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Le Systeme d'Euler de Kato en famille (I)

Shanwen Wang

Resume. Ce texte est le premier article d'une serie d'articles sur une generalisation de Systeme
d'Euler de Kato. II est consacre ä la construction d'une famille de systemes d'Euler de Kato et
ä la construction d'une famille de lois de reciprocite sur l'espace des poids W, qui interpolent
les objets classiques.

Abstract. This article is the first article of a serie of articles on the generalization of Kato's
Euler system. The main subject of this article is to construct a family of Kato's Euler Systems
and a family of Kato's explicit reciprocity laws over the weight Space W, which interpolate the

corresponding classical objects.

Classification mathematique par sujets (2010). 11F75, 11F12.

Mots-clefs. Forme modulaire p-adique, Systeme d'Euler, loi de reciprocite explicite.
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820 S. Wang CMH

1. Introduction

1.1. Notations. On note Q la clöture algebrique de Q dans C, et on fixe, pour tout
nombre premier p, une clöture algebrique Qp de Qp, ainsi qu'un plongement de Q
dans Qp.

Si N £ N, on note £# la racine AMeme de l'unite elln^N £ Q et on note Qcycl

l'extension cyclotomique de Q, reunion des Q(£#)> pour N > l, ainsi que Q^,ycl

l'extension cyclotomique de Qp, reunion de Qp(£n), pour N > 1.

Objets adeliques. Soient P l'ensemble des nombres premiers de Z et Z le complete
profini de Z, alors Z \\pej> ^p- Soit Q ® Z l'anneau des adeles finis de Q. Si

x e Q <g> Z, on note x^ (resp. x^) la composante de x en p (resp. en dehors de p).
Notons l)p{ Y\i*p On a donc Z Zp x Z^. Cela induit les decompositions
suivantes : pour tout d > 1,

(Q 0 Z) (Qp) xM^(Q8 Z]p[)

et

GLrf(Q 0 Z) GW(Qp) x GLrf(Q 0 l)pl).

On definit les sous-ensembles suivants de Q (g) Z et de M2(Q 0 Z) :

z(p) Z* X ZM et M2(Z)(/,) GL2(Zp) x M2(ZM),

(Q 0 Z)00 Z* x (Q 0 ZM) et M2(Q 0 Z)00 GL2(Zp) x M2(Q 0 ZM).

Formes modulaires. Soient A un sous-anneau de C et T un sous-groupe d'indice
fini de SL2(Z). On note Mk(r, C) le C-espace vectoriel des formes modulaires de

poids k pour T. On note aussi Mk(T, Ä) le sous-^4-module de Mk(T, C) des formes
modulaires dont le g-developpement est ä coefficients dans A. On pose M(T, A)

A), et on note Mk(A) (resp. M(A)) la reunion des Mk(T, A) (resp. des

M(T, A)), oü T decrit tous les sous-groupes d'indice fini de SL2(Z). On peut munir
l'algebre M(C) d'une action de GL2(Q)+ {y e GL2(Q)| det y > 0} de la faqon
suivante :

/ * y (det y)1'1* f\ky, pour / Mk{£) et y GL2(Q)+, (1)

oü f\ky est 1'action modulaire usuelle de GL2(R) +
On pose :

Mcp\A)= U Mk(T,A) et MC0^{Ä) |J M^A).
T sous groupe
de congruence

Soit K un sous-corps de C et soit K la clöture algebrique de K. On note 11^ le

groupe des automorphismes de AT-algebres graduees de M(K) sur M{SL2(Z), K);
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c'est un groupe profini. On note no le groupe des automorphismes de M(Q) en-
r(S) legendre par IIq et GL2(Q) + Plus generalement, si S C P est fini, on note II

sous-groupe de IIq engendre par IIq et GL2(Z^)+, oü Z^ est le sous-anneau
de Q obtenu en inversant tous les nombres premiers qui n'appartiennent pas ä S. Si

/ e M{K), le groupe de galois Hk agit sur les coefficients du g-developpement de

/ ; ceci nous fournit une section de -> notee par ig.
Le groupe des automorphismes de eMcong(Qcycl) sur M(SL2(Z), Qcycl) est le

groupe SL2(Z), le complete profini de SL2(Z) par rapport aux sous-groupes de

congruence. D'autre part, soit / e Mcong(Qcycl), le groupe ^q agit sur les
coefficients du g-developpement de / ä travers son quotient Gal(Qcycl/Q) qui est

isomorphe ä Z* par le caractere cyclotomique. On note H le groupe des automorphismes
de <Mcong(Qcycl) sur M(SL2(Z), Q). La sous-algebre <Mcong(Qcycl) est stablepar nQ
qui agit ä travers H. Le groupe H est isomorphe ä GL2(Z) et on a le diagramme
commutatif de groupes suivant (cf. par exemple [14], theoreme 2.2) :

1

1

LU

SL2(Z)-

el

GL2(Z)
det

Xcycl

Z*

— 1

1,

oü la section to de §q dans ü© decrite plus haut envoie Z* sur la matrice

(10)gGL2(Z).

1.2. Le Systeme d'Euler de Kato. En bref, un Systeme d'Euler est une collection
de classes de cohomologie verifiant une relation de distribution. La construction du

Systeme d'Euler de Kato dans [10], [4] ou [14] est comme suit:
Ä partir des unites de Siegel, on construit une distribution algebrique zsiegei sur

(Q (8) Z)2 — (0,0) ä valeurs dans Q (8) (^(Q)[^])*, oü A q n«>i(l ~~ qn)24 est

la forme modulaire de poids 12. La distribution zsiegei est invariante sous l'action du

groupe IIq. La theorie de Kummer p-adique nous fournit un element

zSiegel e H^nQ, Salg((Q 0 Z)2 - (0,0), «2,(1))).

Parcup-produitetrestriction ä c IIq etM2(Q®Z)^ C ((Q0Z)2 — (0,0))2,
on obtient une distribution algebrique :

ZKato e H2(n{f\ Salg(M2(Q 0

En modifiant ZKato par un Operateur (c2 — (c, l))(ä2 — (l,d)) (cf. §2.3.2 dans [14])
qui fait disparaitre les denominateurs, on obtient une distribution algebrique ä valeurs
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dans Zp(2) (que l'on peut donc voir comme une mesure, notee par zKato,c,d)> et une
torsion ä la Soule nous fournit enfin un element

zKato,c,d (k,j)GH2(r+\ S)alg(M2 (Q ® Z)<*>, VkJ)),

oü Vkj Sym^-2 Vp (g) Q^(2 — 7), oü Vp est la representation Standard de dimen-
sion 2 de GL2(ZP).

1.3. Une famille de systemes d'Euler de Kato sur l'espace des poids. Dans la

suite, on designe par Io(/0 le sous-groupe d'Iwahori de GL^Z^)

{y e GL2(Zp) | y *) mod p).

On note M{2p) M2(Q ® Z)M x I0(p).
On note W l'espace rigide analytique associe ä l'algebre d'Iwasawa Z^[[Z*]] :

c'est Yespace des poids et on dispose d'une inclusion de Z C # en envoyant k
sur le caractere algebrique (z i-> zk~2) sur Z*. Dans §2.2, on introduit la notion
de caractere universel (cf. defmition 2.1) pour l'espace des poids. On construit une
famille de representations de Banach D0 univ de Io(p) sur l'espace W, oü l'indice

pwm designe ia torsion par un 1-cocycle pJniY associe au caractere universel /cumv de

l'espace des poids et au caractere det-7 avec j > 1, qui admet une section globale

Vj interpolant les vecteurs de plus haut poids dans Vkj+2 via une application de

specialisation I0(jp)-equivariante Spkj.
On note T0(p) l'image inverse de GL2(Z)^ x Io(/0 dans IIq via l'application

IIq -> GL2(Z). Si V est un Z-module, on note ©oCM^, V) le Z-module des

mesures sur ä valeurs dans V. En appliquant la technique de "torsion ä la
Soule" ä 1'element zKato,c,d et ä la famille de representations (D0puniv, vj) munie

d'un vecteur universel de plus haut poids yy, on construit une famille d'elements de

Kato sur l'espace des poids

zKato,c,d(vj) £ H2 (r0 (p), So D0puniv (2))).

Comme Sp^j : D0 puniv -> b+7+2 est I0(/?)-equivariante, on en deduit un mor-

phisme de H2(f0(/>), S0(M+D0p»„iv(2))) dans H2(f()(p), VkJ)), qui

sera encore note par Spkj- Notre premier resultat est que zKsit0^,d(vj) interpole les

zKato,c,d (^> 7)•

Theoreme 1.1 (theoreme 2.19). Si 1 < j e N, alors pour tout entier k >1+7, on
a

Spk,j (zKato,c,d (+')) zKato,c,d (^> 7)•
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Remarque 1.2. D'autres elements de Kato en famille ont ete construits par Fukaya
[9] (via la K-theorie) et par Delbourgo [7] (via les symboles modulaires). Par contre,
notre construction consiste ä reprendre la construction de Kato [10] et de Colmez [4]

pour realiser la deformation.

1.4. La distribution d'Eisenstein. Les series d'Eisenstein-Kronecker satisfont des

relations de distribution (cf. lemme 3.2). Cela permet, si c,d e Z*, de construire

deux distributions algebriques zE\s,d{k) et z^[sc(k) sur (Q (g) Z)2 ä valeurs dans

^°n§(Q^ycl) (cf. proposition 3.9), invariantes sous l'action de GL2(Q <g) Z) ä mul-
tiplication pres par une puissance de determinant.

Soient £>2etl<y<Ä; — 1 deux entiers. On definit

^Eis,c,d(k,j) ^ 4is,C (k-j)®zEis(j) e S)aig(M2 (Qcyc1)),

en utilisant le fait que le produit de deux formes modulaires de poids i et j est une
forme modulaire de poids i + j et en identifiant (Q x Z)2 x (Q (g) Z)2 avec M2 (Q <g) Z).

On peut, si j est fixe, interpoler ces distributions par une distribution analytique
sur l'espace des poids. On dira qu'une serie formelle F(q) Anqn e

OmgzÖ(>^)[[^m]] est une famille p-adique de formes modulaires sur l'espace des

poids W, si pour presque tout k e N c W, l'evaluation Evfc(F(#)) de F{q) en

point k soit le g-developpement d'une forme modulaire classique de poids k. Dans
§ 3.2, si c e Z* et si j > 1, pour chaque (a, ß) e (Q/Z)2, on construit une famille

p-adique de series d'Eisenstein Fc^aß (/cumv, j) sur l'espace des poids, qui interpole
les series d'Eisenstein-Kronecker F^k~p en k (cf. lemme 3.13).

On note (W)) le Q (g) 0 (v^)-module des familles de formes modulaires

p-adiques sur W. De la construction de ces familles Fc a ß(KuniY, j) et de la rela-

tion de distribution entre les F^k~Jß\ on deduit une relation de distribution pour ces

familles FCj0[jß (/cumv, j), qui se traduit en une distribution algebrique z^[s c(/cumv, j)
(cf. theoreme 3.15). Ceci nous permet de construire une distribution (cf. § 3.2.3)

ZEis ,c,d(Kunh,j)GSalg(M^,^(Q ® 0{W))),

pour 1 < j e Z, qui interpole les distributions d'Eisenstein z^c^{k, j) en k.

1.5. La loi de reciprocite explicite de Kato en famille. Soit£+ Q^{f}l'al-
gebre des fonctions analytiques sur la boule vp(q) > 1 ä coefficients dans Qp ; c'est
un anneau principal complet pour la valuation vp& definie par la formule :

VpMf) vp(an), si / L a"(f)" e
H

neN
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On note £ le complete du corps des fractions de l'anneau £+ pour la valuation vPig,
£ une clöture algebrique de £, ainsi que £oo C £ la sous-extension algebrique de

£ en rajoutant les et les racines M-iemes q*r de q, pour tout M > 1. On note
£+ (resp. £+) la clöture integrale de £+ dans £ (resp. £oo)-

On note *§& le groupe de Galois de £ sur £, Pqp le groupe de Galois de Q^£oo sur

£, et PqJ1 le groupe de Galois de £oo sur £. L' application qui ä une forme modulaire

associe son g-developpement, nous fournit une inclusion de M(Q) dans Q^£^
equivariante sous l'action de Pqp On en deduit ainsi un morphisme Pqp -> IIq, qui
induit un morphisme ^ -> IIq et un morphisme "de localisation" IT (IIq, W) ->
IT W) pour tout ÜQ-module W et tout i e N.

La loi de reciprocite explicite de Kato consiste ä relier l'element zKsit0^^(k, 7),

qui vit dans la cohomologie du groupe ä une distribution construite ä partir
du produit de deux series d'Eisenstein (le produit scalaire de Petersson d'une forme

primitive avec un tel produit fait apparaitre les valeurs speciales de la fonction L de

/, et c'est cela qui permettrait de construire la fonction L p-adique). Ceci se fait en

plusieurs etapes :

• On commence par "localiser" notre classe de cohomologie ä ^ et par etendre
les coefficients de V^j ä B^ (g) Vkj, oü B^, Bjp,(£+) est un anneau de Fontaine.

• On constate que l'image de j) sous 1'application "de localisation"

H2(n{£\ £>alg(M2(Q®Z)^, VkJ)) -> H2(%, Sa]«(M2(Q®Z)^,IB+®

est l'inflation d'un 2-cocycle sur ä valeurs dans Z)a]g(M2(Q ® Z)^,®^ ®

Vkj). Les methodes de descente presque etale de Täte [12] et Sen [11], revisitees

par Faltings [8] (cf. aussi Andreatta-Iovita [1]) permettraient de montrer que c'est
toujours le cas, mais une preuve directe pour l'element de Kato est donnee dans [14],
5.2.

• On construit une application exponentielle duale (cf. [14], §5.1) :

expLt«: U2(P®P,®alg(M2(Q® Z)^,B+ ® VkJ))

-> H°(Pqp S)alg(M2(Q ® JC+)),

oü est la reunion des X^ pour tout M > 1 avec X^ le complete g-adique de

la clöture integrale £^ de £+ dans £m £[£m,#m] ; et on calcule l'image de

^Kato,c,d (^> j)•
La defmition de l'application exp£at0 et le calcul de l'image de zKat0iC^(k, 7)

reposent sur la methode de Tate-Sen-Colmez et sur une description explicite (cf.
[14], proposition 4.10) de la cohomologie de P&M Gal(£M^°°/£M) avec M > 1

tel que vp(M) m > vp(2p) et £m/?°° Un>i&Mpn-
Le groupe P^M est un groupe analytique p-adique de rang 2, isomorphe ä

p« {(c rf) 6 GL2(zp):a 1, c 0, b eZp, 1 + pmZp}.
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On note (u, v) e (pmZp)2 1'element (J de Pm. Soit V une representation analy-
tique (cf. defmition 4.4) de Pm, on dispose des derivations 3: V -> V, i 1, 2,
definis par

pn _
dm>ilim ^—-—, oü

w-*+oo pn

La proposition suivante est une version entiere de proposition 4.10 dans [14].

Proposition 1.3 (proposition 4.5). Soit V une representation analytique de Pm munie
d'un Zp-reseau T stable sous l'action de Pm. Alors

(1) tout element de H2(Pm, T) est representable par un 2-cocycle analytique ä

p2m-torsion pres;
(2) onaH2(Pm, T)(̂T/(dm,1,dm,2-pm et l'image d'un 2-cocycle analytique

((u, v), (x, y)) ^ £(w,v),(jc,y) ^ ] cij\kju v-tx y
i + j 2

avec p{l+j+k+l)mCij^j G T, par cet isomorphisme, est celle de

^ \c(u,V),(x,y)) P (pl,0,0,1 — ^0,1,1,o)

ä p2m-torsion pres.

En utilisant la proposition ci-dessus, on construit une application exponentielle
duale en famille (cf. § 4.2) exp£at0 v

de

H2(P®P,SaigCM^,Bd+R^oo) 0 D0ip,,^(#-)))

dans SaigOM^, ®zr, On calcule l'image de sous l'appli-
cation exponentielle duale exp£at0 v et obtient finalement notre resultat principal, qui
montre que 1'application exp£at0 v

est une application exponentielle duale en famille:

Theoreme 1.4. Si j > 1 et si c,d G Z*, alors pour tout entier k > j + 1, on a :

(1) exPKato,i> C^Kato,c,ü! (P/)) =\-is,c.d (<<"""]
(2) EVA. oexp*atol)(ZKato,c.rf(l'/)) CXPKato J^Pk,j '-Katox.rf (vj )•

Remarque 1.5. Dans [9], Fukaya a construit une fonction L p-adique en deux
variables sur une famille de formes modulaires ordinaires en appliquant sa K2-serie de

Coleman ä son element universel de Kato. Par ailleurs, Panchishkin [13] a donne une
construction de la fonction L p-adique en deux variables sur une famille de formes
modulaires non-ordinaires sans utiliser le Systeme d'Euler de Kato. Recemment, Bel-
lai'che [2] a construit une fonction L p-adique en deux variables sur la courbe de Hecke

("eigencurve") en utilisant la theorie de symboles surconvergents. Les resultats de

cet article peuvent aider ä construire une fonction L p-adique en deux variables sur
la courbe de Hecke en utilisant le Systeme d'Euler de Kato, ceci est le sujet de [15].
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2. Famille de systemes d'Euler de Kato sur l'espace W

2.1. Groupe rigide analytique p-adique et caractere universel. Soit G un groupe
abelien discret ou un pro-p groupe abelien, topologiquement de type fini. La Zp-
algebre de groupe ZP[G] (resp. la -algebre de groupe complete Zp [[<?]] si G est

un pro-/?-groupe), est naturellement une algebre de Hopf (resp. une algebre de Hopf
complete), dont la structure de Hopf est induite par la structure de groupe de G. Alors
on peut lui associer un groupe rigide analytique SC sur Qp. Les Cp-points de SC

sont l'ensemble Homcont(G, C*), des caracteres Continus sur G ä valeurs dans Cp.

Definition 2.1. Soit G un groupe ci-dessus et soit SC le groupe rigide analytique
associe. L'inclusion canonique G -> ZP[G\ -> 0(SC) induit un caractere /cumv de

G dans 0(SC)*. On l'appelle le caractere universel du groupe rigide analytique S£.

Soit U un ouvert affino'ide de SC. Si k e U(CP) est un caractere continu sur G ä

valeurs dans C*, on definit une application d'evaluation en point k

Ev^ : 0(U) Cp.

Par definition, on a le lemme suivant:

Lemme 2.2. 5/ k G S£ (Cp) est un caractere continu sur G ä valeurs dans C *, ona
alors

K =E\ko KUn[\

Exemple 2.3. On definit l'espace rigide analytique associe ä 1'algebre Zp [[71 en
utilisant le Schema formel affine (cf. [6], §7).

On note Spf Zp [[T]] le Schema formel. On note An Zp [[T]] [^-] le sous-anneau
de Zp [[L]] (g) et Bn le complete de An pour la topologie (p, L)-adique. On constate

que Bn est aussi le complete p-adique de An :

Bn {Em=oam(y-)m : am e ZP[[T]] tel que \\rnm vp{am) +00}.

Enfin, on note Cn Bn (g) Qp. Ceci nous donne un Systeme projectif {Cn} muni de

morphismes de transition Cn+\ Cn induits par les inclusions An+\ C An. Les Cn
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sont des Q^-algebres affinoi'des et le morphisme de transition identifie Spm(C„+i)
comme un sous-domain affinoi'de de Spm(C„). En fait, Cn est l'anneau des fonctions
analytiques sur le disque vp(T) >

On definit 1' espace rigide analytique (#o»0) associe au Schema formel Spf 7LP [[r]]
comme la reunion croissante admissible des affinoi'des Spm(C„); l'algebre des sec-
tions globales 0(#o) s'identifie ä la limite projective lim Cn, qui est 3l+ l'anneau

des fonctions analytiques sur le disque ouvert vp{T) > 0.

On note A Zp[[Z*]] l'algebre d'Iwasawa, qui est un anneau semi-local
regulier, noetherien, de dimension de Krull 2. L' espace rigide analytique W sur Qp,
qui lui est associe est appele Vespace des poids. Les £p>-points de W est l'ensemble
Homcont(A, Cp), des caracteres Continus sur Z* ä valeurs dans C*.

On note co le caractere de Teichmüller. On a une decomposition Z* ^ pip-\ x
(1 + pZp) donnee par la formule z i-> (co(z), (z)), qui induit la decomposition
W Hom(/x^_i, C*) x Homcont(r, C*), oü T (1 + pZp). L'espace W admet
d'un recouvrement admissible {Wn}n>i, oü Wn Hom^-i, C*) x Homcont(l +
pnZp,*). En fixant un generateur y e T, on a un isomorphisme

Homcont(r, Cp {t £ Cp, vp(t - 1) > 0},

en envoyant un caractere continu k sur /c(y). En fixant un generateur (£, y) de

ßp-i x (1 + pZp), le caractere universel /cumv de W est donne par la formule

z i->
z

^
oü on remplace les variables £ et y par X\ et T\ respective-

ment. Comme logy (z) l-^-eZp, TXo^ ZP[[T - 1]].

Definition 2.4. Soit un -espace rigide.

(1) Un sous-ensemble Z C SC est dit Zariski-dense si pour tout sous-ensemble

analytique U C SC tel que Z c U, alors U SC.

(2) Soit Z c un sous-ensemble Zariski-dense, tel que pour tout z e Z et tout
voisinage ouvert affinoi'de V de z dans 5T, k n Z est Zariski-dense dans chaque

composante irreductible de V contenant z, on dira alors que Z est tres Zariski-dense
dans SC.

Un exemple important est que l'ensemble N (resp. Z) est tres Zariski-dense dans

l'espace des poids W.

2.2. Famille de representations de Banach sur W et ses tordues. Soit K un

sous-corps complet de £p et soit (A, | • |^) une ^-algebre de Banach.

Definition 2.5. Soit M un A-module; une norme sur M est une application | • |: M ->
M+ teile que

(1) \m\ 0 si et seulement si m 0;
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(2) \m + n| < max{|m|, \n|}, si m, n e M ;

(3) |am| < |ßU|m| si a e A et m e M.

On dit qu'un ^4-module M muni d'une norme est de Banach si M est complet pour
cette norme.

Exemple 2.6. (1) Soit I un ensemble. On note Uj (/) l'ensemble des familles bornees

x (xi)iei d'elements de A. On munit t^(/) de lanorme \x\ sup?e/ |xj,cequi
en fait un ^4-module de Banach. On note X® (/) le sous ^4-module de Uj (/) des suites

* (Xi)iel d' elements de ^4 tendant vers 0 suivant le filtre des complementaires des

parties finies (ce que nous ecrivons xx —> 0 pour i —> oo). C'est un ^4-module de

Banach comme sous-^4-module ferme d'un ^4-module de Banach. Si A K est de

valuation discrete et si \M\ \K\, tout ^-espace de Banach est de la forme
(2)Soient (M, \-\m)- (N, • | /v) deux /1-modules de Banach. On note Horn,4 (M, N)

le ,4-modulc des morphismes Continus de d-modules. On le munit de la norme sui-

vante

|/|= sup si / e Horrig (M, N),
O^mEM \m\M

ce qui en fait un ^4-module de Banach. En particulier, si N A, M Hom^ (Af, A)
est le ^4-module de Banach dual de M.

(3) Soit X un espace topologique et soit M un ^4-module de Banach. On note
U°(X, M) le ^4-module des fonctions continues sur X ä valeurs dans M muni de

la topologie compact-ouvert (i.e. convergent uniformement sur tout sous-ensemble

compact de X). Soit Tclun sous-ensemble compact et soit V un sous ^4-module

ouvert de M ; on note Ur,v le sous-ensemble de U°(X, M) des fonctions continues
ä support dans T et ä valeurs dans V. Ceci fournit une base d'ouverts si T decrit les

sous-ensembles compact de X et V decrit les sous-ensembles ouverts de M. Si X
est compact, le ^4-module topologique U°(X, M) est un ^4-module de Banach, qui
est isomorphe au ^4-module de Banach U°(X, K) M.

Definition 2.7. Soit M un ^4-module de Banach.

(1) Une base de Banach de M est une famille bornee (et)iej de M teile que tout
element x de M peut s'ecrire de maniere unique sous la forme d'une serie

convergente x oü at sont des elements de A tendant vers 0

suivant le filtre des complementaires des parties finies.

(2) Une base orthonormale de M est une base de Banach (et)iej de M teile que
l'application (at)iej i-> aien de t^(7) dans Af, est une isometrie.

On dit que M est orthonormalisable si M admet une base orthonormale.
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Exemple 2.8. (1) Si i e N, on note l(i) le plus petit entier n verifiant pn > i. On a

donc
log/

£(0) 0 et £(/) + 1, si i > 1.
Llog p.

Si r e N, on note Gr{Zp,Ä) le A-module des fonctions de classe Gr ä valeurs
dans A (c.f.[5] 1.5). Comme Zp est compact, on a un isomorphisme de A-modules

Gr(Zp, A) ^ Gr(Zp, K) <g>K A. Par ailleurs, le /Gespace vectoriel Gr(Zp, K) est

un /Gespace de Banach muni d'une base orthonormale {prl^> 0}. Ceci

implique que Gr(Zp, A) est orthonormalisable. En particulier, si r 0, G°(Zp, A)
est le A-module des fonctions continues sur Zp ä valeurs dans A.

(2) Si h e N, on note LAh(Zp, A) l'espace des fonctions cp: Zp -> A dont la
restriction decpäa + phZp est la restriction d'une fonction A-analytique sur le disque
ferme {x e Cp; vp(x — a) > h}, quel que soit a £ Zp ; c'est aussi un A-module
de Banach orthonormalisable et on a LA/^(ZP,A) LAh(Zp, K) A. On a une
inclusion de A-modules LA/l(Zp, Ä) C Gr(ZP,A) pour tout r > 0 et h e N.

(3) Soit M un A-module de Banach orthonormalisable et soit une base

orthonormale de M. On a un isomorphisme de A-modules :

M ^ Horn aK{I),ä)^Hom*0e£(/M).

On note MVY image inverse de Horn^ (6^(1), K) ®kA dans M sous 1'isomorphisme
ci-dessus, qui en fait un sous-A-module de Banach. De plus, Mv est orthonormalisable.

Definition 2.9. Soit G un groupe topologique. Une A-representation de Banach de G

est un A-module de Banach orthonormalisable muni d'une action A-lineaire continue
de G.

Exemple 2.10. (1) Soit V0 une ^-representation de Banach de G (i.e. un ^-espace
de Banach muni d'une action ^-lineaire continue de G). On etend l'action de G sur
Vo par A-linearite en une action sur le A-module de Banach V Vo §>k A, ce qui
est une A-representation de Banach de G.

(2) Soit V une A-representation de Banach de G ä droite. On suppose que V
est munie d'une structure d'anneau. On note U* le groupe des unites de V. Soit

Tj: G —> V * un 1-cocycle (i.e. une fonction continue sur G ä valeurs dans V teile

que rj(hih2) rf{h\) * h2rj(h2)). On note V(rj) la A-representation de Banach V
tordue par le 1-cocycle 77.

(3) Soit V une A-representation de Banach de G ä gauche. Sa A-duale V
Hom^(U, A) est munie de l'action de G ä droite donnee par la formule

/ * y(v) f(yv), si y e G, / e V, v e V.

Le sous-A-module Vv (cf. exemple 2.8 (3)) de V est stable sous cette action, et donc

une A-representation de Banach de G ä droite.
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Definition 2.11. Soit G un groupe topologique et soit un espace rigide. Une
famille 3? de representations de Banach de G sur est la donnee d'un faisceau sur

tel que

(1) pour tout ouvert affino'ide V C 3£, 3r (V) soit une 0(L)-representation de

Banach de G ;

(2) si V' C V sont des ouverts affinoides de 3£, l'application canonique

F(V) ®o(y)0(y')^3r(V')

soit un isomorphisme de 0(1^)-representations de Banach de G.

Soit Io(/0 {y £ GL2(Zp)\y (o *) mod p} le sous-groupe d'Iwahori
de GL2(Zp) ; c'est un groupe p-adique. Rappeions que Vkj+2 Sym^-2 Vp ®
Qp(—j), °ü Vp Qpe\ 0 Qpe2 est la representation Standard ä droite de GL^Z^)
donnee par la formule : e\ ae\ + he2, e2 * y ce\ + de2, si y {acbd) e

GL2 (Zp), est une representation algebrique de lo (p) muni du vecteur e^~2t~J de plus
haut poids k pour le sous-groupe de Borel inferieur. Dans le reste de ce paragraphe,
si 1 < j e N, on construira une famille D0 pumv

de representations de Banach

de Io(p) sur l'espace des poids W, qui est une interpolation p-adique en poids des

representations algebriques Vkj+2 de IoCp) (H y a une autre interpolation en utilisant
l'espace des fonctions analytiques par Chenevier [3]). La construction se decoupe en
trois etapes :

• On definit une action modulaire de Io(p) sur Zp par la formule z * y — hc^fczz

si y (^)G Io(/0> et une action continue de Io(p) sur ^°(ZjP, Zp) ä gauche par
la formule : yf(z) /(z * y), si y e Io(p) et f e G°(ZP,ZP). Ceci permet de lui
associer un faisceau constant de representations de Banach G!^ de Io(p) sur W defini

par : si U un ouvert affino'ide de W, on pose G^{U) G°(ZP, 0(1/)). Son anneau
des sections globales est la limite projective lim G°(Wn) lim G°(ZP,QP) 0
0(Wn).

n n

• On note le groupe des unites de 1'anneau G^{W) des sections
globales de G^. Soit p: Io(p) -> un 1-cocycle de Io(p) (i.e. p(yiy2)
(yip(72))p(yi)). On note G^p la famille de representations de Banach G^ tordue

par le 1-cocycle p, c'est-ä-dire, si U C W est un ouvert affino'ide, y e Io(/?),

/ e G^{U) et fp e G^P(G) correspondant ä /, on a yfp p(y)(y/)p. Alors

G^p est encore une famille de representations de Banach de Io(p) sur l'espace des

poids. En particulier, on peut tordre G^ par un caractere de Io(p) vu comme un
1-cocycle.

Si a e Z* et si c e pZp, on definit une fonction sur Zp ä valeurs dans 0{W)

fa,c(z) Kumy(a + cz).
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Lemme 2.12. Lafonction fa,c(z) appartient a De plus, eile est une unite
de Vanneau *!^(W).

Demonstration. On aun isomorphisme 0(4EW) Z^[/Xp_i] (g)Cw, oü Cw estle sous-

anneau de Qp [[T\ — 1]] consistant des fonctions analytiques sur le disque vp (T\ — 1) >
^ et pip-1 est un groupe cyclique d'ordre p — 1 engendre par £ t,p~\. On remplace
la variable £ par X\. Dans la suite, on identifie 0{Wn) avec Zp[pLp-i\ <g> Cn. La
f. r „ 1 £ vOV<\£ (L>(a+cz) rj^logy ((<a+cz))
lonction ja^c s ecnt sous la lorme X ^ Tx

Comme vp(T\ — 1) > la fonction (jp(Ti 1)^ est dans C°(Z/7, 0(4EW)).
On en deduit que la serie

r^\ogy({a+cz)) _ p°Sy((ö +
— 1)*

km
^ k '

est dans U°(Zp, 0{Wn)) pour tout n et donc appartient ä

Comme /cumv est un caractere sur Z*, la fonction Kumy((a + cz)~x) G

est l'inverse de fa,c(z).

Si 1 < j G N, on definit une fonction p"mv sur Io(p) ä valeurs dans

par la formule :

s (c d) ^ p"mv^ /«.c(z)(det g)~y, si g (acbd) e I0(/>).

SiSi (;:5;)et?2 (2g).ona

PjmV(glg2) fala2+b1C2,c1a2+d1c2(z)(i&t(glgl)~J (glPj"" (S2))p"my (g&,

ceci implique que p^mv est un 1-cocycle.
Si k G N, l'application d'Evaluation Ev^ induit un 1-cocycle algebrique p^j sur

Io(p) ä valeurs dans U°(ZP,QP) donne par la formule :

Pk,j{g) EVk(Pjmy(g)) (a+ cz)k~2 (detg)-7.

On note
^

la Qp-representation de Banach U° (Zp, Qp) tordue par le 1 -cocycle p^j
0,pUIUV

et 7 la famille de representations de Banach tordue par le 1-cocycle p^mv
de loAlors, l'application d'Evaluation Ev^ induit une application d'Evaluation

0,pumv
de 7 dans notEe par Ev^?7. Un calcul direct montre le lemme suivant:

0,pumv
Lemme 2.13. Uapplication Ev^?7 :

7 -> estIo(p)-equivariante.
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0,p"niv
• On definit une famille duale D0 pumv

de *w de representations de Banach

sur W : si U c ^ est un ouvert affino'ide, D0pumv(f/) est defini par D0pumv (U)
0 ,pUIUV

On note raccouplement 0(f/)-lineaire Io(/?)-equivariant

0,puniv
('): D0;Puniv (U) x (U)^O(U)

par l'integration fz :

(ß * Y> f) f f(ß *y)= f (yf)ii,
JZn JZ„

,0 ,p'jiiniv
si / e 7 (£/), y e I0(j?) et /r e D0 „mv(£/).

J

On note T>o,kj la representation Q^-duale de loCp) de Remarquons qu'on
a une inclusion de C°(Zp, Qp) dans C°(Zp, 0(U)). Si k e Z appartient ä 0, alors

l'application Einduit une application, notee encore par Ev^j7

D0pumv(U) -» D0;fe,7; f fE\kj(ß) Evd f fß)
3 Jzp V Jzp /

pour f e^rße D0p,,„,v(t/).

Lemme 2.14. L'application E: D0 pumv (£/) -> D0)fc,y est lo (p)-equivariante.

Demonstration. Si / D0pumv(6r) et g G lo on a

f fEvkj (ß*g) Eyk f f(ß* g)1 E\J f (gf)ß)
JZp ^ JZp ' ^ JZp '

f (gf)Evk,j(ß) f f\Evkj(ß) *g].
JZp JZp

Le faisceau D0,pumv nous donne une interpolation des representations algebriques

Vk,j+2 de lo(/^) pour k e N au sens suivant: la fonction /: 7LP —> Vkj+2, donnee

par
z h> /(z) (ei + ze2)k~2t~J,

est une fonction continue sur Zp ä valeurs dans Vkj + 2- On definit une application
lineaire continue 7tk,j : Do,k,j Vk,j+2 Par l'integration : /x i-> f(z)pi.

Lemme 2.15. L'application nkj estIo(p)-equivariante.
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Demonstration. Ce lemme se demontre par le calcul suivant :siy (^)e Io(/0>
alors Pk,j(y) (a + cz)k~2(deiy)~J et

k—2

£ (ei + ze2)k~2rj(fi *r) J2(fz(k i *

k—2

Jl{fz 12)(z*

/ (ae\ + be2 + +
Jzp

(y (ei + ze2)k~2t~j* y.

Si [/ est un ouvert affino'ide de et si k e Z appartient ä [/, on definit une
application de specialisation Spk j-: D0 puniv (U) -* D0,ifcJ -> vk.j+2 en composant

l'application d'evaluation E\kj 1'application itkj, qui est Io(/?)-equivariante par
les lemmes 2.14 et 2.15.

Remarque 2.16. La masse de Dirac So en 0 fournit une section globale vj de

D0 puniv (W) qui interpole le veeteur de plus haut poids ek~2t~J dans Vkj+2 \en effet,

fz (ei + ze2)k~2t~iSo e\~2t~f ce qui se traduit par la formule Sp^ y (v7)

e\~2t~i.

2.3. Famille de systemes d'Euler de Kato sur l'espace des poids

2.3.1. Torsion ä la Soule. Soit G un groupe localement profini, agissant continü-
ment ä droite sur un espace topologique localement profini X. Soit V une ^4-represen-
tation de Banach de G ä droite, oü A est une Q^-algebre de Banach. On note G° (X, V)
le ^4-module des fonctions continues sur X ä valeurs dans V et So (X, V) le ^4-module
des mesures sur X ä valeurs dans V. On munit G°(X, V) et S0(X, V) d'actions de

G ä droite comme suit: si g e G, x e X, <f>(x) e G0(X, V), et \i e &o(X, V), alors

(p * g(x) <p(x * g'1) * g et J * g) (jf (0 * g_1)/xj *

Soit/x G S0(X, Z^) et soit MunQ^-espace de Banach munid'unbase de Banach
E Onauneinchxsion de S0(X, Zp) C S0(X, M).Soit / g G°(X,M);
l'integration fx /(x)/x est definie comme suit: on decompose / ^2ieI fei sous
la base de Banach E de M avec f e G°(X, Qp) et l'integration fx f(x)ß est donne

par la formule jx f(x)fi Y.ieiet jx f, (x)/!.
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Proposition 2.17. Soit f G G°(X, V)G. La multiplication d'une mesure /x G

So (X,Zp) par la fonction f induit un morphisme G-equivariant ä droite de

S0(X, Zp)dans S0(X, V).

Demonstration. II suffit de verifier que c'est G-equivariant. Soit une Qp-
base de Banach de V. On decompose /(x) sous la forme J2ieI fi (.x)ei avec f (x) e
G°(X, Qp). Soit (j) une fonction continue sur X ä valeurs dans Qp. Si on considere

/x * g G S0(2f, Zp), alors l'integration fx f(x)(f (x) (8) /x * g) s'ecrit sous la forme :

/ 0OO(/ ® O * g))Y\ei/<t>(x* g)
fite ieI Jx

<P(x * g)f(x * g)/i.

Par ailleurs, l'integration fx <p(x)(f ® /i) * s'ecrit sous la forme

j ®p) *g0/r)j *g

/ <P(.x * * g) ® Ii).
Jx

Comme / G G°(X, V)G, on a f(x * g) /(x) * g. Ceci permet de conclure.

2.3.2. Application au Systeme d'Euler de Kato. On note f0(p) GL2(Z)]^[ x
Io(/?) et r0(/7)rimageinverse de T0(p) dans IIq. OnnoteM^ M2(Q(g)Z)^x

Si x G on note xp sa composante ä la place p.
Rappeions que l'on a construit une section globale vy G D0 puniv (W) qui interpole

les vecteurs de plus haut poids e^~2t~J de representations algebriques Vkj+2 de

Pour tout ouvert affmoide U de W, la fonction x \-^ Vj * xp est une fonction

continue sur ä valeurs dans D0 puniv(G) invariante sous l'action de r0(/?). De

maniere explicite, si xp g loon a vy * xp plfmY(xp)8b, oü 8b est
c a J a a

la masse de Dirac en Elle interpole la fonction continue x i-> (e\~2t~i) * xp sur

ä valeurs dans Vkj+2 via l'application de specialisation.

Considerons la multiplication d'une mesure /x G So (M^, Zp (2)) par la fonction
x h- vy * xp (resp. x i-> (e^~2t~J) * xp). Ceci nous donne une mesure (vy * xp) (8) /x

(resp. (e^~2t~J) * xp (8) /x) sur ä valeurs dans D0 puniv(G)(2) (resp. Vkj+i)-
Lesfonctionsx i-> Vj*xpztx i-> (e\~2t~i)*xp satisfontlacondition"invariante

sous l'action de r0(/?)" par construction; on deduit le corollaire ci-dessous de la

proposition 2.17.
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Corollaire 2.18. La multiplication d'une mesure /jl £ SoCM^,Zp(2)) par la

fonction x i-> (e^~2t~J) * xp (resp. x i-> Vj * xp) induit un morphisme To{p)~

equivariant ä droite de Zp-modules de So (M^, Zp{2)) dans SoCM^, V^j) {resp.

3o(M^,D0)pf(#)(2))).

D'apres Kato [10] et Colmez [4] (voir aussi [14]), on dispose d'une mesure

zKato,c,d construite ä partir des unites de Siegel et appartenant ä H2 (IIq So (M2 (Q ®

Z)^p\Zp{2))). L'application de restriction de IIq ä T0{p) et l'application de res-

triction de So(M2(Q (8) Z)^p\Zp{2)) dans So (M^, 2^(2)) nous fournissent une
application

H2(nQ, So(M2(Q 0 Z)("\ Zp(2)))-» H2(f0 ®o(M.(2p\zp(2))).

On note l'image de zKRt0 C d sous cette application de la meme maniere. D'apres
le corollaire 2.18, quel que soit U C W ouvert affinoi'de, la multiplication par la
fonction x \-^ Vj * xp (resp. x i-> (e^~2t~J) * xp) induit un morphisme naturel:

H2(f0(/>), 3)0(M^\ZP(2))) -> H2(f0(/7), D0(M^,D(l/,ril ((/)(2)))

(resp. H2(f0(/7), £>o(My\ Zp{2)))->H2(f0(/?), VkJ))).

On definit,

^Kato,c,d(vj) (vj * %p) ® zKato,c,d ^ H (Fo(/?), SqCM^, Dq puniv(U)(2)))

(resp.zKato,c,J(k, j) {e^ t * xp 0 ^Kato,c,J ^ H (Fo(/?), SoCM^, F/^y))),

oü T0 (p) agit sur Do,^^ (C/)(2) ä travers son quotient lo (p). Comme 1' application de

specialisation Spk j : D0 pumy (U) -* vk> j+2 est r0(/?)-equivariante, pour tout ouvert

U dW, eile induit une application de specialisation

SpfcJ : H2(f0(/7), 2)()(M^\D0pi; (U)(2))) -> H2(f0(p), VkJ)).

On deduit le theoreme suivant de la construction de vj (cf. remarque 2.16) et du

corollaire 2.18 :

Theoreme 2.19. Si 1 < j £ N, alors pour tout entier k > j + 1, on a

Spk,j (^Kato,c,J (Vj)) zKato,c,d (k, j
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3. Une famille de distributions d'Eisenstein

CMH

3.1. Series d'Eisenstein-Kronecker et la distribution ZEiS,c,</ (k, j)
3.1.1. Series d'Eisenstein-Kronecker. Les resultats dans ce paragraphe peuvent
se trouver dans le livre de Weil [16], voir aussi [4], [14].

Definition 3.1. Si (r, z) G M x C, on pose q e2l7ZX et qz e2l7ZZ. On introduit
l'operateur dz := jhrJz Pose auss^ e(a) e2l7Za. Si k G N, r G M,
et z, w G C, la serie d'Eisenstein-Kronecker est

1» /T — T\s~k 0) -\-zk fa)ü — uä)\

COi£j-\- £J T

qui converge pour Re(s) > 1 + et possede un prolongement meromorphe ä tout
le plan complexe avec des pöles simples en s 1 (si k 0 et u e Z + Zr) et s 0

(si k 0 et z G Z + Zr). Dans la formule ci-dessus ^ signifie (si z G Z + Zr)
que l'on supprime le terme correspondant äco —z. De plus, eile verifie l'equation
fonctionnelle :

/ zü —uz\
Hk(s,T,z,u) el —\Yik(k + 1 — s,r,u,z).

Si k > 1, on definit les fonctions suivantes :

Ek(r,z) Uk(k,r,z,0),Fk(r,z) Hfc(fc, r, 0,z).

Les fonctions E£ (r, z) et F\ (t, z) sont periodiques en z de periode Zr + Z. De plus,
on a :

Ejc+i(r,z) dzEk(x,z) si k G N et E0(t,z) log |0(r,z)| si z ^ Z + Zr,

oü 0(r, z) est donnee par le produit infini:

0(r,z) qlll2(qll2-q-112)
n> 1

On note A (dz9(r, z)L=0)12 g ]| (1 — gw)24 la forme modulaire de poids
A ln> 1

12.

Soient (a, ß) G (Q/Z)2 et (a, Z>) G Q2 qui a pour image (a, ß) dans (Q/Z)2. Si

k 2 et (a, ß) 7^ (0,0), ou si k > 1 et k ^ 2, on definit:

Ea,ß Ek(r,ar +b) et Fk(r,ar
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La sene H2{s, r, 0,0) converge pour Re(s) > 2, mais pas pour s 2; si k 2 et

(a, ß) (0,0), on definit

Fft := lim H2(s, r. 0.0).
' ' £—>-2

Lemme 3.2. Lesfonctions ß, satisfont les relations de distribution suivantes,

quel que soit Tentier f > 1 :

E £?,V /'£S <* E F*!e'= f2~k<2>
fa'=ajß'=ß fa'=ajß'=ß

E£S-(t) /t£S « E£S-(7) /£5- C)
fß' ß W fß' ß W

Proposition 3.3. (1) i?® F0® oü

£ +oo

^2 =r + 1 - 24 J2 ai (»)*"
ztt(t — r) z—'

v y /7 1

est la serie d'Eisenstein non holomorphe de poids 2 habituelle.

(2) Si Na Nß 0, alors

(a) - E(H e ^2<Tiv,Q&v)) et £$ G ^*(r",Q(?iO) •« * > 1

etk 7^ 2.

(b) FS e ^(riv. Q(?jO) sik >\,k ^lousik 2, (a, ß) ± (0,0).

Proposition 3.4. Si y (" %) e GL,2(Z), k > \ et (a, ß) e (Q/Z)2, on a :

ß(k) * y — ß^k) t pik) * y — pik^
nct,ß * r ~ ^aa+cßM+dß ei ra,ß * Y ~ raa+cß,ba+dß'

Definition 3.5. Soit A un anneau. Une sene de Dinchlet formelle ä coefficients dans

A est une sene de la forme J2ne j_N ann~s, ou N e N et (an) designe une suite

d'elements dans A. On note Dir(^4) le ^4-module des series de Dinchlet formelles
dont les coefficients sont dans A.

Soit a e Q/Z. On definit les series de Dinchlet formelles £(a,s) et £*(a,s),
appartenant ä Dir(Qcycl), par les formules :

(X)

S(a,s)= J2 n~S et J2e2inann~s-
«eQ^_ n=1

n=a mod Z
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Remarque3.6. Les series deDirichlet £(a, s) et £*(a, s) convergent pour Re(s) > 1

et elles se prolongent analytiquement sur le plan complexe en fonctions meromorphes
avec au plus un pole simple en s 1. Ces prolongements definissent la fonction zeta
de Hurwitz £{a, s) et la fonction L de Dirichlet respectivement.

La proposition suivante decrit le g-developpement d'une serie d'Eisenstein (cf.
[10]).

Proposition 3.7. (i) Si k > 1 ,k 2 et a, ß e Q/Z, alors le q-developpement

J2ne®+ anqn de est donne par

YJ^ S{0L,s)?{ß,s-k + 1) + (-1 )*tt-a,s)S*(-ß,s-k + 1).^ ns
ne®l

De plus, on a :

Soitk 7^ 1. cio 0 (resp. ao £*(jö, 1 — k)) siot ^ 0 (resp. a 0).
Soitk 1. On a ao £(a, 0) {resp. ao |(£*(/3, 0) — £*(—ß, 0))) sia ^ 0 {resp.

a 0).

(ii) Sik > 1 eta, ß e Q/Z {sik 2, {a, ß) ^ (0, 0)), alors le q-developpement

X^e(Q)+ anQn de F^kß est donne par

E ^ ^a-s ~k + wgm + -k +

De plus,

ao £(a, 1 — £), la valeur speciale de la fonction zeta de Hurwitz, sik ^ 1 ;

öo £(a, 0) (res/?. öo |(£*(ß, 0) — £*(—ß, 0))) «a/O (res/?. a 0) et
si k 1.

3.1.2. Les distributionsZK\${k, j) etZEiS,c,</ (£> j)• Dansceparagraphe, onrappel-
le la construction des distributions d'Eisenstein z^\s{k, y) et ZEiS,c,d(^, 7) construites
ä partir d'un produit de deux series d'Eisenstein dans [4] et [14].

Soient X (Q ® Z)2, G GL2(Q <8> Z) et F ^ong(Qcycl). Alors X est un

espace topologique localement profini et G est un groupe localement profini agissant
continüment ä droite sur X par la multiplication de matrices.

L'action ä droite de G sur F, notee par *, provient de l'action de sur F,
et l'action de Hq se factorise ä travers son quotient GL2(Z). Comme tout y e

GL2(Q ® Z) peut s'ecrire sous la forme y gx(rß r0){o e)gz avec Si>g2 £

GL2(Z), r0 G Q + et e un entier > 1, il suffit de donner respectivement les formules

pour yG GL2(Z) ou y ('// r°o) ou y (* °) :
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(1) Comme o* ro) et (o <?) apparaissent dans GL2(Q)+, ses actions sont donnees

par la formule (1) dans §1.1.

(2) Si y G GL2(Z),enutifisantladecompositionGL2(Z) SL2(Z)(^ ^),
on decompose l'action de y en deux parties. Comme on est en poids k, l'action
de SL2(Z) est l'action \k. L'action de (J J) est via un relevement ad dans

agissant sur les coefficients du g-developpement. Dans le cas des series

d'Eisenstein, la proposition 3.4 explicite les formules.

On a le theoreme suivant, qui traduit les relations de distribution pour les series

d'Eisenstein en terme de distributions (cf. [14], theoreme 2.12) :

Theoreme3.8. Sik > \,ilexisteunedistributionalgebriquez^\s{k) (resp. 4iSW) e

®aig((Q ® Z)2, eA^ong(Qcyc1)) verifiant: quels que soient r £ Q* et (a,b) £ Q2, on
a

f Ä
=Eis(k) i-kE(k_\

t

J(a+rZ)x(b+rZ)

(resp. f
^ ^ zEis(k) r~kE2),

J (a+rZ)x(b+rZ) '

fÄ zEis(^) r>C 2^r~1a r~lb'J (a+rZ)x(b+rZ) '

De plus, si y £ GL2(Q (8) Z), alors

ZEis(^) * Y zEis (k)et"irK(k) *Y \ det y

On peut identifier (Q 0 Z)2 x (Q (g) Z)2 avec M2(Q 0 Z) via ((.a,b), (c, d)) i->

(acbd). En utilisant le fait que le produit de deux formes modulaires de poids i et j
est une forme modulaire de poids i + j, on definit pour k > 2 et 1 < j < k — 1,

^Eis(k, j) Eis(^ -j)® zEis(;) e Salg(M2(Q <g> Z), Mk(Q)).

La distribution zE[^c^(k, j) dans [14] est construite ä partir de combinaisons
lineaires de series d'Eisenstein. On rappeile sa construction ci-dessous.

Soit ((•)): Z* -> Z* l'inclusion naturelle en envoyant x sur

{{x)) (l,...,x,l,...),
oü x est ä la place p. Considerons l'inclusion de Z* dans GL2(Z) en envoyant d sur

(o $). D'apres la proposition 3.4, cela definit une action de d £ TL* sur les series

d'Eisenstein par les formules : si k > 1 et (a, ß) £ (Q/Z)2, on a

j zpk _ 17(k) _ p(k) ,d 0\ et j fr(k) _ p(k) _ pik) ^ o\ (a\a *a,ß - da,dß - ^a,ß * v0 d> ei ü Pa,ß ~ rda,dß ~ Pa,ß * U d>> W
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oü l'action de * est celle de GL2(Z) sur les series d'Eisenstein.
Considerons rinjection de 7l^ong(Q) dans ^°ng(Q^). On peut definir une

Variante de series d'Eisenstein ä coefficients dans Qp comme ci-dessous : si c e Z*,
on pose

F(k) _ lc2El,ß ~ ckE((c))a,((c))ß si ^ - 1 et k ¥" 2,
c,a,ß I c2ß(2) —c2E^\ »n si k 2;t a,ß {{c))a,{{c}}ß ' ^F^ — r2 — r2~k F^ si k > 1 et k 2Pc,a,ß ~ C Pa,ß C P((c))a,((c))ß —- / '

ou si (<a, ß) 7^ (0,0) et k 2.

Elles sont des combinaisons lineaires de series d'Eisenstein.

Proposition 3.9 ([14], proposition 2.14). Soit c £ Z*. Si k > 1, il existe une distri-

bution algebrique z^cik) {resp. z^is c) £ 5\ig((Q (8) Z)2, 7l^on8(Q^yc1)) verifiant :

quel que soient r £ Q* et (a, b) £ Q2, on a

f ^ ze\s,c(k) r
J (a+rZ)x(b+rZ) ' '

(resp. [
„ ^J (a+rZ)x(b+rZ) ' '

De plus, si y £ GL2(Q 0 Z), o/ons on o

ZEis,c(^) * Y-Kis,c(/0 e/ zEiS;C * y | det y |1_*zEiS;C(l).

Soient c,d £ Z*. Si k > 2 et 1 < 7 < k — 1, on definit une distribution

zEis,c,</(^> 7 appartient ä Saig(M2(Q 0 Z), 7l^(Q^yc1)) par la formule :

zEAs,c,d(k, 7) — ^yyzEis,c(^ — 7) ® ^Eis,J 0 )•

Siy e GL2(Q (8) Z), on a z^c^{k, j)\ky | det y\J~lz^c4(k, j).

3.2. Familie p-adique de series d'Eisenstein

3.2.1. La fonction zeta p-adique. Soit a £ Q/Z ; on note {a} le plus petit nombre
rationnel positif tel que {a} a mod Z, et on note ord^(a) (resp. ord a) l'ordre de

a dans le groupe Qp/Zp (resp. Q/Z
Dans la suite, on suppose que a £ Q/Z verifie ord^(a) > p. Si x £ Zp, on note

ord(a)({a} + x) par xa, qui appartient ä Z*.
Si c £ Z*, on note ßc la mesure sur Zp dont la transformee d'Amice Aßc

2
est donnee par jr ~ ^+Ty-1

^ar aiUeurs> caractere universel de l'espace des
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poids /cumv: Z* —0(W) est une fonction continue sur Z* ä valeurs dans 0(W).
Si 1 < j e Z, on definit la fonction zeta p-adique de Hurwitz comme la fonction
holomorphe sur W

Lj) -l ica(xa){xa)l-^c.
p

Lemme 3.10. Si j, k sont deux entiers > 1, alors on a

Evfc+7(^c(Kuniv,aJ)) ord(af-1co(Oay-l(c2i;(a, 1 -k)-c2~k {(&))<*, 1 -*))•

Demonstration. De la defmition, on a bien

^k+j^p,c(lCUni\0(J)) -AOaY'1 f Xk-lilc.
J Ijp

Onserameneäverifierquefz x^pc — ovd(a)k(c2^(a, —k)—cl~k^{((c))a, —k)).

On utilise la transformee d'Amice Aßc de pc pour calculer 1'integrale pc.
On suppose que c~x e N. Si on pose T e* — 1, on a alors

xkHc(x) ord(a)*(Z) ^ e(<a}+x)Vc)l?=o

ord(a)*(Z) (fz (T + l)m+x)Hc)\t=o

oxü(a)k(^Dj ((r +

On note fa la fonction t i-> (^rry c-\t t) * qui est C°° sur R+. Comme

pour tout « G N, tn fa(t) tend vers 0 quand £ tend vers +oo, on a

G?) ((r +

oü L(fa(t),s) est definie par la formule p^y /o+°° fa(t)ts~ldt.
D'autre part, on a £({ar},s) p^y /o+°° ts~ldt. Ceci implique que

L(fa(t),s) c2^l-{a},s)-cs+1^l-c{a},s).
On en deduit une egalite algebrique

xk/ic ord(a)fc(—1)V£(l - {<*}, -k) - c1"*?(1 - c{o<}, -k))
'Up

-ord(a)*(c2£({a},-£) -c1"^{«},-£)),
L
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oü la derniere egalite se deduit du fait que £({a}, —k) (—1)^£(1 — {a}, —k). Si

c e Z*, on choisit une suite (cn) d'elements de N qui converge vers c (resp. {{c)))
dans Z* (resp. Z), de teile sorte que la suite {cn{a}) tend vers {((c))a}. Ceci permet
de conclure.

3.2.2. Une famille p-adique de formes modulaires. Si a e Q/Z, on definit la
serie de Dirichlet formelle £ (a, fcumv, j, s) appartenant ä Dir (0 (W)) par la formule :

S(a, Kuni\ j, s) J2 °rd(a))WKuniv(«ord(a)).
neQ^_,n=a[Z]

Par definition, on aEv£+7(£(a,/cumv,y,s)) ord (a)k~x^(a, s — k + 1).

Si 1 < j g N et (a,ß) G (Q/Z)2 avec ovdpa > p, on pose Fa ß(Kumy, j)
amqm dont sa serie de Dirichlet formelle associee est

C(a, Kuniv, j, s)?(ß, s) + Kuniv(_l)(_l)2-^(_a, /cuni\ j, s)?(-ß, s). (6)

Si c G Z*, on definit deux series formelles appartenant ä UmgnÖ(^)[[#m]] •

Fc,a,ßC<U> j)c2Fa,ß(K^,j) -^(c-l)cJF{{c]M(7)
et

Fc,a,ß(KU>J) - KpA^-a, ] + Fc a ß(/clin'v, /). (8)

Definition 3.11. Une famille p-adique de formes modulaires sur l'espace des poids
W est la donnee d'une serie formelle F(q) Anqn e UMezö(^)[[#Af]]
teile que pour presque tout point k e N c W, EYjc (F(q)) est le g-developpement
d'une forme modulaire classique.

Remarque 3.12. Soit F une famille p-adique de formes modulaires sur l'espace des

poids. Si Z est un sous-ensemble tres Zariski-dense (cf. definition 2.4) de W, tel que
Ev^(E) 0 pour tout k e Z, alors F 0.

Lemme 3.13. Si k, j sont deux entiers >\,ona

Fyk+j(Fc,aA^\i)) (orda)k~Hc2F - c2~kFat{{c))ß).

Par consequent, la serieformelle Fc^aß (/cumv, j) est unefamille deformes modulaires

sur l 'espace des poids.

Demonstration. C'est une consequence directe de la definition de Fc^a^ (/cumv, j) et
de la proposition 3.7.
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Lemme 3.14. Soit (a, ß) e (Q/Z)2 tel que oxAp a > p, la famille Fcaß(Kumy, j)
satisfait les relations de distribution suivantes, quel que soit l yentier f > 1 :

£ Fc,a',ß>(KUniV, j) fFc,a,ß(Kani\ j),
fa'=a-,fß'=ß

£ Fc,a,ß>(Kamy,j)(qf)fFc,a,ß(Kumy,j)(q).
fß'=ß

Demonstration. On donne une demonstration pour la premiere relation et la deuxieme
se demontre de la meme fagon. Si fa' — a et fa" of, on a ord(a/) ord(a//)
ord(a)/. En utilisant le lemme 3.2 et le lemma 3.13, on deduit la relation de
distribution pour Evk{Fa^ß^c{KUYm, j)) pour tout k > 2 + j :

EvjfcC £ Fc^Jr(Kuni\ j)) £ (ord(a) f)k~J~l F^~F
fa'=a\fß'=ß fa'=oi\fß'=ß

(ord(

fEvk(Fc,aJ(KUtti\j)).

On conclut le lemme par le remarque 3.12.

On definit une action de T0(p) sur Fc^a^ß (/cumv, j) par la formule :

Fc,a,ß{KU> j)*Y=Fc,aoa+CoßMa+doß(Kaai\ Si Y (2 d°0 e

qui commute avec l'application d'Evaluation Ev^.

3.2.3. La distribution ZE\s,c,d (/euniv, j Dans ce paragraphe, on construit une
famille de distributions d'Eisenstein qui interpole en poids k la restriction de la
distribution d'Eisenstein ZEiS,c,d(^ j) sur M2(Q (8) Z)^ ä M^\ oü M2(Q (8)

Z)MX Io(p) •

La relation de distribution (cf. lemme 3.14) pour Fc a ß(KuniY, j) se traduit en

terme de distribution :

Theoreme 3.15. Si 1 < j £ N, il existe une distribution algebrique

zEis,>univ> J) e ®alg((Q ® Z)00 X (Q ® Z), ® 0(f)))
verifiant: soient O^re Q*et a,b)Q2 tels que Z* vp(r) > I, on a

zEis,c(KUniv - j)/J (a' (a+rZ)x(b+r1

De plus, si y e h(p),on a 4is,f^univ- j) * Y zEis J)-
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En utilisant le fait que le produit d'une forme modulaire classique et d'une famille
p-adique de formes modulaires est encore une famille p-adique de formes modulaires,
on definit

ZEis,c,</(KunivJ) ^TyyZEis,c(^univ. j)®zEis,d(j) e £>alg(M

D'apres les constructions dans theoreme 3.9 et theoreme 3.15, la distribution
zEis,c,</(Kumv> j) possede la propriete suivante :

Proposition 3.16. Si k >2 et si 1 < j < k — 1, on a

E Vk(ZEis,c,d(KU, j))ZEis

Demonstration. II suffit de montrer que

Si 0 ^ r £Q* et (a,b)£Q2 tels que a £Z * etvp(r) > 1, on a

EV*(f
-Eis.£

(^U,,iV- /»
J (a+rZ)x(b+rZ)

(ordr~1a)J+1~krk~2~JE\k(Fc l.-ia r-ib(Kuniv, j)).

Par ailleurs, on a ord ]"[/ ord/ ord 'j et donc

Ev^Ec,r-W-i*(/cuniv,i)) (ord
r c,7,7

Ceci implique que

Evk(f
_ j))

J (ü-\-rWj)yt(b-\-rWj) ' r ' r

f ~ - ZEis °
J (a+rZ)x(b+rZ)

4. La loi de reciprocite explicite de Kato en famille

4.1. Preliminaire. Dans les deux premiers paragraphes, on rappelle la methode
de Tate-Sen-Colmez utilisee dans [14]. Ensuite, on etablit une version entiere de la

description explicite de la cohomologie des representations analytiques du groupe
PgM dans §4.1.3.
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4.1.1. L'anneau £+. Soit £+ Q^{^} l'algebre des fonctions analytiques sur la
boule vp{q) > 1 ä coefficients dans Qp ; c'est un anneau principal complet pour la
valuation vp^ definie par la formule :

VpMf) in£ vp(an), si / an(p)" e Ä+•
n.N 1

neN

Dans la suite, on notera vp au lieu de vp^1. On note £ le complete du corps des

fractions de l'anneau £+ pour la valuation vp. Fixons une clöture algebrique £ de

£. Comme £ est un corps complet pour la valuation vp, on peut prolonger vp sur £
ä £. On note le groupe de Galois de £ sur £ par

Soit M > 1 un entier. On note qM (resp. une racine M-ieme qx^M (resp.

exP(^f)) de q (resp. 1). On note Fm Q/?[£m]. Soit £m £[#m, £m] ; c'est une
extension galoisienne de £. Soit $m ^[£at] la sous-extension galoisienne de £m
sur £ ; la clöture integrale de £+ dans $m est £+[£m], qui est l'anneau des

fonctions analytiques sur la boule vp(q) > 1 ä coefficients dans Fm Alors, £m est

une extension de Kummer de de groupe de Galois cyclique d'ordre Af, dont un
generateur gm est defini par son action sur qM :

gm<IM KMQM-

Onnote£oo (resp. F^lareuniondes£m (resp. Fm) pour toutM > 1.

On note Pqp (resp. Pq^ le groupe de Galois de Q^£oo sur £ (resp. Q^£). Le groupe

Pq est un groupe profini qui est isomorphe ä Z. De plus, on a une suite exaete :

0 PQp P®p °'

et le groupe Pqp preserve l'algebre des formes modulaires M(Q), ce qui permet de

definir une application de localisation && -> Pqp -> IIq.
Fixons M un entier > 1. On note £m/?°° (resp. $mp°°, Fmp°°) la reunion des

^MPn (resp. $Mpn, Fmp°°) pour tout n > 1. On note P^M le groupe de Galois de

£m/>°° sur £fcf. On note U&M le groupe de Galois de £m/?°° sur §Mp00, qui est

isomorphe au groupe 7LP, et on note le groupe de Galois de $Mp°° sur £^f, qui
est isomorphe au groupe Gal(Fmp°° /Fm). On a donc une suite exaete :

0 UXM P&M r«M 0"

Soit V+ la clöture integrale de V + dans V. On a une inclusion Qp C V+. On

note la clöture integrale de V+ dans qui est aussi la clöture integrale de

/?M dans &M-

1 La restriction de la valuation vp j^ ä Qp coincide avec la valuation p-adique vp sur Qp
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4.1.2. L'anneau B*R pour et ses sous-anneaux. Soit L un anneau de

caracteristique 0 muni d'une valuation vp teile que vp(p) 1 On note Ol {x e

L, vp(x) > 0} l'anneau des entiers de L. On note 0c (L) le complete de Ol pour la
valuation vp. On pose C(L) 0c(L)[^]-

Definition 4.1. Soit An Ol/P&l pour tout n > 1; alors le Systeme {An} muni de

morphismes de transition An -> An-i definis par l'application de Frobenius absolu

xn forme un Systeme projectif. On note R(L) sa limite projective

HmAn {(x„)neN I x„ 0L/pöL etx^+1 x„, sin e N}.

Si x (xn)ne^ e R(L), soit xn un relevement de xn dans 0c(L)- La suite

(xn+k)> converge quand k tend vers 1'intim. On note x^ sa limite, qui ne de-

pend pas du choix des relevements xn. On obtient ainsi une bijection : R (L) ->
{(x^)neN\x(n) e Oc{L),{x{n+l)y x«, pour tout n}. Si x (x^),y y(l)
sont deux elements de R(L), alors leur somme x + y et leur produit xy sont donnes

par:

(x + y)U= Hm (x0+i)+J0+iy et (xy)W=XUyU.
J^OO

L'anneau R(L) est un anneau parfait de caracteristique p (i.e. le morphisme
x \-^ xp est bijectif). On note Amf (L) 1' anneau des vecteurs de Witt ä coefficients dans

R(L). Alors Amf (L) est un anneau p-adique (i.e. un anneau separe et complet pour
la topologie p-adique), d'anneau residuel parfait de caracteristique p. Si x e R(L),
on note [x] (x, 0,0,...) e Amf(L) son representant de Teichmüller. Alors tout
element a de Amf(L) peut s'ecrire de maniere unique sous la forme Pk[xk\
avec une suite (x^) g (R(L))n.

On definit un morphisme d'anneaux 6 : Amf (L) -> 0c (L) P^r la formule

+oo +00

y^pk[xk\ ^ laa
k=0 k=0

On note IBmf(L) Amf (L)[L]5 et on etend 6 en un morphisme

Bmf(L) -> C(L).

On note Bm(L) Bmf(L)/(Ker0)m. On fait de Bm(L) un anneau de Banach en

prenant l'image de Amf (L) comme anneau d'entiers.
On definit B^(L) := lirnBm(L) comme le complete Ker(0)-adique de Emf (L);

on le munit de la topologie de la limite projective, ce qui en fait un anneau de Frechet.
Donc 6 s'etend en un morphisme continu d'anneaux topologiques

B+(L) -> C(L).
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On peut munir B^(L) d'une filtration de la fagon suivante : pour i e N, notons
Fil* B^(L) la Lieme puissance de l'ideal Kerö de B^(L).

L'anneau Ainf(L) s'identifie canoniquement ä un sous-anneau de B^(L), et si

k e N, m e Z, on pose

Um,k pmAinf(L) + (Ker0)fc+1B+(L),

alors les Um^ forment une base de voisinages de 0 dans ®dRC^)-
_

Pour simplifier la notation, on note Ainf (resp. ®inf et B^) l'anneau Ainf(£+)
(resp. ®inf (£+) et B^ (£+)).

Soit q (resp. qM si M > 1 est un entier) le representant de Teichmüller dans Am
de (q, qp,...,qpn,...) (resp. (qM,..., qMP» ,•••))• Si M\N, on a q*/M qM •

On definit une application continue £+ -> par f(q) i-> f(q)\ ce qui
permet d'identifier £+ ä un sous-anneau de ®d^(£+). Mais il faut faire attention au

fait que üir(^+) n'est pas stable par ^ car qo q\c^a) si o e *§&, oü cq est le

1-cocycle ä valeurs dans Zp(l) associe ä q par la theorie de Kummer.
Posons £+ tdR(^+)[|/]]- Si M > 1 est un entier, on note l'anneau

Im]- On peut etendre 1'application tdR en un morphisme continu de £+-
modules tdR: -> ®d^(£+) en envoyant et qM sur Im et qM respectivement.

Alors, on a £+ tdR(£^)[[r]]. On pose St^p U« qMPA-

On definit une application tdR(£)+-lineaire Rm • ^Afp 00 ~> Par ^a f°rmule
suivante :

Rm • ^Mp°° ' ^Mpn^Mpn
w2 ~b _ jZmp»4mp» si Pn \a et Pn >

L>MDnClMDn ^ \ r, sinon.

Proposition 4.2. Si M est un entier > 1, alors

(D H°C%M/^,Bd+R) B+(R+^oo).

(2) &Mp°° est dense dans MaR(^Mp°°)>

(3) Si vp(M) > vp(2p), alors Rm s'etendpar continuite en une application ^+-
lineaire Rm • M qui commute ä Vaction de

Soit A une Q^-algebre de Banach et on note A+ l'anneau des entiers de A.

Proposition 4.3. Si vp(M) > vp(2p), si V est une A-representation de Banach
de P&m possedant une A+-representation T teile que P&M aS^sse trivialement sur
T/2pT, et si i E N, alors Rm induit un isomorphisme :

Rm: H!>ÄM,Bd+R(£^) V) Hi(PRM,ä+ §>Qp V).

Demonstration. La demonstration est Standard et le lecteur interesse pourra consulter
[14], section 3.
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4.1.3. La cohomologie des representations du groupe P§tM. Soit M > 1 tel que
vp(M) m > vp{2p). Le groupe de Galois P^M de l'extension ^Mp°°/^m est

un groupe analytique p-adique compact de rang 2, isomorphe ä

p* 5) 6 gl2(^) : a 1, c 0, b e e 1 + pmZ^},

et si u, v e pmZp, on note (J " de Pm. La loi de groupe s'ecrit sous la forme

(u1,vi)(u2,v2) (eV2ui + u2,vi,v2).

Soient Um et Tm les sous-groupes de Pm topologiquement engendres par (pm, 0) et

(0, pm) respectivement. Ces deux sous-groupes sont isomorphes ä Zp. De plus, Um

est distingue dans Pm et on a Pm/Um — Tm. Comme Um et Tm n'ont pas de H2, la
suite spectrale de Hochschild-Serre nous fournit, si V est une Q^-representation de

dimension finie de Pm, un isomorphisme

H2(Pm,L) s V/ ((pm,0) — 1, (0, pm) — epm).

Soity e Pm ;l'imagedelafonctionanalytiqueay : Zp -> Pm,ay(x) yxestun
sous-groupe a un parametre. On dira que l'action de Pm sur une Q^-representation
de dimension finie V est analytique si pour tout y e Pm et v e V, la fonction

x yxv (n)(Y ~ ^yi"v est une f°ncli°n analytique sur Zp ä valeurs
dans V.

Soit V une Q^-representation de Pm. Si l'action de Pm sur V est analytique, pour
tout y G Pm, on peut definir une derivation dy: V -> V par rapport ä ay par la
formule :

j)Tlx*yp -xdr(x) lim -
n->oo pn

En particulier, on note dm^, i 1,2, les derivations par rapport ä (pm, 0) et (0, pm)
respectivement.

Definition 4.4. On dira qu'une Q^-representation de dimension finie V de Pm est

analytique si l'action de Pm est analytique sur V.

On a le resultat tres utile :

Proposition 4.5. Soit V une representation analytique de Pm munie d'un Zp-reseau
T stable sous l'action de Pm. Alors,,

(i) tout element de H2(Pm, T) est representable par un 2-cocycle analytique ä un
element de p2m -torsion pres;

(ii) ona H2(Pm,r> ^ T/(dm,l,dm,2-pm), et l'image d'un 2-cocycle analytique

((u,v), (x, y)) -> c(UtV)t(x,y) ci,j,k,iulvjxkyl,
i~\~j
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avec p{l+j+k+l)mCij,kj G T, par cet isomorphisme, est celle de

^2\c(u,v),(x,y)) p2m(c1,0,0,1 — Co,1,1,o)

ä un element de p2m -torsion pres.

Demonstration. On dispose des Operateurs 3/: V -> V, i 1,2, definis par
x * (u,v) x + ud\x + vd2X + 0((u,v)2). Ces Operateurs ont des propriete
de derivations : si x\ e V\,x2 £ Vi, oü Li, Vi sont des representations analytiques
de Pm, et si i 1,2, on a

3i(xi (8) x2) (9/xci) ® x2 + xi ® 3|X2.

On a les relations suivantes 3i p~mdUm, d2 p~mdYm.
La proposition 4.10 dans [14] dit que si V est une representation analytique de

Pm, alors

(i) tout element de H2(Pm, V) est representable par un 2-cocycle analytique;
(ii)onaun isomorphisme H2(Pm, V) L/(3i, 32 —1), et l'imaged'un 2-cocycle

analytique,

{(u, v), (x, y)) £(w,v),(jc,y) ^ ] Ci,j,k,lU iLx y
i + j +/r+/>2

sous cet isomorphisme est aussi celle de S^(c(Ufv),(x,y)) ci,o,o,i — co,i,i,o dans

V/(3i, d2 — 1).
Comme d\ et d2 — 1 introduissent des dominateurs, ils ne preservent pas T. Par

contre, 3m,i et 9m?2 — pm le preservent. La demonstration de la proposition 4.10 dans

[14] s'adapte ä une demonstration du theoreme ci-dessus. Pour faciliter la lecture, on
donne l'idee de la demonstration; les details du calcul se trouvent dans [14].

(1) Le groupe Pm est de dimension cohomologique < 2. En utilisant la suite

spectrale de Hochschild-Serre, on deduit de la suite exacte 1 -> Um -> Pm ->
hm 1

•

H2(pm,r) =* H1(rm,H1(um,:r)) =*

Par ailleurs, l'application surjective naturelle

4>- T/(dm,i,dm,2 ~Pm)T/(um- 1

est un isomorphisme. On en deduit l'isomorphisme H2(Pm, T) T/(9m,i, 9m,2 —

pm). Par cet isomorphisme, il suffit de montrer le point (i i) du theoreme et de montrer

que l'application
8® : {2-cocycles analytiques} -> T

induit une surjection Han'2(Pm, T) -> T/(dm5i, dm^2 — pm) ä un element de p2m-
torsion pres.
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(2) Le calcul delicat dans §4.1 de [14], qui montre que l'application

8® : {2-cocycles analytiques ä valeurs dans V} -> V

induit une surjection Han'2(Pm, V) -> F/(3m,i, 3m,2 — Pm), s'adapte ä notre cas en

constatant que l'image d'un 2-cocycle analytique ä valeurs dans T sous l'application

est dans p~2mT (cf. [14], lemme 4.14). Plus precisement, si C(u^)yx^y)
^2i+j +k+i>2 ci,j,k,lul vJ xkyl est un 2-cocycle analytique sur Pm ä valeurs dans T,
onconstruitun2-cobordformelJ(^(X53;)) telqueq^)^^) —(ci5o,o,i —co,i,i,o)uy
db. Notons que b(Xjy) ne converge pas sur Pm, mais il converge si on le restreint ä

Pm+vp(2p)- ?ar ailleurs, on a la suite exacte d'inflation-restriction,

0 -> H2(Pm/Pm+vp(2p)> TPm+vP(2P)^^H2(Pm, T) -> K2{Vm+Vp{2p), T),

oü H2(Pm/Pm+^(2jr7), Tp"'+Vr'i2r") est un groupe de p2m-torsion. Ceci permet de

prouver le theoreme.

4.2. L'application exponentielle duale de Kato en famille

4.2.1. La structure entiere de la representation Di de Pm. Soient L une
extension finie de Qp et Ol son anneau des entiers. Ä un element p e D0 (Zp, L),
on associe une serie formelle :

=/*(! + Tfli,
«1 Wjp

appelee transformee d'Amice de /x. On a le lemme suivant:

Lemme 4.6. L'application p i-> Aß est une isometrie d'espaces de Banach de

D0(Zp, L) sur St ÖL PI] p Qp-

La transformee d'Amice induit un isomorphisme de familles de representations
de Banach de D0pumv(W) sur 8^ ® 0(W).

Lemme 4.7. Soient u, v E pmZp. Si p est une mesure sur Xp ä valeurs dans Qp,
l'action de (u,v) E Pm sur Aß{T) induite par celle sur D0 pn}m(W) est donne par
laformule suivante :

Aß(T) * (u,v) e~vj(l + T)uAß((1 + Tfv - 1). (10)

L'anneau 31^ L des fonetions analytiques sur le disque vp(T) > 1, note par C\
dans l'exemple 2.3, est un L-Banach pour la valuation vr1 definie par la formule

+oo

^i(/) inf (vp(bn) +n),sine N '
n=0
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On note son anneau des entiers pour la valuation vr1
On note Di le faisceau de modules de Banach sur l'espace des poids defini par :

Di (%) ^-iqp ® ^n) Pour tout entier n > 1. Comme le 0(v^)-module

Sq ® G(Wn) est dense dans Di(^), l'action de Pm sur ® Oi^n) s'etend

en une action continue sur Di (Wn). Ceci nous fournit un faisceau de representations
de Banach sur W, note par D\j. On note D\jWn) — le

sous-0(y^)+-module de Banach de Di j{Wn), qui est la structure entiere de la

ö()^)-representation de Banach Dij (Wn) de Pm.

Lemme 4.8. L'action de Pm sur Di j (Wn) est analytique pour tout n.

Demonstration. Comme le groupe Pm est un groupe analytique compact de rang 2

engendre par um (pm, 0) et ym (pm, 0), il suffit de montrer que, pour tout

f(T) e Dij(Wn), la fonction x i-> f(T) * u* (resp. x i-> f(T) * y*) est une
fonction analytique sur Zp ä valeurs dans Dij (Wn).

Commey1 («)(^ — l)wpoury e Pm,onserameneäestimerla valuation

^y~p}Tl pour tout i e N et y um, ym respectivement. En effet, de la formule (10),

on deduit que pour i e N et y um ou ym, la valuation de ^y~p}Tl est > 1. On
donne l'estimation seulement pour y ym et l'estimation pour y um se deduit de

la meine maniere.

De la formule (10) pour ym, on a

+ 00 pm.r * {ym-1) ((1 + T)e"m -1y-r y _1) - 0-
k=l ^ '

On conclut le lemme du fait que la valuation de (XIaS Ca; )Tk~iy — 1 est > 1

dans Di j(Wn).

Pour terminer ce paragraphe, on etablit les formules pour les actions de 3m?i et

3m,2 sur Dij {Wn) pour tout n.

Lemme 4.9. Si f(T) Ylt^oaiTl ^ T>ij(Wn) avec a\ e 0(Wn), les actions de

3m, l et 3m,2 — Pm sur f(T) sont donnees par les formules suivantes :

pmlog(l +
+oo

(dm,2 ~ pm)f(T)pm£>/( 1 + T)r~l log(l + T)) - pm{j + 1 )/<T).
i 1

(ii)
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Demonstration. On donne seulement le calcul pour l'action de dm>2, et la formule

pour l'action de 3m?i se deduit de la meme maniere :

„ r*(Kf-1) ((i + rrm+"-iydet->(yr)-r
9m,2 (T) lim lim ^

n—^oo pn n^oo pn

lim
det-^(Kf )(EUo (3(1 + )'-fc) - r

n^oo pn

-jpmTi+ Pm log(l + r>( V(1 +
k=0 ^ '

pm (i(l + T)Tl~x log(1 + T)- jT').

4.2.2. La construction de l'application exp*ato v. On note £++ } l'an-

neau des entiers de £+ pour la valuation vp, ainsi que X++ son complete g-adique.
On note l'anneau des entiers de qui est l'anneau

{ E«5) anqnM e :anefmtelque + > 0},

et on note X^+ son complete g-adique, ainsi que X^ ^m+ ® ^p-
Rappeions que l'application ^r- <^+ ®dR' /(#) ^ /® identifie £+ ä un

sous-anneau de On note £+ ^r(^+)[[^]] et X+ OdR(^++) ® Q/?)[[t]],

oü tdR(R++) est le complete g-adique de ^r(^++)- De meme, on note

tdR(Äi)M et JC+ OdR(<^M+) ® Qp)M- On abien

^dR) { ^2n=o antfM ^ • an ^ Fm tel que Vp(ün) + > 0}.

On definit une application 6: X^ -> X^ par reduction modulo t9 qui coincide

avec celle sur On constate que est la limite projective Hm / tn)9 oü les

/*n sont ^es <^+-modules de rang fini munis de la topologie p-adique.
Fixons un ouvert affinoi'de Wn de l'espace des poids W pour n > 1 un entier. On

a un isomorphisme &(Wn) Zp[A] ® Cn, oü Cn est le sous-anneau de Q^[[Ti — 1]]

consistant des fonctions analytiques sur le disque vp{T\ — 1) > ^ et A est un groupe
cyclique d'ordre p — 1 engendre par X\. Dans la suite, on identifie 0{Wn) avec

Z^fA] (g) C„.
PosonsD lim (£^//tWl)(g)Dij_2(^),quiestune0(^)-representationde

^ ^ i
Htn • Elle n est pas une (Q^?-representation analytique. On note D ' ^ (tdR(^+)0
Dyy_2(#^)[[fJ])/?"1 le Z^-reseau de <8) Di qui est stable sous

1'action de Pm.On deduit de la formule (10) que 1'ideal m (T\ — 1, T,c[m) deD+'Wl
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est stable sous l'action de Pm. Ceci nous permet de definir des Z^-representations
analytiques D+,ni,ni de Pm, pour tous n\, n2 > 1,

ß+'ni>"2 0dÄ+) 0 D+ j-2mm
L'inclusion D C lim ((lim D+,»1,»2) 0 q de P^~representations, nous

<—n i
v <—ri2

permet de definir un morphisme :

H! (Pm, D) —> lim H'(P,„, (lim D+'"1'"2) 0 Q,)
<—n\ <—n 2

-* lim ((lim H'(Pm,D+'ni'"2)) 0 Q,).
<—n i v <—n2

Lemme 4.10. Les actions de 3m?i et 3m?2 — pm sur t et qM sont donnees par les

formules suivantes:

pmt
9m,i (0 0,3m,i (qM)(0 Pmt, 0.

Demonstration. Le lemme se deduit d'un calcul direct, qui se trouve dans [14], §5.1.

Proposition 4.11. Si vp(M) m > vp(2p) et si j > 1, alors Vapplication

/(gm)i->
induit unisomorphisme de ^-m+0Z7, swr

lim ((lim D+'"1'"2/ (dm,l, dm,2 ~0>
<—n i v <—n2

oü AVj_2 est la transformee d'Amice de la section globale vy_2 de D0 puniv ('Wn) C

Remarque 4.12. La section globale v/_2 est la masse de Dirac en 0 (cf. lemme 2.16).
On a AVj_2 1, mais il faut faire attention que l'action de Io(/?) sur D+,ni,n2 n'est

pas triviale : si y (acbd) e IoCpX on a AVj_2*Y A§t • Kumy(a) det(y)2-7, oü
a

8 b est la masse de Dirac en | (si y e Pm, on a a 1 et donc Kumy(a) 1).
a a

Pour demontrer la proposition (4.11), on a besoin d'un lemme preparatoire. On
definit une valuation p-adique vp sur Fm[A] par la formule :

p-2
vp(x) inf vp(an), si x ^2/an^\ avec G Fm-

0<n<p 2
^=0
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Alors tous les elements de D+-"' '"2 sont de la forme

X ak,i,r,sTk{TX-\)lqrMts,
0<k,l,r,s

k+l+r<ri2 — l',
s<ni—l

oü akj^s e Fm[A]verifie vp(akj^s) +jj + > 0.

On note M„1;„2 le sous-Z^-module de D+>"1 -ni des elements de la forme

X ai^sAVj_2(Tx - 1 )lqrMts oü e Fu verifie + > 0.

0<l,r,s
l+r<ri2 — 1;

Ä<wi—1

On constate qu'il n'existe pas d'element de D+'Wl'"2 tel que 9m?ix appartient ä

M„1)W2. Par consequent, l'application naturelle

<Pi: M„1;„2 - D+'"1'"2/3m;i

est injective.

Lemme 4.13. Le Zp-module M„1)W2 + 9m ,iD+ 'Wl'"2 contient p2m^ni

powr tout n\,ri2 > 1.

Demonstration. D' apres le lemme 4.9, onalaformule 9^1(7^) pm \og(\-\-T)Tk
et donc

TYI

dm,i{TkqrMts) pmTklog(l+ + (12)

Si x e D+'Wl'"2, alors x est de la forme

X ak,i,r,sTk{Tx-\
0 <k,l,r,s\

k+l+r<ri2 — U
s<n\—\

avec akj^s e FM[A] verifiant vp(akj^s) + jj + k > 0.

II s'agit de montrer que tous les termes /?2m^1 + 1W,/,r,s7^(Ti — 1 )lQMtS > °ü
k > 1 et£ ^m[A] satisfait vp(akj^s) + + £ > 0, sont dans 9mjiD+'Wl'W2.

(i) Si r 0, la formule (12) s'ecrit alors sous la forme :

3m,i(a*,/,o,s7,*(7i - 1)V) Pmak,i,o,sTk(Tl - l)1 log(l +

Parailleurs, on alog(l + 7") 741 + Xit=? *7+1' )• constate4ue 1 + Xit=? ^7+i'

est inversible dans D+.«l»«2 et on note son inverse par g(r).
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Supposons que x e TD+,ni,n2. Comme vp(ajcj^,s) + k > 0, on a vp(ajcj^,s) +
m + k — 1 > 0 ; ceci implique que

y= J2 PmakJ,o,sTk-\T1-l)lts
0<l,s;l<k;
k+l<ri2 — l\

s<ni—l

appartient ä D+,ni,n2 et on a dm,\{yg{T)) p2mx.
(ii) Dans la suite, on suppose que r ^ 0. On demontrera le lemme dans ce cas par

recurrence descendante sur s.
Si s n\ — 1, la formule (12) s'ecrit alors sous la forme :

am,i(afc,/,r,sr*(7i - 1 )lqrMts) Pmak-1)> log(l +

On en deduit que dm^{D+,ni,n2 contient tous les termes pmcikJ,r,sTk(T\ — l)lqrMts
avec s n\ — 1 et Ä: > 1; et donc tous les termes p2mdk,l,r,sTk(T\ — l)lqrMts avec

s m — l et k > l.
Fixons so un entiers tel que 0 < so < n\ — 2. Supposons que M„1)W2 +

9m,iD+,ni,n2 contient tout les termes p2m(jll~s+l^ak,i,r,sTk{T\ — \)lqrMts avec

s > + 1- II s'agit ä montrer que Mni^2 + dm^D+>ni>n2 contient tout les termes

Xk,l,r,s P2m{ni~s+1)ak,l,r,sTk(Tl - \)lqrMts avec 5 s0 etk >1.
Comme vp(ak,i,r,s) + +k>0 avec k > 1, on a vp(ako,i,r,s) + jj + m +

k-1 > 0 et donc yk,i,r,So Pm+2m(ni~So)ak,i,r,s0Tk~l(Ti - 1 )lqrMts° appartient
äD+'"i'"2. Par recurrence, on a tyk,i,r,so G ^ni,n2 + 9mjiD+'Wl'W2.

De la formule (12), on a :

rnm
9m,t00 =p2m(ni-S0+1)ak,i,r,S0Tk-1(T1 - l)'log(l + T)qrMtS0 +

rpm
=Xk,l,r,s0g(T)+ — qrMyt.

On en deduit que le lemme est vrai pour les termes avec s ^o-

Corollaire 4.14. Si n\, sont deux entiers > 1, le conoyau Coker de 4>l est un

Ijp-module de p2m(jll + 1^-torsion.

On revient ä la demonstration de la proposition 4.11.

Demonstration de la proposition 4.11. Comme on a

(9m,2 - pm)(^Vj_2qrMts) pm{s-j + 1 )AVj_2qrMts, (13)

le Z^-module Mni^n2 est stable sous l'action de 9m?2 — pm. Donc l'application 01
induit une application injective, que l'on note encore par 01,

^ : M„1;„2/(am,2 - pm) -> D+'ni'"V(3m,l^m,2 - /")•
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En plus, on deduit du corollaire (4.14) que son conoyau est un Z^-module de

^2m(«i + i)_torsjon

Si n\ > 1, on note

0Ä)+)«i ®Zp 0(Wn)+)/(Ti - 1

Pour tout n\ > j + 1, on dispose d'une application

00: (^M+ ® 0{Wn)+)„2 -> M

en envoyant /(«qM) sur /^v/_2> 4ui est une injection. De la formule (13)

pour s j — 1, on deduit que 0o induit une application injective, notee encore par
00,

0o:

En composant avec 1'application 0i, on obtient une application injective

0 0!O0o: (JC^+®0(#;)+ )„2

En prenant la limite projective sur on obtient une injection

J<M+0 0(^) + -» (lim V+'nun2/(dm,i,dm,2pour«! >7-1.

II ne reste qu'ä montrer la surjectivite de

® 0{Wn) -> (lim 9m,2 - /")) ® Q,.
< «2

Cela se ramene ä montrer que les applications

lim lim Mni,„2/{dm,2 - pm)) ® %
> ^2 > ^2

et

lim 0i: (lim Mn„2/(3m,2- ® Qp
< «2 < «2

-> (lim D+,ni'"2/(9m x, 9m 2 - pm)) ® Q„
< «2

sont surjectives. La surjectivite de lim 0O decoule de la formule (13) et celle de
<—n 2

lim 0i decoule du lemme precedent qui dit que, pour tout n \ > j + 1, le conoyau
<—n 2

de 0i est de /?2m^1 + 1)-torsion.

En composant les applications obtenues dans les paragraphes precedents, on ob-



Vol. 89 (2014) Le Systeme d'Euler de Kato en famille (I) 857

tient le diagramme suivant:

H2(%m,b+®Du_2(%))

(1)

H 2(PstM.Bd+R(^oo) ® D H2(^M,D)

(3)

; exPKato,u 'i"1«, (Ojm,2 ®Zp

(4)
Y

^M+ ®ZP E„, ((1m„2(D+'"1'"2/(3m,l'9m,2-/'m)) Qp).

oü

• l'application (1), d'inflation, est injective car et

%v//;oc agit trivialement sur Di j-2(fn);
• (2) est l'isomorphisme induit par "la trace de Täte normalisee" Rm (cf. propo-

sition 4.3);
• (3) est 1'application naturelle induite par la projection;
• (4) est risomorphisme de la proposition 4.5 car D+'Wl'"2 est analytique pour

tout (ni,ri2);
• (5) est l'inverse de risomorphisme dans la proposition 4.11.
On definit l'application exp£at0 v en composant les applications (2), (3), (4), (5).

4.3. Application ä la famille de systemes d'Euler de Kato. Dans ce paragraphe,
on montrera le theoreme 1.4. Soient M > 1 tel que vp(M) > vp(2p) et A

yS) G r0(p) avec a,ß,y,8 e {1,..., M}Onnote xfrM,A la

fonction caracteristique de A + MM2(Z). C'est une fonction invariante sous l'action

de. Par ailleurs, la distribution zKato,c,d ivj) appartient ä H2 Saig(M2 (Q ®
Z)]pl x Io(p), Dl j-2(Wn))).Alors,on a

J ifM,AZKato,c,d(v) £H2(%M,DIJ-2Ä))

et on note son image dans H2(^?M, 0 D|i/_2(^;,)) par zm,a- Pour
montrer le theoreme (1.4), il suffit de prouver :

Proposition 4.15. Pour toute paire (Af, Ä) ci-dessus, on a

®xPKato,p (zM,a)

- iriv:ord
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Pour demontrer ceci, nous aurons besoin d'ecrire un 2-cocycle explicite represen-
tant zm,a et le suivre ä travers les etapes de la construction de l'application exp£at0

4.3.1. Construction d'un 2-cocycle. Rappeions que notre famille de systemes d'Euler

de Kato est construite selon le meme chemin que celui du Systeme d'Euler de Kato
classique. Ceci nous permet d'utiliser la construction d'un 2-cocycle explicite pour
le Systeme d'Euler de Kato classique dans [14], qui est reliee ä la construction du
Systeme d'Euler de Kato. On expose le resultat ci-dessous, et renvoie le lecteur interesse
ä §5.2 dans [14] pour les details de la construction.

Soient Ai, A2 deux G-modules ä gauche. Si x\ e A\, x2 g A2 et er, r e G, on
definit un element {x\ (8) x2}o-,t •= (%i * — er) (8) (x2 * (er — 1))) e A\ (8) A2. Un

cocycle explicite, qui presente l'image de zm,a dans H2(Prm ® Di,y-2,r)5 est

donne comme suit:

Theoreme 4.16. Si on note

ao bo \
V co do

{log((c2 - {{c)))0(qpn ,qa^^)) ® log ((d2 - ?$?$)) }ff>T,

zm,a peut se representer par le 2-cocycle

co do J

(er, t)
f ao bo

\co d0 r
la somme portant sur l 'ensemble

UM := {( a0,bo,c0,do)e {1,... ,Ma, ß,

c0 y,do S mod M}.

4.3.2. Passage ä l'algebre de Lie. On utilise les techniques differentielles pour
calculer l'image du 2-cocycle

(er, r) i-> lim p~2n ^ A - mrrU'U
n—^+oo

TA aoAo iog(7,T).
t—i Vi*(°,°) (aob0\J do'^Co</oJ

obtenu dans le theoreme ci-dessus, dans -K^ ® Q('Wn) par l'application exp^ato u

Plus precisement, cela se fait comme suit:

Recette 4.17. Si n\ > j + 1, on definit une application res^-: D ->
®(^n))/(qM)k en composant la projection

D —> D/ tni—> (lim D+'"i'"V(9m,i.9m,2
< «2
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avec 1' inverse de risomorphisme dans la proposition 4.11. En prenant la limite pro-
n v 7r+_f

,9J V J\Mjective sur k, on obtient un morphisme resVjy : D -> ^m+ 0(Wn).Silaclasse
de cohomologie

c G lim (Jim H2(/>äm,D+'"1'"2) ® Qp
f 22 1 ^ H-2

est represente par une limite de 2-cocycle analytique (er, r) i->

leurs dans D+'"l*"2 alorsl'imagedec sousl'application (5) estresvj(/? 2m<5^(c)),
oü 8® est l'application definie dans la proposition 4.5.

Comme le 2-cocycle (er, r) i-> lim„^+00 /?_2w vy- * (^ ^) log^ x obtenu

Vco d0
^dans le theoreme ci-dessus est la limite de 2-cocycles analytiques ä valeurs dans D, on

peut utiliser les techniques differentielles pour calculer son image dans ® O i^n)
par l'application exponentielle duale exp£at0 v.

Si /{x\, X2) est une fonetion en deux variables, on note D\ (resp. D2) 1'Operateur

XlrfIT ^resp- X2i&- Si n6N et a'beZ'0n P°Se fa"b Du

developpement limite du terme de (u, v) f(qp". en M et l)' on
deduit que :

An) apt_ (n) fW h_P^in An)

ce qui joueront un röle dans les demonstrations du lemme 4.18 et 4.20 ci-dessous.

Lemme 4.18 ([14], lemme 5.15). On note

5ao,bo,co,do 5~(2)({l0gMi"!j ® 10g(r^Äo)}ff;I)-

On a

'2w - Dl log {I,CJ. Dl log (r<0.M2

D'apres le lemme 4.9, on a les formules suivantes pour 9m i et 9m 2 sur «A ,a &
•

Lemme 4.19. On a les formules suivantes :

,.;)) ?" log(l + TM
J y c a; J y c a;

j>) ?"(; log(l + T) - j)Av,(„
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Demonstration. Ce lemme est une traduction du lemme 4.9. On donne seulement le
' a b N

^ c d '

*y) + P j*A>Vj*y

calcul pour 9m>2 : on note y (" y) et on a

+00 ,b\
9m,2(Kumv(«) det(y)"7

k̂=0

/ +00 ,b\
_ ^m^umv^ ^ ^ jk{\ + T)Tk~l log(l + T)

En utilisant la formule k G)

9m,2i^>vj *7) H- P j*A>vj*y — P log(l "I" T^)tA>Vj^y. EU

Lemme 4.20. 5/ s > j + 1 ef a,b,c,d e Z te/s gne y e Io(/0 alors,
dans

lim ((lim (D-1"'"1'"2/(9m,i, 9m,2 - pm)) ®zp Qp)
<—n i \ <—«2 /

on o
i fs An) An) (ad bc)ts + 1

(w) (w)
S'*yr Ja,b£C,d —

aM{j + 1 -s) VJ*Y ' *a>b 2gc,d'

Demonstration. On en deduit que

(a(pm - dm,2) + bdm,\)

mts f(n) (n) mbc)D(„)[a(j +1 -S)pmtswc:d-pm-—JT—faJD>*Z)A^y
est nul dans lim ((lim (D+,"1,n2/(9m)i, 9m,2 - Pm))<8>z„<Q>A pour s > 7 + 1.

< «1 v < «2

Corollaire 4.21. Si y (a° bP), oZons- on o' VC0 Ö0

resv;K/*y^2\ r r ^^ D2 log(rc6^n\ )'Dl log(r^0^\
V »0*/ ao,bo,co,ao' aJ MJ'+ 1 (j — l)\ ao,boJ 2 a c0,doJ

Demonstration. D'apres le lemme 4.18 et le lemme 4.20, on a

A .J5®
öao,bo,co,d0

- Mt"C0> ' °2 llM,,,,)' [>-' >°8 I'.»",'"1,!,,)

• D2 log • Di log (r„0
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~ \j - •

D'autre part, on a A>Vj_2*y (1 + T)ao (a0do — b0co) JKumy(a0). Le corollaire
se deduit de la defmition de resvj.

On rappeile le fait que D2 log (rcd^) c2Er(x\,X2) — crEr(x\,x2), notepar

Ec,r{xi,x2).Si b ßmodMet d 8mod M, ona^ et ^
Donc par le corollaire 4.21 et le calcul que nous avons fait, on obtient:

exPKato,v (ZM,A)

7~T~nj „1, 52 Kuniy(ao)al~J EC}i
^ ' ao=a[M]

c() y[M]
l<ao,co<Mpn

Enfin, on utilise le lemme suivant pour terminer le calcul:

Lemme 4.22. Sil<reN et c,de Z*, on a

(1)

52
c()=y[M]

l<co<Mpn
et

J2 Ed,MP">?$&)
co=y[M]

l<co<Mpn

(2)

lim 52 Kunh(a0)al~JEcA(qp"
n^oo

a0=a[M]
l<a<d<Mpn

=°rd
Demonstration. Le (1) est montre dans lemme 5.17 de [14]; on ne montre que le

(2) dans la suite. On remarque que la limite dans (2) est une limite p-adique. La
demonstration se divise en deux parties : la premiere consiste ä comparer les series

de Dirichlet formelles associees aux g-developpements de ces familles de formes
modulaires p-adiques et la deuxieme consiste ä comparer les termes constants de ces
deux familles.

(i) (Comparaison de deux series de Dirichlet formelles) On se ramene ä montrer

que la serie formelle associeeälimn^oo J2 a()=a[M] EY(qp",
l<ao<Mpn

— E
ŷ/M,8 /M

— ß(j)
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et celle associee ä Ml~jord(-§-)7~1^u"iv(ord(^/M))Fa/Mtß/m(kw"\ sont les

meines.

D'apres la proposition 3.7, on a :

Ei(apn aa°t^ — E^ (ap") — (apn)^1 KU ~ ^ao/Mpn,ß/M^ ~ ra0/Mp»,ß/MW )'
Donc :

lim E Kumy(ao)al~J EiiqP" ,q^^)
n^oo

ao=a[M]
l<a<d<Mpn

=Ä e ^un"(oo)<.r' w'"»-
ao=a[M]

l<ao<Mpn

Soit Ko/Mpn,ß/M(s) Hm&Q+bmqm et soit £meQ+ la Serie de Dirichlet

formelle, ä coefficients dans Qcycl, associee ä F^/Mpn ß/M^- deduit de la

proposition 3.7 que

£ —sS(flo/Mpn,s)?{ß,s)-1;(-a0/Mpn,s)1;*(-ß,s).^ ms
me0 +

Par consequent, la serie de Dirichlet formelle ä coefficients dans Qcycl associee ä

^aJ/MPn,ß/M^P satisfait:

_ ns yw
brn

^ (pnm)s ns
med])f me

p-nstf(a0/Mp\s)r(ß/M,s)-tt-a0/Mp\s)r(-ß/M,s))
Soit J2meQ+ Am,nm~s la serie de Dirichlet formelle ä coefficients dans

0(W) associee au g-developpement de

£ **(<*>
a{)=a[M]

l<ao<Mpn

Alors, de la formule (16), on obtient:

EAm,n
ms

meQ*

V^1 v t*""i,<0 +,M)<0 +,M)W-<«' „
/'=() £=0 v 7 MJ

(17)
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Dans la suite, on donne les calculs pour le terme
{kpn + -jj )'v

ci-dessus, et le terme restant se calcule de la meme maniere :

Ku(a0)al0-jp-nsl;(a0/Mpn,s)l;*(ß/M,s)
ao=a[M]

l<ao<Mpn
+ 00

E + n81
ao=a[M] (18)

l<ao<Mpn

./.univ \rA~J

- E E w.')-
ao=a[M] k=0

1 ^ +

En prenant la limite p-adique de la formule (17) et en utilisant le fait (p, a) 1,

on a :

An
lim yn^oo '

*m,n

ms

Um E ' -
' r(ß/M,s)

n^oo \ ' oi
jß^fr+p"
oi=-jp mod Z

__QL<<__QL + nnMMä=—-%r mod Z" M

C'est la meme serie de Dirichlet formelle associee au g-developpement de

M'-' °ri

(cf. la formule (6) pour le g-developpement de Fa/M,ß/M(KUmy> y)).
(ii) (Comparaison de termes constants) On rappelle que la mesure pc sur Zp dont

2
sa transformee d'Amice est V satisfait les relations :

Jz (xa/M)kp-c -ord(a/M)k(c2i;(j^,-k^ - cl~k

/ -or
(19)
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On constate que le terme constant de la serie ä gauche de la relation voulue est la

somme de Riemann

lim V Kuni>0)a^(c2d^-,o)
«—>-+00 ^ u'° \ pnM

ao=a[M]
l<ao<Mpn

et donc il se traduit en l'integration p-adique

m'~' d
On en deduit que le terme constant de la serie ä gauche de la relation voulue est

°rd

Ceci permet de conclure.

En appliquant ceci ä exp£at0 v(zm,a), on obtient

1 ot V -1
eXPKato,p(ZM,^) ^ ^ (m j

Ceci termine la demontration du theoreme 1.4.

References

[1] F. Andreatta et A. Iovita, Comparison isomorphisms for formal schemes. J. Inst. Math.
Jussieu 12 (2013), no. 1, 77-151. Zbl 1281.14013 MR 3001736

[2] J. Bellai'che, Critical p-adic L-functions. Invent. Math. 189 (2012), no. 1, 1-60.
Zbl 06065252 MR 2929082

[3] G. Chenevier, Une correspondance de Jacquet-Langlands p-adique. Duke Math. J. 126

(2005), no. 1, 161-194. Zbl 1070.11016 MR 2111512

[4] P. Colmez, La conjecture de Birch et Swinnerton-Dyer /7-adique. Asterisque 294 (2004),
251 -319. Zbl 1094.11025 MR 2111647

[5] P. Colmez, Fonctions d'une variable /7-adique. Asterisque 330 (2010), 13-59.
Zbl 1223.11144 MR 2642404

[6] A. J. de Jong, Crystalline Dieudonne module theory via formal and rigid geometry. Inst.
Hautes Etudes Sei. Puhl. Math. 82 (1995), 5-96. Zbl 0864.14009 MR 1383213

[7] D. Delbourgo, Elliptic curves and big Galois representations. London Math. Soc. Lec-
ture Note Ser. 356, Cambridge University Press, Cambridge 2008. Zbl 1188.11028
MR 2444858



Vol. 89 (2014) Le Systeme d'Euler de Kato en famille (I) 865

[8] G. Faltings, Almost etale extensions. Asterisque 279 (2002), 185-270. Zbl 1027.14011
MR 1922831

[9] T. Fukaya, Coleman power series for K2 and p-adic zeta functions of modular forms. Doc.
Math. (2003), Extra Vol., 387-442. Zbl 1142.11338 MR 2046604

[10] K. Kato, p-adic Hodge theory and values of zeta functions of modular forms, Asterisque
295 (2004). Zbl 1142.11336 MR 2104361

[11] S. Sen, Fie algebras of Galois groups arising from Hodge-Tate modules. Ann. ofMath. 97

(1973), 160-170. Zbl 0258.12009 MR 0314853

[12] J. Täte, /7-divisible groups. In 1967 Proc. Conf. Local Fields (Driebergen, 1966), Springer-
Verlag, Berlin 158-183. Zbl 0157.27601 MR 0231827

[13] A. Panchishkin, A new method ofconstructing p-adic L-functions associated withmodular
forms. Mose. Math. J. 2 (2002), no. 2, 313-328. Zbl 101 Fl 1026 MR 1944509

[14] S. Wang, Fe Systeme d'Euler de Kato. J. Theor. Nombres Bordeaux 25 (2013), no. 3,
677-758. Zbl 06291372 MR 3179681

[15] S. Wang, Fe Systeme d'Euler de Kato en famille (II). Prepublication.

[16] A. Weil, Ellipticfunctions according to Eisenstein and Kronecker. Ergeb. Math. Grenzgeb.
88, Springer-Verlag, Berlin 1976. Zbl 0318.33004 MR 0562289

Received November 15, 2012

Shanwen Wang, Dipartimento di Matematica Pura e Applicata, Via Trieste 63,
35121 Padova, Italy
E-mail: wetironl984@gmail.com


	Le système d'Euler de Kato en famille (I)

