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Abstract. We construct examples of volume-preserving uniquely ergodic (and hence minimal)
real-analytic diffeomorphisms on odd-dimensional spheres.
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1. Introduction

There is a general belief that topology of a manifold M with some low-dimensional
exceptions, does not influence ergodic properties of volume-preserving dynamical
Systems on M and that restriction on topological properties of Systems with strong
recurrence, say, come only from algebraic and differential topology rather than from
dynamics.

There are two aspects here: (i) the smooth realization problem that asks what iso-

morphism types or properties of measure-preserving transformations or flows appear
for volume-preserving dynamical Systems on a compact manifold and (ii) the phase

space dependence: given an isomorphism type or property (measurable or topological)

that appear in a smooth dynamical System on a compact manifold M describe
the class of manifolds that allow a System of the same kind.

We do not discuss the smooth realization problem here. It is enough to mention
that, while the only known restriction is finiteness of entropy (and it is not specific to
Systems preserving a smooth measure and true for any Borel measure), very few
Systems that are naturally not smooth have been shown to allow a smooth realization, e.g.
certain translation on the infinite-dimensional tori, see [2], and certain unpublished
constructions. More is known about the phase space dependence. For example, using
a surjective continuous map diffeomorphic on the interior from the closed disc onto
an arbitrary compact manifold (closed or with boundary) of the same dimension one

*Based on research supported by the NSF grants 1002554.
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shows that every System that can be realized on the disc H)n and is sufficiently flat
at the boundary can be realized on an arbitrary /i-dimensional manifold. This was
used to show existence of a zero entropy ergodic diffeomorphisms and flows [1] and

Bernoulli transformations [4].
Beyond Bernoulli case and its simple concatenations with zero entropy examples,

smooth positive entropy examples are few and far between, see [11], [13]. In the

zero entropy setting however there is versatile approximation by conjugation method

originally introduced in [2] and sometimes called Anosov-Katok method. We use this
method in the present work and introduce basic scheme in Section 2.3. For a detailed
modern overview of the method see [6]. In the discrete time case as the starting point
the method requires an effective smooth action of the circle (for ergodic properties)
or free or at least locally free action of the circle (for properties involving behavior
of all orbits such as minimality or unique ergodicity). Similarly for the continuous
time constructions an action of the two-dimensional torus on the ambient manifold
is needed.

After a long lull following the original development in the late 1960s to mid- 1970s

this methods enjoyed a lively resurrection during the last decade or so. As examples
of important advances during that period one should mention a multiple frequency"
version of the method that allows to produce new classes of mixing examples [5],
[6] and realization of any circle rotation with a Liouvillean rotation number as a C°°
volume preserving diffeomorphism of any compact manifold with a circle action [7].

Applicability of the approximation by conjugation method critically depends on
construction of successive conjugating diffeomorphisms with prescribed behavior.
This conjugacies are invariably very large in the appropriate topologies but they
should lie in the space; e.g. all derivatives for the map and its inverse must exist

although they may be very large. What is required from those conjugacies is con-
trolled behavior in a large mart of the phase space. In the smooth category such

constructions are readily available since maps defined on various parts of the space
can be glued together.1 However the Situation changes drastically when one passes to
the real-analytic category. The most basic property required to Start the construction
in a particular class is transitivity of the action by diffeomorphisms of that class on
pairs of points. In the setting of a real-analytic manifold M this means existence

of diffeomorphisms Hx y for any pair x,y e M such that Hxyx y such that
both HXiy and their inverses extend to a fixed complex neighborhood of M. We are

not aware of such a fact for closed manifolds but for manifolds with boundaries or
for a restricted version, say requiring that H fixes a point z that is excluded from
the construction there are obvious difficulties. Those are situations that appear for
example in the most basic cases where effective analytic action of the circle exists:
the disc D2 and the two-dimensional sphere S2. Accordingly the following basic

question is still open:

1 Notice however difficulties of the global character that appear in the symplectic versions of the method,
see [9].
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Question 1. Does there exist a real analytic area preserving diffeomorphism of D2

or S2 that is ergodic and has zero entropy?

Other properties such as ergodicity and closeness to the identity, almost minimal-
ity, almost unique ergodicity, etc. are not available on the disc or the sphere in the
real analytic category.2

In this paper we consider the most basic Situation where such a transitive family
commuting with a free action of the circle is present, namely the odd-dimensional
spheres. A construction of volume-preserving uniquely ergodic real-analytic diffeo-
morphisms on S2n+1 was outlines in [6]. In the present paper we give complete
proofs.

Let us emphasize that spheres are considered to present the method in a succinct

way. Existence of a transitive family with large domain of analyticity is the key. For
example, our results extend fairly straightforwardly to the case of compact Lie groups,
the setting is explained in Section 2.2. An even more general setting is possible; it
will appear in a subsequent paper.

We also mention that in the more simple case of manifolds that are a product
of a circle and a compact Nilmanifolds or of a circle and a homogeneous Spaces

of compact type, it was shown in [3] that there exists real analytic distributionally
uniquely ergodic diffeomorphisms (that is, diffeomorphisms for which the set of
invariant distributions has dimension 1).

2. Formulation of the result and outline of proof

2.1. Notations. We will consider the Standard embedding of the sphere S2w_1 into
R2n and the Standard complexification R2n C C2n. The vector-field defined in
Euclidean coordinates as vo(x\,..., X2n) — 2ji(x2, —x\, x2n, X2n-i) defines a

linear action of the circle S1 which we will denote by <fit, t E R, <p\ Id. In
Euclidean coordinates (j)t{xi,...,x2n) (cos(27rt)xi + sin{2itt)x2, — sin(2jrt)xi +
COS(2jtt)X2, COS(2jtt)X2n-l + sin(2jrt)X2n, ~ sin(2jZt)X2n-l + COS(2jtt)X2n)-
We will use the same notations vo and cp1 for extensions to C2n or its subsets. We
will call a function on §2w_1 entire if it extends to a holomorphic function on C2n.

We say that the map is in C£ if it extends to a holomorphic function in the ball

\= {z e C2n \ \z\ ^ A}. We then use the notation h e if h is entire. A map

/: S2w_1 —S2w_1 is said to be ifitscoordinatefunctionsareC^. A diffeomorphism

/ : S2w_1 —§2w_1 is ifboth / and f~l areC^. Invertible linear maps
are obviously entire diffeomorphisms. Notice that product of entire diffeomorphisms
is an entire diffeomorphism so that entire diffeomorphisms form a group that we will
denote Ent(S2w_1). Its subgroup of entire diffeomorphisms preserving Lebesque

2The original Bernoulli construction on the sphere or the disc from [10] can be carried out in the real-analytic
category with proper adjustments; see [8], [12].
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measure X is denoted by Ent(S2w_1, X). A homeomorphism h of a compact metric

space X is uniquely ergodic if it has only one invariant Borel probability measure. If
h preserves a measure with füll support (nonempty open sets have positive measure)
then unique ergodicity implies minimality (every orbit is dense). Unique ergodicity
is equivalent to a uniform distribution property: time averages of any continuous
function converge uniformly to a constant which is then equal to the integral with
respect to the invariant probability measure.

2.2. Formulation of the result. Fix n e N. For A > 0 and /, g £ C^(S2n~1) we
write

1/ -£Ia max{ max \fiz)-g{z)\, max |/_1(z) - g_1(z)|}.
1zeBA zg5a >

Theorem 1. For any to £ [0,1] and any s > 0, A > 0, there exists a uniquely ergodic
volume preserving dijfeomorphism f £ C^(S2w_1) that satisfies

1/ -<AL <e-

Furthermore, the dijfeomorphism f is obtained as a limit in the norm ofentire

maps of the form Fn — Hn o (ptn o H~l, Hn £ Ent(S2w_1, X).

Remark 1. The starting point of our argument is existence of a double transitive

family of entire diffeomorphisms, commuting with the S1 action, namely rotations.
Our argument works whenever such a family exists with modifications that are es-

sentially notational. Examples are compact connected Fie groups and some of their
homogeneous spaces.

Here are more details on the compact Fie group setting. Fet G be a compact
connected Fie group with probability Haar measure /. We denote by lg and rg
correspondingly the left and right translation on G by the element g £ G.

The group G can be embedded into SO(N, R) as a subgroup defined by polynomial
equations in the matrix coefficients. Without loss of generality we may assume that
the image of G is Zariski dense in SO(N, R). We consider the Standard coordinate

embeddings SO(N, R) R"2 C"2.
2

We will call a function on G entire if it extends to a holomorphic function in C"
Entire maps and diffeomorphisms of G are defined as in the previous section. Feft
and right translations are given by linear maps in matrix coordinates and thus extend

2
to invertible linear maps of Cn and are thus entire diffeomorphisms. We use the

same notations for the extensions.

2.3. The approximation by conjugation construction scheme. We will use the ap-
proximation by conjugation method sometimes called Anosov-Katok method which
was originally introduced in [2].
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Without loss of generality we can assume that t0 is rational, say t0 Po/ Qo
where Po and Qo are relatively prime integers.

We will construct the desired diffeomorphism / inductively, as lim^^oo Fn with
F-1 cpto. Each diffeomorphism Fn, n ^ 0, will be conjugate via an entire

diffeomorphism Hn to a rational element of the action cp with rapidly increasing
periods:

Fn Hnoyfn+ I/Qn + I Q

The conjugating diffeomorphisms are defined inductively as3

Hn Hn-1 o hn, with hn ° (pPn/Qn (pPn!Qn o hn.

Thus, at the nth Step of the construction the parameters are the diffeomorphism
hn e Ent(S2w_1,X) and the rational tn+i Pn+i/Qn+i- First one chooses the

diffeomorphism hn to make all orhits of the S1 action cpn defined by

<Pn Hn O (p o H~x Hn-1 O hn o (p o h~X o H~lx (1)

distributed in an equivalent way to Lebesgue measure, in the sense that Birkhoff aver-

ages of continuous functions along the cpn action become as n tends to oo proportional
with a fixed ratio distortion to the Lebesgue averages of these functions. This will be

sufficient to guarantee unique ergodicity of the limit map.
Naturally, Hn, although entire, is likely to have large derivatives, and in partic-

ular to be very large on B&. Thus, tn+i has to be chosen with a sufficiently large
denominator Qn+1 to make the orbits of the finite subgroup

Hno(pktn+ioH-\ 1,

of the action cpn approximate the continuous orbits of cpn sufficiently well to maintain
the uniform distribution almost without any loss of precision. Moreover, for the

convergence of the construction in the analytic norms, observe that the S1 action cpn

is entire (since Hn, H~x and cp are entire), thus on every compact subset of C2w,

hn(ptnJrlh~x cptn if tn+\ tn. Hence the latter further constraint on the choice
of tn+i will guarantee closeness on B& between Fn+\ and Fn, and between their
inverses.

Since there are no other restrictions on the choice of tn+i the only essential part
of the inductive Step is the construction of the diffeomorphism hn. It is here where
the difficulties of the analytic case are very obvious. Since those maps are very
large in the real domain control of the complexification presents great problems. A
natural approach inspired by the smooth case would be to construct smooth maps
first and then to make some kind of approximation (by polynomials or other special
classes of functions) to guarantee analyticity in a large domain. The problem however

3In our case, we will actually have instead of the equality that hn o (ppn/Qn 0 h~1 is close in the norm

to (ppn/Qn (see Section 2.4 below).
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remains since even if such a general approximation procedure works the inverses

would have singularities close to the real domain and the construction collapses.
Thus it is necessary to find conjugating diffeomorphisms of a special form which

may be inverted more or less explicitly to guarantee analyticity of both maps and

their inverses in a large complex domain. We now proceed to showing how to do this
in the specific case in question.

2.4. Making S1 orbits uniformly distributed on the sphere. The action cp, which

may of course be considered as a subgroup of the orthogonal group SO(2n), has a

large centralizer in SO(2n). An easy way to see it is to identify M.2n with Cn via the

map

(xi,X2, .,X2n-l,X2n) Ol + *'*2, • • • X2n-1 + **2n)>

In the complex coordinates cp becomes scalar action

(pf {zi,... ,zn) (exp2jritzi,... exp27rz7zw).

The unitary group U(n) commutes with cp. For our purposes it is useful to notice
that already the special unitary group SXJ(n) which has finite intersection with cp, acts

transitively on the sphere S2w_1.

Assume we are given a collection of one-parameter compact subgroups of period
one £(>,...,£# acting transitively on §2w_1. Given any tn we want to construct
hn e Ent(S2w_1, A) and tn+\ such that Fn hn o cptn+1 o h~l is arbitrarily close

to (ptn and such that the arcs of orbits of Fn of length Qn+1 for any x e §2w_1,

that we denote 0(Fn, Qn+1, x), are distributed with high precision in the same way
as the family (pfkSQ - y, (t,s0,... ,7v+i) ^ rfj/v+2 for some y e §2w_1

that depends on x. The latter distribution is equivalent to Lebesgue measure. The

precision with which the orbits 0(Fn, Qn+1, x) become distributed as the transitive

family can be made so high that even after application of the conjugacy Hn-\ it
still holds that the orbits 0 (Fn, Qn+1, x) are distributed in an equivalent way to the

Lebesgue measure.
The construction of hn and Fn is itself done using a finite number of successive

conjugations of periodic times of the cp action. This is the main ingredient in the
construction and we now describe it.

Westart with po/qo tn. Weconsider an entire function x//q thatisconstant
on any ko orbit but such that depends wildly on t and x/fo((pa°(')) V^oCO

(the translation groups kt are chosen so that such functions do exist and are simple
to produce). Then if we let go ^(f° we get that go ° (pa° ° gö1 (P°iQ' As a

consequence of our choices, we observe that for aq pi/qi sufficiently close to
we have that /o go ° <Pai ° So1 cl°se t0 /-1 — while due to the twisting
of under the cp1 action the orbits of /o will be distributed as the continuous T2
orbits (pskfQ (s, to) G T2.
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In the same way we introduce g\ kf1 that commutes with cpai and then choose

a?2 sufficiently close to aq so that f\ gog\Va2 g\l g~öl is close to f\ white the
orbits of /i are distributed as the families (s, to, t\) G T3. We then follow
this induction until we obtain oin+\ and /# go • • • • • • gö* suc^

/tv is close to /_i cptn while its orbits are distributed as the families (pskfQ k^,
(s, t0,..., fjv) e T^+2. Thus we let tn+i ow+i, A* go • • • gxr, and Fn /#
and the Step n construction is accomplished.

Actually, in the above scheme we omitted an extra difficulty that is related to the
control of every orbit that is necessary for unique ergodicty. Namely the points x
for which the orbit &{fo,x,qi) is well distributed are those for which the fio twist
is effective and this excludes a small measure set of points (suppose for example
that fio depends only on the coordinate zi, then t//o(</^(z)) does not depend on t for
points z such that z\ 0). To overcome this difficulty a certain number of additional
conjugacies k^+\,... mustbe applied to make sure that each point is affectedby
the twist in all the directions &o, A consequence of this extra difficulty is that

equi-distribution of different points will happen at different times and for different
indices in the maps //, / e [Af, M],

3. Proof of Theorem 1

3.1. Criterion for unique ergodicity. Reduction to the main induction step

Definition 1. Given C > 0 and s > 0, a finite set 0 is said to be (C, £)-uniform-
ly distributed on a manifold X if for any ball B C X of radius s we have that

#(0 n B)/#0 e (X(B)/C, CX{B)).

Definition 2. A finite collection of one-parameter compact subgroups of period 1:

ko,... ,kx G SU(n) is said to have a transitive action on X if for all x, y e X there
exists to,..., tN G [0,1) such that y k^ kff x.

Let X := S2w_1. In the sequel we will obtain and fix a finite collection of one-

parameter compact subgroups of period 1: ko,... ,k^ G SU(n) whose action is

transitive on X.

Definition 3. A finite set 0 is said to be £-uniformly distributed along ko,... ,k^
and x if for any ball B of radius s in [0,1]L+1 we have that #(0 D kBx)/#ö G

((1 — £)Leb(i?), (1 + £)Leb(i?)). We used the notation kBx := {y k^ k^x :

{to, " - JL) £ B}.

Proposition 1. There exists Co > 0 such thatfor any e > 0, there exists r\ > 0 such

thatfor any x G X we have the following: Ifa finite set 0 is rj-uniformly distributed
along ktf ko, • • • ,ktf and x, then 0 is {Co, e)-uniformly distributed on X.
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Proof The proof is straightforward by transitivity and periodicity of the action by
ko,... ,Jcn and compactness of X.

We now State a general criterion that we will use to prove unique ergodicity of a

volume preserving transformations /. For x e X and m G N, we denote the arcs of
orbits 0(/, M, x) := {fm(x) : m 1,..., M}.

Proposition 2. Let f be a volume preserving homeomorphism on X. Assume that
there exists C > 0 such that thefollowing holds: For any e > 0 and any x G X, there
exists Mg N, for which &(f, M, x) is (C, s)-uniformly distributed on X. Then f
is uniquely ergodie.

Proof. The assumption implies that given any continuous funetion xf : X -> C, and

any x e X, there exists a sequence Mn -> oo such that

i ~~1 / p r
Jf X f(flx)eyJ^f(z)dX(z)/C',C'J^xfs(

with Cf 2C. It follows that all the invariant probability measures by / are

equivalent to Lebesgue, whence unique ergodiety.

We can now State what we will request at a given step of our construction to
guarantee unique ergodicity of the limiting transformation.

Proposition 3. Iffor any to G T and any £ > 0 and A > 0 there exists r G T and a

dijfeomorphism h G Ent(X, X) such that the entire dijfeomorphism f ho(px oh~l
satisfies the following:

• 1/ -<AIA <
• There exists Mg N with the property thatfor every xGl, there exist y G X and

M\x) < M such that 0(/, Mr, x) is s-uniformly distributed along
and y.

TTzen it is possible to construct a transformation that satisfies the requirements of
Theorem 1.

Proof. Assume that sequences Mn G N, tn and Hn G Ent(X, X) have been con-
strueted such that H-\ Id and Fn Hn o o 7/"1 satisfies

|FW — Fw_i|a < eil!1 for any n ^ 0; andfor any 0 ^ j ^ n, and any x G A,
Mj(x) < Mj such that 0(Fn, Mj,x) is (Co,l/(y + 1 ))-uniformly

distributed in X.

Clearly the first step n — 0 follows from Proposition 1 and the assumption. At
step n, given Hn, observe that there exists sn such that if hn+\ and tn +2 and Mn+1 are
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such that fn+1 hn+\ o <^»+2 o h~\x satisfies that for any x e X there exists y and

Mfn+1(x) < Mn+1 such that 0(/jj+i, Mfn+1, x) is £„-uniformly distributed along

ko,... and y, then, using Proposition \, Fn+\ Hn o /w+i o 7/"1 satisfies that

0(Fw+i, M^+1 (x), x) is (C0,1 /(/i + 2))-uniformly distributed in X for any x e X
(we took Mfn+1(x) M^+1 {H~l (x)) < Mn+1). In addition we can require due to

our assumption that fn+\ be arbitrarily close to <ptn+l. As a consequence of the latter
Fn+1 will be arbitrarily close to Fn and the requirements of (J^+i) will hold if we
take Hn-\.\ Hn o hn-\.\.

The limiting diffeomorphism / limF^ thus satisfies that 0(/, is

(C0, l/(y + l))-uniformly distributed in X. The unique ergodicity criterion of Proposition

2 being satisfied by /, Theorem 1 follows.

It only remains to prove the main inductive Step given by Proposition 3. Before
we do this we shall introduce now the special translations that we will use in order to
move the orbits transversally to the ^-action.

3.2. A special family of translations. For any q e N and i G {1we define

fi,q(z) Re(zf) and Xi,q(z)Re((zi ~ Clearly i/iui and Xi,q are entire,
since they are polynomials in the variables x\,..., X2n- A crucial property is that

g O (pPli gfor gfi>q or Xi,q-
The translations we will use are

ff (zi,..., z„)(zi,..., z,_ 1, el2nsZi Zj + 1,...,

Tj(-1 -H — 1 .A - Z2t • • • • Zi — 1 > ~/..V * - / — 1 -M )•

zM 1/2 ((e!'2^ + l)Zl + (ei2"s - 1

zi>s 1/2 ((ei2ns - l)zx + + 1 )z,-)

Note that under the action by rf we have that z\^s + z2jiS. el27ZS{z\ + z2) while

zi?iy — z2,s (^1 — ^2). This is crucial to insure that
1

^ A^J',q and the
^4 ysimilar property for r- 1,9. Also, as a consequence of our definitions we have that

for any A > 0,

^J,9(Pp/qz - (Pp/q^j,9z> for all j / i,

4Xi'q(Pp/qZ<Pplq4XUqz-

Observe finally that f and f.
71

are entire maps as well as rfx''" and r-
/'x' ".

Proposition 4. k0 £1, k\ r2, k2 %2, k3 ,kn i-n, kn+1 r2,
kn+2 ^2> kn + 3 T3> ^«+4 ^3n—3 Tw* ^3n—2 k^n—l — Z2,

k3n ^3« + l ^3«+2 ^3> • • • > ^5w-5 ^5«-4 tAß

sequence ko,..., ksn-A is transitive.
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Remark2. Thetranslation/:i r2 is not necessary in making the sequence transitive
but will be useful later when we will build the conjugacy to make sure that the shear

along the z\ direction is triggered.

The proof of Proposition 4 will be an immediate consequence of Lemma 2 below.

Lemma 1. Fix j 1 ,...,n and (z\,..., zn) £ X. For any p\, pj such that
p\ + p) — |zi|2 + |zj |2 there exist t,s £ [0, l]2 such that z' — tj^jz satisfies
\z[ \ pi and \zfj\ pj.

Proof. Let zj — rjel27Z°J. Wehavethat

z'x el7ls(cos(tts)r\el27T°l —i ür\(jts)r2el2:n:0j el27Tt),

hence if we choose t + tt/2 + 6j 9\ [2it] and tan(jrs) ri /r2 we get that z[ 0

hence|zj|2 r2+r2. Since zj el7ZS(—i sm(jts)riel2:n:01 +cos(7ts)r2el27i:0J el27Zt)

it is also possible to choose t and s such that zj 0. By continuity any value between

0 and r2 + rj is possible for |zj |2 and the lemma is proved.

Lemma 2. Given any p\,..., pn such that p\ + • • • + p2 1 and any z £ X, there

exist t\,..., t4n-4 such that

v! — ^4«-4p4«-5 -t2n btln — X fi2n-2 ^277-3 Tt2£t\L ~ l2 S2 • • • Ln $n l2 S2 ' ' ' Ln $n z

satisfies |zj | pj for every j 1,... ,n.

Proof. Making repeatedly use of Lemma 1 we first obtain t\,... ,t2n-2 such that

z rj2"_2£j2"-3 xn2^nZ satisfies zj 0 for every j 2,... ,n. Next we
choose t2n~\ and t2n such that z® r^2"^2/7_1z satisfies \zjp\ pn : this is

possible by Lemma 1 since 1 \z\\2 + |zn\2 5= p„. We proceed inductively so that

at each step j ^ n — 2 we have that |z^| p/ for n — j ^ ^ n and z^ 0

for 1 < l < n — j. Indeed, since |z^|2 + Iz^-^l2 1 — p2 — ••• — p2_j ^
Pn-j-v we can aPP!y Lemma 1 and choose t2n+2(j + i)-i and ^+2(7+1) such that

Z0+1) satisfies Since

and %n-j-1 leave the rth coordinates intact for r ^ 1 and r f n — j — 1 we still have

|zp'+1>| pi for — j ^ ^ /i.

ProofofProposition 4. From Lemma 2 it follows that with an appropriate choice of

sn+i,..., ssn-4 it is possible to obtain arbitrary moduli for the coordinates of z
ks55f_Z~fz. Next, with an appropriate choice of so,...,sn, such that s\ 0

we can further fix the arguments of z' — ks0° ksf'z ^1° %22 ^"z, and the

proof of Proposition 4 is complete.
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3.3. The inductive step of the successive conjugation construction. The novelty
m our construction is that the each step of the successive conjugacy is ltself constructed

through an mductive procedure that allows to saturate all the directions of the transitive

sequence of rotations.
We further expand our transitive sequence of 's by mtroducmg k3n-3

kßn—5 ken-4
We let M 6/7 — 4.

For a choice (to be determmed later) of sequences A0,..., Am and q0,..., qM,
we let

^0^2
0 A0 £1,

A1X2
Ai r2,

Ä2^ 1

2
<?2 £2 JU&II

A3 tl
3 k3 — £3,

next, we let

and finally

g2 k.

g3 k

„ — l^Ant\ q„ k — t6 n — — s«?

r ^« + lX2 qn-\-\ jgn + 1 ~ Kn + \ ' Kn +1 ^2,

^«+2^1 <7T2_|_2 T s-

g«+2 — */i + l — 92,

(T
iA5n-5X2 Qsn-5 u _g5n—5 — ^5W_5 > f^5n—5 — Tw»

r ^5n—41^1 q$n—4 1 h
g5n—4 — k$n_4 k^n—4 —

_ 72A5n-3X2 q5n_3 _g5n—3 — ^5n—3 > ^5n—3 — Tw,

fr _ iA6n-5X2 q6n_5 t _£677-5 — ^677-5 ' ^6n—5

_ 7^6/7-4 f/6/7—4 7 _ t#677-4 — 677—4 ' ^6 77—4 — 92-

We dehne for each / ^ Af, G/ go 0 • • • 0 £7 •

Definition 4. We say that z is (m;ai,... ,as; v)-transversal lf for any z / wi we
have for A 0 and A 1,

Lebjti,... : |A(öej1 •atssz)l — (a^ .a^z)m| < v} < Cv

where C is a constant that does not depend onzorv.
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Notice that if z is such that \z\ \ > rj then for any v > 0 sufficiently small

Leb{t : |{^)z)j — z\ \ < v} < Cv,

a property that we denote by z is ((1, j), ; v)-transversal.

Proposition 5. Given any po/qo ^ [0,1), any r\ > 0, A > 0 and s > 0,

there exist sequences Aq, Am, ot\ pi/qi,... ,c^m+i PM+i/qM+i, and
e100 so ^ £\ ^ - ^ £m such thatifwe denote fi Gi(pai+l Gfl, f-\ — (pa°

we have the following.

(1) I//+1 - //lA < £°/2 1+2 forall|z'|^ qi+l 1 ^ / =; -1.

(2) For any M > l > 2 and any M ^ L ^ l, and any 0 such that 0 is si-uniformly
distributed along <p, ki,..., Ul, z and if z is (1; kj^\ £/)-transversal,
then gi~\& is &i-\-uniformly distributed along cp, ki-\,... z, and z zs

(1; A;/_i, ki,..., k^, si-\)-transversal.

(3) (Case / 2). Fbr any M ^ L ^ 2, and for any 0 such that 0 is S2~uni-

formly distributed along cp, k2,... ,k^, z and if z is (1; k2,..., k^, £2)-transversal,

then g\ö is £\-uniformly distributed along <p, k1,... ,k^, z, and z is

(2; k\, k2,..., kL', £1)-transversal {the difference form the previous property is

in the change of the transverse coordinate from 1 to 2).

(4) (C<xs£ / 1). If 0 is £\-uniformly distributed along <p, k\,..., kL, z and z is

(2; k\, k2,..., k^, £\)-transversal, then g$0 is £o~uniformly distributed along
cp, k0, ...,kL,z.

(5) If \z\\ > r] then g6n-4(&((P0l<Sn~3 > q6n-3>z)) is £6n-4~untformly distributed
along cp, ken-4 and z, and z is ((1, 2); kßn-4; £^-4)-transversal.

(6) If0 is £^n-4~uniformly distributed along <p, k^n-4 and z, and ifmoreover z is

((1, 2), ken-4; £ßn-4)-transversal, then gen-5® is £en-5~uniformly distributed
along (p,kßn-5,kßn-4, and z is {l,kßn-5,kßn-4] e^n-s)-transversal.

(7) Iffor some n j 5= 2 we have that \z\ — Zj \ > r\, then

g6n-j-ziOifPa(,n-J~2,q6n-j-2, z))

is £ßn—j—2,-uniformly distributed along k^n-j-^ and z, and, furthermore, z is

(1; ken-j-3; £cn-j-3)--transversal.

ProofofTheorem 1. Before we prove Proposition 5 we show how it implies that

/m GM<paM+l Gf^ satisfies the requirements of Proposition 3, from where
Theorem 1 would follow.

First of all, it follows from (1) of Proposition 5 and a choice of such that
|a0 - fol < £o/2 that |/M - (p'°|A< £o-
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Given any iGl,we claimthat there exists N ^ l ^ M such that 0 {fi, qi+1, x)
is £0-uniformly distributed along {ko,... ,£/} and some y e X. Due to (1) of
Proposition 5 this is sufficient to yield a similar property for /m (if we replace £o by
£). But uniform distribution along {ko,yields a fortiori uniform distribution
along {ko,and hence the requirements of Proposition 3 will be satisfied.

To prove our claim, we first need the following immediate lemma.

Lemma 3. Define rj 1/4W+1. Then, given any z G X, either \z\\ > rj or there

exists j G [2, n\ such that z gen-j-2 gen-4^ satisfies \z\ — zj \ > rj.

ProofofLemma3. Define rjj 4y/4w+1 for j 1 If \z\\ ^ r\\ while
1^21 5= t]2 then since z gen-4^ satisfies z\ — z\ and |z2| |z2| we get that

|zi — z2| 5: r)2 — t]\ 5= 2?7i. We now apply a similar argument for j > 2.

We first show by induction on j that if |z; | ^ rji for i 1,..., y then z'

tjJ x^^z satisfies |zj | ^ 2rjj for any choice of t\,..., tj. Indeed if we suppose

the latter true up to j and assume in addition that |z/ + i | ^ rjj + i then z := xX-^z'
satisfieszi 1/2 ((c*27rb'+i + \)z[ + (ell7i:tJ+1 — l)zj + i) ^ 2rjj + rjj + \ ^ ^lj + i
(we used that zj + 1 zj +1).

Now, if on the contrary we suppose that |z; | ^ rji for i 1,..., j while \Zj + l\Z
rjj-vi and use the same notations as above for z' and z then since zy + i — z\ —

z'j +1 -z[ zy + 1 - zi we get that \zj + \ -zi| ^ ^ + i -2^- 2^-.
But since \%i |2 — 1» we bave that if \z\| ^ rj, then there necessarily exists

a j G [1, n — 1] such that |z\ | ^ rji for i 1,..., j while |z/ + i | 3= ijj+1. This
finishes the proof of the lemma.

Back to the requirements of Proposition 3, given x G X we let
Then we have two alternatives

• If |zi | > rj, we prove that

ö(/6/i-4, 96/1-3,*)

is £-uniformly distributed along {k0,..., ^6^-4} and z. This amounts to proving that

Gen-4(@(<Pa6n~3, <l6n-3,2)) is £0-uniformly distributed along {ko,..., ^6^-4} and

z. To obtain the latter, we apply (5) of Proposition 5, then (6), and then (2) inductively
until we finish with (3) then (4).

• If |zi| ^ rj, then for j as in Lemma 3 we let z g6n-j-2 • • -g6n-4^
G^_j_3x, and we prove that

0(/6/i-y-3, 96/1-7-2,*)

is £0-uniformly distributed along {ko,... ,ken-j-3} and z. Indeed, it is sufficient
to prove that Gen-j-3{G{(pa6n~j~2, qen-j-2, z)) is £0-uniformly distributed along
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{k0,..., k^n-j-3} and z. Since \z\ —zj | > rj, we can apply (6) of Proposition 5 and

then (2) inductively until we finish with (3) then (4).
The proof of Theorem 1 is hence completed.

ProofofProposition 5. Proposition 5 is proved by a finite induction of which the
main building block is provided by the following straightforward fact:

For any s > 0 and any a \,..., as £ {ko,..., } there exists A > 0 and s' > 0

such that: ifg aAviwith q Q crnd (a,v) (r/, /) or (a,v) \jf) and if
0 is &'-uniformly distributed along cp,a\,... ,as,z and if z is (1; a\,..., as;sf)~
transversal then gC9 is s-uniformly distributed along (p,a,a\,... ,as, z and z is

(1; a, a\,..., as; e)-transversal.
The latter as we will see will be useful for the proof of (2) of Proposition 5. Similar

Statements are valid and serve for proving (3)—(7) of the proposition.
We describe now how the finite induction is carried out to prove Proposition 5.

Assume that we are given A; for i ^ 6n — 5 and of/, £; for i ^ 6n — 4. Then we
choose Aßn-4 sufficiently large and &' such that if 0 is ^-uniformly distributed along
(p and z and if \z\ \ > rj then gen-40 is £6«-4-uniformly distributed along cp, kßn-4
and z is ((1,2), /:6«-4^6«-4)-transversal.

Now, we choose aen-3 such that (1) of Proposition 5 holds with / =6n — 5

and 0((p6n~3, q6n-3,z) is ^-uniformly distributed along cp and z. Hence (5) of
Proposition 5 holds.

Next, given A; for i ^ 6n — 6 and ot(, £; for i ^ 6n — 5, we choose Aen-5
sufficiently large and &en-4 such that if 0 is £6«-4-uniformly distributed along cp, kßn-4
and z and if z is ((1,2), kßn-4l £6«-4)-transversal then g6n-5® is £6«-5-uniformly
distributed along cp, ken-5»k^n-4 and z is (1, ken-5»k^n-4£6w-s)-transversal. Then

we choose aen-4 to guarantee (1) of Proposition 5 with / 6n — 6. We can also ask

from our choice of Aßn-5 and Sßn-4 and aen-4 that (7) of Proposition 5 holds.
We can continue inductively: for / decreasing from / 6n — 5 to / 3, we

assume given A\ for i ^ / — 2 and ar,, £; for i ^ / — 1, we choose A/_! and £/ such

that (2) of Proposition 5 holds, then we choose ai such that (1) of Proposition 5 holds,
that is \fl_x — //_2|A < sq/21 for all \i | ^ qp For l ^ 5n — 2 we also ask that (7)
of Proposition 5 holds.

For / 2, we choose Ai and £2, then «2 such that (3) of Proposition 5 holds and

l/i - /oL < £o/4 for all \i\ ^ ^2. To finish, we choose Ao and £1, then afi such

that (4) of Proposition 5 holds and |/J — ffx |

A < £o/2 for all |i | ^ #1.
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