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Spectral theory for the Weil-Petersson Laplacian on the Riemann
moduli space

Lizhen Ji, Rafe Mazzeo, Werner Miiller and Andras Vasy

Abstract. We study the spectral geometric properties of the scalar Laplace-Beltrami operator
associated to the Weil-Petersson metric gwp on My, the Riemann moduli space of surfaces of
genus ¥ > 1. This space has a singular compactification with respect to gwp, and this metric
has crossing cusp-edge singularities along a finite collection of simple normal crossing divisors.
We prove first that the scalar Laplacian is essentially self-adjoint, which then implies that its
spectrum is discrete. The second theorem is a Weyl asymptotic formula for the counting function
for this spectrum.
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1. Introduction

This paper initiates the analytic study of the natural geometric operators associated
to the Weil-Petersson metric gwp on the Riemann moduli space of surfaces of genus
v > 1, denoted below by M,,. We consider the Deligne—-Mumford compactification
of this space, M y»whichis a stratified space with many special features. The geometry
and topology of (M y» Swp) has been extensively studied, starting from the early works
of Ahlfors, and including the systematic study by Wolpert [16], [18]. More recent
results include the asymptotic behaviour of the Weil-Petersson volume by Mirzakhani
[15], the ergodicity of the Weil-Petersson geodesic flow by Burns—Masur—Wilkinson
[5], and asymptotic bounds on the Weil—Petersson diameter of M y by Cavendish—
Parlier [6].

Given all these results and the many well-known close relations between various
aspects of the geometry and analysis of Riemannian manifolds, it is natural to study
the spectral theory of the moduli space with respect to the Weil-Petersson metric.
In general, the spectral geometry of geodesically incomplete Riemannian manifolds
is poorly understood. One source of examples of such spaces consists of singular
algebraic varieties with certain natural Kihler metrics, and (:)\7{),, gwp) is arguably
one of the most interesting of these. We hope that the results in this paper will draw
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people’s attention to further problems concerning analysis on moduli space and the
relationship of analytic and geometric properties on this space.

This paper stands as the first step in a development of analytic techniques to study
the natural elliptic differential operators associated to the Weil-Petersson metric.
More generally, our results here apply to the wider class of metrics with crossing cusp-
edge singularities on certain stratified Riemannian pseudomanifolds. This fits into a
much broader study of geometric analysis on stratified spaces using the techniques
of geometric microlocal analysis. Some of this work is directed toward studying
general classes of such spaces, while other parts are focused on specific problems
arising on particular singular spaces which arise ‘in nature’, such as compactifications
of geometric moduli spaces, etc. These approaches are, of course, closely intertwined.
The perspective of this paper is that (.M., gwp) is inherently interesting, and that the
spectral theory of its Laplacian will most likely find interesting applications; at the
same time, it 1s an interesting challenge to develop analytic techniques which can be
used to study other singular spaces with related metric structures.

Our goals here are relatively modest. As stated above, we focus on the scalar
Laplacian A, rather than any more complicated operator, associated to the Weil—
Petersson metric on M), and provide answers to the most basic analytic questions
about this operator.

Theorem 1. The scalar Laplace operator A on (M,,, gwp) is essentially self-adjoint,

Q
i.e. there is a unique self-adjoint extension from the core domain €g% , (My). The

spectrum of this operator is discrete, and if N(A) denotes the number of eigenvalues
of A which are less than A, then

Wy

Volwp(M)AM? + o(A"/2)
(27)"

NQR) =

as A — o0o. Here, as usual, wy, is the volume of the unit ball in R™.

Remark 1. There is a subtlety in the statement of this theorem which we point
out immediately. The interior of the space M, already has singularities, but these
are caused not by any properties of the Weil-Petersson metric, but rather are orbifold
points which arise because the mapping class group does not act freely on Teichmiiller
space. While an analysis of the self-adjoint extensions near such points can be carried
out, we instead restrict to an easily defined core domain which fixes the nature of the
self-adjoint extension near these points. This is defined as follows. If p is a singular
point in the interior of My, then there is a neighbourhood U, around p, an open
set ﬂp in RY (N = 6y — 6), and a finite group T, which acts on ﬂp such that
ﬂp /Tp = U,. We then define €5°(M,) to consist of all functions f such that the

restriction of f to U, lifts to a € function f on U,. We refer to [11] for more
on this and related other analytic constructions on orbifolds. Our main result then is
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that A is essentially self-adjoint on this core domain. The arguments in this paper
are essentially all local (or at least localizable), which means that for all analytic
purposes, it suffices to assume that the interior is smooth and that the singular set of
the compactification is of crossing cusp-edge type, as described below, even though
the actual space is locally a finite quotient of this.

The emphasis on showing that a given operator is essentially self-adjoint is not so
standard in geometric analysis for the simple reason that this property is automatic
for all ‘reasonable’ elliptic operators on any complete manifold, and when the issue
actually arises, e.g. on manifolds with boundary, it is so customary to impose boundary
conditions that one rarely thinks of this as choosing a self-adjoint extension. On
singular spaces, by contrast, the issue becomes a very real one, and a key preliminary
part of the analysis on any such space is to determine whether the singular set is large
enough, in some sense, to create the need for the imposition of boundary values.
For other classes of singular spaces, e.g. those with cones, edges, etc., this issue is
well understood. It is known that if the singular set has codimension at least 4, then
there is no need to impose boundary conditions for the Laplacian on functions. For
the Laplacian on differential forms, however, and for these same types of ‘iterated
edge meitrics’, the situation is more complicated, and was first considered carefully
by Cheeger [8], [9], see also [2], [3] for some recent work on this. However, the
Weil-Petersson metric is more singular than these spaces, which leads to the goals of
this paper.

The proof of essential self-adjointness for any operator translates to a technical
problem of showing that any element in the maximal domain Dy,ax of this operator is
necessarily in the minimal domain Dy,i,. We review the definitions of these domains
in the beginning of §3. This is simply a regularity statement: we wish to show that
any u € Dhax enjoys enough regularity and decay near the singular set to allow us
to prove that it can be approximated in graph norm by elements of €5°(M,). The
techniques used to prove this regularity here are somewhat ad hoc, and in particular
do not use any of the heavy microlocal machinery which has proved to be very helpful
for the study of more detailed analytic questions on stratified spaces. The advantage,
however, is that this approach is much more self-contained.

It is worth recalling the well-known fact that the Laplacian on R” is essentially
self-adjoint on the core-domain €§°(R" \ {0}) if and only if n > 4, see [10], and that
the 4-dimensional case has aborderline nature. The ‘radial part’ of the Weil-Petersson
Laplacian near a divisor is essentially the same as the radial part of the Laplacian on
R*, so in our setting too there are some borderline effects in the analysis. This
motivates our introduction of a slightly broader class of crossing cusp-edge metrics
of any order & > 3, for any of which we carry out this analysis. This is intended to
clarify the slightly more delicate argument needed when & = 3.

Animmediate consequence of the equivalence Dy = Dy for the scalar Lapla-
cian is the fact that this domain is compactly contained in 2, which proves immedi-
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ately that the spectrum is discrete. Our final result, concerning the Weyl asymptotics
of the counting function for this spectrum, employs the classical Dirichlet—Neumann
bracketing method, hence does not provide much information about the error term.
In §2 we provide abrief (and sketchy) review of the key properties of the geometric
structure of the Weil-Petersson metric and of the singular set of ﬂy. The key fact,
that the local lifts of gwp have ‘crossing cusp-edge’ singularities of order 3, leads to
the introduction of the analogous class of metrics of any order & > 3. The rest of the
paper then considers the scalar Laplacian for any metric of this more general type.
Essential self-adjointness is studied in §3, and the Weyl estimate is obtained in §4.

Acknowledgements. L.J., R.M. and A.V. gratefully to acknowledge NSF support
through the grants DMS-1104696, 1105050 and 0801226 & 1068742, respectively.

2. The geometry of the Weil-Petersson metric

We begin with a description of the singular structure of M y and the structure of gwp
near the singular strata. The results about the structure of the Deligne—Mumford
compactification itself are classical at this point, and we refer to [12], [1] for more
detailed descriptions of all of this and references. The form of the Weil-Petersson
metric traces back to a paper of Masur [ 14] in the early 1970s, but a far more detailed
picture has emerged through the work of Yamada [20] and Wolpert [16], [17]. We
point to two important recent survey articles [21] and [18] and the references therein.

The compact space :)\T(y is a complex space which is singular along the union of
a collection Dy, ..., Dy /2 of immersed divisors with simple normal crossing. Ele-
ments of M, correspond to conformal structures on the underlying compact surface
> of genus y, where conformal structures are identified if they differ by an arbitrary
diffeomorphism of 3. Another realization of this space is as the space of hyperbolic
metrics on 3 identified by the same space of diffeomorphisms. By contrast, Teich-
miiller space 7,, consists of the space of all conformal structures or hyperbolic metrics
identified only by the smaller group of diffeomorphisms of X isotopic to the identity.
Thus

My = Ty /Map(%),

where the so-called mapping class group Map(2) is a discrete group of automor-
phisms of 7, defined as the quotient of the group of all diffeomorphisms by the
subgroup of those isotopic to the identity.

Letey, ..., cy beamaximal collection of homotopically nontrivial disjoint simple
closed curves on 3. It is well known that N = 3y — 3, and that ¥\ {¢y,...,cna} s
a union of 2y — 2 pairs of pants, and moreover, exactly [y/2] + 1 of the curves are
distinct after identification by Map(X).

There is a simple geometric meaning to each of the divisors. Let I3; be the divisor
associated to an equivalence class of curves [c] (i.e. curves in this equivalence class
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are identified, up to homotopy, by elements of Map (3)). A sequence of points p; €
M, converges to D; if the geodesics freely homotopic to ¢; for the corresponding
sequence of hyperbolic metrics have lengths £(c;) — 0. A crossing D; N---N Dy,
corresponds to the independent length degeneration of some collection of equivalence
classes of curves ¢;,, ..., ¢j,. In the following, we shall often denote such an {-fold
intersection by Dy where J = {j1,..., j¢}. Each divisor D; can be identified with
the Riemann moduli space for the (possibly disconnected) noded surface ¥/ obtained
by pinching the curve ¢;, or equivalently, by cutting > along ¢; and identifying each
of the boundaries, which are copies of ¢;, to points.

There are a number of natural and interesting metrics on Teichmiiller space which
are invariant with respect to Map(X) and which thus descend to metrics on M. One
of the most fundamental is the Weil-Petersson metric, gwp, which is the one studied
here. It is incomplete on M, and induces the corresponding Weil-Petersson metric
on each of the divisors. It is simply the canonical 1.2 inner product on tangent vectors:
if 4 is a hyperbolic metric on X representing a point of M, then the tangent space
Tp M, isidentified with the space of transverse-traceless symmetric two-tensors x on
X, 1€ trx = O and §"x = 0. If k1 and x, are two such tangent vectors, then

(K1, K2} g = fzm,xz)h dA, = fz(m)ﬁ(@)kﬁh*’khff dAy,.

It is known that M, is a complex orbifold and that gwp is a Kihler metric with
many interesting properties. Our main concern is its fine asymptotic structure near the
singular divisors, which are due to Yamada [20] and Wolpert [19], with closely related
results by Liu, Sun and Yau [13]. Let p be a point in some D; and choose a local
holomorphic coordinate chart (z1,...,z35-3) with Dy = {zy = --- = z; = 0}
Setting z; = pjeief,j < £, then

£

gwp =7 ) (4dp} + p§d0D)(1 + |oI*) + g, + O(pl*) (1)
j=1

where gp , is the Weil—Petersson metric on D ;. The expression 9(|p|?) indicates that
all other terms are combinations of dp;., p?d f; and dy (where y is a local coordinate
along D y) with coefficients vanishing at this rate. This (and in fact a slightly sharper
version) is proved in [17], and the same result with some further information on the
first derivatives of the metric components appears in [13].

We do not belabor the precise form of the remainders in these asymptotics for
the following two reasons. First, gwp 1s Kihler, and we can invoke the standard fact
in Kihler geometry, see [4], p. 252, that if g is any Kéhler metric, then its Laplace
operator has the particularly simple form

92
Ag =) g/—n 2)

BZI'BZJ"
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with no first order terms. In particular, the coefficients of this operator do not depend
on derivatives of the metric. The same is true for the Dirichlet form for this metric,
which also involves only the components of the (co)metric, but not their derivatives.
The proof in §3 involves various integrations by parts, but a close examination of the
details shows that one needs in any case very little about the derivatives of the metric,
and for Kidhler metrics one needs no information about these derivatives at all.

The other reason is that current work by the second author and J. Swoboda aims
at deriving a complete asymptotic expansion for gwp, and this implies all the results
needed here about the remainder terms and their derivatives. However, since that work
has not yet appeared, we emphasize that enough is known about the asymptotics of
the metric in the existing literature to justify all the calculations below.

Inany case, using (1), disregarding the constants 7 * and 4 for simplicity, and using
the product polar coordinates, (p1,...,p¢, 1., 8¢, y1,-.., ys) € U = (O,po)g X
(S 1)3 x V, where V is an open neighbourhood in D, we note that

fulizs = [ 13 - (o1 po)* dpdo dy.

where the Jacobian factor ¢ is uniformly bounded and uniformly positive. Similarly,
the Dirichlet form for Awp is given by

£ k
[(Z|apju|2+2p;6|agju|2+|vyu|2)5<-<p1...pg)Sdpdedy
i=1 i=1
modulo terms vanishing like |p|°.

In order to focus on the key analytic points of the argument, we shall work with
a slightly more general class of (not necessarily Kéhler) Riemannian metrics, the
asymptotic structure of which models that of gwp, with singularities of similar cross-
ing cusp-edge type. We thus let M be any manifold which has a compactification M
with the same structural features as the Deligne—-Mumford compactification. Specif-
ically, M is a stratified pseudomanifold, with .M its dense top-dimensional stratum.
All other strata are of even codimension, and can be locally described as finite inter-
sections D; M --- N D;,, where dim D; = dim M — 2 for all j. The main point
is that we can use the same sort of product polar coordinate systems as above, and
we shall do so henceforth without comment. We now consider metrics which in any
such local coordinate system are modelled by the product metric

£ n—24%
ek =Y _(do} + pf*do7) + D dy}, (3)
i=1 =1

forany & > 3. The corresponding Laplacian is given by

£

k 1

Bew= =3 (o + )+ A = BT+ A @)
i=1 : i
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The first term on the right is the normal component of this model Laplacian. Note
that we are restricting to k > 3. (We could even choose different orders k; on the
different D;, but for the sake of simplicity do not do so.) As we shall see below,
the case k = 3 is in some sense a critical value, and the analysis is slightly easier
for larger values of k. One motivation for discussing this more general setting is to
clarify the borderline nature of the Weil-Petersson metric.

The main point is to clarify exactly what sorts of perturbations are allowed. We
phrase this by focusing on the end result, i.e. by delineating the properties of the
operators for which our arguments work, and then ‘backfilling’ by defining the cor-
responding class of metrics appropriately. Thus we first assume that

£

== (@, + ko "0y, + 05 + Ap, + E. (5)
i=1

where Ap, is the Laplacian for the induced metric on the codimension 2{ stratum,
and where £ is an error term. The key structural assumptions are now as follows.
First, if f is supported (or indeed just defined since differential operators are local)
in one of these local coordinate systems and depends only on the p;, then we shall
assume that

{

Dgf ==Y (3 + k+adp o) f + ) ad, f (6)

i=1

where
|aij |, lai| = C|p|"

for some 7 > 0 with |p| = (pf + -+~ + Py 2)1/2 the Buclidean length; moreover, if f
depends only on p and y, but not 9 then

Z(a2 + (k 4+ a;)p;'d, )f+(ADJ+ZcU .)f
+Z(IU f-l—ZbU PiYj +bejpi_ ¥;o

(7)

where
|laij |, lail, |bij], |bijl, leij] = Clpl”,

again for some 77 > 0.

If g is a Kidhler metric and the coordinates (p, 8, y) are adapted to the complex
structure, then using (2) it1s easy to guarantee that (6) and (7) hold simply by requiring
that

|8z = il | Eimls [ B — 40, Juml 2 [p1% (8)
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fori,j = 1,...,¢, p.v = £+ 1,...,n. More generally, if g is a real (non-
Hermitian) metric, assume the convention that i, j,... are indices for the p and 0
variables, and y, v, ... are indices for the y variables. Now write

g = glldpido; +Y_ gl dpipfad; + Y gif pfdbinf s,
+ Y edyudy, + Y gl dpidy, + Y gly pFdOidy,.

(The superscripts p, & and y have been affixed to the metric components because of
obvious ambiguities in the indices.) We require first that

7]

for all choices of indices and for some 7 > 0. These conditions are sufficient to
guarantee that all the coefficients of the second order terms in (6) and (7) have the
right form. To control the coefficients of the first order terms, we must impose some
conditions on the first derivatives of certain components of the metric. To specify
these, recall the standard formula for the Laplacian in an arbitrary coordinate system

(wl,' --:w2n)a

—Ag = Z gaﬁaiaw’g Z (%gaﬁﬂwa IOg det(gaﬁ) + 8waga‘6)8w5
Write
logdetg = 2kZlogpi + A.
Then the coefficient of 3, is
D () (kpi ' + 3,5, A+ 0,,(27°)V)
F
+ Z T (g9 199, A + prPR oy, (7))

+ Z (743, A + B, (gP)).

I

and the coefficient of By# is

3 (g7 ko7t + B, A+ D, (8°) 1)
i
+ Z T () Dy, A + prE Bg, (87) M)

+ Z (gyy)vuayvA + ayv (gyy)vﬂ) .
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Comparing with (9), we see that the new conditions we must impose are that

35, A1, 13, AL, 13y, Al 185, (277)1. 167236, (&%)
135, (7)1, 18, (™). 1072 Bg, (7)1, 133, (€**)""] < |pI".

We have written this out in some detail to indicate that it is possible to phrase
the necessary conditions in terms of metric components. However, it is clearly far
simpler to think of these conditions using (6) and (7).

(10)

We conclude this section with the following observation. Since most of the basic
arguments in the remainder of this paper are local, we take this opportunity to note
the existence of a partition of unity {4 }{aea on M, with the property that each v,
is supported either away from all of the divisors or else on one of the product polar
coordinate charts above, and which satisfy |V, |, |Ayr, | < C. Indeed, we need only
choose these functions so that 891 Yo, 0, pl._k dy, and dy, ;» for y € Dy, applied to
this function are ¢ (p?k ); one can even arrange that ¥, is independent of 8; when p;
is sufficiently small.

3. Essential self-adjointness of the Weil-Petersson Laplacian

The operator A, is symmetric on €5°(M,,), but since this space is incomplete, we
must consider the possibility that there is not a unique self-adjoint extension. Because
A is semibounded, there is always at least one, namely the Friedrichs extension.
Whether there are others besides this depends on the following considerations.

Recall the general definition of the minimal and maximal domains of the Lapla-
cian:

Dinax(A) = {u € L2 (My:dVip) : Au € L*(M,; d Vigp)}
and
Duin(A) = {u € L*(M,;d Viyp) : there exists u; € €°(M,) such that
u; — uand Au; — fin L*(M,; d Vigp)}

The operator Awp is called essentially self-adjoint provided Dpyin(A) = Dax(A),
and in this case this is the unique self-adjoint extension of A from the core domain
€§°. If these subspaces are not equal, then the self-adjoint extensions are in bijective
correspondence with the Lagrangian subspaces of Dyax / Dmin With respect to a natural
symplectic structure (coming from the classical Green identities). Choosing such an
extension is tantamount to specifying a boundary condition.

We prove here the following result.

Theorem 2. The scalar Laplace operator Awp is essentially self-adjoint on
Lz(My,dVWp).
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The rest of this section is devoted to the proof. We also obtain the
Corollary 1. This unique self-adjoint extension has discrete spectrum.

The key to proving these statements is to show that if ¥ € Dy, (A), then ¥ must
decay sufficiently and have enough regularity to lie in D,;,(A). We accomplish
this here through a sequence of one- and multi-dimensional Hardy and interpolation
estimates.

3.1. Hardy inequalities

Lemma 1. Fix any measure space (Y, dv) and consider the measure space (X, dp)
where X = RY x Y and du = p®dpdv. Suppose that u € L2 _(X) has support in

loc

{p < po}and satisfies pP d,u € L2(X;dw). If2B+a > 1, then p~'u € L2(X, dp)

and

2
—1
1P~ 2l 2k ay = W”pﬁap””Lz(}(,du)' (11)

a_

If we drop the condition that u is supported in a finite strip in RT, then for any
Po. € > 0, there exists some C > 0 such that

-1
||P‘8 u”Lz((O,po)xY;du)

B
< m”p o |2¢0 pot+eyx¥:diwy T C Ul L2((00.00+€)x 7 :d10)-

Proof. Assume first that 1 is supported in p < pg. Choose a function ¢ € €*(R)
which is nonnegative and monotone nondecreasing, vanishes for p < 1/2 and with
d(p) = 1forp > 3/4. Weuse ¢(p/5) as a cutoff, with § ™ 0.

By hypothesis, v € H,! , and ¢(p/8)u = 0 near p = 0, we calculate

loc?

2B +a = Dlp(p/)0" ullF2x.a

= @B+~ 1) [ $(p/02?+* it dpd

< f (28 + o — D (p/8)*0> 1472 + 28 9(p/8)¢ (p/8) 0>’ T* it dpd:z
= [ 000 (0/9202 < i dpaz

= [ @ (/5202 ) = 4852 D) dpd

= _f(¢(p/5)2p2ﬁ+a—lua’7+ apu¢(p/5)2p2ﬁ+a—lﬁ) dde

= —{p(p/8)p" " u. p(p/8)p Du), , — (9 (0/8)pP dpu. p(p/8) P~ u), .
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Using the Cauchy—Schwartz inequality, this yields

2B + o — Dp(p/8)p" " ull> = 2016 (0/8)0" " ullld(o/8)p" dpul.  (12)

so dividing through by ||¢(p/8)pf ~1u | gives

2B+ a — D¢0/8)0P " u|l = 2ll¢(0/8)pP o2 < 20pPdpull 2. (13)

This inequality is obvious if ||¢(p/8)pP~'u| = 0. Finally, let § — 0 to get that
pﬁ_l u € L? and that the estimate of the lemma holds.

If # is not compactly supported then replace ¢(p/8) by ¢(p/8)y(p) where
¥ € €%°(IR) is nonnegative, equals 1 for p < pg and is supported in p < py + €.
Apply the Hardy inequality above to yu to get

2B+a—1 5
——— 0" ulez < 10 Y dpulzz + 1079 dullz2: (14)
in view of the support properties of i and v, this proves the lemma. L

Now suppose we are near an intersection of divisors D ;. Choose coordinates as
before and, for simplicity, for any multi-indices o € R¢ and y € N¥, write

pU = pclr1 ...pg‘g, and (pap)y = (plapl)yl ---(Pﬂape)w-

If s € R, then we also write p* = (py ... pg)°. We also define

)= ()"

so {(p) = 0 when any of the p; vanishes. Note that {(p) < p; for any j. Then the
one-dimensional Hardy inequality above immediately gives

Lemma 2. Let X = (RY)E X Y where (Y, dv) is a measure space and set du =
o%dodv. Fixa, B € R" such that 2B; + o > 1 for eachi. Ifu € L2 (X,du) is

loc

supported in {p; < po foralli} and pf dpu € L*(X:du) for each i, then

2
B -1 : D eemm—— ‘88 , g
17 P ez asan = 5p =g 1792

If we do not assume that u has compact support, then for any py,€ > 0, there
exists C > O such that

102 077 | L2 (x s < po)dio)

— |’ g
= 2ﬁl + B — 1 ”P apiu“Lz(Xﬂ{pl’po-i-e};dM) <+ C”p u||L2(Xﬂ{PoSp_iSpo+e};d/.¢)-
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3.2. Interpolation inequalities. For any o € R, define the space

X7 ={ue L ulg— = 107(p) " ull® + 0”7 (p) Au|® < o0} (15)

loc

We write X 9 (U) for the space of functions with finite X ~% norm in U.

Our first task is to show that the X~ norm controls the L? norm of p” Vu. Note
that p? (p)~'u € L2 is equivalent to p"pj_lu € L2 forall j. This result is local, so
we fix pg > 0 and work in a neighbourhood U, = {p; < po, j =1,....k}.

Lemma 3. Let 0 € RY, € > 0, and suppose that u € X7(Upgte). Then p°Vu is
in L*(U,,) and

-1
107 Vel Za s,y = ClI7(0) el 2y vy 11l — Uy 0)-

In particular
olpy tu, plp)Au € L? = pVu e L2

Remark 2. Asaconsequence, ifu € X7, then p? Vi € L?. Furthermore, if o; > 1
for all i then ¥ € L? implies p? (p)~'u € L2. In particular, if u, Ay € L2, then
u € X% forallo witho; > 1 foralli.

Proof. Let f bereal-valued and €°° and denote by m ¢ the operator of multiplication
by f. We claim that there is an equality of differential operators

AOMf-|—meA=2v*(MfOV)-|—mAf. (16)

Indeed, both sides are symmetric and have the same principal symbol, so their differ-
ence is a symmeiric, real, first order scalar operator, hence must actually have order
zero. Applying both sides to the constant function 1 gives the claim.

Suppose that f > 01is real valued and has compact support in M, . Applying the
operator in (16) to # and taking the inner product with u gives

2Re(Au, fu) =2/ f1/2Vul* + (Af)u,u). (17)

This equality extends to all u € HZ (M,).

Choose ¢, ¥ € €®(R) with 0 < ¢,y < 1 and such that

(1) =0 forr <1/2, ¢)=1 forr>1,
=1 fort <py, Y(t)=0 fors > py+€/2.

Furthermore, let y € €2°(IR*) be supported in the y-coordinate chart V. Then define

fis = 0o /2 (02077 fs = fis-.- fosx(0)2
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In order to use this in the identity above, we must compute

{
Afs = (D8, ko7 '3,) — E+ Bp, ) f

i=1

= ngpfz( — (pidp,)* = (k —l+4ai— (Zﬂfj))(ﬁ’ff’pi))fs
j

i=1
£

= o7 07 i (pi0,)(0;35,) fi + A, fs
i.ji=1

- ZPi_lbij(Piapa)ayij - Zcijayaa;vjfﬁ - ZéiiPFIBYJf5'

Then, since _ _
(0i0p; ) (P(pi/8)) = ((13,) P)(p:i/8). ] = 1,2,

we see that {p)2p~2% A f; is uniformly bounded as § > 0 (recall that p; > (p) for
all 7). Hence, setting f = fg in (17), then

(AN uu)| = Cllo” (o) ul®

uniformly in 8. Applying Cauchy—Schwartz to (17) thus shows that

£
20| [T /8)v () x ()0 Vuel?
i=1

< C (IIp7 (o)~ ull® + 1o (o) ullllp” {p) Aull) .

and since f5 — fo = ¥{(p1)? ... ¥(pe)*x(y)?p?° as § — 0 we conclude that
Y(p1) ... ¥ (pe)p°Vu € L? by letting § — 0. O

Another useful property of these spaces 1s that they localize.

Lemma 4. let {{,} be the partition of unity described at the end of §2. Then
u € X7 implies Yyou € X9,

Proof. First note that

A(frqu) = Yo Dt — 2(Viha, Vit) g + (At )u.

The expression in the middle is the pointwise inner product with respect to the metric
g. Since ¥y, {(p)Viry and {p)> Ay, are all bounded (even without the factor of
{p)) we obtain p°{p)A(Yuu) € L?. However, p° {p) 'uu € L? as well, so
Yau € X9, L
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Corollary 2. Forany o € Rf, E5(M,,) is dense in X 7°.

Proof. Fix any u € X~°. By the previous lemma, we may as well assume that u is
supported in U ,,. Lemma 3 implies that p” Vu € L2.

Choose the cutoff function ¢(#) as in the proof of Lemma 3 and set ®5(p) =
¢(p1/8)...¢(p¢/8). The function ®su is compactly supported in M,, and Au €
LZ .so ®su € HZ(M,), and hence clearly lies in X,

We claim that ®s5u — u in X 7%, i.c.

p7 (o) ' Psu — p(p)'u, and  p%{p) A(Dsu) — p° (p)Au

in L2. The former follows from the dominated convergence theorem. For the latter,
we use that
A(Psu) = PsAu — 2(Vds, Vi) + (Ads)u.

Since p? {p)Au € L?, dominated convergence gives that p? {p) ®s Au — p{p)Au.
In addition p° Vu € L? and p° {p)~'u € L2, so the estimate for the remaining term
follows from the fact that {p) V ®5 and {p)* A &y are uniformly bounded and converge
to 0 pointwise. These bounds on ®g follow from (p,-Bpl.)kqb(./S) = ((t3)*)(./5)
(cI. the proof of Lemma 3), and the pointwise convergence is clear. This completes
the proof of the convergence claim, and the corollary follows from the density of
€5 (M) in Hg(My). L

3.3. Improving the decay rate. The only reasonable general estimate for the
weighted norm of Vu involves the weighted norms of Au and on u, with closely
related powers of the weight function. However, there is a critical range of weights in
which one can estimate || p" Vi ||; 2 using || p" {p) Au||; 2 buta much weaker norm of u.
We explain this now, and in particular develop localized versions of these estimates.

Lemma 5. Let o, be the partition of unity defined at the end of §2. Fix 0,09 € R*
such that o — £ < 0 < 0p. Let u € X7 satisfy p°{(p)Au € L?. Then

2% (D) A(Ya) € L2.

Note that the conclusion is, up to one order of decay, better than the assumption
u € X9 which implies that p° {p) A(¥,u) € L2

Proof. Expanding
A(qu) = Yo Au — 2(Vip,, vu)g + (Ao )u,

and using that p” {p) Au € L? and Vi, and A, are bounded, we see that it suffices
to check that
P77 (p) = C.
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However, this follows since o; — (0g); = —1/{ for every j and

(o) = (o1... p)" /"R,
where R € [.°°. O

We now prove a stronger version of this, that a relatively weak weighted bound on
u and a stronger weighted bound on Au imply We can now prove that just information
on the weighted space Auw sits in suffices to obtain information on ¥ and Vu if at
least weak a priori weighted information on u is available.
Lemma 6. Let—% <0 <0y < ]‘:2;1,
p%{p)Au € L?; thenu € X7°.

and suppose that p®{p) " 'u € L? and

Proof. 1t suffices to prove the lemma assuming only that o > o9 — 1/£, for once
we have established this, then we may iterate a finite number of times to obtain the
result as stated. Furthermore, we can also replace u by ¥, u, so as to work in a single
coordinate chart.

Recall from Lemma 3 that if ¥ € X9 for any o), then p"é Vu € L?. Now,
consider the first and third terms in (17), and rewrite these as follows:

2Re {Au, fu) = 2Re{p"(p)Au, (p~2% f)p%0 (o)~ 'u)

and , , ,
(A fyu.u) = {(072%(p)> Af)p%{0) " u, p°0 (o) " ue).

From this it follows that if f is smooth but not necessarily compactly supported, and

P20 f. p2%0(p)2Af € L, (18)
then these two terms yield continuous bilinear forms on X —9, Hence, since (17)
holds for all u lying in the dense subspace €5°(-M,,), it extends by continuity to all
of X~9: in other words, (17) holds for all elements of this space.
The next step is a judicious choice of the function f, or rather, a family of such
functions, satistfying these properties. We define

B
f = fs = 05(0)0%. whete d; (1) = (1%) By >0,

where, as before, ®; is the product of the functions ¢;(p;/d) over j = 1,... £ It
is clear that both conditions in (18) hold provided o 4 8 > a,.
We claim now that

£
20, + k — 1)
Afs+ Y Cip2fs 2 0 fot s & < L0 +2 " (19)
i=1
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This will be established below. For later use, fix b1 > 0 and &, € (0, 2) such that

Qo +k-17 _p, 0tk 1)2

Ci + b1 < by 1 1

+ b < —C; (20)

foralli =1,...,¢.
Since the functions ¢; defined here satisfy gb;. > 0, the proof of the regularized
Hardy inequality (13) carries through exactly as before, giving

{

L
Q2o; + k —1)? _
Y 1P ull® = Y 1@5(0) % s l® < | @a(p)p” V.
i=1 i=1

Rearranging this and using (20), we deduce

£

(2= b2) || s (p)p” Vue|l> + b1 Y [1Ps(p)p” p; "ull?
i=1

< 2|| @5 (p)p” Vull® + ((Afs)u,u),

and hence, recognizing this as the right side of (17) with our particular choice of f
and using the Cauchy—Schwartz inequality, we bound this expression by

2||@5(0)p (p)” ||| Ps(p)p° (p) A

1 _ 24
< 55 195(0)0% (o)~ u I + =11 @5(0) 0 (o) A |*.
24 b1
Now, {p) ™2 < { Zle p; 2, so the first term on the right hand side can be absorbed in

the second term on the left hand side. Bounding this new term from below by exactly
the same inequality, we obtain finally that

o b o — 2¢ o
(2= b2)|[ @5 (0)” Vull* + S5 1950} o) ull® = 3@ ()0 () st

To conclude the argument, let § ™ 0; this shows that p® Vi and p° {p)~'u lic in L2,
as desired.

It remains to show that (19) holds for some C; < M

. First,

Afs = ip?(— (it )? = (k= 1+ @i = (X iy )} o2 )
i=1 ¥

£

= > 0707 ai(pid,) (0 0p,) £
=1
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with |a;|, |a;;| < C|p|". A straightforward but somewhat lengthy computation gives
that

!
Afs+ > Cip fs
i—1

£ £
= —05(0)0* (D_ 0722 0i /) + Y 0705 iy 0:/5.01/9)).

i=1 i.j=1
Here

g;(t)

gbj(t)_z ((181)2 +(doj +k —1)10; 4+ 20; 2o; + k — 1)) @; ()?
B 28,28, +1) (4o +k —2)28;
(1 41)2 1+4¢

+20;Q20; +k—1) = C;

results from the model part of the Laplacian, while h; ; comes from applying the
remainder terms @; and &;;, so that

|P|_n|ﬁfj(5',l)| <C, s1t20,

for some C > 0.

To do this computation efficiently, say for the g; term, note first that commuting
the factor p?° in f through each differential expression p;d,. replaces this expression
by p;0p; + 20;. Next,

(pidp; + 200)(i(pi/8)?) = (13 + 209)PF|1—p; /8

so we have reduced to computing the action of a second order regular singular ordinary
differential operator

—(td, + 207)* — (k — 1)(23; + 207).

on the function (¢/(1 + £))%, which is straightforward.
. _132
Now, if —g;(z) = & > 0 for all j and for some C; < w

pl._lpj_l < l(,«ol._2 + pj_z), one can estimate

, then using

£ £
| " o0y g 0i/8,0,/9)| = 10" TLY o7
ij=1 i=1

Consequently, assuming that |p| is sufficiently small, which is possible here by ad-
justing the partition of unity, we deduce that (19) holds.
We now wish to show that g; () < 0for ¢ > 0. To this end, note that

g;(0) = 2(B; +0;)(2B; + 20; + k- 1) = C;,
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so this must certainly be nonpositive. Furthermore,

428+ 1) 2840 +k —2)

&0 ="—11p3 (L+1)2
2 .
- sz)3 (228; + 1) + (40, +k —2)(1 + 1),

so we wish that
46; +2+(4o; +k-2)(1 4+1) = 0.

Since 407 + k — 2 > 0, this is bounded below by 4(8; + 0;) + k.
Setting y; = B; + o, we have now shown that g;(#) < 0 provided

4y; +k =0 and 2y;Q2y;+k-1)—-C; <0.

Calculating the roots of this quadratic equation, we see that

koo k-1 . 1\/(k—1)2+c_

1=V =TT T2V T /
implies g; () < Ofor > 0. The leftmost term here is always less than the rightmost
provided C; > 0, so there is always a permissible range for y;. Indeed, combining
the various restrictions above, we see that we must choose

(2Uj +k— 1)2

20 + B))Q20; + Bj) +k—1) <(C; < 3

21)

Once again, setting 8; = 0, the leftmost term is less than the rightmost term precisely
when

so there is certainly some allowable interval for C; provided f; is sufficiently small.

Since we wish to iterate the argument above, it is useful to estimate how large
we can choose B; so that there still exists an admissible C;. One half the difference
between the left and right hand side of (21) equals

. F—1)2
%(2(0} + ﬁj)(Q(Uj + ﬁj) + k — 1) — (2UJ +2 1) )

k—1 k—1 k-1
o 5 oo 5 e

Taking 8; = y(kz;l — 0} ), which is positive provided y > 0, gives

(=T N+ 57) = rlor e 57) w2257}
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Since 0; — %(k — 1) < 0, we need the other factor to be positive. Let us write this
factor as 24y? — 4By + C. Thus
k-1 k—1 1 k-1 k
A:crj——2 < 0, B:oj—|——4 >Z and C:oj—l——z >Z.

These sign conditions and the quadratic formula show that there is one positive and
one negative root of this quadratic equation, and since the leading coefficient 24 is
negative, we see that there is a yy > 0 depending only on & such that if y € (0, yp),
and with 8; chosen as above, then there is indeed a gap between the left and right
sides of (21). In other words, we have now proved that if —% < 0; < kz;l and if
p“é(p)_lu,pcé(p)Au € L? witho, =0+ 8 =0+ y(% = J), for any fixed
¥ € (0, o), then p° Vi and p® {p)~'u both lie in 2. This shows that starting with
Go < ]‘:2;1 , then we can iterate the entire argument a finite number of times to conclude

that p° Ve, p%{p)~1u € L2 for any o > —522. O

There is a variant of this result which holds even in the borderline case gy = %

We lose a bit, however, in that we can only estimate some combination of Vu and
{p)~1u, but not these two terms separately.

Lemma 7. Set 0p = ]‘:2;1 and suppose that max(0,09 — 1/€) < 0 < 0y, and
o # 0. Suppose furthermore that the rate of decay n for the error terms in the
metric satisfies 1 > 1 (note, this is certainly true for gwp). If p°{p)~'u € L? and

027790 {py Au € L? then p?=2°0V p?%0y € L2,

Proof. By assumption, ¥ € X, and in view of Lemma 5, we may replace u by
some Yy u so as to assume that 1 has compact support in some chart.
We now claim that acting on €°(M, ), one has

A+ Af = 2(p7* DV fpm*Dy i

22
+ Af = 2(p” ETDVRET*(fpm R (v o), .

where the two occurrences of f on the left as well as the last two terms on the
right are multiplication operators. Indeed, both sides are formally self-adjoint, real,
and have the same principal symbol, so the difference is an operator of order 0;
evaluation on the constant function 1 then gives the result. The last term on the
right in (22) can be rewritten in a more useful way as follows. First write this
term as —2pk_1V* p_z(k =1 fv pk_l, then commute to the front the middle factor
p~2%=1 £+ omitting the initial minus sign, this yields

2p_(k_1)prk—l _ zpk—l[vj p—Z(k—l)f]*vpk—l
= 2p~k=D) fA =1 _ ==y £y k=) _ g fpk=l(y 2k g gk=ly
= —2(k — 1)p"Vp,V f)g + 207 D fAP T + 4k — 1) fo ¥ (Vp, VpFTT)g.
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Using (6), we expand and then combine the last two terms on the right; this produces
a cancellation, from which all that remains is f >, j a; : p; 2, for some coefficients
a;; which satisfy |a;; | = C|p|".

On the other hand, assuming that f is independent of y and #, we also combine
the first term of this last equation (remember to reinsert the minus sign!) with the
penultimate term A f in (22). These together yield

{

Y+ =2+ a0+ Y R
=1 I,j=1

where |a/], |a[;| = C|p|".

We shall use, as before, the specific function f = f3 = (Hf:l @i (i /8)*)p°,
with ¢; (:) = (1 + =1~ Thus
O fi 20, fi = fipr(—2B:2B: + DL+ 1)

+ 281 = 4o)(1 + 17 + 2010k — 1 = 200) |,

the remainder terms a; p- 13,. 1 a:; 8; 5 f are all bounded by |p|” times a linear
k 1

combination of the three terms on the right. Taking §; =

p2f, p2(p)dy f, and p_z"o(p)zAf

are all bounded, though not uniformly in §. Furthermore,

— 0;, then for § > 0,

k-2 ‘
Y (=S + =9 f) = X 26 (= OB+ DA+ 072
: i=1

i=1
+ 2B +1=20)(1+ 1) +207) | 1—p; 8

£
L mif8 (2B +1
= > 2B for > pif ( = +20:')-
2 T+ /5 \ T+ pi/8

The right side of this equation is nonnegative if §; > O and ¢; > 0 for all 7, and
bounded from below by
]
Z dfi, —zL_

+ pi/d

Finally, using Cauchy—Schwarz,
2 o 1% 2 20 f

<CfZ<pzp, L+ + A+ + Dle=pps <CF Y07

LJj



Vol. 89 (2014) Spectral theory for the Weil-Petersson Laplacian 887

We have now proved that the last two terms of (22) are bounded from below by
—C|p|" Y (pip;)~!. Since we are assuming that o; > 0 forevery i and 7 > 1, we
can refine this since then [p|? < |p| < > ; pj- Indeed, using these two conditions,
then for any specified € > 0,Q

pa— = p- 5
Do (02 + A+ + Dlmpys <3 0y 52604ﬁf"f1+1£-/5
- - , J
I / ’

when both § and |p| are sufficiently small. Taking suppu sufficiently small so that
both of these last conditions hold, this shows that the last two terms of (22) are actually
non-negative.

Now, when § > 0, (22) gives

(fsAu,u) + (A(fsu),u)
= 2]l £ 2 (e~ DV D ? (23)
+{(Afs = 2007 PV (S5~ DV ) Jut, )
ifu € €° (j/( ). Both sides are continuous bilinear forms on X ~79, so since €2° (j/()

is dense in X ™9, the identity holds in this larger space. Since 5 > 1, the last term is
nonnegative, hence

1 —(— - o ez
1Lf5 /20 * DV 12 < (170 (o) | 11027770 () Al
Letting § — 0 shows p° (p~* = Dvpk—1yy € 1.2 and
107 (o™ DV R |2 < (1027770 (Al [| o7 {0y Mt

This completes the proof. (]

Corollary 3. Ifoy, = % >0and0 <o <0y, 17> 1, andif p°°{p)"'u € L? and
0 (pyAu € L? thenu € X9, so p°Vu € L? and p° {p)~'u € L2
In particular, if p°0{p) " u € L? and (p)Au € L? then Vu € L.

k—1
N}

then in particular 20" — 0y > o, and hence p2° ~%9 (p)Au € L2, and we also have
0% p~* =DV pk—1y ¢ .2 This implies that

’ r k=1 fo—
(TTer) o705, 6w e 22
i#J

Proof. By Lemma 7, if ¢’ = max(cy — 1/£,00 — %(cro —0)) <

Since p}_k barely fails to lie in .2, while ¥ € L2, we can use techniques of regular
singular operator theory to get that pafapju € L? for every j, and hence using the

Hardy inequality, p® {p)~'u € L2. This means thatu € X~ . Finally, by Lemma 6
with oy = ¢/, p°Vu € L? and p° {p)~'u € L2, and this completes the proof. [
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We now show how to use the results above to establish that A is essentially seli-
adjoint. It is well known that essential self-adjointness is equivalent to the density of
Rangos (A & i) in L2, If either of these spaces fail to be dense, then there exists an
element € L?suchthaty L Rangce (Ai),ie. ((Axi)p, ) = Oforallg € €°.
This implies, in particular, that i is a distributional solution of (A + i)y = 0, and
hence ¥ € €, and in addition Ay € L2.

If we can integrate by parts to justify the identity

0= (A£Dy.y) = ldylI* iyl

we could then conclude that ¥ = 0. Thus it remains to prove the

Lemma 8. Suppose that k > 3, and let g be a metric which satisfies the conditions
(9) and (10), with p > 1 ifk = 3. Ifu € L? and Au € L?, then Vu € L? and
{Au,u) = (Vu, Vu).

Proof. If k > 3 then, by Lemma 6 with 0y = 1 and o = 0, we see that Vu € L2
and {p)~'u € L2. This proves the first claim.

Now suppose that & = 3, which is the most relevant case. Then by Lemma 3
with op = 1 and o = 0, we see that Vi € L? and {p)~'u € L?. This completes the
proof of the first claim in all cases.

Finally, if v € €2° (J(\)/[), then
(Av,v) = || Vo|*.

Both sides are continuous bilinear forms on X©, so by the density of €° (j/(y), this
identity remains valid in X°. In part one we proved that the assumption # € 12 and
Au € L? implies that Vu € L? and {p)~'u € L?. Thus u € X° and hence, the
above equality holds for u. O

In summary, we proved:
Theorem 3. A is essentially self-adjoint.

To conclude this section, we note that the argument of Lemma 8 shows that the
maximal domain D, (A) is contained in (p)L? N H !, which is certainly compactly
contained in 1.2. This proves Corollary 1.

4. The Weyl estimate for the eigenvalues

In this final section we address the question of estimating the growth rate of the
counting function

N =#{j: A; <A}
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The classical formula, valid for the Laplacian on a compact smooth manifold (M, g),
states that

_ _@n /2 /2
N(A) = 20y Volg (M)A = 4 0(A"/7), (24)
where 7 = dim M and w, is the volume of the unit ball in R". It is now well

understood, of course, that a good estimate of the error term, for example showing
that it has the form @ (1%/27¢) for some € > 0, depends on the dynamical properties
of the geodesic flow. The same is certainly true here, but we content ourselves with
the most basic result in this direction, which is the extension of this Weyl counting
formula to the present setting. Our main result is the

Theorem 4. Let (M, g) be a compact stratified space with crossing cusp singularities
of multi-order k, where each k; = 3. Then the spectrum of Ay is discrete, and the
counting function N(A) for this spectrum satisfies the asymptotic formula (24).

Proof. We follow the most classical method, known as Dirichlet—Neumann bracket-
ing. We briefly recall the idea, but refer to [7] for details. Consider a partition of M
into the region

Wo = {p : distg(p, UD;) = §}

and a finite number of regions ‘W, each of the form

p=01,....re,01,....00,y): 0<r <8, i=1,....¢, 0 e S forall i,
and y € V, c R® 6726y,

Next, define the Rayleigh quotient for Ag by R(u) = D(u)/L(u), where L(u) =
[|u|*dVy and D(u) = [ |Vu|*dV, are the L? norm and the Dirichlet form. We
also consider the restrictions of these forms to various subdomains ‘W, and will denote
these by RY (), etc.

For each «, including o = 0, restrict R to functions » which lie in H 1('W,) or
to H)l(W,). The critical values of this restricted functional are the Neumann and
Dirichlet eigenvalues for A, on ‘W, which we list in order, and with multiplicity, as

o 54 o [54
PIN SMyy = and pipSp5p =---,

respectively. The union of these lists of eigenvalues over all «, reindexed into non-
decreasing sequences, become

HIN S po N <--- and i p < pap <---.

Since

P 1 (Wa) c HY (M) C €D H(Wa).
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the minimax characterization of eigenvalues shows that the eigenvalues {A;} of A,
on M, listed with multiplicity, satisfy

HiN <Aj < WD

for all j. This implies, in turn, that if we denote the counting functions for the
sequences {y; ¢ and {4 pt by Ny (A) and Np(4), respectively, then for A > 0,

Np(A) = N(A) = Ny (4).

Thus to prove the main assertion, it suffices to prove that both Ny and Np satisfy
this same asymptotic law.
We take as given that

Wy

(2n)nvO1g(w0)A”/2 £ pEP2Y,

NA",“}}) (A) =

This is just the standard Weyl law for the region W, with either Neumann or Dirichlet
eigenvalues. Since Volg (Wy) — Volg (M) as § — 0, this is nearly the entire leading

term. On the other hand, since N 3‘7 *(A) < N ;,V *(A) for o # 0, it suffices to prove
that for any € > 0 we can choose a sufficiently small § so that for all such «,

Nye () < eA™? 4 9(AF)

for some B < n/2. Thus we concentrate on this last estimate for any fixed .

Since the Rayleigh quotient is changed by at most a bounded factor if we replace
g by any quasi-isometric metric, we may replace ‘W, by the product (0,8)¢ x Z,
7 = (81! x B, where B is a piecewise smooth compact domain in R*~2¢, endowed
with the warped product metric

£

ki
ge =) (dp} + p; " d0?) + dy?.
i=1

Using radial and angular variables p; and 6;,i = 1,..., £, as before, as well as the
multi-index notation, so that for example p* = ]_[le pfi , then

& 8
L= [ [Z|u|zp"dpdedy,
0 0

and

D W (u)

§ 8 { {
—2k:
:/(; /{; fZ(E |Bpju|2-|-2 p; J’|89ju|2—|—|8yu|2)pkdpd6’dy.
j=1 j=1
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Next, suppose that § = 270 for some m which will be fixed later, and decom-
pose the cube (0, §)¢ into a finite union of subregions

.27 = | |1#. where I, = L x - X L.
I

Here p varies over all multi-indices (1, ..., p¢) with u; € {mg,...,m + 1} for
some m to be chosen momentarily, and

I; = Q77 270y for mg < j <m, and Inyq = (0,271,

In other words, this is just the dyadic decomposition of (2=~1, 2770} along with
the ‘terminal’ interval (0, 277~ 1).

Now fix A > 0 and set m ~ %log2 A. We claim that if the multi-index p has
p#; = m + 1 for some j, then the number of Neumann eigenvalues of Ag, on the
region [, x Z is bounded by the number of Neumann eigenvalues on the adjacent
domain f,» x Z, where ,u,} = m and all other u; = p;. As we show below, it is
possible to directly estimate the counting functions on these non-terminal regions, and
since we now show that the counting functions on the terminal regions are estimated
in terms of these, we will have accounted for every block in this decomposition.

To prove this we integrate in p; € (0,27™) (for the same value of j). Writing
Y= ]_[l-%j 1, x Z, then the second part of Lemma [ with 8 = 0, py = 2-m=1 and
po + € = 27 gives that

22m+2 f
0

2—m—1

o—m
Py < [ Il dpy
—m o=
=c [ yuly 2 [ k.

The constant in front of the last term on the right comes from the square of the
derivative of the cutoff function used to reduce back to a function which vanishes
near p; = pp + € so as to apply the Hardy inequality for such functions. Integrating
over the other factor Y, we obtain

22m+2f |ue)? gc/ |Vu|2—|—C22m[ |u|?.
I, xY (I V)Y I,xY

Now suppose that the restriction of % to {,,» X Y is orthogonal to all the Neumann
eigenfunctions with eigenvalues less than C 22" on this region. We can then estimate
the second term on the right by the Dirichlet integral of 1 on {,» X Y. So altogether,

for such u,
22m+2/ |u|2 S Cf |vu|2’
(I, UI,)xY (I, UI )XY
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hence the Rayleigh quotient for all such u satisfies R(u) > C22"%2_ This proves

that
NTET qamey ¢ 1wV (o gamt2),

which proves the claim since A ~ 22™.

We have now reduced to estimating N ;,“XY()L) for any multi-index g where
p#; # m + 1 for any j. To accomplish this, we consider the Rayleigh quotient on
this region. Writing 1 -k = > p;k;, then

4
D(u) = f (2:(|8pju|2 + By |99,u*) + |ayu|2)2‘“'k dpdf dy,
ji=1

and L(u) = f |u|22=#*% dpdf dy. Up to a p-independent constant factor, the
Rayleigh quotient in this region is the same as the one for

¢ i

2 2k;p;qg2 2
E s, + E 27IRI By + 05
j=1 j=1

Up to another constant factor, the eigenvalues of this problem are simply

{ £
DM+ Y PN 4P, g teZf neZ™
j=1 j=1

The number of these which are no larger than A is estimated from above by the number
of multi-indices £, £, n such that the individual summands themselves are less than A.
Thus

#{E  2MER <Ay = CVA2TH
#{g 22 < Ay < cVATk
and

#n; n? <A} = CVA

Thus, summing over all p (withno j; = m), and recalling that A is large, the number
of eigenvalues of these model problems on the various regions /,, X Z which are less

than A is bounded by
C ( Zz—(1+kj)uj))hn/z_
i

The coefficient breaks into the product

m £

£
I ( ) 2—(1+k,~)u,~) < [[ 2+t mo = p=Hlkhmo _ st+ik
F=1

Hj=mg i=1
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Altogether, we have proved that the counting function on each ‘W, o # 0, is bounded
by C88 A2 where B = £ + |k|.

We have now shown that
7]

(2m)"

N = (Volg (M) 4+ 08P ) A" 4 o(A™/?).

If we choose § = (log, A)~'/#, or equivalently, mo = (1/8) log, A, then since this
my 1is still far less than m = % log, A, we conclude that

Wy

2m)"

N = Volg (M)A™2 4 o(A"2),

which finishes the proof. 0

References

[1] E.Arbarello, M. Cornalba and P. Griffiths, Geometry of algebraic curves. Volume 11, with
a contribution by Joseph Daniel Harris, Grundlehren Math. Wiss. 268, Springer-Verlag,
Berlin 2011. Zbl 1235.14002 MR 2807457

[2] P. Albin, E. Leichtnam, R. Mazzeo and P. Piazza, The signature package on Witt spaces.
Ann. Sci. Ec. Norm. Supér. (4) 45 (2012), no. 2, 241-310. Zbl 1260.58012 MR 2977620

[3] P. Albin, E. Leichtnam, R. Mazzeo and P. Piazza, The signature operator on Cheeger
spaces. In preparation.

(4] T. Aubin, Seme nonlinear problems in Riemannian geometry. 2nd ed., Springer Monogr.
Math., Springer-Verlag, Berlin 2007. Zbl 0896.53003 MR 1636569

[5] K. Bums, H. Masur and A. Wilkinson, The Weil-Petersson geodesic flow is ergodic. Ann
of Math. (2) 175 (2012), 835-908. Zbl 1254.37005 MR 2993753

[6] W. Cavendish and H. Parlier, Growth of the Weil-Petersson diameter of moduli space.
Duke Marh. J. 161 (2012), no. 1, 139-171. Zbl 1244.32008 MR 2872556

[7] 1. Chavel, Eigenvalues in Riemannian geometry. Including a chapter by Burton Randol,
with an appendix by Jozef Dodziuk, Pure Appl. Math. 115, Academic Press, Inc., Orlando,
FL, 1984. Zbl 0551.53001 MR 0765584

[8] J. Cheeger, On the Hodge theory of Riemannian pseudomanifolds. In Geometry of the
Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979},
Proc. Sympos. Pure Math. XXXVI, Amer. Math. Soc., Providence, RI, 1980, 91-146.
7Zbl 0461.58002 MR 0573430

[9] . Cheeger, Spectral geometry of singular Riemannian spaces. J. Differential Geom. 18
(1983), no. 4, 575-657. Zbl 0529.58034 MR 0730920

[10] Y. Colin de Verdiere, Pseudo-Laplaciens, I and II. Ann. Inst. Fourier 32 (1982), no. 3,
275-286; 33 (1983), no. 2, 87-113. Zbl 0489.58034 Zbl 0496.58016 MR 0688031
MR 0699488



894

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

L. Ji, R. Mazzeo, W. Miiller and A. Vasy CMH

E. Dryden, C. Gordon, S. Greenwald and D. Webb, Asymptotic expansion for the heat
kernel for orbifolds. Michigan Math. J. 56 (2008), no. 1, 205-238. 7Zbl 1175.58010
MR 2433665

1. Harris and 1. Morrison, Moduli of curves. Grad. Texts in Math. 187, Springer-Verlag,
New York 1998. Zbl 0913.14005 MR 1631825

K. Liu, X. Sun and S. T. Yau, Good geometry on the curve moduli. Publ. Res. Inst. Math.
Sei. 44 (2008), no. 2, 699-724. Zbl 1219.14012 MR 2426362

H. Masur, Extension of the Weil-Petersson metric to the boundary of Teichmiiller space.
Duke Math. J. 43 (1976). no. 3, 623-635. Zbl 0358.32017 MR 0417456

M. Mirzakhani, On Weil-Petersson volumes and geometry of random hyperbolic surfaces.
In Proceedings of the International Congress of Mathematicians. Vol. 11, Hindustan Book
Agency, New Delhi 2010, 1126-1145. Zbl 1239.32013 MR 2827834

S. Wolpert, Geometry of the Weil-Petersson completion of Teichmiiller space. In Sur-
vevs in differential geometry, Vol. VIII, (Boston, MA, 2002), Surv. Differ. Geom. VIII,
International Press, Somerville, MA, 2003, 357-393. Zbl 1049.32020 MR 2039996

S. Wolpert, Understanding Weil-Petersson curvature. In Geometry and analysis. No. 1,
Adv. Lect. Math. (ALM) 17, International Press, Somerville, MA, 2011, 495-515
7Zbl 1271.32017 MR 2582436

S. Wolpert, Families of Riemann surfaces and Weil-Petersson geometry. CBMS Re-
gional Conf. Ser. in Math. 113, Amer. Math. Soc., Providence, RI, 2010. Zbl 1198.30049
MR 2641916

S. Wolpert, Behavior of geodesic length functions on Teichmiiller space. J. Differential
Geom. 79 (2008), 277-334. 7bl 1147.30032 MR 2420020

S.Yamada, On the geometry of Weil-Petersson completion of Teichmiiller spaces. Math.
Res. Lett. 11 (2004), no. 2-3, 327-344. 7Zbl 1060.32005 MR 2067477

S. Yamada, Weil-Petersson completion of Teichmiiller spaces and mapping class group
actions. Preprint, arXiv:math.DG/0112001.

Received November 27, 2012

Lizhen Ji, Department of Mathematics, University of Michigan, Ann Arbor, MI 48109,

US.A

E-mail: lji@umich.edu
Rafe Mazzeo, Department of Mathematics, Stanford University, Stanford, CA 94305, U.S.A.

E-mail: rafemazzeo@ gmail.com

Werner Miiller, Mathematisches Institut, Universitit Bonn, Endenicher Allee 60, 53115

Bonn,

Germany

E-mail: mueller @math.uni-bonn.de
Andras Vasy. Department of Mathematics, Stanford University, Stanford, CA 94305, U.S.A.
E-mail: andras@ math.stanford.edu



	Spectral theory for the Weil-Petersson Laplacian on the Riemann moduli space

