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Ricci flow on three-dimensional manifolds with symmetry

John Lott and Natasa Sesum*

Abstract. We describe the Ricei flow on two classes of compact three-dimensional manifolds:
1. Warped products with a circle fiber over a two-dimensional base. 2. Manifolds with a free
local isometric 7"2-action.

Mathematics Subject Classification (2010). 53C44.57M50.

Keywords. Ricci flow, warped product, geometrization.

1. Introduction

In understanding three-dimensional Ricci flow solutions, a special role is played by
three-manifolds with symmetry. It is plausible that one can get more precise results
about such Ricci flows than in the general case. Consequently, such Ricci flows with
symmetry have been studied for quite a while. We begin by describing some of the
earlier results.

Locally homogeneous three-dimensional Ricci flow solutions were examined by
Isenberg—Jackson [1J92] and Knopf-McLeod [KMO1]. The flow equations reduced
to a system of three coupled ODEs. The solutions are now fairly well understood;
see, for example, [Lot07, Section 3].

Certain three-dimensional Ricci flow solutions with a two-dimensional isometry
group were analyzed by Carfora—Isenberg—Jackson [C1J90] and Hamilton [Ham95,
Section 11]. They considered Riemannian three-manifolds that admit a free isometric
T2-action. The base is a circle and the total space is (necessarily) diffeomorphic to
a 3-torus. Under some additional assumptions (F -metric [CLJ90] or square torus
metric [Ham95, Section 11]) it was shown that the Ricci flow exists for all time and
converges to a flat metric.

Hamilton and Isenberg considered a twisted version of such torus bundles [HI93].
That is, there was a local (with respect to the base) free isometric 72-action. The
T2-bundle over the circle was globally twisted by a hyperbolic element of SL.(2, Z);

*The research of the first author was partially supported by NSF grant DMS-0900968. The research of the
second author was partially supported by NSE grant DMS-1110145.
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see Subsection 3.1 for a more precise description. Under the additional assumption of
a “solv-Gowdy” metric, it was shown that the Ricci flow approaches that of a locally
homogeneous Sol-metric; see also [KnoOO].

Passing to one-dimensional isometry groups, a natural class of geometries comes
from warped product metrics with circle fibers and a closed surface base M. One
starts with a product metricon N = M x S! and then allows the circle length over
m € M to become m-dependent. That is, we consider Riemannian metrics 7 on N
of the form

h =g+ e*do?, (1.1)

where g is a Riemannian metric on M, u € C* (M) and # is the standard coordinate
on S1. Itis not hard to see that the Ricci flow preserves the warped product structure.
The Ricci flow equation on N becomes two coupled evolution equations on M for
g(t) and u(¢). The evolution equation for g(¢) is like the Ricci flow equation on the
surface M, but there is an extra term involving (/). Because of this extra term, the
techniques used to analyze Ricci flow on surfaces [CK04, Chapter 5] break down.

When M is a two-sphere, Xiaodong Cao showed that the product of R and a cigar
soliton cannot arise as a finite-time dilation limit of a warped product Ricci flow on
S2 x §1 ([Cao05]). His argument used an isoperimetric inequality. (Cao’s work
preceded Perelman’s proof that the product of R and a cigar soliton can never arise as
a finite-time dilation limit for the Ricci flow on a compact three-manifold [Per02].)

In the present paper we use new techniques to give general results about the Ricci
flow on three-manifolds with symmetries. One of our tools is the result of [Lot10]
giving the long-time behavior of a three-dimensional Ricei flow solution (N, ii(-))
satisfying max,en IRm?" |(p. 1) = O(~") and diam(N, h(1)) = O(+/1). Thus one
of our main goals is to show that these bounds are satisfied in the relevant cases.
In particular, we show that max,en IRmY|(p.1) = O@™") for all of the immortal
Ricci flows under consideration. (A Ricci flow solution is immortal if it exists for
t € [0,00).) Itis an open question whether an immortal Ricci flow solution on a
compact three-manifold always satisfies this curvature bound.

To describe the results of the paper, we start with warped products. In the special
case of a product metric, the Ricci flow solution is the isometric product of S with
a Ricci flow solution on the base M. Such two-dimensional Ricci flows are well
understood [CK04, Chapter 5]. If ~(0) is a warped product metric on N = M x §'!
then a natural conjecture is that the Ricci flow asymptotically approaches a product
flow.

Theorem 1.1. Let h(-) be a Ricci flow solution on a closed connected orientable
three-dimensional manifold N. Suppose that h(0) is a warped product metric as in
(1.1) with a two-dimensional orientable base M .

(1) If x(M) > O then there is a finite singularity time T < oo. Ast — T, the
lengths of the circle fibers remain uniformly bounded above and below. For any
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p € N, the pointed smooth limit lim,_, 7— (N, o, ﬁh(l)) exists and is the

isometric product of R with a sphere 8% of constant curvature %

(i1) If y(M) < Othenthe Ricciflow exists forallt € [0, o0). Also, there is a constant
C < oo suchthat forall p € N andt € [0, 00), one has |RmN| (p.1) < %

(iii) If y(M) = Othenlim,_.o, h(1) exists and is aflat metricon T?. The convergence
is exponentially fast.

(iv) If x(M) < 0, put g(t) = #. For any iy > 0, define the ig-thick part of
(M, g()) by

Xig(t) ={m e M @ injg (m) = io}. (1.2)

Then
tl—1>nc;lo xen)l(?j(z) |Rgy(x) + 1| =0 (1.3)

and

lim  max |Vulzey(x) = 0. (1.4)

{—co xEX_,;O(I)

For all sufficiently small iy, if | is sufficiently large then X;, (1) is nonempty.

Remark 1.2. The proof of Theorem 1.1 (1) is essentially contained in List’s paper
[LisO8] on a modified Ricci flow. The only thing missing from [LisO8] is the obser-
vation that his flow differs from the warped product flow by a Lie derivative.

Remark 1.3. The proof of the curvature bound in Theorem 1.1 (ii) is by contradiction,
using a blowup argument, a sharp volume estimate and the Gauss—Bonnet theorem.

Remark 1.4. The proof of Theorem 1.1 (iii) is somewhat indirect. We first show that
Vol(M, g(t)) = O(~/1) and that the length of the shortest noncontractible curve on
M is nondecreasing in . A geometric argument then shows that diam(M, g(¢)) =
O(~/1). From [Lot10], we deduce that

(ma}%{ IRm¥ |(p, 1)) - diam? (N, k(1)) = o(r). (1.5)
peE

Rescaling at a given time / to diameter one, 1if 7 is sufficiently large then we can
assume that max,en IRm?|(p, 1) is arbitrarily small. After passing to a finite cover
N, we can assume that there is a universal lower bound on the injectivity radius of
the pullback metric i:t(l). By the linear stability of flat metrics [GIKO2], lim;— »o f;(t)
exists and is a flat metric. Hence lim;_ o, A(f) exists and is a flat metric.

Remark 1.5. Theorem 1.1 (iv) says that in the case (M) < O and as t — oo,
over a large part of M the flow (N, h(t)) approaches a product flow of S times a
finite-volume surface of constant sectional curvature — =-. Our result here is possibly

21
nonoptimal; see Remark 2.20.
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Our other main result is about Ricci flow solutions with a local U(1) x U(1)
symimetry.

Theorem 1.6. Let N be an orientable three-manifold that fibers over S with T?-
fibers. Choosing an orientation for S1, let H € SL(2,7) = mo(Diff ™ (T?)) be the
holonomy of the torus bundle. We can consider N to be the total space of a twisted
principal U(1) x U(1) bundle, where the twisting is determined by H .

Let h(-) be a Ricct flow solution on N. Suppose that h(0) is invariant under the
local U(1) x U(1) actions. Then the Ricci flow exists for all t € [0, 00). There is a
constant C < oo suchthat forall p € N andt € [0, 00), one has |RmN| (p, 1) < %

(1) If H is elliptic, i.e. has finite order, then lim;_, o, h(t) exists and is a flat metric
on N. The convergence is exponentially fast.

(1) Suppose that H is hyperbolic, i.e. has two distinct real eigenvalues. We write

h(t) in the form
h(t) = gyy (1) dy? + (dx)T Gy, n)dx, (L.6)

where {x', x2} are local coordinates on T? and y € [0, 1) is a local coordinate
on S1. Then up to an overdll change of parametrizations for S' and T?, we
have

i 1
m gyy(y ) _

li 5 Tr(X?), (1.7)

—oo I

lim G(y,t) = e’X,
=00

where X is the real symmetric matrix such that eX = HT H. The convergence
in (1.7) is power-decay fast in {.

Remark 1.7. Theorem 1.6 (ii) says that (V, #(-)) approaches alocally homogeneous
Ricci flow solution of Sol-type. The proof of Theorem 1.6 (ii) uses the monotonicity
of the modified W, -functional from [Lotl0, Section 4.2.3], along with the local
stability result of [Kno09, Theorem 3].

Remark 1.8. Theorem 1.6 (1) includes the cases considered in [CIJ90] and [Ham95,
Section 11]. Theorem 1.6 (ii) includes the case considered in [HI93].

The structure of the paper is as follows. In Section 2 we prove Theorem 1.1. In
Section 3 we prove Theorem 1.6. More detailed descriptions are at the beginnings of
the sections.

We are grateful to Jim Isenberg for introducing us to these problems and for
sharing his knowledge with us. We learned the estimates (2.19), (2.24) and (2.26)
from Jim.

In what follows we will use the Einstein summation convention freely.
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2. Warped products

In this section we prove Theorem 1.1. In Subsection 2.1 we write the warped prod-
uct Ricci flow equations and the corresponding evolution equations for geometric
quantities. In Subsection 2.2 we give a priori bounds using the maximum principle
and integral estimates. In Subsection 2.3 we deal with the case y(M) > 0. In Sub-
section 2.4 we prove that the Ricci flow exists for € [0, 00) when y(M) < 0. In
Subsection 2.5 we deal with the case y(M) = 0. In Subsection 2.6 we deal with the
case y(M) < 0.

2.1. Warped product Ricci flow. Let N = M x S! be endowed with a warped
product metric

h=g+e*do>. (2.1)

Here g is a Riemannian metric on M , 1 is a smooth function on M and 6 € |0, 2x).
We use i, j, k, ! for the indices on M. Nonzero components of the curvature tensor

of (N, h) are
N M
Rijkl = Rijkl’

2.2
Ry, = —e™ [ViViu + (Viu)(Viu)]. 2

Its square norm is

N |2 M2

|Rmh | = |ng | (2.3)
+2¢" g [ViViu + (Vi) (V)] [Vir Viu + (Vi) (V)] -

We will often think of |Rth | (-, 1) as a function on M rather than &, since it pulls

back from M, and write |Rm£{ | (m,t). Note that a sectional curvature bound on
(N, h) implies the same sectional curvature bound on (M, g).
The nonzero components of the Ricci tensor are

Ric]) = Ric}! — V; Vu — (Viu)(V;u).

(2.4)
Ric}, = —e** (Au + |Vu|?).
The scalar curvature is
RN = RM —2Au —2|Vul|?. (259
The Ricci flow equation
dh ,
’n = — 2 Ricy (2.6)
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on N preserves the warped product structure. In terms of g and u, it becomes

o
{ 27
Ju 2
— = Au + |Vul*,
at

where A = Ay (). Adding the Lie derivative with respect to —Vu to the right-hand
side of (2.7) gives the modified equations

8 @

~=1 = —2Ry; +2AViu)(Vyu),
b 2.8)
8_u = Au
ar

Hereafter we will mainly work with the system (2.8), since geometric statements
about (2.8) will imply the corresponding statements about the Ricci flow (2.7).
Given s > 0 and a solution (g(-),1(-)) of (2.8), we obtain another solution

(gs(-),us(-)) of (2.8) by putting
4(1) = ~g(s0),
ug(t) = u(st).

Note that the rescaling in (2.9) differs from the three-dimensional rescaling of the
Ricci flow (N, A(-)), which would give

(2.9)

1
Gs(t) = —g(st),
3 (2.10)

Us(t) = u(st) — %ln(s).

The rescaling in (2.9) can be interpreted in the followmg way. There is a Z-cover

N =MxRof N witha pullback Ricci flow h( ). On N, the rescaling in (2.9)
amounts to looking at the Ricci flow solution L M h(st), where s (m,r) = ( sl S r).
We refer to [LotQ7, Section 4] for further discussion of this point.
Put
hy = g, + e?%5d62. (2.11)

One sees from (2.3) and (2.9) that
[Rmy, |* = 5% [Rmy|?. (2.12)

This can also be seen from the discussion of the previous paragraph on N along with
the fact that under the three-dimensional rescaling of (2.10), the norm square of the
curvature gets multiplied by 5.
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Following [Lis08], we introduce the tensor
Sl'j = Rl'j — (Vlu)(VJu) (213)

and its trace
S =R—|Vul’ (2.14)

Putting o, = 1 in [Lis08, Lemma 3.2] gives

3| V2
| 8;’" — A|Vul? — 2|Hess(u)|? — 2| Vul|* (2.15)
and
BS 2 2
= = A8 + 218 + 2| Aul (2.16)

Hereafter we specialize to the case when M is closed, connected and orientable,
with dim(M ) = 2. Then (2.8) simplifies to

8 ..

=L = —Rgyj +2Va)(Vyu). (2.17)
Ju _ A
ar

Note that if % is nonconstant then the conformal class of g(¢) is t-dependent.
2.2. A priori bounds

2.2.1. Bounds from the maximum principle. We take the Ricci flow to start at
time zero. Applying the maximum principle to the second equation in (2.8) shows
that there exist constants (1, C> > 0 such that for all m € M and all ¢ for which the
flow exists,

C1 < u(m,1) < . (2.18)

Next, applying the maximum principle to (2.15) implies (cf. [Lis08, Lemma 5.6])
that

Vul?(-,1) £ ——, 2.19
V() < 5==— 2.19)
where ¢ = maxpep |[Vu|*(p,0). Similarly, applying the maximum principle to
(2.16) implies that
L
S(-, 1) = — (2.20)

In particular,
1
R(.1) 2 ——. (2.21)
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2.2.2. Volume estimates. Let V{(¢) denote the volume of (M2, g(1)). As

d 1 ij ngj

EdVg(I) = Eg = dVg(I) = (—R + |Vu|2) dVg(z), (2:22)
we have
dV >
— = —dx - y(M)+ |Vu|=d Vg, (2.23)
dt M

where y (M) is the Euler characteristic of M. Thus ‘ii—f > —4m - y(M) and so
V(t) = =4 - y(M) -t + V(0). (2.24)

Using (2.19) in addition, we can control V(#) from above. Namely, from (2.19),

dv
ar ST M)y ooV

df

(2.25)

where ¢ is as in (2.19). Then by ODE comparison,

V() < —47” (M) - (¢t + 1) + 2o 1 (w + V(O)). (2.26)

If y(M) = 0 then estimates (2.24) and (2.26) imply that
V() < V(1) < C( + V1) (2.27)

for an appropriate constant C' < 00.

When y(M) < 0, the linear term on the right-hand side of (2.26) is —8m y(M ):.
We would like to improve this to —47 y(M )z, to bring it in line with (2.24). Put
E(t) = [y [Vul? d V.

Lemma 2.1. We have

dE E%(r)
— < _ y 2.28
dt — V() (2.28)
Proof. First, as in (2.22), the volume density changes by
d
E(d Very) = =Sd Vg ). (2.29)

Note that

fM SdVepy = fM(R = |Vu|2)dVg(_t) =4dny(M) — E(t). (2.30)
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Then

dE d
~ar =7 ), SdVew = /M(AS + 2|85 * + 2(Au)* — $2) d Vg

_ 5 [
M
1 2
= 2 —V,-uvju + —|Vu| 8ij
- 2
:f (Vul* + 2(80)%) dV,q
M
z/ |Vul* d Ve
M

1 2
> — Yul|*dv,
= 75 f, 7 %)

which proves the lemma. U

1
Sij = 55 8ij

2
dVg(I) + 2/ (Au)2 dVg(E)
M

2
3 2(Au)2) d Vet

(2.31)

We now show that 7 (¢) decays logarithmically in time when y(M) < 0.

Corollary 2.2. If y(M) < 0 then there exist constants A, B > 0 such that

A
Vul2dV, g < 232
/M| uldVe = L+ BIn( + 1) (2.32)

at all t for which the flow exists.

Proof. By Lemma 2.1 and the volume estimate (2.26) we have

dE E2(1) E% (1)
—_— T e &5 s
dt — V() = ct+er

(2.33)

for appropriate constants ¢y, cz > 0. The corollary follows from ODE comparison.
O

Corollary 2.3. If y(M) < O then there is a function «: |0,00) — [0, 00), with
lim; o0 a(t) = 0, such that

v
—day(M)-(t + 1)

at all t for which the flow exists.

1| < afz) (2.34)

Proof. This follows from (2.23) and (2.32). [
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Lemma 2.4. The quantity @ is nonincreasing along the flow (2.8).

Proof. From (2.20) and (2.29),

S (s Damaze e

This proves the lemma. L

In the sequel we will distinguish between the cases y(M) > 0, y(M) = 0 and
x(M) <0

2.3. Positive Euler characteristic

Proposition 2.5. If (M) > 0then there is a finite singularity time T < oc. For any
p € N, the pointed smooth limit lim;_,7— (N, 7, ﬁh(l‘)) exists and is the isometric
product of R with a sphere S* of constant curvature %
Proof. It a smooth flow existed for all 1 € [0, oo) then equation (2.26) would imply
that V(z) < 0 for large ¢, which is impossible. Thus there is a singularity at some
time 7" < oo.

From [Lis08, Theorem 5.15], lim;_, 7— max,uepr |R| (m,1) = 00, where R is the
scalar curvature of M. Let {#;}2° | be a sequence of times such that for sufficiently
large k, 1 is the first time ¢ for which max,,eps |R|(m,¢) = k. Let my € M be such
that |R|(my, #x) = k. From [Lis0O8, Theorem 7.9], a subsequence of the rescaled
pointed solutions

(M, mp, gi(1), up (1)) = (M, mp, kgt +1/k), ulty +1/k)) (2.36)

converges smoothly to a solution (M, Moo, Sool( ), Uoo(-)) defined fort € (—o0, 0,
where g () 18 a k-solution on M., in the sense of [Per(2, Section 11.1] and ()
is constant both spatially and temporally. The proof of this statement uses a modified
W -functional which was introduced in [LisO8] and [Lot10], and which becomes

W(g.u, f.1) = / [2 (IV/12+ R—|Vul?) + f = 2] (4re) e dVy(p.

M (2.37)
in our three-dimensional warped product case.

The only x-solution on an orientable surface is the round shrinking 2-sphere
[KLOS, Corollary 40.1]. In particular, limy_, oo (M, kg(ix), u(tx)) = (S?, g52. U0 ),
where g2 has constant scalar curvature one. (Because S? is compact, we no longer
have to refer to basepoints. At this point our convergence is still modulo diffeomor-
phisms.) Standard arguments show that the system (2.7) is stable around the solution
given by the round shrinking S2 and constant #, with exponential convergence for
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the normalized flow. It follows that lim,_,7— (M, ﬁg(l), u(l)) = (52, gg2. Uoo)s
where the convergence is now taken without diffeomorphisms.

In terms of the three-dimensional geometry, from (2.18) the fiber lengths are
uniformly bounded above and below by positive constants, up to time 7. The three-
dimensional pointed limit lim;_7- (N , ﬁh(l), p) is the isometric product of R
with (2, gg2). This proves the proposition. O

Remark 2.6. We could also prove Proposition 2.5 by looking at the three-dimensional
singularity models with a nowhere-vanishing Killing vector field. Such a proof would
be less elementary, since it would use the results of [Per02, Section 11].

Remark 2.7. The method of proof of Proposition 2.5 works for finite-time singular-
ities of warped products M x S if M is a compact manifold of arbitrary dimension
n— 1. Blowing up at points of maximal curvature, one obtains an (# — 1 )-dimensional
ancient solution which is x-noncollapsed at all scales.

2.4. Nonsingularity when y(M) < 0
Proposition 2.8. If (M ?) < 0 then the Ricci flow exists for t € [0, 00).

Proof. If not then there is a singularity at some time 7" < oo. The same argument as
in Subsection 2.3 gives limg_, o0 (M, kg(tx), u(t;)) = (52, g52,Us0). In particular,
M is diffeomorphic to §2, which contradicts our assumption. 0

2.5. Vanishing Euler characteristic

Proposition 2.9. If y(M) = 0 then lim,_, o, h(f) exists and is a flat metric on T?.
The convergence is exponentially fast.

Proof. We first show in the following two propositions that if y(M) = 0 then
Max pe N |RmN| (p,1) = O~ and diam(N, h(t)) = O(4/f). Here Rm” denotes
the three-dimensional sectional curvatures.

Propeosition 2.10. If y(M) = 0 then there is a C < oo such that for all t € |0, 00),

we have
f - max |RmN| (p,1) <C. (2.38)
PEN

Proof. If not, lim sup,_, ., f - MaX;yepm |RmN| (m,t) = oo. (Since the function

|RmN | (-, 1) pulls back from M, we can think of it as a function on M .) We perform
an analog of Hamilton’s pointpicking algorithm for a type IIb Ricci flow solution; see
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[CLNO6, Chapter 8.2.1.3]. Namely, take any sequence {7;}?° | withlim; o 7; = o0
and let (m;, ;) € M x |0, T;] be such that

6T — 1) Rm¥ | (mit) = sup (T =0 RmY |, 1), (2.39)
(m.0)eM x[0,T;]

Dilate the flow in space and time by Q; = |RmN | (m;, ;) in the following way:

gi(t) = Qi gt; +107Y). ui(t) = ult; +107"). (2.40)

Then (g;(-), u;(-)) satisfies (2.8) on a time interval (A;, Q;), with lim; 4; = —o0
and lim; £2; = oco. Put

hi(t) = g; (1) + e**1dh>. (2.41)
By construction, ‘Rthi ‘ (m;,0) = 1 and after redefining A; and ;, there is a

sequence {y; {72, with lim; o y; = 1 such that

max (m.1) < yi. (2.42)

Rmﬁ
(m.p)eM x[A;.Q;] *

The curvature bound on N implies a curvature bound on M which, along with the
a priori bounds on u; and |Vu;|, implies higher derivative bounds on Rm™ (g;) and
u; [Lis08, Theorem 5.12]. We would now like to take a convergent subsequence of the
pointed flows {(M x [4;, Q;], (m;.0), g;(-), u;(-))}7° to obtain an eternal solution
(Moo X R, (M50, 0), goo (), Uoo(+)) of (2.8), where R denotes a time interval. To do
so, we need a uniform positive lower bound on the injectivity radius at (m;,0). If
the two-dimensional manifolds (M, g; (0)) were positively curved then such a bound
would be automatic. Since we don’t know that (M, g;(0)) is positively curved, we
argue differently.

Lemma 2.11. There is some € > 0 such that for all i, the injectivity radius of
(M, g:(0)) at m; is bounded below by «.

Proof. Suppose that the lemma is false. Then after passing to a subsequence, we
can assume that lim; o injg, () (m;) = 0. Passing to a further subsequence, we
can assume that {(M x [A;, Q;], (m;,0), gi(-). u; (-))}7°; converges to a solution
of (2.8) on an étale groupoid. For information about the use of étale groupoids in
Ricci flow, we refer to [Lot07] and [Lot10]. The upshot is that after passing to a
subsequence, we have smooth pointed convergence to an eternal solution (M, X
R, (Moo, 0), gool+), Uso(-)) of (2.8), where M, is a two-dimensional étale groupoid.
Furthermore, this solution has uniformly bounded curvature by (2.42), and for each
I € R, (Moo, g00(1)) 1s a complete closed effective Riemannian groupoid.
By assumption, lim; _, o, £; 0; = 00. As

2 -1 2 1
max [Vuy[g, (m, 1) = Qi max [Vulg (m.f; +107) (2.43)
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when combined with (2.19) we conclude that Vi, = 0 on any time slice. Then u,
is constant spatially and temporally, and g is just a Ricei flow on M. Asitis an
eternal solution, it has nonnegative curvature, with positive curvature at (1., 0).

We already know that (Moo, Moo, €oo(f)) 1S a bounded curvature limit of
{(M,m;, g;(1))}?°,. The Riemannian groupoid (M, go0(f)) has a locally con-
stant sheaf of finite dimensional Lie algebras g which act as germs of Killing vector
fields on the unit space M(gg). Because of the bounded curvature assumption, these
local Killing vector fields do not have a point of common vanishing; see, for example,
[Ron(7, Theorem 5.1].

As M(Sg) 1s two-dimensional, and we are in the collapsing situation, the only
possibilities for g are R? and R. If ¢ = R? then (Mo, g50(¢)) is flat, which is a
contradiction.

Suppose that g = R. Locally, goo(#) canbe written as dx? + f2(x,1)dy?. Since
its curvature is K = —fTH, the function f is concave. Fixing the value of f ata

single point in M &?), the function f pulls back from a function on the orbit space

of M., which in our case is a one-dimensional orbifold [Lot10, Proposition 5.2]. If
@ is a circle then we immediately get a contradiction, since the concave function f
must be constant, but this contradicts the fact that (M, g, ) has nonzero curvature
at (Mmoo, 0). If @ is an interval orbifold then we can pass to a double cover and argue
as before. If @ is R then the positive concave function f must be constant, which
again contradicts the fact that (M, goo) has nonzero curvature at (40, 0). If O is
[0, oo) then we can pass to a double cover and argue as before.

This proves the lemma. (]

We can now take a convergent subsequence of the pointed flows

{M x[A;, 2], (m;,0), g (+), u; (- )72,

to obtain an eternal solution (Mso X R, (#1150, 0). €00 (-). Ueo(-)) 0f (2.8). From (2.19)
and (2.43), 1« 1s constant. Thus we have a nonflat eternal Ricci flow solution on the
two-dimensional manifold M, with uniformly bounded curvature (from (2.42)) and
complete time slices. In particular, f Mo Reoo(0) dVe. 0 > 0. Although we won’t
really need it, (M, goo(-)) must be the cigar soliton, as follows from the fact that
the spacetime supremum of R is achieved at a point, along with a differential Harnack
inequality [CLNO6, Theorem 9.4]. Hence

4/1;4 Rgoo(o) dVgoo(O) = 4. (244)

For large 7, there is a bounded domain §; C (M, g(¢;)) which, after rescaling, is
almost isometric to a large piece of the time-zero slice of the cigar soliton. Then for
large i,

f Re) dVeq) = 37. (2.45)
S.

I
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On the other hand,

/ Rmmdﬂmoz—gw%mﬂM—Snz——TL. (2.46)

i

Adding (2.45) and (2.46), and using (2.27), we see that for large 7,

fM Req;)dVg(y) = 2. (2.47)
This contradicts the assumption that y(M ) = 0 and proves Proposition 2.10 0
Proposition 2.12. diam(N, i(1)) = O(J/1).
Proof. We will use the following general result about Riemannian submersions.
Lemma 2.13. If 7: (N,h) — (M, g) is a Riemannian submersion, with N compact

and connected, then

diam(M, g) < diam(N, h) < diam(M, g) + 2 max diam(z~1(m)), (2.48)
me
where diam(zr ™1 (m)) is the intrinsic diameter of w~'(m).

Proof. Givenmy,m, € M, we have
dp(my, ma) = dy(x ™ (m1), 7~ (m2)). (2.49)

It immediately follows that diam(M, g) < diam(N, h).
Given py, p, € N,putmy = w(py) and m, = 7 (p,). Then

dy(p1. p2) < diam(z ' (m1)) + dy(r~mq). 77 (my)) + diam(z ™~ (my)).
(2.50)
The lemma follows. O

From (2.18) and Lemma 2.13, diam(¥, 4(¢)) < diam(M, g(1)) + 2¢%2. Thus it
suffices to show that diam(M, g(¢)) = O(J/1).

Let 1.(z) be the length (with respect to g(#)) of a shortest noncontractible closed
geodesic y; on M. We parametrize y; by an arclength parameter s. We will first
show the following claim, which is an analog of [Ham95, Theorem 12.1].

Claim 2.14. L(t) is nondecreasing in t.

Proof. Given the curve y; attime ¢ > (0, we obtain an upper bound on L{f — A¢) by
considering the length of the same curve y; at the earlier time 7 — Af. Then

L@—LU—AQ>1f“”%
0 ot

lim inf >
Ar—0 At 2

-/ = Lrouon + v as.

(vr vi)ds
(2.51)
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As y, 1s stable, applying the second variation formula with respect to a parallel normal
field along y; gives

L)
- [ RtuGnds=o 2.52)
0
The claim follows. [l

Since y(M) = 0, equations (2.27) and (2.38) imply that

fim [(gg} |R|(m,t)) - V(t)] — 0. (2.53)

—00

The next claim is purely geometric and has nothing to do with flows.

Claim 2.15. There exist € > 0 and C < 00 such that for every metric gon M = T?
with (maXp,ep |Rg|(m)) - Vol(M, g) < €, we have

L(g)-diam(M, g) = C - Vol(M. g), (2.54)
where 1.(g) is the length of the shortest noncontractible closed geodesic.

Proof. Suppose first that the metric g is flat. Let y be a shortest closed geodesic
and let M be the corresponding cyclic cover of M. Then M = S'xR, where the
circle has length L(y) = L(g). A generator of the covering group Z acts on M by
translation in the R-direction, by some distance L', along with rotation around S! by
some angle 6 € [— 7, ]. For any /i1 € M, we have

o1
d g (i, i) = \/(L’)z (h) | (2.55)

This 1s the length of a closed geodesic on M, so we must have

\/ @2 + (g—i)z > 1. (2.56)

This implies that 1" > %L. Now diam(M, g) < %(L + L'yand Vol{M,g) = LL',
so the claim holds in this case with C = 2. Hence we can assume that g is nonflat.

Suppose that the claim is false. Then there is a sequence ¢; — 0 such that for
each i, there is a metric g; on M with

(max [R|(m)) - Vol(M, g1) = & 2.57)

but
L{g;)-diam(M, g;) > i - Vol(M, g;). (2.58)
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Rescale g; so that max,,epm |Rg; [(m) = 1. Then Vol(M, g;) < ¢;.

Let § < 1 be a new parameter. Suppose first that for an infinite number of 7, the
pointed Gromov—Hausdorff distance from (M, m, g;) to a point is greater than é for
all m € M, ie. diam(M, g;) > . After relabelling the sequence {(M, g;)}7°,, we
can assume that for all 7 and all m € M, the pointed Gromov—Hausdorff distance
from (M, m, g;) to a point is greater than §. Since lim;_, o, Vol(M, g;) = 0, there is
asequence {c; ;70 withlim; o ¢; = 0 such that for any m € M, the pointed closed

metric ball (B (m, 15—0), i, g,-) is ¢;-close to ([—15—0, 15—0], (1) in the pointed Gromov—
Hausdorff topology.

Fix §’ <« 1. From [CFG92], for large i there is a diffeomorphism ¢; from (M, g;)
to (ST x S, gl), where

« g/ is a warped product metric dx* + f2(x)dy?,
* max,cst fi(x) = 0asi — oo, and
o ¢ is a e?’-biLipschitz map.

More precisely, we are using the fact that the results of [CFG92] hold in a localized
sense, i.e. without an upper diameter bound; see [CT06, Section 2] for discussion.
The paper [CFG92] gives a bilipschitz approximation of (M, g;) by a Riemannian
nilbundle with affine holonomy; see also [Fuk&9]. In the present case such a Rie-
mannian nilbundle is a Riemannian submersion S! x §1 — S1.

For the metric gl’., let A; be the length of the circle base. We know that A; > 15—0.
To get an upper bound on L{(g;), we locate a shortest circle fiber of the fiber bundle
St x St — S! and take its preimage under ¢;. This gives a noncontractible closed
curve in M, so

L(g) < e min f;(x). (2.59)
xeS!

Next, using Lemma 2.13, the diameter of (S Ly St gl’.) 1s bounded above by A; +
2max,cgt fi(x), so

diam(M, g;) < % (4; + 2 max f;(x)). (2.60)
xeS

The volume of (S! x ST, g}) is bounded below by A; times the length of the smallest
circle fiber, so
Vol(M, gi) > e=2% A; min f;(x). (2.61)
xe§!
For large 7, equations (2.59), (2.60) and (2.61) contradict (2.58).

Thus we can assume that for all but a finite number of 7, there is some point 772; such
that the pointed Gromov—Hausdorff distance from (M, m;, g;) to a point is at most 4.
We now rescale (M, g;) to a metric (M, g;) with diameter one. After this rescaling,
max,, eM |R§i| (m) < §2. Suppose that lim inf; _, o Vol(M, ;) = 0. After passing
to a subsequence, we can assume that lim; _, o, Vol(M, g;) = 0. Asin the argument of
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the preceding paragraphs, for large i there is a biLipschitz approximation of (M, ;)
by a warped product metric on a fiberbundle S x S! — S, whose base has diameter
close to one, and we obtain a contradiction to (2.58).

Thus there is some vy > O such that for all 7, we have Vol(M, g;) > vg. Cheeger
compactness now gives a contradiction to (2.58). This proves the claim. (]

To conclude the proof of Proposition 2.12 we argue as follows. By (2.27), V(¢) =
O(/1). By (2.2) and Proposition 2.10, max,,epr |RM |(m. 1) = O(~'). Thus for
large 7, we can apply Claim 2.15 to conclude that

. Vi) 40
d M, git))=C— =< C——, 2.62
am(M, g(1)) < €3 < O 2.62)
where Claim 2.14 is used in the last inequality. Proposition 2.12 follows. ([

By [Lot10, Theorem 1.2.1], maxX,,eps |RmnN |(m, ) = o(t~1) by Propositions 2.10
and 2.12. Thus

lim [( max |Rm” |(m,t)) : diamZ(N,h(t))] = [ (2.63)
—oo memM

For some given ¢, we rescale (N, i(f)) so that it has diameter one. We now wish
to apply the local stability of flat metrics on 7> under the Ricci flow. For this, we
need the following lemma, which is purely geometric.

Claim 2.16. There are a compact subset K of the moduli space of flat metrics on T3
and a function €': [0, 00) — [0, 00), with lim._,g €'(€) = 0, such that the following
holds. Suppose that h is a Riemannian metric on N = T3 with diam(N, h) = 1 and
maxpey |[Rmy|(p) < €. Then there is a finite cover N of N such that (],\7, ﬁ) has
distance at most €'(€) in the C'-topology from an element of K.

Proof. Given ip, D1 > 0 and D; < oo, let Kj, p,,p, denote the isometry classes
of flat Riemannian metrics on 73 with diameter in [D1, D»] and injectivity radius
bounded below by io. For any « € Z™T, the set Kj, p,.p, is compact in the C*-
topology. We will take K = K, p,,p,. where the parameters iy, [y and D, will be
determined in the proof.

Given K, suppose that the claim is false. Then there is some ¢’ > 0 along
with a sequence {(N;,%;)}7°, of Riemannian 3-tori with diam(N;.A;) = 1 and
maxpey; [Rmg, |(p) < ll., but with the property that for no i is there a finite cover
(ﬁi, i;l- ) of (N;, h;) with distance less than € in the C 1—topc:logy from an element
of K. Let N,- be the universal cover of N;. Pick p; € N; and let p; be a lift to
Ni. Asi — oo, (]V,-, pi) converges to (R3,0) in the pointed C!-topology; this
follows from a uniform lower bound on the injectivity radius at p; [Ron07, (3.2)]
and C l—convergence results. Let rq; € m1(N;, p;) be a nontrivial element which
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minimizes d(p;.r1,; p;). Letra; € (N, p;) — {r1.;) minimize d(p;, 72 ; p;). Let
rz; € mi(N;, pi) — (r1,;, r2;) minimize d{(p;,rs,; p;). By the diameter condition,
for large i we have d(p;, r3; p;) < 10.

Let y1,;, ¥2.i, ¥3.; be minimizing geodesics from ptory; p,r2,; p, r3; p. Thereis
a universal constant ¢ > 0 such that for each i, pairs from {y{ ;(0), y; (), y5 ;(0)}
form an angle at p which is at least ¢ [Gro78, Section 2.3]. Let ky; and k»; be
positive integers such that ky ;d(p;, r1,;p;) and k;;d(pa, 72, p;) lie in [11—0, 10].

~ ~ a k H k 3
Let N; be the cover of N; such that 7(N;, p;) has generators rl_fi’l, rzi'l, r3i-

After passing to a subsequence, we can assume that as i — oo, with respect to
the approximations of N by R3, the triples rf 11;’ Pis ric:‘;.‘i Pi, 73, pi converge to
vectors vy, U, v3 in R? with lengths in [11—0, 10| and mutual angles at least ¢. Then
liml-_,oo(]v,-, l;l-) = R3/(Zvy + Zvy + Zvs3) in the Cl—topology. We can find i,
Dy > 0and D, < oo, computed in terms of ¢, such that R? /(Zv; + Zv, + Zv3) has
diameter in [ D1, D;| and injectivity radius bounded below by iy. This contradicts
the properties of the sequence {(N;, h;)}{° . The claim follows. O

By (2.63), for any €’ > 0, if ¢ is large enough then we can apply Claim 2.16 to
(N, h(r)). Using the higher derivative curvature estimates coming from the Ricci flow
and applying a similar argument as in the proof of Claim 2.16, for any « € ZT we
can also say that there is a compact subset K of the moduli space of flat metrics on
T3 so that for any €’ > 0, if 7 is large enough then a finite cover (]\Af, i’;(l)) is €’-close
in the C'*-topology to an element of K. Taking « large, we can now apply [GIK02,
Theorem 3.7] to conclude that as t — oo, (ﬁ h (1)) (or more precisely the solution of
(2.7)) converges to a flat metric on 72, Furthermore, the convergence is exponentially
fast. (Strictly speaking, [GIK02] considers the evolution of a Riemannian metric £
which is sufficiently close to a fixed flat metric, but the arguments clearly extend to
the setting of closeness to a compact set K, of flat metrics, since there will be uniform
control on the constants.) Because of the equivariance of Ricci flow under isometries,
the same is true for (N, A(t)).

This proves Proposition 2.9. O

2.6. Negative Euler characteristic. By Proposition 2.8, the flow (2.8) or, equiva-
lently, (2.7) exists forever. We start with the following proposition.

Proposition 2.17. We have max, ey Rm™ [(p,1) = O(™).

Proof. The argument is similar to that in the proof of Proposition 2.10. If the statement
were not true, i.e. if limsup,_, o f - maXpyem |RmN|(m, 1) = oo, then we begin the
argument exactly the same as in the proof of Proposition 2.10 to take a limit of
rescalings at times {/;}7°,. This limit is an eternal solution of the form /.. (1) =
Zoo(t) + CdO?, where C is a constant and go.(¢) is a nonflat eternal solution to



Vol. 89 (2014) Ricci flow on three-dimensional manifolds with symmetry 19

the Ricci flow on a two-dimensional manifold M., with complete time slices and
nonnegative bounded curvature. As in the proof of Proposition 2.10, (M, 2oo(+))
must be a cigar soliton and

/M Ryo0) dVpooo) = 4. (2.64)

For large 7, there is a bounded domain §; C (M, g(¢#;)) which, after rescaling, is
almost isometric to a large region in the cigar soliton. Then

fS Rey) dVeq) = 37. (2.65)

Furthermore, by (2.21) and Corollary 2.3, we have

1
f ¢ Rewy Vo) 2 ——V01g(r)(M Si) 2—(—) > 4wy (M) - (1 +0(%)).

I

(2.66)
Adding (2.65) and (2.66), and taking i — oc, contradicts the Gauss—Bonnet theorem
for M. L]

Put ¢(1) = @ Let V denote the corresponding Levi-Civita connection.

Claim 2.18. There exist ip > O and ty > O such that for every t > g, there is a point
m; € M where the injectivity radius satisfies injgy(m;) > io.

Proof. By (2.2) and Proposition 2.17, for ¢ > 1 the metrics (M, g(¢)) have uniformly
bounded curvature. If the claim were not true then for every € > 0, there would be
some /e > 1 such that injg,_y(m) < € forall m € M. Then M would have an F-
structure and hence a vanishing Euler characteristic [CG90]. This is a contradiction.

L
Proposition 2.19. For any ig > 0, define the ig-thick part of (M, g(t)) by
Xip(t) ={m € M ! injgy(m) > io}. (2.67)
Then
Ilglgo XGS;LE(I) |Rzny(x) + 1| =0 (2.68)
and R
lim sup |Vulgp(x) =0. (2.69)

ety )
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Proof. Suppose that the proposition is not true. Then there are some iy, € > 0 along
with sequences t; — oc arld {m; 7 | such that foreach i, inj 2 (m;) > ip and either
| Rz (mi) + 1] = € or |[Vu|gu,)(mi) = €.

By Hamilton’s compaciness theorem and the derivative estimates on u# from
[LisO8, Section 5], after passing to a subsequence we can assume that there is a
smooth pointed limit of flows

lim (M, g (50), u(i0) ) = (Mg, oy GooDoioe@) - 270

For any bounded domain S C M, using Corollary 2.2 we have that at any time «,

[ [Vitoo | () @ Veooa) < lim sup/ |Vu(tia) g0 dVeay = 0. (2.71)
h i—oo JM
Thus u is spatially constant at time a. Because a is arbitrary, and u, satisfies
the time-dependent heat equation, it follows that 1, is also temporally constant. In
particular, ~

0 = |Vig|geo 1) (Moo) = Il_lglo |Vt|g 1y (m;). (2.72)

Now Rg )+ % > 0. Given0 < a < b < oo, equations (2.35) and (2.72), along
with Corollary 2.3, give

b 1 dt
Rgoo(f) e dVgoo(I) T
a I Moo A I3

b
1 dt

=f f (Rgoo(z)—IVuoolz(f)Jr—)dng(z)—
a JMeag { 4

(2.73)
< 1 sz[ . Vul?() + 1 qv dt
= m T o g(1) H . g@ 7
. Vt;a) Vit b)
= lim - =0.
i—o0 f;a tib
Since @ and & were arbitrary, we obtain R, __y(m) = —% for all m € My and
t € (0,00). In particular,
—1=Ry (y(Meo) = Lim R ;) (m;). (2.74)

Equations (2.72) and (2.74) together contradict our assumptions about {7;}7°, and
{m;}7° |, thereby proving the proposition. O

Remark 2.20. In the case y(M) < 0 one could hope for a bound diam(M, g(¢)) =
O(+/1). With such a bound one could conclude that in Proposition 2.19, there is some
ip > 0 such that for large 7, X;,(¢) is all of M. Without such a bound, one could
imagine that as t — oo, the manifolds (M, g(f)) approach a family of surfaces of
constant curvature —% that slowly pinch off a closed geodesic.



Vol. 89 (2014) Ricci flow on three-dimensional manifolds with symmetry 21

3. Torus bundles

In this section we prove Theorem 1.6. In Subsection 3.1 we write down the Ricci
flow equations with a U(1) x U(1) symmetry and give some direct consequences. In
Subsection 3.2 we show that the Ricci flow exists for all # € [0, o0). In Subsection 3.3
we prove that the curvature decays like O (t_l). In Subsection 3.4 we show that
the length of the circle base is O(+/7). In Subsection 3.5 we finish the proof of
Theorem 1.6.

3.1. Twisted principal U(1) x U(1) bundles. Let A be a an orientable 3-manifold
which is the total space of a fiber bundle 7: N — S!, with T2-fibers. Choosing an
orientation of S, the fiber bundle has a holonomy H € SL(2, Z) = mo(Diff t (T?)).
Taken up to inverses, /7 determines the topological type of the fiber bundle. We refer
to [Sco&3, Theorem 5.5] for the Thurston types of such fiber bundles. If H is elliptic,
i.e. has finite order, then N has a flat structure. If H is parabolic, i.e. |Tr(H)| < 2
but H is not elliptic, then N has a Nil structure. If # is hyperbolic, i.e. has no
eigenvalues on the unit circle, then N has a Sol structure.

If 1 is the identity then N = S! x T2 is the total space of a principal U(1) x U(1)
bundle. That is, N admits a free U(1) x U(1) action. In general, N is the total space
of a twisted principal U(1) x U(1) bundle, where “twisted” refers to the fact that H
may be nontrivial. The setup is a special case of that in [Lot10, Section 4.1]. Let €
be a local system over S! of groups isomorphic to U(1) x U(1). We assume that the
holonomy of the local system is H € Aut(U(1) x U(1)). Then there is a notion of a
free €-action on the 72-bundle N, which generalizes the global U(1) x U(1) action
that exists when # is the identity.

Let /2 be aRiemannian metric on N which is & -invariant. There is a corresponding
horizontal distribution J¢ on . Since Jf is one-dimensional, it is integrable. Note
that even if H is the identity, J¢ can have a nontrivial holonomy in U(1) x U(1),
when going around the circle base. Thus the flat structure on & is logically distinct
from the flat structure on N coming from J¢.

Let V be a coordinate chart of S, with local coordinate y. The integrability of
J¢ gives alocal trivialization V x T2 of 7~ 1(V). The restriction of # to z~1(V) is
invariant under the U(1) x U(l) action coming from & | - Using this action and the
local trivialization, let x1, x, denote local angular coordinates on the 72-fibers. In
terms of these coordinates we can write

2.
h= > Gi(y)dx'dx’ + gy, (y) dy*. (3.1)
i,j=1

Weuse i, j, k, ! for vertical indices. From [Lot10, Section 4.2], nonzero compo-
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nents of the curvature tensor of (N, h) are

1 1
ngl = _Zgyy Gik,yGj1,y + Zgyy GityGik,y-

) L (3.2)
N
Riyjy = _EGij;yy + ZG GikyGily
where {
Eyy.y
Gisyy = Gijyy = I Gijy = Gijyy = 5 === Gijy. (3.3)
Eyy
The nonzero components of the Ricci tensor are
1 ¥y ! ¥y 2kl vy Lkt
Rij = — 587 Gijiyy — 787 G GhtyGijiy + 87 5607 Gik,y Gy

1 .. 1 ..
Ry == 5G"Gyjyyy + 76V Gir.y G Gy
The scalar curvature is
¥y (2ij 3 ¥y aij ki 1 VY 2ij kl
R=-g¢g""G ij;yy-l-zg GGy G G”-‘y_Zg GV Gijy G Gy y. (34)

We will use matrix notation G = (GI- j). Note that & 1s symmetric and positive-
definite. The Ricci flow equation

dh
— = —2Ricy (3.5)
dt

preserves the local U(1) x U(1) invariance of the metric. In terms of g and G, it
becomes

dg _ 1 i )

e ) (). “
3 1 B
8—(: = gny’yy + Egnyr (G_ley) G,y - gny,y G_l G’y-

Adding a Lie derivative with respect to —V In y/det(G) to the right-hand side gives
the modified equations

B =31r(1676,7),

a(r _
9 g7 (Gyy —G,G7'G,).

Taking y to run over R, the periodicity condition on G 1s

Gy+1.)=HTG(H,nHH. (3.8)
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The manifold N can be recovered by taking the quotient of R x 72 by the equivalence
relation (y + 1, x) ~ (y, Hx + b), where b is some fixed element of R2 /72
Hereafter we will mainly work with (3.7). An example of a solution to (3.7) is

gyy(y.1) = 4 (i + a),

2¢y (3.9)
G(y.t) = (eo e—gcy) :

If we take y to be defined in R/Z then we get a metric on a bundle with hyperbolic
holonomy H € SL(2, %), provided that H has eigenvalues ¢ and ¢™°. Here 9,1
and 9,2 are corresponding eigenvectors. The length of the circle base is 2¢+/7 + a.

Given s > 0 and a solution (g(-), G(-)) of (3.7), we obtain another solution of
(3.7) by putting

gs(t) = ~g(s0).
Y

(3.10)
Gy (t) = G(st).
Put
hs = (dx)T Gedx + g5. (3.11)
Then
[Rmy, |* = 52 [Rmp|?. (3.12)
Lemma 3.1. Y
L
%() — Alndet(G). (3.13)
Proof. We have
d1ndet(G) ( 1 BG)
— —_— 3.14
ot "¢ ot G-14)
= g"Tr (G™(Gyyy — G, GG ).
Passing to an arc-length parameter s on S! at a given time ¢, we obtain
dIndet(G
%() = Tr (G (G55 — GsG™'G)). (3.15)
On the other hand
A Indet(G) = In det(G) 4y (G7'G) (3.16)
nde = —Inde = —Tr 5 3.
ds? ds '

=Tr(G'G, — GG GG .

This proves the lemma. (]
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Note that det(G) is globally defined on S! since the holonomy lies in SL(2, Z).
It represents the squares of the volumes of the fibers.

Corollary 3.2. There are constants Cy, Ca > 0 such that forally € § U and all times
{ for which the flow exists.

Cy = det(G)(y,1) = Ca. (3.17)
Proof. This follows from applying the maximum principle to Lemma 3.1. (]
Lemma 3.3. Put
& =g"”Tr((G7'Gy)?). (3.18)
Then
d€ g2 2
— = e VY o ¥y 1~  _ -1 2 3
= A& - —-2g" Tr((G G.yy — (G71G,) ) ) (3.19)

Proof. Differentiating (3.18) with respect to 7 gives

d 1

a_f = —5¢7 ¢ (Tr((67'6,,)?))°
—2¢" Tt (GGG g (Gyy — GyG7'G,)GTIG,)  (320)
+287 (671G, 67 (¢ (Gyy = G1G716y) , ).

¥

Switching to an arc-length parameter s at a given time 7, we obtain

& g2 =] —1 -1 =1
D (671667 (G — G676 )GTIGy)
at 2 (3.21)

42Ty (G—lG,SG—1 (G.ss — GsG™'Gy) ) .

.8

One now computes that

e &2
— =+ (It ((G7'G?)
o 2 ’ , (3.22)
—211((67'G s - (GT'G.0?) ).
This proves the lemma. (]
Note that . .
g — gnyr((G_7 @, G—i)z) (3.23)

; ; ; 1 _1. ;
is nonnegative, since G~ 2G ;, G2 1s symmetric.
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Corollary 3.4. For all y € S and all 1 > O for which the flow exists, we have
E(y.1) = =

Proof. We have

(67 Gy — (671G,)?))
, (3.24)
=1r((6726,,67 - (67¥6,67)%)),

which is nonnegative since G2 Giyy G2 — (G_% G,J,G_%)2 1s symmetric. The
corollary now follows from applying the maximum principle to Lemma 3.3. (]

3.2. Nonsingularity of the flow

Proposition 3.5. Given h(0) as described in Subsection 3.1, the flow (3.7) exists for
t € [0, 00).

Proof. 1f not then there is a singularity at some time 7" < oc. Specializing the
modified W-functional of [Lotl10, Definition 4.48] to our case, it becomes

W(G,.g. f.7) (3.25)
= fy [r|Vf|2 - %gnyr ((G—lG,y)z)) +f- 1](4m)—%e—f@dy.

Using this modified W -functional, we can go through the same steps as in the proof
of [Lis08, Theorem 7.9] to conclude that there is a blowup limit

(Moo, Moo, Sool+), Goo(+))

where
* (G5 = const. and
* g, 1s a nonflat Ricci flow solution on the 1-manifold M.

However, there is no such nonflat Ricci flow solution. This proves the proposition.
O

3.3. Curvature bound
Proposition 3.6. We have max,ey |RmN| (p,t) =0 (t_l).

Proof. Suppose that the proposition is false. We take a rescaling limit as in the proof
of Proposition 2.10 to obtain a nonflat eternal solution (Mo, Poos Gool ), Gool+)) On
a one-dimensional étale groupoid M. (It will follow from L.emma 3.12 that M,
is a one-dimensional manifold.) From Corollary 3.4, G is constant. Then g is

a nonflat Ricci flow solution on a one-dimensional space, which is a contradiction.
O
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3.4. Diameter bound. We compute how the length of the base circle varies with
time.

Lemma 3.7. Put L(1) = [q1 &y (y)dy. Then
dL 1
=1/ eonvEa. (3.26)
sl
Proof. We have

dL 1 dg
— e yy2o¥Y m—(y\d
dt zfslg ot &yy (¥)dy

) (3.27)
- 2
= i fsl g’ Tr ((G 1G,y) ) VEyy(¥)dy.
This proves the lemma. (]
In particular, L(¢) is monotonically nondecreasing in /.

Lemma 3.8. %L(I) is monotonically nonincreasing in t.

Proof. From Corollary 3.4 and Lemma 3.7, we derive
ok . T (3.28)
dt — 2t B

The lemma follows. L

3.5. Long-time behavior

Lemma 3.9. Given x € T? and linearly independent vectors vy, vy € T, T?, there
is a constant C(vy, va) < oo with the following property. Suppose that gr2 is a flat
metric on T?. Then

diam (72, g72) < C(v1,v2)([v1lg,2 + 1v2lg,2)- (3.29)

Proof. Let Vy and 'V, be the affine-parallel vector fields on 72 that extend v; and
v,, respectively. Let go be a fixed flat metric on 72, There is some ¢ < oo such that
any pair of points in 72 can be joined by flowing first in the V;-direction for a length
at most ¢ and then flowing in the V,-direction for a length at most ¢. With respect

to g2, the length of this path is bounded above by ¢ |T;j;2 T T The lemma
0 0

follows. O

‘v2|gT2

We use the notation in the statement of Theorem 1.6.
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3.5.1. Elliptic holonomy. If H iselliptic then after pulling back the 72-bundle from
a finite covering S' — S, we can assume that I = 7. Then G(y, t) is a globally
defined matrix-valued functionof y € R/Z and ¢ € [(}, 00).

Lemma 3.10. The intrinsic diameter of the T?-fibers is uniformly bounded above
intf.

Proof. Given v € R?, equation (3.7) implies that

a

= (v, Gv) = g7 (0, Gv) sy — g (0, G, GG ). (3.30)
The maximum principle now implies that (v, G(y, {)v) is uniformly bounded above
fory € §' and ¢ € [0, o). The lemma follows from Lemma 3.9. L

Proposition 3.11. diam(N, (1)) = O(/1).

Proof. This follows from Lemmas 2.13, 3.8 and 3.10. U

From [Lot10, Theorem 1.2.1],

(}I}g IRmy) | (p, 1)) - diam? (N, h(£)) = o(2). (3.31)

The argument of Subsection 2.5 now shows that lim;_, o, A(¢) exists and is a flat
metric on N, with the convergence being exponentially fast.

3.5.2. Hyperbolic holonomy. Suppose that # is hyperbolic.

Let P(2,R) denote the positive-definite symmetric 2 x 2 matrices. Given G €
P(2,R) and symmetric 2 x 2 matrices 81 G, 52G € Tg P(2, R), we define their inner
product by

(51G.8,G) = %Tr(G_l(SlG)G_l(SZG)) . (3.32)

Consider the map ®: R x SL(2,R) — P(2,R) givenby (u, M) — ¢*MT M.
Identifying SO(2)\SL.(2, R) with the hyperbolic space 12, the map ® passes to an
isometry R x H? — P(2,R).

With respect to this isometry, the action of SL(2,Z) on P(2,R) (by (4,G) —
AT GA)becomes the product of the trivial action of SL.(2, Z) on R with the isometric
action of SL.(2,7) on H?. Letting {H) denote the cyclic subgroup of SL(2, Z)
generated by the holonomy f1, equation (3.8) can be interpreted as saying that for
each £, the function G(-, y) describes a smooth map S! — (R x H?/{H)) whose
homotopy class is specified by H .

Lemma 3.12. There is a constant ¢ > O such that for all t € [0,00), L(t) > cA/t.
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Proof. Lemma 3.4 says that the Lipschitz constant of the map G (-, ¢) from [0, 1] to
P(2,R) is bounded above by % As H is hyperbolic, there is a minimal length

¢ > 0 among all noncontractible closed curves in 72/(H). Consequently, the
distance between G(0, 1) and G(1,1) = HT G(0,1)H in P(2,R) is bounded below
by ¢. Thus L(1) = c+/1. O

Recall the definitions of g, and Gy from (3.10). By an appropriate s-dependent
choice of basis for R2, we can assume that G4 (0, 1) = 7. In making such a choice of
basis, we are ignoring the lattice structure that comes from writing 7 as a quotient
of R?. We are simply treating G and g as functions which satisfy (3.7) and (3.8).

Let X be the real symmetric matrix so that eX = HT H.

Proposition 3.13. For any sequence {s; };’il going to infinity, after passing to a
subsequence and possibly reparametrizing S', we have

!
lim g; (v.1) = = Tr(X?)dy? (3.33)
j—oo 2
and
lim Gg,(y.1) = *%, (3.34)
j—oo

with smooth convergence on compact subsets of S' x |0, 00).

Proof. The proof is similar to that in [Lotl10, Propositions 4.39 and 4.79]; see also
[FINOS5, Theorem 1.3].

We first construct a positive solution # «, of the conjugate heat equation

3 1
8_’;‘ = —Au— g Tr (GG ) u (3.35)

that is defined for 1 € [0,00). To do so, note that if u is a solution to (3.35) then
[¢1 1, /Zyydy isconstantinz. Let {¢; 1721 beasequenceof times going toinfinity. Let
it; (-) be asolution to (3.35) on the interval [0, ;| with initial condition; (f;) = ﬁ%)
One shows that one can extract a subsequence of the #;’s that converges smoothly
on compact subsets of S! x [0, 00) to a positive solution 7 (- ) of (3.35).

Define foo () by fiso (1) = (dt)~ Fe= /=@ py
Wi(G.g. fi.1) (3.36)
- 1 ~ 1 3
= fsl [J(Wﬂz - ZgJ’J’Tr((G*G,y)Z)) - f+ l}(ﬁlnt)_ie_f./_gyydy.
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From [Lot10, Proposition 4.64],

d -
EW+(G(I)=g(I),foo(‘t)at) (3.37)

4 . _ ~ 2N .
_ 5[51 Tr((G (AG =87 GyGT'Gy — 8" Gy froy) )uoo /Ty dy

1 _ - 1 B
+ 2t fSl gyygyy(_ ZTr ((G 1G,y)Z) + foyy + Zgyy) TINN C -

In particular, W, (G(?), g(2), foo (1), 1) is monotonically nondecreasing in /. Put
Woo = lim Wi (G(1),g(t). fool0). 1), (3.38)
=00

which at the moment could be infinity.
Using the curvature bound from Proposition 3.6 and the diameter bounds from
Lemmas 3.8 and 3.12, one shows that after passing to a subsequence,

lim (g5, (). G, ()

exists in the topology of smooth convergence on compact subsets of S x [0, o), and
equals a solution (geo(), Goo(+)) of (3.7) on a circle of time-1 length
. L)
L = lith —— (3.39)

t—oo L /f

(The notion of convergence allows for j-dependent diffeomorphisms of S1.)

Put u; (1) = i (f + s;). After passing to a subsequence, we can assume that
lim; o0 1 (f) = Uoo(f) for some solution U (-) to (3.35) (relative to goo(-) and
Goo(+)), with smooth convergence on compact subsets of S x [0, 00). Define fuo(-)
by Uoo(t) = (dm1)™ Ze™ /=@ Then we have Wi (Goo(t), Zoo(t). foolt), 1) = Wao
forall 7. In particular, Wy, < 0.

From (3.37), we obtain

Ao —g 8 G G;ol Gooy — 822 Gooy fooy = 0,

1 _ 2 1
—ZTI ((Gool GOO,y) ) + foo;yy gy Egoo,yy =0.

From [Lotl0, Proposition 4.80], there is a traceless symmetric matrix X such that
Lo, y5( . 1) = % Tr(X?) and Goo(v,1) = e¥X. Here y is a parametrization of S1
whose time-1 velocity is L. Foreach j, we had Gy, (y + 1,1) = HTGSJ. (yv.0)H.
Hence Goo(y + 1.1) = HT Goo(v,1)H andsoeX = HTH. O

(3.40)

We now prove part (ii) of Theorem 1.6. From Proposition 3.13, forany K € Z™*

and any € > 0, there is some fy < oo such that (&%, Gy, Io)) is e-close in the
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C X _norm to (%TI(X 2y, e¥ X ) From the local stability result of [Kno(09, Theorem 3],
after an overall reparametrization of S, we have
t 1
lim 8290 _ Ly
oo 2 (3.41)
lim G(y, 1) = e”¥.
t—o0

The convergence is exponentially fast in the variable In(#), i.e. power-law fast in /.
(Strictly speaking, the result in [Kno09, Theorem 3] is for the modified Ricci flow
(3.7) but there is a similar result for the unmodified Ricci flow (3.6).)

This proves Theorem 1.6.

Remark 3.14. Suppose that /7 is parabolic. By Corollary 3.2, the fiber volumes
are uniformly bounded above and below by positive constants. After pulling back
to a double cover of the base S!, if necessary, we can assume that Tr(H) = 2. If
v € R? is a nonzero H -invariant vector then (3.30) gives a uniform upper bound on
the squared length (v, G(y, 1)v).

Lemma 3.7 implies that the length L(7) of the base circle is monotonically non-
decreasing in /. We claim that lim;_, o, LO — 0. If not then we would conclude

from the proof of Proposition 3.13 that N has a Sol-structure, which contradicts the
topological fact that it has a Nil-structure.

If we knew that the diameters of the T 2-fibers were O(+/7) then we could conclude
from Lemma 2.13 and [Lot10, Theorem 1.2.2] that the pullback Ricci flow solution on
the universal cover N approaches the Nil expanding soliton. Based on the calculation
in the locally homogeneous Nil case, as in [Lot07, Subsubsection 3.3.3], we expect

that both L(¢) and the fiber diameters are O(I%).
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