
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 89 (2014)

Artikel: A Sato.Tate law for GL(3)

Autor: Blomer, Valentin / Buttcane, Jack / Raull, Nicole

DOI: https://doi.org/10.5169/seals-515689

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-515689
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Comment Math Helv 89 (2014), 895-919
DOI10 4171/CMH/337

Commentarii Mathematici Helvetici
© Swiss Mathematical Society

A Sato-Tate law for GL(3)

Valentin Blomer, Jack Buttcane and Nicole Raulf*

Abstract. We consider Statistical properties of Hecke eigenvalues Aj (p, 1) for fixed p as </>j

runs through a basis of Hecke-Maaß cusp forms for the group SL3 (Z) We show that almost
all of them satisfy the Ramanujan conjecture at p and that their distnbution is governed by the
Sato-Tate law
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1. Introduction

Given an elliptic curve E over Q and a prime p of good reduction, one can write
cos 6p := (p + 1 — #E(Fp))/2^/p which defines (by Hasse's bound) an angle
6P e [0,7t]. It is an mterestmg problem to study the Statistical behaviour of 6P as

p vanes (or as E vanes m some natural family and p is kept fixed). The Sato-Tate

conjecture states that for E without complex multiplication one has the "semicircle
distnbution"

for any contmuous function / on [—2,2]. More generally, given a (non-dihedral)
holomorphic Hecke cusp form F e Sk(N), lts normalized Hecke eigenvalues X(p)
are bounded by 2 m absolute value, and one expects the same distnbution as p vanes,
that is,

p prime

—E f&tp)) E f f(x)^4-x2dx, P-^oo.
P U '~2

(1)

p prime
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This is now a theorem of Barnet-Lamb, Geraghty, Harris and Taylor [BGHT]. The

analogous question for Maaß forms, however, is still wide open.
In this article we are interested in the Statistical properties of Hecke eigenvalues

Aj (p, 1) for fixed p as 4>j runs through a basis of Hecke-Maaß cusp forms for the

group SL3(Z). In particular, we show below in Theorems 1-3 that almost all of the

Aj (p, 1) satisfy the Ramanujan conjecture at p and that their distribution is governed
by the appropriate Sato-Tate law on GL(3). Before we give a more precise description
of these results, we review a bit more closely the "classical" case of Hecke-Maaß

cusp forms for SL2(Z).

1.1. The rank one case. Let {uj } run through an orthonormal basis ofHecke-Maaß

cusp forms for the modular group SL2 (Z). We denote their n-th Hecke eigenvalue by
Xj(n) and their Laplace eigenvalue by Xj 1/4 + tj > 1/4. By Weyl's law there

are

~ — T2(2)
12

linearly independent such eigenforms with eigenvalue Xj ^ T2. One may investigate
the Statistical properties of Xj (p) (for p prime) either for fixed j as p varies, or for
fixed p as j varies. Here we take the latter point of view. The Ramanujan-Petersson
conjecture predicts \Xj{p)\ ^ 2. In contrast to the holomorphic case, this is not
known for Maaß forms, the best approximation being the Kim-Sarnak bound

\Xj(p)\^p7'64 + p-7'64, (3)

but one can hope that the expected bound | Xj (p) | ^ 2 cannot be violated too often.

Using the Seiberg trace formula, Sarnak ([Sar], Theorem 1), proved1

1
0

2 log cy/2

—#{kj T : \Xj (p)|a} « **/> (4)

for any prime p and any constant a > 2, with an absolute implicit constant. This

gives a power saving for any fixed a > 2 and any fixed p, but also if p is tending
to infinity and a is at least a small power of p. It should be viewed as a density
theorem (analogous to bounding the density of zeros of the Riemann zeta-function
off the critical line): the more the Ramanujan conjecture is violated, the fewer such

Maaß forms exist. Often one can obtain stronger density theorems if one uses the

Kuznetsov formula instead of the Seiberg trace formula, see e.g. Chapter 11.4 of
[Iw2]. In particular, one can improve (4) essentially by a factor 4:

Proposition 1. For a prime p, a > 2, T 5= p cmd e > 0 one has

1
^ 8 log (* /2

—#{A jT2: \Xj(p)\ & «e T~^^+e
where the implied constant depends on s at most.

^is original exponent is lo//^2 instead of 211°ogg, but in his bound (3.6) the factors 2k should be 22k
which produces the stronger result (4).
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In particular, this recovers the Seiberg bound Xj (p) pl/A+e (whereas (4) gives

only Xj (p) p), since for sufficiently large p and T the proposition implies

^ T2 : \Xj{p)\ ^ /W4+£} < 1.

The Sato-Tate conjecture in the version for Hecke-Maaß cusp forms predicts (1),
but a proof seems currently out of reach. However, Sarnak proved the following
complementary version for a fixed prime p ([Sar], Theorem 1.2):

txx T f(^j (p)) f — x2 P + ^ -dx, T -> oo.
171 '~2

(5)
Note that if p tends to infinity, this approaches the semicircle distribution.

This type of question has received much attention. In the context of holomorphic
cusp forms for large weight k, this type of equidistribution result (along with appli-
cations) has been discussed in [Se], [CDF], [Ro], [Golu], [MS]. The analogue of (5)
for the upper half space modulo the group SL2(0) (where 0 is the ring of integers of
an imaginary quadratic field of class number one) was established in [IR]. The case

of Siegel modular forms of degree 2 and large weight k is treated in detail in the paper
[KST], see in particular their Theorem 1.6. A far-reaching generalization to auto-

morphic forms of cohomological type has recently been obtained in the monumental
work [ST], partly based on [Sh] and [Sau].

The asymptotic (5) is an application of the Seiberg trace formula. It is interesting
to see what the Kuznetsov formula gives in this Situation. The difference here is that
the Kuznetsov formula naturally considers a harmonic average, i.e. an average over
Hecke eigenvalues, weighted by the L2-norm of the underlying cusp form which is

proportional to L (1, sym2uj). Interestingly, this slightly different counting procedure

produces the semicircle distribution "on the nose" 2:

Proposition 2. Let f be a compactly supported continuous function and let p be a

prime. Then

P-2 f(X(p))jnt(2)2 ^ mVT2 a^2 L(l, sym2wy) 2tt J_2

asT ^ oo.

A weighted version of this result for general congruence subgroups was proved
in [KL]. As a preparation for the GL(3) case, we include a short independent proof
of Proposition 2.

2
see the discussion after Theorem 1.2 in [KST] for interesting remarks about the difference of the trace

formula and the relative trace formula in the case of the group Sp4.
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1.2. The rank two case. We now turn to the main topic of this paper, namely the

Statistical distribution of Hecke eigenvalues on GL(3). This seems to be completely
new and has not been investigated. The central tool here is a usable version of the
Kuznetsov formula on GL(3) as developedin [Bl] and [Bul], [Bu2]. Combiningboth
works, we will present other useful versions of independent interest, and we refer in
particular to the nicely packaged Theorem 5 below.

Let {<pj } run through an orthonormal basis of Hecke-Maaß cusp forms for the

group SL3(Z) with Hecke eigenvalues Aj(n, 1) and general Fourier coefficients

Aj(n,m). In other words, 4>j lives on the quotient SL3(Z)\Jf3 where Jf3 is the

"generalized upper half plane" consisting of upper triangulär matrices with right
lower entry 1, a 5-dimensional space. We refer to [Gold] for an introduction to the
relevant notation and theory. Each 0/ is an eigenfunction of two differential
Operators, and it comes with two spectral parameters v[J'\ v^ (sometimes we drop the

superscript if it is clear from the context) that we normalize to have real part 0 if 4>j

is tempered. Then the Laplacian eigenvalue is

Xj 1 — 3v\ — 3viV2 — 3vf.

The Weyl law for SL3(Z)\(see [Mi2]) teils us that there are

18vol(SL3(Z)\#3)/ T \5s

r(7/2) {An)5!2VV3/120tt3V3

Hecke-Maaß eigenfunctions 4>j with Xj ^ T2. (We use the Haar measure and the

GL(3) Laplacian given in [Gold]. Note that these differ from the normalizations
producing the Standard Weyl law; see [SW].) Note, however, that even though the

Seiberg eigenvalue conjecture for SL3(Z) is known [Mil] (that is, the Laplacian
eigenvalue of each <fij is 5= 1), this does not imply the Ramanujan conjecture at oo,
i.e. that the two spectral parameters are purely imaginary.

The Hecke eigenvalues Aj(p, 1) are the sum of the three Satake parameters

a\\p), a?!\p)- The Ramanujan conjecture predicts that they are of absolute

value 1, in particular \Aj(p,l)\ ^ 3 for a prime p, but this is unknown. Again
one may ask how often this is violated.

Theorem 1. For a prime p, a > 3, T > p and s > 0 one has

L#{aj <c T2:\Aj(p, 1)1 £ a} «e r"+£
where the implied constant depends on s at most.

At the archimedean place, a corresponding density result was proved in Theorem

2 of [Bl]. Unlike in the GL(2) Situation, Theorem 1 does not immediately teil us
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something about the individual Satake parameters, and in particular we cannot imme-

diately conclude that the Ramanujan conjecture is violated "not too often". However,
a modification of the argument gives the following:

Theorem 2. Fix a prime p, let 8 > 0 and let T be sufficiently large (in terms of p
and 8). Then there is rj > 0 (depending on 8 and p) such that

2j#{Ay ^ T2 : max{|aL(/>)|, I oi^J\p5=1 + sj «

Informally speaking, this shows that the Ramanujan conjecture at p is satisfied
for almost all Hecke-Maaß cusp forms.

Next we turn to an analogue of Proposition 2, the Sato-Tate distribution. It is

easiest to describe the Sato-Tate distribution in terms of the Satake parameters. We

parametrize the circle as elt9 0 ^ t < 2tt, and write ot\(p) eltl9 ot2(p) elt2,

a?>(p) — e~l(tl+t2\ The Sato-Tate measure is then given by [Sar]

da(ti,t2) •= ———elt2\2\eltl - e~l{-tl+t2)\2\elt2 - e~l("tl+t2)\2dt\ dt2. (6)
24TT2

Let W be the group of 6 maps S1 x S1 S1 x S1 generated by (eltl,elt2)
(elt2,eltl) and (eltl, elt2) i-^ (eltl, e~l^tl+t2^). Then the map

O: (S1 x S^/W C, (eih,eit2) ^ eitl + ei%2 + e~i(fl+t2\

is injective and hence bijective onto its image 31 that is the region inside the disc of
radius 3 that is surrounded by the curve 2elt + e~2lt, t e [0,2tt].

For functions on S1 x S1 that are Symmetrie under W we will not distinguish
between the function and its projection onto (S1 x Sl)/ W. We now dehne a measure
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d/i(z) on 31 as the push-forward of (6), i.e.

f /(z)d[i(z) := fo $)(?!, t2)da(ti,t2)- (7)
J3i JSlxSl

With this notation we have

Theorem 3. Let f be a compactly supported continuous function, and let p be a

prime. Then

J_ £ fiMpA»_^ f f(z)dfl(z)

as T—oo, where c\ \/3/(2407r5).

We remark that a lot of technical work in this paper is devoted to the treatment of
the exact shape of the sum over all eigenforms with eigenvalue Xj ^ T2, as opposed
to a weighted and re-normalized count of the shape

ys Y1 f(Aj(P>0)hT(v\

^ resL(s, 4>j x fy) J
^ resL(s, 4>j x fy)

for some sufficiently nice test function hj with support roughly on Xj ^ T2. We
believe that the corresponding results and techniques are of independent interest.

2. Proofs in the rank 1 case

Let l,k e N. We use the Hecke recurrence relation Xj(p)Xj(pl) Xj(pl+1) +
Xj(pl~l) to write

k

^(p)k Yh
1=0

for certain integers It follows trivially by induction that

k

X>/,*|=S2*. (8)
1=0

The Hecke relation can be expressed in terms of Chebychev polynomials which
readily leads to the following integral representation ([CDF], Lemma 3):

ai k — / xkUi{x—x2c/x
2n J-2
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where U[ (x) is the usual Chebyshev polynomial of the second kind. In particular

a0k — — / xk \ — x2dx. (9)
2tt J—2

The numbers a0,2k are known to be the Catalan numbers, but we do not need this
information.

Next we prepare for an application of the Kuznetsov formula which is usually given
in terms of Fourier coefficients pj (n) of L2-normalized eigenforms. The coefficients

pj (n) are proportional to the Hecke eigenvalues Xj (n), and we need to compute the

proportionality constant. Let uj be a Hecke-Maaß cusp form with Fourier expansion

Uj(x + iy) y1/2 Xj(n)e(nx)Kitj (2n\n\y) (10)
0

as in [Ku], (2.10). By a StandardRankin-Selberg unfolding argument wecancompute
its norm: for ST? > 1 we have

r°° dv
(\uj|2, E(.,s))/ \^j(n)\2Kitj(2

Jo n*037

2 ^lAyC«)!2 f°° 2 sdy
KitAy) y —

IAy (/i) | f
^ n* Jo{2ny ^ n° J0 y

\Xj(n)\2 V3Fr(f)r(f -i7y)r(f +£ (2jry^ ns 4r(i±£}

by [GR], 6.576.4. Comparing residues at s 1 on both sides, we find

2 TT 2 L(l,sym2wy) n — itj)T{^ + itj) L(l,sym2wy)
7 3 2TT £(2) 4 2cosh(7zTy)

Hence

/ A/(/i)(2cosh(7r/t/))1^2
PM /Tn—£4 • <")

y L(1, symzUj)

A Standard application of the Kuznetsov formula gives the following:

Lemma 1. Formen e N, T ^ 1 and s > 0 we have

y Xj(n)Xj(m) - -^—-e~^IT 8m=J— + Oe(T(mnT)e + (mn)1/4+s).^ L(l,symzUj) 6 v 7
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Proofi We use a pre-Kuznetsov formula3 [Ku], Theorem 2, with the test function

(j){x)
s*nh(?/(^))

x expcosh(i j(2T)))

as in [DI], (7.2). As shown in Lemma 8 of [DI], the pre-Kuznetsov formula is valid
for this function. Combining (7.10), (7.11), (7.14) in [DI] with (11) and trivial bounds

for the Eisenstein spectrum, we obtain

2E +
t-y L(l, symlUj)

SmJJl +o(l + £ |S(,°;"-C)I min (2 (^)"2)).
The lemma follows from Weil's bound \S(n,m,c)\ <^s c1^2+s(n,m,c)1^2.

We are now ready to prove Propositions 1 and 2. Recall that L(1, sym2Uj) <^e tj
(see e.g. [Iwl], Theorem 2, or [Iw2], Theorem 8.3). Let k e N. By positivity, (8)
and the upper bound contained in Lemma 1 we have

h(P)2k «e TSJ2- ^
Aj<T* J L(l, sym2My)

-tj/T

2k lj(pl)
L(l, sym2M7)r°Ea'.aE -- -e"'' 1,(1 SVTTl2M;f

1=0 j
«£ 2 + pk/2y+£.

We choose k := [4 log T/ log p\ ^ 4, and Proposition 1 follows.

For the proof of Proposition 2 we use Lemma 1 to compute

tIEW,,, m2
T1 L(l,sym2Uj)j

k
^(2)2 \e~tj'T+ °k,pÄT-l+£)^ T2 yL(l, sym2wy)

2a0,k + Ok^

3The corresponding Lemma 6 in [DI] would do the same job, but it is wrongly normalized; in view of the
formula T(l/2 + it)T(l/2 — it) tt/ cosh(;rO, the Whittaker function on p. 52 of [DI] should have an

extra factor Tt1^2.



Vol. 89 (2014) A Sato-Tate law for GL(3) 903

Writing for the moment

^ ?(2)
A(t)= J2

L{ 1, sym2Uj)'

we have shown
»OO

1252
/»OO

/ e~8vdA(v) -> 2of0,A:> <5^0.
«/o

By a Standard Tauberian theorem ([Te], Theorem II.7.5) and (9) we find for fixed k
and p,

# e -»=f rT2 L(l,sym2My) T2 T(3) 2jt J_:
A7-^r2

as T —> oo. Therefore Theorem 2 holds for power functions and hence for polyno-
mials. Since polynomial functions are dense in the space of continuous, compactly
supported functions, the proof of Theorem 2 is complete.

3. Combinatorics of Hecke eigenvalues

We compile some results on the Fourier coefficients A(m,n), see e.g. Section 6 in
[Gold], Chapters 4 & 9 in [Bum] or [HM]. First we recall that A(m,n) A(n, m).
A basic (but not trivial) approximation to the Ramanujan conjecture (Jacquet-Shalika
bounds) is

Aj(n,m) (nm)l,2+e. (12)

Better bounds are available (due to Luo-Rudnick-Sarnak), but we do not need them.
We have the Hecke relations ([Gold], Theorem 6.4.11)

Jmido m2d1\
A(n,l)A(mI.m2)£ a[—,—).

d()d\ d2=n
di \m\, d2\m2

A(l,n)A(m v-A Äfmid2 wi2do\
•»»>= E A{—-^r)-

(13)

dod\d2=n
d\ \m\, d2\m2

Given two integers / /:, we can write

\A(plA)\2k (A(plA)A(l,pl))k J2 <*r,s,i,kA(pr,p°)
r+s^2lk
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for certain integers otr^sj^. All we need is the bound

/ v
\°^r,s,l,k\ ^ Z J

2k

(14)

r+s^2lk

which follows by induction from (13). The Hecke eigenvalues A(p, 1) are the sum
of the Satake parameters oi\{p), a2(p), ot^{p), and one can express A(pr, ps) as a

Symmetrie function in aq (/?), a2(p), a3(/?) by Schur polynomials [Gold], 7.4.14:

al(p)r+s+2(a2(p)r+l
MP ,P (a2(p)-a1(p))(a3(p)-a2(p))(a1(p)-a3(p))

a2(py+s+2(a3(pY+1 -ai(p)r+1)
+

(a2(p) - ai(p))(a3(p) (15)

«3(p)r+^+2(«i(rtr+1 ~«2 (/?)r+1)

(a2(/?) -ai(/?))(a3(/?) -a2(/?))(ai(/?) -a3(/?))

=: Ör,*(ai(/?),a2(j>),a3(/?)),

say. By a simple brüte force computation one checks that

8r=s=0. (16)L
SlxSl

(Note that the denominator of (15) combines nicely with the measure (6).) The Satake

parameters satisfy aq{p)ot2(p)&3(p) 1 as well as the unitarity condition

{«i {p),a2{p),a3{p)}{\/di{p),\/oi2{p),\/oi3{p)}.

This equality of sets implies that if the Ramanujan conjecture at p is violated, that is,

if not all three parameters have absolute value 1, then we must have

{cti(p),a2(p),a3(p)} (17)

for some p > 1 and some t e R. Combining this with (15) with r /, s 0, we
see that in this case

2(p + l)2

Remark. Equation (16) is a special case of the orthogonality relation (also verified
by direct computation)

(Qr,s> Qr,s)

f Qns(eitl ,eit2,e-iih+t2))Q^(en'1, 7\e=U^TI^')d(x{tx
Js1^s1 ' '

S=s
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In particular, the Schur polynomials Qr^s for r, s e N0 form an orthonormal basis

of the space (S1 x S1)/W, and every smooth function / on (S1 x Sl)/W has a

Fourier expansion

f(h,h)J2 </' Qr,s)QrAeih'eit2,e-iitl+t2)).
r,s^0

4. The Kuznetsov formula for GL (3)

We write the Fourier expansion of a Hecke-Maaß cusp form for SL3 (Z) as

mi lm2/0
1 1

yeU2\SL2(Z)

with U2K1 f) | x e Z} and ^^(z) e(*i ± J2) for z
1 x2 x3\ (y\y2 \ twhere(\ x2x3\ y\y2 \ljiO( "J

WVl,V2(yi, y2)

©
l~v2

/ Vi \
8yiy2

L K, (2ny2 yTTW)*2 Vn + u2)u §(vi~V2> —
0

2V0 2V0 -
M

with
Vo Vi + v2

is the completed Whittaker function4. As mentioned in the introduction, we do not
know if vi, v2 are purely imaginary, but if the Ramanujan conjecture is violated, then

it follows by unitarity that

Ol, V2, v0) (2p/3, —p/3 + iy,p/3-iy) or (p/3 + iy, p/3 - iy, 2p/3) (19)

for 0 < |p| < 1/2 and y e R, cf. e.g. (2.8) in [Bl]. This is the archimedean analogue
of (17).

Again we can compute the norm of 0 by Rankin-Selberg theory and Stade's

formula [Sta]:

POO PC

J0 J0
\WVl,V2(yi,y2)\ (J1J2)2 .,dyidy2 _ r(s/2)3nf=0r(^)r(^)

Ol J2)3 47r3^r(35/2)

4This is the Standard definition of the completed Whittaker function as in [Gold], p. 154. Note that the leading
constant in [Gold], (6.1.3), should be 8 instead of 4.
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(as an equality of meromorphic functions in s). Note that by (19) this holds even in
the non-tempered case. Let

E(z,s;1)
1 det(yz)s
2

yei>\SL3(Z)

with P |(q
q — SL3(Z) be the maximal parabolic Eisenstein series. As in

Section 3 of [Fr] or [Gold], p. 227-229, we unfold the Eisenstein series:

{<p,<pE(.,s,1))
1 f \(t>(z)\2(y^y2)sdxidx2dx3^
2 Jp\1,3 (yiyi)

dyi dy2
3 '

Let 3* denote a fundamental domain for {('i() \e,f Then P\tf
is in 2-to-l correspondence with {(y x) | y e GL2(Z)} \?F. Inserting the Fourier
expansion of one factor and unfolding once again, we obtain

(X) (X)

Irk A,T7( ~ 1\\ l^0(ml'm2)|
{4>,4>E(.9s9 l)) 2^ 2^ i ä—F1^2m\=l m2 l

f f \WVu
J-ooJ-oc

L(s,<px4>)f°° f°°22 dyidy2
— VrT\—/ / \wvi,v2{yi,y2)\ (J1J2) 7 TT

C(3 S)J-ocJ-oc(jlj2)3
for > 1. Comparing residues at both sides, we find with Stade's formula that

Zy resL(s,(pxij>) ^ ]~[ cos (Jttv,-)

(20)
see Corollary 2.5 of [Fr] and observe that his definition of the Eisenstein series differs
from ours by a factor 2 (the index of SL3(Z) in GL3(Z)). We conclude that the

orthonormalized Fourier coefficients are given by

4 FI/-0 cos(37rv7/2)\1/2
A(mi ,m2)7-0 (21)

\ 3 res L(s,)
(Note that by (20) the product of the cosines is a positive real number.) It is known

([Li], Theorem 2, or [Br], Corollary 2) that

res L(s,<px<j>) (1 + |r>i| + |v2|)s- (22)
S=1
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Theorem 4. Letni, ri2, m i, ^2 bepositive integers andwrite P 1/12^ 1^2- Let
T > 1. zs <2 non-negative function hj and a constant c > 0 satisfying
hr 1 on the set {(vi, V2) | c ^ Svi, SV2 ^ T, |9tvi |, 19tV21 =$1/2} such that

Y ^(Bl,mi)^(«2,Bl2)/lr(v!j),vij))
<<£ (r5 + r2/,l/2 + r3p7/64 + p5/3)l+£_

i res L(s,cpj x<f>j)
J S 1

Proof. This is Theorem 5 of [Bl], where we invoke [Bl], Lemma 1, as well as [Bl],
Theorem 1, to estimate the main term on the right-hand side of [Bl], Theorem 5.

Theorem 4 suffices for the proof of Theorems 1 and 2. For the proof of Theorem 3

we need a more precise, but less uniform version. Its proof that we postpone to the
end of the paper features a completely explicit version of the Kuznetsov formula
(Theorem 6).

Theorem 5. Let ni,n2,mi,m2 Z \ {0}, P mim2/ti«2 and T > 1. Then

^Aj(ni,mi)Aj(n2,m2) xi/T2 « „ Ts ^/7d^37/8a1+e\L ~r( 2 Z 1 \
e =ö|»1| |m1|C2r +Oe((PT ')res L(s,(f)j X (f>j) \n2\=\m2\

J 5=1

where C2 \/3/(27tt9/2).

The error term is not optimized. In order to keep the argument as simple as

possible we only tried to obtain explicit polynomial dependence on P and a nontrivial
exponent in T. The best possible error term in this Situation is 0(T3) Coming from
the Eisenstein contribution. Theorem 5 is a direct GL(3)-analogue of [IK], (16.56).

5. Proofs in the rank 2 case

The proofs of Theorems 1 and 2 are very similar to the proof of Proposition 1. Let
/, k be two integers. Combining (22), (14) and Theorem 4 (with 10T instead of T),
we obtain

E I Aj(pl,l)\2k
Xj^T2

<<£ Tsyl^(y,l)l2^ior(47).4y))
Y res Lis^jX^j)

(23)

_ Te Aj(pr, ps)hi0T(v[j\ V(p)
— f

v (Xr,S,k,l / >

~

resL(,s\ <fij x </>/)
5=1

«e T£
(/ + 1)(/ + 2) x 2k

s( V T VQ T \ ^5 + Tlplk + T3p7lk/32 + p10lk/3y+e
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where the implied constant depends only on s. Choosing k [(3/2) log T/ log p\
and / 1 gives

\Aj(p,l)\2k«e 32k

Aj^T2
and Theorem 1 follows easily:

1 OL

#{Xj ^T2:\Aj(p,l)\Za}^—-£\Aj(p,l)\2k
Xj^T2

rp5^J 1 yi ' p5

/OL\ ~ZK 3 log 07

«e (^-J Te « T

In order to prove Theorem 2 we consider cusp forms <fij with

max{|a|7)(^)|, \a^J\p)\, |a^}(^)|} ^ 1+8.

By (17) and (18) the Hecke eigenvalues of such a form satisfy

M;(j>'.i)l a +;)'+'^~4(1 + 8>
a </ + i)(j + 2) (24,

for some sufficiently large l =1(8). For T sufficiently large in terms of 5 and p we
3 log T

- 2/ log p -
choose k L o/'u^ J ^ 1- From (24) and (23) we conclude

^5#{Ay ^ T2 : max{|aF(p)|. la^GOI. I^Y)!}
1

«7? E715 ((/ + 1) (/+2))2fc ^
and Theorem 2 follows with n < j-r-—.1 l log p

Finally we prove Theorem 3 analogously to Proposition 2. Let r, s be fixed
integers and p a fixed prime. By Theorem 5 we have

1 y Aj(p',P')_ e_Xj/T2 ^ Sr=s^
C2T5 ~ resL(s,cj)j x <pA

J s 1

as T —00, and hence by the same Tauberian argument as in the proof ofProposition 2

we conclude
1 Aj(pr,ps) ^ 8r=s=o

c2T5 ^t2 resL(x, x <pj) F(| + 1)'

By the Hecke relations we can write Aj(pr,ps) qr^s(Aj(p, 1)) where qr,s(z)
is a polynomial in z and z. By (15), (16) and the definition (7) of the measure J/x,
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Theorem 3 holds for the functions qr^s (restricted to 31). Again by the Hecke relations

we can write A{p, \)kA{\, p)1 as a linear combination of the A(pr, ps). Hence by
linearity of the integral, Theorem 3 holds for the functions /(z) zkzl. Sinceevery
continuous function on 31 can be approximated by polynomials in z and z, Theorem 3

follows.

6. The Kuznetsov formula on GL (3) - continued

6.1. Preliminaries. We introduce some notation. We Start with the definition of the

relevant Kloosterman sums for the Weyl elements

/ 1 \ 1N

W4=1 1 I ll'5 I 1 I « 6 I -1
V / V 1 / V1

For ni,n2,mi,m2 Z \ {0}, Di,92eNwe dehne

SW6(mi,m2,ni,n2, Di, D2)

iB\ + n\(YiD2 — Z\B2yEEEE '(—
D ta \ V Di J
B\,C\ (mod Di)

e
l'mB2+n^Y2Dt-Z2Bt)\

DiC2 +BIB2+CID2=0(DID2) y D2

where Y\, Y2, Zi, Z2 are chosen such that

Y\B\ + ZiCi 1 (mod Di), Y2B2 + Z2C2 1 (mod D2).

For Di | D2, we put

SW5(mi,m2,ni,n2, DX,D2)

x—> v—> (mCi + ftiiCic2\ f fn2c2 \
:= z2z2 e{ ß- r\D2/Di)'

Ci(DI),C2(D2) 27

(CI,JDI)=(C2,/>2/ÖI)=1

The right-hand side does not depend on n2, but it is nevertheless convenient to keep

«2 on the left-hand side. For D2 | Di we put

SW4(mi,m2,ni,n2, Di, D2) := SW5(m2,mi,n2,ni,D2,Di).
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Many properties of these Kloosterman sums have been derived in [BFG]. Here we
only need to know the upper bounds

SW6(ml,m2,n1,n2, DUD2)

«e (DlD2)1'2+£((Dl,D2)(m1m2,[D1,D2])(n1n2,[D1,D2])))l/2,

(t D2\ 2
xl+£

SWs{mi,m2,ni,n2, Di,D2) min Nmi, —

SW4(mi,m2,n i,n2, Di,D2) «g min (jm1:(m1,n2, D2)D^j
l+e

(25)

where [.,denotes the least common multiple. The last two bounds are due to Larsen
(see [BFG], Appendix), the first bound is essentially due to Stevens (see [Ste], Theorem

5.1). The dependence onmi, m2, «i, «2 has been worked out in [Bul], p. 39,

by analyzing Stevens' proof.

Next we dehne the normalized Fourier coefhcients of minimal and maximal
parabolic Eisenstein series. We refer to Section 10 of [Gold] or Section 5 of [Bl]
for more details. For v\, v2 /M and mi, m2 £ Z \ {0} we dehne

AVl,V2(mi,m2) \mi\Vl+2v2\m2\2vi+V2o-3_3Pl (|mi |, |m2|)

where aVl 5V2 (m \, M2) is the multiplicative function dehned by

ov,vJpk\ pk2) 1

(l pv2(kl+k2+2) p(vl -\-v2){ki -\-k2-\-2) \
1 pv2(ki+l) /7(V1+V2)(ä:1+1) J

Vi 1 1

/ 1 p2»2 p2{vi +v2) \
1 1 PV2 pvl+v2
Vi 1 1 /

Moreover, for [i ei R and uj a Hecke-Maaß cusp form for SL2(Z) with eigenvalues

Xj(n), we dehne

Bß>Uj(l,m)= ^ ^j(di)d^d2ß
did2 \m\

and extend this dehnition to all pairs of integers by the Hecke relations

B(ß<Uj)(l,m)Bß<Uj(l,m),

Bßluj(mi>M2) y ' l) BßtUj ~^_) •

d\{m\,«2)

It follows from the Kim-Sarnak bound (3) that

AVuV2(mx,m2), BßtUj(mi,m2) <£ |mim2|7/64+£. (26)
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Up to a normalizing factor proportional to

911

nj=o cos(3jt vy/2) riy =o cos(37rv7/2)

1^(1 + 3Vy)12
resp"

L(l, sym2wy)|L(l + 3/i)|2

the quantities | AVl ?V2 (m \, m2) |2 resp. | Bß^Uj (m \, m2) |2 are the Squares of the Fourier
coefficients of the minimal resp. maximal Eisenstein series in the spectral decompo-
sition, see e.g. Section 5 and Proposition 4 in [Bl].

We have the following formula for the (slightly re-normalized) double Mellin
transform of the Whittaker function [Gold], (6.1.4):

Wvi,V2 (Wl> "2)

:= 4 fTT2 J0 «/o J1J2

r ^ Ml +2v: +v2 ^ Mj-vi +v2 ^ Ml -vi -2V2 ^2~2^1 ~v2 ^2+^1 ~v2 ^2+vl +2v2 ^

F(hI+H2)
•

For A > 0, ji, e M and —9/8 < Dtwy < —1 we dehne the following auxiliary
functions:

TW4,A(ui,u2;yi,y2\ vi, v2)

poo poo
(n\yi\r^(7t\y2\r^ / / W-Vu-V2(tl,t2)

J 0 J 0

/(X)
poo // e

-(X) «/—(X) V

3+Mf —M2~I~2A.2+Mf +A r rj y 1 *3 *2*3' '2 ' ' el-^TT^f + "TT7f + '^
(1 + xf) 2

2
(1 + + xf) 2-1 2 -p—x^r,

2 2 3 (Ut2)3

745,A(Mi,M2;yi,y2; vx, v2)
/»(X) poo

(n\yi\r^(7t\y2\r^ / / WLV1,/2)
«/o «/o

/(X)
/»(X) // •(-

-(X) «/—(X) V

3+M2+2A 2+M2-K1+A / r yi X3
i t XjX3

i t T'2 11 'l"wi+,>+J=+lir^t'1"
^

—1—^2+2l/1
_ i 2 2\ y y dt\ dt2

(uu)3
(1+X?) 2 (l+JC2+JC2) 2 Jxi^X3 3>
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TW6>A(ui,u2-,yi, j2;vi, v2)

poo poo
(*|J-ll)-"'«!!»!)""' / / -„«l,l2)<f+ "ä+2i|;2+"1+i

r r re(zi_
J—oo J—oo J—oo V ^2 1

2

X2+X1X3 Xi + X2(XiX2 -X3) '
+ — -—; 9 rr + ^1*2 + ^2-^2

X2 + -^3 ^1 1 H~~ + (x^X2 — -^3)^

9 9 —1+2M^ —M2 9 9 —l—^i +2^2
(1 X2 + -^3) 2 (1 H~~ + (x\X2 — -^3) 2 dx\dx2^X3

Ol^)3

as well as

W3£3M 2 -3*^ tan (Z2HÄ)
MA(vi,y2)

ff5rm3 nr(i±^)r(i±^)-
Let —9/8 < c < —1. For w e {»14. »15. uy,} we define the following integral kernel

vi, V2)

'(/ /V «/(c) «/(c;
MA(V!,V2)( / / ^ ,v2(u1>u2)Tw,A(UI,U2\ Vi, V2) /0_. 2

+ 3

(c)J(c) KLitiy
f —
' res W/Vl)P2(Mi,n2)ru);A(vi + 2u2, w2; ji, y2; 19, v2)—
(c)Wi— Vi+2V2 ZTTZ

f ^' res IFpj „2(ni, m2)T'u, A(i<i, 19 — v2; Ji, y2; vi, v2)-—7
(c)W2 Vl-V2 27tl

+ 6 res +2v2,vi-v2;ji,j2;vi,v2)).
Ml=Vi+2V2 J
U2 V\ —V2

For better comparison with [Bu2], we recall that the Langlands parameters /xi, /X2,

/x3 are related to the spectral parameters v0, vi, v2 by

/ri 2ui + y2, /r2 -19 + v2, /r3 -19 - 2u2,

vi Oi - /T2)/3, V2 O2 - M3)/3, V0 Ol - M3)/3.

Then the functions Jw,ii(y) in [Bu2] are related to the above defined function

•OaOi^vi, v2) by

Jw,A(yi,y2', vi, v2)

47r3+3Ar(^)
Jw,n(y)

fcadjOi, v2)r(i±^)3 ny2=o cos (^22) r(1+A2+3Por(^V^)
(28)

where the function £adj(vi, v2) is constructed so that the denominator is x 1 away
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from poles (that is, when vj is an odd multiple of 1/3). Specifically,

2

*adj(Vl, Vi) [TW3 + 2A)2 - 9

7=0

The key to estimating the Kloosterman terms in the Kuznetsov formula is the

following bound for the integral kernel Jw?a which is part of [Bu2], Proposition 1.

Lemma 2. Let A 5/4.
a) If 94vi —1/2 and 94v2 0, then

w wxl ((1 + |V0|)(1 + |vi|)(1 + |V2|))29/16
vx,v2) « |y|— -ttttt.

min((l + |v0|),(l + \v\ |), (1 + |v2|))

b) If 94vi —1/2 and 94v2 1/2,

\25/16

„ ((l + |v0|)(l + |v1|)(l + |v2|))^
Jw5M^y^v2) « LH— ^7^.min((l + |v0|),(l + |vi|), (1 + |v2|))

c) If 94vi —2/3 and 94v2 1/3,

y ^ ^ ^ | |

((1 + |vol)(l + lvil)(l + Iv2D)
^

Vi, v2) « \yiy2\ ;
min((l + |v0|), (1 + |vi|), (1 + |v2|))

Proof We use Proposition 1 of [Bu2] and choose

• (94/xi, 94/x2, 94/x3) (-1,1/2,1/2) for JW4,

• (94/xi, 94/x2 94/x3) (—1/2,1, —1/2) for JW5, and

• (94/xi, 94/x2, 94/x3) (-1,1,-1/2) for JW6.

6.2. An explicit Kuznetsov formula. We are now ready to State the Kuznetsov
formula. The following theorem is a restatement of Theorem 8 of [Bu2] which is

based on Li's approach in Section 11 of [Gold] together with the spherical inversion
formula for SL3(R).

Theorem 6. Leth: C2 -> C be afunction that is holomorphic on R := {194 vy | < 1,

0 ^ /^2} and that is Symmetrie under the Weyl group

(vi,v2) -> (-vi,v0) -> (v2,-v0) -> v2, Vi) -> (-v0,vi) -> (v0,-v2).

Assume that h(vi, v2) 0 if(v\ — l/9)(v| — 1/9)(Vq — 1/9) 0 and that

h(v1,v2)«((1 + |Vl|)(l + |v2|)(l + |vi + v2|))"5/3"£
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in R. Let nx, n2,mx, ^2 E Z \ {0}. Then the following formula holds:

^2Aj(ni,n2)Aj(mi,m2)
3 ^ resL(,s\ x <fij)

+ Ci / AVuV2(n1,n2)AVuV2(m1,m2)
J(0) J(0)(0) J{0)

ä(vi,v2) dv\dv2
'

|^(l + vo)^(l + v1)^(l + v2)P (2ni)2

h(fi - \itj |z7y) J/x
+ C2V/ BßiUj(ni,n2)BßiUj(mi,m2)-

.• Ao) I(0)
- - |L(1 + 3/x, Wy)|2L(l, sym2w/) 2tW

3jtVj dv\dv2

j
2

5?

1 ff 1 \T1 (—3ttv7)
5lml=l'«il^ / / ^(vi'v2)H r tan-

|n2|=|m2|27r J(0)J(0) j=0
2 2 (27TO

v v SW4(mi,m2,ini,2n2, Di, D2)^ ^ D \ D2
1 =sign(m2ni) Dj |m2|=ö?|«i |

<?2e{±l}

f f w (2mim2n2
/ / /»foi, V2)/u,4,A I

n n 1; vi, v2 I 7z :
J(c4,2)J(c4,i) \ DiD2 J (2ni

SW5{mi,m2,ini,2n2, Di, D2)^ ^ öi D2
£ie(=l=l} D2\mx\ D2\n2\

e2=sign(rai«2)

f [,,w imim2ni \dvidv2
/ / h(yi,v2)JW5,ü, \l'~—;Vl'1,2^ -\2J(C5.2) J(C5.l) V Ö1Ö2 / (2TT02

5,W6(e2«2,ei«i,»J1,m2,ö1, ö2)

dv2

r

+ ^ ^ Ö!Ö2
(ex,e2)e{±l}2 DX,D2

f f w (D2mxe2n2 Dxm2sxnx \
/ / A(Vl,V2)/u;6,A ^^ Wl,V2

J(C6t2) J(C6,l) V ^>1 D2 /
Jvi dv2

(2jti)r'\2

where

Ki44,2) (-1/2,0), (c5tlc5a) (-1/2,1/2), (c6,i,c6,2) (-2/3,1/3),

and C1 and C2 are absolute constants.

For the conversion from [Bu2], (8) and Theorem 8, to the present version we used

(21) for the cuspidal term.

Remarks. 1) The spectral side of the formula does not depend on A, hence the
arithmetic side is independent of A, too. The individual terms on the arithmetic
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side, however, do depend on A. We need this somewhat artificial parameter for
convergence reasons.

2) The requirement that h(vi, v2) 0 if (v2 — l/9)(vf — 1/9)(vq — 1/9) 0

comes from the poles of tan 3ttv7 /2 in the spectral measure. It allows us to choose

contours with — 1 < 94vj < 1 on the Kloosterman side. This is an analogue of the
fact that the GL (2) Kuznetsov formula has better Performance if the test function
cancels the poles of the spectral measure t tanh(jr t)dt.

3) There is some flexibility in choosing the lines of Integration, but there are also

some constraints due to convergence, see Proposition 1 of [Bu2] for more details. In
our Situation the lines given in the theorem are, in view of Lemma 2, most useful.

The following corollary shows how to apply this rather complicated formula in
practice.

Corollary 7. Keep the notation and assumptions of Theorem 6. We write P
\m\m2n\n2\ 7^ 0 and

HnuV2(ai,a2) f f \h{vi,v2)\{\+ \vi\)ai+£{\+ \v2\)a2+£\dvi\\dv2\
Hi12) Hvi)

and

H*urn(a i,a2)

f für M + lvo|)(l + |vi|)(l + |v2|))
1 +

/ / \h(vi, v2)\— ——— ——sz\dvi\\dv2\
12) J(v 1) mm((l + |v0|), (1 + \V11), (1 + |v2|))

(for fixed small s > 0). Then one has

h(y\j\v{p)
2^ Aj(nl,n2)Aj(m1,m2) —— j-; res L(s,(pjX<pj)

J S= 1

32 f fr, t~t (—37TV/) 3TtVj dv\dv2
«|n1Nm1|^Z6 / / Mv.^nS^tan 7 1 2

\n2\ \m2\2 71 J(0)J(0)
J=0

2 2 (27tl)

+ 0,(p>+»(//*4 o(22,f!) + H-_k 4(fj, II) + «_•, 4(f|,f|))
+ l)).

Proof We estimate the remaining terms in Theorem 6. For the Eisenstein series we
use the bounds (26) together with the lower bounds £(1 + it) ^>e \t\~e for t 7^ 0,

L(1 + it,Uj) (1 + \t\ + \tj\)~s ([HR], Theorem C) and L(l,sym2w/)
(1 + |tj |)_e ([HL]) and Weyl's law (2). In this way we bound the maximal parabolic
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contribution by

+ | t.\yfiitj>gitj^x + \n\y\dn\ «e 1),

j J<®

and this majorizes also the minimal parabolic contribution.
For the Kloosterman terms we combine Lemma 2 with (25) and observe that the

Di-, D2-sums on the Kloosterman side are absolutely convergent.

6.3. Proof of Theorem 5. For the proof of Theorem 5 we choose

h(vi,V2)e-(l-3v?-3v1v2-3vl)/r2 J-J
~ VjJ

,/=o (1 - VP

=e-^-^-^2(x+o(x:T-d^)).
This satisfies the assumptions of Theorem 6. Note that by (19) and the truth of the

Seiberg eigenvalue conjecture Xj 5= 1 the function h is positive on the spectrum. We

compute

^o,o(0> 1) s T 3+e

„ (29 55\ „ (29 55 \
\16

16) +
\16

16) T

25 43 \
V16' 16/

2-fl + i+s _ y^+e
(29)

# *1 1 I —, — I «e T5 + 1+£ T^+S.

By a weak form of a local Weyl law for SL3 (Z) (e.g. [Bl], Theorem 1) and the bound
(12) we have

^2Aj(nl,n2)Aj(m1,m2)
^

resL(s, 0x0)
S=1

-^2Aj(ni,n2)Aj(mi,m2)
-Xj/T2e

res L(s, d>x0)
*=i (30)

|1/2V^'/r2E;2,„(i + l"yl2r2
«: \nin2mim2\ '/— resL(s, 0x0)J S= 1

<5Ce |«i«2wim2|1/2+£7,3+£.
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Finally we compute

l lÄ(vi, V2) n ~?"tan
9 (1 -A2J(0) J(0) j-J0 2 2 (2?

dv\dv2

2
(—37tvj) 37tvj dv\dv26r /J 0 J 0 •

2 (2jti)2
J=° (31)

2

6/3 r r e(3vi+3viv2+3v2)/t2fl(~37ryi)
+

JoJo M, "2 (2ni)2
y=o v 7

37ry 1 \A/3 ^5 Z! nzT3+£x-6 Itj w«r'+ 0,<T ' T^7" + 0<r ^

The double integral in the penultimate line can be computed by diagonalizing the

quadratic form via v\ \-^ v\ — v2/2 (or by Mathematica). Theorem 5 follows from
injecting (29)-(31) into Corollary 7.

Note added in proof. 1) After this paper was accepted for publication, similar
results were obtained independently by F. Zhou ("Weighted Sato-Tate vertical distri-
bution of the Satake parameter of Maass forms on PGL(A^)", to appear in Ramanujan
Journal, Doi 10.1007/sl 1139-013-9535-6).

2) The second author would like to take the opportunity to correct some mis-

prints in [Bu2]: the leading constant in Theorem 7 should be —1/(48tt4) instead
of —1/(64tt4), and the changes propagated. The function C*(/x) above Theorem 9

is missing a factor 47r3^2+3Ar(3+23A). The leading constant on /// in Theorem 9

becomes —1 /(24tt8), and the leading constant in (14) should be 1/(12tt3).
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