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On minimal spheres of area 4 and rigidity

Laurent Mazet and Harold Rosenberg*

Abstract. Let M be a complete Riemannian 3-manifold with sectional curvatures between 0
and 1. A minimal 2-sphere immersed in M has area at least 4. If an embedded minimal sphere
has area 47, then M is isometric to the unit 3-sphere or to a quotient of the product of the unit
2-sphere with R, with the product metric. We also obtain a rigidity theorem for the existence
of hyperbolic cusps. Let M be a complete Riemannian 3-manifold with sectional curvatures
bounded above by —1. Suppose there is a 2-torus ¥ embedded in M with mean curvature one.
Then the mean convex component of A bounded by T is a hyperbolic cusp, i.e.. it is isometric
to T x R with the constant curvature —1 metric: e~ 2! dog + d1? with dog a flat metricon 7.

Mathematics Subject Classification (2010). 53C24, 53C42; 35115, 35120.
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1. Introduction

Consider a smooth (C*°) complete metric on the 2-sphere S whose curvature is
between ( and 1. It is well known that a simple closed geodesic in § has length at
least 27 (see [4] or Klingenberg’s theorem in higher dimension [3], [2]). It is less
well known that when such an § has a simple closed geodesic of length exactly 27,
then S is isometric to the unit 2-sphere S%. This resultis proved in [1], and the authors
attribute the theorem to E. Calabi.

With this in mind, we consider what happens in a complete 3-manifold M with
sectional curvatures between 0 and 1 (henceforth we suppose this curvature condition
on M , unless stated otherwise).

Let ¥ be an embedded minimal 2-sphere in M. Then the Gauss—Bonnet theorem
and the Gauss equation tells us that the area of .S is at least 477: indeed we have

4 = f Ky = [det(A) + Krx 5/ 1= A) (1)
= =

with det(A4) the determinant of the shape operator which is non-positive. We prove
in Theorem 1, that when the area of X equals 4, then M is isometric to the unit
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3-sphere S7 or to a quotient of the product of the unit 2-sphere with R, S? x R, with
the product metric.

We remark that Theorem 1 does not hold for embedded minimal tori. Given &
greater than zero, there are Berger spheres with curvatures between (0 and 1, which
contain embedded minimal tori of area less than . But a minimal sphere always has
area at least 4.

It would be interesting to know what happens in higher dimensions. In the unit
n-sphere S7, a compact minimal hyper-surface ¥ always has volume at least the
volume of the equatorial 7 — 1 sphere $%~!. Is there a rigidity theorem when one
allows metrics on S” (= M) of sectional curvatures between 0 and 1? Two questions
arise. First, does an embedded minimal hyper-sphere ¥ in M have volume at least
the volume of $7~!. If this is so, and if % is an embedded minimal hyper-sphere with
volume exactly the volume of 7!, is M isometric to S} orto $77! x R?

In the same spirit as Theorem 1, we prove a rigidity theorem for hyperbolic cusps.
We recall that a 3-dimensional hyperbolic cusp is a manifold of the form 7" x R
with 7' a 2-torus and the hyperbolic metric e=* dog + dt? with do? a flat metric
on T. In Theorem 2, we prove that if M is a complete Riemannian manifold with
sectional curvatures bounded above by —1 and 7 is a constant mean curvature-1 torus
embedded in M then the mean convex side of 7" in M is isometric to a hyperbolic
cusp.

2. Minimal spheres of area 47 and rigidity of 3-manifolds

In this section, we prove a rigidity result for a Riemannian 3-manifold M whose
sectional curvatures are between 0 and 1. As explained in the introduction, any
minimal sphere in such a manifold has area at least 4.

We denote by S7 the sphere of dimension # with constant sectional curvature 1.
We then have the following result.

Theorem 1. Let M be a complete Riemannian 3-manifold whose sectional curvatures
satisfy 0 < K < 1. Assume that there exists an embedded minimal sphere 3 in M
with area 4w. Then the manifold M is isometric either 1o the sphere S3 or 1o a
quotient of ST x IR.

Proof. Let @ be the map ¥ x R — M, (p,1) v exp,(tN(g)) where N is a unit
normal vector field along . In the following we focus on % x R4 ; by symmetry of
the configuration, the study is similar for ¥ x R_.

22 1s compact, so there is an ¢ such that ¢ is an immersion and even an embedding
on ¥ x [0, &). Letus define

g9 = sup{e > 0| ® is an immersion on X x [0, &)};
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go can be equal to +o00. Using ¢, we pull back the Riemannian metric of M to
¥ x [0, £9). This metric can be written ds* = do? + dt? where do} is a smooth
family of metrics on 2. With this metric, ® becomes a local isometry from X x [0, £¢)
to M and (X x [0, £9), ds?) has sectional curvatures between 0 and 1. Moreover, X
is minimal and has area 4. Actually, we will prove the following facts.

Claim. The metric do} has constant sectional curvature | so (%, dol) is isometric
to Sf. Moreover, we have two cases:

(1) ep = w/2 and do? = Sinztd(fg, or

(2) &g = +ooand do} = dog.

Let us denote by X; = X x {t} the equidistant surfaces. We denote by H(p, {)
the mean curvature of 3, at the point ( p, /) with respect to the unit normal vector d;.
We also define A(p, ) = O such that  + A and /I — A are the principal curvature
of 3, at (p,1). We notice that A = 0if ¥, is umbilical at (p, ¢).

The surfaces 2i; are spheres, so, using the Gauss equation, the Gauss—Bonnet
formula implies that

4712/ Ezlzf (H+MWH-MD+K, =] H*-A+K,
Et E[ EI

where Ky, . 1s the intrinsic curvature of X; and K is the sectional curvature of the
ambient manifold of the tangent space to ;. Since K; < 1, we obtain the following
inequality:

[ A= H> 4K —dr<| H24+ AS)—4n )
2t 2t pay,

where A(X;) is the area of 3;. In the following, we denote by F(¢) the right-hand
side of this inequality.

Claim 1. F is vanishing on [0, &9).

Since Xy is minimal and has area 4w, we have FF(0) = 0. We notice that this
implies that A(p,0) = 0, so Xy is umbilical and K7z, = 1. Thus (o, dog) is
isometric to S%.

We have the usual formulae:

dJ oH 1
SAS) =~ [E 2H and G5 = SRie@) + |4/ )

where A, is the shape operator of X; and Ric is the Ricci tensor of 3 x [0, gg). Since
the sectional curvatures of M x [0, &) are non-negative, Ric is non-negative. So the
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second formula above implies that  is non-decreasing and thus / > 0 everywhere.
Let us now compute and estimate the derivative of F:

was OH .3 _
F(r)_/zt@H - —2H7) /21211’
:/ H(Ric(d;) + |4,|* —2H* - 2)
55
:/ H(Ric(d,) —2) + ((H + A)* + (H — 1)* —2H?))
z,

- [ H((Ric(d,) — 2) + 242)
Xy

<21 HM
pay,

where the last inequality comes from Ric(d;)—2 < 0 because of the hypothesis on the
sectional curvatures. If we choose & < gg, thereis a constant C > Osuchthat < C
on 2 x [0,&]. Sofor ¢ € [0, &], using the inequality (2), we get F'(1) < 2CF(t).
Then F(t) < F(0)e2¢! = 0 on [0.]. So F < 0 on [0,&y) and, because of (2),
I = 0on [0, gg); this finishes the proof of Claim 1.

The first consequence of Claim 1 is that all the equidistant surfaces %; are um-
bilical (see inequality (2)); so A = 0. In the computation of the derivative of F, this
implies that

f H(Ric(d,) —2) = 0.
Zy
Since H (Ric(d,) — 2) < 0 everywhere, we obtain
H(Ric(d;) —2) =0 everywhere. 4)

dH
Moreover the umbilicity and (3) imply that = = %Ric(a () + H?. We now prove

the following claim.

Claim 2. Let (p,t) € Zx [0, &9) (t > O) be such that H(p,t) > Othen H(g,t) > 0
foranyg € ¥

In other words, when the mean curvature is positive at a point of an equidistant,
it is positive at any point of this equidistant. We recall that A is increasing in the /
variable, so when it becomes positive it stays positive.

So assume that I7(p, ) > 0 and consider Q = {g € 2 | H(qg,?) > 0} whichis a
nonempty open subsetof 2. Letg € Q. Since H(g, ) > 0, Ric(d;)(g,¢) = 2by (4).
Thus Ric(d,)(r,t) = 2 forany r € Q. Soifr € Q, then, for s < £, Ric(d,)(r,s) > 0
for s close to ¢ and, by (3), this implies that H(7,¢) > 0 and r € £. So Q is closed
and €2 = . This finishes the proof of Claim 2.
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Letus assume that thereis an ey > Osuchthat H(p, 1) = Ofor(p.t) € %[0, &]
and H(p,t) > Oforany (p,1) € ¥ x (&1, &9). Because of the evolution equation of
H , this implies that Ric(d;) = Oon X x[0, &{]. On X x (&, £9), we have Ric(d;) = 2
because of (4). So by continuity of Ric(d; ), we get a contradiction and then we have
two possibilities:

(1) H=00nX x|[0,8p) and Ric(d;) = 0on X x [0, &9);
(2) H > 0on X x (0,e9) and Ric(d;) = 2 on X x [0, g9).

In the first case, this implies that the sectional curvature of any 2-plane orthogonal
to X, is zero. Thus dof = doj. Since the map @ ceases to be an immersion only if
do? becomes singular this implies that gg = +o00. Thus X x R4+ with the induced
melric is isometric to S% x R4 and @ is a local isometry from S% XRytoM.

In the second case, the sectional curvature of any 2-plane orthogonal to 2, is equal
to 1. The sectional curvature of %, is also 1, since the inequality in (2) is an equality
by Claim 1. Thus do? = sin® tdog and &g = /2. This also implies that ®(p, /2)
is a point. So X x [0, 7r/2] with the metric ds? is isometric to a hemisphere of S3
and the map & is a local isometry from that hemisphere to M .

Doing the same study for ¥ x R_, we get in the first case a local isometry
®: Sf x R — M and in the second case a local isometry ®: S7 — M. Since
ST x R and S7 are simply connected, @ is then the universal cover of M and M is
then isometric to a quotient of S7 x R or S3. Since ® is injective on X this implies
that in the second case, @ is actually injective and then a global isometry. O

Remark 1. In the proof, since ® is injective on X, the possible quotients of S7 x R
are either S7 X R or its quotient by the subgroup generated by an isometry of the form
ST xR — ST xR, (p.1) > (a(p),! + to) with & an isometry of $% and 7o # 0.

Remark 2. Something can be said about constant mean curvature f{, spheres in
a Riemannian 3-manifold with sectional curvatures between 0 and 1. Indeed, the

computation (1) implies that the area of X is larger than 1_:_‘—1[;3, which is the area of

a geodesic sphere in S? of mean curvature fy. Moreover, if X has area %, the
above proof can be adapted to prove that the mean convex side of X is isometric to
a spherical cap of S; with constant mean curvature Hy (see Theorem 2 below, for a

similar result in the hyperbolic case).

Remark 3. Let M be a Riemannian »#-manifold whose sectional curvatures are be-
tween 0 and 1 and let 2 be a minimal 2-sphere in M. A computation similar to (1)
proves also that the area of X is larger than 4. It also implies that, if X has area 47,
¥ is totally geodesic and isometric to S%.
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3. Existence of hyperbolic cusps

Let (T2, g) be a flat 2 torus, the manifold T2 x R, with the complete Riemannian
metric e~ >* g + d1? is a hyperbolic 3-dimensional cusp. T2 x IR is actually isometric
to the quotient of a horoball of H? by a Z? subgroup of isometries of H? leaving the
horoball invariant. Any T2 x {} has constant mean curvature 1. The following theo-
rem says that, in certain 3-manifolds, a constant mean curvature 1 torus is necessarily
the boundary of a hyperbolic cusp.

Theorem 2. Let M be a complete Riemannian 3-manifold with its sectional curva-
tures satisfying K < —1. Assume that there exists a constant mean curvature 1 torus
T embedded in M. Then T separates M and its mean convex side is isometric to a
hyperbolic cusp.

As a consequence, the existence of this torus implies that M can not be compact.
The proof uses the same ideas as in Theorem 1

Proof. Letus consider the map @: T xRy — M, (p, 1) > exp,({N(p)) where N
is the unit normal vector field normal to 7" such that N is the mean curvature vector
of T. Let us define

go = supfe > 0 | ®is an immersionon T x [0, €)}.

Using @, we pull back the Riemannian metric of M to T x [0, g9); it can be written
ds?* = dt* + do?. We define T; = T x {1} the equidistant surfaces to Ty. We
also denote by H(p, t) the mean curvature of the equidistant surfaces at (p, ) with
respect to d,. We finally define A(p, ) such that /7 4+ A and I — A are the principal
curvatures of 7; at (p, 1).

The surfaces T; are tor so, by the Gauss equation and the Gauss—Bonnet formula,
we have

0= | Kr,=| H*-A*+K,
T: T;

where K is the sectional curvature of the ambient manifold of the tangent space to
T;. Since K; = —1, we obtain the inequality

[ AM=| H*°+K,< | H?>-AT).
T; Ty T

We denote by F(¢) the right-hand term of the above inequality. By hypothesis,
H(p,0) =150 F(0) = 0and F(r) = Oforanys > 0. Letus compute the derivative
of F:

r BH 3
F(t):[ (2H——2H )+/ 2
T, ot T,

= [ H (Ric(d,) + |A,|> —2H? +2) = [ H ((Ric(d,) + 2) 4+ 24%).
T: Ty
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Since H(p,0) = 1, we can consider ¢ € (0,gy) such that 0 < H < C on
T x [0, ¢&]. Since Ric(d;) + 2 < 0 we get

F'(1) 5/ 2HA? <2CF(1).
T:

Thus F(1) < F(0)e?C? fort € [0, £]; this implies F(f) = Oon that segment. We then
obtain A = Oon T x |0, &] (the equidistant surfaces are umbilical) and Ric(d;) = -2

ol
since H > 0. Thus H satisfies the differential equation ryale —2 + 2H?. This

givesthat 7/ = 1on T x [0,¢] since [T = 1 on Ty. Thus we can let & tend to &g to
obtain that F () = 0 on [0, gg) and Ric(d;) = —2and H = 1l on T % [0, £9). Since
0= fT; H? + K, and K, < —1, it follows that K, = —1 forall 7 in the interval. We
then have proved that the sectional curvature of T x [0, £¢) with the metric ds? is equal
to —1 for any 2-plane. Moreover, we get that do? is flat and that do? = e~ %! do¢.
This implies that @ is actually an immersionon T xRy (g = +oc)and T x R4 is
isometric to a hyperbolic cusp. @ is then a local isometry from this hyperbolic cusp
to M.

To finish the proof, let us prove that ® is in fact injective. If this is not the case,
let &1 > O be the smallest & such that ® is not injective on 7' x [0, ]. This implies
that there exist p and ¢ in T such that either

* O(p,0) = Bg.e1),0r
* O(p,e1) = D(g, &1) (with p # g in this case).

Let U and V be respective neighborhoods of (p,0) (or (p, 1)) in Ty (or T¢, ) and
(¢, 1) in T, such that @ is injective on them. Since &7 is the smallest one, (/) and
®(V) are two constant mean curvature 1 surfaces in M that are tangent at ®(g, £1).
Moreover, in the first case, ®(U/) is included in the mean convex side of ®(V) so
by the maximum principle ®(U) = ®(V). Thus ®(T,) would be equal to (7,)
which is impossible since these two surfaces do not have the same area. In the second
case, ®(U) is included in the mean convex side of ®(1) and then ® is not injective
on 7§ for s near £, s < ¢, which is a contradiction. L]
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