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Knots in lattice homology

Peter Ozsvath, Andras 1. Stipsicz and Zoltan Szabo

Abstract. Assume that 'y, is a tree with vertex set Vert(I'y,) = {vp,v1...., Uy}, and with
an integral framing (weight) attached to each vertex except vp. Assume furthermore that the
intersection matrix of G = I'y, — {vp} is negative definite. We define a filtration on the chain
complex computing the lattice homology of G and show how to use this information in computing
lattice homology groups of a negative definite graph we get by attaching some framing to vg.
As a simple application we produce new families of graphs which have arbitrarily many bad
vertices for which the lattice homology groups are isomorphic to the corresponding Heegaard
Floer homology groups.

Mathematics Subject Classification (2010). 57R, 57M.

Keywords. Lattice homology, Heegaard Floer homology, knot Floer homology.

1. Introduction

It is an eminent problem in low dimensional topology to find simple computational
schemes for the recently defined invariants (e.g. Heegaard Floer and Monopole Floer
homologies) of 3- and 4-manifolds. In particular, the minus-version HF™ of Heegaard
Floer homology is of central importance. In [8] a computational scheme for the HF™
groups was presented, which is rather hard to implement in practice. This result
was preceded by a more practical way of determining these invariants for those 3-
manifolds which can be presented as boundary of a plumbing of spheres along a
negative definite tree which has at most one “bad” vertex [21]. The idea of [21] was
subsequently extended by Némethi [9], and in [10] a new invariant, laftice homology
was proposed. It has been conjectured that lattice homology determines the Heegaard
Floer groups when the underlying 3-manifold is given by a negative definite plumbing
of spheres along a tree. Common features have been verified for both invariants. (For
example, both theories satisfy a surgery exact triangle; see [19] for the Heegaard Floer
setting, and [2], [12] for lattice homology.) Moreover, there is a spectral sequence

which connects the two invariants. (See [17].) For further related results see [11],
[13].
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In the present work we extend these similarities by introducing filtrations on lat-
tice homologies induced by vertices, mimicking the ideas of knot Floer homologies
developed in the Heegaard Floer context in [22], [26]. This information then can
be conveniently used to determine the lattice homology of the graph when the dis-
tinguished vertex is equipped with some framing; this is analogous to the surgery
formulae in Heegaard Floer theory, cf. [24].

In more concrete terms, suppose that I, is a given tree (or forest), with each vertex
v in Vert(I'y,) — vo equipped with a framing (or weight) m, € Z. Let G denote the
tree (or forest) we get by deleting v and the edges emanating from it. Suppose that G
is negative definite. We will define the master complex MICF *°(Ty,,) of Ty, which
is a filtration on the chain complex defining the lattice homology of G equipped with
a specific map, and will show

Theorem 1.1. The master complex MICF *°(T,,) determines the lattice homology of
all negative definite framed trees (or forests) we get from 'y, by attaching framings
to vy.

By identifying the filtered chain homeotopy type of the resulting master complex
with the knot Floer homology of the corresponding knot in the plumbed 3-manifold,
this method allows us to show that certain graphs have identical lattice and Heegaard
Floer homologies. Recall that for a negative definite tree (or forest) (¢ on the vertex
set Vert((), the vertex v € Vert(() is a bad vertex if m,, + d,, > 0, where m,, denotes
the framing attached to v while 4, is the valency or degree of v (the number of edges
emanating from v). A vertex is good if it is not bad, that is, m, + d, < 0. Now a
connected sum formula for knot lattice homology (given in Subsection 4.1) enables
us to extend the identification of lattice homology with Heegaard Floer homology
to new families of graphs, including some with arbitrarily many bad vertices. As an
example, we show

Theorem 1.2. Consider the plumbing graph of Figure 1 on 3n + 1 vertices, with the
[framing of vo an integer at most —6n — 1. Then the lattice homology of the graph is
isomorphic to the Heegaard Floer homology HE™ of the 3-manifold defined by the
plumbing.

Remark 1.3. Notice that the graph of Figure 1 on 3n + 1 vertices (after we attach
a framing —m < —6n — 1 to the central vertex vg) has n bad vertices. The case of
n = 2 in the theorem was already proved by Némethi, cf. Example 4.4.1 of [10], see
also [13] for related results. For a more general result along similar lines, see [18].

The paper is organized as follows. In Section 2 we review the basics of lattice
homology for negative definite graphs. In Sections 3 and 4 we introduce the knot
filtration on the lattice chain complex of the background graph, describe the master
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Figure 1. The plumbing graph of the #-fold connected sum of the (right-handed) trefoil
knot in S3. The valency of the central vertex vg is assumed to be # € N, and each edge
emanating from vg connects it to a vertex with framing (—1). Furthermore these (—1)-vertices
are connected to a (—2)- and a (—3)-framed leaf of the graph. Regarding vg as a circle in

the plumbed 3-manifold defined by the rest of the graph, it can be identified with the n-fold
connected sum of the trefoil knot in S>.

complex and verify the connected sum formula. In Section 5 we show how to apply
this information to determine the lattice homology of graphs we get by attaching
various framings to the distinguished point vg. In particular, we prove Theorem 1.1.

In Section 6 we determine the knot filtration in one specific example, and verify
Theorem 1.2.

Notation. Suppose that I' is a tree (or forest), and G 1s the same graph equipped with
framings, i.e., we attach integers to the vertices of I'. The plumbing of disk bundles
over spheres defined by G will be denoted by X, and its boundary 3-manifold is Y.
Let Mg denote the incidence matrix associated to (¢ (with framings in the diagonal).
This matrix presents the intersection form of X¢ in the basis provided by the vertices
of the plumbing graph.

Suppose that I'y, is a plumbing tree (or forest) with a distinguished vertex v
which is left unframed (but all other vertices of I'y, are framed). Let G denote the
plumbing graph we get by deleting the vertex vy (and all the edges adjacent to it).
We will always assume that the plumbing trees/forests we work with are negative
definite.

Remark 1.4. We can regard the unknot defined by vg in the plumbing picture as a
(not necessarily trivial) knot in the plumbed 3-manifold Y¢.

Acknowledgements. PSO was supported by NSF grant number DMS-0804121.
AS was supported by OTKA NK81203, by the ERC Grant LDTBud, by Lendiilet
program ADT and by the Institute for Advanced Study. ZSz was supported by NSF
grants DMS-0603940, DMS-0704053 and DMS-1006006. The present work is part
of the authors” activities within CAST, a Research Network Program of the Furopean
Science Foundation.
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2. Review of lattice homology

Lattice homology was introduced by Némethi in [10] (cf. also [11], [12], [13]). In this
section we review the basic notions and concepts of this theory. Our main purpose is
to set up notations which will be used in the rest of the paper.

Following [ 10], for a given negative definite plumbing tree G we define a Z-graded
combinatorial chain complex (CTF *°((), 3) (and then a subcomplex (CF~(G), d) of
it), which is a module over the ring of Laurent polynomials F[U/ ™!, U] (and over the
polynomial ring [F [U/], respectively), where F = Z/27.

Define Char(G) as the set of characteristic cohomology elements of H?(Xg: 7Z),
that is,

Char(G) = {K: Hy(Xg;Z) — Z | forallx € H,(Xg;Z): K{x) = x-x mod 2}.

The lattice chain complex CF*°(G) is freely generated over F[U/~!, U] by the
product Char(G) x P(Vert(()), that is, by elements [K, £| where K € Char(G) C
H?*(Xg:Z) and E C Vert(G). We introduce a Z-grading on this complex, called
the §-grading, which is defined on the generator [K, £] as the number of elements in
IZ. To define the boundary map of the chain complex, we proceed as follows. Given
asubset I C E, we define the G-weight f([K, I]) as the quantity

27K, 1]) = (ZK(U))+(ZU)-(ZU). @2.1)

vel ve

Remark 2.1. Using the fact that G is negative definite, the integer f([K, /]) can be
easily shown to be equal to

(x4 Ty -5,

vel

where v* € H2(Xg, Y Z) denotes the Poincaré dual of the class v € Hy(Xg: Z)
corresponding to the vertex v € Vert(G). This form of f (K, 7') immediately implies,
for example, the following useful identity: if / C E then

fak - f([-k - 2w E-1]) = f(K.ED. @2
uek

We define the minimal G-weight g([K, E]) of [K, E] by the formula
g(K, E]) = min{ f([K,I]) | I C E}.
The quantities A, ([ K, £]) and B, (| K, E]) are defined as follows:

A([K.E]) = g([K, E—v]) and By ([K,E]) =min{f([K,I])|vel CE}.



Vol. 89 (2014) Knots in lattice homology 787

A simple argument shows that

K 2
Bk, B = (H2E

It follows trivially from the definition that
min{d, ([K, E]), By (K, E])} = g(|K, E]).

) + g(|[K + 20", E —v)). (2.3)

Consider
ay|K, E] = Ay([K. E]) — g([K, E]) and b,[K. E] = By([K, E]) — g(|K, E]).
and define the boundary map 9: CF>*(G) — CF°°(G) by the formula

NK E| =Y Ul gk E—v]+ ) UPEEl g K +20* E -,
vek veE

on a generator | K, £] and extend this map U/ -equivariantly to the terms U/ ® [K, E|
and then linearly to CIF (G ). Notice that a,[K, E], by[K, E] are both nonnegative
integers, and min{a,[K, E], b,[K, E|} = 0 follows directly form the definitions. It
is obvious that the boundary map decreases the §-grading by one. Furthermore, it is
a simple exercise to show that

Lemma 2.2. The map 9 is a boundary map, that is, 9> = 0.

Proof. The proof boils down to matching the exponents of the U-factors in front of
various terms in 3*[K, E] for a given generator [K, E]. This idea leads us to four
equations to check. One of them, for example, relates the two {/-powers in front of
the two appearances [K, E — v — v5] in 8*[K, E]. We claim that

ay |K, E] + ap,| K, E — v1] = ay, [ K, E]| + ay [K, E — v3] (2.4)

holds, therefore (over IF) the two terms cancel each other. Writing out the definitions
of the terms in (2.4) we get

UK. E—ui]) — (K. E]) + g([K, E —vi —v2]) — g([K, E — v1])
= g([K, E —va]) — g([K, E]) + g([K, E — v1 — v2]) — g([K, E — 12)),
which trivially holds. The remaining three cases to check are:
ay |K, E| + by, | K, E —v1] = by, [K, E] + ay, [K + 20, E — vy],
by K, E]l + ay,|[K + 2v], E —v1] = ay,[K, E] + by, [K, E — v3], (2.5)
and finally
by [K, E] + by, |[K + 207, E — v1] = by, [K, E] + by [K + 205, E — v3).

Using the definition of B, given in (2.3), the equations reduce to similar equalities
as in the first case. U
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Remark 2.3. In [10] the theory is set up over Z; for simplicity in the present paper
we use the coefficients from the field F = 7 /27 of two elements.

2.1. Connected sums. Suppose that the plumbing forest G is the union of (r; and
(5», with no edges connecting any vertex of (71 to any vertex of G,. (In other words,
G and G2 are both unions of components of G.) It is a simple topological fact that
in this case Y decomposes as the connected sum of the two 3-manifolds Y, and
YG,. Correspondingly, the F[UU~!, U]-module CF*°(G) decomposes as the tensor
product

CF®(G) = CF™(G1) ®@p-1,u] CF®(G), (2.6)

and the definition of the boundary map @ shows that this decomposition holds on the
chain complex level as well.

2.2. Spin® structures and the J-map. Define an equivalence relation for the gen-
erators of the chain complex CTF*°(() as follows: we say that [K, £| and [K', E’]
are equivalent if K — K' € 2H?*(X¢g, Yg: 7). Since the boundary map respects this
equivalence relation, the chain complex splits according to this relation.

It is easy to see that (since X¢ is simply-connected) a characteristic cohomology
class K € H?(Xg; 7Z) uniquely determines a spin® structure on Xg. By restricting
this structure to the boundary 3-manifold ¥z we conclude that X naturally induces
a spin® structure s on Yg. Two classes K, K’ induce the same spin® structure
on Yg if and only if they are equivalent in the above sense (that is, K — K’ €
2H?(Xg,Ys: Z)). Therefore the splitting of the chain complex CF®(G) described
above is parametrized by the spin® structures of Yg:

CF®(G)= )  CF>(G.s).
s€Spin® (¥5)
where CF (G, s) is spanned by those pairs [K, E] for which sx = s.

Consider now the map

JIK.El=[-K-) 20" E]
veE

and extend it U -equivariantly (and linearly) to CF°°(G). Obviously J provides an
involution on CTF °°((7), and a simple calculation shows the following:

Lemma 2.4. The J-map is a chain map, thatis, J o d = d o J.

Proof. The two compositions can be easily determined as

(oK E] =Y (U™FFl g -k - 3 2 E-v)

veFE ucFE—v

+y (Ubv[K=E] ® [— K- ZZu*,E—v])

vek uek
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and
CE J)[K, E] _ Z (Uav[_K—ZueE 2u* . E] ® [—K _ Z 2u*, E_ ‘U])
veE uek
= Z (Ubv[—K—ZueEzu*aE] R |:_ K Z 214*, E — U])
veFE uck—v

The fact that J is a chain map, then follows from the two identities

a,[K, E] = b,,[— K — Z2u*,E] and av[—K— Z2u*,E] — b,[K, E].

uek uek
(2.7)
In turn, these identities easily follow from the identity of (2.2), concluding the proof
of the l[emma. O

The J-map obviously respects the splitting of CTF °°((G) according to spin® struc-
tures. In fact, the spin® structures represented by K and —K are ’conjugate’ to
each other as spin® structures on Yg (cf. [19]), inducing the spin® structures s,§ €
Spin®(¥g), respectively. The J-map therefore is just the manifestation of the conju-
gation involution of spin® structures on the chain complex level. Indeed, J provides
an isomorphism between the two subcomplexes CF (G, s) and CF*(G, §).

2.3. Gradings. The lattice chain complex CTF(G) admits a Maslov grading: for
a generator [K, E] and j € Z define gr(U/’/ ® [K, E]) by the formula
er(U7 ® [K, E]) = —2j +2g((K, E]) + |E| + L(K? + |Vert(G))).

Recall that K? is defined as the square of nK divided by n?, where nK ¢
H?*(Xg.Yg:Z), hence it admits a cup square. (Here we use the fact that G is
negative definite, hence det Mg # 0, so the restriction of any cohomology class
from X¢ to its boundary Yy is torsion.) The grading gr(U// ® [K, E|) is a rational
number (rather than an integer).

Lemma 2.5. The boundary map decreases the Maslov grading by one.

Proof. We proceed separately for the two types of components of the boundary map.
After obvious simplifications we get that

ar(U’ @ [K, E]) — gr(U7 - U KBl g [K, E — v])
=2g([K, E]) + | E| + 2a,[K, E] = 2g([K. E —v]) — |E — v],

which, according to the definition of a,| K, E], is equal to 1. Similarly,
gr(U’ @ [K.E]) — gr(U7 - UPIREl @ [K + 20" E—v]) =1

follows from the same simplifications and Equation (2.3). (]
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It is not hard to see that the J-map preserves the Maslov grading. Indeed,
gr([K, E]) — gr(J[K, E])
— or([K, E]) — gr([ K- 2, E])
veE

— 2¢([K, E]) — 2g([ K=Y 20, E]) n %(KZ _ (— K-y 21;*)2).

veE vel

Using the identity of (2.2) and the alternative definition of f(K, F), it follows that
the above difference is equal to zero.

Recall that the cardinality |£| for a generator [K, E] of CF™(G) gives the §-
grading, which decomposes each CF™ (G, s) as

CF_(Ga S) = EBz:O CFE(Ga S),

where n = |Vert(G)|. It is easy to see that the differential 9 decreases §-grading by
one.

2.4. Definition of the lattice homology. We define the lattice homology groups
as follows. Consider (CTF°°(G), d), and let (CTF~(G), 3) denote the subcomplex
generated by those generators U/ @ [K, E] for which j > 0 (and equipped with the
differential restricted to the subspace). Setting I/ = 0 in this subcomplex we get the

complex (@(G), 3). Obviously all these chain complexes split according to spin®
structures and admit a Maslov grading, §-grading and a J-map.

Definition 2.6. Define the lattice homology HIF °°(G) as the homology of the chain
complex (CF*(G), d). The homology of the subcomplex CTF~ () (with the bound-
ary map d restricted to it) will be denoted by HIF ~((), while the homology of

(CF(G), d) is HF(G).

Since the chain complex CF~(G) (and similarly, CIF*(G) and @F(G)) splits
according to spin® structures, so does its homology, giving the decomposition

HF_(G) = @SESpiHC(YG) HF_(G, S).
The §-grading then decomposes HEF ™ (G, s) further as
HF(G,s) = P _, HF (G, s),

where n = |Vert(G)|. The Maslov grading provides an additional {Q-grading on
HIEF™(G, s), but we reserve the subscript HF; (G, s) for the §-grading.
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Remark 2.7. The embedding i : CF~(G) — CF®(G) can be used to define a
quotient complex CF ¥ (G) (with the differential inherited from this construction)
which fits into the short exact sequence

0 — CF(G) - CF®(G) - CFY(G) — 0.

The homology of this quotient complex will be denoted by HF*(G). The same
splittings as before (according to spin® structures, the -grading and Maslov grading)
apply to this theory is well. The short exact sequence above then induces a long exact
sequence on the various homologies.

In a similar manner, CIF~(() and @F(G) can be also connected by a short exact
sequence:

0— CF~(G) S CF~(G) — CF(G) — 0,

where the first map is multiplication by /. This short exact sequence then induces a
long exact sequence on homologies connecting HF~(G) and TF (G):

-+ > HF7(G) > HF;(G) - HF,(G) > HF_, — ---

The homology group HF ™ (G) is obviously an F[U]|-module. In the next result
we describe an algebraic property these particular modules satisfy.

Theorem 2.8 (Némethi, [10]). Suppose that G is a negative definite plumbing tree
and s is aspin® structure on Y. Thenthe homology HIF (G, s) is afinitely generated
FU]-module of the form

HEF~(G,s) = F[U] & P 4.

where the modules A; are cyclic modules of the form F|U|/(U™). Furthermore the
F[U]-factor is in HF (G, s). O

Corollary 2.9. The F[U™', U]-module HF *°(G,s) = HF (G, s) is isomorphic to
FlU~L, U]

Proof. By the Universal Coefficient Theorem we get that there is a short exact se-
quence

0 — HF,(G.s) ®po) FIU™'. U] - HF*(G. )
— Tor(IIF ,_,(G.s),F[U~". U]) = 0.

Since
Tor(F[U),F[U™L, U] = Tor(F[U] /(UM FIUL,U) =0
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and

FLU/U™) @pun FIU, U] =0,
while F[U] @p) F[U™', U] = F[U~!, U], the claim obviously follows. By The-
orem 2.8 the single F[U]-factor is in HF, (G, s), hence we get that HF (G, s) =
HE(G. s). O

Definition 2.10. Let
HF _4(G.s) € HF(G,s)

denote the kernel of the map i, : HF ~(G,s) — HEF °°(G, s) induced by the embed-
dingi: CF~(G,s) — CF>(G, s). This group is finite dimensional as a vector space
over ¥ and is called the reduced lattice homology of (G, s).

2.5. Examples. We conclude this section by working out a simple example which
will be useful in our later discussions.

Example 2.11. Suppose that the tree G has a single vertex v with framing —1. The
chain complex CIF*(G) is generated over F[UU ™!, U] by the elements

2n+1, Y. 2n+1, 9] | n e,

where a characteristic vector on (r is denoted by its value 27 4+ 1 on v. The boundary
map on [2n 4+ 1,@] = |2n + 1] is given by 9[2n + 1] = O and by

e+ 1|+ U"®@[2n—1] ifn >0,

8[21’1 + L{U}] = {U—n ® [2]’[ 3 1] 4 [2]’[ — 1] iftn <0.

These formulae also describe the chain complexes CF~(G) and @(G) (generated
over F[U] and over F). Let us consider the map F from CF *°(G) to the subcomplex
F[U~L, U{[-1]) € CF*(G) generated by the element [—1], defined as

F(en+1,E]) = {° ILE = {v},
n , =
Uzt g [—1] if E = 4.

This map provides a chain homotopy equivalence between CF*(G) and F[U/ !, U]
(the latter equipped with the differential 0 = 0), as shown by the chain homotopy

0 it E ={viorn=-1,
HRn+ LE)) =137, U @[2(n—i)+ 1,v] if E=@andn > 0,
NP UT @R +i+ )+ 1L,v] fE=@andn < —1,

wheresp = Oands; = si1 +b[2(n—i—1)—1,v] = %i(2n +1—1i),rp =0and
rp =ri1 Fay2n +i)+ 1, v] = —%i(2n + 1 4 7). In conclusion, the homology
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HF*°(G) (and similarly HF~(G) and ]ﬁﬁ(G)) is generated by the class of [—1]
over F[U™!, U] (and over F[U] and F, respectively). In particular, TIF; (G) = 0
fori > 0.

Recall that for the disjoint union &G = Gy U G, of two trees/forests the chain
complex of ¢ (and therefore the lattice homology of ) splits as the tensor product
of the lattice homologies of Gy and G, (over the coefficient ring of the chosen theory).
As a quick corollary we get

Corollary 2.12. Suppose that G = G1 U Gy where (G is the graph encountered in
Example 2.11. Then IF~(G) = THF~(Gy). (Similar statements hold for the other
versions of the theory.)

Proof. By the connected sum formula (Equation (2.6)), and by the computation in
Example 2.11 we get that

HF(G) = HF(Gy) @ryy HF (G2) = HF ™ (Gy) @Fp) FIU] = HF ™ (Gy),

verifying the statement. (]

3. The knot filtration on lattice homology

Denote the vertices of the tree 'y, by V = Vert(I'y) = {vo,v1,...,v,}. Assume
that each v; with j > 0 is equipped with a framing m; € Z, but leave the vertex v
unframed. In the following we will assume that G = I'y, —vy is negative definite. The
reason for this assumption is that for more general graphs lattice homology provides
groups isomorphic to the corresponding Heegaard Floer homology groups only after
completion; in particular after allowing infinite sums in the chain complex. For such
elements, however, the definition of any filtration requires more care. To avoid these
technical difficulties, here we restrict ourselves to the negative definite case.

For a framing mgy € 7Z on vy denote the framed graph we get from I',, by
Gy, = Gy, (mp). (We will always assume that mp is chosen in such a way that
Gyo(mp) is also negative definite.) Let X € HZ(XGUO; @) be a homology class
satisfying

n
X=uvg+ Zaj +v; (wherea; € ), and v;-X =0 (forall j > 0). (3.1)
i=1
Notice that since G = I'y, — vg 1s assumed to be negative definite, the class X
exists and is unique. In the next two sections we will follow the convention that
characteristic classes on (¢ and subsets of V' — {vg} will be denoted by K and

respectively, while the characteristic classes on Gy, and subsets of V' will be denoted
by L and H , respectively.
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Lemma 3.1. Let us fix a generator [K, E] € Char(G) x P(V — vy) of the lattice
chain complex CF °°(G) of G. There is a unique element I. = Lig g1 € Char(Gy,)
with the properties that for Hp = E U {vp},

* L|lg =K, and

» aUD[L,HE] = va[L,HE] = 0.

Proof. The equality a,,|L,Hg| = by,|L, HEg| is, by definition, equivalent to
Apo([L, Hg]) = By, ([L. HEg]). By its definition A,,([L, Hg]) = g([K, E]) is in-
dependent of L(vg) (and of the framing my = v§ of vg), while since K(v;) = L(v;)
for j > 0, by Equation (2.3)

2By, ([L. HE]) = L(vo) + v§ + 28([K + 2vg. E]).
The identity 24, ([L, Hg]) = 2By, ([L, Hg]) then uniquely specifies L(vy):

L(vo) = —vg + 2¢([K. E]) — 2¢([K + 2v5. E])

=2+ mm (ZK(U) + (Z )2)

vel

_mm(zmm(zv) +200- (Y 0)).

vel

Since K is characteristic, both minima are even, and therefore L(vg) = v5 (mod 2),
implying that L is also characteristic. 0

Definition 3.2. We define the Alexander grading A(|K, E|) of a generator | K, E| of
CF®(G) by the formula

A(KE]) = 3(L(2) + %) € Q,

where L = Lk g is the extension of K found in Lemma 3.1 and X is the (rational)
homology element in H, (X Gy Q) associated to vy in Equation (3.1). (In the above
formula we regard L € H?(X g Z) as a cohomology class with rational coetfi-
cients.) Notice that since v; - ¥ = O for all j > 0, the above expression is equal to
%(L(Z) + vg - ¥). We extend this grading to expressions of the form U/ & |K, E]
with j € Z by

AU @ [K,E]) = —j + A(K. E)).

In the definition above we fixed a framing m1y on vy, and it is easy to see that both
the values of L(vg) and of £? = vy - ¥ depend on this choice.

Lemma 3.3. The value A(|K, E|) is independent of the choice of the framing
_ 2
mo = v of vo.
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Proof. By the identities of Lemma 3.1 it is readily visible that L{vy) (and hence
L (X)) changes by —1 if v is replaced by v + 1. Since £? changes exactly as v3
does, the sum L (vg) + 32 (and hence 1 (L() + %?)) does not depend on the chosen
framing v§ on vo. (]

Since X is not an integral homology class, there is no reason to expect that
A([K, E]) is an integer in general. On the other hand, it is easy to see that if K, K’
represent the same spin® structure then A([K, E]) — A([K’, E’]) is an integer: if
K' = K+ 2y* (with y € Hy(Xg;7Z)) then

A(K.E]) — A(K".E') = 3(Lix.p1— Lix',57)(vo) € Z
since y - 2 = O and both L g gy and Lk g/ are characteristic cohomology classes.

Definition 3.4. For each spin® structure s of G there is a rational number i € [0, 1)
with the property that mod 1 the Alexander grading A(|K, £|) for a pair | K, E] with
Sg = s is congruent to ig.

Remark 3.5. For a rational homology sphere ¥ and a knot K C Y the Alexander
grading defined in Heegaard Floer homology is generally not an integer. On the
other hand, for a fixed spin® structure s all generators representing s have Alexander
gradings which differ by integers. Therefore the mod 1 residue of the Alexander
grading of a generator is an invariant of the spin® structure, giving rise to a similar
rational number in [0, 1) in Heegaard Floer homology as i defined above in the lattice
homology context.

Definition 3.6. The Alexander grading A of generators naturally defines a filtration
{F:} on the chain complex CTF*°(G) (which we will still denote by A and will call
the Alexander filtration) as follows: an element x € CF*®(G) is in F; if every
component of x (when written in the F-basis U/ ® [K, E]) has Alexander grading
at most . Intersecting the above filtration with the subcomplex CF™(G) we get
the Alexander filtration A on CF~((r). Similarly, the definition provides Alexander
filtrations on the chain complexes @(G) and CFT(G).

Equipped with the Alexander filtration, now (CF®((G),d) is a filtered chain
complex, as the next lemma shows.

Lemma 3.7. The chain complex CIF°°(G) (and similarly, CF~(G) and @F(G))
equipped with the Alexander filtration A is a filtered chain complex, that is, if x € F;
then dx € F;.

Proof. We need to show that for a generator [K, E] the inequality A(J[K, E]) <
A([K, E]) holds. Recall that 3[K, £] is the sum of two types of elements. In the
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following we will deal with these two types separately, and verify a slightly stronger
statement for these components.

Let us first consider the component of the boundary of the shape of U [K.E]l @
[K, E — v] for some v € E. We claim that in this case

A([K, E]) — AU EEl @ [K, E —v]) = ap[K + 2v], E] (3.2)

holds, obviously implying that the Alexander grading of this boundary component
is not greater than that of [K, E]. To verify the identity of (3.2), write % as vp +

Z?:l a; - v;, and note that twice the left-hand side of Equation (3.2) is equal to

K( D aj v;) + Ligpi(vo) + 52 +2g(K, E — v]) - 2¢(K., E])
j=1

n
— K(Za;‘ . Uj) — Lig.g—y)(v0) — =2,
j=1

which, after the simple cancellations and the extensions found in Lemma 3.1, is equal
to

2g([K. E]) — 2g([K + 2vg. E]) + 2g([K. E — v])
—2g([K. E]) — 2g([K. E — v]) + 2g([K + 2v{, E —v].

After further cancellations, this expression gives 2a,[K + 2v{, E], veritying Equa-
tion (3.2). Since a, > 0, Equation (3.2) concludes the argument in this case.

Next we compare the Alexander grading of the term U IK-El @ [K 4 2v* E —v]
to A(|K, E]). Now we claim that

A(K, E]) — AUPIEEL @ [K 4 20%, E — v]) = by[K + 208, E]. (3.3)
As before, after substituting the defining formulae into the terms of twice the left-hand

side of (3.3) we get

K( D aj-v;) + Lgmy(vo) + 32 + 2B, [K. E] - 2g([K, E))
i=1

n
—(K + 21)*)( Zaj . vj) — Lik+ov+ E—v](v0) — 52,
el

From the fact that v*(X) = 0 we get that 21)*(2?:1 a; - v;) = —2v - vy, hence by

considering the form of B, given in (2.3) we get that this term is equal to

2¢(|K, E]) — 2g(|K +2v5, E]) +2g([K + 2v*, E —v]) + K(v) + v + 2v - v
—2g(IK, E]) —2g([K + 2v*, E —v]) + 2g(|K + 2v* + 205, E —v]),
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and this expression is obviously equal to 25, [K 4 2v], E]. Once again, since b, > 0,
the statement of the lemma follows. O

Definition 3.8. We define the filtered chain complex (CF *°(G), 8, A) (and similarly
(CF(G), 0, A) and (CF(G), 0, A)) the filtered lattice chain complex of the vertex
v in the graph I'y,.

Remark 3.9. Recall that the chain complex CTF~(G) splits according to the spin©
structures of the 3-manifold Y. By intersecting the Alexander filtration with the
subcomplexes CF™ (G, s) for every spin® structure s, we get a splitting of the filtered
chain complex according to spin® structures as well. The same remark applies to the
CF* and CF theories.

Definition 3.10. The knot lattice homology HF K™ (I'y,,) (respectively HFK™(Ty,,),
Hﬁi(rvo)) of vy in the graph I'y, is defined as the homology of the graded object
associated to the filtered chain complex (CF~((G), d, A) (and of (CF*°((G), d, A),
(@(G), 3, A), respectively). As before, the groups HFK™(T',,) (and similarly
HFK*(Ty,) and Hﬁ{(rvo)) split according to the spin® structures of Yg, giving
rise to the groups HFK™(I';,, s) fors € Spin®(Yg).

Letus fix aspin® structure son Y. The group HFK™ (T, s) then splits according
to the Alexander gradings as

B, HFK™ (T'y,. 5. a),

and the components HIF K™ (I'y,. s, @) are further graded by the absolute §-grading
(originating from the cardinality of the set £ fora generator [K, £]) and by the Maslov
grading.

The relation between the Alexander filtration and the J-map is given by the fol-
lowing formula:

Lemma 3.11. A(J[K, E])) = —A([K — 2v], E]).

Proof. Recall that J[K, E] = [-K — Y, g 20", E]. With the extension L of
—K — > ,cp 2v* given by Lemma 3.1, and with the choice v = 0 we have that

QAJIK, E]) = (— K=Y 2v*)(2 — o) + L(vg) + 32,
vek

Since v*(X) = 0, by the definition of L(vg) and the identity of Remark 2.1 this
expression is equal to

— K(Z = vo) + 200+ ( Y v) + 2 + 2¢|K. F
veF
—2f|K.E| —2g|K — 20}, E| + 2f|K — 20}, E|.
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With the same argument the identity
2A(K — 208, E]) = K(Z — vg) — 20 (T — vp) + L' (vp) + =2
= K(Z —vy) — =% 4+ 2¢[K — 2v}, E] — 2¢[K. E]

follows (since vy - £ = X2 and v = 0). Now the identity of the lemma follows
from the observation that f[K, E] — f[K —2v},E] —vo- (Q_,cp V) = 0. O

A variant of the J-map, adapted to the distinguished vertex vy € Ty, (and to the
filtration given by vg) is given as follows. Define J,,: CF™(G) — CF™(G) by
the formula

(K, E] — [—K— 3 our —21;5;,E],
uek

on a generator [K, E| and extend U -equivariantly and linearly to CF *°(G). Itis easy
to see that J. UZO = Id. The result of the previous lemma can be restated as

A(Jyo|K, E]) = —A[K, E|.

For the next statement recall from Definition 3.4 the quantity 7s associated to a spin®
structure son G.

Lemma 3.12. The map sending the generator |K, E] € CF™(G, s) to
UiS_A([K’E])JUO[K, E]
is a chain map.

Proof. We show first that the application of the above map to U@ KEl @ [K E — v]
for some v € F is equal to

Ui AUKED b= K—2uep 20" -205,E] [— K= 2u"—20) + 2* E - v].

uek

The identification of Jy, (U?? [K.El K, E]) with the above term easily follows from
the observation that

ay[K, E]+is— A([K, E—v]) = is— A([K., E])+b, [—K—Z 2wt —20] E] (3.4)
uek
Equation (3.4), however, is a direct consequence of the equality
bo| —K =3 20 =203, E| = ay|K +205, E
uek

and the definitions of the terms describing the Alexander gradings. A similar com-
putation shows the identity for the other type of boundary components (involving the
terms of the shape U?*[K-Fl @ [K 4 20*, E — v]), concluding the proof, O
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Examples 3.13. Two examples of the filtered chain complexes associated to certain
graphs can be determined as follows. Since both examples describe the unknot in
S3, it is not surprising that the filtered chain complexes are filtered chain homotopy
equivalent. (These examples will be used in later arguments.)

* Consider first the graph I',, with two vertices {vg, v}, connected by a single
edge, and with (—1) as the framing of v. The chain complex of G = Ty, — v
has been determined in Example 2.11. A straightforward calculation shows that
A(|2n + 1)) =n + 1 and

ifn > 0,

A(2n + 1. {v}]) = {: i ifn < 0.

This formula then describes the Alexander filtration on CF™ (). (Recall that
AU ®@|K,E)) = —j + A(|K, E]).) It is easy to see that the chain homotopy
encountered in Example 2.11 respects the Alexander filtration, hence the filtered
lattice chain complex (CF™(G), A) is filtered chain homotopic o F[U™!, U],
generated by the element g in filtration level 0. In conclusion, m(rvo)
and HIFK™(T',) are both generated by the element [—1]| (over F and F[U],
respectively), and the Alexander and Maslov gradings of the generator are both
equal to 0.

* In the second example consider the graph I} | on the same two vertices {vo, v},
now with no edges at all. (That 1s, F;O is given from I'y, by erasing the single
edge of I';,,.) The background graph G (and hence the chain complex CF ™ (G))
is obviously the same as in the first example, but the Alexander grading A’ is
much simpler now: A’([2n + 1]) = A'([2n + 1,{v}]) = Otoralln € Z. Once
again, the chain homotopy of Example 2.11 is a filtered chain homotopy, hence
we can apply it to determine the filtered lattice chain complex of I'; |, concluding
that (CF*°(G), A') is filtered chain homotopic to F [ ~!, U] with the generator
in Alexander grading 0. Once again HFK™ (T, o) is generated by [—1].

In conclusion, the filtered chain complexes of the two examples are filtered chain
homotopic to each other. The filtered homotopy between the two examples is not a
surprise: the two filtered chain complexes are associated to the unknot I in S7 and
both constructions are motivated by the construction of CFK™ (U).

4. The master complex and the connected sum formula

As we will see in the next section, the filtered chain complexes defined in the previous
section (together with certain maps, to be discussed below) contain all the relevant
information we need for calculating the lattice homologies of graphs we get by attach-
ing various framings to vy. The Alexander filtration 4 on CF°°(G) can be enhanced
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to a double filtration by considering the double grading
U’ ® [K.E] > (-], AU’ @ K. E)). (4.1)

In fact, this doubly filtered chain complex determines (and is determined by) the
filtered chain complex (CF™(G), A). Notice that multiplication by U decreases
Maslov grading by 2, —j by 1 and Alexander grading by 1.

In describing the further structures we need, it is slightly more convenient to
work with CF*°((G), and therefore we will consider the doubly filtered chain com-
plex above. In the following we will find it convenient to equip CF®°(G) with the
following map.

Definition 4.1. The map N : CF*(G) — CF°(G) is defined by the formula

NU’ @ [K,E|) = Ubsc—AKEIN @ [k 4+ 20F, E]. (4.2)

Notice that N does not preserve the spin® structure of a given element. Indeed,
if sy, denotes the spin® structure we get by twisting s with vj (and hence we get
c1(syz) = c1(s) + 2u7), then N maps CF*(G, s) to CF*™(G, sy,). By choosing
another rational number r (withr = is,, mod 1) instead of i, in the above formula,
we get only multiples of N (multiplied by appropriate monomials of U/).

Lemma 4.2. The map N is a chain map, and provides an isomorphism between the
chain complex CF (G, s) and CF (G, svg).

Proof. The fact that N is a chain map follows from the identities

ay[K, E] — A([K, E — v]) = ay[K + 2uy, E] — A(|K, E]) (4.3)
and
bylK, E] — A(IK + 2v*, E —v]) = by [K + 2v5, E] — A([K, E]). (4.4)

These identities follow easily from the definitions of the terms. To show that N is an
isomorphism, let the spin® structure S_y be denoted by t and consider the map

MU/ ® K, E]) = UAK-208.ED+i~i @ | K — 20 E|.

M is also a chain map (as the identities similar to (4.3) and (4.4) show), and M and
N are inverse maps. It follows therefore that N is an isomorphism between chain
complexes. (]

Notice that N can be written as the composition of the J-map with the map
U‘S_A([K’m)J'U0 [K, E] considered in Lemma 3.12.
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Definition 4.3. Suppose that for i = 1,2 the triples (C;, A;, j;) are doubly filtered
chain complexes and N; : C; — C; are given maps. Thenthemap f: C; — Cyisan
equivalence of these structures if f is a (doubly) filtered chain homotopy equivalence
commuting with N;, thatis, f c Ny = Ny o f.

With this definition at hand, now we can define the master complex of T'y, as
follows.

Definition 4.4. Suppose that I, is given. Consider CF *°(G) with the double fil-
tration (—j, A) as above, together with the map N defined in Definition 4.1. The
equivalence class of the resulting structure is the master complex of I'y,,.

As a simple example, a model for the master complex for each of the two cases
in Example 3.13 can be easily determined: regarding the map U/ ® [K, E] ~
(—j. A(U’ ®[K, E])) asamapinto the plane, (arepresentative of) the master complex
will have a 7, term for each coordinate (7, /), and all other terms (and all differentials)
are zero. In addition, the map N in this model is equal to the identity. (Note that in
this case the background 3-manifold is diffeomorphic to S?, hence admits a unique
spin® structure.) In short, the master complex for both cases in Example 3.13 is
F[U~!, U], with the Alexander grading of I// being equal to j and with N = id.

Obviously, by fixing a spin® structure s € Spin°(Yg) we can consider the part
MCF*(Ty,,s) of the master complex generated by those elements U/ ® [K, E]
which satisfy the constraint sy = s. As we noted earlier, N maps components of the
master complex corresponding to various spin© structures into each other.

4.1. The connected sum formula. Suppose that 'y, and Iy, are two graphs with
distinguished vertices vg, wg. Their connected sum 1s defined in the following:

Definition 4.5. Let I'y, and F{UO be two graphs with distinguished vertices vy and
wo. Their connected sum is the graph obtained by taking the disjoint union of I',, and
r,, »» and then identilying the distinguished vertices vo = wo. The resulting graph

A(uo:wo) = FUO #(vozwo) F:Uo

(which will be a tree/forest provided both I'y, and F{uo were trees/forests) has a
distinguished vertex vy = wy.

Remark 4.6. Notice that this construction gives the connected sum of the two knots
specified by vg and wy in the two 3-manifolds Y and Yg-.

Recall that for the disjoint graphs G = T'y,—vpand G’ = T, o —Wo the chain com-
plex CF®°(G U G') of their connected sum is simply the tensor product of CF*°(G)
and CF™(G") (over F[U™!, U]). We will denote the Alexander grading/filtration on
CE®(G) by Ay, and on CF™(G') by Ay,.
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Theorem 4.7. Forthe Alexander grading Ag of the generator [Ky, E1) ® [K;., E;] €
CF*(G U G') induced by the distinguished vertex vg = Wy in Ay—ugy) we have
that

A#([Kls El] ® [K25 EZ]) = AUO([Kls El]) + AUJO([K25 EZ])

Proof. For simplicity fix vj = wj = 0 and consider £, and X, on the respective
sides of the connected sum. By the calculation from Lemma 3.1 it follows that for
the extensions £; of K; over the distinguished points vg, wo, and extension L over
vg = wy we have

LeuE,(vo = wo) = (L1)E, (vo) + (L2)E, (wo).

Since 3, = (Zyy + Buy)? = T7, + X7, the above equality shows that both
terms of the defining equation of the Alexander grading are additive, concluding the
result. O

As a corollary, we can now show that

Theorem 4.8. The master complexes of Ty, and T, 5 determine the master complex
of the connected sum A (y,=y,)-

Proof. As we saw above, the chain complexes for I'y, and I';, , determine the chain
complex of A=y, by taking their tensor product. This identity immediately shows
that the j-filtration on the result is determined by the j -filtrations on the components.
The content of Theorem 4.7 is that the Alexander filtration on the connected sum is
also determined by the Alexander filtrations of the pieces. Finally, the map N is built
from the maps J and J,,, which simply add for the connected sum, implying the
result. A minor adjustment is needed in the last step: if is and iy are the rational
numbers determined by Definition 3.4 for the spin® structures s and &', then for s# ¢’
we take either their sum (if itis in [0, 1)) or is + iy — 1. ]

As a simple application of this formula, consider a graph I'y, and associate to it
two further graphs as follows. Both graphs are obtained by adding a further element
e to Vert(I'y, ), equipped with the framing (—1). We can proceed in the following
two ways:

(1) Construct F;Z by adding an edge connecting ¢ and vy to I'y,.
(2) Define Ffo by simply adding e (with the fixed framing (—1)) without adding
any extra edge.

For a pictorial presentation of the two graphs, see Figure 2. It is easy to see that 1";';)

is the connected sum of I'y, and the first example in 3.13, while Ffo is the connected
sum of I'y, and the second example of 3.13. Since the master complexes of the two
graphs of Example 3.13 coincide, we conclude that
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Corollary 4.9. The master complexes M(CIFOO(F;’;)) and MCIFOO(FfO) are equal.
In fact, both master complexes are equal to MICF*(Ty,).

Proof. Both master complexes are the tensor product (over F[UU~!, U]) of the master
complex of Ty, and of F[UU™!, U], concluding the argument. O

Figure 2. The two graphs l";,'('} (on the left) and l"l‘,iﬂ (on the right) derived from a given
graph I'y,. The framing of e is (—1) in both cases, and vg is the distinguished vertex (hence
admits no framing and is denoted by a hollow circle) in both graphs.

5. Surgery along knots

A formula for computing the lattice homology for the graph G, (we get from I'y,
by attaching appropriate framing to vg) can be derived from the knowledge of the
master complex of I'y,, according to the following result:

Theorem 5.1. The master complex MICF *(T'y,) of Ty, determines the lattice ho-
mology of the result of the graph obtained by marking vg with any integern € 7, for
which the resulting graph is negative definite.

In order to verify this result, first we describe the chain complex computing lattice
homology as a mapping cone of related objects. As before, consider the tree I'y, in
which each vertex except vy is equipped with a framing. The plumbing graph G is
then given by deleting vy from I'y,. Let Gy, = Gy,(n) denote the plumbing graph
we get from I'y, by attaching the framing n € Z to vo. Suppose that for the chosen
the graph G, is negative definite. Our immediate aim is to present the chain complex
CF™(Gy,) as a mapping cone of related objects. These related objects then will be
reinterpreted in terms of the master complex MCTF°(Iy,,).

Consider the two-step filtration on CF ™~ (G,,) where the filtration level of U/ ®
[L,H]is 1 or 0 according to whether vg is in H or vy is not in H. Denoting the
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elements with filtration at most 0 by B, we get a short exact sequence
0 —B— CF (Gyy,) — D — 0.

Explicitly, B is generated (over F|U]) by pairs [ L., H]| with vy € H, while a nontrivial
element in D can be represented by (linear combinations of) terms U7/ @ [ L, H | where
vg € H. Indeed, the quotient complex I can be identified with the complex (T, dT),
where T is generated over F[U] by those elements [L, H| of Char(G) x P(V) for
which vy € H, and

or[L.H = Y vEHARL H-v+ Y UrEHlgL+20* H-v).

veEH —ug veH —vg

Notice that there are two obvious maps dq, d2: T — B: For a generator [L, H]| of T
(with vg € H ) consider

N[L, H] = UL Hlg L H—vg), 8[L, H] = Ulvlb-Hlg (14208 H—vy).

(5.1)
It follows from 8% = 0 that both maps d1,d>: T — B are chain maps. It is easy to
see that

Lemma 5.2. The mapping cone of (T,B, 81 + 93) is chain homotopy equivalent to
the chain complex CIF ™ (Gy,(n))) computing the lattice homology TIF™ (Gy,(n)) of
the result of n-surgery on vg. O

Next we identify the above terms using the Alexander filtration on CF%°(G)
induced by vg. We will use the class ¥ characterized in Equation (3.1).

Definition 5.3. Consider the subcomplex B; C B C CF™(Gy,) generated by [L, H |
where %(L(Z) + X2) =i € Q. (Recall that since [L, H] is in B, the set H does
not contain vg. Also, as before, we regard L. € H2(X e Z.) as a cohomology class
with rational coefficients.) Since v}“(Z) = v; - X = 0forall j # 0, it follows that
B, is, indeed, a subcomplex of B for any rational 7, and obviously EB:’E@ B; = B.

Proposition 5.4. There is an isomorphism ¢: B; — Bi4+1.
Proof. Define the map ¢ by sending a generator [L, H] of B; to [L’, H| where

L(vo) +2 ifj =0,
L(v;) if j #£0.

Since vo & H , it follows that f([L, H]) = f([L’, H]) (where f is defined in Equa-
tion (2.1)), hence the resulting map is an isomorphism between the chain complexes
B,‘ and B,‘+1. ]

L,(Uj) = {
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Proposition 5.5. The sum B = @y<; .y B; is isomorphic to CF™(G).

Proof. Considerthemap F’: B — CF™(G) induced by the forgetful map F’ defined
as [L, H] — [L|g, H]. Itis easy to see that (since H does not contain vg) the map
F'is a chain map. Indeed, F’ is an isomorphism: one needs to check only that every
element [L|g, H| admits aunique lift to [, /| € B; with O <i < 1. The condition
HL(E)+ 32) = 2 L(vo) + 2(L|¢)(Z —vo) + 322 € [0, 1) uniquely characterizes
the value of %L(vo) by the fact that L(vg) = v mod 2. O

Remark 5.6. Obviously, the same argument shows that for any » € {Q the sum
@, <i 41 Bi is isomorphic to CF™(G).

The above statement admits a spin“-refined version as follows. Notice first that
if we fix a spin® structure t on the 3-manifold YG,, we get after the surgery, and also
fix 7, then there is a unique spin® structure s on Y¢ induced by (t,7). Indeed, if the
cohomology class L satisfies s;, = t and %(L(Z) + %2y = i, and L’ is another
representative of t, then

H
L'=L+) 2nv/.
=0

In order for L’ to be also in B;, however, the coefficient ng of v’g in the above sum
must be equal to zero, hence L|g and L'|g represent the same spin® structure on Y.
We will denote this restriction by (t,7)|¢. Then the above isomorphism F’ provides

Lemma 5.7. Let B;(t) be the subcomplex of B; generated by those pairs for which
L represents the spin© structure t. The map F' provides an isomorphism between

Bi(t) and CF (G, (t,i)|g).

Proof. By the above discussion it is clear that F' maps B;(t) to CF (G, (t,i)|g)-
The map is injective, hence to show the isomorphism we only need to verify that F’
is onto. Obviously L(X) + X2 = 2j and L|g = K determines L(vg), and it is not
hard to see that for the resulting cohomology class sp = t. U

In conclusion, the complexes B, B;(t) and B = P, [p 1) Bi can be recovered
from CF™ (), and hence from the master complex.

The complex T also admits a decomposition into €B; cy 7; where the generator
|1., H] with vy € H belongs to T; if %(L(E) + ¥2) =i € Q. Notice that the map
d1 defined in (5.1) maps 7; into B; C B, while when we apply d, to T;, we get a map
pointing to BH‘”S @ CB.

Recall that in the definitions of B; and 7; we used the fixed framing attached to
the vertex vy. In the following we show that the result will be actually independent

of this choice. To formulate the result, suppose that for the fixed framing vJ = n the
complex B = B(n) splits as p; B;(n) (and similarly, T = T (n) splitsas €p; T; (n)).
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Lemma 5.8. The chain complexes B;(n) and B;(n + 1) (and similarly T;(n) and
Ti(n + 1)) are isomorphic.

Proof. Consider the map 7: B;(n) — B;(n + 1) which sends the generator |L., H]
to [/, H] where L'(v;) = L(v;) forall j > 0and L'(vg) = L(vg) — 1. Notice
that by changing the framing on vo from 7 to #n + 1 we increase % by 1. Since
L'(%) = L(X) — 1, and the above map ¢/ is invertible, the claim follows. Since the
function f we used in the definition of the boundary map takes the same value for
|1, H|asfor|L’, H], the map ¢ is, indeed, a chain map between the chain complexes.
The reasoning for the map ¢": T;(n) — T;(n + 1) is similar. O

Our next goal is to reformulate T (and its splitting as €D, .q 7;) in terms of
the master complex MCTF*(T",,). As before, recall that for a spin® structure t on
YG‘UD and i we have a restricted spin® structure s = (t,7)|g on Y. Consider the
subcomplex S;(s) = S;((t,7)|g) C CF*(G, s) generated by the elements

(U @|K.E| e CF(G,s) | —j <0, AU’ @ |K.E]) <i}.

Lemma 5.9. For a spin© structure t the chain complex T;(t) and the subcomplex
Si((t,i)|g) are isomorphic as chain complexes.

Proof. Define the map F = F': T;(t) — S;((t,i)|g) on the generator [L, H] by
the formula
F(L.H)) = Uvoll-Hl g L6, H — v).

The exponent of U in this expression is obviously nonnegative and the spin® structure
of the image is equal to (t,7)|¢. Therefore, in order to show that F([L, H]) €
Si((t,i)|c), we need only to verify that

A(F(L H]) =i = 2(L(Z) + T?). (5.2)

In fact, we claim that
1
SL(E) + 5% — AU IV g [Lig, H = vo]) = byy[L H].  (53)

By substituting the definitions of the various terms in the left hand side of this equation
(after multiplying it by 2), and applying the obvious simplifications we get

L(vo) +2¢(IL. H — vo] = 2g(IL. H]) + v
—2¢([Llg. H — vo)) + 22([LG + 2v§, H — vo)).
Since g([L|g, H — vo]) = g(|L,H — vy]), this expression is clearly equal to

2by,[L. H], concluding the argument. Since b,,[L, H|isnonnegative, Equation (5.3)
immediately implies Inequality (5.2).
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Finally, a simple argument shows that £ 1s a chain map: The two necessary
identities

ayy|L, H| + ay[L|g, H — vo| = ay[L, H] + ay,[L, H — v]
and
ayolL. H] + by|L|g. H — vo] = by|L, H| + ay,|L + 2v*, H — v]

are reformulations of Equations (2.4) and (2.5) (together with the observation that
f(llg,I)= f(l.,I)oncevy & I).

Next we show that F is an isomorphism. For [K, E] on G there is a unique
extension [L, H| on Gy, with [L|g, I — vg] = [K, E] and %(L(Z) + ¥?) =i,
hence the injectivity of F easily follows. To show that F is onto, fix an element U/ @
|K, E] € 5;((t,i)|g) and consider [L, H| € T;(t) with F(|L, H]) = U%olL.H] g
[K.E]. If ay,[L,H] = Othen U/ ® [L, H] maps to U/ @ [K, E] under F. In
case dy,|L,H] > 0 then b, [L, H] = 0 and so by the identity of (5.3) we get
that A(U% Al @ |K E|) = i. Therefore A(U’ ® [K, E]) < i implies that
J = ayy|L, H]|, hence Ui—anll-Hl @ (I, H| is in T;(t) and maps under F to
U’ @ K, E], concluding the proof. O

The subcomplexes of T admit a certain symmetry, induced by the J-map.

Lemma 35.10. The J-map induces an isomorphism J; between the chain complexes
T; and T_;. This isomorphism intertwines the maps 01 and d,; more precisely d; on
T; is equal to Jl-_l o dy o J; (and 01 on T; is equal to Jl-_l o dy o Ji).

Proof. Recall the definition J[L, H] = [-L — ), . 2v*, H] of the J-map on the
chain complex CIF~((y,). Applying it to the complex 7;, we claim that we get a
chain complex isomorphism J; : T; — 7_;: fromthe fact (—L — Y, 5 20™)(2) =
—L (%) —2vg- X (since vy € H and for all other v; we have that v; - 3 = 0) together
with the observation that £2 = vy - %, it follows that

1 * 2z _l_ _ 2 __l 2
5((—L—UEZH2U )(2)+2)_2( L(Z)-3%%) = 2(L(Z)-|—2).

This equation shows that J; maps 7; to 7_;. The claim d, = Jl._l o dy o J; (where
d, is taken on 7; while d; on 7_;) then simply follows from the identities of (2.7) in
LLemma 2.4. ]

The same idea as above shows that

Lemma 3.11. The restriction of J to B; provides an isomorphism B; — B—z‘+v5‘ )
of chain complexes.
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Proof. Indeed, if vy & H,then (—L — )" .y 2v*)(2) = —L(X), hence
%((—L -y 2v*)(2) + 22) = L-L(D) + 3% = -L(L(D) + T3 + =2,
veHd

and % = v} (X). O

Next we identify the two maps 91 and @, of the mapping cone (T, B, 9; 4+ d,) in
the filtered lattice chain complex context. Notice that S; (s) is naturally a subcomplex
of CF™(G,s); let the inclusion S;(s) C CF™(G,s) be denoted by 77. It is obvious
from the definitions that for the maps F’, F of Proposition 5.5 and Lemma 5.9

F'([L, H]) = m(F([L. H])).
The subcomplex S; (s) admits a further natural embedding into the complex V; (s)
which is generated by the elements {U/ ® [K,E] | AU’ @ [K.E]) < i} in
CF*™(G,s). (V;(s) is the subcomplex of CF*°(G,s) when we regard this latter

as an [F[U/]-module.) Recall that s,, denotes the spin® structure we get from s by
twisting it with v;.

Proposition 5.12. The subcomplex Vi(s) is isomorphic to CF (G, 8y,,).

Proof. Consider the map U5 N from Definition 4.1 mapping from CF > (G, s) to
CEF®(G, sy,). Itis easy to see that this map provides an isomorphism between V; (s)
and CF™ (G, sy, ), since

JUT @ NU* @ [K.E)) =i +k — A(K, E])
is nonnegative if and only if i > —k + A([K, E]) = A(U* ® [K, E]). 0

Define now 72: Si(s) — CF(G,sy,) as the composition of the embedding
Si(s) — V;(s) with the map U*~* N . With this definition in place the identity

??2 ] F e }:”r o] 82
easily follows:

(0 F)|L, H| = UdvolL-HI¥i=AllLlc.H=vD @ |1 |6 + 202, H — vy,

(F' o d)[L, H] = U LB L 4 202 |6, H — vy,

and the two right-hand side terms are equal by the identity of (5.3). Now we are in
the position to turn to the proof of the main result of this section, Theorem 5.1.
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Proof of Theorem 5.1. Fix the framing n of vy in such a way that G,, = Gy, (n)
is a negative definite plumbing graph. Fix a spin® structure t on Yg, . Our goal is
now to determine the chain complex CIF ™ (G, , t) from the master complex of T',,.
As we discussed earlier in this section, it is sufficient to recover the subcomplexes
T;(t), B;(t) (fori € {g + n-X? | n € N} for an appropriate ¢ € Q) and the maps
di: T;(t) — B;(t)and 9, : T;(t) — Bi+vg(z)(t)-

Identify 7; (t) with the subcomplex S; ((t,7)|g) and B;(t) with CF (G, (t,i)|g)
(both as subcomplexes of CF*(G, (t,7)|¢)) by the maps F and F’. As we showed
earlier, the natural embedding of S;((t,i)|¢) € CF (G, (t,i)|g) can play the role
of 81, while the embedding S; ((t,i)|¢) — Vi((t,i)|g) composed with U ~hic N
plays the role of 5 in this model. These subcomplexes and maps are all determined
by CF®°(G), the two filtrations and the map N on it. Since by its definition the
master complex of I'y, equals this collection of data, the theorem is proved. U

5.1. Computation of the master complex. When computing the homology
HEF " (Gy(n)) from (BS;, Prey CFT(G), 11, 12) we can first take the homolo-
gies H,(S;) and HF ™ (G) and consider the maps H,. (1) and H,(n;) induced by
11, 172 on these smaller complexes. This method provides more manageable chain
complexes to work with, but it also loses some information: the resulting homology
will be isomorphic to the homology of the original mapping cone only as a vector
space over [F, and not necessarily as a module over the ring F[U/]. Nevertheless,
sometimes this partial information can be applied very conveniently.

As an example, we show how to recover (in favorable situations, like the one
considered in Section 6 or in [18]) the knot lattice homology ﬁﬂ{(rvo) from the
homologies of S;. Letus consider the following iterated mapping cone. First consider
the mapping cones C; of (S;, Si+1, ¥i) fori = n, n—1, and then consider the mapping
cone D(n) of (C,,, Cy—1, (¢i 1. ¢;)). (For a schematic picture of the chain complex,
see Figure 3.) In the next lemma we will still need to use the complexes S; rather
than their homologies.

¢n+1

Sap1 ——m 8, Ho(Sn11) ——= H,(S,)

rd
Hy ]ll'fn 1ll'fn+1 /\/ Ha T ,”, T
#u

Sn —_— Sn—l H*(Sn} —_— H*(Sﬂ—l,}

Figure 3. The iterated mapping cone D(n) on the S; ’s. The maps are defined as ¢;, ¥; with
appropriate choices of i on the left, and the homomorphisms induced by these maps on the right.
When taking homologies first, we might need to encounter a nontrivial map indicated by the
dashed arrow.
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Lemma 5.13. The homology H.(D(n)) is isomorphic to HM(FUO,H).

Proof. Factoring Sy 4 with the image of v, : S — Sp4+1 we compute the homology
of the horizontal strip in the master complex with A = n 4 1 and nonnegative /-
power (i.e., j = 0). Similarly, with the help of ¥,,—1: S—1 — S, we get the
homology of the horizontal strip with A = » and nonnegative U -power. The iterated
mapping cone in the statement maps the upper strip into the lower one by multiplying
it by U, localizing the computation to one coordinate with A = » and vanishing
U/-power. The homology of this complex is by definition the knot lattice homology

MFR (T, 7). N

Unfortunately, if we first take the homologies of the complexes S; and then form
the mapping cones in the above discussion, we might get different homology. The
reason is that when taking homologies of the S; we might need to consider a diagonal
map, as indicated by the dashed arrow of Figure 3. Under favorable circumstances (eg.
in Section 6 and in [18]), however, the diagonal map can be determined to be zero, and
in those cases ﬁﬂ{(rvo) can be computed from the homologies of §; (and the maps

induced by ¢;, ¥; on these homologies). From the knowledge of ﬁﬁK(FUO, n) we
can recover the nontrivial groups in the master complex: multiplication by U” simply
translates ﬁI‘F_K(FUO) (located on the y-axis) with the vectors (n, n) (n € 7). In some
special cases appropriate ad hoc arguments help us to reconstruct the differentials
and the map N on the master complex (which do not follow from the computation
of m(rvo)), getting MICIF*°(T",,,) back from I, (S;) and the maps 1, (¥;) and
H, (®;). Such simple calculations are carried out in detail in [18].

Remember also that first taking the homology and then the mapping cone causes
some information loss: the result will coincide with the homology of the mapping
cone as a vector space over [F, but not necessarily as an F|[U|-module. The vector
space underlying the F[U]|-module HF ™ is already an interesting invariant of the

graph. The module structure can be reconstructed by considering the mapping cones
with coefficient rings F[U]/(U") for every n € N, cf. [17], Lemma 4.12.

6. An example: the right-handed trefoil knot

In this section we give an explicit computation of the filtered lattice chain complex
(introduced in Section 3) for the right-handed trefoil knot in S3. It is a standard
fact that this knot can be given by the plumbing diagram I'y, of Figure 4. Notice
that in this example the background manifold is diffeomorphic to $3, hence admits
a unique spin® structure, and therefore we do not need to record it. (Related explicit
computations can be found in [13].)

Using the results of [9], [10] first we will determine H.(7;) and H,(B) when the
framing v5 = —7 is fixed on vy.
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Uo

Figure 4. The plumbing tree I',, describing the right-handed trefoil knot in § 3, Interpreting
the graph as a plumbing tree, the repeated blow-down of the (—1)-, (—2)- and (—3)-framed
vertices turn the circle corresponding to vy into the right-handed trefoil knot.

Proposition 6.1. Suppose that Ty, is given by the diagram of Figure 4. Then
H,(B) = F[U].

Proof. The graph G = T'y, — vg is negative definite with one bad vertex, hence
the result of [10] (cf. also [9]) applies and shows that the lattice homology of it is
isomorphic to the Heegaard Floer homology of the 3-manifold Y defined by the
plumbing. Since G presents S3 as a 3-manifold and H,(B) = TIF ~(G), the claim
follows. O

Consequently the lattice homology group HF " (G) = HF,;(G) = H.(B) is
generated by a single element, and it has to be a linear combination of elements of the
form [K, E'| with £ = @ (since the entire homology of a negative definite graph with
at most one bad vertex is supported in this level). The generator has Maslov grading
0, which by the definition of the grading means that (K2 + 3) = 0, i.e., K2 = —3.
There are exactly 8 such cohomology classes on G, and it is easy to verily that these
are all homologous to each other (when thought of as cycles in lattice homology), so
any one of them can represent the generator of HF ~ (G) = F[U]. By denoting the
vertex of G with framing —i by v; (i = 1, 2, 3), we define the vector K as

(K(v1), K(vz2), K(v3)) = (1,0, 1). (6.1)

Simple calculation shows that K? = —3, hence K, @] generates HIF ~(G). We will
need one further computational fact for the group HF (G ):

Lemma 6.2. The element [K', @] € CF™(G) given by (K'(v1), K'(v2), K'(v3)) =
(1,0,1) is homologous to U @ [K, O], where K is given by (6.1) above.

Proof. Consider the element

X = [(1’07 1)’ {Ul}] Py [(_172’ 3)’ {U3}] iy [(1’27 _3)= {Ul}] + [(_1’47 _1)’ {UZ}]'

It is an easy computation to show that dx = [(1,0,1), 0]+ U ®[(1,0,—1),4]. Since
both [K, @] and [(1,0, —1), @] generate HF ~ (), the proof is complete. O
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Before calculating H,(7;), we determine the maps H,(01), H,(9,): H.(T;) —
H,(B) on certain elements. To this end, for j € Z consider the elements L; €
H*(X Gug Z) (with framing vy = —7 attached to vg) defined as

(Lj(vr), Lj(v2), Lj(v3), Lj(vo)) = (=1,0,1,2j +1).

Since 2 = vg + 6v1 4+ 3vz + 2v3, by the choice v% = =7 we get 32 = —1. This
implies that %(Lj (2)+%2) = j—2,hence theelement [L;, {vp}]isin 7j_,. Simple
calculation shows that

0 if j —320,
auolL Avo}l = { ol
—(j—3) ifj—3<0
and
j—3 ifj—3=0,
by [Li,dvot] =
oLy tvoll {o if j—3<0.

With notations a; = ay,([Lj, {ve}]) and b; = by, ([L;, {ve}]) we conclude that
(with the conventions for K and K’ above, and with the identification of B with

CEF(G))
WL, (o}l =U% @K and &[L;,{ve}] = U% @ K,

and the latter element (according to Lemma 6.2) is homologous to U% 11 @ K.
This shows that for j > 3 the homology class of H.(T;_») represented by the ele-
ment [L;, {vo}] maps under (3;, 37) to ((—=1,0, 1), U772 ®(-1,0,1)) € HF (G) x
HF~(G). Applying the J-symmetry we can then determine the (91, d2)-image
of JIL;,{vo}] € To—; (j = 3) as well. (Notice that although J[L;,{vo}| and
[L—j+a,{vo}] are both elements of 7_;_5), they are not necessarily homologous.)
For j = 2 theclass [L;, {vo}] € Ty mapsto (U @ (—1,0,1),U & (—1,0,1)). Now
we are in the position to determine the homologies H.(7;), as well as the maps on
them. Notice first that since G represents S7, the Alexander gradings are all integer
valued, hence we have a nontrivial complex 7; for eachi € Z.

Proposition 6.3. The homology H,(T;) is isomorphic to F[U].

Proof. Notice first that H,(7;) cannot have any nontrivial U/-torsion: since dy, d»
map to H,(B) = F|U], such part of the homology stays in the kernel of d; and
2, hence would give nontrivial homology in HIF | (Gy,) (supported in |E| = 1).
This, however, contradicts the fact that for negative definite graphs with at most one
bad vertex we have that HIF | (G,,) = 0 [10], [21]. If i > O and H.(T;) is not
cyclic, then (by the J-symmetry) the same applies to ., (7_;). Consider the surgery
coetfficient n with the property that 9, on 7; and d1 on 7_; point to the same B. Then
H (T;)® HAT_;,) - H,(B)® H,(B) & H,.(B) will have nontrivial kernel, once
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again producing nontrivial elements in HF 7 (G, (n)), a group which vanishes for any
(negative enough) surgery on vy. Therefore if i # 0, the group H,(7;) is cyclic with
trivial U/ -torsion, consequently isomorphic to F[U]. For the same reason, H,(7Ty)
can have at most two generators, and if it has two generators, then the two maps d;
and d, have different elements in their kernel. Suppose that H,(7Ty) is not cyclic. In
this case (for the choice vy = —7) the U = 1 homology can be easily computed and
shown to be zero, contradicting the fact that in the single spin® structure on YG‘UQ(_7)
this homology is equal to IF. This last argument then implies that H,(Ty) = F|U]
and concludes the proof of the proposition. U

Now our earlier computations of the maps show that for i > 0 the map d;
maps [L;4+2,{vo}] € T; into the generator of HIF ™~ (G), hence [L; 42, {vo}] gen-
erates H,(7;). Furthermore, this reasoning shows that d, is an isomorphism and
the map 3, : H.(T;) — HF (G) is multiplication by U*. By the J-symmetry this
computation also determines the maps d;, d, on all H,(T;) withi # 0. On T} the
situation is slightly more complicated: both maps d;, 92 take [L2, {vo}] to U-times
the generator of HEF ™ (G). This can happen in two ways. Either [L2, {vo}] generates
H.,(Ty) (and the maps 91, d> are both multiplications by U), or the cycle [L;, {vo}]
is homologous to one of the form I/ @ g, where g can be represented by a sum
of generators (of the form [L', {vo}]), each of Maslov grading two greater than the
Maslov grading of [L2, {vo}]. Thus, our aim is to show that there are no generators
in the requisite Maslov grading.

Specifically, we have that

gr[L2, {vo}] = —

while
gr[K, {vo}] = 2¢[K. {vo}] + 1 + $(K* + 4),

which in turn can be 1 only if K? = —4 and g[K, {vo}| = 0; K? = —4 implies that
K(vg) < 5, while g|K, {vg}] = 0 implies that K(vg) > 7, a contradiction.

We have therefore identified the mapping cone (€B; H+(T;). D)oy H+(B),
H, (31 + d»)). For a schematic picture of the maps, see Figure 5.

aL HJTJ) BT AM
v u
HB)  HB  HE) H(B)  HB) H(B)

Figure 5. The schematic diagram of the homology groups of H.(7;), of H.(B) and the
maps between them. Allhomologies are isomorphic to [F[{/], and the maps are all multiplication
by some power of I/ {as indicated in the diagram). The sequence of homologies continue in
both directions to £co.
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We are now ready (o describe the master complex of I',,. We start by determining
the groups on the line j = (0 — equivalently, we compute ﬁﬂ&(rvo). For this
computation, the formula of Lemma 5.13 turns out to be rather useful. Indeed, since
H,.(T;) = F[U], there is no diagonal map in the mapping cone of Figure 3.

The map H.(V;): H«(T;) — H.(T;+1) can be determined from the fact that
composing it with the map H.(T;+1) — H.(B) we get H.(T;) — H,(B). Since
d1: Hi(T}) — Hy(B) is an isomorphism for i > 1, so are all the maps H,(\V;).
Using the same principle for i = 0 (and noticing that H,(Tp) — H.(B) is multipli-
cation by U/) we get that H, (V) is also multiplication by U/. Repeating the same
argument it follows that H, (W_1) is an isomorphism, while H,(W¥;) is multiplication
by U foralli < —2. The iterated mapping cone construction of Lemma 5.13 shows
that the group m(l"vo, n) vanishes if the two maps H. (¥, ) and H, (¥, _) are the
same, and the group ﬁﬂ&(rvo , ) is isomorphic to F is the two maps above differ.
(For similar computations see [18].) The computation of the maps H.(W¥;) above
shows that

Lemma 6.4. For I'y, given by Figure 4 the knot lattice group m(f‘vo, n) is iso-
morphic to I forn = —1,0, 1 and vanishes otherwise. ]

Indeed, with the convention used in Equation 6.1, the group ﬁfﬁi{(rvo, 1) can be
represented by
x1 = [(-1,0,1), 9],

while the group HM(FUO, —1) by
x—1 = [(—1,0,-1), 9]

It is straightforward to determine the Alexander gradings of these elements, and
requires only alittle more work to show that these two generators are not boundaries of
elements of the same Alexander grading. A quick computation gives that the Maslov
grading of x; is 0, while the Maslov grading of x_; is —2. Since the homology of the
elements with j = 0 gives [F in Maslov grading 0 (as the HF-invariant of §3), we

conclude that the generator xp of the group ﬁﬂ&(rvo, () = F must be of Maslov
grading —1. Furthermore, x_ is one of the components of dxo.

Similarly, since the homology along the line A = O1isalso [F (supported in Maslov
grading 0), it is generated by U/ ~! ® x_; and therefore there is a nontrivial map from
Xo to I/ @ x;. Furthermore, this picture is translated by multiplications by all powers
of U, providing nontrivial maps on the master complex. There is no more nontrivial
map by simple Maslov grading argument. The filtered chain complex CF*(T,)
is then described by Figure 6. (By convention, a solid dot symbolizes [¥, while an
arrow stands for a nontrivial map between the two 1-dimensional vector spaces.)
Furthermore, as the map N 1s U-equivariant, it is equal to the identity. Comparing
this result with [24] we get that
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Figure 6. The schematic diagram of the master complex MCF > (T'vy). As usual, nontrivial
groups are denoted by dots, while nontrivial maps between them are symbolized by arrows.

Proposition 6.5. The master complex of I'y, determined above is filtered chain
homotopic to the master complex of the right-handed trefoil knot in Heegaard Floer
homology (as it is given in |[22]). Consequently the filtered lattice chain complex of
the right-handed trefoil (given by Figure 4) is filtered chain homotopy equivalent to
the filtered knot Floer chain complex of the same knot. [

Remark 6.6. Essentially the same argument extends to the family of graphs {T",, (1) |
n € N} we getby modifying the graph I'y,, of Figure 4 by attaching a string of (7 —1)
vertices, each with framing (—2) to the (—3)-framed vertex of I',. The resulting knot
can be easily shown to be the (2, 2n + 1) torus knot. A straightforward adaptation of
the argument above provides an identifications of the filtered chain homotopy types of
the master complexes (in lattice homology) of these knots with the master complexes
in knot Floer homology.

As an application, consider the connected sum of 7 trefoil knots. (For a plumbing
diagram, see Figure 1.)

Proof of Theorem 1.2. According to Proposition 6.5, together with the connected sum
formula for lattice homology and the Kiinneth formula for knot Floer homology, we
get that the two filtered chain complexes for vy in Figure 1 (the filtered lattice chain
complex and the knot Floer chain complex) are filtered chain homotopic to each other.
(See Figure 7 for the master complex we get in the n = 2 case.) Equip the vertex
vg of Figure 1 with framing my < —6n — 1. Then the corresponding 3-manifold is
(mo + 6n)-surgery on the n-fold connected sum of trefoil knots in §3. Since the
master complex determines the chain complex of the surgery in the same manner in
the two theories, the lattice homology of this graph is isomorphic to the Heegaard
Floer homology of the corresponding 3-manifold. L
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Figure 7. The master complex for the knot T # T (where T is the right-handed trefoil knot).

Remark 6.7. Notice that this graph has exactly n bad vertices, therefore the above
result provides further evidence to the conjectured isomorphism of lattice and Hee-
gaard Floer homologies. (For related results also see [13].) More generally, the
identification of the master complexes of knots in $? (in fact in any Y which is an
L-space) is given in [18].
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