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Positively curved Riemannian metrics with logarithmic symmetry
rank bounds

Lee Kennard

Abstract. We prove an obstruction at the level of rational cohomology to the existence of
positively curved metrics with large symmetry rank. The symmetry rank bound is logarithmic
in the dimension of the manifold. As one application, we provide evidence for a generalized
conjecture of H. Hopf, which states that no symmetric space of rank at least two admits a metric
with positive curvature. Other applications concern product manifolds, connected sums, and
manifolds with nontrivial fundamental group.

Mathematics Subject Classification (2010). 53C20.

Keywords. Positive sectional curvature, symmetry, Hopf conjecture, symmetric spaces.

A well-known conjecture of Hopf states that S x §2 admits no metric of positive
sectional curvature. More generally, one might ask whether any nontrivial product
of compact manifolds admits a metric with positive sectional curvature.

Another way to generalize this conjecture is to observe that S x §2 is a compact,
rank two symmetric space. While the compact, one-connected rank one symmetric
spaces, i.e., S", RP", CP", HP", and CalP?, admit metrics with positive sectional
curvature, it is conjectured that no symmetric space of rank greater than one admits
such a metric (see, for example, Ziller [29]).

Since so little was known about these questions, K. Grove proposed a research
program in which attention is restricted to metrics with large symmetry. Beginning
with Hsiang and Kleiner [17] and continuing with Grove—Searle [14], Rong [22],
Fang and Rong [9], and Wilking [26], much has been achieved under the additional
assumption of symmetry (see also Wilking [27] and Grove [13] for surveys).

Our first result provides evidence for the generalized conjecture of Hopf under
the assumption of symmetry:

Theorem A. Suppose M" has the rational cohomology of a one-connected, compact
symmetric space N. If M admits a positively curved Riemannian metric with sym-
metry rank at least 21og,(n) + 7, then N is a product of spheres times either a rank
one symmetric space or a vank p Grassmannian SO(p + q)/SO(p) x SO(q) with

p €4{2,3}.
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Recall that the symmetry rank is defined as the rank of the isometry group. The
assumption that the symmetry rank is at least r is equivalent to the existence of an
effective, isometric 77 -action on M .

If we restrict to the case where N is an irreducible symmetric space, then product
manifolds are excluded and N has rank at most three. See Theorem 3.3 for a more
detailed statement. For example, N cannot be $2 x 82 x $"* or §* x §"~% with
1 <k < 16.

The obstruction (see Theorem C) we prove in order to obtain Theorem A is
at the level of rational cohomology in small degrees. Since taking products with
spheres does not affect cohomology in small degrees, and since the Grassmannians
SO(2 + ¢g)/SO(2) x SO(g) and SO(3 + q)/SO(3) x SO(g) have the same rational
cohomology ring in small degrees as the complex and quaternionic projective spaces,
respectively, our methods cannot exclude them.

The second main result is related to the Bott conjecture and a second conjecture of
Hopf. Recall that the Bott conjecture states that a nonnegatively curved manifold is
rationally elliptic, which, in particular, implies that the Euler characteristic is positive
if and only if the odd Betti numbers vanish (see Chapter 32 of Felix, Halperin, and
Thomas [10]). The conjecture of Hopf states that the Euler characteristic of an even-
dimensional, positively curved manifold is positive. Hence the conjectures together
would imply that even-dimensional, positively curved manifolds have vanishing odd
Betti numbers. The second part of the following theorem provides some evidence for
this statement:

Theorem B. Let n > ¢ > 2, and let M" be a connected, closed, positively curved
Riemannian manifold with symmetry rank at least 2log,(n) + % — 1. The following
hold:

» The Betti numbers by; (M) for 2i < ¢ agree with those of S", CP%, or HP%.
e Ifn =0mod 4, then bai 1 (M) =0 for2i +1 < c.

In order to explain our main topological result, which is the crucial step in proving
Theorems A and B, we make the following definition:

Definition. For a closed, one-connected manifold M, we say that H*(M; Q) is 4-
periodic up to degree ¢ if there exists x € H*(M; Q) such that the map H*(M; Q) —
H'4(M: Q) given by y — xy is a surjection for 0 < i < ¢ — 4 and an injection
forQ <i <c—4. If H*(M; Q) is 4-periodic up to degree dim(M ), we simply say
that H*(M; Q) is 4-periodic.

In particular, if x # 0 in the definition, then H*(M: Q) = Q for0 < s <
However we abuse notation slightly by allowing x = 0, hence we say that a rational
(¢ — 1)-connected space has 4-periodic rational cohomology up to degree c.

— o

¥
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Examples of n-manifolds with 4-periodic rational cohomology are S”, CPZ,
HP?, §2 x HIP%, and S x HP"%". By taking a product of one of these spaces
with any rationally (¢ — 1)-connected space, we obtain examples of spaces with
4-periodic rational cohomology up to degree c.

We can now state the main cohomological obstruction to the existence of positively
curved metrics with large symmetry rank.

Theorem C. Letn > ¢ = 2. If M" is a closed, one-connected Riemannian manifold

with positive sectional curvature and symmetry rank at least 2log,(n) + 5 — 1, then
H*(M Q) is 4-periodic up to degree c.

We remark that, if ¢ > %, the conclusion together with Poincaré duality implies

that M has 4-periodic rational cohomology. On the other hand, ¢ > % already implies
that M ishomotopy equivalentto S*, CIP 7 or HP # (see Theorem 2 in Wilking [26]).
Similarly, ¢ > % and n > 6000 already implies that I7*(M; k) is 4-periodic for any
coefficient field k& (see Theorem 5 in [26]). In our applications, we will think of ¢ as
a fixed constant, which is small relative to 7.

For example, taking ¢ = 16 and restricting to the situation where M has the ratio-
nal cohomology of a compact symmetric space, we obtain Theorem A by comparing
this obstruction with the classification of symmetric spaces. See Section 3 for details.

Another, more immediate consequence of Theorem C follows by taking ¢ = 6
and concluding that the fourth Betti number of M is at most 1:

Corollary. No nontrivial connected sum with summands CP" and HPZ admits a
positively curved metric with symmetry rank at least 2log,(4n).

On the other hand, the manifolds CP" # CP", CP" # HP 2, and HP? # HP 2
admit metrics, called Cheeger metrics, with nonnegative curvature (see Cheeger [6]).

A final corollary, which we prove in the discussion following Theorem 2.2, relates
to a conjecture of Chern. The conjecture is that, for a positively curved manifold,
every abelian subgroup of the fundamental group is cyclic. While this holds for
spherical space forms (see Wolf [28]) and even-dimensional manifolds by a classical
theorem of Synge, there are counterexamples in general (see Shankar [24], Bazaikin
[2], and Grove—Shankar [15]). However modified versions of the Chern conjecture
have been verified under the additional assumption that the symmetry rank is at least a
linear function of the dimension (see, for example, Wilking [26], Frank—Rong—Wang
[11], Wang [25], and Rong—Wang [23]).

Corollary. If M*"+! is a connected, closed manifold with positive curvature and
symmetry rank at least 2log,(4n + 1), then m1(M) acts freely and isometrically
on some positively curved rational homology (4k + 1)-sphere. As a consequence,
(M) = 7’ x 7" where ' is cyclic with order a power of two and " has odd
order.
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In the proofs of these results, we use many ideas from [26], [19], including
Wilking’s connectedness theorem in [26] and the periodicity theorem in [19]. These
theorems place restrictions on the cohomology of a closed, positively curved manifold
in the presence of totally geodesic submanifolds of small codimension (see Section 1).
Since fixed-point sets of isometries are totally geodesic, these become powerful tools
in the presence of symmetry. The connection made in [26] to the theory of error-
correcting codes also plays a role. Here we will use the Griesmer bound, which is
well suited to the logarithmic symmetry rank bound with which we are working.

We actually obtain a stronger version of Theorem C, namely Theorem 2.2. It
states that, given the assumptions of Theorem C, there exists a c-connected inclusion
P C M of a compact submanifold P such that H*(P; Q) is 4-periodic. Moreover,
one can ensure thatdim P = dim M mod 4 and dim P > ¢ 4 4 > 6. The advantage
of this statement is that one can apply Poincaré duality to conclude the following
about P:

* the subring of H*(P; Q) made up of elements of even degree is isomorphic to
that of §", CP%, HP ¥, or §% x HP*T", and
* ifdim M = 0 mod 4, then £ has vanishing odd-dimensional cohomology.
Fori < c,themap H (M ; Q) — H'(P;Q)induced by inclusion is anisomorphism,
so one can use these observations to conclude Theorem B.

This paper is organized as follows. In Section 1, we quote preliminary results
and prove a lemma using the Griesmer bound. In Section 2, we prove Theorems 2.2
and C. In Section 3, we study the topological obstructions imposed by Theorem C
and prove Theorem A.

Acknowledgements. This work is part of the author’s Ph.D. thesis. The author would
like to thank his advisor, Wolfgang Ziller, for helpful comments and for suggesting
this line of work. The author would also like to thank Anand Dessai for useful
discussions and Daryl Cooper and Darren Long for directing me to [8]. The author
is partially supported by NSF grants DMS-1045292 and DMS-1404670.

1. Preliminaries and the Griesmer bound

An important result for this work is Wilking’s connectedness theorem:

Theorem 1.1 (Connectedness Theorem, [26]). Suppose M" is a closed Riemannian
manifold with positive sectional curvature.

(1) If N"% is a closed, embedded, totally geodesic submanifold of M, then N —
M is (n — 2k + 1)-connected.

(2) If N U and N, ~*2 4re closed, embedded, totally geodesic submanifolds of
M with ky < ky, then Ny N\ Ny < N, is (n — k1 — k3)-connected.
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Recall an inclusion N — M is called ¢-connected if m; (M, N) = Oforalli < c.
It follows from the relative Hurewicz theorem that the induced map H;(N;Z) —
H;(M;Z) is an isomorphism for i < ¢ and a surjection for i = ¢. The following
is a topological consequence of highly connected inclusions of closed, orientable
manifolds:

Theorem 1.2 ([26]). Let M™ and N"~* be connected, closed, orientable manifolds.
IfN — M is (n — k — I)-connected with n — k — 21 > 0, then there exists ¢ €
HY(M: 2) such that the maps H' (M;Z) — H'T*(M:7) given by x — ex are
surjective for | <i < n—k — 1 and injective forl <i <n—k —1.

In particular, in the case where / = 0, the integral cohomology of M is k-periodic
according to the following definition:

Definition 1.3. For a space M. a coefficient ring R, and a positive integer ¢, we
say that H*(M; R) is k-periodic up to degree ¢ if M is connected and there exists
x € H*(M: R) such that the map H'(M; R) — H't*(M:R) given by y > xy is
a surjection for O <7 < ¢ —k and an injection for0 < i <c¢ — k.

If, in addition, M is a c-dimensional, closed, R-orientable manifold, we say that
H*(M; R) is k-periodic.

In [19], the action of the Steenrod algebra was exploited to prove the following:

Theorem 1.4 (Periodicity Theorem, [19]). Let M" be a closed, one-connected Rie-

mannian manifold with positive sectional curvature. Let N{t_kl and Nzn_k2 be con-
nected, closed, embedded, totally geodesic submanifolds that intersect transversely.

(1) If 2ky + 2k, < n, the rational cohomology rings of M, N1, N, and N1 N N,

are 4-periodic.

(2) If 3ky + ko < n and N, is simply connected, the rational cohomology rings of
N> and N1 N Ny are 4-periodic.

Next we record two additional results concerning torus actions on positively
curved manifolds:

Theorem 1.5 (Berger, [3], [14]). Suppose T is a torus acting by isometries on a
closed, positively curved manifold M". If n is even, then the fixed-point set MT s
nonempty, and if n is odd, then a codimension one subtorus has nonempty fixed-point
set.

Theorem 1.6 (Maximal symmetry rank, [14]). If T" is a torus acting effectively by
isometries on a closed, positively curved manifold M", thenr < L%J Moreover,

if equality holds and M is one-connected, M is diffeomorphic to S" or CP Z.
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A corollary of Theorem 1.6 is the following, which we will use in the proof of
Theorem 2.2:

Corollary 1.7. Let M" be closed, positively curved manifold with symmetry rank v
such that

r > 2log,(n) + % —1—4(n)
where §(n) is 0ifn iseven and 1 if n is odd. If n > ¢ > 2, then, in fact, n > ¢ + &.

Proof of Corollary 1.7. The assumption n > ¢ > 2 1implies r > 2. By Theorem 1.6,
we have n > 3. But now the bound on r implies » = 3, so Theorem 1.6 implies
n > 5. Repeating this argument twice more, we conclude # > 9, which implies

c+ 8

C
>r > 21 9+ =-2 :
> r 22005, +5-2> 2

n+1

It follows that n > ¢ + &, as claimed. U

Finally, we use the Griesmer bound from the theory of error-correcting codes
to prove the following proposition. The estimates are specifically catered to our
application. The proof indicates the general bounds required.

Lemma 1.8. Let n > ¢ = 2. Assume T is a torus that acts effectively by isometries
on a positively curved manifold M" with fixed point x. Let §(n) = Oifn is even and
8(n) = Lifn is odd.

() If .
dim T = 2log, n + 5 — 1 —4(n),

there exists an involution o € T such that the component M of the fixed-point
set of o that contains x satisfies cod(M]) = Omod 4 and 0 < cod(M]) =

n—cC
_2 .

(2) Let o be an involution as above such that M has minimal codimension. If
dimT = log,n + % + 1+ log,(3) — é(n),

there exists an involution 1 € T satisfying M] € M7, cod(M;) = 0 mod 4,
cod(M? N M7) = 0 mod 4, and 0 < cod(M) = ==

By the connectedness theorem, the inclusions M) — M, MJ N M} — M},
and M — M are c-connected. Since ¢ > 2, this implies that all three submanifolds
are one-connected if M is. In particular, M] N M = Méc’r) where (o, 7) is the
subgroup generated by ¢ and 7.
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The only part in the proof where we use positive curvature is to conclude that
n > 10 in the first statement by Corollary 1.7. Given this, the bound on dim T

implies
, n—c+1 c
dim 7 > log, IVT—‘ + {5—‘ + 1

Similarly, the bound in the second statement together with a proof like that of Corol-

lary 1.7 implies
i n—c+1 c
dim 7T > log, {T—‘ + {5—‘ + 2.

We proceed to the proof. The first step is to establish the following inequality:

Lemma 1.9. Ifn > ¢ >2andr > |_%-| + log, |_”_§—+1-|, then

r—1

HE e )|

Proof of Lemma 1.9. We proceed by contradiction. Suppose the opposite inequality
holds. The bounds on 7, ¢, and 7 imply that r > |_§—| + 1 and that |_§—| > 1, hence
we may split the sum into two pieces and estimate as follows:

r—[51-1 r—1

s N

Sl

Calculating the geometric sum and rearranging, we obtain

R = AR !

Observing that the integers #, ¢, and n — ¢ 4 1 cannot all be even, we conclude that
the term in parentheses is at least 1, hence taking logarithms yields a contradiction to
the assumed bound on . ]

We proceed to the proof of Proposition 1.8.

Proof. Sets = dim T. Choose abasis of Tx M such that the image of Z3 € T under
the isotropy representation 7 — SO(Ty M) liesinacopy of ZJ' € T™ C SO(Ty M)
where m = L%J Observe that we are identifying the 2 x 2 matrix blocks £/, with
+1 € Z>. Denote the map Z5 — Z%' by t, and observe that ¢ is injective since the
action of 7 1s effective.

Consider the first statement. The bound on s and the assumption z > ¢ > 2 imply
s = 2. Consider the map Z3 — 7, that sends ¢ € Z3 to the Hamming weight of
t(0), reduced modulo 2. The Hamming weight of ((0) is the number of nontrivial
entries of ((c) € Z%', hence the Hamming weight of :(c) is equal to half of the
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codimension of M7 . Since the map Z5 — Z, is a homomorphism, we conclude that
there exists Z3~! C 73 such that every o € Z3~! has the property that (o) has even
Hamming weight, which is to say that cod(MJ) = 0 mod 4.

It therefore suffices to prove the existence of o € Z5™ 1\ {id} with cod(M?) <
“==. Suppose that no such o exists. Then every o € 2571\ {id} has cod(M?) >

f%} Equivalently, the Hamming weight of the image of every o € Z3™' \ {id}
is at least % f%} We now apply the Griesmer bound from the theory of error-

correcting codes:

Theorem (Griesmer bound, [12]). If Z) — Z%' is a homomorphism such that every
nontrivial element in the image has Hamming weight at least w, then

r—1
w
mz Y|z
=0

This bound implies

(s—1)—1

1= % et

By the comments following the statement of Proposition 1.8, we have

n—c—+1 c
s=1>logy | —— | +[3].

hence we have a contradiction to Lemma 1.9, as desired.

We now prove the second statement of Proposition 1.8. First, observe that the
lower bound on s implies s > 4. Let 0 € Z3 be as in the statement. By reordering
the basis of T, M, if necessary, we may assume that all of the nontrivial entries of
t(c) come before the trivial entries. Let w be the Hamming weight of :(c), so that
(o) € Z% takes the form

o) =(=1.—1,....—1,1,1,.... 1)

where w is the number of (—1)s.

We define three linear maps Z3 — Z». For the first, assign 1 € Z3 (o the
Hamming weight of ((7), reduced modulo 2. Equivalently, the first map assigns t
to the product of the entries in ¢(z). For the second, assign t to the product of the
last (7 — w) entries of t(z). For the third map, assign 7 € Z3 to the first component
of 1(1).

The intersection of the kernels of these three maps containsa Z5 . Lett € Z5 7.
By the definition of the first two maps, cod(M;) = 0 mod 4 and cod(M] N MJ) =
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0 mod 4. By the definition of the third map, M & MJ. It therefore suffices to prove
that some v € Z577 \ {id} has cod(M[) < 23<.
Consider the composition

s—3 s m m—1
25 "l Iy = L,

where the last map is the projection onto the last (s — 1) components. By our choice
of Z3573, this composition is injective and the Hamming weights of the images of
T € 253 in 2% and Z%3~" are the same. Hence if every t € Z3572 \ {id} has
cod(M;) = ”‘g—"‘l, then there exists a homomorphism Z3* — Z2~1 such that
the image of every nontrivial r € Z35~* has Hamming weight at least % f%}
Applying the Griesmer bound, we conclude

(s—3)—1

5-= % =]

Now the bound on s implies that the i = s — 3 term in the sum would be 1, hence we
may add one to both sides of this inequality to conclude

(s—2)—1

5= X [l

As established after the statement of Proposition 1.8, the bound on s implies

—c+1 :

so we have another contradiction to Lemma 1.9. This concludes the proof of Propo-
sition 1.8. O

2. Proof of Theorem C

In this section, we use the following notation:

Definition 2.1. For integers 7, let §(n) be 0 if n is even and 1 if n is odd, and for
n>=c>2let

fe(n) =2log, n + % —1-48(n).

Given an isometric action of an r-torus on a closed, positively curved #-manifold
withr > 2log, n+ %— 1, Theorem 1.5 implies that a subtorus of dimension r —§(n) >
fc(n) has a fixed point. Using this, one can conclude Theorem C from the following:
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Theorem 2.2. Let n > ¢ = 2. Assume M" is a closed, one-connected, positively
curved manifold, and assume a torus T acts effectively by isometries with dim T >
fe(n). Forall x € MT, there exists H C T such that H* (M Q) is 4-periodic
and the inclusion MF < M is c-connected.

Moreover, H may be chosento satisfy dim(M.7) = n mod 4, dim(MF) > c+4,
and the property that every free group action t X M — M commuting with the action
of T restricts to a w-action on M.

Here, and throughout this section, we use the notation M H o denote the fixed-
point set of /I C T, and we write M for the component of M # containing x.

In the case where M is not simply connected, we consider the universal cover M
of M. The torus action on M induces an action by a torus T of the same dimension
on M Moreover, the fundamental group 7 = 71(M) acts [reely on M and its action
on M commutes with the action of T Theorem 2.2 with ¢ = 2 implies the existence
of a 2-connected inclusion N < M of a compact submanifold N such that 7 acts
freely on N, N has 4-periodic rational cohomology, dim N = dim M mod 4, and
dimN > 6.

Adding the assumption that dim M = 1 mod 4, we conclude that dim N > 9. By
4-periodicity and Poincaré duality, it follows that N is a simply connected rational
homology sphere. This proves the first part of the corollary stated in the introduction.
The second statement follows directly from Theorem D in Davis [8]. Indeed, one
only has to check that 71 (M) acts by orientation-preserving isometries, which follows
from the classical theorem of Weinstein.

We note that, in the case where dim M = 3 mod 4, the corresponding conclusion
is that r1 (M) acts freely on a simply connected rational homology (4k 4 3)-sphere
or a simply connected rational S3 x HP¥. However this does not appear to be very
restrictive. It 1s known, for example, that every finite group acts freely on some
rational homology 3-sphere (see Cooper and Long [7]). Moreover by taking the
{k + 1)-fold join of this action, one immediately obtains a free action of this group on
a simply connected rational homology (4k + 3)-sphere (see also Browder and Hsiang
[5] for an earlier proof of this latter fact). Hence this argument does not immediately
yield an analogous obstruction if dim M = 3 mod 4.

We spend the rest of this section on the proof of Theorem 2.2. First observe that
the assumption in the theorem implies # > ¢ + 8 > 10 by Corollary 1.7, so the
theorem holds vacuously in dimensions less than 10. We may therefore proceed with
the induction step. For this purpose, we assume the following:

¢ &2,
* M is aclosed, one-connected, positively curved n-manifold with n > ¢,
« T is atorus acting effectively by isometries on M with dim 7 > f.(n), and

* xisa fixed pointin M7 .
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To simplify the statement we wish to prove, we make the following definition:

Definition 2.3. Letc, M, T, and x be as above. Denote by € the set of M f where
H < T ranges over subgroups such that

¢ the inclusion Mf — M is c-connected,
o dim(M) = n mod 4,
o dim(MT) > ¢+ 4,and

* every free group action 7 X M — M commuting with the action of T restricts
to a w-action on M7 .

Observe that our goal is to prove the following:
Claim. There exists M f € € with 4-periodic rational cohomology.

Our first step is to draw a conclusion from our induction hypothesis. To state the
lemma, we require one more definition:

Definition 2.4. For a submanifold N € M on which 7T acts, let ker(7T'|y) € T
denote the kernel of the induced 7T -actionon N. Alsoletdk N = dim ker(7T |5 ), that
is, the dimension of the kemel of the induced T -action on N.

Since T is fixed, the quantity dk N is well defined. We now put our induction
hypothesis to use:

Lemma 2.5. Some Mf € € has 4-periodic rational cohomology, or the following
holds: Forall Q,N e € with Q C N C M anddim Q < n,

(1) dim Q > n/2M )2 gug
(2) ifk <n/(3-2%N), then

k if 2dkN —dk Q > -3,
dim Q@ > {2k if 2dkN —dk Q > —1,
3k if 2dkN —dk Q > 0.

Proof. Suppose for a moment that there exists € € such that dim Q < n and
dim Q < n/2Wk2)2 Then T/ ker(T'|p) is a torus acting effectively on Q with
dimension

dim7T —dk Q > f.(n) —2log,(n) 4+ 2log,(dim Q) = f.(dim Q).

Since dim ¢ < n, the induction hypothesis implies the existence of a subgroup
H' € T/ker(T|gp) such that
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ol " has 4-periodic rational cohomology,

O < O is c-connected,
dim (") = dim Q mod 4,
dim dim (Q#" dim ) > ¢ + 4, and

every free group action wx 0 — @ that commutes with the actionof 7'/ ker(T | )
restricts to a sr-action on QX '

Letting H be the inverse image of A’ under the quotient map 7 — T/ker(T|g),
we conclude that Q7 = MH . Moreover, since 0 € €, we have M7 € €. Hence
M f € € and has 4-periodic rational cohomology.

We may assume therefore that no such ) exists. Letting ) and N be as in the
assumption of the lemma, we immediately obtain the estimate dim Q > n /2@ 2)/2,

The second estimate ondim () follows directly from the first together with the estimate
onk. O

Since our goal is to prove that some M € € has 4-periodic rational cohomology,
we assume from now on the second statement of Lemma 2.5.

Next we begin the study of fixed-point sets of involutions. Using Proposition 1.8
and the periodicity theorem, we prove the following:

Lemma 2.6. Some Mf € € has 4-periodic rational cohomology, or there exists an
involution o € T such that M € € and

0 < cod(M)) Smin(n _C,E).
2 "3
Proof. Recall that x € M has been fixed. Also recall that dim7 > f.(n). By the
first part of Proposition 1.8, there exists an involution o € T satisfying cod(M7) =
0 mod 4 and 0 < cod(M}) =< 5=.
By choosing ¢ among all such involutions so that cod(M ) is minimal, we ensure

that dk(M?) < 2. Indeed, if dk(M7) > 3, then a Z3 would fix M7 and we could
choose o’ € Z3\ (o) with COd(MfI) = 0 mod 4. Because the action of 7 is effective,
we would have 0 < cod(M? N < cod(M?), a contradiction to the minimality of
cod(M]).

Suppose for a moment that dk(MZ) = 2. There exists a Z3 in T that fixes M7, so
we can choose o’ € Z3 \ (o). It follows that M7 C Mf, C M with both inclusions

strict. Since ¢’ and ¢ are involutions in 7', M7 is the transverse intersection of M7 ’
34 . . -

and M7° . Moreover, Lemma 2.5 implies cod(M]) < n/2 since dk(M]) = 2,

hence

2cod(M?") + 2cod(M?Z°) = 2cod(M?) < .

The periodicity theorem implies that H* (M ; Q) is 4-periodic. Since M = M fd) €
€, the proof is complete in this case.
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Finally, suppose that dk(M?) < 1. By Lemma 2.5,

0 n n
cod(M)) < (n E) < 3

hence we just need to show that M = M ee.

First, the bound on cod(M ) and the connectedness theorem imply that M. —
M is c-connected. Second, our choice of ¢ implies dim(M,]) = »n mod 4. Third,
the bounds cod(M[) < ”2;“ and n > ¢ + 8, the latter coming from Corollary 1.7,
imply that dim(MJ) > ”Zi > ¢ 4 4. Finally, the assumption that ¢ > 2 implies that
dim(MJ) > 3. By the connectedness theorem, MY is the unique component of M7
with dimension at least n/2, which implies that every w-action on M that commutes
with 7" preserves M? and hence restricts to a 7-action on MJ. These conclusions
imply M7 € €. O

Since our goal is to prove that some M € € has 4-periodic rational cohomology,
we may assume the existence of an involution ¢ € 7T as in this lemma. In other words,
we may assume that the pair (M, o) satisfies Property (*) according to the following
definition:

Definition 2.7. We say that (N, o) satisfies Property () if N € € and ¢ is an
involution in 7'/ ker(T | 5) such that N € € and

dmN —¢ n
2 T3 4k N T

Here and throughout the rest of the proof, codg O = cod O — cod R denotes the
codimension of J € R. As established before the definition, there exists at least
one pair satisfying Property (*). We focus our attention on a particular minimal pair.
Specifically, among pairs (N, o) satisfying Property (*) with minimal dim N, we
choose one with minimal cody (N7 ).

With N fixed, we will denote by T the quotient of T by the kernel ker(7 | y) of
the induced T-action on N. Observe that T acts effectively on N and has dimension
dim T — dk N. Moreover, we wish to emphasize that the involution o lies in T .

The strategy for the rest of the proof is to choose a second involution in T in
a certain minimal way, analyze the consequences of our minimal choices to prove
Lemma 2.9 below, then to conclude the proof of Theorem 2.2.

To begin, we prove the following:

0 <cody(N]) < min(

Lemma 2.8. There exists an involution T € T such that cody(NT) = 0 mod 4,
cody (N7} = 0 mod 4, and
dim N —¢
0 < cody (NF) < %

Morveover, for any such t,
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* NI €€ and
* NJ' €€ and Nx(g’r) € Cif NJ N N is not transverse.

Proof. The existence of such a 7 follows from Proposition 1.8 once we establish that
dim T > log,(dim N) + % + 1+ log,(3) — 8(dim N).

Moreover, we see that this is the case by combining the following facts:

e dim 7T = dim T — dk N by definition of dk N,

e dimT > f.(n) by assumption,

o 4 <cody(NT) =< n/(3-2%Y) because (N, o) satisfies Property (*), and

* §(dim N) = 8(n) because dim N = n mod 4.

For the second claim, let T be any involution satisfying these properties. First
let I € T be such that N = Mf If p: T — T is the projection map, then
N = M;H’p_l(r)), where (H, p~!(z)) is the subgroup of T generated by H and

p=1(2). Similarly, N7 = M2 IO gng N 1D _ g0 o)

Second, the inclusions N7 N N} < N! < N are c-connected by the connect-
edness theorem together with the upper bounds on cody (N ) and cody (V). In
particular, N7 N N} is connected since ¢ > 2, so we have Nf”” = NJ N N;. Also
by the connectedness theorem, the inclusion Nx(g’r) — NZ% is (¢ + 1)-connected.
Since N € €, this proves that the inclusions of NJ, NJ*, and N)Sg’r) into M are
c-connected.

Third, the dimensions of NJ, NJ*, and N ég’r) are congruent to # modulo 4 since
dim N = n mod 4,cody (N7) = 0 mod 4,cody (N]) = 0 mod 4,codN(N)$U’r)) =
0 mod 4, and

cody (NJ") = cody (N7 ) + cody(N]) = 0 mod 4.

Fourth, the previous paragraph together with the minimality of cod 5 (V) implies
dim(N7) = 4 + dim(NJSU’r)), hence

Hm(NY) = 4 + (dim N — cody (NJ) — codn (NS)) = ¢ + 4.

If N7 N N is not transverse, then the codimension a of N,S‘”) C NJT is positive.
By the previous paragraph, a = 0 mod 4 and hence ¢ > 4. Hence

dim(NT) > dim(N%) = dim N — cody (NO) — cody (NF) + a > ¢ + 4.

Finally, let # x M — M be a free group action commuting with the 7'-action

on M. We wish to show that the w-action restricts to -actions on N, éc’r) , and

N7®. This follows from the following observations:
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* By assumption, N € €, so the w-action restricts to a w-action on N.

* By assumption, the dimensions of N and N] in N are at least % dim N, hence
the connectedness theorem implies that N and N are the unique such com-
ponents of N7 and N ¥, respectively. It follows that the w-action preserves N
and N.

» Since m preserves N7 and N7, it also preserves NJ NN} = NX(;G’I).

* Since 7 preserves N ég’r) , the fact that N,S‘”) C NJ* implies that 7 also pre-
serves NJ°.

This concludes the proof that N} € € and that NJ°, ot ceif NJ M N isnot
transverse. L

We now choose t € T such that
cody (N7F) = cody (N/%7) = 0 mod 4
and
dmN —¢
9

and such that cod 5 (N ) is minimal among all such choices.
Having chosen 7, we use the minimality of dim & and cod 5 (N]) to obtain the
following:

0 <cody(N;) =

Lemma 2.9. Both of the following hold:
(1) dk(NJ*) —dk N = 2 or the intersection NJ N N is transverse in N.
(2) dk(NY) —dk N < 3 with equality only if N7 N NI is not transverse in N.

Proof. We prove the first statement by contradiction. We assume therefore that
dk(N7%) < 14dk N and that NJ NN/ isnot transverse. The first assumption implies
that 7/ ker(T|Ngz) = T/ ker(T|ygr ) has dimension at least dim 7' —dk N — 1. Let
& denote the image of o under the projection T — T /ker(T | ~ot), and observe that

(NI = N{Z™ The second assumption implies that the inclusion N ¢ N
has positive codimension. Moreover, this codimension is at most % cody (N7 ) by the
minimality of cody (N]). Putting these facts together, we see that (N7F, &) satisfies
Property (*). Since dim(NJ*) < dim N, this is a contradiction to the minimality of
dim V.

Proceeding to the second statement, suppose for a moment that dk(N)) > 4 +
dk N. Then there exists a 4-torus inside 7 that fixes NJ. It follows that we may
choose a nontrivial involution ¢ # 1 inside this 4-torus such that

cody (NY) = cody (Nf99) = 0 mod 4.



952 L. Kennard CMH

Because the action of T is effective, ¢ ¢ {r) implies that N7 € N! € N with
both inclusions strict. Moreover, since N} € N/, it follows for free that Ny € N/.
Hence we have a contradiction to the minimality of cod 5 (N ), and we may conclude
that dk(Ny) <3+ dk N.

For the equality case, suppose that dk(N}) = 3 + dk N and that N7 N N is
transverse in N. Since a 3-torus inside T fixes N}, we may choose an involution
1 € T\ (r) such that cody (N}!) = 0 mod 4 and N¥ € N! C N with all inclusions
strict. Since N7 N N[ is transverse, it follows that cod (NJSU’L) ) = 0 mod 4 as well,
hence we have another contradiction to the minimality of cody (N;). O

We are ready to conclude the proof of Theorem 2.2. We do this by breaking the

proof into cases and showing in each case that N[ has 4-periodic rational cohomology
or that N7 N N} is not transverse and Néc’r) has 4-periodic rational cohomology.

Since we have already established that N € € and that S8 = i N7 N Nis
not transverse, this would conclude the proof of Theorem 2.2. The three cases are as
follows:

Case 1: 2dk N — dk(N]) < -2.
Case 2: 2dk N —dk(N7) = —1 and NJ N N is not transverse.
Case 3: 2dk N —dk(N]) = —1 and N7 N N/ is transverse.

Clearly one of these cases occurs, so our task will be complete once we show,
in each case, that N; has 4-periodic rational cohomology or that N7 N N is not

transverse and N ég’r) has 4-periodic rational cohomology. We assign each case its
own lemma.

Lemma 2.10 (Case 1). If 2dk N — dk(N;) < =2, one of the following holds:

(1) N] has 4-periodic rational cohomology, or

2) N ég’r) has 4-periodic rational cohomology and N N N is not transverse.

Proof. First observe that dk(N[) > 2 + dk N since, by definition, dk N > 0. We
may therefore choose an involution ¢ € T such that N} € N! C N with both
inclusions strict. In addition, we may assume cody(N.) = 0 mod 4 in the case
where dk(N;) > 3 4 dk N. Choose a basis for the tangent space Tx N so that the
images of ¢, 7, and ¢ under the isotropy representation ¢: T — SO(7, N ) have the
following block representations:

¢p(o) =diag (=1 -1 -1 I I 1),
¢(r)=diag (-1 —I I —I —I 1),
() =diag(—I [ I —I I I),
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where the blocks have size b,a— b, k—a,m—b, ({ —a)— (m —b), and dim(NJSU’r)),
where &k = cody (N]), [ = cody(N]), and m = cody(N,), and where ¢ =
cod (NJSUJ) - Nfr) and b = cod (NJSU’L) - Nf‘).

Suppose for a moment that » = O or b = a. Our choice of t implies that

Cod(Nég’r)) = 0mod 4 and hence a = 0. Since b = 0 or b = a, this means
b = 0 mod 4 and hence

cod(N)y=m=k+m->b= cod(Nf”‘)) mod 4.

By our choice of 7, we must have that i = 2 mod 4. By our choice of ¢, we must have
dk(N]) <2 + dk N. Combining this with the assumption in this case, we conclude
dk N = Oand dk(N]) = 2+ dk N. The first of these equalities implies N = M by
Lemma 2.5. Using Lemma 2.5 again, we conclude dim(N;Y) > 1 dim N. Since NY
is fixed by a 2-torus, there exists an involution ' € T \ {z) such that N € NI € N
with both inclusions strict. Hence N is the transverse intersection in N of Nx”’ and
N7 ”, and since the codimensions of these submanifolds satisfies

ZCOdN(N;,) + 2codN(N;”’) = 2cody(N;) < n,

the periodicity theorem implies that N} has 4-periodic rational cohomology.
Now suppose that ¢ < b < a. First observe that ¢ > 0 implies that N7 N N;
is not transverse. Second, observe that (NJ7)% and (NJ 7)Y intersect transversely in

NZ*, have codimensions b and a@ — b, respectively, and have intersection N éc’r) . The
codimensions » and a — b are positive, and they satisty

2b +2(a —b) = 2a <dim(N;) —k + 2a = dim(N]")

by Lemmas 2.5 and 2.9. It follows from the periodicity theorem that NJSUJ) has
4-periodic rational cohomology. This concludes the proof in Case 1. U

Lemma 2.11 (Case 2). If 2dk N — dk(N]) = —1 and N] N N is not transverse,

then N )Sa’r) has 4-periodic rational cohomology.

Proof. First observe thatdk(N7%) > 24 dk N by Lemma 2.9, hence we may choose
an involution ¢« € T such that N7 € N C N with both inclusions strict. Choose a
basis for the tangent space Ty N so that the images of o, t, and ¢ under the isotropy
representation ¢: T — SO(T, N ) have the following block representations:

plo) =diag (=1 —I —I I I 1),

p(x)=diag(—1 I 1 -1 —I 1),
¢p()=diag(I —1 I -1 I 1),
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where the blocks have size a, b,k —a—b,m—b,({ —a)— (m—b), and dim(NJSU’r)).
Here k, !, m, a, and b have the same geometric meaning asin Case 1. The difference is
in the order of the blocks, which indicate that NJ* C N in this case while N} C N
in Case 1.

Observe that @ > 0 because N7 N N is not transverse. In addition, observe
that the assumption in this case implies dim(N}) > 2k by Lemma 2.5. Finally, by
replacing ¢ by (ot if necessary, we may assume that b < k%“

First suppose & > 0. Then (N;): and (N;)7" intersect transversely in N7 with

intersection N JSU’I) . Since the codimensions, & and k — a — b, are positive and satisty

2b + 2(k —a — b) <2k < dim(NT),

the periodicity theorem implies that o) = (N, N(N])S has 4-periodic rational
cohomology.

Now suppose » = 0. Then (NJ*)7 and (NJ*)J" intersect transversely inside
NJ* with positive codimensions @ and m. Using the estimatesa < k anddim(N}]) >
2k, it follows that

3a + m < dim(N;) —k + 2a +m = dim(N] ™).

Moreover, (NJ*)%" = NJ¥ € € by Lemma 2.8, so (NJ™)7* is one-connected.
By the periodicity theorem, N,S‘”) = (NJ)S N (NJ™)ST has 4-periodic rational
cohomology. This concludes the proof in Case 2. L

Lemma 2.12 (Case 3). If 2dk N —dk(N]) > —1 and N] N N is transverse, then

N has 4-periodic rational cohomology.

Proof. Letk = cody(NJ) and! = cody(N]). As in the proof of Case 2, we have
dim(Ny) > 2k.

First we consider the case where dk(N;) > 2 4 dk N. This implies the existence
of an involution ¢ € T such that N; € N; € N with both inclusions strict. By
replacing ¢ by 7t if necessary, we may assume that its codimension /1 satisfies m < %
Since N7 N N7 is transverse, N? N N, is as well. Since the codimensions of this
transverse intersection satisfy

2k +2m <2k +1 <n,

the periodicity theorem implies that N has 4-periodic rational cchomology.
Second we consider the case where

dk(N 7™y > 2 + dk(NY).
This implies the existence of an ¢ € T such that /2| w1 = id and such that

(NHZ = NI&9 C (NF)L € N}
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with both inclusions strict. It follows that (V) and (N:)7* intersect transversely in
NJ and have codimensions, say, b and k — b. Since

2b + 2(k — b) = 2k < dim(N)),

the periodicity theorem implies that N has 4-periodic rational cohomology.

Third, we consider the case where 2dk N — dk(N}) = 0. Lemma 2.5 implies
dim(NJ) > 3k, hence 3k +/ < n. Since N and N intersect transversely, the
periodicity theorem implies N has 4-periodic rational cohomology.

Finally, if none of these three possibilities occurs, the assumption in this case
implics that dk N = 0, dk(NF) = 1 + dk N, and dk(N:"") < 2 + dk N. Using
Lemma 2.5, we can further conclude N = M and dim(Nég’r)) > % dim V. Hence

2k + 21 = 2cod(N ) < n,

so the periodicity theorem applied to the transverse intersection of N7 and N7 implies
that N7 has 4-periodic rational cohomology. This concludes the proof of Case 3, and
hence concludes the proof of Theorem 2.2. L

3. From Theorem C to Theorem A

The proof of Theorem A contains three steps. The first step classifies one-connected,
compact, irreducible symmetric spaces that have 4-periodic rational cochomology
up to degree 16. We will also need to prove the basic fact that an n-dimensional,
one-connected, compact, irreducible symmetric space with H* (M; Q) = 0 for all
3 <i < 16is 82, 83, or 8". The second step is a lemma about product manifolds
whose rational cohomology is 4-periodic up to degree 16. The final step combines
these lemmas to classify one-connected, compact symmetric spaces whose rational
cohomology is 4-periodic up to degree 16. From Theorem C, these results immedi-
ately imply Theorem A.

The first lemma concerns one-connected, compact, irreducible symmetric spaces:

Lemma 3.1. Let M" be a one-connected, compact, irreducible symmetric space.
(1) IFHY(M:; Q) = Q and H*(M Q) is 4-periodic up to degree 16, then M is
« CP90rSOQ2 + q)/SO(2) x SO(q) withq =
» HP? or SO(3 + ¢)/SO(3) x SO(g) with q = % or g = &, respectively.

(2) IfH‘(M,Q) =0forall3 <i < 16, then M is S?, S3, or S§".

or

=T T ]

Observe that periodicity up to degree ¢ > 16 implies either that H*(M; Q) =
or that M is rationally (¢ — 1)-connected. In the former case, dim H'5(M; Q) >

Q
1
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by periodicity up to degree 16, so we may as well assume that # > 16 in the first
statement of the lemma.

The only facts about 4-periodicity up to degree 16 that we will use in the proof
are the following: b; = bjy4for0 <i < 12,b4 < 1,and by = O only if b; = 0 for
all 0 < i < 16. Here and throughout the section, b; denotes the 7-th Betti number
of M.

Proof. We use Cartan’s classification of simply connected, irreducible compact sym-
metric spaces. We also keep Cartan’s notation. See Helgason [16] for a reference.

One possibility is that M is a simple Lie group. The rational cohomology of M
is therefore that of a product of spheres $”t x §"2 x ... x §"s for some s > | where
the n; are odd. In fact, the dimensions of these sphere are known and are listed in
Table 1 (see Mimura and Toda [20] for a reference). Since M is simply connected,
we may assume

3=n1<ny <---<ny.

By the Kiinneth theorem, H*(M: Q) = 0, so we mustbe in the case where H* (M ; Q)
is zero forall 3 < i < 16. But the data in Table 1 imply that s = 1 and hence that
M = S3. This completes the proof in the case that M is a simple Lie group.

Table 1. Dimensions of spheres.

G ni,nz2, ..., N

Sp(n) 3,7,...,4n—-1
Spin2n + 1) | 3,7.....4n—1
Spin(2n) 3,7,...,4n—-52n -1
U(n) 1,3,....,2n—1

SU(n) 3,5,....2n—1

G- 3,11

F4 3,11,15,23

Ee 3,9,11,15,17,23

E- 3,11,15,19,23,27, 35
Esg 3,15,23,27,35,39,47,59

Now we consider the irreducible spaces which are not Lie groups. We have that
M = G/H for some compact Lie groups G and H where G is simple. The possible
pairs (G, H) fall into one of seven classical families or are one of 12 exceptional
examples. First, it will be clear in each case that M £ S" and dim M > 4 implies
HY(M:Q) # 0 for some 3 < i < 16, hence the second part of the lemma follows.
To prove the first part of the lemma, we calculate the first 15 Betti numbers in each
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of the 7 + 12 = 19 cases, then we compare the results to the requirement that they
be 4-periodic as described above. We summarize the results in Tables 2 and 3.

Table 2. Classical one-connected, compact, irreducible symmeiric spaces of dimension at least
16 that are not listed in the conclusion of Lemma 3.1. The pairs (p, g) satisty 4 < p < g for
the real Grassmannians and 2 < p < g for the complex and quaternionic Grassmannians.

Pog(t) —1if Reference ,
G/H rk((/}) = i) if not Obstruction
SU(n)/SO(n), n=6 — (4] bs >0
SU@2n)/Sp(n), n =4 — [4] bs >0
SO(p + ¢)/SO(p) x SO(q) — [21] 1 < by
SU(p + ¢)/S(U(p) x Ulg)) 204 4 - — 1 < by
Sp(n)/U(n), n=4 P2t 284 — by < bg
Sp(p +¢)/Sp(p) x Sp(g) 208 4 — by < bs
SO2n)/Un), n=>5 PR L8 T . - by < bg

Table 3. Exceptional one-connected, compact irreducible symetric spaces.

Pty —1if Reference .
G/H rk(é) — tk(H) ot Obstruction
E¢/Sp(4) = [18] be >0
Eg/F4 = [1] be > 0
Eq/SU(6) x SU(2) 14416+ 268 - by < by
E¢/SO(10) x SO(2) £ 48 s - by < by
E,/SU(8) (84 ... — by < bg
E;/SO(12) x SU(2) i QO L - by < by
E;/Eg x SO(2) 842112 — bg < b12
Eg/SO(16) B - by < bg
Eg/E7 x SU(2) AP L2 — bs < b12
F4/Sp(3) x SU(2) T PP — by < bg
F4/Spin(9) £8 4+ - — by < bg
G,/S0(4) gy 1B — bg > b1a

To explain our calculations, we first consider the case M = G/H where G and
H have equal rank. Let §"! x --- x §" and $"! x --- x §™s denote the rational
homotopy types of G and H, respectively. Then one has the following formula for
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the Poincaré polynomial of M (see Borel [4]):

(1 . tn1+1) . (1 _ In5+1)
(1 — );m1+1)...(1 — ;ms+1)'

Py(t) =) bi(M)' =

i=0

For each simple Lie group G, the dimensions of the spheres are listed in Table 1.
When rank((G) = rank(H ), we compute the Poincaré polynomial of M and list the
relevant terms in Tables 2 and 3. In the case where rank((G) # rank(H ), we simply
cite a source where the cohomology is calculated.

The tables give the pair (G, H) realizing the space, the first few terms of the
Poincaré polynomial if rank(() = rank(H ), and the relevant Betti number inequal-
ities that show M 1is not rationally 4-periodic up to degree 16.

We remark that, in Table 2, we exclude spaces with dimension less than 16, as
such spaces M have H1¢(M; Q) = 0 and therefore H*(M; Q) = 0 by periodicity.
We also exclude the rank one Grassmannians and the rank two and rank three real
Grassmannians, as these are the spaces that appear in the conclusion of the lemma.

0

With the first step complete, we prove the following lemma about general products
M = M’ x M" whose rational cohomology is 4-periodic up to degree ¢. The lemma
roughly states that, if a product has 4-periodic rational cohomology, then one of
the factors has 4-periodic rational cohomology. Moreover, most of the cohomology
is concentrated in that factor. In the proof, we use the full strength of periodicity,
not simply the corollary that the Betti numbers are 4-periodic. For example, while
S* x §8 x §16 x ... x S§2° has 4-periodic Betti numbers, its cohomology is not
4-periodic.

Lemma 3.2. Assume that H'(M; Q) = 0, that H* (M ; Q) is 4-periodic up to degree
cwithe > 9, andthat M = M’ x M" with dim H*(M'; Q) = dim H*(M": Q).
If M is not rationally (¢ — 1)-connected, then H*(M'; Q) = Q and the following
hold:

(1) H*(M';Q) is 4-periodic up to degree c,
(2) H{(M";:Q)=0for3 <i <c, and
(3) if HX(M":Q) # 0or H¥(M'":Q) # 0, then HH(M";Q) = H>(M":Q) = 0.

Proof of lemma. For simplicity we denote the Betti numbers of M, M', and M" by
b;, bl,and b7, respectively. Observe that we must show that /7*(M'; Q) is 4-periodic,
that b = 0for3 <i < c,and thatb) = b5 = 0if b} > O or b} > 0.

Let x € H*(M;Q) be an element inducing periodicity. If x = 0, then ¢ > 8
implies M is rationally (¢ — 1)-connected. Assume therefore that b4(M) = 1 (ie.,
that x # 0).
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We first claim that 5} = 1. Suppose instead that 0 = &), = b}. The Kiinneth
theorem implies | = by = b5b5, and hence b; = b = 1. Using periodicity and the
Kiinneth theorem again, we have

0=bh) =bs =hi+bl+b,+b],
and hence that all four terms on the right-hand side are zero. Similarly, we have
2=>5,+4b) = by =bs = b+ b.
Finally, we obtain
| = by = bg > BLbY + BLbY = bl + B =2,

a contradiction. Assume therefore that b, = 1 and hence that 5] = b,b] = 0.
Let p: M — M’ be the projection map. It follows from b; = b4 = 1 and the
Kiinneth theorem that the composition

4
HY M"Y = H' M) @ HO(M") — (D H*™ (M) @ H (M") — H*(M)
i=0

is an isomorphism. Choose ¥ € H*(M'; Q) with p*(X) = x. We claim that X
induces periodicity in I7*(M’) up to degree c.

First, b, = 1 implies that multiplication by ¥ induces a surjection H°(M’) —
H*(M"). Second, consider the commutative diagram

oM"Y ——@; H /(M) @ H/ (M") —— [I' (M)

| l

HIY (M) B, HT (M) @ HI (M") > H'*4(M),

where the vertical arrows from left to right are given by multiplicationby X, x @1, and
x, respectively. Because multiplication by x is injective for O < i < ¢ —4, it follows
that multiplication by X is injective in these degrees as well. It therefore suffices to
check that multiplication by X is surjective for 0 <i < ¢ —4. We accomplish this by
a dimension counting argument. Specifically, we claim b} = b, for0 <i <c—4.
Indeed, for all 0 < i < ¢ — 4, we have from periodicity, the Kiinneth theorem, and

injectivity of multiplication by X the following estimate:

i i i
! Moo = . rr ! I rr ! I
Db b = b= bia 2 B+ Y bl b b+ ) B b]
j=0 j=0 j=0

Equality must hold everywhere, proving b; = b/, and b , = Oforall 0 <i <
¢ — 4. This completes the proof of the first part, as well as the second part, of the
lemma.
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Finally, suppose that ) > 0 or & > 0. Then
by + (by + b3)by <bs+bs =1+ b = b
implies 55 = 0, and
bg + (b5 + b3y)by < bs 4+ bg = by = by, = by
implies b5 = 0. O

We are ready to prove Theorem A. In fact, we prove the following stronger
theorem:

Theorem 3.3. Suppose M" hasthe rational cohomology of a one-connected, compact
symmetric space. Let ¢ > 16, and assume M admits a metric with positive curvature
and symmetry rank at least 21og, n + 5 — 1. There exists a (possibly trivial) product
S of spheres, each of dimension at least c, such M has the rational cohomology of

(N S,
(2) S x Rwith R € {CPY,S0(2 + q)/SO(2) x SO(¢)}, or
(3) S x Rx Q with R € {TIP?,SO(3 + ¢)/SO(3) x SO(g)} and O € {*,S2, 83}

Consider the special case where M is a product of spheres. This theorem implies
that each sphere has dimension at least ¢, which is at least 16, so N cannot be
S2 x 82 x §"* or 8% x 8" % with 1 < k < 16, as claimed in the introduction.

Observe that the Lie group Eg has the rational cohomology of a product of spheres
in dimensions 3, 15, .... It follows that the rational cohomology of Eg x HP? is 4-
periodic up to degree 15, so we must take ¢ > 16 in the statement of this theorem.

Proof. Let N" be a one-connected, compact symmetric space such that H*(N; Q) =
H*(M;Q). Assuming without loss of generality that n > 0, Lemma 1.6 implies
n > 16. Write N = Ny x --- X N; where the N; are irreducible symmetric spaces
and b4(N1) = by(N;) forall i.

Theorem C implies that 77*(N; Q) is 4-periodic up to degree c. If H*(N: Q) =
0, then N and hence each N; is rationally (¢—1)-connected. Sincec > 16, Lemma3.1
implies that N is a product of spheres of dimension at least c.

Suppose therefore that H*(Ny; Q) = H*(N:Q) = Q. By Lemma 3.2, Ny is
4-periodic up to degree ¢ and H/(N;; Q) = 0for3 < j < 16andi > 1. If Ny is
CP? or SO(2 + ¢q)/SO(2) x SO(q), then taking M’ = Ny and M" = Np x --- X N;
in Lemma 3.2 and applying Lemma 3.1, we conclude that every N; with7 > lisa
sphere of dimension at least ¢. This concludes the proof in this case.

If Ny is not CP? or SO2 + ¢)/SO(2) x SO(g), Lemma 3.1 implies Ny is TIP?
or SO3 + ¢)/SO3) x SO(g). If b2(N;) = b3(N;) = 0 forall i > 0, then once
again we have that each N; withi > 1 is a sphere of dimension at least ¢. Otherwise,
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we may reorder the N; so that b,(N,) > 0 or b3(N,) > 0. By Lemma 3.1, N, is §2
or S3, and by taking M’ = Ny x Ny and M"” = N3 x --- x N; in Lemma 3.2, we
conclude that &j; is a sphere of dimension at least ¢ forall i > 2. This concludes the
proof. (]
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