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Gaussian distribution for the divisor function and Hecke
eigenvalues in arithmetic progressions

Etienne Fouvry, Satadal Ganguly, Emmanuel Kowalski and Philippe Michel*

Abstract. We show that, in a restricted range, the divisor function of integers in residue classes
modulo a prime follows a Gaussian distribution, and a similar result for Hecke eigenvalues of
classical holomorphic cusp forms. Furthermore, we obtain the joint distribution of these arith-
metic functions in two related residue classes. These results follow from asymptotic evaluations
of the relevant moments, and depend crucially on results on the independence of monodromy
groups related to products of Kloosterman sums.

Mathematics Subject Classification (2010). 11F11, 11F30, 11T23, 11105, 60F05.

Keywords. Divisor function, Hecke eigenvalues, Fourier coefficients of modular forms, arith-
metic progressions, central limit theorem, Kloosterman sums, monodromy group, Sato—Tate
equidistribution.

1. Introduction

The distribution of arithmetic functions in arithmetic progressions is one of the corner-
stones of modern analytic number theory, with a particular focus on issues surrounding
uniformity with respect to the modulus (see [7] for a recent survey). Besides the case
of primes in arithmetic progressions, much interest has been devoted to the divisor
function d(n) and higher-divisor functions, in particular because — in some precise
sense — a good understanding of a few of these is equivalent to knowledge about the
primes themselves (see, e.g., [6], Théoréme 4).

The consideration of the second moment for primes p < X in arithmetic progres-
sions to moduli ¢ < Q < X/(log X)* leads to the Barban-Davenport—Halberstam
theorem (see, e.g., Theorem 17.2 of [14]), which has been refined to an asymptotic
formula for ) = X by Montgomery [22]. Similarly, Motohashi [23] evaluated
asymptotically the variance of the divisor function d(n) for » < X in arithmetic
progressions modulo g < X.

*Ph. M. was partially supported by the SNF (grant 200021-137488) and the ERC {Advanced Research Grant
228304, E.F thanks ETH Ziirich, EPF Lausanne and the Tnstitut Universitaire de France for financial support;
S.G. thanks EPF Lausanne for financial support.
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We will show that one can determine an asymptotic distribution for the divisor
functiond(n) forn < X inarithmetic progressions modulo asingle prime p, provided
however that X is a bit smaller than p2.

Theorem 1.1 (Central Limit Theorem for the divisor function). Let w be a non-zero
real-valued smooth function on R with compact support in |0, +oo| and with L?
norm ||w||. For a prime p, let

SaX.pay= 3 d(n)w(%),

n>1
n=a mod p

and

Zd(n)w(%) — % /O+Oo(logx + 2y —2log p)w(%)dx

n>1
(1)

Mi(X.p) = -
_ %;d(n)w(%) + 0(%X<logX)),

where y is the Euler constant. Fora € IF;(, let

Sqg(X, p.a)— My (X,
Eq (X, p,a) = a P(;/)p)l/zd( p).

Let ®(x) = 1 be any real-valued function, such that
®(x) —> +00 as x — +oo, D(x) = O(x°),

for any € > 0 and x > 1. For any prime p, let X = p?/®(p). Then as p — +o0
over prime values, the random variables
E (X, p,a)
lwll V7 =2(log @(p))?

on IF;(, with the uniform probability on ), converge in distribution to a standard

Gaussian with mean 0 and variance 1, i.e., for any real numbers o < B, we have
| E (X, p,
—Neery as 2078 |
p—1 lw|l v/ =2(log ®(p))>
In fact, our results are more general, in three directions: (1) we will consider,

in addition to the divisor function, the Fourier coefficients of any classical primitive
holomorphic modular form f of level 1 (e.g., the Ramanujan 7 function); (2) we

=212 44

1 8
—_— — e
p—oo 2 /0;
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will compute the moments of the corresponding random variables and, for a fixed
moment, obtain a meaningful asymptotic in a wider range of X and p; (3) we will
also consider the joint distribution of

at=> (Eq(X, p.a), Eq(X, p,y(a)))

when y is a fixed projective linear transformation (e.g., y(a) = a + 1, y(a) = 2a,
v(a) = —a, y(a) = 1/a, which illustrate various interesting phenomena.) For all
these results, the crucial ingredients are the Voronoi summation formula, and the
Riemann Hypothesis over finite fields, in the form of results of independence of
monodromy groups of sheaves related to Kloosterman sums.

We now introduce the notation to handle these more general problems. As in
the statement above, we fix a non-zero smooth function w: R — R, with compact
support in [wg, wq| with 0 < wy < wy < 4oc. For any modulus ¢ > 1, let

Saoeay= Y dmu(s).

n>1
n=a mod ¢

This sum has, asymptotically, a natural main term (see, e.g., [19]) which we
denote by M4(X, ¢), and which coincides with M;(X, p) when ¢ = p is prime
(see (31) below). The number of terms in Sz(X, ¢, a) is & X /c and the square root
cancellation philosophy suggests that its difference with the main term should be of
size

Sa(X,c.a) — My(X,¢) < (X/c)IX", 2)
as long as X /c gets large. Thus the map

is a natural normalized error term that we wish to study as a random variable on
(Z/cZ)™ equipped with the uniform probability measure (here and below, we some-
times omit the dependency on p and X to lighten the notation Z).

Similarly, consider a primitive (Hecke eigenform) holomorphic cusp form f of
even weight £ and level 1 (these restrictions are mainly imposed for simplicity of
exposition). We write

£ =3 prmn®e(nz)

n=>1

its Fourier expansion at infinity, so that ps(1) = 1 and py (n) is the eigenvalue of the
Hecke operator 7 () (suitably normalized). We let

Siea= Y pew(R). Mo ==Y prmu(%),
" n>1

n=a(mod ¢)
Sp(X,c,a) —Mp(X,c)

Ef(X,c.a) = (X/c)1 /2 :
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for ¢ > 1 and any integer a. Note that, in this case, the integral representation

1 1 2+ico
Me(X,c) = —x — w(s) X° L(s, f)ds
¢ 27 Jaioo
in terms of the Mellin transform @ of w shows that the main term is very small,

namely
Mp(X,¢) €pa ¢TI XA 3)

for every positive A, uniformly forc > 1 and X > 1.
We will study the distribution of

avr Ep(X,p.a), aw Eq(X,p,a)

for p prime using the method of moments. Thus, for any integer « > 1, we define

1
M. (X, c6)=— Z E.(X,c,a), x=dorf (4)
C
a mod ¢
(a.c)=1
The first moment is very easy to estimate, and besides Motohashi’s work (which
considers the average of My (X, ¢;2) over ¢ < X), the second moment has recently
been discussed by Blomer [2], Li [20] and Lau—Zhao [19]. In particular, Lau and
Zhao obtained an asymptotic formula in the range X/2 < ¢ < X (see (10) below;
note that the range ¢ < X /2 seems to be much more delicate.)
We will evaluate any moment, in a suitable range. Precisely, in §3 we will prove:

Theorem 1.2. let the notation be as above, with x = d, the divisor function, or
* = f, [ a Hecke form of weight k and level 1. Let p be a prime number. Then, for
every integer k > 1, for every positive §, for every positive €, for every X satisfving

2< X2 <p<x'? (5)
we have the equality
2 Kk/2 Y 1/2+¢
sx pio = +o(m (E) 4 (5)). ®
X p

where the implied constant depends on (8, €, i, », w), and the constant C,(x) is given
by

Cile) = c‘f/f, My, (7)
with

0 if k is odd,

me=1 ®)
k!
2612 (i [2)!

if k is even,
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and

2

5 (4m)F o = Pw(mg py ) (9)

k)’

crw = [w|? f]

for some polynomial P, (T) € R|T|, depending only on w, of degree 3 with leading
term w2 ||w||*T3. Here, for a cusp form f, the L?-norm of f is computed with
respect to the probability measure

3 dxdy

T y?

on SLo(Z)\H, and the L?-norm of w is computed with respect to the Lebesgue
measure on K.

Remark 1.3. Inthe case x = 2, and in the range X2 < ¢ < X,Lauand Zhao ([19],
Theorem 1 (2)) have obtained

1w | cl/2 : c\® X\# @(£)
l1=n<X

for any modulus ¢ > 1 (not only primes), and a similar result for the divisor function.

We will make further comments on this result after the proof, in Section 3.5. Since
mi 18 the x-th moment of a Gaussian random variable with mean ( and variance 1,
we obtain the following, which implies Theorem 1.1 in the case » = d:

Corollary 1.4 (Central limit theorem). Let ®(x) > 1 be any real-valued function,
such that
d(x) — +00 as x = +o00, Px) = O(x°),

for any € > 0, uniformly for x > 1. For any prime p, let X = p?/®(p). Then as
p — +oc over prime values, the random variables

E.(X, p,a)
ar» — "
A Cxw

onF ;( converge n distribution to a standard Gaussian with mean 0 and variance 1.

As far as we know, this is the first result of this type. We will prove this in
Section 3, and give further comments, in Section 3.6.

Remark 1.5. It is natural to ask if a corresponding property holds for Maass forms.

This is indeed the case, and indeed the result can be extended to cusp forms on GL
forall N = 3, see [18].
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Among the other natural generalizations of Corollary 1.4, we consider next the
following one: givenamapa + y(a)onF ), what is the asymptotic joint distribution
of

at=> (E.(X. p.a), E.(X, p,y(a)))?

We study this when y is given by a fractional linear transformation. Precisely, let

r=(0 7) coa@nine a1

be a fixed invertible matrix with integral coefficients. For p } dety, the matrix y
has a canonical reduction modulo p in PGL,(IF,), which we denote by 7, () ). In the
usual manner, y (or ,(y)) defines a fractional linear transformation on Pﬁp by

az + b
ez Fd

1 —
ZEIP)IFPH)/-Z—

By Corollary 1.4, we know that, in the range of validity of this result, both

E* X, , E* X, s 4T
|—>—( p.a) and Zoy:awr (X.8 ¥ a),
A Cxw Cow

seen as random variables defined on the set

7:a (12)

{a €Fpla,y-a##0, 00}

converge to the normal law. We then wish to know the asymptotic joint distribution
of the vector (7,7 o y), and we study this issue, as before, using moments.
For x and A positive integers, let

1
M (X, piidiy)i== Y EJX.pa)EJX.p.y-a)* (13)

a€ly
a, y-a#0,00
be the mixed moment of order (k,A).
In analogy with Theorem 1.2, we will estimate these moments in §4. To state the
result, we note that if y is diagonal, there is a unique triple of integers (o, y1. ¥2).
such that we have the canonical form

0
Y =y (yol yz) ., y1=1land (y1,y2) = 1. (14)

We further introduce the arithmetic functions

a—1 d d a—1
pas =11 (pf(p"‘)—pf(p;pi(f )), paa = |] (d(p"‘)—%),
P%|a pY%la

(15)
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fora > l,and p, y =0lora <0,p, 4 = p_, 4 fora <0. For x = f, we also
define the constant

cr = |l fIP@m)*T (k)" (16)
Our result is:

Theorem 1.6. let y be defined by (11).

(1) Forevery integers Kk and A, for every § and € > 0, for every prime p = po(y)
and X satisfying (5), there exists C,(k, A, y) such that

i pz (k+A)/2 Y 1/2+4¢
M (X, piK,ALy) =C*(x,l,y)+0(p_7+5(7) +(?) ) (17)
(2) If y is non-diagonal, then
Ci(i, A, y) = Cu(k)Ci(A). (18)

(3) If'y is diagonal, and written in the canonical form (14), then

O ifc+ Aisodd,
. K\ (A KEA_
C* (K,A,, )’) - Z U!(U) (U)mk—vml—v (C*,w) o v (C*,w,y)u glse,

0<v<min(kx,A)
v=x=A mod 2

(19)

where

o0
Gy = s iyas ([ wOanwGanar ),

and for x = d, we have

P2
Cdwy = Priyrw (log 7)

for some polynomial Py, y, »,(T) € R[T|, of degree < 3 and with coefficient of T
given by

1 oo
;pl’lyz,d(f w(Vlf)w()fzf)dl)T3.

In (17), the implied constant depends at most on (y,8,8,k,A), and in (19), we
make the convention that 0" = 1 ifv = 0.

Of course, if y is the identity, we recover Theorem 1.2. More generally, we can
now determine the joint asymptotic distribution of (7,7 o y) in the same range as
Corollary 1.4

Recall that a pair (X, Y) of random variables is a Gaussian vector if and only if,
for every complex numbers « and 3, the random variable X + $Y has a Gaussian
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distribution (see, e.g., [15], pp. 121-124). If (X, Y) is aGaussian vector, its covariance
matrix cov(X, Y) is defined by

E(X?) - E(X)? E(XY)- IE(X)IE(Y))

cov(X, Y) = (IE(XY) CECOE(Y)  E(Y2) — E(Y)? 20)

where [E denotes the expectation of a random variable. Recall also that a Gaussian
vector (X, Y) has independent components if and only if E(XY) = E(X)E(Y), ie.,
if the covariance matrix is diagonal (see, for instance, Theorem 16.4 in [15]).

Corollary 1.7. Let ® be a function as in Corollary 1.4, andlet X = p?/®(p). Then,
for x = [ ord, as p tends to infinity, the random vector (Z.,7. c y) converges in
distribution to a centered Gaussian vector with covariance matrix

((1) (1)) if vy is not diagonal, (21)

(G L G*iy’w) if y is diagonal, (22)

*, VW

where the covariance (. yy is given by

Guor = 81222 [ w(uiywanar.
lwl® J=
Thus from Corollary 1.7 (noting that p, ;, # 0 for any integer a # 0), we get a
criterion for asymptotic independence of (Z,7Z o y):

Corollary 1.8. We adopt the notations and hypotheses of Corollary 1.7. Then as p
tends to oo, the random variables 7. and 7. o y tend to independent Gaussian random
variables, if and only if one of the following conditions holds:

(1) Ify is not a diagonal matrix, i.e., a — y - a is not a homothety.

(2) If y is a diagonal matrix and

f_ w)w(yat)di = 0.

oo

(3) If » = [, v is a diagonal matrix in the form (14), and there exists a prime p
and o = 1 such that p*||y2y1 and such that

(p + Dpr(p™) = pr(p)pr(p* 1.

Remark 1.9. (1) Corollary 1.8 shows for instance that, for p — oo, the random
variables ¢ — E,(p?/®(p).p.a) and a — E,(p?/®(p). p.y - a) converge o
independent Gaussian variables, if y is one of the functions

yvea=a+1l, y-a=-—-a, y-a=l/a.
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The case of y - @ = 2a is more delicate, since it depends on the value of the
integral f0+°° w(f)w(2¢)dt. For instance, this integral is zero when one has the
inequalities wy < w; < 2wg < 2wy, where as before supp(w) C |wp, wi]. The
possible dependency here reflects the obvious fact thatif # = a mod p and d | n,
then 2n = 2a mod p and d | 2n.

(2) We do not know if any primitive Hecke form f of level | exists for which
Condition (3) in this last corollary holds for some p®! Certainly the “easiest” way
it could apply would be if, for some p, we had py(p) = 0, but the existence of
a primitive cusp form of level 1 and a prime p with ps(p) = 0 seems doubtful
(e.g., aconjecture of Maeda suggests that the characteristic polynomials of the Hecke
operators 7'(p) in level 1 are irreducible.) On the other hand, if we extend the result
to forms of fixed level N > 1, it is possible to have p;(p) = 0 for some p (e.g., for
weight &k = 2 and f cormresponding to an elliptic curve.)

1.1. Sketch of the proof. We will sketch the proof in the case of cusp forms, which
is technically a bit simpler, though we present the actual proofs in a unified manner.
For Theorem 1.2, the crucial starting point is the Voronoi summation formula, as
in [2], [19], which expresses E¢(X, c,a) for any ¢ > 1 in terms of sums weighted
by some smooth function of the Fourier coefficients py (77) twisted by Kloosterman
sums S(a, n; ¢). One then sees that the main contribution to this sum comes from the
n of size roughly ¥ = ¢/ X (see Proposition 2.1).

Considering the «-th moment, we obtain therefore an average over @ mod p of
a product of x Kloosterman sums S{a, n;; p), where all variables n; are of size ap-
proximately p?/X. The sum over a € [, when the variables n; are fixed, can be
evaluated using deep results on the independence of Kloosterman sheaves (see Propo-
sition 3.2). This allows us to gain a factor p'/? compared with a direct application of
the Weil bound for Kloosterman sums, except for special, well-understood, configu-
rations of the n#; modulo p. These configurations lead, by combinatorial arguments,
to the Gaussian main term of Theorem 1.2. (Note that we can take no advantage of
the summation over the variables 72;, which turn out to have a short range in the cases
where our result is non-trivial, see Section 3.5.)

The study of mixed moments (see Theorem 1.6) has a lot of similarities. The only
significant difference lies in the study of the independence of Klosterman sheaves,
when some of them are twisted by the rational transformation y. However, Propo-
sition 3.2 is general enough to show that these sheaves are dependent if and only if
we are in the “obvious” cases. The main terms then require some computations of
integrals using properties of the Bessel transforms.

1.2. Possible extensions. A Gaussian law similarly appears if one studies the ran-
domvariable a — E.(X, p, P(a)), where P is a non—constant fixed polynomial with
integer coefficients. The fact that P is not necessarily a bijection on IF,, does not affect
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the Gaussian behavior. The proof of this extension requires a suitable generalization
of Proposition 3.2.

It also seems that the present method can be extended to the study of the distribution
of sums of the shape

a> S (X.p. Ka) = Z’C*(?’I)KQ(T’I)W (%)

n>1

where 7,(-) is either d(-) or ps(-), and K,(n) = K(an) for a fairly general trace
function K as in [8]. The shape of the analogue of Theorem 1.2 would then depend
on the nature of the geometric monodromy group of a suitable “Bessel transform™ of
the sheaves underlying K(-).

1.3. Notations. We use synonymously the notation f(x) <« g(x) for x € X and
f = 0O(g)forx € X. Wedenote e(z) = e**™ forz € C. Forc > landa, b
integers, or congruence classes modulo ¢, the Kloosterman sum S{a, &; ¢) is defined

b
' Sta.bioy= Y o XL
o _(xm())dc ¢
x.c)=1

where X is the inverse of x modulo ¢. The normalized Kloosterman sum is defined

by
S(a,b:c)

and for (a, b, c) = 1 it satisfies the Weil bound
|Kly(a,b:c)| < d(c). (23)
To lighten notations, we define
Kl;{(a;c) := Kli(a, 1; ¢),

and recall the equality Kl;(a, b; c) = Kla(ab; c), whenever (b, c) = 1.
We will use the Bessel functions Ji_y, where &£ > 2 is an integer, ¥ and Kj;
precise definitions can be found for instance in [12], Appendix B.4, and in [26].

Acknowledgements. We thank G. Ricotta for pointing out a computational error in
the first draft of this paper.

2. Preliminaries

We gather in this section some facts we will need during the proof of the main results.
The reader may wish to skip to Section 3 and refer to the results when they are needed.
We begin with the Voronoi formula in the form we need:
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Proposition 2.1 (Voronoi summation). Let x = f, for a cusp form f of level 1 and
weight k, or x = d. Let ¢ be any positive integer, with ¢ prime if x = d. Then for
any X = 1 and for any integer a, we have the equality

1/2 ¢\ 1/2 nX
EXea="— Y (5) " Y aem (55 ) Kn@re), 04
cile 1 n#0 1
Cl>1

where n runs on the right over non-zero integers in 7, and

0 (n) = {pf(”) ynzl. (25)
otherwise,
ta(n) = d(|n|), (26)
and
Wy (y) = 2mi* foo w(u)Jy—1 (4 Juy)du fory > 0, (27)
0
Wr(y) =0, fory <0,
Wa(y) = —2m /'00 w(u) Yo(dm Juy)du, fory >0, (28)
0
W) =4 [ weKolr abbdu.  fory <o. @)
In particular, if c = p, a prime, we have
1/2
E.(X, p,a) = ( ) Zr*(n)W( =) Kb p). (30)
n#0

For the proof we recall the standard Voronoi summation formula (see, e.g., [14],
p- 83, for x = f and (4.49) in [14] for » = d, which we rewrite as a single sum over
positive and negative integers instead of two sums).

Lemma 2.2. Let ¢ be a positive integer and a an integer coprime to c.
(1) For any smooth function w compactly supported on |0, oc|, we have

Y prmwime(2) = %;pﬂn)wf(f—z)e(—@)

o
n=>1

if 1 isacusp form oflevel | and weight k.
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(2) For any smooth function w compactly supported on |0, oo[, we have

Zd(ﬂ)w(n)e(?) = %/4_00 (logx + 2y —2logc)w(x)dx
; + Ja

= 1 7] an (31)
-3 d(|n|)Wd(C—2)e(—T).

Proof of Proposition 2.1. We consider the case of x = f, the divisor function being
handled similarly (it is easier since ¢ is prime; the definition (1) of the main term is
designed to cancel out the first main term in (31)). Using orthogonality of additive
characters, and separating the contribution of the trivial character from the others, we
write

(e =+ 5 (-2) T arimn()e(2)
b=0

n>1

=%pr(n)w(%)+% 2 "(__)pr(”)w( )( )

" n=1 " 1=<b=c—1 n>1
which yields the expression
B = 3 (=T T omn(R)e(T)
<b<c—1 nz1
We split the second according to the value of the g.c.d d = (b, ¢), writing
d =(b,c), b=db, ¢=dc,

and note that
Leg, < 1=<bi €ex:

We then get

Er(X.c,a 1/22 Z ( )pr(n)w( ) ( )
( X) d|c é)sl;fc;i nx>1
(CX)I/z clzc 1<§;q ( abl)gpf(n)w(%)e(ég—ln).

c1>1 (b1,c1)=1

We can now apply Lemma 2.2 since (b1, c1) = 1, and we get

S nron(F)e(2) = 2 S oo () -22)

1
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The proposition now follows since the terms with 7 < 0 are identically zero for
this case. O

We will need some basic information on the behavior of the Bessel transforms

Wi(y).

Proposition 2.3. Let w be a smooth function with support included in |0, +o0[. Let
W, (y) be one of the Bessel transforms of w as defined in Proposition 2.1, for some
integer k > 2 in the case x = [ of weight k.

(1) The function W, is smooth on R*, and for every A > 0 and j = 0, we have
YW () <y min(1+ [log[y]]. y7*). (32)

fory # 0.
(2) We have
Wl = llwl, (33)

where the L2-norm of W, and w are computed in L?>(R*) with respect to Lebesgue
measure.

(3) More generally, for any two non-zero real numbers m and n, we have

/’00 W.(mt)W,(nt)dr = foo w(mt)w(nt)dt.

— 0

Proof. (1) (Compare, e.g., with [2], p. 280, or [19], Lemma 3.1) We begin with the
case j = 0. For y small, we use the bounds

Jeo1(x) < 1, Yox) < 1+ logx|, Ko(x) <1+ [logx|
for 0 < x < 1 which immediately imply that
W.(y) < 1+ [log|y|| (34)

in all cases.
To deal with the case where |y| > 1, we first make the change of variable

v =4 Ju|y|

in the integrals (27) (resp. (28), (29)), so that we always get

| v?
Wil(y) = mfo W(W)UBO(U)dU,

where By = ¢Jy—1, 0, cYy or ¢Kyp, for some fixed multiplicative constant ¢ € C.
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We denote o = (16m2y2)~1. To exploit conveniently the oscillations of the
Bessel functions By we integrate by parts, using the relations (see [11], 8.472.3,
8.486.14)

T Zy1 () = ex" T Z, (), (35)

where

_1 ifZU :KU'

For x = f, remembering that w vanishes at () and oo, we obtain, for instance, the
equality

{+1 if Z, = J, orY,,

Wy (y) = —ﬁ Ooo(Qavzw'(owz) . k)w(avz))Jk(v)dv (y > 0).

By iterating £ > 1 times, and then arguing similarly for x = d, we see that there
exist coefficients & ,, such that

.
W.(y) = ﬁfo (Z&;,v (avz)”w(”)(avz))v_“l By (v)dv, (36)
v=0

where By = Jr_14¢, 0, ¥y or Ky corresponding to the different cases » = f or
*=d,y>00ry <0.

Since w has compact support in [wy, wy], the above integral can be restricted to
the interval

I o= [(wo/a)"2, (wy/a)'/?],

and using the estimates!
Teo1e(v) < v, Vi) o720 Ko@) < v7?

for v = 1, we obtain the inequality
W) < Iy [ ot < i a7
I

for |y| = 1. Since £ > 0 is arbitrary, this gives the result for j = 0.
We can reduce the general case to j = 0 using the formulas (see [11], 8.472.2,
8.486.13)
XZ0(x) = vZ,y () = xZy 11 (%),

from which it follows that
yi(f w(u)ZU(4n4/uy)du)
dy \ Jo
= %f w(u)ZU(4n4/uy)du—2nﬁf w(u)uZ, 41 (4 Juy)du.
0 0

! For the last one, one knows in fact that Ky (v} decays exponentially fast for v — +00.
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Applying the previous method to the relevant Bessel functions then leads to
YW(5) Ksa min(l + [log [y[], y74)
and by induction a similar argument deals with higher derivatives.
(2) In the case » = f, the identity

+o0 +oo

Wr(u)*du = / w(u)?du = |w|?

0 0

is a direct consequence of the unitarity of the Hankel transform, i.e., of the Fourier
transform for radial functions (see, e.g., [19], Lemma 3.4). The case » = 4 is less
classical, although it is formally similar, the hyperbolas xy = r replacing the circles
x2 + y? = r? (see §4.5 of [14]). We use a representation-theoretic argument to get
a quick proof. The unitary principal series representation p = 7(0) of PGL,(R) (in
the notation of [4], p. 10) can be defined by its Kirillov model with respect to the
additive character ¥ (x) = e(x), which is a unitary representation of PGL>(R) on
L2(R*, |x|~'dx). In this model, the unitary operator

0 -1
I'= ‘O((l 0 ))
on L2(R*, |x|~'dx) is given by

dt
H

Toe) = [ e0gG)

where ¢ is the so-called “Bessel function” of p (with respect to ¥, see [4], Theo-
rem 4.1). By Proposition 6.1 (ii) of [4] (see also [1], §6, §21), we have

2w JuYy(dm Ju) foru > 0,

Fu) = {4MK0(4nM) for 1 < 0.

Hence by (28) and (29), we see that

(;/fw(x) if x > 0, (38)

Wa(») = |y[72T(@)(y), where ¢(x) = { if x <0

The unitarity of 7 means that

d d
[ TP = f o) 22E,
R |¥] R | x|

le.,

+oo
[ ety = [ weopax =
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(3) We consider different cases. If mn > 0, changing / to —f allows us to assume
that 2 and # are positive. Then a simple polarization argument from (33) shows that

+o00 ole}

W*(mt)W*(m)dt:f W,y (1) w, (u)du, (39)

— 0 &0

where 1 — wy, (1) is the function for which the Bessel transform of is # +— W, (m¢)
and similarly for w,(x). But it is immediate that w,,(x) = (1/m)w(u/m), and
therefore (39) gives the result.

It mn < 0, then since the support of w is contained in [0, +oc[, we have
w({mt)w(nt) = 0 for all £, hence

/ w(mbw(nt)dt =0,
R

and we must show that the integral of W, (m )W, (nt) is also zero. If x = f, acusp
form, this is immediate since Wy (y) = 0for y < 0, so that Wy (m1)Wy(nt) = O for
all 7.

For » = d, we use representation theory as in (2). With the same notation as used
there, and for any real-number a # 0, we denote

wu=ol(5 1))

so that, by definition of the Kirillov model (see [4], §4.2, (4.1)), we have

Ua(@)(x) = ¢lax)

for o € L2(R*,|x|1dx). Observe that, in PGL,(IR), we have
0 —I\fa Oy (-1 0 0 -1\ _ f[a! 0y/0 -1
1 0 0 1/ V0 —af\l O/ O 1/\1 0}

Tan:Ua—loT.

hence

Using this and the unitarity of 7', we deduce that

= (Ua(T9), Up(T¢))

= ({T(U,;—19), T(Up—19))
= (U190, Up—19)

:/I'R(p(f)v)| % f@(bX)fp(ax)ﬁ.

[ (qu)(ax)(wxbm' -
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Now, applying (38) and the fact that Wy 1s real-valued, we derive

f Walax)Wy(bx)dx = f wlax)w(bx)dx
R R
for all non-zero ¢ and b. O

Remark 2.4. One can also give a direct proof of the last part of this proposition using
known properties of Bessel functions: the crucial point is that the function

¥(a,b) = fo Yola/7)Ko(b /F) dy

is antisymmetric, which follows from an explicit evaluation using [11](6.523) and [24]
(p. 153, 2.34). Conversely, the results for cusp forms can be proved using represen-
tation theory, the discrete series representation of weight k replacing the representa-
tion p.

Our last preliminary results concern the sums which will give rise to the leading
terms in the main results. Recall the definitions and (16).

Proposition 2.5. Let p be a prime number, § > 0 a parameter and X > 1 such that
XI/Z < p < Xl—ﬁ_

LetY = p?/X. Forx € {d, f}, and for a and b coprime non-zero integers, not
necessarily positive, let

Bu(a, b V)= Y r*(an)r*(bn)W*(%)W*(b?n).
lslan\’jﬁglﬁﬂ

(1) If » = f, we have

Bila,b,Y) = Cfpab,f(f

&0

w(at)w(bt)dt)Y - QY H2+e)

foranye > 0.
(2) If » = d, there exists a polynomial P, € R[T| of degree at most 3, depending
on w, such that

Ba(a.h.Y) = Papllog )Y + O(Y 7+
for any € > 0, and with coefficient of T? given by

1 oo
;Pab,d(f_ wiat)w(bt) dt)T3. (40)

=0

In both cases, the implied constants depend on (§,¢,*,a,b).
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We will use standard complex integration techniques, and first determine the
relevant generating series (it is here that it is important that f be a Hecke eigenform.)
We denote

Fi(s) =) t.(n)n",

n=1

so that
Lis, fx f)
{(2s)

if f is a Hecke eigenform, where L(s, f x f) is the Rankin—Selberg convolution
L-function, and

Fr(s) =

In both cases, F.(s) extends to a meromorphic function, with polynomial growth
in vertical strips, for Re(s) > 1/2. It has only a pole at s = 1 in this region (of order
lif x = f,and order 4 if x = d).

Lemma 2.6. Let x = f ord, and let a, b be non-zero coprime integers, not neces-
sarily positive. Let

Foapls) =) tlam)t(bn)n™.

n>1

If » = f and ab < 0, we have F, , = 0. Otherwise, we have

T (P)Ts (pr—l))

F*,a,b(s) = F*(S) l_[ (T*(pvp) - ps +1

PP |lab

In particular, F, 4 p always extends to a meromorphic function for Re(s) > 1/2,
with polynomial growth in vertical strips.

Proof. One sees immediately that it is enough to treat the case where ¢, b > 1 and
ab # 1. Then the assumption that (a, ») = 1 allows us to write

F*,a,b(s) = F*,ab,l(s)

so that we can further reduce to the case where » = 1, in which case we write
Fia1 = Fi 4. Now, writing any integer # > 1 (uniquely) asn = jm where j > |
has all prime factors dividing ¢ and m > 1 is coprime with ¢, and summing over j
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first, we get

Foal)= > > wlimulajm)(jm)™

1<jla® (m,a)=1

= D nDn@)j™ Y wmi’m™

jla=® (m.,a)=1

= RO w2 ™) Y wlim@ni™.

pla k=0 Jla=e

by multiplicativity of z,.
Now write

a:l_[pvp

prla

the factorization of @. Again by multiplicativity, we get
Do n(Nla)) 7 =D wpPm(pF ey pre.
jlas® pla k=0

Let

G; = ZT* (Pk)f* (Pk+i)P_kS
k=0

for some fixed prime p and integer i > 0. Fori > 1 and k > 1, we have

(P = n.(pF)n(p) — (P Hn ('Y,

and therefore _ _
Gi = 1,.(p")Go — p~ . (p' )Gy

fori = 1. In particular, the case i = 1 gives
(1+ p7)G1 = 1.(p)Go.

which then implies that

i—1
G; = (f*(Pi) - T*(?::fpl ))Go

fori > 1. Now, since v, > 1 by definition, it follows that

T (p)r*(p”p‘l))
p+1

Foa) = B[] () -

pla

as claimed.

997
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Proof of Proposition 2.5. Using Proposition 2.3, (1), we obtain first
Bu(a,b,Y)=8B%0a,b,Y)+ B%—a.—-bY)+ 0(p™H
where, for any coprime integers ¢ and b, we put
an bn
£O ,b,Y == * *b W* — W* ol
Ya.b.Y) =3 lannion) ()w(5)

We now estimate these sums. Let
o0
Ca(s) = [ Wy (ax) W, (bx)x*~1dx,
0

be the Mellin transform of the function x — W, (ax)W,(bx).

For Re(s) > 0, this is, by Proposition 2.3, (1), a holomorphic function which is
bounded and which decays quickly in vertical strips. We have the integral represen-
tation

1
‘:88(615 bs Y) = e F*,a,b(S)Ys(pa,b (S)dsﬂ
2im Joy T

and we proceed to shift the contour to Re(s) = 1/2 + ¢, for a fixed € > 0. The
integral on the line Re(s) = 1/2 + € satisfies

1
Py F*,a,b(S)YS(pa,b(S)dS < pelfe
2imw (1/24€)

where the implied constant depends on (x, a, b, €, w). On the other hand, the unique
singularity that occurs during the shift of contour is the pole at s = 1 so that

B%a,b,Y) = resg—; Fuas()Y 0ap(s) + O(Y1/2+e)
and hence

Bila,b,¥Y) = ress—1 F*,a,b(S)Ys(Pa,b(S)
+ 1e85—1 F*,—a,—b(S)YS(P_a,_b(S) = O(Y1/2+E),

If x = f, then the two residues vanish if ab < 0, while if ab > 1, one residue is
zero and the other is equal to

ress—1 Fu o), 16| ($)Y @lal,1/(8) = Y@ia1. 15/ (1) re85—1 FF,|q).15/(5).

Since

Ga b))+ o_y_p(l) =fRWf(at)Wf(bt)dt =wa(at)w(bt)dt
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by Proposition 2.3, (3), and since it is well known that
ress—1 Fr(s) = || f*@4n)Th)™" = ¢;.

(from Rankin—Selberg theory, see, e.g., [ 13], (13.52), (13.53)), we see that Lemma 2.6
gives the result in the case of a cusp form.

On the other hand, if » = d, then by Lemma 2.6 both Fy , 5 and Fr_, _p have
a pole of order 4, and they satisfy

TeSg=1 Fd,a,b (S)Ys(pa,b (s) = YQa,b (log Y)
where the polynomial 5 has degree at most 3 and has coefficient of 7¥ given by

1 1
6 é,(z) pab,d

Hence the sum of both terms has the desired form with P,p = P, = O, +
Q_,.—p, and since

+o0
( Wd(at)Wd(bt)dr)T3.
0

e Wytat )Wy (bt)dt + e Wy(—at )YWy(—=bt)dt = / wlat)w(bt)d:,
0

0 R

again by Proposition 2.3, (3), this concludes the proof. U

3. Proof of Theorem 1.2

3.1. First step. Let p be a prime such that the condition (5) holds. To shorten the
notation, we write
Y = p?/X, (41)
which is > 1 under our assumption. We also write simply W = W, depending on
whether we treat the case of cusp forms or of the divisor function.
From (30) in Proposition 2.1, we deduce

M, (X, pix) = # > m) - neow ()W (F)

Nlaenns R 70 (42)
X Z Kla(any: p) ... Kla(ang; p),
1<a<p
which we write in the form
1
M (X, pix) i= W(Zl + 2) (43)
where %1 corresponds to the contribution of the (ry,...,n,) such that 1 < |n;| <
p/2 for all i and 35 is the complementary contribution of those (ny,...,n,) such

that |n;| = p/2 for one i at least.
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3.2, Study of X,. We first deal with X,, which is easy. By symmetry, we may
restrict to the case where |n1| = p/2. By Deligne’s bound

lpr ()| = d(n) (44)

(in the case of a Hecke eigenform f) and the Weil bound (23) for Kloosterman sums,
we have in both cases

Z (X dmb|w () x (o w (7))
n1|=p/2 10

Applying (32) with A = 3, we deduce
22 & Y€ (YA/pA—l)YK—l

for any € > 0 and hence
2

mwxrn(2) (£)7

By assumption, we have p < X'~ hence taking A = A(6, «) sufficiently large
we prove the inequality
By X1, (45)

which combined with (43) is acceptable in view of the error term claimed in (6).

3.3. Study of X 1. The study of 3 is the crux of the matter. To handle precisely the
sum of Kloosterman sums over ¢ in (42), which is a sum over a finite field, we will use
adeep result in algebraic geometry. But first of all, we must prepare the combinatorial
configurations of the arguments n1, ..., 1, in order to be able to detect the main term.
We shall even put it in a more general setting to cover the proof of Theorem 1.6. The
following definition deals with the decreasing sequence of multiplicities.

Definition 3.1 (Configuration). Let p be prime and let

B = (B1.....Bc) € (PGL2(IFp))"

be a x-tuple of projective linear transformations modulo p. There exist an integer v
satistying | < v <x,av-tuple p = (i1, ..., iy) of positive integers p; satistying

pr Z piz Z ez gy 2 1and piy et gy =k
and v distinct elements (cy....,0y) € (PGLz(Fp))U, such that we have

{Brr.. B} =1o1,.... 00},
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and
4" ¢ L1 2%, 8; =0 = i,

forall j, with 1 < j < v. The integer v and the v-tuple (iq,..., i) are unique,
and the latter will be called the configuration of B, the integer v will be called the
length of the configuration and the entries (t; its multiplicities.

If all the multiplicities j4; are even, we will say that 8 has a mirror configuration.
In particular its length p is even.

In the next proposition, we will see that the asymptotics for a sum of products of
Kloosterman sums shifted by the projective transformations ; depends only on the
configuration of 8, rather than on the precise values of the f;.

Proposition 3.2. Let p be a prime. Letk > 1, B = (B1....,Be) € (PGL2(F,))"
be a k-tuple of elements of the projective linear group with associated configuration
o= (1, ).

Consider the sum

Gk, B. p) = Y Kh(Br-a:p)...Kb(B-a: p).
a mod p
Bi -a#0,00(1<i <k)

We then have
1
Gk, B, p) = A(p)p + O (p2), (46)

where A(p) is the product of integrals

2 7 2 (7
Alp) = (;[ (2 cos )" sin? QdQ) (;[ (2cos 0)*v sin® Qdﬂ).
0 0

The product A(p) is an integer, which is positive if and only if B8 is in a mirror
configuration and O otherwise, in which case we have

Bk, B, p) = O(p?).

Finally we have

A(2,2,....2) = 1. (47)

This is a generalization of a result of Fouvry, Michel, Rivat and Sarkézy (see Lem-
ma 2.1 of [10]), which only dealt with the case where the f; are all diagonal and
distinct modulo p. Actually, Proposition 3.2 is a special case of a more general class
of estimates concerning sums of products of trace functions; see [9] for details, in
particular Corollary 3.3.
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Proof. By the definition of the configuration, the sum equals

Sw.B.p)= Y Khiog-a:p)' . Kho,-a; p)*,
a€lFp, 0;-a70,00
(1=i<v)
where the elements 0;, 1 < i < v, are distinct in PGL,(FF,).
For £ # p, let X £ be the (normalized) £-adic Kloosterman sheaf constructed by
Deligne and studied by Katz in [16]. This is a lisse Q-sheaf of rank 2 on Gm.F,-
which has trivial determinant. For some isomorphism 1: Q¢ — C, it satisfies

t(trace(Frob, 1, | K €)) = —Kla(a; p)

forany a € F . Moreover, K{ is Lie-irreducible, tamely ramified at 0 with a single
unipotent Jordan block, and wildly ramified at oc with Swan conductor 1 and with a
single break at 1/2.

Given y € PGL,(Fj), let y*.K £ be the pullback of K £ by the fractional linear
transformation ¥ : x — y - x; this sheaf is lisse on P]}lp — {y71({0, oo})} and for any
a € Fp suchthat y - a # 0, 00, it satisfies

t(trace(Frob, 7, [y* K£)) = — Kl (y - a; p).

Katz [16] computed the geometric monodromy group of K £, and showed that it
is equal to SL.;, and coincides with the arithmetic monodromy group of K£. The
same is therefore true for y* K{.

We make the following:

Claim. For oy and o2 distinct elements of PGL»(lF,) and % any rank one sheaf,
lisse on some non-empty open subset of P lp , the sheaves o] K{ @ % and 6, K{ are
not geometrically isomorphic.

Proof. We may assume that oy = Id and that ¢ = 03 1s not the identity. If o is a
homothety, the claim was proven in [21], Lemme 2.4. We now reduce to this case.
Assume that X £ ® ¥ and ¢* K £ are geometrically isomorphic. Since % is of rank 1,
its only possible breaks at infinity are integral, and hence K{ ® ¢ is wildly ramified
at oo. So oK £ is also wildly ramified at infinity, which means that ¢ - co = oc.
Furthermore, K{£ ® % is also ramified at 0, and hence o* K { must also be ramified,
which means o - 0 = 0. But this implies that o is a homothety, and we apply the
result of [21]. [

Since the 03, (i = 1,...,v) are distinct elements in PGL,(FF,), it follows from
the Goursat—Kolchin—Ribet criterion (see Proposition 1.8.2 in [17]) that the geomeilric
monodromy group of the direct sum

OTHED Do) KL
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is equal to its arithmetic monodromy group and is the full product group
SLy X -+« x SL»,

which indicates an asymptotic independence of the values of the Kloosterman sums
Kly(o; - a; p) as a varies over F, such thato; -a # 0,00 (i =1,...,v).

Using Katz’s effective form of Deligne’s equidistribution theorem ([16], §3.6),
we deduce that

|
R Z Klx(o1 -a, 1; p)*' .. . Kla(oy - a, 1; p)*v

p—1
a€lFp, 0;.a#0,00
(1=i=v)

i=1

where the implied constant is independent of p and pgr denotes the Sato—Tate prob-
ability measure on [0, ], which is given by

2 i
pst(f0) = = fo £(6) sin® 6

(recall that [0, 7| is identified with the set of conjugacy classes of the compact group
SU,(C) via the map

g € SU(C) > trace(g) = 2cos 6,

and that the Sato—Tate measure i1s the image of the probability Haar measure of
SU>(C) under this map.)
It follows by character theory of compact groups that

mult(e) = psr((2 cos 6)")

is precisely the multiplicity of the trivial representation in the p1-th tensor power Std ®#
of the standard 2-dimensional representation of SU,(C). In particular, mult(p) is
a non-negative integer, and it is zero if and only if y is odd (this is obvious when
writing the integrals; representation-theoretically, mult(x) = 0 if @ is odd because
(_01 _01) acts by multiplication by (—1)* on Std®#, and mult{(z) > 1 for u even,
because Std®* is self-dual so mult(2) is the multiplicity of the trivial representation
in End(Std®#), and the identity endomorphism gives an invariant subspace; in fact,
one can check that mult(2u) = (2&“) /(i + 1), a Catalan number.)
As a consequence

v
A(fa, o y) = l_[ mult(g; ),
i=1
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is a non-negative integer, and it is non-zero if and only if all the y; are even, which

corresponds precisely to the mirror configuration. Since mult(2) = 1, we also have
AQ2,...,2)=1. O

Remark 3.3. Expanding the Kloosterman sums, we see that &(«, 8, p) is a character
sumin « 4 1 variables. The proposition shows that this character sum has square-root
cancellation, except if 8 is in mirror configuration. As in [8], we see that the structure
of &(x, B, p) (as a sum of products of Kloosterman sums) is crucial to our success,
since it reduces the problem to detecting cancellation in the single variable a.

If « = 2and if B1(a) = bya and B(a) = bya are diagonal, we can use
the fact that the Kloosterman sum is the discrete Fourier transform of the function
X — e(X/p)(and 0 — 0) to get

x(1 —Blbz)) 1

p

B2 (Br.f).p) = 3 Khbra: p)Kho(boas p) = 3 o ;

= >
aclkFj x€fF;

by the discrete Plancherel formula. Thisis essentially a Ramanujan sum, and hence we
see that the second moment (as in (10)) does not require such delicate considerations.
Moreover, because the error term is here < p~! (instead of p~1/2), the error term
for the second moment is better than for the others, which explains the greater range
of uniformity in the formula (10) of Lau and Zhao. More generally, for x = 2
and arbitrary B, B2 € PGL2(IF,), the sum &(2, (f1, B2), p) can be identified with
a special case of a correlation sum as defined in §1.2 of [8], for the trace weight
K(n) = e(n/p). The results of [8] (Theorem 9.1, §11.1) imply the statement of
Proposition 3.2 for« = 2.

We can now continue our study of the sum 2y defined in (43). Since we have
p t ni, we have

Kla(an;; p) = Kla(B; - a; p),
where 8; € PGL,(IF,) corresponds to the matrix

(1’8 (1)) (mod p).

We denote 8 = (B;, ..., ). We also denote by p(B) the configuration of 8. Thus,
by Proposition 3.2 and by (32), we have the equalities

Si=p Y ARE) o). n@oW (3. W(5E)
1<l01 i< /2
+o(pr( X d(|n|)‘W(%) )K)
1<n|<p/2

= pSiar + O(p+YY), (48)
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say, for any € > 0.
Collecting (43), (45) and (48), the proof of Theorem 1.2 is already complete when
K 1s odd, since trivially X, 3y = 0 in that case.

3.4. Study of X1 ps for even k. We remark that, by the definition of ¥, we have
the congruence n; = n; mod p if and only if n; = n;. In the summation over
n = (ny,...,n,) defining 3, as, we can restrict the summation over the set of n
such that the associated § is in mirror configuration by Proposition 3.2.

We now show that, in fact, the main contribution comes from the # in mirror
configuration such that the configuration of the associated 8 is (2,2,...,2). Itis
easy to see that, for the remaining n, the associated configuration g = ({1, ..., ihy)
is such that the length v is at most /2 — 1 distinct elements, and satisty pq > 4.

The equality (47) and some combinatorial considerations lead to the following
equality:

S =35 k-0 Y wwrw(E))

Y
1<|n|<p/2

vol X X I X

l=p=<f—1 M1Z=iy>2 i=11<n|<p/2

2|pei. gy =4
gttt =K

—m( Y w@rw(LY) + o )

Y
1<|n|<p/2

v

for any € > 0, the error term arising easily from (32) (recall that m, is given by (9)
and is the x-th moment of a standard Gaussian). We therefore see that the proof
of Theorem 1.2 is completed by combining (43), (45), (48) and (49) together with
Proposition 2.5, applied witha = b = 1.

3.5. Further remarks. We compare here the estimate of Theorem 1.2 with other
bounds for the moments which can be derived straightforwardly from earlier results.
For simplicity, we restrict our attention to the case of cusp forms.

First, we note that it is fairly easy to deduce from Proposition 2.1 and from

Proposition 2.3 that
C

=T d(c)*’?, (50)

Ef(X.c,a) <5

forany ¢ > 1, X > ¢ and any integer a. When¢ < X 2/3 this statement is better
than the bound
Ef(X,c.a) < yl/2+e —1/2

coming from Deligne’s estimate for py(7) (this is very similar to the result first proved
by Smith [25], (4), which has the same range of uniformity; see also the remarks in [2]
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(p. 276) and the work of Duke and Iwaniec [5], Theorem 2). Combining these two
bounds in the definition (4) of M, we obtain

2\ k]2 . Y2 Kf2
Mp(X, c1k) K¢ XE(Y) mm(l,c—3) )

However, for x > 2, we can also write

Mp(X,crk) < ( max |Ef(X,c,a)|)K_2(% Z |Ef(X,c,a)|2),

a mod ¢
a mod ¢

and then using the result (10) of Lau and Zhao, we deduce a second inequality

2 k/2—1
=)y (51)

Mp (X, c10) Ko XE('—
X
which holds uniformly for X 7 < ¢ < X. We then see that our result in Theorem 1.2,
for ¢ = p a prime, improves (51) for

X*? <p<X3 and «>3. (52)

We conclude by noting that Theorem 1.2 can be extended without much effort
to cusp forms f of arbitrary level and nebentypus, which are not necessarily Hecke
forms. On the other hand, it does not seem straightforward to extend the result to an
arbitrary composite modulus ¢ > 1.

3.6. Proof of Corollary 1.4. Corollary 1.4 is an easy consequence of the fact that
convergence to a (Gaussian can be detected by convergence of the moments to the
Gaussian moments (see, e.g., [3], Theorem 8.48, Proposition 8.49). For p prime, let

X =p*/®(p), P(p)—> 400, D(p) K pc.

Denoting

1 E (X, p,a)\*
m.tie =2 3 (= 2E8)
p aelF; Tl

we see from Theorem 1.2 that for any € > 0, we have
M*(X, p,K) = m, o O((I)(p)—l/Z-l-E di p—%-i-Eq)(p)K/Z) — s m,
as p — +oo. Since this holds for any fixed integer « > 1, this finishes the proof.

Remark 3.4. (1) If X = p?>~% for some fixed § > 0, we can not prove the Central
Limit Theorem, but nevertheless, we still deduce that the «-moments converge to
Gaussian moments when {
l<k< {—J
=K = s
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(2) In this result, the Gaussian moments arise in Proposition 3.2, and in fact the
combinatorics of the computation is the same as in a standard case of the Central
Limit Theorem, namely the convergence in distribution to a standard Gaussian of a

sequence
_ 2c08(Xy) + -+ + 2cos(Xp)

Y
n \/ﬁ
where the (X;) are independent random variables (defined on some probability space)

distributed on [0, 7] according to the Sato—Tate measure.
(3) It is natural to expect that an asymptotic formula

M (X, pix) ~ Culk), (53)
should be true uniformly for any even «, and
X%+E < p < XI_S,

for some fixed § (0 < § < 1/2), which (with a corresponding upper-bound for the
odd moments) would extend Corollary 1.4 to this range. This conjecture is true for
x = 2 (by (10)), and is in agreement with the square root cancellation philosophy (2).

Another partial indication in favor of this conjecture is that a lower bound of that
size holds: considering » = f for simplicity, and taking « > 2 even, we have

> )

2 1
My (X, p;2) < (Ms(X, pic))© - (—
plSaSp

and, by combining this with (10), we obtain the lower bound
Mf(X, p;!c) > 1

uniformly for X% < ¢ =< X114,

4. Proof of Theorem 1.6

The proof of this Theorem has many similarities with the proof of Theorem 1.2,
particularly in the computation of the error terms. We will mainly concentrate on the
study of the main term of the mixed moment M, (X, p; x, A; ¥).

We suppose that (5) is satisfied and that p is sufficiently large in terms of y. We
start from the definition (13) and apply the same computations leading to (42), (43)
and (45) to write the equality

M (X, pir, Aiy) = (25 + 05(X71)) (54)

K+A

pY 2
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Si=  p ey r*(ml)...t*(m,c)W(%)...W(%) (55)

1<‘m1‘="'=‘mf(|<p/2

< XY w W () ()

1<|ny]s..., | |<p/2

X Y Kh(ma: p)...Khy(mea: p)Kh(ny(y - a): p).. . Kh(ny(y - @): p).

1<a<p
a,y-a#0,00

Since p divides none of the m; or n;, we see that the inner sum over « is equal to
&(k + A, B8, p), as defined in Proposition 3.2, where

ﬁ:(hm]_:"':hm;(,h’nloy:"':hnkoy), (56)
and /,, denotes the homothety

m 0
My = (0 1) € PGLo(F)).

To apply Proposition 3.2, we have to understand which g are in mirror config-
uration, in the sense of Definition 3.1. This depends on whether y is diagonal or
not.

4.1. When y is not diagonal. If y is not a diagonal matrix, then
him; # hny oy
foranyi = 1,...,kandforany j = 1,..., A. Hence, in that case, the configuration
of 8 defined by (56) has (before ordering the elements by decreasing order) the shape
(g, 1) = (1 - conlbumtbpsssssthyt)

where
I3

I’L:(}u‘lﬂ"'ﬂfu‘v)a ’1’ :(M"l,...,}u;':);)
are the configurations of

(h’ml""’h’m.'{)’ (h’nl Oy""’hnkoy)’

respectively. It follows from Proposition 3.2 that
Gk +4.8.p)
= Z Kly(mya: p) ... Kla(myea: p) Kla(n(y - a); p) .. . Kla(ny(y - a); p)

1<a<p
a.,y-a#0,00

= A AR p + Ocs(p?). (57)
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Hence by (54), (55) and (57) and by computations similar to those we did in §3.3,
we deduce the equality

K+ A
Mo(X., ik diy) = Y2 (S50 T3 () + O(p72HY<H)) + 0(p ™),

(58)
with
Do) = Y ) mlm).nmoW ()W (S5 ) A,
1<|my|snlmel<p/2
S = YY) n(nl)...r*(m)w(%l)...W(’%)A(ﬂ’).

1<|n1 5. |nal<pf2

If x or A is odd, the product A(p)A(p') is zero, hence (18) follows in that case.
If x and A are both even, then as in (49), we prove that the largest contribution comes
from the case where g = (2,...,2)and ' = (2, ...,2). Hence, by a computation
similar to (49) and (6), we get the equality

Sam (k) = {Calk) + O(Y 3 Y E,
and a similar one for X5 37 (A). Hence, by (58), we complete the proof of (18).

4.2. When y isdiagonal. We then write y in the canonical form (14) and we suppose
that

p > max(|y1], |y2]).

Then, by making the change of variable ¢ = y,a’, we find that the sum over
a of normalized Kloosterman sums appearing in the last line of (55) is equal to
&(k + A, B, p) as defined in Proposition 3.2, with

B = (hyzmw---ahyzmwkmnv---’kmm)' (59)

If the configuration of # is not a mirror configuration, we have

Sk + 4. B, p) = O(p?).

In particular, if ¥ £ A mod 2, we deduce by (55), (32) and by similar treatment
of the error terms as above, that

23 &« p%+EYIC+A. (60)

Combining this with (54) we complete the proof of (19) when x and A have
opposite parity.

Now assume that « and A have same parity. The combinatorics involved is then
more delicate than in §4.1, because me must take into account the cases of crossed
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mirror configurations, namely situations when some of the y,m; are equal to some
of the y1n;.
To be precise, we can decompose X3 (see (55)) into

By =B 4 B 4 Z B™(v), (61)

O<v<min(k,A)
v=x=A mod 2

where
* B" corresponds to the contribution of the (yomy, ..., yam, y1in1, ..., Y113)
which are not in mirror configuration,
* By corresponds to the contribution of the (yamy, ..., yame, yin1. ..., Y11,)
which are in mirror configuration, but that configuration is not (2, . . ., 2),
* B™{(v)corresponds tothe contribution of the (yomy, ..., Yami,, Y101, ..., Y11})
which have a mirror configuration equal to (2, ...,2), and where exactly v of

the y2m; (1 =i <) are equal to v of the yyn; (1 < j < A).

The same computation as for (60) gives the relation
Bnm &« p%+EYK+A.,

which, when combined with (54), fits with the error term in (17).
We can also estimate Bjj' by following the same technique which led to the error
term in (49), and obtain

K+A4
B(r)n & py%—lﬁ-f’

which, by (54), is absorbed by the error term in (17).

The case of B™(v) is more delicate to treat. For the terms in that sum, exactly v
of the yom; (1 =i < k) are equal to v of the y1n; (1 < j < A), and the remaining
vom; (resp. yin;) are in configuration (2, . ..,2). The condition y,m; = yn; can
be parametrized by m; = y1f andn; = y.f where f is a non-zero integer. Appealing
to Proposition 3.2, and applying some combinatorial considerations, we deduce the
formula

o= (0 T o (3w

1<|yitl, ly2tl<p/2

K—1u

c(aee—v-n)( ¥ 2w (%))’

1<[m|<p/2

X(1.3...(A—u—1))( 3 tf(n)Wz(%)))‘?)-I-O(p%"'EYK__Z&)_ (62)

1<|n|<p/2
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In this expression, the first term corresponds to the choice and to the contribution
of the v integers m; and v integers n; which satisfy the condition ym; = yin;.
The second factor corresponds to the contribution of the ¥ — v remaining m; which
are in configuration (2, . . ., 2) between themselves, and the third factor to the A — v
remaining #; in configuration (2, ..., 2) between themselves. Finally, the error term
comes from the error term in (46).

Using the arithmetic sums B, (m,n, ¥) defined in Proposition 2.5, we can thus
summarize (62) in the form

KA
1Ry ((k =)/ (A —v)/2)! 63)
. ;’8*(1’ 1’ Y)K__Z.i_v ‘:8*()}1! Y2, Y)U -+ O(p%-i_eYK__z.i)

B"(v) = p

We now obtain (19) by combining (41), (54), (61), (63) and Proposition 2.5.

5. Proof of Corollary 1.7

We now deduce Corollary 1.7 from Theorem 1.6. The probabilistic tool is the fol-
lowing standard lemma:

Lemma 5.1. let (X,,,Y,) be a sequence of real-valued random variables. Let () be
a positive definite symmetric 2 X 2 matrix. Suppose that, for any integers Kk, A = 0,
we have

E(XXYH) — mye 1 (Q)

asn — +oo, where my3,(Q) = E(A*B) for some centered Gaussian vector (A, B)
with covariance matrix Q. Then (X,,, Y,) converges in law to (A, B).

This follows from the case of individual sequences using the characterization of
the Gaussian vector (A, B) by its linear combinations « A 4+ B being Gaussian.
We apply this lemma to the sequence (Z,, Z, o y) for p prime, as in the statement
of Corollary 1.7. Note that if x = 4, the main term Cgz(x, A, y) still depends on p
(because of the polynomials of (log p?/X) which it involves). However, under the
assumptions of Corollary 1.7 on X and p, we see that in all cases, for fixed « = 0
and A > 0, the limit
Cili, A, y)

exists, and that

im E(Z5(Zy07)") = Ley. (64)
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It y is not diagonal, we get by (18) and (7) that L, , = m,m, which coincides
obviously with the mixed moment E(AXB%) where (A, B) are independent centered
Gaussian variables with variance 1, so we obtain Corollary 1.7 in that case.

It y is diagonal, we must check that L, ; corresponds to the mixed moments of
a Gaussian vector (A, B) with covariance matrix given by (22). For this purpose, we
use the formula (19) and note that

it S A ~
(C*,w) z v(C*,w,y)v . (C*,w,y

v
(x+A)/2 o ) = (Geyw)
C*,w

Ca,w

as p — +oco, with notation as in (19) and Corollary 1.7. Thus, abbreviating & =
G «.y,w. we compute the 2-variable exponential generating series of L 3 by writing

1
> mLMUKV*

K,AZ0
1 3 K\ A
= Z WUKV Z U!(U) (U) e —yp m;\‘_qu

K,A=0 0=<v<min{x,A)
v=Kk=A mod 2

UU+2k VU+2[

v+ 2kN (v + 2/
= GV
Y6 Y ol v )( : )m”‘m”

v=0 k>0

Z GU(UV)v mkuZk Z Hiyy Vzl

o ! 21)!

U2 VZ
=expl— + GUV —)
4 ( 7 T T3
Since this is well known to be the exponential generating series of the moments of
the Gaussian vector with covariance matrix (22), we obtain the desired convergence

in law.
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