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Spectral theory for the Weil-Petersson Laplacian on the Riemann
moduli space

Lizhen Ji, Rafe Mazzeo, Werner Müller and Andras Vasy

Abstract. We study the spectral geometric properties of the scalar Laplace-Beltrami Operator
associated to the Weil-Petersson metric gwp on My, the Riemann moduli Space of surfaces of
genus y > 1. This Space has a Singular compactification with respect to gwp? and this metric
has crossing cusp-edge singularities along a finite collection of simple normal crossing divisors.
We prove first that the scalar Laplacian is essentially self-adjoint, which then implies that its

spectrum is discrete. The second theorem is a Weyl asymptotic formula for the counting function
for this spectrum.
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1. Introduction

This paper initiates the analytic study of the natural geometric Operators associated

to the Weil-Petersson metric gwp on the Riemann moduli space of surfaces of genus

y > 1, denoted below by My. We consider the Deligne-Mumford compactification
of this space, My, which is a stratified space with many special features. The geometry
and topology of (My, gwp) has been extensively studied, starting from the early works
of Ahlfors, and including the systematic study by Wolpert [16], [18]. More recent
results include the asymptotic behaviour of the Weil-Petersson volume by Mirzakhani
[15], the ergodicity of the Weil-Petersson geodesic flow by Burns-Masur-Wilkinson
[5], and asymptotic bounds on the Weil-Petersson diameter of My by Cavendish-
Parlier [6].

Given all these results and the many well-known close relations between various

aspects of the geometry and analysis of Riemannian manifolds, it is natural to study
the spectral theory of the moduli space with respect to the Weil-Petersson metric.
In general, the spectral geometry of geodesically incomplete Riemannian manifolds
is poorly understood. One source of examples of such spaces consists of Singular
algebraic varieties with certain natural Kahler metrics, and (My, gwp) is arguably
one of the most interesting of these. We hope that the results in this paper will draw
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people's attention to further problems concerning analysis on moduli space and the

relationship of analytic and geometric properties on this space.
This paper Stands as the first Step in a development of analytic techniques to study

the natural elliptic differential Operators associated to the Weil-Petersson metric.
More generally, our results here apply to the wider class of metrics with crossing cusp-
edge singularities on certain stratified Riemannian pseudomanifolds. This fits into a

much broader study of geometric analysis on stratified Spaces using the techniques
of geometric microlocal analysis. Some of this work is directed toward studying
general classes of such spaces, while other parts are focused on specific problems
arising on particular singular spaces which arise 'in nature', such as compactifications
of geometric moduli spaces, etc. These approaches are, of course, closely intertwined.
The perspective of this paper is that (My, gwp) is inherently interesting, and that the

spectral theory of its Laplacian will most likely find interesting applications; at the

same time, it is an interesting challenge to develop analytic techniques which can be

used to study other singular spaces with related metric structures.
Our goals here are relatively modest. As stated above, we focus on the scalar

Laplacian A, rather than any more complicated Operator, associated to the Weil-
Petersson metric on My, and provide answers to the most basic analytic questions
about this Operator.

Theorem 1. The scalar Laplace Operator A on (My, gwp) is essentially self-adjoint,
o

i.e. there is a unique self-adjoint extension from the core domain ^orb(My). The

spectrum of this Operator is discrete, and ifN(X) denotes the number ofeigenvalues

of A which are less than X, then

/0 \n VoIwp(M)Xn/2 + o(Xn/2)
(27t)n

as X -> oo. Here, as usual, con is the volume ofthe unit ball in Mw.

Remark 1. There is a subtlety in the Statement of this theorem which we point
out immediately. The interior of the space My already has singularities, but these

are caused not by any properties of the Weil-Petersson metric, but rather are orbifold
points which arise because the mapping class group does not act freely on Teichmüller

space. While an analysis of the self-adjoint extensions near such points can be carried

out, we instead restrict to an easily defined core domain which fixes the nature of the

self-adjoint extension near these points. This is defined as follows. If p is a singular
point in the interior of My, then there is a neighbourhood Up around p, an open
set Up in RN (N 6y — 6), and a finite group Tp which acts on Up such that

Up/Tp Up. We then define t^°(My) to consist of all functions / such that the

restriction of / to Up lifts toaü00 function / on Up. We refer to [11] for more
on this and related other analytic constructions on orbifolds. Our main result then is
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that A is essentially self-adjoint on this core domain. The arguments in this paper
are essentially all local (or at least localizable), which means that for all analytic
purposes, it suffices to assume that the interior is smooth and that the Singular set of
the compactification is of crossing cusp-edge type, as described below, even though
the actual space is locally a finite quotient of this.

The emphasis on showing that a given Operator is essentially self-adjoint is not so

Standard in geometric analysis for the simple reason that this property is automatic
for all 'reasonable' elliptic Operators on any complete manifold, and when the issue

actually arises, e.g. on manifolds with boundary, it is so customary to impose boundary
conditions that one rarely thinks of this as choosing a self-adjoint extension. On

Singular spaces, by contrast, the issue becomes a very real one, and a key preliminary
part of the analysis on any such space is to determine whether the Singular set is large
enough, in some sense, to create the need for the imposition of boundary values.

For other classes of Singular spaces, e.g. those with cones, edges, etc., this issue is

well understood. It is known that if the Singular set has codimension at least 4, then
there is no need to impose boundary conditions for the Laplacian on functions. For
the Laplacian on differential forms, however, and for these same types of 'iterated
edge metrics', the Situation is more complicated, and was first considered carefully
by Cheeger [8], [9], see also [2], [3] for some recent work on this. However, the

Weil-Petersson metric is more Singular than these spaces, which leads to the goals of
this paper.

The proof of essential self-adjointness for any Operator translates to a technical

problem of showing that any dement in the maximal domain <£)max of this Operator is

necessarily in the minimal domain <£)min. We review the definitions of these domains
in the beginning of §3. This is simply a regularity Statement: we wish to show that

any u e Anax enjoys enough regularity and decay near the singular set to allow us

to prove that it can be approximated in graph norm by elements of The

techniques used to prove this regularity here are somewhat ad hoc, and in particular
do not use any of the heavy microlocal machinery which has proved to be very helpful
for the study of more detailed analytic questions on stratified spaces. The advantage,
however, is that this approach is much more self-contained.

It is worth recalling the well-known fact that the Laplacian on M.n is essentially
self-adjoint on the core-domain \ {0}) if and only if n > 4, see [10], and that
the 4-dimensional case has a borderline nature. The 'radial part' of the Weil-Petersson

Laplacian near a divisor is essentially the same as the radial part of the Laplacian on
R4, so in our setting too there are some borderline effects in the analysis. This
motivates our introduction of a slightly broader class of crossing cusp-edge metrics
of any order k > 3, for any of which we carry out this analysis. This is intended to
clarify the slightly more delicate argument needed when k — 3.

An immediate consequence of the equivalence <£)max Anin for the scalar Laplacian

is the fact that this domain is compactly contained in L2, which proves immedi-
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ately that the spectrum is discrete. Our final result, concerning the Weyl asymptotics
of the counting function for this spectrum, employs the classical Dirichlet-Neumann
bracketing method, hence does not provide much Information about the error term.

In §2 we provide a brief (and sketchy) review of the key properties of the geometric
structure of the Weil-Petersson metric and of the Singular set of My. The key fact,
that the local lifts of gWP have 'crossing cusp-edge' singularities of order 3, leads to
the introduction of the analogous class of metrics of any order k > 3. The rest of the

paper then considers the scalar Laplacian for any metric of this more general type.
Essential self-adjointness is studied in §3, and the Weyl estimate is obtained in §4.

Acknowledgements. L.J., R.M. and A.V. gratefully to acknowledge NSF support
through the grants DMS-1104696, 1105050 and 0801226 & 1068742, respectively.

2. The geometry of the Weil-Petersson metric

We begin with a description of the Singular structure of My and the structure of gwp
near the Singular strata. The results about the structure of the Deligne-Mumford
compactification itself are classical at this point, and we refer to [12], [1] for more
detailed descriptions of all of this and references. The form of the Weil-Petersson
metric traces back to a paper of Masur [14] in the early 1970s, but a far more detailed

picture has emerged through the work of Yamada [20] and Wolpert [16], [17]. We

point to two important recent survey articles [21] and [18] and the references therein.
The compact space My is a complex space which is Singular along the union of

a collection Z)0,..., D[y/2] of immersed divisors with simple normal crossing.
Elements of My correspond to conformal structures on the underlying compact surface

£ of genus y, where conformal structures are identified if they differ by an arbitrary
diffeomorphism of £. Another realization of this space is as the space of hyperbolic
metrics on £ identified by the same space of diffeomorphisms. By contrast,
Teichmüller space Ty consists of the space of all conformal structures or hyperbolic metrics
identified only by the smaller group of diffeomorphisms of £ isotopic to the identity.
Thus

My Ty/Map(£),

where the so-called mapping class group Map(£) is a discrete group of automor-
phisms of Ty defined as the quotient of the group of all diffeomorphisms by the

subgroup of those isotopic to the identity.
Let c\,..., cn be a maximal collection ofhomotopically nontrivial disjoint simple

closed curves on £. It is well known that N 3y — 3, and that £ \ {c\,..., c^} is

a union of 2y — 2 pairs of pants, and moreover, exactly [y/2] + 1 of the curves are
distinct after identification by Map(£).

There is a simple geometric meaning to each of the divisors. Let Dj be the divisor
associated to an equivalence class of curves [c] (i.e. curves in this equivalence class
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are identified, up to homotopy, by elements of Map (£)). A sequence of points pi e

My converges to Dj if the geodesics freely homotopic to Cj for the corresponding
sequence of hyperbolic metrics have lengths l(cj) -> 0. A crossing Djx D • • • D DJ£

corresponds to the independent length degeneration of some collection of equivalence
classes of curves cjx,..., cj£. In the following, we shall often denote such an £-fold
intersection by Dj where J {ji,... jt}. Each divisor Dj can be identified with
the Riemann moduli space for the (possibly disconnected) noded surface £' obtained

by pinching the curve cj, or equivalently, by cutting £ along cj and identifying each

of the boundaries, which are copies of Cj, to points.
There are a number of natural and interesting metrics on Teichmüller space which

are invariant with respect to Map(£) and which thus descend to metrics on My. One

of the most fundamental is the Weil-Petersson metric, gwp, which is the one studied
here. It is incomplete on My and induces the corresponding Weil-Petersson metric
on each of the divisors. It is simply the canonical L2 inner product on tangent vectors:

if h is a hyperbolic metric on £ representing a point of My, then the tangent space
ThMy is identified with the space of transverse-traceless Symmetrie two-tensors k on

£, i.e. trhK 0 and ShK 0. If K\ and are two such tangent vectors, then

It is known that My is a complex orbifold and that gWP is a Kahler metric with

many interesting properties. Our main concern is its fine asymptotic structure near the

Singular divisors, which are due to Yamada [20] and Wolpert [19], with closely related
results by Liu, Sun and Yau [13]. Let p be a point in some D j and choose a local

holomorphic coordinate chart {z\,..., z3g_3) with D j — {z\ — • • • zu — 0}.
Setting zj — pjel0J, j < l, then

where go7 is the Weil-Petersson metric on Dj. The expression 0 (| p \3) indicates that
all other terms are combinations of dpj, pjdOj and dy (where y is a local coordinate

along Dj) with coefficients vanishing at this rate. This (and in fact a slightly sharper
version) is proved in [17], and the same result with some further information on the

first derivatives of the metric components appears in [13].
We do not belabor the precise form of the remainders in these asymptotics for

the following two reasons. First, gwp is Kahler, and we can invoke the Standard fact
in Kahler geometry, see [4], p. 252, that if g is any Kahler metric, then its Laplace
Operator has the particularly simple form

gwp — + Pjd6j)(l + |p|3) + gDj + 0(|p|3) (1)

7 1

(2)
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with no first order terms. In particular, the coefficients of this Operator do not depend
on derivatives of the metric. The same is true for the Dirichlet form for this metric,
which also involves only the components of the (co)metric, but not their derivatives.
The proof in §3 involves various integrations by parts, but a close examination of the

details shows that one needs in any case very little about the derivatives of the metric,
and for Kahler metrics one needs no Information about these derivatives at all.

The other reason is that current work by the second author and J. Swoboda aims

at deriving a complete asymptotic expansion for gWP, and this implies all the results
needed here about the remainder terms and their derivatives. However, since that work
has not yet appeared, we emphasize that enough is known about the asymptotics of
the metric in the existing literature to justify all the calculations below.

In any case, using (1), disregarding the constants tt 3 and 4 for simplicity, and using
the product polar coordinates, (pi,..., pi, 6\,..., 9i, y\,..., ys) e U (0, poY x
(S1)1 x V, where V is an open neighbourhood in Dj, we note that

M2l2J \u\2$ • (pi ...pi
where the Jacobian factor $ is uniformly bounded and uniformly positive. Similarly,
the Dirichlet form for Awp is given by

r i k

/ (XI \dPju\2+ X^76IYmI2 + \yyu\2)$ • (Pi-'-Plf dpdOdy
J

7=1 7=1

modulo terms vanishing like |p|3.

In order to focus on the key analytic points of the argument, we shall work with
a slightly more general class of (not necessarily Kahler) Riemannian metrics, the

asymptotic structure of which models that of gwp, with singularities of similar cross-

ing cusp-edge type. We thus let M be any manifold which has a compactification M
with the same structural features as the Deligne-Mumford compactification. Specif-
ically, M is a stratified pseudomanifold, with M its dense top-dimensional Stratum.

All other strata are of even codimension, and can be locally described as finite inter-
sections Dp D • • • D Dp, where dim Dj dim M — 2 for all j. The main point
is that we can use the same sort of product polar coordinate Systems as above, and

we shall do so henceforth without comment. We now consider metrics which in any
such local coordinate System are modelled by the product metric

i n-2l
gi,k '=X^<2 + p2)+

i 1 /x=l

for any k > 3. The corresponding Laplacian is given by

i k j
A i,k- X iKi + ~dPi + 9|) + Aj' A + Ay. (4)

/=l pi Pi
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The first term on the right is the normal component of this model Laplacian. Note
that we are restricting to k > 3. (We could even choose different Orders kj on the
different Z)7, but for the sake of simplicity do not do so.) As we shall see below,
the case k — 3 is in some sense a critical value, and the analysis is slightly easier

for larger values of k. One motivation for discussing this more general setting is to
clarify the borderline nature of the Weil-Petersson metric.

The main point is to clarify exactly what sorts of perturbations are allowed. We

phrase this by focusing on the end result, i.e. by delineating the properties of the

Operators for which our arguments work, and then 'backfilling' by defining the cor-
responding class of metrics appropriately. Thus we first assume that

£

Ag - ^(3p. + kpt 1dßi + p{ 2kd20i) + ADj + E, (5)
i 1

where ADj is the Laplacian for the induced metric on the codimension 21 Stratum,
and where E is an error term. The key structural assumptions are now as follows.
First, if / is supported (or indeed just defined since differential Operators are local)
in one of these local coordinate Systems and depends only on the p\, then we shall

assume that

£

Agf + ai)Pi %)/ + ^2aijd2pipj /> (6)
i 1

where

Wij\, \ai \ < C\p\"

for some rj>0with \p\ (p\ + • • • + p\)1^2 the Euclidean length; moreover, if /
depends only on p and y, but not 0, then

£

Agf -EK+ & +U^Pi l^Pi)f + (y^Dj + v; )./
1 1 (')
+ + EbiJ+

where

\aij\, \ai\, \bij\, \bij\, \cij\<C\p\\
again for some rj > 0.

If g is a Kahler metric and the coordinates (p, 6, y) are adapted to the complex
structure, then using (2) it is easy to guarantee that (6) and (7) hold simply by requiring
that

\SiJ ~ $ij l> \gifl\> \Sßv ~ (SDj)fiv I <I(8)
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for i,j 1,..., l, /x, v l + 1,..., n. More generally, if g is a real (non-
Hermitian) metric, assume the Convention that i, j,... are indices for the p and 6

variables, and /x, v,... are indices for the y variables. Now write

8=J2gifdpidpj +J2gifdpipjd9J +

+ ^slyvdyßdyv + J28Zdpidy^ + J2gißplid9idy^-

(The superscripts p, 6 and y have been affixed to the metric components because of
obvious ambiguities in the indices.) We require first that

Igff-Sijl \gP-V\gff-Sijl |g%-(gDj)ßV\, \g%\, \g%\<c\p\" (9)

for all choices of indices and for some rj > 0. These conditions are sufficient to
guarantee that all the coefficients of the second order terms in (6) and (7) have the

right form. To control the coefficients of the first order terms, we must impose some
conditions on the first derivatives of certain components of the metric. To specify
these, recall the Standard formula for the Laplacian in an arbitrary coordinate System

-As J2gClßdwuwß + E (haßdu>a logdet + dWagaß)dWß.

Write
log det g 2k E log pi + A.

Then the coefficient of dPjis

J2 {(gPT\kp-1 + dPjA + d^'r)
j

+ E (PJ2k(gpe)jidejA+
j

ß

and the coefficient of dyfJL is

£ {(g'yynkpj1 + BpjA + dPj(g»yyp)

j
+E (pjVy^ojA+P-2kdej(geyyp)

j
+j2^gyyyß^A+dy^gyyyß)-

v
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Comparing with (9), we see that the new conditions we must impose are that

\dPjA\, \de.A\, \dy„A\, \dPj(g»T\, \p-2kdej(gpe)jil
J (IQ)

\*PMpyn iPj**ej(geym iM^:n<ipr.
We have written this out in some detail to indicate that it is possible to phrase

the necessary conditions in terms of metric components. However, it is clearly far
simpler to think of these conditions using (6) and (7).

We conclude this section with the following Observation. Since most of the basic

arguments in the remainder of this paper are local, we take this opportunity to note
the existence of a partition of unity {i//a}aeA on My with the property that each \j/y
is supported either away from all of the divisors or eise on one of the product polar
coordinate Charts above, and which satisfy | Vt/q, |, | A\j/y \ < C. Indeed, we need only
choose these functions so that dßj dPi, pfkdei and dyj, for y £ Dj, applied to

this function are 0{p2k); one can even arrange that \j/a is independent of dj when pj
is sufficiently small.

3. Essential self-adjointness of the Weil-Petersson Laplacian

The Operator Ag is Symmetrie on but since this space is incomplete, we
must consider the possibility that there is not a unique self-adjoint extension. Because

Ag is semibounded, there is always at least one, namely the Friedrichs extension.
Whether there are others besides this depends on the following considerations.

Recall the general definition of the minimal and maximal domains of the Laplacian:

<®max(A) {u £ L2fM.yd L\vp) : Au £ ; ö?Lwp)}

and

<£>min(A) {u e L2(My;dVwp) : thereexists uj £ My) suchthat

Uj u and Auj f in L2(My; <7Lwp)}

The Operator AWP is called essentially self-adjoint provided <£>min(A) <£)max(A),

and in this case this is the unique self-adjoint extension of A from the core domain

If these subspaces are not equal, then the self-adjoint extensions are in bijective
correspondence with the Lagrangian subspaces of <Dmax/ £)min with respect to a natural

symplectic structure (coming from the classical Green identities). Choosing such an
extension is tantamount to specifying a boundary condition.

We prove here the following result.

Theorem 2. The scalar Laplace Operator Awp is essentially self-adjoint on
L2(My,dVwp).
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The rest of this section is devoted to the proof. We also obtain the

Corollary 1. This unique self-adjoint extension has discrete spectrum.

The key to proving these Statements is to show that if u e £)max(A), then u must
decay sufficiently and have enough regularity to lie in £)mm(A). We accomplish
this here through a sequence of one- and multi-dimensional Hardy and interpolation
estimates.

3.1. Hardy inequalities

Lemma 1. Fix any measure space (Y, dv) and consider the measure space (X, dpi)
where X R+ x Y and dpi padpdv. Suppose that u E Lf0C(X) has support in

{p < po} and satisfies pßdpu E L2{X;dpi). If2ß+a > \,then pß~xu E L2(X,dpi)
and

\\pß lu\\L2(X;dß) - 2ß _|_ a _ i
WPßdpu\\L2(X,dß)' (H)

If we drop the condition that u is supported in a finite strip in M+, then for any
po,e > 0, there exists some C > 0 such that

II Pß 1

^ IIl2((0,po)x^\dß)

- 2ß +a-l WpßdPUWL2((°>f>o+t)xY;dß) +C\\u\\L2((p0,p0+e)xY;dß)-

Proof Assume first that u is supported in p < p0. Choose a function f e
which is nonnegative and monotone nondecreasing, vanishes for p < 1 /2 and with
(p(p) 1 for p > 3/4. We use (p(p/8) as a cutoff, with 8 \ 0.

By hypothesis, u e H^oc, and <p(p/8)u 0 near p — 0, we calculate

(2ß + a - l)\\(p(p/8)pß-1u\\2L2(X;dß)

(2ß + a — 1) j 4>{p/8)2p2ß+a~2uü dpdv

< j ((2ß +0L- 1 )f(p/8)2p2ß+a-2 + 28-14>(p/8)(t>,(p/8)p2ß+a-1)u ü dpdz

j dp(f(p/8)2p2ß+0i~1)uü dpdz

j(dp(f(p/8)2p2ß+a~1u) — f{p/8)2p2ß+0l~ldpu) ü dpdz

— j (f(p/8)2p2ß+a~xu dpU + dpU f(p/8)2p2ß+a~lu) dpdz

-{f(p/8)pß~1u,f(p/8)pßdpu)L2 -(f(p/8)pßdpU,f(p/8)pß~1u)L2.
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Using the Cauchy-Schwartz inequality, this yields

(2ß +a- l)U(p/S)pß-1u\\2 < 2\\(p(p/S)pß-1u\\ \\(p(p/S)pßdpu ||, (12)

so dividing throughby \\cp(p/8)pß~1u\\ gives

(2ß +a — \)\\4>(p/S)pß~lu\\ <2\\<p(p/8)pßdpu\\L2 < 2\\pßdpu\\L2. (13)

This inequality is obvious if \\cp(p/8)pß~1u\\ 0. Finally, let 8 -> 0 to get that
p$~xu G L2 and that the estimate of the lemma holds.

If u is not compactly supported then replace 4>{p/8) by f(p/8)f(p) where

f g C°°(R) is nonnegative, equals 1 for p < p0 and is supported in p < p0 + e.

Apply the Hardy inequality above to fu to get

+2"—-||/~VGo)m|Il2 < \\Pßfdpu\\L2 + \\pßf'(pML2-, (14)

in view of the support properties of f and this proves the lemma.

Now suppose we are near an intersection of divisors D j. Choose coordinates as

before and, for simplicity, for any multi-indices er G and y G N^, write

pa p1v ...p°l, and {pdpy (piapi)Kl ...(pidPt)n.

If s e R, then we also write ps {p\ pi)s. We also dehne

so (p) 0 when any of the pt vanishes. Note that (p) < p3 for any j. Then the
one-dimensional Hardy inequality above immediately gives

Lemma 2. Let X (R+)^ x Y where (F, dv) is a measure space and set dpi

padpdv. Fixa,ß G suchthat 2ßt + al > Iforeachi. If u G Lf0C(X,dpi) is

supported in {pt < pofor all i} and p^ dPl u G L2(X; dpi) for each i, then

2
\\pßP71u\\L2(x,dß) — 2ßi +oii

_l\\pßdPlu\\LHx,dßy

If we do not assume that u has compact support, then for any po, > 0, there

exists C > 0 such that

|| p^ Pi U ^L2(XC\{pl <po},dß)
2

- 2ßt + a, - 1
H^9ftMHL2(^n{p,po+e},dß) + C \\Pßu\\L^(xn{p0<p,<p0+},dß)-
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3.2. Interpolation inequalities. For any er G R^, define the space

A_(J {u e L20C : \\u\\2x-a := ||p°(p)~lu\\2 + \\pa{p)Au\\2 < oo}. (15)

We write X~° (\L) for the space of functions with finite X~° norm in U.
Our first task is to show that the X~° norm controls the L2 norm of p°Vu. Note

that p°(p)~lu e L2 is equivalent to p°pjlu e L2 for all j. This result is local, so

we fix po > 0 and work in a neighbourhood UPo {pj < po, j 1,..., k}.

Lemma 3. Let a G R^, > 0, and suppose thatu e X~°(UPo+). Then p°Xu is

in L2(UPo) and

^ CH P°(p)~lu\\muP0+e)M\x-<r(uP0+ey

In particular
p(p)_1w, p(p)Au G L2 => pVu G L2.

Remark2. As a consequence, if u e X~a, then paVu e L2. Furthermore, if g\ > 1

for all i then u e L2 implies p°(p)~lu e L2. In particular, if u, Au e L2, then

u G X~° for all ö with gi > 1 for all i.

Proofi Let / be real-valued and X°° and denote bymp the Operator of multiplication
by /. We claim that there is an equality of differential Operators

A onif +m/oA 2V*(my o V)+wia/. (16)

Indeed, both sides are Symmetrie and have the same principal symbol, so their differ-
ence is a Symmetrie, real, first order scalar Operator, hence must actually have order

zero. Applying both sides to the constant function 1 gives the claim.
Suppose that / > 0 is real valued and has compact support in My. Applying the

Operator in (16) to u and taking the inner product with u gives

2Re (Au, fu) 2||/1/2Vw||2 + ((Af)u,u). (17)

This equality extends to all u G H^c(My).
Choose G C°°(M) with 0 < (p, \j/ < 1 and such that

0(0 0 for/t<l/2, (j){t)=\ fovt>\,
\j/ 1 for t < po, VK0= 6 f°r t > Po + e/2.

Furthermore, let / G (Rs) be supported in the y-coordinate chart V. Then define

fi,3 HPi/sffiPifpf01, fs fu Asxiy)2.
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In order to use this in the identity above, we must compute

£

a/4 -e + A
i 1

£

E Pi2 ~ 0« dPi )2 - (k - 1 + E "'./)) 9P;)) fs
i 1 j

l
- E P^Pj^ijipidß^ipjdp^fs + ADjfs

i,j l

E^'- 'O/Oi9p;)">•/ fs -Er'.' dyt E Ö'O" 1

'V, fs•

Then, since

(PidPi)J(4>(Pi/8)) tdtyjwe see that (p)2p~2aAis uniformly bounded as 5 \ 0 (recall that p; > (p) for
all /). Hence, setting f — fs in (17), then

|((A/)w,w)| <

uniformly in <5. Applying Cauchy-Schwartz to (17) thus shows that

£

2\\Y\HPi/8W(Pi))x(y)PaVu\\2
i 1

< C (|| P°(p)-lu\\2+ ||||pa(p)Aw||),

and since fs -> fo VKPi)2 • • • X(y)2 P2a as ^ ^ 0 we conclude that

tHPi)... \l/(pi)pGWu e L2 by letting <5^0.

Another useful property of these Spaces is that they localize.

Lemma 4. Let {^a} be the partition ofunity described at the end of §2. Then

u G X~° implies \j/au e X~°.

Proof First note that

A(fau) Au- 2(Xx//a, Vw)g + (Afa)u.

The expression in the middle is the pointwise inner product with respect to the metric

g. Since \jfa, (p)ViAa and (p)2A\f/a are all bounded (even without the factor of
(p)) we obtain pa (p) A(\f/au) e L2. However, p°{p)~l^/au e L2 as well, so

i/rau G X~°.



880 L. Ji, R. Mazzeo, W. Müller and A. Yasy CMH

Corollary 2. For any er £ R^, My) is dense in X °.

Proofi Fix any u £ X~°. By the previous lemma, we may as well assume that u is

supported in WPo. Lemma 3 implies that p°Vu £ L2.
Choose the cutoff function f(t) as in the proof of Lemma 3 and set ®s(p)

(p(pi/8)... (p(pi/8). The function is compactly supported in My, and Au £
Lfoc, so e Hq(My), and hence clearly lies in X~°.

We claim that -> u in X~a, i.e.

P°r(p)~1®8u Pa{p)~1u, and p°(p)A(®8u) -> pa(p)Au

in L2. The former follows from the dominated convergence theorem. For the latter,

we use that

A(O^w) O5 Au — 2(VO^, Xu)g + (AO^)w.

Since pa (p)Au £ L2, dominated convergence gives that pa (p)<$>8 Au -> pa (p)Au.
In addition p°Vu £ L2 and p° (p)~lu £ L2, so the estimate for the remaining term
follows from the fact that (p) VO5 and (p)2 AO5 are uniformly bounded and converge
to 0 pointwise. These bounds on O5 follow from (pidPj)kf(./8) ((tdt)k (/))(./8)
(cf. the proof of Lemma 3), and the pointwise convergence is clear. This completes
the proof of the convergence claim, and the corollary follows from the density of

in H*(My).

3.3. Improving the decay rate. The only reasonable general estimate for the

weighted norm of Vu involves the weighted norms of Au and on w, with closely
related powers of the weight function. However, there is a critical ränge of weights in
whichonecanestimate ||prVw||L2 using \\pr (p)Au\\L2 butamuch weakernormof u.
We explain this now, and in particular develop localized versions of these estimates.

Lemma 5. Let he the partition ofunity defined at the end of §2. Fix er, <To £
such that öo — l~x < er < oo- Let u £ X~G° satisfy p° (p)Au £ L2. Then

p°(p) A(x/rau) e L2.

Note that the conclusion is, up to one order of decay, better than the assumption
u £ X~a° which implies that pa° (p) A(\j/au) £ L2.

Proof Expanding

A(fau) faAw - 2(V^a, Vu)g + (Afa)u,

and using that p° (p)Au £ L2 and X\jfa and A are bounded, we see that it suffices

to check that

pa~a°(p) < C.
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However, this follows since gj — (g0)j > — l/l for every j andP)(pi---pe)1/eR,

where R e L°°.

We now prove a stronger version of this, that a relatively weak weighted bound on
u and a stronger weighted bound onAw imply We can now prove that just information
on the weighted space Au sits in suffices to obtain information on u and Xu if at

least weak a priori weighted information on u is available.

Lemma 6. Let — < er < a0 < and suppose that pG°(p)~1u e L2 and

pG(p)Au e L2; then u e X~°.

Proof It suffices to prove the lemma assuming only that a > ao — l/l, for once
we have established this, then we may iterate a finite number of times to obtain the

result as stated. Furthermore, we can also replace u by \lfau, so as to work in a Single
coordinate chart.

Recall from Lemma 3 that if u e X~Go for any <Tq, then pGoXu e L2. Now,
consider the first and third terms in (17), and rewrite these as follows:

2Re(Au,fu) 2Re(pcro(p)Au, (p~2a°/)pcr°(p)_1w)

and

((A/)m,m) ((p-2ö°(p)2 A/)pao (p)~1(p)~1 w

From this it follows that if / is smooth but not necessarily compactly supported, and

p-^of, p-2°o(p)2Af eL°°, (18)

then these two terms yield continuous bilinear forms on X~Go. Hence, since (17)
holds for all u lying in the dense subspace it extends by continuity to all

of X~Go; in other words, (17) holds for all elements of this space.
The next Step is a judicious choice of the funetion /, or rather, a family of such

funetions, satisfying these properties. We define

f fs <D s(p)2p2a-where(p/U) • ßj > 0,

where, as before, O# is the produet of the funetions <fij (pj /8) over j 1 It
is clear that both conditions in (18) hold provided g + ß > <Tq.

We claim now that

Afs + ^ QPpfs > 0 for some Q < (19)
i l
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This will be established below. For later use, fix b\ >0 and b2 e (0,2) such that

7
(2(Ji + k — l)2 (2(Ji + k — l)2

Q + < b2 ^=5- —^2 1~ b\ < —C\ (20)

for all i 1

Since the functions 4>j defined here satisfy > 0, the proof of the regularized
Hardy inequality (13) carries through exactly as before, giving

1
(2 + k - n2 1

—4—n®«(p)pffprlMii2 ^ < ii®«o>)pffVMii2.
i 1 i 1

Rearranging this and using (20), we deduce

(2-62)||<!>,5(i>)/?aVw||2 + öi \\®s(p)paPi
i 1

< 2||<I>5(p)pCTVM||2 + {(Afs)u,u),

and hence, recognizing this as the right side of (17) with our particular choice of /
and using the Cauchy-Schwartz inequality, we bound this expression by

2||<J)5(p)pa {p)~lu II II ^5 (p)pCT(p) Aw II

< ^\\®s(p)pa {pr^w2 + 7^\\^s{p)p° {p)Au\\2.
2-t b i

Now, (p)~2 < i Y^i \ Pz~2' so ^rst term on nght hand side can be absorbed in
the second term on the left hand side. Bounding this new term from below by exactly
the same inequality, we obtain finally that

(2-b2)\\^s(p)paWu\\2 + ^8(p)pa{pr1u\\2 < y \\<!>8(p)pa{p)Au\\2.

To conclude the argument, let 8 \ 0; this shows that p°Vu and p° (p)~lu lie in L2,
as desired.

It remains to show that (19) holds for some Q < (2cr/ +^~1) < First,

i
A/« 53^~2(~ (Pidpj)2-(k-l+at- (j2aij))(PidP^)fs

i 1

~ 53 Pi V'y laij(pidPi)
fiy i
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with \a\ |, \a\j | < C |p|X A straightforward but somewhat lengthy computation gives
that

/

A/s + X Qppfs
i 1

£ £

-<D5(P)Vct(Xp72^(P7/<5)+ X prVp^CftV«.^-/«)).
7 — 1 ij 1

Here

gy (0 (pj (t) 2 ((tdt)2 + (4öy + k — \)tdt + 2gj (2aj + k — 1)) (pj (t)2

^TT1« " + — \k~ — + 2^2"i(i + o2 i + *

results from the model part of the Laplacian, while A/y comes from applying the
remainder terms <2; and a/y, so that

\p\~r]\hiJ(s,t)\ <C, s,t > 0,

for some C > 0.

To do this computation efficiently, say for the gj term, note first that commuting
the factor p2cr in / through each differential expression p/ dPi replaces this expression
by Pi + 2<7|. Next,

(pidPi + 2Oi){(j)i(pi/S)2)(tdt + 2Gi)(pf\t=pi/s,

so we have reduced to Computing the action of a second order regulär singular ordinary
differential Operator

—(tdt + 2a/)2 — (k — 1 )(tdf + 2a/).

on the function (t/( 1 + £))^', which is straightforward.

Now, if —gj(t) > 8 > 0 for all j and for some Cj < ^2(Jj+^ ^
; then using

PiX PjX X \(Pi2 + P/2)' one can esbmate

£ £

| x pTlp7lhij{fHß,Pj/s)\ < ipr^Xpr2-
ij 1 /' 1

Consequently, assuming that |p| is sufficiently small, which is possible here by ad-

justing the partition of unity, we deduce that (19) holds.
We now wish to show that gj (t) < 0 for t > 0. To this end, note that

gj(0) 2(ßj + Gj) (2ßj + 2aj + k — l) — Cj,
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so this must certainly be nonpositive. Furthermore,

4ßj{2ßj + 1)
_ 2ßj{4aj+k-2)

8jK) (1+03 (1+02

-0~+Y)3 {2(2ßj+ 1) + (4Oj 2)(1 +

so we wish that

4ßj + 2 + (4cry + k — 2)(1 +0 > 0.

Since 4er/ + k — 2 > 0, this is bounded below by 4 (ßj + 07) + £.

Setting y7- ßj + gj we have now shown that (t) < 0 provided

4yy- + k > 0 and 2yy- (2y7- + k — 1) — Cj <0.

Calculating the roots of this quadratic equation, we see that

k k — 1 1 l(k — l)2 ~7
— ^ yj ^ H~ — 1/ + Cj

4 - n-4v 4 y

implies < 0 for ^ >0. The leftmost term here is always less than the rightmost
provided Cj > 0, so there is always a permissible ränge for yj. Indeed, combining
the various restrictions above, we see that we must choose

(2g- + k — \)2
2(07 + ßj){2{Gj + ßj) + k — 1) < Cj < —-— (21)

Once again, setting ßj 0, the leftmost term is less than the rightmost term precisely
when

k — 1 k — 1

< Oj <
2 3 2

so there is certainly some allowable interval for Cj provided ßj is sufficiently small.
Since we wish to iterate the argument above, it is useful to estimate how large

we can choose ßj so that there still exists an admissible Cj. One half the difference
between the left and right hand side of (21) equals

2(2(07 + ßj)(2(cjj + ßj) + k — 1) - -—-— —^

.(,.-)(,+-)+4ft(,+-)+2^
Taking ßj — Oj), which is positive provided y > 0, gives
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Since gj — \{k — 1) < 0, we need the other factor to be positive. Let us write this
factor as 2^4 y2 — ABy + C. Thus

k — 1 k — 11 k — l k
A Gj <0, B Gj H > - and C 07 H > —.

2 4 4 2 4

These sign conditions and the quadratic formula show that there is one positive and

one negative root of this quadratic equation, and since the leading coefficient 2^4 is

negative, we see that there is a yo > 0 depending only on k such that if y e (0, yo),
and with ßj chosen as above, then there is indeed a gap between the left and right
sides of (21). In other words, we have now proved that if — < Gj < and if
P0()(p)~lu, pGo(p)Au e L2, with <Tq g + ß g + y(^y~ — er), for any fixed

y e (0, yo), then pGVu and pG(p)~lu both lie in L2. This shows that starting with
öo < then we can iterate the entire argument a finite number of times to conclude

that pGVu, p°(p)~lu e L2 for any g > —

There is a variant of this result which holds even in the borderline case <r0

We lose a bit, however, in that we can only estimate some combination of Vu and

(p)_1w, but not these two terms separately.

Lemma 7. Set op and suppose that max(0,cro — \/l) < g < Go, and

g 0. Suppose furthermore that the rate of decay rj for the error terms in the

metric satisfies rj > 1 (note, this is certainly truefor gwp)- If Pa° {p)~lu ^ L2 and
p2a~G° (p) Au e L2 then pG~2G°WplG°u e L2.

Proof By assumption, u e X~G°, and in view of Lemma 5, we may replace u by
some \jfau so as to assume that u has compact support in some chart.

We now claim that acting on (My), one has

/A + A/ 2(p-^ypk-lrf(p-^ypk-1)
+ A f-2{p-«-^pk-ly{f

where the two occurrences of / on the left as well as the last two terms on the

right are multiplication Operators. Indeed, both sides are formally self-adjoint, real,
and have the same principal symbol, so the difference is an Operator of order 0;
evaluation on the constant funetion 1 then gives the result. The last term on the

right in (22) can be rewritten in a more useful way as follows. First write this
term as —2pk~l V*p_2^_1^/Vp^_1, then commute to the front the middle factor
p—2(k—\) f. omitting initial minus sign, this yields

2p-(k-1)fApk-1 -2pk-l[V,p-2(k~l)f]*Vpk~l
2p-^-1)fApk~1 -Ip-^-^iVf, Vpk~l)g - 2fpk-l(Vp-2{k~l\ Vpk~l)

—2(k-l)p_1(Vp, V/)g + 2p-^fApk~l + - 1)/p"fc(Vp, Vpk~l)g.
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Using (6), we expand and then combine the last two terms on the right; this produces
a cancellation, from which all that remains is / Y!ij aijPß2> f°r some coefficients

a\j which satisfy \a\j \ < C\p\v.
On the other hand, assuming that / is independent of y and 0, we also combine

the first term of this last equation (remember to reinsert the minus sign!) with the

penultimate term A/ in (22). These together yield

t t
E _ + (k -2 + a")pildp,)f + E aij^2piPj f'
i 1 ij 1

where |a"\, \a'k\ < C\p\r}.

We shall use, as before, the specific function f f8 (H/=i 4>i(Pi /$)2) P2(J
^

with 4>i(t) (1 + Thus

~d2j fi 4 dßifi fiPi 2( — 2ßi(2ßi + 1)(1 + t) 2

Pi

+ 2ßi (k — 4cr;)(l + t)
1 + 2Gi (k — 1 — 2a/)) \t=p. j8',

the remainder terms /, aij^%Pjf are bounded by \p\v times a linear

combination of the three terms on the right. Taking ßi — a/, then for 8 > 0,

p-2<J°f, p~2,J0(p)dPif, and

are all bounded, though not uniformly in 8. Furthermore,

k — 2,

i \ Pl i 1

E - d% f + —d* f)E - (2^ + ÜÜ+ T2
i 1

+ (?ßi + 1 ~ 2a/)(l + 0 1 + 2a/)|^p//

+ 2<4^ 1 + pi/8 VI + pi/8

The right side of this equation is nonnegative if ßi > 0 and 07 > 0 for all i, and

bounded from below by

Finally, using Cauchy-Schwarz,

hj

E cf E (PiPj)1((i + 0 2 + (1 + 0 1

+1)1 t=Pi/s < cf Eft2-
hj
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We have now proved that the last two terms of (22) are bounded from below by
—C\p\r] Yl(PiPj)~l- Since we are assuming that er; > 0 for every i and rj > 1, we
can refine this since then |p|77 < \p\ < JL pj. Indeed, using these two conditions,
then for any specified e0 > 0,Q

T. pj(o + o 2 + (i + o 1 +1) it=ßi/s —
3 ^2 Pj - TMßjoj /o

j j j '
when both 8 and \p\ are sufficiently small. Taking suppw sufficiently small so that
both of these last conditions hold, this shows that the last two terms of (22) are actually
non-negative.

Now, when 8 > 0, (22) gives

(f§Au,u) + (A (fsu),u)

2\\fsl/2(p-^ypk-1)u\\2 (23)

+ {(Afs-2(p-«-VVpk-lnfsp-(k-l\Vpk-l)))u,u)
o o

if u e C^°(«M). Both sides are continuous bilinear forms on X~G°, so since
is dense in X~G°, the identity holds in this larger space. Since rj > 1, the last term is

nonnegative, hence

|| f,,2{p-(k-^pk-l)u]]2<||^0((0)-1M||

Letting <5^0 shows pG (p~^k~^Xpk~1)u e L2 and

\\pa (p~(k~l)Vpk~l)u\\2< \\p11/3°"° {p) —1W II -

This completes the proof.

Corollary 3. Ifao > 0 and 0 < er < ctq, rj > 1, and if pG° (p)~1u G L2 and
pG (p)Au G L2 then u G XG, so pGVu G L2 and pG(p)~1u G L2.

In particular, if pG° (p)~1u G L2 and (p)Au G L2 Vw G L2.

Proof By Lemma 7, if er' max(cro — 1/,<t0 — — er)) < er' > 0,

then in particular 2er' — op > er, and hence p2(j/~Go(p)Au e L2, and we also have

£ L2. This implies that

i^j
Since pj~k barely fails to lie in L2, while u e L2, we can use techniques of regulär

Singular Operator theory to get that pG'8Pju e L2 for every j, and hence using the

Hardy inequality, pG' {p)~1u G L2. This means that u G X~G\ Finally, by Lemma 6

with cro er7, pGVu G L2 and pG(p)~1u e L2, and this completes the proof.
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We now show how to use the results above to establish that A is essentially self-

adjoint. It is well known that essential self-adjointness is equivalent to the density of
Ran^oo (A ± i) in L2. If either of these Spaces fail to be dense, then there exists an

element^ £ L2suchthat^ _L Ran^oo(A=h'),i.e. ((Af) Oforall</> e
This implies, in particular, that ^ is a distributional Solution of (A =b i)\j/ 0, and
hence f e C°°, and in addition A\j/ e L2.

If we can integrate by parts to justify the identity

0 ((A ± i)^f,V)\Wf\\2±i\\f\\2,

we could then conclude that f 0. Thus it remains to prove the

Lemma 8. Suppose that k > 3, and let g be a metric which satisfies the conditions
(9) and (10), with rj > 1 ifk 3. If u e L2 and Au e L2, then Vu e L2 and

(Au,u) (Vw, Vw).

Proofi If k > 3 then, by Lemma 6 with öo 1 and o — 0, we see that Vu e L2
and (p)~lu e L2. This proves the first claim.

Now suppose that k — 3, which is the most relevant case. Then by Lemma 3

with öo 1 and g — 0, we see that Wu e L2 and (p)~lu e L2. This completes the

proof of the first claim in all cases.

Finally, if v e then

(Au, v) || Vu||2.

o
Both sides are continuous bilinear forms on X°, so by the density of this

identity remains valid in X°. In part one we proved that the assumption u e L2 and

Au e L2 implies that Vu e L2 and (p)~lu e L2. Thus u e X° and hence, the
above equality holds for u.

In summary, we proved:

Theorem 3. A is essentially self-adjoint.

To conclude this section, we note that the argument of Lemma 8 shows that the
maximal domain Ä)max(A) is contained in {p)L2 fl Hl, which is certainly compactly
contained in L2. This proves Corollary 1.

4. The Weyl estimate for the eigenvalues

In this final section we address the question of estimating the growth rate of the

counting function

N{\) #{j : kj < k}.
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The classical formula, valid for the Laplacian on a compact smooth manifold (Af, g),
states that

Nß) ^L-Volg(M)\n'2 + A"/2), (24)

where n dimM and con is the volume of the unit ball in Rw. It is now well
understood, of course, that a good estimate of the error term, for example showing
that it has the form 0{Xn^2~e) for some c > 0, depends on the dynamical properties
of the geodesic flow. The same is certainly true here, but we content ourselves with
the most basic result in this direction, which is the extension of this Weyl counting
formula to the present setting. Our main result is the

Theorem 4. Let (M, g) be a compact stratified space with crossing cusp singularities
ofmulti-order k, where each ki > 3. Then the spectrum of Ag is discrete, and the

counting function N(X)for this spectrum satisfies the asymptotic formula (24).

Proof We follow the most classical method, known as Dirichlet-Neumann bracket-

ing. We briefly recall the idea, but refer to [7] for details. Consider a partition of M
into the region

W0 {p : dist g(p,U>

and a finite number of regions IT«, each of the form

{p (ri,..., ri, 6\,..., 0£, y) : 0 < r\ <8, i 1,..., l, 0/ £ S1 for all i,
and y eVac R6y-6~21}.

Next, dehne the Rayleigh quotient for Ag by R(u) D{u)/L{u), where L{u)
f \u\2 dVg and D(u) f \Vu\2 dVg are the L2 norm and the Dirichlet form. We
also consider the restrictions of these forms to various subdomains IT, and will denote
these by R^(u), etc.

For each a, including a 0, restrict R to functions u which lie in H1(IT«) or
to Hq(IT«). The critical values of this restricted functional are the Neumann and

Dirichlet eigenvalues for Ag on IT«, which we list in order, and with multiplicity, as

Vl,N ^ t1!,N<and tä,D ^ tä,D ^ ' >

respectively. The union of these lists of eigenvalues over all a, reindexed into non-
decreasing sequences, become

ßi,N < ß2,n <-" and pLhD < ß2,D < ••• •

Since

® Hl0{Wa) c H\M) cQ)H\Wa),
a a



890 L. Ji, R. Mazzeo, W. Muller and A. Yasy CMH

the minimax characterization of eigenvalues shows that the eigenvalues {Xj } of Ag
on M, listed with multiplicity, satisfy

ßj,N < kj <

for all j. This implies, in turn, that if we denote the counting functions for the

sequences {ßj,N} and {ßj,D} by AOv(A) and Nd(X), respectively, then for X 0,

Nd(X) < N(X) < Nn(X).

Thus to prove the main assertion, it suffices to prove that both Nn and Nd satisfy
this same asymptotic law.

We take as given that

^voig(W/2 + 0(r/2).

This is just the Standard Weyl law for the region Wo with either Neumann or Dirichlet
eigenvalues. Since Volg (Wo) -> Volg (M) as 8 -> 0, this is nearly the entire leading
term. On the other hand, since ND a (X) < Nn a (X) for a ^ 0, it suffices to prove
that for any e > 0 we can choose a sufficiently small 8 so that for all such a,

N„a(X) < Xn/2 + ö(Xß)

for some ß < n/2. Thus we concentrate on this last estimate for any fixed a.
Since the Rayleigh quotient is changed by at most a bounded factor if we replace

g by any quasi-isometric metric, we may replace W« by the product (0, <5/ x Z,
Z (S1)^ x B, where B is a piecewise smooth compact domain in Rw_2^, endowed
with the warped product metric

gi + p2k'do2) + dy2-

i l

Using radial and angular variables pt and 6ui 1 as before, as well as the

multi-index notation, so that for example pk n*=i pf*
>
tben

8 8

L^a(u)= f - f f \u\2pk dpdO dy,
J0 J0 Jz

and

D^iu)
8 8 ^ ^

=L L fz{i/dpJu^2+ipj2kj^dJu^2+^yii^2)pkdpdedy-
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Next, suppose that 8 2~m° for some m0 which will be fixed later, and decom-

pose the cube (0, 8)l into a finite union of subregions

(0,2-m°)1 LI I",wherex • • • x Ißt
ß

Here /x varies over all multi-indices (/x\,..., /x^) with /x; G {mo,..., m + 1} for
some m to be chosen momentarily, and

Ij (2_7_1,2~7) for ino < / < m. and Im+i (0,2_m_1).

In other words, this is just the dyadic decomposition of (2_m_1,2~m°) along with
the 'terminal' interval (0,2_m_1).

Now fix X » 0 and set m ~ \ log2 A. We claim that if the multi-index /x has

/ij m + 1 for some y, then the number of Neumann eigenvalues of Agi on the

region Iß x Z is bounded by the number of Neumann eigenvalues on the adj acent
domain 1^ x Z, where /x^- m and all other /x^- /x/. As we show below, it is

possible to directly estimate the counting functions on these non-terminal regions, and

since we now show that the counting functions on the terminal regions are estimated
in terms of these, we will have accounted for every block in this decomposition.

To prove this we integrate in pj e (0,2~m) (for the same value of j). Writing
Y Yli^j Ißi x then the second part of Lemma 1 with ß 0, p0 2~m_1 and

Po + e 2_m gives that

2-m-i 2-m
2 2m+2

J0 2dPj~Jo^lu^dpi
2~m „2~m

—
C \dPj u\2 dpj + 22m / |w|2Jpy-.

XO J2-m~l

The constant in front of the last term on the right comes from the Square of the
derivative of the cutoff function used to reduce back to a function which vanishes

near pj p0 + so as to apply the Hardy inequality for such functions. Integrating
over the other factor 7, we obtain

22m+2 f \u\2 < C f |Vw|2 + C22m f \u\2.
JlßVY J(IßUlß,)xY

Now suppose that the restriction of u to Ißf x Y is orthogonal to all the Neumann

eigenfunctions with eigenvalues less than C 22m on this region. We can then estimate
the second term on the right by the Dirichlet integral of u on Iß' xY. So altogether,
for such u,

2 2m+2f\uf<cf | V«|2,
2(/#tuv)xr if/^uvjxy
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hence the Rayleigh quotient for all such u satisfies R(u) > C22m+2. This proves
that

V)xF(22m+2) ^ AfVxy(c22m+2))

which proves the claim since A ~ 22m.
I xY

We have now reduced to estimating Nn^ (A) for any multi-index /x where

fij 7^ m + 1 for any j. To accomplish this, we consider the Rayleigh quotient on
this region. Writing /x • k ßjkj> then

r
1

D(u) / (7>P^|2 + 22/:-/M-/ \dpru\2) + |9yM|2)2~M'^ dpdO dy,
J j=i

and L(w) f \u\22~ß'k dpd6 dy. Up to a /x-independent constant factor, the

Rayleigh quotient in this region is the same as the one for

T,3% + T,22t"''3»,+3
7 1 7 1

Up to another constant factor, the eigenvalues of this problem are simply

y] 2lßj £? + l2ßjkj + M2, e zX TJ e Z"_2X

2=1 2=1

The number of these which are no larger than A is estimated from above by the number
of multi-indices £, £, p such that the individual summands themselves are less than A.

Thus

#{§/ : 22ßj lj <\}<C VÄ2~ßJ,

#{£,- : 2lkJßJ !;j <\}<C VX2~ßJkJ,

and

#{r}j - rjj < A} < CVÄ.

Thus, summing over all /x (with no /xy- m), and recalling that A is large, the number
of eigenvalues of these model problems on the various regions /MxZ which are less

than A is bounded by

c(j22~il+kj)ßj)x"/2-
ß

The coefficient breaks into the product

im l
n( e 2~(i+kj)tij^ < | | 2-(i+^)mo _ 2-(^+lfcl)'"o _ $t+\k\

2=1 M./=»»0 2 1
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Altogether, we have proved that the counting function on each W«, a ^ 0, is bounded

by C8ßXn/2 where ß l + \k\.
We have now shown that

N{X) jSr^olg(M)+ +

If we choose 8 (log2 or equivalently, mo (1/ß) log2 A, then since this

mo is still far less than m \ log2 A, we conclude that

^(A) ^rYolg(M)xnl2 + 0{X"/2)'

which finishes the proof.

References

[1] E. Arbarello, M. Cornalba and P. Griffiths, Geometry ofalgebraic curves. Volume II, with
a contribution by Joseph Daniel Harris, Grundlehren Math. Wiss. 268, Springer-Verlag,
Berlin 2011. Zbl 1235.14002 MR 2807457

[2] R Albin, E. Leichtnam, R. Mazzeo and R Piazza, The signature package on Witt Spaces.
Ann. Sei. Ec. Norm. Super. (4) 45 (2012), no. 2, 241-310. Zbl 1260.58012 MR 2977620

[3] P. Albin, E. Leichtnam, R. Mazzeo and P. Piazza, The signature Operator on Cheeger
Spaces. In preparation.

[4] T. Aubin, Some nonlinearproblems in Riemannian geometry. 2nd ed., Springer Monogr.
Math., Springer-Verlag, Berlin 2007. Zbl 0896.53003 MR 1636569

[5] K. Burns, H. Masur and A. Wilkinson, The Weil-Petersson geodesic flow is ergodic. Ann
ofMath. (2) 175 (2012), 835-908. Zbl 1254.37005 MR 2993753

[6] W. Cavendish and H. Parlier, Growth of the Weil-Petersson diameter of moduli Space.
Duke Math. J. 161 (2012), no. 1, 139-171. Zbl 1244.32008 MR 2872556

[7] I. Chavel, Eigenvalues in Riemannian geometry. Including a chapter by Burton Randol,
with an appendix by JozefDodziuk, PureAppl. Math. 115, Academic Press, Inc., Orlando,
FL, 1984. Zbl 0551.53001 MR 0768584

[8] J. Cheeger, On the Hodge theory of Riemannian pseudomanifolds. In Geometry ofthe
Laplace Operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979),
Proc. Sympos. Pure Math. XXXVI, Amer. Math. Soc., Providence, RI, 1980, 91-146.
Zbl 0461.58002 MR 0573430

[9] J. Cheeger, Spectral geometry of Singular Riemannian Spaces. J. Differential Geom. 18

(1983), no. 4, 575-657. Zbl 0529.58034 MR 0730920

[10] Y. Colin de Verdiere, Pseudo-Laplaciens, I and II. Ann. Inst. Fourier 32 (1982), no. 3,

275-286; 33 (1983), no. 2, 87-113. Zbl 0489.58034 Zbl 0496.58016 MR 0688031
MR 0699488



894 L. Ji, R. Mazzeo, W. Müller and A. Yasy CMH

[11] E. Dryden, C. Gordon, S. Greenwald and D. Webb, Asymptotic expansion for the heat
kernel for orbifolds. Michigan Math. J. 56 (2008), no. 1, 205-238. Zbl 1175.58010
MR 2433665

[12] J. Harris and I. Morrison, Moduli ofcurves. Grad. Texts in Math. 187, Springer-Verlag,
New York 1998. Zbl 0913.14005 MR 1631825

[13] K. Liu, X. Sun and S. T. Yau, Good geometry on the curve moduli. Puhl. Res. Inst. Math.
Sei. 44 (2008), no. 2, 699-724. Zbl 1219.14012 MR 2426362

[14] H. Masur, Extension of the Weil-Petersson metric to the boundary of Teichmüller Space.
Duke Math. J. 43 (1976), no. 3, 623-635. Zbl 0358.32017 MR 0417456

[15] M. Mirzakhani, OnWeil-Petersson volumes and geometry of random hyperbolic surfaces.

In Proceedings ofthe International Congress ofMathematicians. Vol. II, Hindustan Book
Agency, New Delhi 2010, 1126-1145. Zbl 1239.32013 MR 2827834

[16] S. Wolpert, Geometry of the Weil-Petersson completion of Teichmüller Space. In Sur-

veys in differential geometry, Vol. VIII, (Boston, MA, 2002), Surv. Differ. Geom. VIII,
International Press, Somerville, MA, 2003, 357-393. Zbl 1049.32020 MR 2039996

[17] S. Wolpert, Understanding Weil-Petersson curvature. In Geometry and analysis. No. 1,

Adv. Lect. Math. (ALM) 17, International Press, Somerville, MA, 2011, 495-515
Zbl 1271.32017 MR 2882436

[18] S. Wolpert, Families of Riemann surfaces and Weil-Petersson geometry. CBMS Re¬

gional Conf. Ser. in Math. 113, Amer. Math. Soc., Providence, RI, 2010. Zbl 1198.30049
MR 2641916

[19] S. Wolpert, Behavior of geodesic length funetions on Teichmüller Space. J. Differential
Geom. 79 (2008), 277-334. Zbl 1147.30032 MR 2420020

[20] S. Yamada, On the geometry of Weil-Petersson completion of Teichmüller Spaces. Math.
Res. Lett. 11 (2004), no. 2-3, 327-344. Zbl 1060.32005 MR 2067477

[21] S. Yamada, Weil-Petersson completion of Teichmüller Spaces and mapping class group
actions. Preprint, arXiv:math.DG/0112001.

Received November 27, 2012

Lizhen Ji, Department of Mathematics, University of Michigan, Ann Arbor, MI 48109,
U.S.A.

E-mail: lji@umich.edu

Rafe Mazzeo, Department ofMathematics, Stanford University, Stanford, CA 94305, U.S.A.

E-mail: rafemazzeo@gmail.com

Werner Müller, Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115

Bonn, Germany

E-mail: mueller@math.uni-bonn.de

Andras Vasy, Department of Mathematics, Stanford University, Stanford, CA 94305, U.S.A.

E-mail: andras@math.stanford.edu


	Spectral theory for the Weil-Petersson Laplacian on the Riemann moduli space

