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Analytic uniquely ergodic volume preserving maps on odd spheres

Bassam Fayad and Anatole Katok*

Abstract. We construct examples of volume-preserving uniquely ergodic (and hence minimal)
real-analytic diffeomorphisms on odd-dimensional spheres.
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1. Introduction

There is a general belief that topology of a manifold M with some low-dimensional
exceptions, does not influence ergodic properties of volume-preserving dynamical
systems on M and that restriction on topological properties of systems with strong
recurrence, say, come only from algebraic and differential topology rather than from
dynamics.

There are two aspects here: (i) the smooth realization problem that asks what iso-
morphism types or properties of measure-preserving transformations or flows appear
for volume-preserving dynamical systems on a compact manifold and (i) the phase
space dependence: given an isomorphism type or property (measurable or topolog-
ical) that appear in a smooth dynamical system on a compact manifold M describe
the class of manifolds that allow a system of the same kind.

We do not discuss the smooth realization problem here. It is enough to mention
that, while the only known restriction is finiteness of entropy (and it is not specific to
systems preserving a smooth measure and true for any Borel measure), very few sys-
tems that are naturally not smooth have been shown to allow a smooth realization, e.g.
certain translation on the infinite-dimensional tori, see [2], and certain unpublished
constructions. More is known about the phase space dependence. For example, using
a surjective continuous map diffeomorphic on the interior from the closed disc onto
an arbitrary compact manifold (closed or with boundary) of the same dimension one

*Based on research supported by the NSF grants 1002554,
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shows that every system that can be realized on the disc D" and is sulficiently flat
at the boundary can be realized on an arbitrary n-dimensional manifold. This was
used to show existence of a zero entropy ergodic diffeomorphisms and flows [1] and
Bemoulli transformations [4].

Beyond Bernoulli case and its simple concatenations with zero entropy examples,
smooth positive entropy examples are few and far between, see [11], [13]. In the
zero entropy setting however there is versatile approximation by conjugation method
originally introduced in [2] and sometimes called Anosov—Katok method. We use this
method in the present work and introduce basic scheme in Section 2.3. For a detailed
modern overview of the method see [6]. In the discrete time case as the starting point
the method requires an effective smooth action of the circle (for ergodic properties)
or free or at least locally free action of the circle (for properties involving behavior
of all orbits such as minimality or unique ergodicity). Similarly for the continuous
time constructions an action of the two-dimensional torus on the ambient manifold
is needed.

After along lull following the original development in the late 1960s to mid-1970s
this methods enjoyed a lively resurrection during the last decade or so. As examples
of important advances during that period one should mention a multiple frequency”
version of the method that allows to produce new classes of mixing examples [5],
[6] and realization of any circle rotation with a Liouvillean rotation number as a C*°
volume preserving diffeomorphism of any compact manifold with a circle action [7].

Applicability of the approximation by conjugation method critically depends on
construction of successive conjugating diffeomorphisms with prescribed behavior.
This conjugacies are invariably very large in the appropriate topologies but they
should lie in the space; e.g. all derivatives for the map and its inverse must exist
although they may be very large. What is required from those conjugacies is con-
trolled behavior in a large mart of the phase space. In the smooth category such
constructions are readily available since maps defined on various parts of the space
can be glued together.! However the situation changes drastically when one passes to
the real-analytic category. The most basic property required to start the construction
in a particular class is transitivity of the action by diffeomorphisms of that class on
pairs of points. In the setting of a real-analytic manifold M this means existence
of diffeomorphisms Hy , for any pair x,y € M such that Hy ,x = y such that
both A, , and their inverses extend to a fixed complex neighborhood of M. We are
not aware of such a fact for closed manifolds but for manifolds with boundaries or
for a restricted version, say requiring that A fixes a point z that is excluded from
the construction there are obvious difficulties. Those are situations that appear for
example in the most basic cases where effective analytic action of the circle exists:
the disc I and the two-dimensional sphere S?. Accordingly the following basic
question is still open:

"Notice however difficulties of the global character that appear in the symplectic versions of the method,
see [9].
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Question 1. Does there exist a real analytic area preserving diffeomorphism of 12
or §? that is ergodic and has zero entropy?

Other properties such as ergodicity and closeness to the identity, almost minimal-
ity, almost unique ergodicity, etc. are not available on the disc or the sphere in the
real analytic category.”

In this paper we consider the most basic situation where such a transitive family
commuting with a free action of the circle is present, namely the odd-dimensional
spheres. A construction of volume-preserving uniquely ergodic real-analytic diffeo-
morphisms on §2”*! was outlines in [6]. In the present paper we give complete
proofs.

Let us emphasize that spheres are considered to present the method in a succinct
way. Existence of a transitive family with large domain of analyticity is the key. For
example, our results extend fairly straightforwardly to the case of compact Lie groups,
the setting is explained in Section 2.2. An even more general setting is possible; it
will appear in a subsequent paper.

We also mention that in the more simple case of manifolds that are a product
of a circle and a compact Nilmanifolds or of a circle and a homogeneous spaces
of compact type, it was shown in [3] that there exists real analytic distributionally
uniquely ergodic diffeomorphisms (that is, diffeomorphisms for which the set of
invariant distributions has dimension 1).

2. Formulation of the result and outline of proof

2.1. Notations. We will consider the standard embedding of the sphere $2"~! into
R2" and the standard complexification R?" C C2". The vector-field defined in
Euclidean coordinates as vo(x1, ..., X2,) = 27(X2, —X1,..., X2n, X2n,—1) defines a
linear action of the circle S' which we will denote by ¢:,f € R, ¢ = 1d. In BEu-
clidean coordinates ¢;(xy, ..., x2,) = (cos(2m¢)xy + sin(2w#)xz, —sin{27w ) xg +
cos(2mt)xa, ..., co8(2mt)Xop—1 + SN2t )X2,, — SIN2 ) X2—1 + cOS(27 1) X027 ).
We will use the same notations vy and ¢’ for extensions to C2" or its subsets. We
will call a function on §2"~! endire if it extends to a holomorphic function on C2".
We say that the map is in C} if it extends to a holomorphic function in the ball
Bp = {z € C?" :|z| £ A}. We then use the notation 2 € C2 if h is entire. A map
f: 8271 — 8271 jssaid to be C¥ if its coordinate functions are C{. A diffeomor-
phism f: §?"7! — §2"~1jg C? if both f and ™! are C¥. Invertible linear maps
are obviously entire diffeomorphisms. Notice that product of entire diffeomorphisms
is an entire diffeomorphism so that entire diffeomorphisms form a group that we will
denote Ent(S2"~1). Its subgroup of entire diffeomorphisms preserving Lebesque

The original Bernoulli construction on the sphere or the disc from [10] can be carried out in the real-analytic
category with proper adjustments; see [8], [12].
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measure A is denoted by Ent(S2”~1, 1). A homeomorphism / of a compact metric
space X is uniquely ergodic if it has only one invariant Borel probability measure. If
h preserves a measure with full support (nonempty open sets have positive measure)
then unique ergodicity implies minimality (every orbit is dense). Unique ergodicity
is equivalent to a uniform distribution property: time averages of any continuous
function converge uniformly to a constant which is then equal to the integral with
respect to the invariant probability measure.

2.2. Formulation of the result. Fixn € N. ForA > 0Oand f, g € C} (S2"~ 1y we
write

1 = gls = max { max | ()~ (@) max [ 771(2) ¢~ @I}

Theorem 1. Foranyty € [0, 1] andanye > 0, A > 0, there exists a uniquely ergodic
volume preserving diffeomorphism f € C} (S2"71) that satisfies

|/ —¢"la <e.

Furthermore, the diffeomorphism f is obtained as a limit in the C norm of entire

maps of the form F, = H, o g™ o H'!, H, € Ent(S2"~1, ).

Remark 1. The starting point of our argument is existence of a double transitive
family of entire diffeomorphisms, commuting with the ! action, namely rotations.
Our argument works whenever such a family exists with modifications that are es-
sentially notational. Examples are compact connected L.ie groups and some of their
homogeneous spaces.

Here are more details on the compact Lie group setting. Let G be a compact
connected Lie group with probability Haar measure y. We denote by /, and 7,
correspondingly the left and right translation on G by the element g € G.

The group G can be embedded into SO(N, R) as a subgroup defined by polynomial
equations in the matrix coefficients. Without loss of generality we may assume that
the image of G is Zariski dense in SO(N, R). We consider the standard coordinate
embeddings SO(N, R) — R? < €7,

We will call a function on G entire if it extends to a holomorphic function in C n?,
Entire maps and diffeomorphisms of G are defined as in the previous section. Left
and right translations are given by linear maps in matrix coordinates and thus extend
to invertible linear maps of C n? and are thus entire diffeomorphisms. We use the
same notations for the extensions.

2.3. The approximation by conjugation construction scheme. We will use the ap-
proximation by conjugation method sometimes called Anosov—Katok method which
was originally introduced in [2].
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Without loss of generality we can assume that fy is rational, say fp = Py/ Qo
where Py and Qg are relatively prime integers.

We will construct the desired diffeomorphism f inductively, as lim,—, o [, with
F_i = ¢'. Each diffeomorphism F,, n = 0, will be conjugate via an entire
diffeomorphism H,, to a rational element of the action ¢ with rapidly increasing
periods:

F, = H, O¢Pn+1/Qn+1 5 Hn_l-

The conjugating diffeomorphisms are defined inductively as’
Hn = n—1 Ohfn, with hn OQOP”/Q” — qg-Pn/Qn Oh,n.

Thus, at the #™ step of the construction the parameters are the diffeomorphism
h, € Ent(S?"~!, 1) and the rational 7,41 = Pyy1/Qn+1. First one chooses the
diffeomorphism 7,, to make all orbits of the S! action ¢,, defined by

gﬁn:Hno(poHn_l:Hn_lohnoqgohgloHn__ll (1)

distributed in an equivalent way to Lebesgue measure, in the sense that Birkhoff aver-
ages of continuous functions along the ¢,, action become as 7 tends to oo proportional
with a fixed ratio distortion to the Lebesgue averages of these functions. This will be
sufficient to guarantee unique ergodicity of the limit map.

Naturally, H,, although entire, is likely to have large derivatives, and in partic-
ular to be very large on Ba. Thus, f;41 has to be chosen with a sufficiently large
denominator (J,, 4+ to make the orbits of the finite subgroup

Hno(PkI”"'lOHn_l, k=0, 01— L

of the action ¢,, approximate the continuous orbits of ¢,, sufficiently well to maintain
the uniform distribution almost without any loss of precision. Moreover, for the
convergence of the construction in the analytic norms, observe that the S action ¢,
is entire (since f1,, H, 1 and ¢ are entire), thus on every compact subset of C2",
hygtn+th V' — @™ if t,41 — t,. Hence the latter further constraint on the choice
of #,41 will guarantee closeness on Ba between £, and F,, and between their
inverses.

Since there are no other restrictions on the choice of 7,41 the only essential part
of the inductive step is the construction of the diffeomorphism /,,. It is here where
the difficulties of the analytic case are very obvious. Since those maps are very
large in the real domain control of the complexification presents great problems. A
natural approach inspired by the smooth case would be to construct smooth maps
first and then to make some kind of approximation (by polynomials or other special
classes of functions) to guarantee analyticity in a large domain. The problem however

3Tn our case, we will actually have instead of the equality that &1, 0 @ F7/ <% o b1 is close in the C% norm
to er"l/Q” (see Section 2.4 below).
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remains since even if such a general approximation procedure works the inverses
would have singularities close to the real domain and the construction collapses.
Thus it is necessary to find conjugating diffeomorphisms of a special form which
may be inverted more or less explicitly to guarantee analyticity of both maps and
their inverses in a large complex domain. We now proceed to showing how to do this
in the specific case in question.

2.4. Making S! orbits uniformly distributed on the sphere. The action ¢, which
may of course be considered as a subgroup of the orthogonal group SO(2#n), has a
large centralizer in SO(2#). An easy way to see it is to identify R2" with C" via the
map

(xls X255 X2n—1> x2n) —F (xl S b e j!.)CZn)-

In the complex coordinates ¢ becomes scalar action
0 (z1....,2,) = (exp2mitzy,...,exp2mitz,).

The unitary group U(n) commutes with ¢. For our purposes it is useful to notice
that already the special unitary group SU(#) which has finite intersection with g, acts
transitively on the sphere S$2"~1,

Assume we are given a collection of one-parameter compact subgroups of period
one kg, ..., ky acting transitively on S2”~1. Given any #, we want to construct
h, € Ent(S2"~1 1) and ,41 such that F, = h, o @ntl o hn_l is arbitrarily close
to @™ and such that the arcs of orbits of F, of length 0,4, for any x € §2"~1,
that we denote ¢ (Fn, O n+1,x), are distributed with high precision in the same way
as the family ¢'kg° .. .k;VN_i_“Llly, (t,80.....5n+1) € TY¥2 for some y e §27~1
that depends on x. The latter distribution is equivalent to L.ebesgue measure. The
precision with which the orbits O(F,, Q,4 1, x) become distributed as the transitive
family can be made so high that even after application of the conjugacy H,_; it
still holds that the orbits O(F;,, 0,41, x) are distributed in an equivalent way to the
Lebesgue measure.

The construction of A, and Fn is itself done using a finite number of successive
conjugations of periodic times of the ¢ action. This is the main ingredient in the
construction and we now describe it.

We start with pg /g9 = ag = 1,. We consider an entire function g that is constant
on any ko orbit but such that (¢’ (-)) depends wildly on ¢ and ¥o(p®°(-)) = ¥o(-)
(the translation groups k; are chosen so that such functions do exist and are simple
to produce). Then if we let gg = kg’o we get that go o 9?0 o g5'! = ¢*. Asa
consequence of our choices, we observe that for oy = p1/g; sufficiently close to aqg
we have that fy = go o 9®! o g5l is close to f—; = ¢*0 while due to the twisting
of Y under the ¢! action the orbits of fu will be distributed as the continuous T2
orbits ¢* kL, (s,10) € T2.
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In the same way we introduce g1 = k;ﬂl that commutes with ¢*! and then choose
o, sufficiently close to @y so that f; = gogl(p‘ngl_lgal is close to f; while the
orbits of fq are distributed as the families ¢° kgoki‘, (s,%o,11) € T?. We then follow
this induction until we obtain oy 41 and fy = go ... gne*N 1 g;,l ... g5 ! such that
fn iscloseto f_; = ¢ while its orbits are distributed as the families ¢* k> ... kY,
(s,f0,....tn) € T¥*2 Thus we let £, 41 = oy11, hn = Zo...gn,and F, = fu
and the step # construction is accomplished.

Actually, in the above scheme we omitted an extra difficulty that is related to the
control of every orbit that is necessary for unique ergodicty. Namely the points x
for which the orbit O( fy, x, g1) is well distributed are those for which the yry twist
is effective and this excludes a small measure set of points (suppose for example
that y¥9 depends only on the coordinate zy, then ¥o(¢’(z)) does not depend on ¢ for
points z such that z; = 0). To overcome this difficulty a certain number of additional
conjugacies Ky +1, - - - , kag must be applied to make sure that each point is affected by
the twist in all the directions kg, .. ., kx. A consequence of this extra difficulty is that
equi-distribution of different points will happen at different times and for different
indices in the maps f;, [ € [N, M].

3. Proof of Theorem 1

3.1. Criterion for unique ergodicity. Reduction to the main induction step

Definition 1. Given C > 0 and & > 0, a finite set  is said to be (C, g)-uniform-
ly distributed on a manifold X if for any ball B C X of radius £ we have that
#(O N B)/#O € (A(B)/C,CA(B)).

Definition 2. A finite collection of one-parameter compact subgroups of period 1:
kg, ..., ky € SU(n) is said to have a transitive action on X if forall x, y € X there
exists fo,...,In € [0, 1) such that y = kéo .. .kj(}vx.

Let X := S?"~! In the sequel we will obtain and fix a finite collection of one-
parameter compact subgroups of period 1: ky,...,kx € SU(n) whose action is
transitive on X.

Definition 3. A finite set ¢ is said to be e-uniformly distributed along ky, ..., k7
and x if for any ball B of radius £ in [0, 1]7F" we have that #(® N kBx)/#0 €
((1 — &)Leb(B), (1 + £)Leb(B)). We used the notation k&x := {y =k’ ... kiLx :
(ty,....1L) € B}.

Proposition 1. There exists Co > O such that for any & > O, there exists 1 > O such
that for any x € X we have the following: If a finite set O is n-uniformly distributed
along ky = ky,....kx and x, then O is (Cy, &)-uniformly distributed on X .
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Proof. The proof is straightforward by transitivity and periodicity of the action by
ko, ..., ky and compactness of X. ]

We now state a general criterion that we will use to prove unique ergodicity of a

volume preserving transformations f. For x € X and m € N, we denote the arcs of
orbits O(f, M, x):={f"(x)y . m=1,...,M}.

Proposition 2. Let | be a volume preserving homeomorphism on X. Assume that
there exists C > O such that the following holds: Forany ¢ > Oand any x € X, there
exists M € N, for which O( f, M, x) is (C, &)-uniformly distributed on X. Then f

is uniquely ergodic.
Proof. The assumption implies that given any continuous function ¥ : X — C, and
any x € X, there exists a sequence M,, — oo such that

Muy—1

- vt ([ vaaasee [ vane)

My

i

with C" = 2C. It follows that all the invariant probability measures by f are
equivalent to Lebesgue, whence unique ergodicty. L

We can now state what we will request at a given step of our construction to
guarantee unique ergodicity of the limiting transformation.

Proposition 3. If foranyfy € T and any e > O and A > O thereexisist € T and a
diffeomorphism h € Ent(X, &) such that the entive diffeomorphism f = ho@®oh™!
satisfies the following:

* |f-¢®la<e
» There exists M € N with the property that for every x € X, there exist y € X and
M'(x) < M suchthat O(f, M', x) is e-uniformly distributed along ky, . . . , ky
and y.
Then it is possible to construct a transformation that satisfies the requirements of
Theorem 1.

Proof. Assume that sequences M, € N, 1, and H, € Ent(X, A) have been con-
structed suchthat H_; =Idand F,, = H, o ¢'n+1l o Hn_1 satisfies

(Hp): | Fy — Fyei|p < &/2" foranyn = O; andforany0 < j <n, andanyx € X,
there exists M;(x) < M; such that @(Fn,Mj,x) is (Co, 1/(j + 1))-uniformly
distributed in X .

Clearly the first step n = 0 follows from Proposition 1 and the assumption. At
step n, given H,,, observe that there exists €, such thatif 4,1 and #,, 4, and M,, | are
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such that f;, 41 = hyqq o @int2 Ok;_}_l satisfies that for any x € X there exists y and
M, (x) < My4q such that O frt1, ﬂrg_,_l, x) is ep-uniformly distributed along
ko, ...,ky and y, then, using Proposition 1, F;,+1 = H, ¢ JFn+1 o Hn_1 satisfies that
O(Fp1. M, (x), x) is (Co. 1/ (n + 2))-uniformly distributed in X for any x € X
(we took M, (x) = ]\ZI,;H(H;l(x)) < M, +1). In addition we can require due to
our assumption that £, be arbitrarily close to ¢'»+! . Asa consequence of the latter
I, 41 will be arbitrarily close to F;, and the requirements of (#;41) will hold if we
take H,4+1 = H, © hn+1.

The limiting diffeomorphism f = lim F,, thus satisfies that O(f, M J,f()c), x)is
(Co, 1/(j +1))-uniformly distributed in X. The unique ergodicity criterion of Propo-
sition 2 being satisfied by f, Theorem 1 follows. L

It only remains to prove the main inductive step given by Proposition 3. Before
we do this we shall introduce now the special translations that we will use in order to
move the orbits transversally to the g-action.

3.2. A special family of translations. Foranyqg € N andi € {1,...,n}, wedefine
Vig(z) = Re(z]) and y;4(z) = Re((z1 — z;)?). Clearly i 4 and x; 4 are entire,
since they are polynomials in the variables xy, ..., x2,. A crucial property is that
go Pl = gforg =g or fig.

The translations we will use are

5?(215---52n) = (le---sZi—lseiszZisZi+ls---szn)s

I’f(zla s sy Zn) = (ZI,S: 22: w o ZI—I, Zi,S: ZI+1: - e :Zﬁ‘,):
B o = 142 ((eizj” ¥ yzy 4 (27 — l)z,-),
G =t 12 ((eizj” —1)zy + (eizj” + l)z,-).

Note that under the action by 77 we have that z; ; + 2z, = e'27 (21 4 z,) while

.. . . Atfri gy — — A
Z1.s — Z2,s = (21 — z2). This is crucial to insure that (Ei T/;”"‘?) L g Vi and the

similar property for rI.AXi 7. Also, as a consequence of our definitions we have that
forany A > 0,
Ay, Ay;, . g
E 7 0p1gz = @pig€; 7z, forall j # i,
Ax;, Ax;,
T Ppia? = PplgT U2
Observe finally that Efl Vie and E:A% Y are entire maps as well as rI.AXi’q and ri_Ax HE

Propositiond. let kg = &1, k1 =10, ko = &3, ks =8&3,... . ky = &, kny1 = 12,
knta = 82, kngs = s, kpta = E3,....kap—3 = T, kan—2 = &u, k3n—1 = 12,
kaw = &2, kant1 = 13, Ksut2 = &3,...,ksp—s = T, ksp—a = &4. Then the
sequence kq., ..., ks,_4 is transitive.
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Remark 2. The translationk; = t; is not necessary in making the sequence transitive
but will be useful later when we will build the conjugacy to make sure that the shear
along the z; direction is triggered.

The proof of Proposition 4 will be an immediate consequence of Lemma 2 below.

Lemma 1. Fix j = 1,...,n and (z1,...,2,) € X. For any p1, p; such that
pT + pf = |z1|* + |z;|? there exist t,s € [0,1|? such that z/ = tjé‘}z satisfies
211 = p1 and |2} = p;.

Proof. Letzj = rjeizngf. We have that

!

Py = e ( COS(JTS)TleiZHGI

— i sin(ms)rae' 2™ eiZI”),

hence if we choosei,r +7/2+0; = 61|2x] and tan(zs) = ry/r, we get that z{ = 0
hence|z}|? = r{+r?. Sincez; = '™ (~i sin(wrs)r1e 2% fcos(ms)rpet 270 ¢t271)
it1s also poss1ble to Choose { and s such that z} = (. By continuity any value between

0and 7 + r 1s possible for |z |? and the lemma is proved. (]

Lemma 2. Given any py, ..., py such that p% + -+ p2=1andanyz € X, there
exist 11, ..., tan—a such that

ol = r£4n—4g§;4n—5 N -T,?”E;?”_l r;Zn—Zs;Zn—S N .?.‘,?E,?Z

satisfies |z;| = p; forevery j = 1,....n

Proof. Making repeatedly use of Lemma 1 we first obtain ¢4, ..., {2,—2 such that
B = réz”_zfg‘tz”_:* T2E) 2 satisfies zZ; = 0O forevery j = 2, ...,n. Next we
choose 5,1 and f,, such that 2 = ¢/2n£2n=1Z gatisfies |zn | = p, : thisis
possible by Lemma 1 since 1 = |Z1|? + |Z,|* = p2. We proceed inductively so that
at each step j < n — 2 we have that |ZIJ)| =pyforn—j <1 <nand z("’) =0
for | </ < n — j. Indeed, since |Z(J)|2 + |zr(1"’)1 P=1-pf—=pi; =
pn_j_l, we can apply Lemma 1 and choose 5,4 2(;+1)—1 and £, 42(¢;+1) such that
=(i 12+2 —2) ul2n+2¢i—2)—1 + :

zU+D = T, i )En ”j_g“’ =120U) satisfies |Z?E,JJ )1| = el SINCR Tz
and &,_ ;1 leave the r'™ coordinates intact for r # 1 and r # n — j — 1 we still have
|2‘-_,(J+1)|=p,-_rf0rn—j <l <n. 0

Proof of Proposition 4. From Lemma 2 it follows that with an appropriate choice of

Sn+1s- - - »S5n—4 1t 1s possible to obtain arbitrary moduli for the coordinates of z =
k:t’fll 5 .k;f,t”_j'z. Next, with an appropriate choice of sg,. .., sy, such that s = 0
we can further fix the arguments of z/ = ky° ... k;"z = £§[°£,%€3° ... £,"Z, and the

proof of Proposition 4 is complete. L
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3.3. The inductive step of the successive conjugation construction. The novelty
in our construction is that the each step of the successive conjugacy is itself constructed
through an inductive procedure that allows to saturate all the directions of the transitive
sequence of rotations.

We further expand our transitive sequence of k;’s by introducing ks, —3 = 7, . .
ken—s = 12, ken—a = §2.

Welet M = 6n — 4.

For a choice (to be determined later) of sequences Ag, ..., Ay and go, ..., qMm,
we let
go = k;lowz’qo, ko = &1,
g1 = kfhxz'ql, k1 =12,
g2 = k;ﬂrl’qza ko = &,
83 = k?WLqS, ks = &3,

Ay ”
g?’l :kn T/;Lq H kn :gl’la

next, we let
En+1 = k:i—li—l)(lqn_._l’ knt1 = 12,
8n+2 = k::;ﬂh'qnﬂ, kn+1 = &2,
8s5n—5 = k:,fjgsngsn_s, kSn—S = Tn,
g5n—4 = k;ffrl-WLQS”_‘l, kSn—4 = éna
and finally

Asp—3X2.q
_ 45n—3 _
gsn—3 = ks,_4 e Ksnes = G

AGH—SXZ,Qé =5
6n—5 = k6n_5 Ty Ken—s = Ty

Agn—a¥1 .4 —4
gen—a4 = k6n_4 Bn . kepn—a = 52-

We define foreach! < M, Gy =ggo---0g;.

Definition 4. We say that z is (m;aq, ..., as;v)-transversal if for any i # m we
havefor A = 0and A = 1,

Leb{ty, ... fs: |A(@}l ... a5z); — (@Y .. .a%z),| < v} < Cv

where C 1s a constant that does not depend on z or v.
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Notice that if z is such that |z1| > 7 then for any v > 0 sufficiently small
Leb{: : |(§}z)j —z1| < v} < Cy,

a property that we denote by z is ((1, j), §;; v)-transversal.

Proposition 5. Given any ap = po/qo € [0,1), anyn > 0, A > Oand e > 0,
there exist sequences Ay, ..., Ay, 01 = P1/q1, ... 0pm+1 = PM+1/9Mm+1, and
el = ¢y = g1 = ... = ey such that if we denote f; = Gz(p“""‘G‘-_,_l, o1 = %0
we have the following.

W) | ffy — fly <eo/2F forall|i| < qrpyand M —1 21 2 —1.

(2) ForanyM > 1 > 2andany M = L = I, and any O such that O is e;-uniformly

distributed along ¢, ki, ...k, z and if z is (1; kg, ...,k ; e1)-transversal,
then g1_10 is e;_1-uniformly distributed along @, ki_1,.... k1, z, and z is
(L:kj_q1.ky, ... . kp:e1_1)-transversal.

(3) (Case! = 2). Forany M = L = 2, and for any O such that O is e;-uni-
formly distributed along @, ka, ... k1, z and if z is (L; ko, ..., kp; e2)-trans-
versal, then g10 is ey-uniformly distributed along @, ky,...,k;, z, and z is
(2; k1, ka2, ..., kp;e1)-transversal (the difference form the previous property is
in the change of the transverse coordinate from 1 to 2).

4) (Casel = 1). If O is e1-uniformly distributed along ¢, k1, ..., kr, z and z is
(2:k1,ka, ... k&) -transversal, then goQ is eg-uniformly distributed along
@’ kD?"'jkL, Z'

(5) If |z1| > 1 then gen—a(O(@*" 3, qon—3.2)) is een—a-uniformly distributed
along ¢, ken—gq and z, and z is ((1,2): ken—a; E6n—a)-transversal.

(6) If O is ggn—_s-uniformly distributed along ¢, k¢y—4 and z, and if moreover z is

((1,2), ken—a; e6n—a)-transversal, then gen—s0O is een—s-uniformly distributed
along ¢, ken_s,ken_a, and z is (1, kgn_s, kgn_a; Een_s)-transversal.

(7) Iffor somen =z j = 2 we have that |21 — z;| > 1, then

Gon—j—3(O@"" 72 gen_i—2,2))

is £6n— j—3-uniformly distributed along ken—j—3 and z, and, furthermore, z is
(1; ken—j—3: €6n—j—3)-transversal.

Proof of Theorem 1. Before we prove Proposition 5 we show how it implies that
= Gyep*M+1 GA_JI satisfies the requirements of Proposition 3, from where The-
orem 1 would follow.

First of all, it follows from (1) of Proposition 5 and a choice of ap such that
o — fo| < eo/2 that | fir — @05 < eo.
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Givenany x € X, we claim that there exists N </ < M suchthat O( f7,q741. x)
is eg-uniformly distributed along {k¢,...,%k;} and some y € X. Due to (1) of
Proposition 5 this is sufficient to yield a similar property for fas (if we replace gy by
). But uniform distribution along {kq, ..., k;} yields a fortiori uniform distribution
along {ky, ..., kx} and hence the requirements of Proposition 3 will be satisfied.

To prove our claim, we first need the following immediate lemma.

Lemma 3. Define n = L/4"! Then, given any z € X, either |Z{| > 1 or there
exists j € [2.n] suchthat z = gen—j—2 ... gen—aZ satisfies |z1 — zj| > n.

Proof of Lemma 3. Define ; = 4/ /4"t for j = 1,...,n. If |Z;| < g while
|Z2| = n, then since z = ggy—4Z satisfies z1 = 2 and |22| |Z2| we get that
|z1 — 22| = 2 — 1 = 211. We now apply a similar argument for j > 2.

We first show by induction on j that if |Z;| < 5, fori = 1,...,j then 2/ =
S 72252 Z satisfies |z} | < 2n; for any choice of #1, . .., ¢;. Indeed if we suppose

J
; : L = . +1
the latter true up to j and assume in addition that |Z; 41| < 7,4y thenz := 1 JJ+1 i

satisfies z; = 1/2 ((€"275+1 + 1)z] + (€' 275+ — D)Z;41) < 205+ 0541 < 27541
(we used that z/ it = = Zj1i).

Now, if on the contrary we suppose that |Z; | < m fori =1,...,j while |Z; 44| =
nj+1 and use the same notations as above for z’ and z then since zj41 — 21 =
Z}+1 —z] = Zj41 —z{ we getthat |z; 41 — z1| = ;41 — 2175 = 21

But since Y, |Z;|* = 1, we have that if |Z| < 7, then there necessarily exists
aj €[l,n—1]suchthat |Z;| < 5 fori = 1,...,j while |Zj41| = nj41. This
finishes the proof of the lemma. (]

Back to the requirements of Proposition 3, given x € X we let Z = GZl ,x.
Then we have two alternatives
o If |Z1| > 5, we prove that

O( fon—a.q46n—3, X)

is e-uniformly distributed along {ky, .. ., k¢n—4} and Z. This amounts to proving that
Gon—a(O (%3 gen—3, 7)) is go-uniformly distributed along {ky, ..., k¢n—q} and
z. To obtain the latter, we apply (5) of Proposition 5, then (6), and then (2) inductively
until we finish with (3) then (4).

o If |Zy| < n, then for j as in Lemma 3 we let z = gen—j—2... gen—4Z =
G6n_1_3x, and we prove that

O(fon—j—3.q46n—j—2,x)

is go-uniformly distributed along {ko, ..., ken—;—3} and z. Indeed, it is sufficient
to prove that Gg,—;—3(Q(@*67—i=2, ggn_ i3, 2)) is £o-uniformly distributed along
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{ko.....ken—j—3yand z. Since |zq — z;| > 1, we can apply (6) of Proposition 5 and
then (2) inductively until we finish with (3) then (4).
The proof of Theorem 1 is hence completed. 0

Proof of Proposition 5. Proposition 5 is proved by a finite induction of which the
main building block is provided by the following straightforward fact:

Foranye > 0 and any ay,...,as € {ko, ..., kp} there exists A > O and &’ > 0
such that: if g = a Ve withq = Q and (a,v) = (zj, x) or(a.v) = (&.¥) and if
O is &'-uniformly distributed along ¢,ay1,...,as,z and if z is (1;aq,...,a5;8")-
transversal then g© is e-uniformly distributed along ¢,a,ay,...,a5,2z and z is
(L;a,aq,...,as;e)transversal.

The latter as we will see will be useful for the proof of (2) of Proposition 5. Similar
statements are valid and serve for proving (3)—(7) of the proposition.

We describe now how the finite induction is carried out to prove Proposition 5.
Assume that we are given A; fori < 6n — 5and w;, & fori < 6n — 4. Then we
choose Ag,—4 sufficiently large and &’ such that it @ is ¢’-uniformly distributed along
@ and z and if |z1| > 75 then ggy—40 is egy—g-uniformly distributed along ¢, kgp—4
and z is ({1, 2), kgn—4; £6n—4)-transversal.

Now, we choose agn—3 such that (1) of Proposition 5 holds with [ = 6n — 5
and O(p®"3, den—3,z) 18 &-uniformly distributed along ¢ and z. Hence (5) of
Proposition 5 holds.

Next, given A; fori < 6n —6 and ¢;, &; fori < 6n — 5, we choose Ag,—s suffi-
ciently large and £¢,,—4 such that if O is g¢,—4-uniformly distributed along ¢, kg,—4
and z and if z is ({1, 2), kgn—4; E6n—a)-transversal then g¢,—5O is gg,—s-uniformly
distributed along ¢, ke,—5, ken—a and z is (1, ken—s, ken—a; £6n—s)-transversal. Then
we choose ag,—4 to guarantee (1) of Proposition 5 with/ = 6n — 6. We can also ask
from our choice of Ag;—5 and £¢4,—4 and ag,—4 that (7) of Proposition 5 holds.

We can continue inductively: for / decreasing from/ = 6n —5to ! = 3, we
assume given A; fori </ —2and o;, &; fori </ — 1, we choose 4;_1 and &; such
that (2) of Proposition 5 holds, then we choose «; such that (1) of Proposition 5 holds,
that is |ﬁ_1 — fli—2|A < g9/2 for all |i| < g;. Forl = 5n — 2 we also ask that (7)
of Proposition 5 holds.

For/ = 2, we choose A and &5, then o, such that (3) of Proposition 5 holds and
| AP = |, < go/4forall |i| € ¢,. To finish, we choose Ay and &y, then oy such
that (4) of Proposition 5 holds and | f; — /2|, < go/2 forall |i| < g;. 0
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