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A Sato-Tate law for GL(3)

Valentin Blomer, Jack Buttcane and Nicole Raulf*

Abstract. We consider statistical properties of Hecke eigenvalues A, (p, 1) for fixed p as ¢;
runs through a basis of Hecke—Maal} cusp forms for the group SL3(Z). We show that almost
all of them satisfy the Ramanujan conjecture at p and that their distribution is governed by the
Sato-Tate law.
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1. Introduction

Given an elliptic curve £ over () and a prime p of good reduction, one can write
costp = (p + 1 — #E(F,))/2./p which defines (by Hasse’s bound) an angle
0, € [0,7]. Itis an interesting problem to study the statistical behaviour of &, as
p varies (or as F varies in some natural family and p is kept fixed). The Sato—Tate
conjecture states that for £ without complex multiplication one has the “semicircle
distribution”

log P 1 2
o8 E f(2cos¢9p)—>—f f(x)vV4—x%2dx, P — oo,
P s 21 f_,

P prime

for any continuous function f on [—2,2]. More generally, given a (non-dihedral)
holomorphic Hecke cusp form F € Si (N ), its normalized Hecke eigenvalues A(p)
are bounded by 2 in absolute value, and one expects the same distribution as p varies,
that is,

) fmmw%f_iﬂxm—mx, Pmoo )

P
psP
P prime
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This 1s now a theorem of Barnet-Lamb, Geraghty, Harris and Taylor [BGHT]. The
analogous question for Maall forms, however, is still wide open.

In this article we are interested in the statistical properties of Hecke eigenvalues
A;(p.1) for fixed p as ¢; runs through a basis of Hecke—MaaB} cusp forms for the
group SL3(Z). In particular, we show below in Theorems 1-3 that almost all of the
A;(p. 1) satisfy the Ramanujan conjecture at p and that their distribution is governed
by the appropriate Sato—Tate law on GL.(3). Before we give a more precise description
of these results, we review a bit more closely the “classical” case of Hecke—Maal}
cusp forms for SL,(Z).

1.1. Therank one case. Let {u;} run through an orthonormal basis of Hecke—-MaaB}
cusp forms for the modular group SL, (7). We denote their n-th Hecke eigenvalue by
Aj(n) and their Laplace eigenvalue by A; = 1/4 + tjz > 1/4. By Weyl’s law there
are

1

~ ETZ (2)

linearly independent such eigenforms with eigenvalue A; < 7T'2. One may investigate
the statistical properties of A; (p) (for p prime) either for fixed j as p varies, or for
fixed p as j varies. Here we take the latter point of view. The Ramanujan—Petersson
conjecture predicts [A;(p)| < 2. In contrast to the holomorphic case, this is not
known for Maal} forms, the best approximation being the Kim—Sarnak bound

i (p)| < pTIo* 4 p77/4, (3)

but one can hope that the expected bound |A4;(p)| < 2 cannot be violated too often.
Using the Selberg trace formula, Sarnak ([Sar], Theorem 1), proved!

2logee /2

1 _
A S T2 Ay(p)l 2o} KT W07 (4)

for any prime p and any constant o« > 2, with an absolute implicit constant. This
gives a power saving for any fixed @ > 2 and any fixed p, but also if p is tending
to infinity and « 1s at least a small power of p. It should be viewed as a density
theorem (analogous to bounding the density of zeros of the Riemann zeta-function
off the critical line): the more the Ramanujan conjecture is violated, the fewer such
Maal forms exist. Often one can obtain stronger density theorems if one uses the
Kuznetsov formula instead of the Selberg trace formula, see e.g. Chapter 11.4 of
[Iw2]. In particular, one can improve (4) essentially by a factor 4:

Proposition 1. Fforaprime p,a > 2, T = p and ¢ > O one has

Blogex/2

1 _Blhga/2
—# ST (Pl 20} < T Br ¥

where the implied constant depends on & at most.

S .1 2.
'His original exponent is % instead of

which produces the stronger result (4).

2leg /2

T2o=, but in his bound (3.6) the factors 2% should be 22k
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In particular, this recovers the Selberg bound A; (p) < pl/4+e (whereas (4) gives
only A;(p) <« p), since for sufficiently large p and T the proposition implies

#2; T2 ()| = p /ey < L

The Sato—Tate conjecture in the version for Hecke—Maal cusp forms predicts (1),
but a proof seems currently out of reach. However, Sarnak proved the following
complementary version for a fixed prime p ([Sar], Theorem 1.2):

Z £G4 (p) — —f fovi—e—L L _dx T
7+ 2+ ¢ — X7
A ;sT2 P
(5)
Note that if p tends to infinity, this approaches the semicircle distribution.

This type of question has received much attention. In the context of holomorphic
cusp forms for large weight k, this type of equidistribution result (along with appli-
cations) has been discussed in [Se], [CDF], [Ro], [Golu], [MS]. The analogue of (5)
for the upper half space modulo the group SL,(©) (where O is the ring of integers of
an imaginary quadratic field of class number one) was established in [IR]. The case
of Siegel modular forms of degree 2 and large weight k is treated in detail in the paper
[KST], see in particular their Theorem 1.6. A far-reaching generalization to auto-
morphic forms of cohomological type has recently been obtained in the monumental
work [ST], partly based on [Sh] and [Saul].

The asymptotic (5) is an application of the Selberg trace formula. It is interesting
to see what the Kuznetsov formula gives in this situation. The difference here is that
the Kuznetsov formula naturally considers a harmonic average, 1.e. an average over
Hecke eigenvalues, weighted by the L?-norm of the underlying cusp form which is
proportional to (1, sym?u;). Interestingly, this slightly different counting procedure
produces the semicircle distribution “on the nose™ *:

Proposition 2. Let | be a compactly supported continuous function and let p be a
prime. Then

2 Y i — oL [ pva e

Ajsi‘ﬂ L{l,sym?u;)
as T — oc.
A weighted version of this result for general congruence subgroups was proved

in [KL]. As a preparation for the GL(3) case, we include a short independent proof
of Proposition 2.

Zsee the discussion after Theorem 1.2 in [KST] for interesting remarks about the difference of the trace
formula and the relative trace formula in the case of the group Spy4.
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1.2. The rank two case. We now turn to the main topic of this paper, namely the
statistical distribution of Hecke eigenvalues on GL.(3). This seems to be completely
new and has not been investigated. The central tool here is a usable version of the
Kuznetsov formula on GL(3) as developed in [Bl] and [Bul], [Bu2]. Combining both
works, we will present other useful versions of independent interest, and we refer in
particular to the nicely packaged Theorem 5 below.

Let {¢;} run through an orthonormal basis of Hecke-Maal cusp forms for the
group SL3(Z) with Hecke eigenvalues A;(#n,1) and general Fourier coefficients
Aj(n,m). In other words, ¢; lives on the quotient SL3(7Z)\#3 where #3 is the
“generalized upper half plane” consisting of upper triangular matrices with right
lower entry 1, a 5-dimensional space. We refer to [Gold] for an introduction to the
relevant notation and theory. Each ¢; is an eigenfunction of two differential oper-
ators, and it comes with two spectral parameters v%j Y vgj : (sometimes we drop the
superscript if it is clear from the context) that we normalize to have real part O if ¢;
is tempered. Then the Laplacian eigenvalue is

Aj =1—=3v]—3uvy — 303
The Weyl law for SL3(Z)\ Jf3 (see [Mi2]) tells us that there are

18 vol(SL3(Z)\3€3)( T )5 _ &TS
F(?/Z) (43-;)5/2 ﬁ 12073 \/g

Hecke—MaaB eigenfunctions ¢; with A; < T2. (We use the Haar measure and the
GL(3) Laplacian given in [Gold]. Note that these differ from the normalizations
producing the standard Weyl law; see [SW].) Note, however, that even though the
Selberg eigenvalue conjecture for SL3(7Z) is known [Mil] (that is, the Laplacian
eigenvalue of each ¢; is = 1), this does not imply the Ramanujan conjecture at oo,
i.e. that the two spectral parameters are purely imaginary.

The Hecke eigenvalues A;(p,1) are the sum of the three Satake parameters

oagj) (p). ozgj) (p). agj)(p). The Ramanujan conjecture predicts that they are of abso-
lute value 1, in particular |A; (p, 1)| < 3 for a prime p, but this is unknown. Again
one may ask how often this is violated.

Theorem 1. For a prime p, o > 3, T > p and € > 0 one has

1 3log /3

—s#A ST Ajp, )l 2o} K T e
where the implied constant depends on & at most.

At the archimedean place, a corresponding density result was proved in Theo-
rem 2 of [Bl]. Unlike in the GL(2) situation, Theorem 1 does not immediately tell us
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something about the individual Satake parameters, and in particular we cannot imme-
diately conclude that the Ramanujan conjecture is violated “not too often”. However,
a modification of the argument gives the following:

Theorem 2. Fix a prime p, let § > 0 and let T be sufficiently large (in terms of p
and &). Then there is 1 > 0 (depending on & and p) such that

=t <77 max{aP ()] o (. 1o ()1} 1+ 8] < T

Informally speaking, this shows that the Ramanujan conjecture at p is satisfied
for almost all Hecke-Maal3 cusp forms.

Next we turn to an analogue of Proposition 2, the Sato—Tate distribution. It is
easiest to describe the Sato—Tate distribution in terms of the Satake parameters. We
parametrize the circle as ¢, 0 < 1 < 2, and write a1 (p) = e''l, ap(p) = €'2,
az(p) = e~'(1+12) The Sato—Tate measure is then given by [Sar]

d(x(ll,lz) = |eit1 _eitz|2|eit1 . e—i(n +I2)|2|eitz _e—i(I1+I2)|2dtl dts. (6)

2472

Let W be the group of 6 maps Sl xS =5 §1 % §1 generated by (efﬁ,eilz) =5
(6”2, eiﬁ) and (ein , eilz) — (eiﬁ :e—i(ﬁ +Iz)). Then the map

b (Sl % Sl)/W s C, (6”1,6”2) . eiil _I_ei.tz +e—i(f1+12)’

is injective and hence bijective onto its image R that is the region inside the disc of
radius 3 that is surrounded by the curve 2e'! + e72!f 1 € [0, 2x].

Figure 1. The region R C C where the Sato—Tate measure is supported.

For functions on S! x S! that are symmetric under W we will not distinguish
between the function and its projection onto (S x S1)/ W . We now define a measure
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du(z) on R as the push-forward of (6), i.e.

[jUMM@:[ (f o ®)(tr, 1) deritn, 1a). ™
R S1xsl

With this notation we have

Theorem 3. Let [ be a compactly supported continuous function, and let p be a
prime. Then

FA (P 1)
d
§) +Aﬂnum

6‘17'"5 4 resL(S B; X B;)

as T — oo, where c1 = ﬁ/(240x5).

We remark that a lot of technical work in this paper is devoted to the treatment of
the exact shape of the sum over all eigenforms with eigenvalue A; < T2, as opposed
to a weighted and re-normalized count of the shape

hr () v V7 S (e D (0 08))
(Z resL(s b X ¢;) ) Z ISSlL(S,qu X $;)

for some sufficiently nice test function /7 with support roughly on A; < T2, We
believe that the corresponding results and techniques are of independent interest.

2. Proofsin the rank 1 case

Let [,k € N. We use the Hecke recurrence relation A;(p)A; (p) = Aj(pl"'l) +
Aj (p'™1) to write

k
AP =D ki (ph)
I=0

for certain integers oy ;. It follows trivially by induction that

k
> oy il < 28 ®)
I=0

The Hecke relation can be expressed in terms of Chebychev polynomials which
readily leads to the following integral representation (JCDF], Lemma 3):

1 2
oy = 2-/ ka;(x/Z)V4—x2dx
T J2
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where U;(x) is the usual Chebyshev polynomial of the second kind. In particular
1 [ .
Ogp = — x4 — x2dx. (9)
: 2 —2

The numbers wy 55 are known to be the Catalan numbers, but we do not need this
information.

Next we prepare for an application of the Kuznetsov formula whichis usually given
in terms of Fourier coefficients p; (n) of L?-normalized eigenforms. The coefficients
p;(n) are proportional to the Hecke eigenvalues A;(n), and we need to compute the
proportionality constant. Let u; be a Hecke-Maal3 cusp form with Fourier expansion

uj(x +iy) = y'/2 D" A (n)e(nx) Kiy; 2|nly) (10)
n+0

asin [Ku], (2.10). By astandard Rankin—Selberg unfolding argument we can compute
its norm: for Rs > 1 we have

o0 de
(2 ECon = [ X fa 2Ky, @laly Py
0 ng0 ¥y

2 A )2 [, 2 54y
_(2;:)32 = [O Kiy, )’y

n=0

2 5 A )? VETDT G —it)T(G +it)
T (2n) ns 4D (42)

n>0

by [GR], 6.576.4. Comparing residues at s = 1 on both sides, we find

o 2= T 2 L sym’g) al (3 —i)T (3 +it)  L(Lsym’u;)
. 3 2w £(2) 4 2 cosh(rt;)
Hence
Aj (n)(2cosh(mt;))1/?

. - 11
Py () Vv L(1, sym?u;) G

A standard application of the Kuznetsov formula gives the following:

Lemma l. Form,ne N, T = 1 and £ > 0 we have

2 ) T2
;lj(n)lj (m)#n)lzwe—%/ T = Sm—n— + 0. (T(mnT)® + (mn)/4+*).
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Proof. We use a pre-Kuznetsov formula® [Ku], Theorem 2, with the test function

SIG/@T))  xp(ix cosh(i/(2T)

¢(x) =

as in [DI], (7.2). As shown in Lemma 8 of [DI], the pre-Kuznetsov formula is valid

for this function. Combining (7.10), (7.11), (7.14) in [DI] with (11) and trivial bounds
for the Eisenstein spectrum, we obtain

Ai(m)Aa;(m) _pi

2 J J t;/T 0 i O.(T T

Y sty €T+ 0ET) + 0T (anT))

27?2 , 1/2
= Smn s + 0(1 + Z—w(m’””)' e ( vmn ( v m”) ))
b4 ¢ & €
czl1
The lemma follows from Weil’s bound |S (1, m, ¢)| g ¢Y28(n, m,c)'/2. O
We are now ready to prove Propositions 1 and 2. Recall that L(1, sym?u;) <, ¢ H

(see e.g. [Iwl], Theorem 2, or [Iw2], Theorem 8.3). Let &k € N. By positivity, (8)
and the upper bound contained in L.emma 1 we have

. 2k
> L < T" ZLWJ‘ /T

T L(1, sym?u;)
;<

A
— T¢ /T
Zal 2"2 L(1, symZu; )e
A 22k(T2 i pk/2)1+8.
We choose k := |4log T/ log p| = 4, and Proposition 1 follows.

For the proof of Proposition 2 we use Lemma 1 to compute

ok 82 —~ BT
47(p) L(l,symzuj)e A

12
T2
I

k
12 £(2) . .
- E — AiphH—=22 4T L o 71+
— CLE T2 I i (P )L(l, Synlzuj)e * Ol )

= 2001 + Ok p.(T~'79).

3The corresponding Lemma 6 in [DI] would do the same job, but it is wrongly normalized; in view of the
formula I'{1/2 4 i £}I"(1/2 — it} = 7/ cosh{m¢), the Whittaker function on p. 32 of [DI] should have an
extra factor 7 172,
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Writing for the moment

£(2)

_ ) k
A= 3 4O Ty

A /A.j =f
we have shown

oo
1282 f e Aw) = 2004, §— 0.
0

By a standard Tauberian theorem ([Te], Theorem 11.7.5) and (9) we find for fixed &
and p,

12 £2) 12 it i 1/2 .
= A — 22 AT b _ VE—x2d
7= 2 M) Lsymzy 2D > Tay 3 |,” s

/'LjST2

as 7" — oo. Therefore Theorem 2 holds for power functions and hence for polyno-
mials. Since polynomial functions are dense in the space of continuous, compactly
supported functions, the proof of Theorem 2 is complete.

3. Combinatorics of Hecke eigenvalues

We compile some results on the Fourier coefficients A(m,n), see e.g. Section 6 in
[Gold], Chapters 4 & 9 in [Bum] or [HM]. First we recall that A(m,n) = A(n,m).
A basic (but not trivial) approximation to the Ramanujan conjecture (Jacquet—Shalika
bounds) is

Aj(n,m) <, (nm)'/?re, (12)

Better bounds are available (due to Luo—Rudnick—Sarnak), but we do not need them.
We have the Hecke relations ([Gold], Theorem 6.4.11)

mldo m2d1
A DA m) = Y a(T ),
dyllyilo—ii
di|my.dz|m> o (13)
142 260
ALmAGmm) = Y 422,

dodldzzn
dy|my,dz|mz

Given two integers /, k, we can write

AL DI = (AP DA PN = D ars ik AT PY)
r+s<2ik
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for certain integers o, 5 7 . All we need is the bound

I+ D) +2)\*
D arsaxl < ma(pH)* = (( + DU+ )) (14)

2
r+s=2lk

which follows by induction from (13). The Hecke eigenvalues A(p, 1) are the sum
of the Satake parameters a{(p),a(p), as(p), and one can express A(p", p’) asa
symmetric function in «y(p), a2(p), as(p) by Schur polynomials [Gold], 7.4.14:

o (p)r+s+2(a2(p)r+1 — a3 (p)r+1)
(a2(p) — a1 (p))oz(p) — o2(p)) (1 (p) — a3(p))

az(p)r+s+2(a3 (p)r+1 — (p)r+1)
(a2(p) — a1 (p))(es(p) — a2(p)) a1 (p) — as(p)) (15)

053(p)r+s+2(051 (p)r+1 _ Olz(p)r—H)

(o2 (p) — a1 (p))as(p) — a2 (p))a1(p) — as(p))
=: Qrs(a1(p). a2(p). az(p)),

A(p", p’) =

say. By a simple brute force computation one checks that

[ 01 s(e, e, e DY Gy 1) = 6, (16)
Slx sl

(Note that the denominator of (15) combines nicely with the measure (6).) The Satake
parameters satisfy o (p)a(p)as(p) = 1 as well as the unitarity condition

{a1(p),o2(p), as(p)}y = {1/ar(p). 1/aa(p), 1/as(p)}.

This equality of sets implies that if the Ramanujan conjecture at p is violated, that is,
if not all three parameters have absolute value 1, then we must have

{061 (p)a 052(]7)5 o3 (p)} = {pe—ila p_le_” ’ 62”} (17)
for some p > 1 and some / € R. Combining this with (15) withr =/, s = 0, we
see that in this case ;

P2 (L= 1/p) —4p

2(p+ 1)?

AP 1) = (18)

Remark. Equation (16) is a special case of the orthogonality relation (also verified
by direct computation)

(Qr.s: QFE)

= [ Qrs(ett et T FD) 05 (11 o1 T du (11, 1) = 6,
Six§ s

Caty
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In particular, the Schur polynomials @, for r, s € Ny form an orthonormal basis
of the space (§! x §1)/W, and every smooth function f on (S! x S1)/W has a
Fourier expansion

f(tl’IZ) = Z (]r’ Qr,S)Qr,s(enl,€iz2,€_i(tl+12))_

r,52=0

4. The Kuznetsov formula for GL.(3)

We write the Fourier expansion of a Hecke—Maal} cusp form for SL3(Z) as
A(ml s mZ) rwsgn(mz) |m1m2‘ ¥
0=3 ¥ Tt 2w (M ) (0)2)
mi=tmp#0 | V2 yeln\SLa(Z)

with U/, = {(1 ’1‘) | x € Z} and ‘WT 1)2(2) e(x1 £ x2)Wy, vy (¥y1. y2) for z =

1 x2 x3 yiyz
1 x1 ¥1 . where
1

Wvl,vz(yla y2)

= 8y1y2 (y—l)
)

oo
d
/ K3,,Qry2/1+ 1/u*)K3, Qry2v1 IR L GOtV
0 U

vi—va

with
Vo = Vi + V2
is the completed Whittaker function*. As mentioned in the introduction, we do not

know if vy, v, are purely imaginary, but if the Ramanujan conjecture is violated, then
it follows by unitarity that

(vi,v2,v0) = 2p/3,—p/3+iy.p/3—iy) or (p/3+iy.p/3—iy.2p/3) (19)

for0 < |p| < 1/2and y € R, cf. e.g. (2.8) in [Bl]. This is the archimedean analogue
of (17).

Again we can compute the norm of ¢ by Rankin—Selberg theory and Stade’s
formula [Sta]:

S i Sd d F(S/2)3 1—12: F(S+3Vj )F(S—3Uf)
f f |Wul,u2(y1,yz)|2(yfyz) B yi = n 3?5 : =
0 0 (¥1y2) 47351 (3s/2)

4This is the standard definition of the completed Whittaker function as in [Gold], p. 154. Note that the leading
constant in [Gold], (6.1.3}, should be 8 instead of 4.
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(as an equality of meromorphic functions in s). Note that by (19) this holds even in
the non-tempered case. Let

E(z,s;1) = % Z det(yz)*

yE€P\SL3(Z)
with P = {(% g ?)} C SL3(Z) be the maximal parabolic Eisenstein series. As in
Section 3 of [Fr] or [Gold], p. 227-229, we unfold the Eisenstein series:

dyq dy,

1
@OECE) =3 [ 8EPOT) n drds TLSL

Let ¥ denote a fundamental domain for {(1 1 J;) le, f € Z}\ff. Then P\B?
1

is in 2-to-1 correspondence with {(¥ ;) | ¥ € GL2(Z)} \F. Inserting the Fourier
expansion of one factor and unfolding once again, we obtain

(6. PECD) = Y > | Ag (m1. my)[?

m1:1m2—1 |m1m2|2

S W PO (yl dJ;i
L B B i SR
for Rs > 1. Comparing residues at both sides, we find with Stade’s formula that
2 3 o]
@resL(s P X P) — Jl_[)cos (Enuj) = ||¢||ZSISSlE(., 5,1) = 3“3) — ol
(20)

see Corollary 2.5 of [Fr] and observe that his definition of the Fisenstein series differs
from ours by a factor 2 (the index of SL;(Z) in GL3(Z)). We conclude that the
orthonormalized Fourier coefficients are given by

A(my, m2) T cosimuy/2) 21)
b2 3rgle(s,quq5) )

(Note that by (20) the product of the cosines is a positive real number.) It is known
([Li], Theorem 2, or [Br], Corollary 2) that

res L(s, ¢ x ) e (1+ [v1] + [va])". (22)
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Theorem 4. Let nq, ny, my, my be positive integers and write P = ninymqym,. Let
T > 1. Then there is a non-negative function ht and a constant ¢ > O satisfying
ht > lonthe set {(vy,vy) | ¢ < v, Iy T, Ry |, |[Rvy| < 1/2} such that

4 Aj(n1,m)A; (2, mhr (v v

&, (T5+T2P1/2+T3P7/64+P5/3)1+8.
rele(S,qu X ;)
5=

J
Proof. This 1s Theorem 5 of [BIl], where we invoke [Bl], Lemma 1, as well as [B1],
Theorem 1, to estimate the main term on the right-hand side of [Bl], Theorem 5. [

Theorem 4 sulfices for the proof of Theorems 1 and 2. For the proof of Theorem 3
we need a more precise, but less uniform version. Its proof that we postpone to the
end of the paper features a completely explicit version of the Kuznetsov formula
(Theorem 6).

Theorem 5. et ny,ny,my,my € Z\ {0}, P =mymoniny and T > 1. Then

Aj(ny,my)Aj(na, ma) _ 2
Z ( 1- 1) ( 2 2) A T — 5|n1‘:‘m1‘C2T5 + 08((PT37/8)1+£)
reSL(S ¢; X (bj) [nz|=|mz|

where ¢, = +/3/(277%/?).

The error term is not optimized. In order to keep the argument as simple as
possible we only tried to obtain explicit polynomial dependence on P and a nontrivial
exponent in 7. The best possible error term in this situation is QO(7>) coming from
the Eisenstein contribution. Theorem 5 is a direct GL.(3)-analogue of [IK], (16.56).

5. Proofsin the rank 2 case

The proofs of Theorems 1 and 2 are very similar to the proof of Proposition 1. Let
[, k be two integers. Combining (22), (14) and Theorem 4 (with 107 instead of 7'),
we obtain

> 14 DI

/'LjSTz

. 7 Y M D Bror (17, 037)
) : res L(s, ¢; X ¢;)
/ s=1 (23)

A:(p", p)h T(U(j) (J))
Z s it Z i\ P ) i

rts<2lk ‘ fgle(S’@f X ;)

(1 + (I + 2)
2

2%k
<, Ts( ) (T5 4 T2plk 4 73 p7tk/32 | ,100k/3)14e
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where the implied constant depends only on . Choosing & = [(3/2)log T/ log p|
and/ = 1 gives

3 |, DIP <&, 32T,

ljSTz

and Theorem 1 follows easily:

1 —2k
A ST |4;(p. DI 2 et < —5 D 14;(p. DI*
A; T2
-2k og o
e (%) Te « T~ r +

In order to prove Theorem 2 we consider cusp forms ¢; with

max{le{” (p)], [65" (p)], | (P)I} = 1 + 8.
By (17) and (18) the Hecke eigenvalues of such a form satisfy

(14 )18 —4(1 + §)

A:(pf D =
|4;(p", 1) 357

=+ Dl +2) (24)

for some sufficiently large / = /(§). For T sufficiently large in terms of § and p we

choose k = L%J = 1. From (24) and (23) we conclude

1 . . .
—s#(A; < T max{lo” (p)]. [of (p)1. S (P)]} = 1 + 8}

L |4;¢p". DI T
< T5 Zz (I + D) + 2))2k e 22k

Ay =T

and Theorem 2 follows with < m

Finally we prove Theorem 3 analogously to Proposition 2. Let r, s be fixed
integers and p a fixed prime. By Theorem 5 we have

A- P
Z (p P ) e—‘lj/Tz s SF:S:O
C‘zTS resL(s b; X dj)

as " — oo, and hence by the same Tauberian argument as in the proof of Proposition 2
we conclude

1 Ai(p", p°) 8r=s=0
Z resL(S b; X B;) - I‘(% +1)

By the Hecke relations we can write A;(p". p°) = ¢,s(4;(p, 1)) where g, ;(z)
is a polynomial in z and Z. By (15), (16) and the definition (7) of the measure dyu,
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Theorem 3 holds for the functions g, ; (restricted to R). Again by the Hecke relations
we can write A(p, )¥ A(1, p)? as a linear combination of the A(p”, p*). Hence by
linearity of the integral, Theorem 3 holds for the functions f(z) = z¥Z!. Since every
continuous function on R can be approximated by polynomials in z and Z, Theorem 3
follows.

6. The Kuznetsov formula on GL.(3) — continued

6.1. Preliminaries. We introduce some notation. We start with the definition of the
relevant Kloosterman sums for the Weyl elements

Forny,ny, my,my € 2\ {0}, D1, Dy € N we define

SW6(m1:m2:n1:n2’D1’D2)

. myB1 4+ ni(Y1D, — Z1Bs)
= LYYy o o )

Bl,Cl (de Dl)

B>,C» (mod D») =
(D1, By CY=(Ds By.C2)=1 ‘e (szz S HZ(II;ZDI ZZBI))
2

D1 Ca+ B B2+C  D>=0(D, D>)
where Y1,Y,, Z¢, Z, are chosen such that
YiBi+7Z,C, =1(mod Dy), Y:B,+ Z,C, =1(mod D,).
For Dy | D,, we put

Sw5(m1:m2:n1’n2’Dl’D2)

. TY [(natmGo)(mG)
C1 (D1), C2(D3) Dy D2/ Dy
(Cl D ):(C21D2/D1):1

The right-hand side does not depend on 7,, but it is nevertheless convenient to keep
1, on the left-hand side. For D, | Dy we put

Sw4(m15m25n15n25D15D2) = Sws(m25m15n25n15D25D1)'
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Many properties of these Kloosterman sums have been derived in [BFG]. Here we
only need to know the upper bounds
SU)@(mla m25 nla ”2; Dls DZ)

e (D1 D)2 ((Dy, Dy)(myma, [ D1, Da])nyng, [Dy, Do),

' D 1+E
Sws(m1,ma, n1,n2, D1, D7) <, min ((ml D—Z)D% (ma, ny, DI)DZ) :
1

' Dl 1+«
Sw4(m1:m2:n1:n2, Dla DZ) <<£ min ((m1: D_)Dg’ (mlznz, Dz)Dl)
2
(25)

where | ., .] denotes the least common multiple. The last two bounds are due to Larsen
(see | BFG], Appendix), the first bound is essentially due to Stevens (see [Ste], Theo-
rem 5.1). The dependence on m1¢, m2, n1, n2 has been worked out in [Bul], p. 39,
by analyzing Stevens’ proof.

Next we define the normalized Fourier coefficients of minimal and maximal
parabolic Eisenstein series. We refer to Section 10 of [Gold] or Section 5 of [BI]
for more details. For vy, vy € iR and my,m, € Z \ {0} we define

Ay (my, ma) = [my V022 ma | V205, sy, (Iml, [m2))

where oy, v, (1, m2) is the multiplicative function defined by

1 pvz(k1+1) p(U1+U2)(k1+1)

( 1 pr2thitia+2) plugFvpdky+ha+2) ) ‘

k1 kay _ —wvaky 1 1 1
O'vl,vz(p ’ p ) - p ‘(1 pZUz pZ(‘Ul +U2))‘

1 p‘l)2 pv1+v2
1

Moreover, for it € iR and u#; a Hecke—Maal3 cusp form for SL,(Z) with eigenvalues
Aj(n), we define

Buu,(Lm)y= Y Aj(dyd;"dy"
dydy=|m|

and extend this definition to all pairs of integers by the Hecke relations
B/.c,uj (m,1) = B(M,uj)(15 m) = B/.c,uj (1,m),
" L {13%)
B/.c,uj(mlamz) = Z P'J(d)B/.c,uj (751) B/.e,uj (15 F)

d|(m1,m2)
It follows from the Kim—Samak bound (3) that

Ay wa (M1, m2), By, (my my) < |mymy|"764Fe, (26)
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Up to a normalizing factor proportional to

2 cos(3mv;/2) 2 cos(3mv;/2)
=0 I oR j=0 I
ROEETE P L symup| L+ 3P

the quantities | Ay, v, (m1, m2)|* resp. | By, u; (m1, m2)|? are the squares of the Fourier
coelficients of the minimal resp. maximal Eisenstein series in the spectral decompo-
sition, see e.g. Section 5 and Proposition 4 in [BI].

We have the following formula for the (slightly re-normalized) double Mellin
transform of the Whittaker function [Gold], (6.1.4):

WU1 2V2 (ula MZ)

4 ee e v d
= _2/ / qu,uz()’lsyz)(ﬂyl)ul_l(ﬁyz)uz_IM
e Jo Y1ya
F(u1+2;1+v2)1—.(u1—v21 +U2)1"(ul_vé_zvz)r(“Z_zgl—Uz )F(uz_'_vl_vz)r(miﬂ)

r(«52)

For A > 0, y1,y> € R and —9/8 < Ru; < —1 we define the following auxiliary
functions:

Ty AU, U2; Y1, Y25 V1, V2)

— (i)™ el [ f Worsoan (11 12)

13+u1—u2+2A 2+u1+A/ / ( X3 e X2X3 -I-szz)
it 1+ x2 4 x2 1+ x3

—1—u —
(1+x2) (1 + x5 + x3) dxdxs

Tw5,A(ula uz; ylsyz; Uls UZ)

= (el ) ()2 [ [ We, (i1 12)

_ X
tl3+u2+2A 24u> u1+A/ / ( 3 s X1X3 +51x1)
tlt21+x1+x3 1+ x

—1—u —
(1+ x7) (1 + x3 + x%) dx1dx;
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T, A1, 425 Y1, Y23 V1, V2)

(77|y1|) ul(ﬂ'b’ |)—u2[ [ W—U1 _U2(t1 52)f3+u2+2A 24u1+A

f f [ (yl X2 + xX1x3 N Y2 X1 —|—2x2(x1x2 —x3)2 6 +tzx2)
I21+x2+x3 14 x7 4+ (x1x2 — x3)

= u —1—u+2u d[ d[
(1+ x% + x%) (1 + x1 + (x1x3 — x3) ) > 2dx1dx2dx3 ﬁ,
142
as well as
A 343A 2 —3xv; —3mv;
MA(UI UZ) — £ F( 2 ) l_[ 2 : tan( 2 J,)
2 1+AN3 14+ A43v; 1+A—3v; 4"
3T ( —; ) j=0 MN(——)T(—F)

Let —9/8 < ¢ < —1. For w € {w4, ws, we} we define the following integral kemel
Jw A(¥1,¥2:v1.v2)

s duq du

= MA(VlsUZ)(f f Wu1,uz(ulauZ)Tw,A(ulsuziylayz;VlsUZ)—.ZZ
© J () (27i)

du2

+3 ( res Wv1 o (U1, u2) T A(v1 + 2v2, 125 Y1, Y2i V1, Vz)?

c) H1=V1 +2vua

—~ duy
—I—S[ res Wy v, (U1, u2) T a U1, VI — V2i V1, Y2; V1, Uz)?
(

c) ¥2=V1i—v2

+6 res W, (1. uz2)Ty a(ve + 2v2, v1 — V2l y1, Y2i vy, Uz))-
u1:v1+2v2
U2=V1—V2

For better comparison with [Bu2], we recall that the Langlands parameters (1, to,
w3 are related to the spectral parameters vg, v1, v2 by

M1 = 2v1 + vz, o = —Vv1 + Vg, p3 = —vy1 — 2y,

(27)
v = (p1 — n2)/3, va = (2 — 3)/3, vo = (i1 — pu3)/3.

Then the functions Jy 4(¥) in [Bu2] are related to the above defined function
Jw,A(¥1, Y25 v1, v2) by

Jw,A(yl,yzivl,Uz)

47 HIAT (3134
- 1+A 3J’[’U‘2 1+A+3v; . Jw,y,(y)
kaai(v1, v2)I' (5= )31_[ Dcos( 2~')1“( SR} fasml/
(28)

where the function k,q;(vq, v2) is constructed so that the denominator is > 1 away
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from poles (that is, when v; is an odd multiple of 1/3). Specifically,

2
kagi(v1,v2) = | [((3 +24)% —9v})=4/2,
j=0

The key to estimating the Kloosterman terms in the Kuznetsov formula is the
following bound for the integral kernel J,, Ao which is part of [Bu2], Proposition 1.

Lemma 2. Let A = 5/4.
a) If Rvy = —1/2 and Rv, = 0, then
29/16
((1+ wo (1 + [ + [v2)**
min((1 4 [vol), (1 + [va]), (1 + [w2]))”™"¢
b) If Rvy = —1/2 and Rvy, = 1/2, then

Jw4,A(}’, 1: Vi, UZ) < |y|

((L+ [o)(1 + a1+ [va))*™*

min((L + [vo]). (L + [va]). (1 + [2]))
c) If Hvy = =2/3 and Rv, = 1/3, then

Jws,a(L, yiviv) < |y 43716

((L+ oo (L + [ur DA =+ [v2)**"

min((L + o), (1 + [v1), (1 + |2 )) "¢

Juwe.A (Y1, ¥2:v1,v2) K [y1y2]

Proof. We use Proposition 1 of [Bu2] and choose
o (Rpq, R, Rus) = (—1,1/2,1/2) for Jyy,,
o Rpr, Rpa, Rus) = (—1/2,1,—-1/2) for Sy, and
o (Rpr, Rpz, Rus) = (=1, 1,-1/2) for Jy,. O

6.2. An explicit Kuznetsov formula. We are now ready to state the Kuznetsov
formula. The following theorem is a restatement of Theorem 8 of [Bu2] which is

based on Li’s approach in Section 11 of [Gold] together with the spherical inversion
formula for SL;(R).

Theorem 6. Let h: C* — C be a function that is holomorphic on R := {|Rv;| < L,
0 < j <2} and that is symmetric under the Weyl group

(V1. v2) = (=1, v9) = (V2. —Vg) = (=v2. —v1) = (=Vo. V1) = (vg, —V2).
Assume that h(vy,v2) = 0if (vi — 1/9(w3 — 1/9 (5 — 1/9) = 0 and that

h(Ula Uz) < ((1 + |l)1|)(1 + |1)2|)(1 oo |1)1 AL 1)2|))—5/3—£
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in R. Let ny,ny,my,my € 7.\ {0}. Then the following formula holds:

h(l)(“’) (J))
rele(s,gbj X @)
5=

4 -
gzﬂj(ﬂl,ﬂz)ﬂj(ﬂh,mz)
i

+ ¢ [ f Ay, 3 v, 750) Ay G, )
(0) J(0)

. h(vi,va) dvidv;
1L+ vo)l(L+ v)E(1 + vp)|? (27Ti)2

hip — ztj ztj) du
& By, (11.12) By i1, .
' 2¥/<m oty (11:12) By, O m2) T S T T sy 2

2
—3mv; 3nv; dvid
=iz [ o [T S5 e 2 G
(0) 4 (0)

|r2]|=|mz]|

=0
SUJ4(m15m2561n15€2n25D15DZ)
+ 2 > A
€1 51gn(m2n1)D1\m2\ Dz\nl\
626{ 1
€211 2 dvi dv,
h(vi, v2)J A( ,1;v1,vz) :
/(;‘4 2) /(;4 1) e D1D> (27i)?
SWS(MI’MZ’GIHIJGZHZ’DIJDZ)
D 2 DLl

€1€{£1}  Dylmi|=D?(nz
€2 =sign(mnz)

f [ I 3 ( €11m 1M ) dvidvs
UI,UZ A U],Uz ————
(e52) v (e5.1) o DlDz (2mi)?

Z Z Swel€anz, exny,my, ma, D1, D3)

& DiD,

(e1.62)€{£1}2 D1,D>

f f h VJ (Dzmleznz Dlnglnl ) dvi dv,

Vi, V2 A ; s V1, V2 :
(c6.2) J/(c6,1) - D% D% (2mi)?
where

(can.ca2) = (=1/2,0), (esacs2) = (=1/2,1/2), (c6a.¢62) = (=2/3,1/3),

and C1 and C, arve absolute constants.

For the conversion from [BuZ2], (8) and Theorem 8, to the present version we used
(21) for the cuspidal term.

Remarks. 1) The spectral side of the formula does not depend on A, hence the
arithmetic side is independent of A, too. The individual terms on the arithmetic
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side, however, do depend on A. We need this somewhat artificial parameter for
convergence reasons.

2) The requirement that /2(vy, v;) = 0if (vf — 1/9)(v3 — 1/D(WZ —1/9) =0
comes from the poles of tan 37 v; /2 in the spectral measure. It allows us to choose
contours with —1 < Hv; < 1 on the Kloosterman side. This is an analogue of the
fact that the GL(2) Kuznetsov formula has better performance if the test function
cancels the poles of the spectral measure ¢ tanh(z)d1.

3) There is some flexibility in choosing the lines of integration, but there are also
some constraints due to convergence, see Proposition 1 of [Bu2] for more details. In
our situation the lines given in the theorem are, in view of Lemma 2, most useful.

The following corollary shows how to apply this rather complicated formula in
practice.

Corollary 7. Keep the notation and assumptions of Theorem 6. We write P =
|mymynyn,| # 0 and

HU1,H2(a15a2) = f / |A(vy, vo)| (L + |U1|)0“+5(1 + |v2|)“2+8|d1)1| |dv,|
(n2) Y (1)

and

((1 + |[vo|)(1 + |v1|)(1 + |U2|))0£1+s
= h(vy, BTy
/nz) fm) Ve Uz)|rr1in((1 + [vol). (1 + [v1l). (1 + |v2])) |dvi]|dvs]

(for fixed small € > 0). Then one has

h(l)(J) (J))
I‘ESL(S,qu X gbj)

Y Aj(n1.n2) Aj(my. my)
J

(=3mv;) 3nv; dvidv;
=3 f f h(vy, v2) tan .
In1|= | 1'29716 ©) J(0) b2 1_{) 2 (2mwi)?

|f2|=|ma2|
B8+, (B.5)

- P 0 D).

+ O (P1re(H2, (B.2) + 1

11
272

Proof. We estimate the remaining terms in Theorem 6. For the Eisenstein series we
use the bounds (26) together with the lower bounds {(1 + i) >, |t|7° forf # 0,
L1 +it,u;) > (L+ |t] + |;1)7° ([HR], Theorem C) and L(1, sym?®u;) >,
(1 +|;])~% ([HL]) and Weyl’s law (2). In this way we bound the maximal parabolic



916 V. Blomer, J. Buttcane and N. Raulf CMH

contribution by
PO 3 (1 [y f( (i — ity 2ip (L + [)®ldp] <o PO+ Hoo(0, 1),
, 0)
i

and this majorizes also the minimal parabolic contribution.
For the Kloosterman terms we combine Lemma 2 with (25) and observe that the
D1-, Dy-sums on the Kloosterman side are absolutely convergent. ]

6.3. Proof of Theorem 5. For the proof of Theorem 5 we choose

h(vi,vp) = e—(1—3vf—3”1”2—3v§)/T2 ﬁ (% _ ”12 :
’ L1 (1 —v?)2
7=0 I
2 2 2 2 1
— ,—(1=3v{—3viv2—3v3)/T (1 O( ))
‘ * 120 1+ |Uj|2

This satisfies the assumptions of Theorem 6. Note that by (19) and the truth of the
Selberg eigenvalue conjecture A; = 1 the function / is positive on the spectrum. We
compute

HO,O(Os 1) <<£ T3+85

%3

-50\16" 16 -33\16" 16 (29)
25 43 25 33
* B2, 255+ 1+e _ pte
CIE (16’ 16) Sl P

By a weak form of a local Weyl law for SL3(Z) (e.g. [Bl], Theorem 1) and the bound
(12) we have

h(U%j), Ugj)
rele(s, é X @)
§=

> Aj(n1.n2)A;(my, ma)
J

e—lj/TQ

rgle(S, d X @)

=" Aj(n1.n2) A (my, m)
j (30)
—A;/T? Zfzo(l 1o |Uj|2)_2
res Lis, ¢ x ¢)

e
« |n1n2m1m2|1/22
J

&, |ﬂ1ﬂ2mlﬂ’£2|1/2+ET3+E.
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Finally we compute

o)

3y, (=3mv;) dvidv
f[h(ul’m“ y A 21'22
© J© j=o (2ri)

oo pico 2
—3nv; 3nv; dvid
:6[ f h(vl,uz)l_[( Y1) (o 7V D01V
o Jo i 2

N2
2 (2mi) G31)

; : 2
_ 6i3/IOO/*1006(3v12+3v1v2+3ug)/T2 1—[ (—37(1)]) dU]dl)z + OE(T3+E)
0 0 :
=0

2 (2mi)?
37\ 1 /x/3 732
— 6 = TS 0 T3+8 — _TS 0 T3+£ )
(2) G s L TOITT = /T o)

The double integral in the penultimate line can be computed by diagonalizing the
quadratic form via vy + v; — v2/2 (or by Mathematica). Theorem 5 follows from
injecting (29)—(31) into Corollary 7.

Note added in proof. 1) After this paper was accepted for publication, similar
results were obtained independently by F. Zhou (“Weighted Sato—Tate vertical distri-
bution of the Satake parameter of Maass forms on PGL(N )", to appear in Ramanujan
Journal, Doi 10.1007/s11139-013-9535-6).

2) The second author would like to take the opportunity to correct some mis-
prints in [Bu2]: the leading constant in Theorem 7 should be —1/(487*) instead
of —1/(6474), and the changes propagated. The function C*(u) above Theorem 9
is missing a factor 473/ 2*+3AT(2£38) The leading constant on F; in Theorem 9
becomes —1/(247®), and the leading constant in (14) should be 1/(1277).
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