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Le systeme d’Euler de Kato en famille (I)

Shanwen Wang

Résumé. Ce texte est le premier article d’une série d’articles sur une généralisation de systéme
d’Euler de Kato. Il est consacré a la construction d’une famille de systémes d’Fuler de Kato et
a la construction d’une famille de lois de réciprocité sur ’espace des poids #, qui interpolent
les objets classiques.

Abstract. This article is the first article of a serie of articles on the generalization of Kato’s
Euler system. The main subject of this article is to construct a family of Kato’s Euler systems
and a family of Kato’s explicit reciprocity laws over the weight space #, which interpolate the
corresponding classical objects.

Classification mathématique par sujets (2010). 11F75, 11F12.

Mots-clefs. Forme modulaire p-adique, systéme d’Euler, loi de réciprocité explicite.
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1. Introduction

1.1. Notations. On note Q la cloture algébrique de Q dans C, et on fixe, pour tout
nombre premier p, une clotre algébrique Q@ de Qp, ainsi qu’un plongement de Q

dans Q.
Si N € N, on note ¢y la racine N-idme de I'unité e2*7/N e @ , et on note Q!

I’extension cyclotomique de @, réunion des Q(¢y), pour N > 1, ainsi que @Cyd
I’extension cyclotomique de (¥, réunion de Q,({x ), pour N > 1.

Objets adéliques. Soient J I’ensemble des nombres premiers de 7 et Zle complété
profini de Z, alors 7 = Hpeﬁ) Zp. Soit Q@ @ 7 I’anneau des addles finis de Q. Si
xeQ® 7, on note Xp (resp. x]P[) la 1 composante de x en p (resp. en dehors de p).

Notons 717l = [1; 4p Z1-Onadonce 7 = Zpx 7171 Cela induit les décompositions
suivantes : pour tout d > 1,

My (Q ® 7Z) = Ma(Qp) x Mg (Q ® 7171
et

GL4(Q ® Z) = GL4(Qp) x GL4(Q ® Z171),
On définit les sous-ensembles suivants de ) ® 7 et de M, Q& 2) :
2P = 7% x 7Pt et Ma(2)P = GL2(Z)) x Mp(2'71),
Q)P =17} x (Q® 7V ot Ma(Q ®Z)P = GL2(Z,) x M2(Q ® Z171).

Formes modulaires. Soient A un sous-anneau de C et T" un sous-groupe d’indice
fini de SL2(Z). On note My (T, C) le C-espace vectoriel des formes modulaires de
poids k pour I'. On note aussi My (I", 4) le sous- A-module de My ([, C) des formes
modulaires dont le g-développement est a coefficients dans A. On pose M([', A) =
EBk oMy (', A), eton note My (A) (resp. M(A)) la réunion des Mg (T, A) (resp. des
M(F A)), ot T" décrit tous les sous-groupes d’indice fini de SL(Z). On peut munir
I’algebre M(C) d’une action de GL(Q)+ = {y € GL2(Q)|dety > 0} de la facon
suivante :

fry=@ety) Sy, pour feM(Clety € GLa(@)y, (1)
ol f, v est 'action modulaire usuelle de GL2(R) ..
On pose :

MITEA) = | M A) et MemEA) = | M),
k

I" sous-groupe
de congruence

Soit K un sous-corps de C et soit K la clture algébrique de K. On note I1x le
groupe des automorphismes de K-algebres graduées de M(K) sur M(SL,(Z), K) ;
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c’est un groupe profini. On note H:@ le groupe des automorphismes de M(Q) en-
gendré par Tlg et GL,((Q) 4. Plus généralement, si § C # est fini, on note Hg) le

sous-groupe de H:@ engendré par Tg et GL,(Z)) ., ot Z5) est le sous-anneau
de @@ obtenu en inversant tous les nombres premiers qui n’appartiennent pas a S. Si
f € M(K), le groupe de galois Sk agit sur les coefficients du g-développement de
£ ; ceci nous fournit une section de [1x — ¥, notée par (x.

Le groupe des automorphismes de M"E(Q%) sur M(SLy(Z), Q) est le
groupe SLy(Z), le complété profini de SL,(Z) par rapport aux sous-groupes de
congruence. D’autre part, soit f € MB(QYY), e groupe G agit sur les coef-
ficients du g-développement de f & travers son quotient Gal(Q%'/Q) qui est iso-
morphe a z* par le caractere cyclotomique. On note H le groupe des automorphismes
de MOE(Qy sur M(SL2(Z), Q). La sous-algebre M8 () est stable par I1g
qui agit a travers f1. Le groupe H est isomorphe a GL, (2) et on a le diagramme
commutatif de groupes suivant (cf. par exemple [14], théoreme 2.2) :

1 g Ho ——= % 1
)
l l lchl
| —= SL,(Z) — GL,(Z) ——= 2 L,
4

ou la section (g de %g dans I[1g décrite plus haut envoie u € Z* sur la matrice
(19) e GLL(Z).

1.2. Le systeme d’Euler de Kato. En bref, un systéme d’Euler est une collection
de classes de cohomologie vérifiant une relation de distribution. La construction du
systeme d’Euler de Kato dans [10], [4] ou [14] est comme suit :

A partir des unités de Siegel, on construit une distribution algeébrique Zsjega SUT

(Q ® Z2)? — (0,0) a valeurs dans Q@ ® (M@Q)[x])* 00 A=gq [Tzl = g™)** est
la forme modulaire de poids 12. La distribution Zgjege €5t invariante sous 1’action du
groupe H:@. La théorie de Kummer p-adique nous fournit un élément

8 € H (T, Dy ((Q ® 2)% — (0,0),Q,(1))).

Par cup-produit et restriction a Hg) C M et Mp(Q R7)P) C (Q®7Z)*—(0,0))2,
on obtient une distribution algébrique :

Zkato € H2(ITE, D, (M(Q ® 2)P, Q,(2))).

En modifiant zgae par un opérateur (¢ — {c, 1))(d? — {1, d)) (cf. §2.3.2 dans [14])
qui fait disparaitre les dénominateurs, on obtient une distribution algébrique a valeurs
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dans Z,(2) (que I’on peut donc voir comme une mesure, NOLEe Par Zaeo,c,d )» €L UNE
torsion a la Soulé nous fournit enfin un élément

Zkatoe.d (K, j) € HE(IIL D, (Mo(Q ® )P, 4 ;)),

ouVy ; = Sym* 2 V, @ Qp(2 — j), ol V, est la représentation standard de dimen-
sion 2 de GL2(Z,).

1.3. Une famille de systéemes d’Euler de Kato sur P’espace des poids. Dans la
suite, on désigne par lo(p) le sous-groupe d’Iwahori de GL2(Zp)

{y € GLa(Zp) | y = (3 %) mod p}.

On note Mgp) =M(Q® 2)]1’[ x To(p).

On note %" I’espace rigide analytique associ€ a ’algebre d’Iwasawa Z,[[Z;])
c’est Uespace des poids et on dispose d’une inclusion de Z C #  en envoyant k
sur le caractére algébrique (z — z¥~2) sur Z,. Dans §2.2, on introduit la notion
de caractére universel (cI. définition 2.1) pour I’espace des poids. On construit une
famille de représentations de Banach D, pui de Io(p) sur I’espace #', ou 'indice
p}?““ désigne la torsion par un l-cocycle p;.‘“iv associ€ au caractere universel £"™ de

I’espace des poids et au caractére det™ avec j > 1, qui admet une section globale
v; interpolant les vecteurs de plus haut poids dans V% ;4, via une application de
spécialisation Io{ p)-€quivariante Spy, ;.

On note Ty( p) I'image inverse de GL., (2)]1’ [ x Ty(p) dans T via I’application
Mg — GLz(Z). Si V est un Z-module, on note Dy (Mgp), V) le Z-module des

mesures sur Mgp ) a valeurs dans V. En appliquant la technique de “torsion a la
Soulé”™ a I'€lément Zggo,0,¢ €t a la famille de représentations (Do, puniv 5 U ;) munie
d’un vecteur universel de plus haut poids v;, on construit une famille d’éléments de
Kato sur I’espace des poids

Zkato.c.d (V) € HA(To(p). Do(ME” Dy juu (2))).

Comme Spy ;: Dy jumie — Vi jy2 est Lo(p)-équivariante, on en déduit un mor-
£l . j H]

phisme de H2(To(p). Do (M, Dy jwm (2))) dans H2(To(p). Do (M5, Vi, ). qui
sera encore noté par Spy ;. Notre premier résultat est que Zgato,c,4 (v;) interpole les
ZKato,c.d (ka J)

Théoréme 1.1 (théoréme 2.19). Sil < j € N, alors pour tout entierk > 1+ j, on
a

Spkd (ZKato,c,d (UJ)) — ZKato,c,d (ka J)
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Remarque 1.2, D’autres éléments de Kato en famille ont été construits par Fukaya
[9] (via la K-théorie) et par Delbourgo [7] (via les symboles modulaires). Par contre,
notre construction consiste a reprendre la construction de Kato [10] et de Colmez [4]
pour réaliser la déformation.

1.4. Ladistribution d’Eisenstein. Les séries d’Eisenstein—Kronecker satisfont des
relations de distribution (cf. lemme 3.2). Cela permet, si ¢,d € Z7, de construire

deux distributions algébriques zg;e 4 (k) et z]’ﬁs’ k) sur (Q ® 2)2 a valeurs dans

M;Ong(Q;yd) (cf. proposition 3.9), invariantes sous I’action de GL,(Q & 2) a mul-
tiplication prés par une puissance de déterminant.
Soient £k > 2etl < j < k — 1 deux entiers. On définit

Zhise (k= 1) ® Zpis a () € Dag(M2(Q ® Z), My (QVY)),

ZEis,c,d (ks J) (] — 1)’
en utilisant le fait que le produit de deux formes modulaires de poids 7 et j est une
forme modulaire de poids i + j eten identifiant (Q xZ)2 x(Q ®Z)? avec Mo (Q R 7).

On peut, si j est fixé, interpoler ces distributions par une distribution analytique
sur ’espace des poids. On dira qu’'une série formelle F(g) = Zne@+ Anq" €
Unmez O(# )[ga]] est une famille p-adique de formes modulaires sur 1’espace des
poids %/, si pour presque tout k € N C #/, I’évaluvation Ev;(F(q)) de F(g) en
point & soit le g-développement d’une forme modulaire classique de poids k. Dans
§32,5ic € Z; etsi j > L, pour chaque (&, ) € (Q/Z)?, on construit une famille

p-adique de séries d’Eisenstein F,. 5 g(«x"™", j ) sur I'espace des poids, qui interpole

les séries d’Eisenstein—Kronecker FCU;_; )en k (cf. lemme 3.13).

On note M(Q @ G(#"))le Q @ O(#")-module des familles de formes modulaires
p-adiques sur #. De la construction de ces familles F, 5 g(x"™, j) et de la rela-
F(k -

c.o.f’
familles F, o g (™", j), qui se traduit en une distribution algébrique Z]’ﬁsql,_(fc““iv . J)

(cf. théoréme 3.15). Ceci nous permet de construire une distribution (cf. § 3.2.3)

tion de distribution entre les on déduit une relation de distribution pour ces

Zhisc.d ("™ ) € D, (MP M@ @ O(#))),

pour 1 < j € Z, qui interpole les distributions d’Eisenstein zgg - 4 (k, j) en k.

1.5. La loi de réciprocité explicite de Kato en famille. Soit Rt = Q p{%} 1’al-
gébre des fonctions analytiques sur la boule v,(g) > 1 a coefficients dans (), ; c’est
un anneau principal complet pour la valuation v, g définie par la formule :

() = b ). S = 3 an(3) e ®*.
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On note K le complété du corps des fractions de I’anneau K * pour la valuation v, g.
K une cloture algébrique de K, ainsi que 8 o, C K la sous-extension algébrique de
; ; i L
R en rajoutant les {as et les racines M -iemes g3 de g, pour tout M > 1. On note
Kt (resp. K},) la cloture intégrale de K+ dans K (resp. Koo)- _
Onnote §g le groupe de Galois de & sur &, P, le groupe de Galois de Q& o, sur
R, et P&;l le groupe de Galois de K o, sur K. L’application qui a une forme modulaire

associe son g-développement, nous fournit une inclusion de M(Q) dans QPR'O"O
équivariante sous [’action de Pg,,. On en déduit ainsi un morphisme Pg, — Tlg, qui
induit un morphisme g — Ilg et un morphisme “de localisation” H' (Ilg, W) —
H! (g%, W) pour tout ITg-module W ettouti € N,

La loi de réciprocité explicite de Kato consiste a relier I’élément Zgato, ¢4 (k. 7).
qui vit dans la cohomologie du groupe Hg ). 2 une distribution construite & partir
du produit de deux séries d’Eisenstein (le produit scalaire de Petersson d’une forme
primitive avec un tel produit fait apparaitre les valeurs spéciales de la fonction I de
£, etc’est cela qui permettrait de construire la fonction L p-adique). Ceci se fait en
plusieurs étapes :

e On commence par “localiser” notre classe de cohomologie a §g et par étendre
les coefficients de Vi ; A B ® Vi ;, o0 B = B (K ) est un anneau de Fontaine.

e On constate que ’'image de Zgao.c.4 (k. j) sous I’application “de localisation”

HXTIE, D, (Ma(QBZ) P, Vi ;) — H2(8x., Dy (Ma(Q@Z) P B @ Vi ;)

est I'inflation d’un 2-cocycle sur Péy; a valeurs dans D, (M>(Q ® 2)(1?)’ B ®
Vk.j). Les méthodes de descente presque étale de Tate [12] et Sen [11], revisitées
par Faltings [8] (cf. aussi Andreatta-lovita [1]) permettraient de montrer que c’est
toujours le cas, mais une preuve directe pour I’élément de Kato est donnée dans [ 14],
5.2.

¢ On construit une application exponentielle duale (cf. [14], §5.1) :

XPiato” H (P, DagM2(Q @ 2)'7. B @ Vi)
— HO(P@p= D (M2(Q ® 7)), Ky,

ot K1 est la réunion des JC;;, pour tout M > 1 avec JC;;, le complété g-adique de
la cloture intégrale ﬁ;‘, de &t dans Ky = K[as,qar]; et on calcule I’image de
ZKato,c,d (k’ .])

La définition de I’application expg,,, et le calcul de I'image de Zgaeo.c.z (k. J)
reposent sur la méthode de Tate—Sen—Colmez et sur une description explicite (cf.
[14], proposition 4.10) de la cohomologie de Pg,, = Gal(Kprpe/Kp)avec M > 1
tel que vp (M) =m > v (2p) et Kpygpoe = Up=1Kagpn.

Le groupe Pg,, est un groupe analytique p-adique de rang 2, isomorphe a

Py = {(‘;3) eGLy(Zy):a=1,¢=0 bep"Z, dc 1+mep}.
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Onnote (u,v) € (p™Zp,)* I'élément (6 2% ) de Py,. Soit V' une représentation analy-
tique (cf. définition 4.4) de Py, on dispose des dérivations d,,;: V — V,i = 1,2,
définis par

N / B S
Om,i = lim —“——_ ol y; = (p™.,0),y2 =(0,p").
n—+oo P

La proposition suivante est une version entiere de proposition 4.10 dans [14].

Proposition 1.3 (proposition 4.5). Soit V une représentation analytique de P, munie
d’un Zip-réseau T stable sous I’action de Py,. Alors

(1) tout élément de H*>(P,,, T) est représentable par un 2-cocycle analytique &
P p ¥ yitg
p2"-torsion prés;
(2) onaB?(Pp. T) = (T/(Dm.1. 0moa—p™)), et Uimage d’un 2-cocycle analytique
; 2P
] kil
(1, 0). (x,¥)) = Cauv)(x,3) = Z Cijhegtt' V7 X"y’
i+j+k+i=2

avec p("+j+k+l)mc,-,j,k,; e T, par cet isomorphisme, est celle de

2 2
8P (umte) = PP (€100, = C0,1,1.0)
a p*"-torsion pres.

En utilisant la proposition ci-dessus, on construit une application exponentielle
duale en famille (cf. § 4.2) expg,,, , de

H*(Po,. Dug(M§”. B (K7 ,00) & Do g (7))

dans Dy, (Mgp), KL @Zp O(#")). On calcule I'image de Zgao 0.4 (vj) sous Iappli-
cation exponentielle duale expg,, , €t obtient finalement notre résultat principal, qui
montre que I’application expy.,, , estune application exponentielle duale en famille :

Théoréeme 1.4. Si j > letsic,d € Z;, alors pour tout entierk > j + 1, ona:
(1) GXPI’k{atD,U (ZKato,c,d (Uj)) = ZEiS,C,d (K 5 J)a
(2) Evk © eXPI*(ato,u (ZKato,c,d(Vj)) = expl*(ato OSpk,j (ZKato,c,d (Vj))-

univ

Remarque 1.5. Dans [9], Fukaya a construit une fonction L. p-adique en deux va-
riables sur une famille de formes modulaires ordinaires en appliquant sa K-série de
Coleman a son élément universel de Kato. Par ailleurs, Panchishkin [13] a donné une
construction de la fonction L. p-adique en deux variables sur une famille de formes
modulaires non-ordinaires sans utiliser le systeme d’Euler de Kato. Récemment, Bel-
laiche [2] a construitune fonction L. p-adique en deux variables sur la courbe de Hecke
(“eigencurve”) en utilisant la théorie de symboles surconvergents. Les résultats de
cet article peuvent aider a construire une fonction L p-adique en deux variables sur
la courbe de Hecke en utilisant le systeme d’Euler de Kato, ceci est le sujet de [15].
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2. Famille de systémes d’Euler de Kato sur I’espace %"

2.1. Grouperigide analytique p-adique et caractére universel. Soit G un groupe
abélien discret ou un pro-p groupe abélien, topologiquement de type fini. La Z -
algebre de groupe Z,|G| (resp. la Zp-algeébre de groupe complété Z,[|G]| si G est
un pro- p-groupe), est naturellement une algeébre de Hopf (resp. une algébre de Hopf
complete), dont la structure de Hopf est induite par la structure de groupe de G. Alors
on peut lui associer un groupe rigide analytique .2~ sur (Q,. Les C,-points de 2
sont ’ensemble Hom o (G, (C;), des caracteres continus sur G a valeurs dans Cp,.

Définition 2.1. Soit G un groupe ci-dessus et soit 2 le groupe rigide analytique
associé. L’inclusion canonique G — Z,[G] — O(Z") induit un caractére £"™ de
G dans @ (27)*. On I'appelle le caractére universel du groupe rigide analytique 2.

Soit U un ouvert affinoide de 2. Six € U(C,) est un caractére continu sur G &
valeurs dans €7, on définit une application d’évaluation en point «

Ev.: O(U) = C,.
Par définition, on a le lemme suivant :

Lemme 2.2. Six € 2 (C,) est un caractére continu sur G & valeurs dans C?, on a
alors
k = Ev, o g™,

Exemple 2.3. On définit I’espace rigide analytique associé a I'algebre Z,[[T]] en
utilisant le schéma formel affine (cf. [6], §7).

Onnote Spf Z,|[T']] le schéma formel. Onnote A, = Z,|[T]| [%] le sous-anneau
de Z,|[T ]| @Q et B, le complété de A, pour latopologie ( p, T')-adique. On constate
que B, est aussi le complét€ p-adique de A4, :

By = { $i°o am(%)m L ay € Zp|[T] tel que limy, vp(a,) = —|—oo}.

Enfin, on note C, = B, ® Q. Ceci nous donne un systeme projectif {C, } muni de
morphismes de transition C, 1 — C,, induits par les inclusions 4,41 C 4,.Les C,
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sont des Q,-algebres affinoides et le morphisme de transition identifie Spm(Cy, 41)
comme un sous-domain affinoide de Spm(C,, ). En fait, C,, est I’anneau des fonctions
analytiques sur le disque v,(7T) > %

Ondéfinit]’espace rigide analytique (#4, O) associé au schéma formel Spf Z, [ T']]
comme la réunion croissante admissible des affinoides Spm((;,) ; I’algebre des sec-
tions globales (9(#;) s’identifie a la limite projective l(gln C,, qui est RT I’anneau
des fonctions analytiques sur le disque ouvert v, (T') > 0.

On note A = Zp[[Z;]] I'algebre d’Iwasawa, qui est un anneau semi-local ré-
gulier, noethérien, de dimension de Krull 2. L’espace rigide analytique %" sur Q.
qui lui est associé est appelé U'espace des poids. Les C,-points de #” est I’ensemble
Homon (A, Cp), des caractéres continus sur Z; a valeurs dans C ; .

On note  le caractere de Teichmiiller. On a une décomposition Z; = pip—1 X
(1 + pZp) donnée par la formule z — (w(z),{(z)), qui induit la décomposition
# = Hom(ptp—1,Cp) x Homeon (I, C), 00 I' = (1 + pZp). L’espace # admet
d’un recouvrement admissible { W, },,1, o0 W, = Hom(p,—1, (C;) x Hom g (1 +
p"Zp,C,). En fixant un générateur y € T, on a un isomorphisme

Homou (I, Cp) = {1 € Cp,vp(f — 1) > 0},

en envoyant un caractére continu x sur «(y). En fixant un générateur (¢, y) de

Hp—1 X (1 + pZy,), le caractere universel K" de ¥ est donné par la formule

d 1 N : i
5 s A o(z) ooy (Z), ol on remplace les variables ¢ et y par X et T respective-

ment. Comme log, {(z) = % € Zp, 708747} ¢ Zp||T — 1]
Définition 2.4. Soit 2 un (@,-espace rigide.

(1) Un sous-ensemble Z C .2 est dit Zariski-dense si pour tout sous-ensemble
analytique U € Z telque Z C U, alors U = 2.

(2) Soit Z C 2" un sous-ensemble Zariski-dense, tel que pour tout z € Z et tout
voisinage ouvert affinoide V de z dans 2, V N Z est Zariski-dense dans chaque

composante irréductible de V' contenant z, on dira alors que Z est tres Zariski-dense
dans 2.

Un exemple important est que I’ensemble N (resp. Z) est trés Zariski-dense dans
I’espace des poids #'.

2.2. Famille de représentations de Banach sur # et ses tordues. Soit K un
sous-corps complet de €, et soit (A, | - |4) une K-algébre de Banach.

Définition 2.5. Soit M un A-module ; une norme sur M estune application |-|: M —
R4 telle que

(1) |m| = Osietseulement sim = 0;
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(2) |m+ n| < max{|m|, |n|}.sim.n e M,
(3) |lam| < |a|a|m|sia € Aetm € M.

On dit qu'un A-module M muni d’une norme est de Banach si M est complet pour
cette norme.

Exemple 2.6. (1) Soit / unensemble. On note ffl’ (I)’ensemble des familles bornées
X = (x;);e7 d’éléments de A. On munit ‘63 (1) de lanorme |x| = sup;; |x;|, ce qui
en fait un A-module de Banach. On note ‘(f’j (1) le sous A-module de ‘ij’ (/) des suites
x = (x;);e7 d’éléments de A tendant vers O suivant le filtre des complémentaires des
parties finies (ce que nous écrivons x; — O pour i — 00). C’est un A-module de
Banach comme sous- A-module fermé d’un A-module de Banach. Si A = K estde
valuation discréte et si |M | = | K|, tout K-espace de Banach est de la forme €%(7).

(2) Soient (M, |-|ar), (N, |-| ) deux A-modules de Banach. On note Homy4 (M, N)
le A-module des morphismes continus de A-modules. On le munit de la norme sui-

vante
fl= sup LDV

, si f € Homy(M, N),
0#£meM |m|M

ce qui en fait un A-module de Banach. En particulier, si N = A, M = Homy (M, A)
est le A-module de Banach dual de M.

(3) Soit X un espace topologique et soit M un A-module de Banach. On note
€%(X, M) le A-module des fonctions continues sur X a valeurs dans M muni de
la topologie compact-ouvert (i.e. convergent uniformément sur tout sous-ensemble
compact de X'). Soit I' C X un sous-ensemble compact et soit V' un sous A-module
ouvert de M ; on note U, le sous-ensemble de ‘Cfo(X . M) des fonctions continues
a support dans I" et a valeurs dans V. Ceci fournit une base d’ouverts si I" décrit les
sous-ensembles compact de X et V' décrit les sous-ensembles ouverts de M. Si X
est compact, le A-module topologique €°(X, M) est un A-module de Banach, qui
est isomorphe au A-module de Banach €°(X, K) @x M.

Définition 2.7. Soit M un A-module de Banach.

(1) Une base de Banach de M est une famille bornée (e;);c7 de M telle que tout
élément x de M peut s’écrire de maniere unique sous la forme d’une série
convergente x = » ,.;a;e;, oll a; sont des éléments de A tendant vers 0
suivant le filtre des complémentaires des parties finies.

(2) Une base orthonormale de M est une base de Banach (e¢;);e7 de M telle que
I’application (a;)ie; = >,z aiei. de ‘6’2(1) dans M, est une isométrie.

On dit que M est orthonormalisable si M admet une base orthonormale.
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Exemple 2.8. (1) Si7 € N, on note £(i ) le plus petit entier n vérifiant p” > i.Ona
donc

logi
log p
Sir € N, on note €"(Zp, A) le A-module des fonctions de classe € a valeurs
dans A (c.f.[5] L5). Comme Z, est compact, on a un isomorphisme de A-modules
C(Lp. A) = € (Zp. K) ®x A. Par ailleurs, le K-espace vectoriel €” (Zp, K) est
un K-espace de Banach muni d’une base orthonormale {p” E(”)(;); n = 0}. Ceci
implique que €7 (Z,, A) est orthonormalisable. En particulier, si r = 0, €%(Z,, A)
est le A-module des fonctions continues sur Z,, a valeurs dans A.

(2)Sih € N, on note LAj(Z,, A) 'espace des fonctions ¢: Z, — A dont la
restrictionde ¢ a4 p"Z p estlarestriction d’une fonction A-analytique sur le disque
fermé {x € C,;vp(x — a) > hy, quel que soit a € Z,; c’est aussi un A-module
de Banach orthonormalisable et on a LA, (Z,, A) = LAR(Z,, K) ®x A. On aune
inclusion de A-modules LA, (Z,, A) C € (Zp, A) pourtoutr > Oeth € N.

(3) Soit M un A-module de Banach orthonormalisable et soit {e;};c; une base
orthonormale de M. On a un isomorphisme de A-modules :

LO) =0 et E(i)z[ }+1, sii> 1.

M = Homy4(€9(I), A) = Homg (€2(I). A).

Onnote M " I'image inverse de Homg (‘81%(1 ). K)®@x Adans M sous!’ isomorphisme
ci-dessus, qui en fait un sous-A-module de Banach. De plus, M " est orthonormali-
sable.

Définition 2.9. Soit (G un groupe topologique. Une A-représentation de Banachde G
estun A-module de Banach orthonormalisable muni d’une action A-linéaire continue
de .

Exemple 2.10. (1) Soit Vg une K-représentation de Banach de G (1.e. un K-espace
de Banach muni d’une action K-linéaire continue de ). On étend I’action de (¢ sur
Vo par A-linéarité en une action sur le A-module de Banach V = T} ®x A, ce qui
est une A-représentation de Banach de G.

(2) Soit V une A-représentation de Banach de G a droite. On suppose que V
est munie d’une structure d’anneau. On note V* le groupe des unités de V. Soit
n: G — V* un l-cocycle (i.e. une fonction continue sur G a valeurs dans V telle
que n{hiha) = nlhy) * han(hy)). On note V(n) la A-représentation de Banach VV
tordue par le 1-cocycle 7.

(3) Soit V' une A-représentation de Banach de G a gauche. Sa A-duale V =
Homy (V, A) est munie de [’action de G a droite donnée par la formule

fxy@) = f(yv), siyeG, feV,vel.

Le sous-A-module V' (cf. exemple 2.8 (3)) de V est stable sous cette action, et donc
une A-représentation de Banach de G a droite.
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Définition 2.11. Soit G un groupe topologique et soit .2 un espace rigide. Une
famille ¥ de représentations de Banach de G sur 2 est la donnée d’un faisceau sur
2 tel que

(1) pour tout ouvert affinoide V' C 27, F(V) soit une @(V)-représentation de
Banach de G ;

(2) si V' C V sont des ouverts affinoides de .2, ’application canonique
FWV)Bow)O(V') — F(V')
soit un isomorphisme de O (V'’)-représentations de Banach de G.

Soit To(p) = {y € GL2(Zp)|y = (§%) mod p} le sous-groupe d’Iwahori
de GL,(Z,); c’est un groupe p-adique. Rappelons que Vi ;4. = Sym*—2 V, ®
Qp(=j),ouV, = Qper & Qpey est la représentation standard a droite de GL(Zp)
donnée par la formule : ey * y = aey + bey, ey x y = cey +dey,siy = (¢ 3,) €
GL2(Z ), estune représentation algébrique de I ( ) muni du vecteur e’f —2¢=/ deplus
haut poids & pour le sous-groupe de Borel inférieur. Dans le reste de ce paragraphe,
sil = j € N, on construira une famille Dogp;niv de représentations de Banach

de To(p) sur I’espace des poids #, qui est une interpolation p-adique en poids des
représentations algébriques Vi ;4o de Io(p) (Il y aune autre interpolation en utilisant
’espace des fonctions analytiques par Chenevier [3]). La construction se découpe en
trois étapes :

e On définit une action modulaire de Iy (p) sur Z, par la formule z * y = bagu

a+tcz
siy = (4 2) € To(p), et une action continue de To(p) sur €%(Z,, Z,) a gauche par
laformule : yf(z) = f(z*y),siy € Io(p) et f € €%Z,,Zp). Ceci permet de lui
associer un faisceau constant de représentations de Banach €Y, de Io( p) sur # défini
par : si U un ouvert affinoide de %, on pose ‘C’OW(U) = €%Z,,O(U)). Son anneau
des sections globales est la limite projective l(gln eoWw,) = Lgln €NZ,,Qp) &
O(Wy).

e On note €Y, (#)* le groupe des unités de I’anncau €Y, (#') des sections glo-
bales de €5,. Soit p: Lo(p) — €L(#)* un l-cocycle de Lo(p) (ie. p(y1y2) =
(v10(y2)) p(¥1)). On note ‘Cf&p la famille de représentations de Banach ‘Cf% tordue
par le l-cocycle p, c’est-a-dire, si I/ C #  est un ouvert affinoide, y € Io(p),
feel U et f* € f;);p(U) correspondant & f, ona yf? = p(y)(vf)P. Alors
f%p est encore une famille de représentations de Banach de Ty(p) sur 'espace des
poids. En particulier, on peut tordre ‘C’OW par un caractere de Lo(p) vu comme un
l-cocycle.

Sia € Zy etsic € pZp, on définit une fonction sur Zp, a valeurs dans O (#)

fa,c(z) = KuniV(a + ¢z).
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Lemme 2.12. La fonction f, .(z) appartient & €%, (#"). De plus, elle est une unité
de I’anneau €9, (W).

Démonstration. Onaunisomorphisme O(W,,) = Zp,[pp—1] ® Cp, ot Cy, estle sous-
anneau de Q,[[T; — 1]] consistant des fonctions analytiques sur le disque v, (77 —1) >
% et pp—1 estun groupe cyclique d’ordre p — 1 engendré par { = {,—_1. On remplace
la variable { par X;. Dans la suite, on identifie O (%) avec Zp[pp—1] ® Cy. La

i e d + 1 a+tez})
fonction f, . s’écrit sous la forme X" ¢ wlatez) plog, ( 23

1
Comme v,(Ty — 1) > L, la fonction Y~ (P)(Ty — 1)¥ est dans €2(Z,, O(Wy)).
On en déduit que la série

ploty Gatezd) _ 3 (logy“a T CZ>))(T1 — 1)k

k
keN

est dans €%(Zp, O (Wy)) pour tout n et donc appartient & ‘Cf% (7).
Comme "™ est un caractére sur Zp, la fonction K" ((a + cz)™1) € €5 (#)
est inverse de f, -(z). O
Sil < j e N, on définit une fonction p}?““ sur Lo(p) 2 valeurs dans €3, (#)*
par la formule :

g=(95) p(g) = fuc()(detg)™, sig=(25) e lo(p).

. b b
Sigy = (i: di)eth = (i; di)a ona

PY™(2122) = Saraztbreacrantdier(2) det(g1g1) ™ = (210" (22) 8™ (21);

ceci implique que p;.‘“iv est un l-cocycle.
Sik € N, 'application d’évaluation Evy induit un 1-cocycle algébrique py_; sur
To(p) & valeurs dans €°(7Z p» Qp) donné par la formule :

pr.;(g) = Evi(p™(g)) = (a + c2)* " (det g) ™.

Onnote f,? ; la @ ,-représentation de Banach €%(Z ,, Q) tordue par le 1-cacycle pg, j
0, univ .
et ‘67,/9“’ la famille de représentations de Banach ‘67(}/ tordue par le 1-cocycle pi™

de Lo(p). Alors, I'application d’évaluation Ev;. induit une application d’évaluation

univ

de €, ’ dans€? ;- hotée par Evy ;. Un calcul direct montre le lemme suivant :

; p}}mv

Lemme 2.13. L'application Evy ;. €, — ‘€£ ; est Lo( p)-équivariante.
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0, univ ]
e On définit une famille duale Dy juiv de ‘C’Wp"’ de représentations de Banach
Mg
sur # :si U C ¥ est un ouvert affinoide, Dy i (U) est défini par Dy juir (U) =
* J » J

&2 .

On note I’accouplement O (U)-linéaire Iy ( p)-équivariant

0, univ
()2 Do e (U) e, (U)— o)

par I'intégration |. z,"

(M*%f)=[z f(pt*y)=fz (s,

i 01 qniv
si fee,” (U).yely(p)etpc Dy s (V).

On note Dy 1_; la représentation Q,-duale de Io(p) de ‘618 ;- Remarquons qu’on

a une inclusion de €%(Z,, Q) dans €%(Z,, O(U)). Si k € Z appartient & U, alors
I’application Ev_; induit une application, notée encore par Evg ;,

Do e ) = Doy [ vy = Bwi( [ )
4 Zp Zp
pOU.I‘ f S \6’1811-, LL € DD,p}“iv(U)'
Lemme 2.14. L’application Evi ;: Dy i (U) — Do i ; est Lo(p)-équivariante.
oy :

Démonstration. Si f € f’,?j,,u € Dy juir(U) et g € Ig(p), ona
b R

[ ressweo=wn( [ sweo)=wu( [ @)
:f (¢f)Evg, ;i (1) =/ FIEvk,;(p) * g]. U
Zp Zp

Le faisceau Dy ,uiv nous donne une interpolation des représentations algébriques
R

Vi, j+2 de Io(p) pour k € N au sens suivant : la fonction f: Z, — Vi ;4. donnée
par :
2 f(z) = (e1 +ze)* 217,

est une fonction continue sur Z, a valeurs dans Vi ;4,. On définit une application
linéaire continue 7y ; : Do ; — Vi, j4+2 par Uintégration : . — fzp fz)u.

Lemme 2.15. L’application wy ; est Lo(p)-équivariante.
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Démonstration. Ce lemme se démontre par le calcul suivant: si y = (4 3) € Lo(p),
alors pg ;(y) = (a + cz)* 2 (dety)™/ et

k-2

h2 (/Z (k [_ 2)21(M * y))ellc—z—zeét_j
= : (Lp(k l— 2)(2 * V)lpk,j()/)#)elf_z_leéff

— f (aeq + bey + 2(cer + deg)) 2 (det(y)r) 7
Zp

f (e1 +ze) 2 (ury) =
ZP

_ ( (e1 + ze2)o-2~ ,u) ‘y. O
Zp

Si U est un ouvert affinoide de # et si k € Z appartient & U, on définit une
application de spécialisation Spy ; : Dy juus (U) — Do, ; — Vi j+2 en composant
; o ;
I’application d’évaluation Evy_; et I’application mz_;, qui est Io( p)-équivariante par
les lemmes 2.14 et 2.15.

Remarque 2.16. La masse de Dirac dy en O fournit une section globale v; de
D, pu (#) qui interpole le vecteur de plus haut poids e’f‘zt_f dans Vi ;- ;eneffet,

fzp (e1 + zex) 21778y = ei‘_zt_j, ce qui se traduit par la formule Spy_;(v;) =
ek 247,

2.3. Famille de systemes d’Euler de Kato sur I’espace des poids

2.3.1. Torsion a la Soulé. Soit GG un groupe localement profini, agissant conting-
ment & droite sur un espace topologique localement profini X . Soit I/ une A-représen-
tation de Banach de G a droite, ol A estune Q,-algébre de Banach. Onnote el(x, V)
le A-module des fonctions continues sur X a valeurs dans V et Dy( X, V) le A-module
des mesures sur X i valeurs dans V. On munit €%(X, V) et Dg(X, V) d’actions de
G adroite comme suit:sig € G,x € X,p(x) € €%X, V), et u € Do(X, V), alors

Fwgh) = faws Yy o fxﬁb(x)(ﬂ*g):(/X(ﬁb*g_l)ﬂ)*g-

Soitp € Do(X, Zp) etsoit M un(Q p-espace de Banach muni d’un base de Banach
E = {e;}ies.Onauneinclusion de Dyg(X, Z,) C Do(X, M). Soit | € eOX, M);
Iintégration [y f(x)u est définie comme suit : on décompose f = ", .; fie; sous
la base de Banach E de M avec f; € €%(X, Q) et 'intégration [y f(x)p est donné
parla formule {, f(x)u = > e [y filx)p.
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Proposition 2.17. Soit f € €°%(X,V)®. La nudtiplication d’une mesure |1 €

Do(X,Zp) par la fonction [ induit un morphisme G-équivariant a droite de
Oo(X, Zp) dans Do(X, V).

Démonstration. 1l suffit de vérifier que c’est G-équivariant. Soit {e;};c; une Q-
base de Banach de V. On décompose f(x) souslaforme >, .; fi(x)e; avec fi(x) €
€%(X,Qp). Soit ¢ une fonction continue sur X 2 valeurs dans Q. Si on considere
px g € Do(X, Zp), alors 'intégration [, ¢ (x)(f(x) ® p* g) s"écrit sous la forme :

[ @ ey = e [ o0x o it

iel
- f $(x * ) f(x * D).
X

Par ailleurs, I'intégration [y ¢(x)(f ® p) % g s’écrit sous la forme

[owremre=([ sarormen)ss
53 X
— [ s @ o,
Comme f € €%(X, V)% ona f(x*g) = f(x)*g. Ceci permet de conclure. [

2.3.2. Application au systéme d’Euler de Kato. On note f‘o( p) = GL, (2)]1’ [
To(p)et fo(p) I’'image inverse de iy (p) dans I1g. On note Mgp) = M(Q ®2)]p[ ™
To(p). Six € Mgp), on note x, sa composante a la place p.

Rappelons que I'on a construit une section globale v; € Dy p (#") qui interpole
les vecteurs de plus haut poids e’f‘zt_f de représentations algeébriques Vi ;1o de
To(p). Pour tout ouvert affinoide U de %, la fonction x — v; * x, est une fonction
continue sur Mgp Y & valeurs dans D, i (U/) invariante sous ’action de T (p). De
manicre explicite, si x, = (¢ 3) € Io(p),onav; x x, = p;?“iv(xp)ﬁg, ol 5% est
la masse de Dirac en %. Elle interpole la fonction continue x +— (e{c_zl_f ) * Xp sur
Mgp ) 3 valeurs dans Vi, j+2 via I’application de spécialisation.

Considérons la multiplication d’une mesure . € Dy (Mgp ), Z,(2)) par la fonction

X > V) ok X, (Tesp. X > (ei‘_zt_f) * X ). Ceci nous donne une mesure (v; *X,) @
k—2,—j ) s
(resp. (ef " “177) * x, ® p) sur Mgp a valeurs dans Do’p‘l;niv (U)(2) (xesp. Vi, j+2).
Lesfonctions x > v;*x,etx > (e’f_zt_f )* X, satisfont la condition “invariante

sous I’action de 1:0( p)” par construction ; on déduit le corollaire ci-dessous de la
proposition 2.17.
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Corollaire 2.18. La multiplication d’une mesure j € ZDO(Mgp),ZP (2)) par la
fonction x + (e{c_zl_j) * Xp (resp. X > Vj * Xp) induit un morphisme I'o(p)-
équivariant a droite de L p-modules de Dg (Mgp), Zp(2)) dans S)o(Mgp), Vi, i) (resp.
DM, Dy yous (#) (D).

D’aprés Kato [10] et Colmez [4] (voir aussi [14]), on dispose d’une mesure
ZKato.c.d COnstruite A partir des unités de Siegel et appartenant A H? (Tl gy, Do(M(Q ®
2)09 ). 7 »(2))). L'application de restriction de IIg a I'g(p) et I'application de res-

triction de Do(M2(Q ® Z)#, Zp(2)) dans Oy (Mgp) , Z,(2)) nous fournissent une
application

H(Ig, Do(M2(Q ® 2)P, Z,(2))) - HX(To(p), DoM”, Z,,(2))).
On note I'image de Zgy .4 SOus cette application de la méme maniere. D’apres

le corollaire 2.18, quel que soit U C # ouvert affinoide, la multiplication par la
fonction x + v; * x, (resp. x (e]f_zl_f ) * xp) induit un morphisme naturel :

H>(To(p), DoMY”, Z,(2))) = HX([To(p), DeME”, Dy s (U)(2)))
(resp. H2(To(p), DoMS”, Z,,(2))) = HX(To(p), DoM¥, Vi 1))
On défnit,
ZKato.e.d (V) = (V) % %p) @ Zkaiwc.a € H (To(p), Do(M”, Doy (U)(2)))

(1eSP. Zkatoc.d (k. ) = (€X72677) % xp @ Zxatoc.a € HA(To(p), DM, Vi ))).

o To( p) agitsurDy wa (U)(2) & travers son quotient [o( p). Comme ' application de
i
spécialisation Spy ;1 Dy yuwv (U) — Vi, ;42 est I'o(p)-équivariante, pour tout ouvert
£ » J E

U C W, elle induit une application de spécialisation
Spr.; - H2(To(p), DoMY, Dy _us (U)(2))) = HA(To(p), DoMY, Vi ;
Pr.; - H (To(p). Do(M;™, o,pgmv( )(2))) — H (ol p), Do(M;, Vi ;).

On déduit le théoréme suivant de la construction de v; (cf. remarque 2.16) et du
corollaire 2.18 :

Théoréme 2.19. Si 1 < j € N, alors pour tout entierk > j + 1, on a

Spk,j (ZKato,c,d(Vj)) = ZKato,c,d (k, J)
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3. Une famille de distributions d’Eisenstein

3.1. Séries d’Eisenstein—-Kronecker et la distribution zg;s .4 (k, j)

3.1.1. Séries d’Eisenstein—Kronecker. lLes résultats dans ce paragraphe peuvent
se trouver dans le livre de Weil [16], voir aussi [4], [14].

Définition 3.1. Si (z,z) € # x C, on pose ¢ = e?'** et g, = ¢?'™2. On introduit
I’opérateur 9, 1= ﬁa% = qZ%. On pose aussi e(a) = e¢?'™ Sik € N, 1 € Jt,

et z,u € C, la série d’Eisenstein—Kronecker est

Ho(s,7,2.4) = T'(s) (r—f)s—k Zr w + zF e(mﬁ—ud))’

(—2im)* \ 2ixw T |w + z|2 T—1T

qui converge pour Re(s) > | + %, et possede un prolongement méromorphe a tout

le plan complexe avec des pdles simplesens = 1 (sik = Oetu € Z+ Z1)ets =0
!

(sik =0etz € Z + Z1). Dans la formule ci-dessus Z signifie (siz € Z + Z1)

que 1’on supprime le terme correspondant a @ = —z. De plus, elle vérifie I’équation

fonctionnelle :

Hygds: 75 z.m) = e(zu _ ?Z)Hk(k +1—s5,7,u,2).

Sik > 1, on définit les fonctions suivantes :
Er(z,z) = Hilk,7,2,0), Fr(z,z) = Hp(k, 7,0, 2).

Les fonctions Ex(z, z) et Fy(z, z) sont périodiques en z de période Zt + Z. De plus,
ona:

Erii(r.z) = 0 Ep(r,z)si ke N et FEo(r,z) =log|0(r,z)|si z ¢ Z + 71,

ou 8(z, z) est donnée par le produit infini :

0(z,2) = ¢""2(g}* — g7V [ [(1 = ") — ¢" g7 )).

n=1

Onnote A = (3,0(z,2)|,—0)? =g l_[ >1(1 — g™)?* la forme modulaire de poids
n
12. B
Soient (o, B) € (Q/7Z)? et (a,b) € Q? qui a pour image («, B) dans (Q /7). Si
k=2et(a,p) #(0,0),ousik > lethk # 2, ondéfinit :

ng;)a = Ek(’[, art + b) et F{gcﬁ) = Fk(f’a’[ 4+ b)
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La série H,(s, 7,0, 0) converge pour Re(s) > 2, mais pas pours = 2;sik = 2 et
(o, B) = (0,0), on définit

Bey =T = lim H3(5.7.0,0).

Lemme 3.2. Les fonctions E{gké, F U‘E satisfont les relations de distribution suivantes,

quel que soit Uentier f > 1:
(k) (k) (x) 2—k (k)
D By =SBy e ) Fup=fTTF @
fa'=a.fB'=p Sfal=a, fB'=F
(k) (k) (k) (k)
> EG(F)- s e X RS(F) -
fB'= fB'=8

Proposition 3.3. (1) &) = F2) = 5LE2, oi

E} = —— —|—1—24Z(71(n)q

in(t—1)

est la série d’Eisenstein non holomorphe de poids 2 habituelle.
(2) 85i Nou = NS =0, alors

@ El = Bly — Egy € Ma(Tw. QEn)) et By € My(Ty. Qn)) sik 2 1
etk # 2.

(b) FL9 € Mi(Tn. QEN)) sik = Lk # 20usik =2,(0. B) # (0.0).

Proposition 3.4. Siy = (ﬁ 2) € GL2(Z),k = et (o, B) € (Q/Z)? ona

F© o p®

(k) k)
B sorchbavap @ F = .F

,3 ac+cB.ba+dp”

Définition 3.5. Soit A un anneau. Une série de Dirichlet formelle a coefficients dans
A est une série de la forme ZnE%N apn—*, o0 N € N et (a,) désigne une suite
d’éléments dans A. On note Dir(A4) le A-module des séries de Dirichlet formelles
dont les coefficients sont dans A.

Soit « € /7. On définit les séries de Dirichlet formelles («,s) et {*(a, ),
appartenant i Dir(Q%), par les formules :

o0
w,8) = n et o,8) = g% no.
é—( : ) Z —s é—*( , ) Z 2iman,, —s
ne@j_ n=1
n=q mod Z
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Remarque 3.6. Les séries de Dirichlet { (o, s) et {*(«, s) convergent pour Re(s) > 1
et elles se prolongent analytiquement sur le plan complexe en fonctions méromorphes
avec au plus un pole simple en s = 1. Ces prolongements définissent la fonction zéta
de Hurwitz {(a, s) et la fonction L de Dirichlet {* (w, $) respectivement.

La proposition suivante décrit le g-développement d’une série d’Fisenstein (cf.

[10D).

Proposition 3.7. (i) St k = 1,k # 2eta,f € Q/Z, alors le q-développement
Zne@_,_ ayq" de E;k‘é est donné par

Y A = b (Bs — k) (DR 98 (s — k4 1)

ne@j_

De plus, on a :

Soit k #£ 1.ag = 0 (resp. ag = (B, 1 — k) si a # 0 (resp. a = 0).
Soitk = 1. Onaag = {(w,0) (resp. ag = %(é‘*(ﬁ,O) —{*(—p.0))) si a0 # O (resp.
a = 0).

(i)Sik = letwa,B e Q/Z (sik =2, (a, B) # (0,0)), alors le g-développement
2 one. @nq” de F;k,g est donné par

E

> Sh = s —k 4+ DEBs) + (D! (s =k + DI =BLo).

ne@j_

De plus,
ap = (o, 1 — k), la valeur spéciale de la fonction zéta de Hurwitz, si k #£ 1

aok: (o, 0) (resp. ag = %(é‘*(ﬁ, 0) — *(=5,0)) sia #£ O (resp. a = 0) et
sik = 1.

3.1.2. Lesdistributions zg;s(k, j) et zgis .4 (k, j)}. Dansce paragraphe, onrappel-
le la construction des distributions d’Eisenstein zgis(k, j) et Zgis e a(k, j) construites
a partir d’un produit de deux séries d’Eisenstein dans [4] et [14].

Soient X = (Q ® 2)2, G =GL(Q® 2) etV = M;mg((@cyd). Alors X estun
espace topologique localement profini et G est un groupe localement profini agissant
continiment a droite sur X par la multiplication de matrices.

L’action a droite de G sur V', notée par *, provient de |’action de H:@ sur V,

et ’action de Ilg se factorise a travers son quotient GL, (2) Comme tout vy €

GL,(Q ® Z) peut s’écrire sous la forme y = g1 i%)((l, 9)g2 avec g1.42 €

GL, (2), ro € Q% eteunentier > 1, il suffit de donner respectivement les formules

pour y € GL,(Z)ouy = (r(?r%)ouy = {32}z
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(1) Comme ("9 FOD ) et (3 9) apparaissent dans GL;(Q) 4., ses actions sont données
par la formule (1) dans §1.1.

(2) Siy € GLy(Z), enutilisant la décomposition GL,(Z) = U, 5. SL2(Z)(} 9).
on décompose 1’action de y en deux parties. Comme on est en poids &, I’action
de SLZ(Z) est P'action |. L’action de ( (1) g) est via un relévement oy dans
S agissant sur les coefficients du g-développement. Dans le cas des séries
d’Eisenstein, la proposition 3.4 explicite les formules.

On a le théoreme suivant, qui traduit les relations de distribution pour les séries
d’Eisenstein en terme de distributions (cf. [14], théoréeme 2.12) :

Théoreme3.8. Sik > 1, il existe une distribution algébrique zgis(k) (resp. zp. (k) €

D ((Q ® 7)?, M;;Dl"lg(@cycl)) vérifiant : quels que soient r € Q* et (a,b) € Q?, on
a

— k
/ N _ zmistk) =7 kE(—)lar 15
(a+rZ)x(b+rZ)
- k ;
W”y/ b =rE®, L, sik=2),
(a+rZ)x<(b+rZ)

Z!- (k) = rk—ZF(I_C) .

</;a+r2)x(b+r2) s el

De plus, si y € GL,(Q ® Z), alors
zmis(k) * ¥ = zmis(k) etz (k) % y = |dety|' " zg, (k).

On peut identifier (Q ® 7)) x (Q ® Z)? avec Mo>(Q ® Z) via ((a, b). (¢, d)) —
(g 3,) En utilisant le fait que le produit de deux formes modulaires de poids i et
est une forme modulaire de poids i + j, on définitpour k > 2etl < j <k — 1,

zris(K, J) = ————=Zpi(k — /) ® Zgis(J) € Dapg(M2(Q ® Z) Mi(Q)).

1
(j—D!
La distribution zg;s . 4(k, j) dans [14] est construite & partir de combinaisons

lin€aires de séries d’Eisenstein. On rappelle sa construction ci-dessous.
Soit {( - )): Z, — Z* I'inclusion naturelle en envoyant x sur

(x)y =(1,....x,1,...),

ou x est a la place p. Considérons I'inclusion de 7* dans GL, (Z) en envoyant d sur
( 9). D’aprés la proposition 3.4, cela définit une action de d € Z* sur les séries
d’ Elsenstein par les formules : si k > 1 et (a, 8) € (Q/Z)*,0na

k %) (r’c) (k) (k) (k)
d'Eoz,ﬁ:Eda,dﬁ *( ) et d'Fa,ﬁ:Fdoz,dﬁ >|<( ), (4)



840 S. Wang CMH

ou ’action de * est celle de GL., (2) sur les séries d’Eisenstein.

Considérons I'injection de M;Oﬂg (QQ) dans a\ﬁong (Qp). On peut définir une va-
riante de séries d’Eisenstein a coefficients dans €@, comme ci-dessous : si ¢ € Z;,
on pose

(k) k (k) .
ES = {62%@? —¢ ]fg)»a,«c»ﬁ sik > letk #2,
Y5 4 2 _ 2 ) B ‘
CCE =P E oy weyp SLE=12 5
)y _ 250k 2k () _
Foap = Fyp = Fropaqeps Stk zletk#2,

ousi(uw,B) #(0,0) etk = 2.

Elles sont des combinaisons linéaires de séries d’Eisenstein.

Proposition 3.9 ([14], proposition 2.14). Soit ¢ € Z;. Sik = 1, il existe une distri-
bution algébrique zgis . (k) (resp. Z;Eis,c) € D, (0 ® 2)2, M;mg(Q;yd)) vérifiant :
quel que soientr € Q* et (a,b) € Q% ona

Zris,c (k) = r g

c.r—la,r—1p

/;a+r2)x(b+r2)

! k=2 (k)
(resp./ ~  ZpR)=r""TF L 1)
(a+rZ)x(b+rZ) His.c crlarTlb

De plus, si y € GL,(Q ® Z), alors on a
ZEis,C(k) xY = ZEis,C(k) et Z;ilis,c HY = |dety|1_kz;ilis,c (k)

Soient ¢, d € Z;. Sik =2etl < j < k — 1, on définit une distribution
Zgis,c.d (K, ) appartient & D, (M (Q ® 2), My (Q;yd)) par la formule :

: 1 . .
Zgis,e,d (k. J) = Wzﬁis,c (k—J) ® zgisa(J)-

(
Siy € GL2(Q ® 2), on a Zgis.c.g(k, j)1 v = |det y|! " zgss . a (k. J).

3.2. Famille p-adique de séries d’Eisenstein

3.2.1. Lafonction zéta p-adique. Soita € (J/Z ; on note {«} le plus petit nombre
rationnel positif tel que {o} = o mod 7Z, et on note ord, (o) (resp. ord &) I’ordre de
o dans le groupe Q,/Z, (resp. Q/7Z ).

Dans la suite, on suppose que o« € Q/Z vérifie ord,(«) = p. Six € Zp, on note
ord(w)({or} + x) par xg, qui appartient & Z .

Sic € Z,, on note i, la mesure sur Z, dont la transformée d"Amice A,

[

eEEor rl Par ailleurs, le caractére universel de I’espace des

2
= C
est donnée par % —
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poids «"™iv Zy — O (#") est une fonction continue sur Z, a valeurs dans O,
Sil < j € Z, on définit la fonction zéta p-adique de Hurwitz comme la fonction
holomorphe sur #

é'p,c(’cuniv:a:j) — _[ KuniV(xa)<xa)1—j‘u)C_
: z,
Lemme 3.10. Si j, k sont deux entiers > 1, alors on a

EVit ;({pcc™ o, 1)) = ord (@)1 0(00) "1 (0% (@, 1K) =2 F ¢ (e, 1-K)).

Démonstration. De la définition, on a bien

Evit) (pe (€™ 0, /) = —0(0a) " f X e

Zp

On se raméne a vérifier que fzp xkpe = —ord(@)* (2 (o, —k)—c' K e ({{e ), —k))
On utilise la transformée d’ Amice A, de p. pour calculer I'intégrale f, Zp xE it

On suppose que ¢! € N. Si on pose T = ¢’ — 1, on a alors

fz a#c(x) = ord(«) (jt)k(ép e({a}+x)1#6)|z_0

p _ord(oz) f(T—I— a2, )| =0

= ord(w) ( d ) (T + D™y )|i=o-

On note fy la fonction 1 — (=F ) - et qui est € sur R, . Comme

e-’ T e —11 -1
pour toutn € N, 1" f,(¢) tend vers 0 quand ¢ tend vers +oo, on a

d \k
(37) (T + D A)leo = £P© = (~DFLfalt). ),

olt L{ fo (1), s) est définie par la formule 1"% ) f+°° fu(O)1571dr .

D’autre part, on a { ({w}, s) = F(s) f+oo e(le, {al})! t*~1dt. Ceci implique que

L(fa(),8) = 201 = {a}, 5) — Tl — ca}, ).

On en déduit une égalité algébrique
f xEpe = ord(@)* (—DF (¢ (1 = {a}, —k) — " 7F (1 = cfa}, —k))
Zp
= —ord(@)*(c2¢ (fa}, —k) — " F e (clat, —k)),
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ot la derniére égalité se déduit du fait que ¢ ({a}, —k) = (=D ¢l — {a}, —k). Si
¢ € Z,, on choisit une suite (c,) d’éléments de N qui converge vers ¢ (resp. {{c)))

dans Z* (resp. 7), de telle sorte que la suite (¢, {or}) tend vers {{{c))a}. Ceci permet
de conclure O

3.2.2. Une famille p-adique de formes modulaires. Si o € Q/Z, on définit la
série de Dirichlet formelle ¢ (w, x"™, j, s) appartenant i Dir (¢ (%)) par la formule :

Ela ™™ 4, 8y = Z n~* (n ord(@))! ™/ k"™ (1 ord(w)).

nE@j_,nEa[Z]

Par définition, on a Evg ; ({ (e, &™, j,5)) = ord(a)* =12 (o, s — k + 1).
Sil <jeNet(w,p) € (Q/Z)? avec ord, @ > p, on pose ﬁaﬁ(ic““i",j) =
> Q% amq" dont sa série de Dirichlet formelle associée est

G, k™, j,9)E7 (B, 8) + K™ (D=1 L (= ™7, jo ) (=B,s). (6)

Sic € Zy, on définit deux séries formelles appartenant & Upren O(#)[[ga]] :

ﬁc,a,ﬁ (Kuniv,j) — CZF"Q”B (Kuniv:j) . Kuniv(c_l)cjﬁ((c})a,((c})ﬁ (Kuniv,j) (7)
ct

Fonp(™, 1) = 0(0)' 7 - Lo ("™, at, §) + Fog p (K™, f). (8)

Définition 3.11. Une famille p-adique de formes modulaires sur I’espace des poids
# est la donnée d’une série formelle F(g) = Zne@+ Apg™ € Uprez O )lgarl|
telle que pour presque tout point £ € N C #', Evi(F(g)) est le g-développement
d’une forme modulaire classique.

Remarque 3.12. Soit F une famille p-adique de formes modulaires sur I’espace des
poids. Si Z est un sous-ensemble trés Zariski-dense (cf. définition 2.4) de 7, tel que
Evi(F) =0pourtoutk € Z,alors F = 0.

Lemme 3.13. Si k, j sont deux entiers > 1, on a

univ k k
By j(Feap (K. ) = (orda) 1 FR) — 2 FR, o).

Par conséquent, lasérie formelle Fe o g(k"™, j) est une famille de formes modulaires

surl’espace des poids.
Démonstration. C’estune conséquence directe de la définition de F, 4 g (k"™ j) et
de la proposition 3.7. L
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Lemme 3.14. Soit (o, B) € (Q/Z)? tel que ord, o > p, la famille F, o g (K™, j)

satisfait les relations de distribution suivantes, quel que soit Uentier f > 1:
Y Few g™, ) = fFeap®™, ).
fo'=a:fB'=p

i : L univ. -
D Feap ™™, ))@T) = [Frap®™™, j)@).
/B'=8

9)

Démonstration. Ondonneune démonstration pour la premicre relation et la deuxieme
se démontre de la méme fagon. Si fo' = w et fo' = o, ona ord(¢') = ord(e”) =
ord(ae) f. En utilisant le lemme 3.2 et le lemma 3.13, on déduit la relation de distri-
bution pour Evy (F, g (™, j)) pourtout k > 2 + j :

Evi( Y. Feawp®™. =Y (o) )7ERD
Sa'=a; fB'=8 fo'=a: fB/=8
= (Ord(a)f)k_j_l fz_k+j F(k_J)

c.a.ff
= vak(Fc,oz,,B (Kuniv’ J))

On conclut le lemme par le remarque 3.12. (]

On définit une action de T'g( p) sur Fg o (k™ j) par la formule :

) . b =
D) sty = (50 2) € Tolp),

univ uniy

Fc,a,ﬁ (K : J) * Y = Fc,a0a+coﬁ,b0a+doﬁ (K

qui commute avec [’application d’évaluation Evy.

3.2.3. La distribution zg;s ¢ 4 ("™ ). Dans ce paragraphe, on construit une fa-
mille de distributions d’Eisenstein qui interpole en poids k la restriction de la distri-
bution d’Eisenstein Zgjs c.a(k, j) sur Mz2(Q ® 2)(1’) a Mgp), ol Mgp) = M(Q ®
2P xTo(p) -

La relation de distribution (cf. lemme 3.14) pour F., g(x
terme de distribution :

uniy i) se traduit en

Théoréme 3.15. Si 1 < j € N, il existe une distribution algébrique
T ("™, ) € Dapl(Q @ )P x (Q @ Z), MP"(QY @ O(#)))
vérifiant : soient 0 # r € Q* et (a,b) € Q? tels que a € Ly et vp(r) > 1, 0na

!

univ
Zis.c (K

[ -7
(at+rZ)x(b+rZ)

_ ] —1 _~j—1, univ ; wniv -
=rJord(r "a) "k (ord(r—la))Fc’r_la’r_lb(’( 1)

De plus, siy € Ty(p), on a zl’iis’c(x“““, Jy®xy = zl’iis’c(fc“““,j).
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En utilisant le fait que le produit d’une forme modulaire classique et d’une famille
p-adique de formes modulaires est encore une famille p-adique de formes modulaires,
on définit

uniy

ZRis,c.d (K- f) = (K )@ Zpisd (/) € Dy M, MQRO(#))).

!
—
G =Dt e

D’aprés les constructions dans théoréme 3.9 et théoréme 3.15, la distribution
ZEis.c.d (K", J) posséde la propriété suivante :
Proposition 3.16. Sik > 2etsil < j <k —1,0ona

univ

Evi(Zrisc.d (K" . J)) = Zrisc.d(k, J)-

Démonstration. 1l suffit de montrer que
Evk (Z],E.is,c (Kuniv: J)) = Zfilis,c (k - J)

Si0£reQ*et(a,b) e Q?telsquea € Z,etup(r) = 1,0na

Evk( -~ ~ Z],Eis,c(’cunivz .]))
(a+rZ)x(b+rZ)

= (ord r_la)j+1_krk_2_jEvk(Fc,r—la,r_lb(Kunivs 7))
Par ailleurs, on a ord ﬂﬁgﬁ = []; ord; iﬁﬁrl& = ord £ et donc
o A jiq plk—j
EVe(Fp pm1 15 (€™ ) = (ord DT FERD,
Ceci implique que

EVk( ) ) Z;ijisqg(’cunivzj)) - ?‘k_j_zF(k_“;)
(a+rZy<(b+rZ) a

[ e ~ Z],Eis,c(k - .]) ([
(a+rZ)x(b+rZ)

4. La loi de réciprocité explicite de Kato en famille

4.1. Préliminaire. Dans les deux premiers paragraphes, on rappelle la méthode
de Tate-Sen-Colmez utilisée dans [14]. Ensuite, on établit une version entiere de la

description explicite de la cohomologie des représentations analytiques du groupe
Pg,, dans §4.1.3.
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4.1.1. Danneau &*. Soit K+t = Q p{%} 1’algebre des fonctions analytiques sur la
boule v,(g) = 1 a coefficients dans (@, ; c’est un anneau principal complet pour la
valuation v, g définie par la formule :

Up,R(f) = nlg% Up(an)a sif = %an(%)n eRt.

Dans la suite, on notera v, au lieu de v, g'. On note & le complété du corps des
fractions de I’anneau &t pour la valuation v,. Fixons une cloture algébrique K de
K. Comme K est un corps complet pour la valuation v,, on peut prolonger v, sur &
a K. On note le groupe de Galois de X sur K par §g.

Soit M > 1 un entier. On note gps (resp. £a7) une racine M-idme g™ (resp.
exp(%f)) de g (resp. 1). Onnote Fpy = Q,[Ear]. Soit Kar = K[gar. {ar] s c’estune
extension galoisienne de K. Soit Far = K[{ar] la sous-extension galoisienne de K s
sur K ; la cloture intégrale 3‘;‘; de KT dans Fpy est KT[{ar], qui est anneau des
fonctions analytiques sur la boule v,(g) > 1 a coefficients dans Fas. Alors, Kps est
une extension de Kummer de ¥ de groupe de Galois cyclique d’ordre M, dont un
générateur ops est défini par son action sur gas :

oMam = CMam -

Onnote K, (resp. Koo, Foo) laréunion des R_M (resp. Kar. Fyr) pourtout M > L.
Onnote Pg,, (resp. P@p) le groupe de Galois de QK o sur K (resp. Q,K). Le groupe

P@p estun groupe profini qui est isomorphe a Z. De plus, on a une suite exacte :

0— P@p—>P@p—>ﬁ@p—>O,

et le groupe Pg, préserve I'algebre des formes modulaires M(Q), ce qui permet de
définir une application de localisation §g — Pg, — ITlg.

Fixons M un entier > 1. On note Kprpoe (resp. Faurpoe, Farpoc) la réunion des
Kppn (resp. Fapn, Farpoo) pour tout 1 > 1. On note Pg,, le groupe de Galois de
Kupoo sur Kpyr. On note Ug,, le groupe de Galois de Karpoe sur Farpoe, qui est
isomorphe au groupe Z,, et onnote I'g,, le groupe de Galois de Faspoe sur Kz, qui
est isomorphe au groupe Gal(Fpspoc / Far ). On a donc une suite exacte :

0—Ug, — Pg,, —I'g,, = 0.

Soit & la cloture intégrale de &+ dans &. On a une inclusion Q » C K*.On
note RL la cloture intégrale de K™ dans Kpz, qui est aussi la clture intégrale de
%L dans Kys.

! La restriction de la valuation v, g 4 Q) coincide avec la valuation p-adique v, sur Q.
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4.1.2. L’anneau B;‘R pour &7 et ses sous-anneaux. Soit L un anneau de carac-
téristique O muni d’une valuation v, telle que v,(p) = 1 . Onnote O = {x €
L,v,(x) = 0} 'anneau des entiers de L. On note O¢(z) le complété de &y, pour la

valuation v,. On pose C(L) = OC(L)[%].

Définition 4.1. Soit A, = O /p®r pourtoutn > 1;alors le systéme { A, } muni de
morphismes de transition 4, — A, définis par I’application de Frobenius absolu
X, > x} forme un systéme projectif. On note R(L) sa limite projective

LiI_nAn = {(Xn)neN | Xn € Or/pOy et xf_,_l = Xxp, sin € N}.

Six = (Xp)new € R(L), soit X, un relévement de x, dans Oc(ry. La suite

()Ac:: _T_k), converge quand k tend vers Iinfini. On note x™ sa limite, qui ne dé-
pend pas du choix des relévements X,. On obtient ainsi une bijection : R(L) —
() en|x® € Oc(ry- (x@+ NP = xO pourtout n}. Si x = (x@),y = y@
sont deux éléments de R(L.), alors leur somme x + y et leur produit x y sont donnés
par:

(x + y)® =jli>n;o(x(i+j) 4y @M o ()@ = xOy®

L’anneau R(Z.) est un anneau parfait de caractéristique p (i.e. le morphisme
x > x? estbijectif). Onnote A;,¢ (L) ’anneau des vecteurs de Witt a coefficients dans
R(L.). Alors A;¢(L) est un anneau p-adique (i.e. un anneau séparé et complet pour
la topologie p-adique), d’anneau résiduel parfait de caractéristique p. Si x € R(L),
on note [x] = (x,0,0,...) € Ajs(L) son représentant de Teichmdtiller. Alors tout
élément a de Aye(L) peut s’écrire de maniere unique sous la forme > pc ¥ el
avec une suite (xz) € (R(L)Y.

On définit un morphisme d’anneaux 6 : A, (L) — Og () par la formule

+ o0 + o0

k k_(©
7P bl = Y PR
k=0 k=0

On note B;;(1L) = Ainf(L)[%], et on étend 6 en un morphisme
Bint(L) — C(L).

On note B, (L) = By (L)/(Kerd)™. On fait de B,,({.) un anneau de Banach en
prenant 'image de A ¢ (1.) comme anneau d’entiers.

On définit B;&(L) = l{ln B, (L) comme le complété Ker(€)-adique de B (L) ;
on le munit de la topologie de la limite projective, ce qui en fait un anneau de Fréchet.
Donc 6 s’étend en un morphisme continu d’anneaux topologiques

B (L) — C(L).
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On peut munir B, (L) d’une filtration de la fagon suivante : pouri € N, notons
Fil* IB"'R (1.) la i-iéme puissance de I’idéal Keré de IB"'R(L)

L’anneau A;,;(L) s’identifie canoniquement a un sous-anneau de B, (1), et si
k € N,m € Z, on pose

Upi = p"Ane(L) + (Ker0)*1BE (L),

alors les Uy, x forment une base de voisinages de 0 dans IB (L)

Pour simplifier la notation, on note Ay (resp. Biys et IB r) I'anneau A (R )
(resp. B (RY) et BL (R T)).

Soit g (resp. gar si M > 1 est un entier) le représentant de Teichmiiller dans A,y
de (q.qp,....qpn,...) (resp. (gr, . ...qmMpn, ... ). SIM|N, onaéﬁ/M = G-

On définit une application continue tqg: & ¥ — B, par f(g) = f(§); ce qui
permet d’identifier R ¥ 4 un sous-anneau de B, (R ). Mais il faut faire attention au
fait que tag (R ) n’est pas stable par g car jo = @) sio € 8g, ot cq estle
1-cocycle a valeurs dans 7, (1) associ€ a ¢ par la théorie de Kummer.

Posons KT = e (R[] Si M = 1 est un entier, on note ﬁ"’ I’anneau
K+ [Gar, Car]. On peut étendre Iapplication tqg en un morphisme continu de &*-
modules yg : R"‘ — IB (R"') en envoyant {as et gas sur é‘ M €L g respectivement.
Alors, onaR"' = tr(KF)[[£]]- On pose K7 poe = U, KT [Crtpn. dnapn).-

On définit une application (gr (R) T lmea1re Ry K7 Mpoo ﬁ;& par la formule
suivante :

“a ~h -1 AL
] K Fa b Chpnpgpn S1P"|a et p"{b;
RM: R+ —5 R+ 5 é’a nq n (rd P P
Mp=s MprEME 0 sinon.

Proposition 4.2. 81 M est un entier > 1, alors
(1) HO(5R,; 00 Bi) = B (K] 00 ),
(2) Sné poo €51 dense dans IB (R Oo),
(3) Sivp,(M) = v, (2p) alors Ry s’ étend par continuité en une application KT -
linéaire Ry : B (RMPOO) — RL qui commute a l’action de §g.

Soit 4 une Qp-algébre de Banach et on note A ’anneau des entiers de A.

Propeosition 4.3. Si v,(M) > v,(2p), si V est une A-représentation de Banach
de Pg,, possédant une A -représentation T telle que Pg,, agisse trivialement sur
T/2pT, et sii € N, alors Ry induit un isomorphisme :

Ry H (Pg,, . B (Riy,0) 80, V) = H (Pg,,. &Y &0, V).

Démonstration. Ladémonstration est standard et le lecteur intéressé€ pourra consulter
[14], section 3. L]
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4.1.3. La cohomologie des représentations du groupe Pg, . Soit M > 1 tel que
vp(M) = m = vp(2p). Le groupe de Galois Pg,, de I’extension Kpspoc /K ps est
un groupe analytique p-adique compact de rang 2, isomorphe a

Py = {(‘;3) €eGLy(Zp):a=1,¢c=0bep"l, de 1+mep},
etsiu, v € p"Z,, onnote (§ %) deP,. Laloide groupe s’écrit sous la forme
(u1, v1) (2, v2) = (ePuy + uz,v1,v2).

Soient U, et T, les sous-groupes de P, topologiquement engendrés par (p™,0) et
(0, p™) respectivement. Ces deux sous-groupes sont isomorphes a Z,. De plus, Uy,
est distingué dans P, eton a P,,/U,, = T,,. Comme U,, et T, n’ont pas de H?, la
suite spectrale de Hochschild—Serre nous fournit, si V' est une {Q,-représentation de
dimension finie de P,,,, un isomorphisme

H2(P,,, V) = HY(T, HY(Up, V) = V/((p™.0) — 1, (0, p™) — e?™).

Soit y € Py, ;I'image delafonction analytique oy, © Zp — Py, oy (x) = y* estun
sous-groupe & un paramétre. On dira que I’action de Py, sur une (@,-représentation
de dimension finie V' est analytique si pour tout y € Py et v € V, la fonction
X = yrv = :;Xg, (ﬁ)(y — 1)"v est une fonction analytique sur Z, a valeurs
dans V.

Soit V une Q,-représentation de P,,. Sil’action de Py, sur V est analytique, pour
tout y € P,,, on peut définir une dérivation d,,: V' — V par rapport a «, par la
formule :

o oxkyP —x

dy(x) = lim ———
R—o0 p

En particulier, on note d,, ;, i = 1,2, les dérivations par rapport a (p™, 0) et (0, p™)

respectivement.

Définition 4.4. On dira qu’une {,-représentation de dimension finie V' de Py, est
analytique si [’action de P, est analytique sur V.

On a le résultat trés utile :

Proposition 4.5. Soit V' une représentation analytique de Py, munie d’un Z.,-réseau
T stable sous ’action de Py,. Alors, ,

(i) tout élément de H? (P, T) est représentable par un 2-cocycle analytique a un
élément de p?™-torsion pres;

(i) ona H2(Pp,, T) = T/ (0.1, Om.2 — p™), et U'image d’un 2-cocycle analytique

okl
(1, 0). (x,¥)) = Cauv)(x,3) = Z i i vl E " e,
i+jit+k+i=2
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avec p(""'j"'k"'l)mc,-,j,k,; e T, par cet isomorphisme, est celle de

5P (i) = PP (C1,0.01 — 0.1,1,0)

& un élément de p*™-torsion pres.

Démonstration. On dispose des opérateurs 0;: V — V,i = 1,2, définis par
x * (U,v) = x + udix + vdx + O((u, v)?). Ces opérateurs ont des propriété
de dérivations : si x1 € Vi,x2 € V3, ou Vi, V5 sont des représentations analytiques
de P, etsii =1,2,ona

3i(x1 ® x2) = (3;x1) ® x2 + x1 @ i x2.

On a les relations suivantes 9y = p~"0y,,, d2 = p~"0dy,,.

La proposition 4.10 dans [14] dit que si V' est une représentation analytique de
P, alors

(i) tout élément de H?(P,,;, V) est représentable par un 2-cocycle analytique ;

(ii) on a un isomorphisme H?(P,,, V) = V/(d;, 3, —1), etI'image d’un 2-cocycle
analytique,

(1, 0), (X, ¥)) = Cl)(xy) = Z Ci,j,k,zuivjxkyl,
i+j+k+i=2

sous cet isomorphisme est aussi celle de 3(2)(0(%1,),(35,),)) = 1,0,0,1 — €0.1.1,0 dans
V/(d1,02 —1).

Comme d; et 9, — 1 introduissent des dominateurs, ils ne préservent pas 7. Par
contre, dy,,1 €t dpy 2 — p™ le préservent. La démonstration de la proposition 4.10 dans
[14] s’adapte a une démonstration du théoreme ci-dessus. Pour faciliter la lecture, on
donne I’'idée de la démonstration ; les détails du calcul se trouvent dans [14].

(1) Le groupe P,, est de dimension cohomologique < 2. En utilisant la suite
spectrale de Hochschild-Serre, on déduit de la suite exacte | — U, — Py, —
Ty, —1:

H? (P, T) = HY (T B (U, T)) = T/t — L, v — e27).
Par ailleurs, 1’application surjective naturelle

¢: T/(Oma,0ma2—p") = T/(um—1, v — epm)

est un isomorphisme. On en déduit I'isomorphisme H*(P,,, T) == T/(dpm.1, Iz —
p™). Par cetisomorphisme, il suffit de montrer le point (i /) du théoréme et de montrer
que ’application

5@, {2-cocycles analytiques} — T

induit une surjection H™2(P,,, T) — T/(3m.1. dm.>» — p™) 4 un élément de p"-
torsion pres.
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(2) Le calcul délicat dans §4.1 de [14], qui montre que I’application
5@ {2-cocycles analytiques a valeurs dans V} — V

induit une surjection H*2(P,,,, V) — V/(3p.1. 3.2 — p™), s’adapte A notre cas en
constatant que I’'image d’un 2-cocycle analytique a valeurs dans 7' sous I'applica-
tion 82 est dans p=2" T (cf. [14], lemme 4.14). Plus précisément, si o p).(x.y) =
Zi+j+k+122 c,-,v,-,;c,;u"vjxkyl est un 2-cocycle analytique sur Py, a valeurs dans 7,
on construitun 2-cobord formel d (b, y)) tel que ¢y ), (x.y) — (€1,0,0,1—C0,1,1,0)UY =
db. Notons que b ,y ne converge pas sur Pp,, mais il converge si on le restreint a
P+, (2p)- Par ailleurs, on a la suite exacte d’inflation-restriction,

0 — H2(Pi/Putv,2p), T2 P — H2(P,,, T) — H2(Ppui, 2py- T).

ott H*(P,,/ Prntv,2p)- TPm+vp2p)y est un groupe de p2"-torsion. Ceci permet de
prouver le théoréme. L

4.2. L’application exponentielle duale de Kato en famille

4.2.1. La structure entiére de la représentation Dy, j,w de Pp. Solent L une
extension finie de (¥, et )y son anneau des entiers. A un élément u € Dy(Z,, L),
on associe une série formelle :

ZP
appelée transformée d’Amice de . On a le lemme suivant :

Lemme 4.6. L’'application p — A, est une isométrie d’espaces de Banach de
Do(Zp, L) sur & = OL[[T] ®z, Qp.

La transformée d’ Amice induit un isomorphisme de familles de représentations
de Banach de Dy, i (#”) sur Sap R O).
i

Lemme 4.7. Soient u,v € p™7Z,. Si p est une mesure sur L, a valeurs dans Qp,
Uaction de (1, v) € Py sur Ay (T') induite par celle sur Dy (W) est donne par
T

la formule suivante :
A (T) % (u,0) = e (1 + T AL+ T) —1). (10)
L’anneau 5‘21" ;. des fonctions analytiques sur le disque v,(T) > 1, noté par C;
dans 'exemple 2.3, est un L-Banach pour la valuation vg, définie par la formule

+o0
VR, (f) = inf (vp(bn) + 1), i > B T" e RY,.

n=_0
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On note 331" ;7 son anneau des entiers pour la valvation vg, .

On note D le faisceau de modules de Banach sur I’espace des poids défini par :
D(#,) = 32 1.0p ® O(#;) pour tout entier n > 1. Comme le O(#})-module
86; ® O(#;) est dense dans Dy(#;,), ['action de P, sur 8+p ® O(#y) s étend
en une action continue sur Dy (%#7,). Ceci nous fournit un faisceau de représentations
de Banach sur %, noté par Dy ;. On note Di':j(%//n) = J%i"ap @)Zp O le
sous-((#;)* -module de Banach de Dy ;(#;), qui est la structure entidre de la
O (#y)-représentation de Banach Dy ; (#,) de Py,.

Lemme 4.8. L’action de Py, surDy ;(#},) est analytique pour tout n.

Démonstration. Comme le groupe Py, est un groupe analytique compact de rang 2
engendré par u,, = (p™,0) et v, = (p™,0), il suffit de montrer que, pour tout
f(T) € Dy j(#,), la fonction x +— f(T) * u;, (resp. x — f(T) % y,,) est une
fonction analytique sur Z, a valeurs dans Dy ; (#7,).

Comme y* = ;:_ o ( )(y 1)" poury € P,,, on se raméne a estimer la valuation
(y—_Tl_lm pourtout i € N ety = uyy,, Vi respectivement. En effet, de la formule (10),
on déduit que pouri € N et y = u,; ou yy, la valuation de _l_i)Tl est > 1. On

donne |’ estimation seulement pour y = yy, et’estimation pour y = u,, se déduit de
la méme maniére.
De la formule (10) pour y,,, on a

+o00 " y
: . " i i ; ep —1 1
Té o (y — 1) = (L + T)° —1)—T‘_T’((Z(k)T )—1).
k=1
On conclut le lemme du fait que la valuation de ( ;3 (eim)Tk_l)i —lest>1

dans Dlgj(%). ]

Pour terminer ce paragraphe, on établit les formules pour les actions de 9, ; et
Om.2 sur Dy_; (#5) pour tout n.

Lemme 4.9. Si f(T) = ), 0 a;T" € Dy ; (W) avec a; € O(Wy), les actions de
Om.1 €t 02 — p™ sur f(T) sont données par les formules suivantes :

Im,1 f(T) = p™log(1 + T) f(T),

+oo
Bm2 — P") F(T) = p"(Q_aii(l + T)T* ' log(l + T)) — p"(j + ) A(T).

i=1
(11)
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Démonstration. On donne seulement le calcul pour 1’action de 9, », et la formule
pour ’action de 9y, ; se déduit de la méme maniére :

4 M ] - n ;
' T: % (i — 1 L+ 1) det ") - T
b AT = fim L@ —D o (@41 ) det™7 (v)
n—=cd pn n— 00 pn
i i ] ; m-4n .
e, (A T ey - 7
T oo pn

_ _jmez’ + p" log(1 + T)(Z (;{)k(l + T)k(_l)i—k)
k=0
= p" (i(L+ DT log(1 + T) = jT*). -

4.2.2. La construction de I’application expg_, . Onnote KRIt =7 p{%} I’an-

neau des entiers de & ™ pour la valuation v, ainsi que X son complété g-adique.
p D q p ¢-adiq
On note K I’anneau des entiers de K3,. qui est [’anneau
M q

{ +°° o UnGyy € S?"' an € Fur tel que vp(ay) —I— = > 0}
et on note JCA";,"' son complété ¢-adique, ainsi que K, = K ﬂ‘;"' ® Qp.

Rappelons que U'application tgg: & — Bl:: f(g) = f(§) identifie K * 4 un
sous-anneau de B, On note &7 = 1 (RT)[1]] et K1 = (r(KTT) @ Q)17
oll tgr (K1) est le complété g-adique de g (RT1). De méme, on note ﬁIJ =

R (REPIE] et Ky = (ar (K377 @ Qp)[[¢]]. On abien

wr(K3) = { :03 anGyy € Frrllgarll - an € Py tel que vplan) + 57 = 0}.

On définit une application 6 : J"CJA";, — Ky + par réduction modulo ¢, qui coincide
avec celle sur RL On constate que R est la limite projective hm (R /"), oules

ﬁﬁ /1" sont des & T-modules de rang fini munis de la topologle p- adlque.

Fixons un ouvert affinoide %, de I’espace des poids % pour n > 1 un entier. On
aun isomorphisme O(W,) = Z,|A]| @ C,, ou C, est le sous-anneau de Q|77 — 1]]
consistant des fonctions analytiques sur le disque v,(7T7 — 1) > % et A est un groupe
cyclique d’ordre p — 1 engendré par X;. Dans la suite, on identifie O(%7,) avec
Zp|A]l @ Cy.

PosonsD = 1{1&1“1 (ﬁL/t”l Y@D1_j—2(#7), quiestune O(#;,)-représentation de

Pm Elle n’est pas une @, —repre’sentation analytique. On note D" = (1r (R‘H') ®
1; LD/t le Zp-réseaun de (Si /") @ Dy_;_2(#) qui est stable sous
’action de P,,,. On déduit de laformule (10) quel’idéalm = (77—1, T, gps ) de Dt
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est stable sous 1’action de P,,. Ceci nous permet de définir des Z ,-représentations
analytiques D172 de P, pour tous n1, 1, > 1,

ﬁ+,n1,n2 = (ldR(RIJF) @ Dtj_z(%)[[t]])/tnl)/mnz'

L’inclusion D lim lim Dtz de P,,-représentations, nous
% <17 ((<—n2 ) @ Qp) " P

permet de définir un morphisme :
i = . i . ~+,T’n‘,1 Mo
H (Pm,D)%Lglan (Pm:(glnzD ) @ Qp)

; 5 i AW
—lim ((lim H (P DY""2) ® Q).

Lemme 4.10. les actions de 0,1 et 3y, 20 — p™

[formules suivantes :

sur t et gy sont données par les

pt

Om1(0) = 0.9m,10Gm) = -

a2 Om 2 (1) = p"'t. 3m 2(Gm) = 0.

Démonstration. Lelemme se déduit d’un calcul direct, qui se trouve dans [14], §5.1.
]

Propeosition 4.11. Si v,(M) =m > v,(2p) et si j > 1, alors [’application

fFlan) = Ay, 77 fGu)

induit un isomorphisme de JC;;,"' @)Zp OW,) sur

. . N L) _ pift
Lglm ((EMD [ (Bm,1. 0m2 — P™) @ Qp),

ot Ay, _, est la transformée d’Amice de la section globale vj_; de Doqp‘l}n_ivz (#y) C

Dy j—2(¥n).

Remarque 4.12. Lasection globale v;—; estla masse de Dirac en 0 (cf. lemme 2.16).
Ona sy, _,
pas triviale : si y = (¢ 3) € To(p), ona Ay, _ 4y = s, - K" () det(y)2~/, ol

= 1, mais il faut faire attention que 1’action de [y (p) sur D712 pegt

85 estla masse de Dirac en % (siy € Py,onaa = 1 et donc k"™ (a) = 1).

Pour démontrer la proposition (4.11), on a besoin d’un lemme préparatoire. On
définit une valuation p-adique v, sur Fps[A] par la formule :

p—2

vp(x) = inf  wvp(a,), six = E ap X7 avec a, € Fuy.
0<n<p-—2 n
=
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Alors tous les éléments de D712 sont de 1a forme

k ! =
Z ak,l,r,sT (Tl - 1) qu‘!tsa
O<k.l.rs
k+i4+r=<na—1;
s<ni1—I1
o agy,s € Fy|A] vérifie vy(ary ) + 37 + 5k > 0
On note M, 5, le sous-Z ,-module de D112 des éléments de la forme

l"’ [N ,ow T'
Z a;,r,sAuj_z(Tl —D)'gyt’ ob ap, s € Fy vérifie vplay,s) + Vi > 0.
0<l.r.s

I+r<na—1;
s=<n1—1

On constate qu'il n’existe pas d’élément de D172 tel que Oy 1 X appartient a
M., .n,. Par conséquent, I’application naturelle

: Ryt
$1: My ny = DTN/
est injective.

Lemme 4.13. Le 7. ,-module My, | ., + qulf)""-‘”l-‘”z contient pZm(n1+1)Tf)+,n1,n2,
pourtout ny,ny > 1.

Démonstration. 1’aprés lelemme 4.9, onalaformule d,, (T%) = p™ log(1+T)T*
et donc

m
Bt (TG 15) = p"T* log(1 + TGl + rT* %5541”1. (12)
Six e f)""”l’”z, alors x est de la forme

k I~
Z ak,l,r,sT (Tl - 1) qu‘!tsa
0<k.l.r.s;
k+i4+r=<na—1;
s<ni1—I1
avec ay 1,5 € Fy[A] vérifiant vy(ag s,s) + 37 +k = 0.
Il s’agit de montrer que tous les termes pzm(”l"'l)ak,;,r,STk(Tl — 1)Iéjilts, ol
k > letag s € Fp|A]satisfait vy (ag g,rs) + 47 +k > 0,sontdans 3, ;D172
(1) Sir = 0, la formule (12) s’écrit alors sous la forme :

31 (@105 T (T = V') = p™ag g0 TF(T1 — 1) log(1 + TS,

Par ailleurs, onalog(1+7) = T(1 + j_:of LI_I—I)I) On constate que H‘Zj—:of ;_-31)1

est inversible dans D12 e on note son inverse par g(7T').
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Supposons que x € TD* 7172 Comme vplag10,s) +k = 0,0navy(agros)+
m + k — 1 > 0; ceci implique que

k—1 {
y= Y plarposTNT -1
0<l,s;1<k;
k+l<nz—1;
s<ni—1
appartient a D172 et on a ,, 1 (yg(T)) = p?™"x.
(ii) Dans la suite, on suppose que 7 # 0. On démontrera le lemme dans ce cas par
récurrence descendante sur s.
Sis = ny — 1, la formule (12) s’écrit alors sous la forme :

B 1 (ag 1. s TE(T — 1! Ghgt®) = p™agp s TF(Ti — 1) log(1 + T)ghyt*.

On en déduit que 3m11]"j+1n1ﬂ2 contient tous les termes pmak,;,r,sTk(Tl — 1)16541?‘
avecs = ny — letk > 1;etdonc tous les termes pzmak,;,r,STk(Tl — 1)1@541?3 avec
s=ny—letk>1.

Fixons s un entiers tel que 0 < s < n; — 2. Supposons que My, ,, +
dm.1 DT 12 contient tout les termes p2M =Sty 4 TE(T) — 1)‘?@7;4155 avec
s > so + 1. Il s’agit a montrer que My, 5, + Bm,lf)""”l-*”z contient tout les termes
Xpprs = PPt g, TR — 1)/ G55 avec s = sp etk > 1.

Comme vp(ag trs) + 37 +hk = Oaveck > 1, onavp(agyrrs) + 37 +m+
k—120ectdone yg s, = pm"'zm(”l_sO)ak’;’,,,SD =L — 1)15541530 appartient
aDtn2 par récurrence, on a [y 7.r.s0 € Mn n, + 3m11]"j+,n1,n2.

De la formule (12), on a :

m

~ r -
Ina () =P Dag y  TUTL = 1) log(1 + T + v
rp™
=Xk 1rs08(T) + nga’yt-
On en déduit que le lemme est vrai pour les termes avec § = Sg. L

Corollaire 4.14. Si nq, n, sont deux entiers > 1, le conoyau Coker ¢y de ¢, est un
Z p-module de P2t orsion,

On revient a la démonstration de la proposition 4.11.
Démonstration de la proposition 4.11. Comme on a
(Im2 = P7) Ay, Gy ) = P (s = + Dby, G317 (13)

le Zp-module M, ,, est stable sous 'action de 9,2, — p™. Donc I'application ¢;
induit une application injective, que 1I’on note encore par ¢y,

¢71 : Mm,nz/(am,Z - Pm) =2 ﬁ+,n1,n2/(8m,1’ am,z - Pm)
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En plus, on déduit du corollaire (4.14) que son conoyau est un Z,-module de
p2rm+D_gorsion.
Sing > 1, on note

(Kpp ™ @z, OW3) )y = (K" &z, O /(T = Lqa)™
Pour tout 7y = j + 1, on dispose d’une application
Qbof (JCA-;-F @ (9(%1)4_)?12 = Mﬁ‘,l,nz

en envoyant f(gar) sur f(gar )’ LA, 2+ qui est une injection. De la formule (13)
pour s = j — 1, on déduit que ¢ induit une application injective, notée encore par

do,
Po: (Kt @ O ny — Maynn/ @z — p™).

En composant avec I"application ¢1, on obtient une application injective
¢ = d1odo: (KT & OW) ny — D2 /(B 1, 3n 2 — p™).
En prenant la limite projective sur 72, on obtient une injection
Kyt @ O0)T — (im DY@y 1. 82— pM) pourny = j -1
I ne reste qu’a montrer la surjectivité de
Kyt @ O) — (lim D2/ @y 1,80 = p™)) @ Q-
Cela se rameéne a montrer que les applications

l<i£ln2 do: JCA-;—F ® (9(%) —> (Linnz Mnl,nz/(am,Z - Pm)) & @p
el
lim ¢: (hm Mm nz/(am 2B )) & QP

“—Mno
nt-r1.n2 _ Q
— (lll’fln!2 D /(am 15 m.2 P )) @ iz

sont surjectives. La surjectivité de hm qbo découle de la formule (13) et celle de

l<£1 ¢1 découle du lemme precedent qu1 dit que, pour tout 77y > j + 1, le conoyau
n2

de ¢; est de p?™01+ D _torsion. O

En composant les applications obtenues dans les paragraphes précédents, on ob-
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tient le diagramme suivant :
H2($g,,. B & D1, j—2(#))

(I)T

= (2)
H?(Pg,, . B;]‘E{(gj&poo) @Dy ;—2(#y))

H?(Pg,,.D)

(3

- 3 1 2 D » 3!

“XPKato, v 1<£lif.!1 ((1‘(&1‘1”2 B (PS{M ’D+ "l 712)) ®ZP Qp)

CY

’
~ 5 . s ~
I @z, O~ tim ((lim B2/ B 12 — P @, Q)

[N

ou

e I'application (1), d’inflation, est injective car (B&E)gﬁf”?m = IB:R(RLPOO) et
e mpoo Agit trivialement sur Dy, i—2(n)s

e (2) est I’isomorphisme induit par “la trace de Tate normalisée’” Ras (cf. propo-
sition 4.3) ;

e (3) est I’application naturelle induite par la projection;

e (4) est I'isomorphisme de la proposition 4.5 car D12 egt analytique pour
tout (n1,717);

e (5) est 'inverse de I’isomorphisme dans la proposition 4.11.

On définit I’application expg,, , €n composant les applications (2), (3), (4), (5).

4.3. Application a la famille de systemes d’Euler de Kato. Dans ce paragraphe,
on montrera le théoreme 1.4. Soient M > 1 tel que vp(M) > v,(2p) et A =

(‘;‘g) € Io(p) avec . B,y.6 € {l,....M}. Onnote Yara = Ly pe 5

fonction caractéristique de A + M M, (2) C’est une fonction invariante sous I’action
de §g ,, . Parailleurs, la distribution z g ¢ (V; ) appartient a H? (9% ar o Dag M2 (Q®
2)PUx To(p), D1 j—2(#7))). Alors, ona

la

[ VM. AZato.c.d (V) € H2 (g, Dt j—2 (i)

et on note son image dans Hz(ﬁgM,B(;(ﬁi,pm) ® D1, j—2(#%)) par zps, 4. Pour
montrer le théoréme (1.4), il suffit de prouver :

Proposition 4.15. Pour toute pairve (M, A) ci-dessus, on a

expl*(ato,v (ZM,A)

. M_Zj d o =1 univ M F univ -E(j)
_(j_l)!or ﬂ K W c,a/M,ﬁ/M(’C i) dy/MS/M"




858 S. Wang CMH

Pour démontrer ceci, nous aurons besoin d’écrire un 2-cocycle explicite représen-
tant zps, 4 et le suivre a travers les étapes de la construction de I’application expg,,, , -

4.3.1. Constructiond’un2-cocycle. Rappelons que notre famille de systémes d’Eu-
ler de Kato est construite selon le méme chemin que celui du systeme d’Euler de Kato
classique. Ceci nous permet d’utiliser la construction d’un 2-cocycle explicite pour
le systéme d’Euler de Kato classique dans [ 14], qui est reli€e a la construction du sys-
teme d’Euler de Kato. On expose le résultat ci-dessous, et renvoie le lecteur intéressé
a §5.2 dans [14] pour les détails de la construction.

Soient Ay, Ap deux G-modules a gauche. Six; € Ay, xp € Areto, T € G, on
définitun élément {x; @ x2}4., = (X1 * (10 —0) @ (X2 * (0 — 1))) € A{®A,. Un
cocycle explicite, qui présente I'image de z37, 4 dans H(Pg Ao S? 2D, j—2.%),est
donné comme suit :

Théoreme 4.16. Si on note
log(gj)
(%)
= {log ((c® — (NG . G50 40)) @ log ((d2 — (d)0G”" . Gt} .-

ZM.A peut se représenter par le 2-cocycle

n—+oco
CO do

-2 (0.7)
(0,7) —~ lim p HZ‘A’ ao bo) log(ao bo)’

co do
la somme portant sur l’ensemble

U™ := {(ao, bo,co,do) € {1,...,Mp"}* | ap = @, by = B,
co = v.dg = SmodM}.

4.3.2. Passage a I’algébre de Lie. On utilise les techniques différentielles pour
calculer I'image du 2-cocycle

n—+o00 ag by
co do

—2n (o,7)
(0,7) = lim p ZAUJ*(? zo)log( ),
0 &0

obtenu dans le théoréme ci-dessus, dans JCA",:, ® O(#;) par I'application €XPkato.v-
Plus précisément, cela se fait comme suit :

Recette 4.17. Sin; > j + 1, on définit une application res( 0 ) R (JC++ Kz,
O#)/ (ga)F en composant la projection

o =7 . AW _ M
D - D/1" — (lim D /(Om.1, 0m2 — p™)) ® Qp
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avec l'inverse de I'isomorphisme dans la proposition 4.11. En prenant la limite pro-
jective sur k, on obtient un morphisme res, ;: D — JC++ ®@z, O(#7). Silaclasse
de cohomologie

e 1) 2 +.711 .12
¢ = @) clim (lim H(Pg,, . B) @ Q)

est représenté par une limite de 2-cocycle analytique (o, t) c(’“ 2)

sur Pg, ava-
leurs dans D*+"1-72 alors I’ image de ¢ sous I’application (5) est requj(p_zmcs(z) (c)),

ot 6@ est 1’application définie dans la proposition 4.5.

Comme le 2-cocycle (0, T) > liMps o0 P27 D0, *(“0 bo (G l 5.\ obtenu
(cg )
dans le théoréme ci-dessus est la limite de 2-cocycles analytiques a valeurs dans D,on
peut utiliser les techniques différentielles pour calculer son image dans JCA_;_" RO(Wr)
par I’application exponentielle duale expy . -
Si f(x1, x,) est une fonction en deux variables, on note D1 (resp. D5) l’ope’rateur
X19— dx (resp. x2d_) Sin e Neta,b € Z on pose f b = f@gr", &flé‘M) Du

développement limité du terme de (u, v) f Lt = B G~", é’“”"'be

déduit que :

)yen u et v, on

ap

m lf(n) D f(n) et f(’;;) = sz(n) (14)

“ M

ce qui joueront un réle dans les démonstrations du lemme 4.18 et 4.20 ci-dessous.

Lemme 4.18 ([14], lemme 5.15). On note

(2) _ %2 (n) ()
Sao,bo,co,do — B ({log (rcﬁa';’bo) ® log (rdgcg,do)}gqr)'

@) _ (aodo — boco)t?
ao,bo,CO,do - M2

- Dj log (rcﬂé’;?bo) - D log (rdé'fg?do).

D’apresle lemme 4.9, on ales formules suivantes pour dp,,1 €t 8y, 2 SUT A (2 B)
I e d

Lemme 4.19. On a les formules suivantes :

. .m
aqu(&tvj*(? 3)) — pm (% lOg(l + T) - .]) v; *(a b
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Démonstration. Ce lemme est une traduction du lemme 4.9. On donne seulement le
calcul pour dy, 2 : on note y = (4 3) eton a

I, 2(Av;xy) + P71 J Ayay

1 b
= D™ (@) det(y) Y (“)T’C) P vy
B—if
400

= p" " (a) det(y)_J( ( )k(l + T)Tk 1log(l + T))

b b
2 1
En utilisant la formule & (“ ) = % (“ ) , on obtient

k k—1
am,Z(AUj*y) + P JAvj*y =p Elog(l i T)Avj*y- [
Lemme 4.20. Sis > j + leta,b,c,d € Z tels que y = (4 3) € lo(p), daors,
dans
lim (@im OF"2 /@1 ez = p™) 82, Q)
OF

f(n) (n) (ad —bC)IS+1
aM(j +1-—35)

Démonstration. On en déduit que

(@(P™ = Bm,2) + b 1)(vny* L)
n n m(ad _bc)tﬁ_l n n
= (a(J +1-35)p™t fa(b)g,gzr 7 f( ‘ ( ))A’vj*ys

estnul dans lim ((tim (54172012 = p™) @2, Q). pours = j + 1.
[l

V_,*J/ f(n) ng(n)

uj*yf

Corollaire 4.21. Siy = (a0 bo) alors on a

Kumv (aD )

al 7'M — 1)

resy_j (v, 5§ )=

vi*¥ O40.b0.co.do -Dy log(rcﬁ(n)b )D“’ log(ryg Q(Rd ).

Démonstration. 1D’apres le lemme 4.18 et le lemme 4.20, on a

2
Al’j*)’ Sao bo.co.do
aogdy — boco ~1
= A)vj—z*y ( M2 ) - D log (rcé)(n) ) - Dy log (Td9£g3d0)

(aodo—boCo)J 2771

-1

=M1/

Ay oy - D2 log (rﬁ’gc?;?bo) - Dg log (rdﬁgz?do).
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bo o
D’autre part, on a Auj_z*y = (1 + T)% (apdo — boco)* 7 k"™ (ag). Le corollaire
se déduit de la définition de res,, ;. U

On rappelle le fait que D’ log (rcé?f:))) = c2E,(x1,x2) —¢"E, (x1, x5), noté par

Ecp(x1,x2).5ib=p mod Metd =35 mod M, onaé‘ﬁ’l = {‘ﬁ, et é‘fl = é‘fl.
Donc par le corollaire 4.21 et le calcul que nous avons fait, on obtient :

exp;‘(ato,v (ZM,A)
M1 .

. univ 1—j i
=ooonim, 2 e Beate” gy G B a3 ).
J ) ap=a[M]
co=y[M]

1<ag,co<Mp"

Enfin, on utilise le lemme suivant pour terminer le calcul :

Lemme 4.22. Sil <reNerc,d EZ;, ona

(1)
n 5 i
Z Ei(q” . qyly) = E,(J;J)M,S/M
co=y[M]
l=co=Mp®
et
Egi( p" C‘oé-ﬁ ) = E(f) .
Z dj\d" - lpSp dy/M&/M’
co=y[M]
1<co<Mp”
(2)
. uniy 1—j n
nlglgo Z K (ao)% JEc,l(qP ’qiﬁfé‘f/[)
GDEO.'[M]
1<ap<Mp"
— M ord (i)J_IKuniv (L) F. a/M.B/M (Kuniva J)
M ord(a/ M) R

Démonstration. Le (1) est montré dans lemme 5.17 de [14]; on ne montre que le
(2) dans la suite. On remarque que la limite dans (2) est une limite p-adique. La
démonstration se divise en deux parties : la premiere consiste a comparer les séries
de Dinichlet formelles associées aux g-développements de ces familles de formes
modulaires p-adiques et la deuxieme consiste a comparer les termes constants de ces
deux familles.

(1) (Comparaison de deux séries de Dirichlet formelles) On se raméne a montrer

L, T & — ed
que la série formelle associée alim, 00 ) gy=a[M] K“““’(ao)acl, TE1(g® ,qffé’ﬁ,)
1<ap<Mp?
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et celle associée a M1—7 ord(%)f_lfc““i"(m(’;lm)ﬁa/Mﬁ/M(fc““i",j) sont les
mémes.
D’apres la proposition 3.7, 0ona:

Evg”" dagbh) = Esohapn gy @) = Fodhagon i @):
Donc :
. univ 1—j5 P ap B
nan;o Z K™ (ag)ay “E1(q7 g o)

ap=u[M]
1<ap=<Mp®

EERT: umv —j (1) pr
= lim (@0)ag™ Fygnapm gy @”)-
ap=c[M]
1<ag=Mp"
Soit F (@) = e+ bmg™ et soit ¥, .o+ 2 la série de Dirichlet

formelle, a coefficients dans Q9 associée i F, () o/ Mp" B/ M (g). On déduit de la
proposition 3.7 que

b
D = ao/Mp" )T (B.5) = {(—ao/Mp". $)§" (=B 5).
meQT
Par conséquent, la série de Dirichlet formelle a coefficients dans Q% associée a

1 n : .
Fc‘fo}Mp”,,B/M (g¥" ) satistait :

bm _ RS b+m
mezg;+ rmy mezg;+ n (16)
P (Elao/ Mp™, $)C* (B/M. 5) — E(—ao/Mp" . $)¢* (—B/ M. 5)).

Soit ", co+ Amam ™ la série de Dirichlet formelle a coefficients dans Q¥ @
O(#") associée au g-développement de

univ (1) L
Z K" ao )ao JFQO/MPH ﬁ/M(qp )i
ap=al[M]
1<ap<Mp”"

Alors, de la formule (16), on obtient :

A
L

%
mEQ+

=1

{*(B/M.s)

2 (KM (@ + i Mo+ M)

Z ( (kpn | aﬁ)s

K (—q — i M) (—a — i M)
(kp" — 57 +(p* —1))*

i=0 k=0

+ RO (1) (=12 -

(/M. s)).
a7
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“““’(04:+1M)(o;c+1M)1 —J
ci-dessus, et le terme restant se calcule de la méme maniére :

Dans la suite, on donne les calculs pour le terme

Y M ag)ay™ p a0/ Mp" ) B/ M. )

ap=a[M]
1<ag<Mph
. ¥ umv(a)aw—mz B/ M)
ao=a[M] ¢ (k + 5770 (18)
1<ap<Mph

- ¥ Z (“")“0 £ (B/M.5).

ap=a[M] k=0
1<ag<Mp?®

En prenant la limite p-adique de la formule (17) et en utilisant le fait (p, o) = 1,
ona:

lim =7
n—o0 ms
me@"_;_
. K" (Ma)y(Ma)' 7
i A 3.
fr<@<fr+p"
d=f mod Z
il Kuniv(M&)(Md)l—j
(=D (=1)>~ 3 = (H(—B/M.5)).
—Fr<8s—fr+p
G=—-+r mod Z

C’est la méme série de Dirichlet formelle associée au g-développement de

1—j o i univ M - univ
M'7 ord o K ord(e/ M) Fompim (K™, J)

(cf. la formule (6) pour le g-développement de ﬁa IMBIM (" 1Y),

(i1) (Comparaison de termes constants) On rappelle que la mesure p. sur Z, dont
e 6
(14+T) 11

[ e = —orata/an® (250 —k ) - e (L2 )

T ; 2 Py .
sa transformée d’ Amice est CT — , satisfait les relations :

M

fp o o = —onda/ ¥ (76 k) - cl—’ca(gﬁj‘,—k)).
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On constate que le terme constant de la série a gauche de la relation voulue est la
somme de Riemann

lim 3 K““iv(ao)aé_j(czé'(sz,O)—CQ'((;(;);ZD,O)),

ap=a[M]
1<ap<Mph

et donc il se traduit en I’intégration p-adique

M7 ord ( e )j—Z univ( M ) f I.Il‘liV( )( )2—j
or — K — K X X .
M ord(a/M) /) J7, ML

On en déduit que le terme constant de la série a gauche de la relation voulue est
: a7 M : ;
Ml—] d( ) umv( ) 0 2—j umv, M),

Ceci permet de conclure. (]

En appliquant ceci a expy,,. ,,(Zpm,4), on obtient

X z e or S
PKato,y\ZM. A (J 1) 7
wiv(__M__ wiy oy ()
“ (ord(oa/M))Fm/M’ﬁ/M(" I Edymsim

Cecl termine la démontration du théoréme 1.4.
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