proposition 3.7, for almost any direction on a translation surface with poles, all
infinite orbits for the geodesic flow converge to a pole.

A.2. Cylinders and closed geodesies. On a standard translation surface, always
exists infinitely many closed geodesies (hence cylinders). For the case of translation
surface with poles, one can consider the following example. Take the plane C and

remove the inside of a square, and glue together by translation the corresponding
opposite sides. One gets a surface in 77(—2,2). It is easy to see that there are

exactly two saddle connections joining the conical singularity to itself and no closed
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geodesic. A similar example in TL(—2. 1,1) obtained by removing a regular hexagon
gives an example without a single saddle connection joining a conical singularity to
itself.

A.3. SL2(R) action. The SL2(R) action on the strata of the moduli space
of Abelian differentials is ergodic. It is not the case for the moduli space
of meromorphic differentials if we consider the (infinite) volume form defined
by the flat local coordinates. Indeed, consider the stratum H(—2,2), which is

connected. Consider the set of surfaces obtained with the infinite zippered rectangle
construction, by gluing together the set D+(z\, z2) and the set D~(z2, Z\). It is easy
to see that if Im(z2) < 0 < I m(z\), there are no cylinders on the surface while if
/m(z2) > 0 > Im(zi), there is a cylinder on the surface. These two cases form two
nointersecting open subsets ofH(—2, 2). Considering SL2(R) orbits, we obtain two
disjoints 5'L2(M)-invariants open subsets of a connected stratum.
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