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On the number of finite subgroups of a lattice

Iddo Samet

Abstract. We show that the number of conjugacy classes of maximal finite subgroups of a

lattice in a semisimple Lie group is linearly bounded by the covolume of the lattice. Moreover,
for higher rank groups, we show that this number grows sublinearly with covolume. We obtain
similar results for isotropy subgroups in lattices. Geometrically, this yields volume bounds for
the number of strata in the natural stratification of a finite-volume locally Symmetrie orbifold.

Mathematics Subject Classification (2010). 22E40, 57R18, 53C35.

Keywords. Finite subgroups, lattices in Lie groups, orbifolds of non-positive curvature, count-
ing problems.

1. Introduction

Several families of infinite groups share the property that they have finitely many
conjugacy classes of finite subgroups (henceforth, the finiteness property). In the

realm of linear groups this was first proven by Jordan for GLW(Z). Using their
reduetion theory, Borel and Harish-Chandra generalized Jordan's theorem and proved
the finiteness property holds for arithmetic groups of the form G(Z), where G is a

linear algebraic group defined over Q [6]. This result was extended by Grunewald and

Platonov to general arithmetic groups, as well as to their finite extensions [15]. Other
families of groups known to enjoy this property are Aut(Fn), Out(Fn) (cf. [10]),
mapping class groups (cf. [8]), word hyperbolic groups, and CAT(O) groups (cf. [9]).

For a family of groups that has the finiteness property, it is natural to seek asymp-
totic bounds for the number of conjugacy classes of finite subgroups. For example,
if T is a group with the finiteness property and Tn < T is a sequence of finite-index
subgroups, then by elementary group theory

F(Tn)<F(T)'[T:Tn],

where F(-) is the number of conjugacy classes of finite subgroups. We generalize
this "linear" bound to a family of lattices in a given semisimple Lie group. Naturally,
the index of a group is replaced by its covolume. For reasons that will be made clear
later, we only bound the number of conjugacy classes of maximal finite subgroups.
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Theorem 1.1. Let G be a connected semisimple Lie group with finite center and
without compact factors. For a lattice T < G, denote by /(T) the number of
conjugacy classes ofmaximal finite subgroups in T. Then

f(T) < c • vol(G/ T)

with a constant c c(G).

In particular, this theorem establishes the finiteness property for lattices in these

semisimple Lie groups. We remark that if G is simple, mere finiteness already follows
from the aforementioned results, unless T is a non-unform lattice in SO(d, 1) (d > 3)

or SU(J, 1). Indeed, if G has higher rank, or is Sp(J, 1) or Ff20, every lattice is

arithmetic. If G SO(2,1), or G has rank one and T is a uniform lattice, then T is

word hyperbolic.

In some cases, we can make a stronger Statement on the asymptotic growth of the
number of conjugacy classes of maximal finite subgroups.

Theorem 1.2. Let G be as in Theorem 1.1, and assume moreover that R-rank(G) > 2

and G has Kazhdans property (T). If T„ is a sequence ofpairwise non-conjugate
irreducible lattices in G, then

v IFAT voi(G/r„)

The Statement of the theorem does not hold for G SO(<i, 1) (d > 2). Indeed,
in Section 5 we exhibit a sequence of lattices Tn < G such that vol(G/ Tn) -> oo
and

lim Inf >0.
n VOl(G/rw)

The asymptotic behavior for lattices in other rank-one groups, as well as that for
irreducible lattices in products of rank-one groups, remains unsettled.

The proof of Theorem 1.1 is based on an analysis of the action of T on the as-

sociated Symmetrie space X K\G. Each finite subgroup of T fixes a connected

complete totally geodesic submanifold of X. This establishes a one-to-one corre-
spondence between totally geodesic submanifolds fixed by some finite subgroup, and

isotropy subgroups of T. In this correspondence, maximal finite subgroups corre-
spond to minimal fixed submanifolds. The geometric equivalent of Theorem 1.1 is

stated in Section 4 and is proved by non-positive curvature techniques.

From the geometric point of view, we can extend this result. The quotient orbifold
M X/ T has a natural stratification whose strata are the sets

M[h] {xeMI[r*] [H]},
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where H < T is a finite subgroup, T^ is the stabilizer in T of a lift of x, and brackets

represent conjugacy classes. In this setting, a conjugacy class of a maximal finite
subgroup corresponds to a Stratum that does not contain any other Stratum in its
closure. The number of strata equals the number of conjugacy classes of isotropy
subgroups in T. In Section 6 we prove the following extension of Theorems 1.1 and

1.2, which we State here in its geometric form.

Theorem 1.3. Let X be a global Symmetrie space ofnon-compact type. Let M
X/T be an X-orbifold. Denote by s(M) the number ofstrata in the natural orbifold
stratification ofM. Then

s{M) < c-vol(M)
with a constant c c (X). Ifthe rank ofX is at least 2, and Isom(X) hasproperty (T),
thenfor any sequence Mn of irreducible X-orbifolds that are pairwise non-isometric
we have

1im 4^=0.n^oo vol(Mn)

Lastly, we remark on the related problems of bounding the size of maximal finite
subgroups, and the number of conjugacy classes of torsion elements in T. A bound on
the former, combined with a bound on the number of conjugacy classes of maximal
finite subgroups, would yield a bound (perhaps not optimal) on the latter. We were
unable to achieve such bounds with the tools used in this work. In fact, in SL2 (M)
the Gauss-Bonnet formula shows that there are arbitrarily large finite subgroups in
lattices of bounded covolume. However, ifT < G is an arithmetic lattice and H < T
is a finite subgroup, then by [3]

\H\ < c\ (log vol(G/ T))C2,

where c2 are constants that depend on G alone*.

Unfortunately, this does not prove that the number of conjugacy classes of torsion
elements in a lattice in a higher rank simple Lie group grows sublinearly with volume,
a Statement that we conjecture to be true.

Acknowledgments. Preliminary results of this work were achieved during the au-
thor's Ph.D. work at the Hebrew University of Jerusalem. I would like thank my
advisor, Tsachik Geländer, for his continuous support, and his encouragement to
extend and generalize the scope of these results. I would also like to thank Misha
Belolipetsky, Martin Bridson, Alex Furman, and Alex Lubotzky for stimulating con-
versations.

*This follows by combining the inequalities 4.3, 4.5, and 4.6 of [3]. In [3], these inequalities are proved for
Standard lattices in SO(n, 1). In a private communication, Mikhail Belolipetsky reassured me that they hold in
füll generality, i.e. for arithmetic lattices in a semisimple algebraic group.
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2. Generalities

We review some facts regarding isometries of Riemannian globally Symmetrie Spaces.
Let X be a Riemannian globally Symmetrie space with non-positive sectional curva-
ture. We will always assume that the metric is rescaled so that — 1 < K < 0.

2.1. The isometry group Isom(V) is a Lie group without center, with finitely many
connected components. Its identity component can be realized as the connected

component of the real points of a linear algebraic group.
For g e Isom(V), we dehne the displacement funetion

dg : X -> R-°, dg(x) d(gx,x).

The minimal displacement set of g is dehned by

Min(g) {x e X : dg(x) inf dg}.

An dement g e Isom(X) is semisimple if Min(g) is non-empty. If a semisimple
dement fixes a point in X it is elliptic. Otherwise, it is hyperbolic. In either case,

Min(g) is a connected complete totally geodesic submanifold, and is thus a globally
Symmetrie space [16], IV, §7. If Min(g) is empty, g isparabolic. If g is a hyperbolic
isometry and dg is constant, then g is called a Clifford isometry. We note that

g e Isom(V)° is a semisimple isometry if and only if it is a semisimple dement in
the linear algebraic sense. If g ^ 1 is a unipotent dement in the linear algebraic
sense, then it is parabolic (for the converse to be true, it is necessary that inf dg — 0).

If A is a set ofcommuting semisimple isometries then f~]aeA Min(a) is non-empty.
We remark that if T is a group acting by isometries on X, we will call elements

of T hyperbolic, elliptic, or parabolic according to the Classification of the isometry
by which they act.

2.2. The displacement funetion dg is convex in the sense that t i-> dg(c(t)) is a

convex funetion for every geodesic c. Consequentially, the sub-level sets of dg are

convex sets.

If C is a convex subset of X and x e X, there is a unique point 7tc (x) e C -
the projection of x to C - which is dosest to x. If C is invariant under an isometry

g, then dg (itc (x)) < dg (x). This follows from the fact that the projection does not
increase distances. Consequentially, if x $ C and c: [0, oo) X is a geodesic ray
with c(0) 7tc (x) and c(to) x, then dg(c(t)) is non-decreasing.

2.3. Let T be a countable group acting properly by isometries on X. By [23],
a non-trivial Clifford isometry acts by a translation on the Euclidean factor of X,
and trivially on the complementary factor. From this, it follows that the set T of
Clifford isometries in T forms a normal, finitely generated, free abelian subgroup.
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If k — rk]& r, then there is an isometric Splitting X ~ X\ x X2 with X2 —
such that every non-trivial element of T acts trivially on X\ and as a translation on
X2. Also, the action of T on X2 is cocompact. We shall call this decomposition the

Clifford Splitting^ of X with respect to T. Note that this need not coincide with the
de Rham decomposition, because X\ may contain a Euclidean factor.

Every element y e T preserves the Clifford Splitting, and can be written as

(yi, Yi) with Yi e Isom(X;). We denote by p\ the projection of T to Isom(X;), and

set Fi pi(T) (i 1,2).

Proposition 2.1. Ti actsproperly onX\.

(n) (n)
Proof Suppose in contradiction that yj G Ti isa sequence such that y{

J -> oo

but y^xi converges for some x\ g X\.
There are elements y^ e T2 such that y^ (y^^y^) £ r. Fix any

x2 G X2. Since T acts trivially on X\ and cocompactly on X2, by multiplying the

y(n) by elements of T, we may assume d(y^x2, x2) < K, where K is some constant

that depends on T. Passing to a subsequence we have that y^x2 converges, and thus

y^n\xi, x2) converges. This contradicts to properness of the action of T.

The kernel of the projection p\ projects to a subgroup V2 of T2 that acts properly
on X2. Note that T injects into T^, and thus V2 acts cocompactly on X2.

As we have remarked, the Euclidean factor of the Clifford decomposition may be

smaller than the Euclidean factor of the de Rham decomposition. However, if X/T
has finite volume, then the decompositions coincide [12], Theorem I. In this case, the
Statement of Proposition 2.1 follows from [12], Corollary F.

2.4. For a group of isometries F,x e X, and s > 0, we denote

Ts(x) (y £ T : dy(x) < s).

Recall the classical Margulis Lemma:

Theorem 2.2 ([21], Chapter 4). Let X be a globally Symmetrie space ofnon-positive
curvature. There are constants £ > 0 and m e N (depending on X) such that for
every discrete group T < Isom(X) and every x G X, Te(x) contains a normal
nilpotent subgroup N of index at most m. Moreover, N is the intersection ofTs(x)
with a connected nilpotent group in Isom(X).

We will need a slightly stronger version of this theorem. Namely, we want the
constants s and m to depend only on the dimension of X (with our Standing assumption

"^This Splitting can be regarded as a special case of Gromov's essö-vol decomposition, with a oo, cf. [5],
§12.
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on curvature bounds). To this end, we first observe that if the metric is rescaled by
some factor, then the constant s can be rescaled by the same factor, and m is can be left
unaltered. Therefore, if the constants of the Margulis Lemma are given for a space
with minimal curvature exactly —1, then they will be adequate for any rescaling of
this spacewithcurvature—1 < K < 0. Next, recallthatacompletesimply connected

Symmetrie space of non-positive curvature admits a decomposition into a product of
a Euclidean factor and irreducible Symmetrie Spaces of non-compact type. By the
Classification of E. Cartan, there are - up to isometry and rescaling of the metric

- only finitely many Symmetrie Spaces of non-compact type of a given dimension
[16], Chapter X. Therefore, in each dimension we need only consider finitely many
spaces with metric rescaled so that the minimal curvature is — 1. It follows that for
de N, we may choose s and m such that the Statement of the theorem holds with
these constants for every space of dimension < d.

We State two important consequences of the fact that the nilpotent subgroup N
stipulated in Theorem 2.2 is contained in a connected nilpotent linear group. By
a theorem of Lie, a connected linear solvable Lie group can be conjugated to a

subgroup of upper triangulär matrices. Hence, the commutator subgroup of such

group consists of unipotent elements. We claim that ifN contains a parabolic element,
then it contains a central parabolic element. If N is abelian there is nothing to prove.
Otherwise, the elements of the k — 1-iterated commutator, where k is the nilpotency
rank of N, are central and parabolic. Similar considerations are made in [13].

Moreover, the semisimple elements in N consist of an abelian subgroup [7], §10.
In particular, if H is a finite subgroup of Isom(X), then it has a normal abelian

subgroup of index no more than m.

2.5. If y is an element in a discrete group for which the Margulis Lemma holds,
then yl is in the corresponding normal nilpotent subgroup, for some i < m. With the

purpose of relating properties of yl to those of y, we make the following definition.

Definition 2.3. A semisimple isometry g e Isom(X) is stable if C(gl) C(g) for
every i 1,..., m, where m m(X) is the constant of the Margulis Lemma. Here,

C(g) is the centralizer of g in Isom(X).

We remark that dependence on the constant of the Margulis Lemma introduces

ambiguity to this definition. However, since it is an auxiliary notion, we will tolerate
this. Moreover, we will later fix the space X, and consider subspaces of it. The
constant of the Margulis Lemma will be set once and for all, and stability of isometries
of a subspace Y of X will be defined using this constant.

Since C (g) acts transitively on Min(g), stability of g also implies that Min(g*)
Min(g) for i 1,..., m. A slightly weaker notion of stability was introduced by
Gromov [5], §12; in his definition, the latter equality is the defining property.
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It is easy to see that translations on a Euclidean space are stable (in fact, if g £
Isom(Rw) is a translation then C(gl) C(g) for every i > 1). This implies that
in the general setting Clifford isometries are stable. Indeed, an isometry commutes
with a Clifford isometry if and only if their actions on the Euclidean factor commute.

For other semisimple isometries, we have the following "stabilization" lemma,
proved in Lemma 1.4 of [13] (cf. [5], §12.5 and [20], Proposition 2.5).

Lemma 2.4. There is a constant M M(X) such thatfor every g £ Isom(X) there

exists i < M such that gl is stable.

As we have observed, for a given d £ N, it is possible to choose the constants
of the Margulis Lemma so that they will be adequate for all Symmetrie Spaces of
dimension < d. The same reasoning shows that in the previous lemma, it is possible
to choose a constant M that will suit all Spaces of dimension < d.

Lemma 2.5. Let a e T be a stable isometry. If min da < s (the constant of the

Margulis Lemma) then a commutes with every Clifford isometry in T.

Proof. LetX X\ xX2 be the Clifford Splitting with respectto T. Let R^: X -> X
be the map that acts trivially on Ii, and by the homothety x ^ Ax on I2. Note
that Rx conjugates T to a group of isometries of X. Moreover, if ß is a Clifford
translation then the displacement of RxßRf1 is X times the displacement of ß.

Let x £ Min(cif) and let ß e T be a Clifford isometry. By conjugating by
Rx with X > 0 sufficiently small, we may assume that dß(x) < s. Let N be
the normal nilpotent subgroup of Te(x), with index i < m. Since al, ßl £ N are

semisimple, they commute. Thus ßl £ C(al) C(a) by stability ofa, andtherefore

a £ C{ßl) C(ß) by stability of ß.

2.6. Let T be a group acting properly (but possibly not faithfully) on X. For

x £ X, we denote dr(x) inf dy{x), where y ranges over all elements of T that
act non-trivially on X. The <5-thick part of X/ T is defined as

(X/r)>8 {xeX/T : dr(x)>8}
where x is any lift of x to X. We denote vol>5(X/ T) vol((A/ T)>5). If X is a

point, we set vol(X) 1 and vol>5(X/ T) 1 for every 8 > 0.

In the presence of a Euclidean factor, one cannot hope to relate any property of T to
the volume of X/T\ indeed, by conjugating T by a homothety of the Euclidean factor,
the volume of the quotient can be made arbitrarily small. The following definition
aims at overcoming this difficulty.

Definition 2.6. Let X ~ X\ x X2 (X2 — M^) be the Clifford decomposition with
respect to T. Let T\ be the projection of T to Isom(Xi). We dehne volnc(A/T)
vol(Xi/ Ti) (for "no Clifford volume") and vol^c5 (X/T) vol>^ {X\/ Ti).
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The following proposition lets us estimate the volume of the thick part of a space
by a discrete set.

Proposition 2.7. Let Y be a totally geodesic submanifold ofX, and let T be a group
acting properly on Y. There exists a constant c c(X, 8) such that the following
holds. IfX is a 8-discrete set in (Y/ Y)>§ {i.e. every twopoints in X are at distance

>8) then

|«Af| <c-vol>|(7/T).
Furthermore, ifX is a maximal 8-discrete set then

\<H\>c-l-vo\>8{Y/T).

The proof is Standard and uses two ideas. First, that balls of radius 8/4 around

points of X are disjoint in (Y/ T)>5/2, and are injective images of balls in Y. Sec-

ond, that the volume of injected balls can be bounded from below by the volume of
Euclidean balls with the same radius. Similarly, if X is maximal then the (metric)
balls of radius 28 around points of X cover (7/ r)>^, and the volume of these balls
can be bounded from above by the Bishop-Gromov theorem.

3. Fixed submanifolds

In this section, X is a Riemannian globally Symmetrie space of non-positive sectional

curvature, with — 1 < K < 0. The constants s and m are the constant of the Margulis
Lemma.

3.1. Submanifolds fixed by maximal finite subgroups. By a theorem of Kazhdan
and Margulis [17], a finite volume locally Symmetrie manifold of non-compact type
has a point where the injectivity radius is greater than some constant that depends

only on the universal cover. We develop a Variation on this result.

Let M X/ T be an orbifold, and let H < T be a finite group. If we restrict
ourselves to points on Fix(//), it does not make any sense to seek a point with dr > 0.

The best one can hope for is that the only elements that translate by less than some
constant are those of H. Of course, even this cannot be expected if there happens to
be a hyperbolic dement that acts by a small translation on Fix(//). Assuming this
does not happen, we have the following.

Proposition 3.1. Assume T is a group acting properly by isometries on X, such that

vol>ß{X/T) < oo for every /x > 0. Let 8 < s. Then for every maximal finite
subgroup H < r, either there is a hyperbolic element y E T withMin(y) D Fix(H)
and min dy < 8, or there exists apoint x E Fix(H) such that T§/2m(x) H.
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Several lemmata will proceed the proof of this proposition. In what follows we
set S Fix(//) and denote by Ts the stabilizer of S in T.

Lemma 3.2. S/Ts is a manifold and the map S/Ts -> X/ T is an embedding.

Proof. First, we show that every elliptic element in Ts acts trivially on S, proving
that S/Ts is a manifold. If y e Ts is elliptic then it fixes some point x e S. The
stabilizer of x is a finite group containing H and y, hence by maximality y e H.
Therefore, y acts trivially on S.

Next, we prove that the map S/Ts^X/Tisan embedding. To prove that it is

injective, let x e S and assume yx e S for y e T. On one hand, H < Tyx because

yx G S. On the other hand, yHy~l < yTxy~l Tyx. Since H is maximal, there
is equality in both cases. Thus y normalizes H and it keeps S Fix(//) invariant,
hence y G T$.

To complete the proof, let xn be a sequence in S and assume that ynxn converges
to y G S for some sequence yn G T. We show that yn e Ts for sufficiently large n.

Fix 8 > 0 such that T$(y) H (it exists because y e S, and T acts properly).
For sufficiently large n, d(ynxn,y) < 8/2, hence ynHyfl c T$(y) //, and

maximality implies equality. Then yn normalizes H and hence stabilizes S.

We will need the following elementary lemma from §12 of [5]:

Lemma 3.3. For every 8 > 0 and k G N there exists 0 < gi < 8, such thatfollowing
holds. For every x G X, ifT§(x) is finite ofsize at most k, then there exists a point
y G X such that d(x, y) < 8/4 and dr(y) > /x.

The constant /x depends on 8, k, and the space X. But here again, it can be chosen

to accommodate for all Spaces of dimension < dim(X).
For a point x e X, let p{x) infy dy{x) where y ranges over all non-elliptic

elements in T. Note that if x e S then p(x) is at most (w.r.t. the action of
Ts on S).

To study the behavior of p at points of S, it is useful to define the notion of
quasi-thickness which was introduced and studied in [20].

Definition 3.4. Let M X/T be an orbifold. For 8 > 0 and k G N, the (8,k)-
quasi-thick part of M is defined as

M>8,k {xeX :\T8(x)\<k}/T.

We will need the following simple fact.

Claim. IfYol>ß(M) < oo for every /x > 0, then is compactfor every 8 > 0

and k G N.
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Proof Let 8 > 0 and k e N. Let x e M^s,k and fix a lift x e X. By Lemma 3.3,
there is some /jl < 8 such that the ball of radius 8/2 around x contains a ball of radius

ji/4 that injects to the ^-thick part of M (the displacement function is 2-Lipschitz).
If M>s,k is not compact, then there is a sequence of points x; in M>s,k su°h

that d(pci,Xj) > 8 for i ^ j. Then the balls of radius 8/2 around these points are

disjoint, and the intersection of each of these balls with M>^_ contains an injected
ball of radius /x/4. Since these disjoint injected balls all have the same volume, this
contradicts the assumption that has finite volume.

Lemma 3.5. For every a > 0, the image ofthe set C {x E S | p(x) > a} in X/T
is compact.

Proof. We may assume that a is smaller than s of the Margulis Lemma. Let x e X/T
bea point with preimagex e C. Let TVbe the normal nilpotent subgroupof ra/2m(x).
Since its index is bounded by m, it can be generated by words of length at most 2m in
the generators of ra/2m(x)^. Hence, N is generated by elements y with dy(x) < a.
Since p(x) > a, these generators must be elliptic, and therefore they commute. It
follows that N is finite, hence so is Ta/2m(x). Therefore, Ta/2m(x) — H by the

maximality of the latter. It follows that x is in the (^, |//|)-quasi-thick part of Af,
which is compact.

Since C is closed and Ts-invariant, its image in S/Ts is closed. Hence, by
Lemma 3.2 its image in X/T is closed, and the claim follows.

ProofofProposition 3.1. Suppose that there are no hyperbolic elements y e T with
min dy < 8 and Min(y) o S.

It follows from Lemma 3.5 that there exists a point y e S where p attains its
maximum on S. Let us denote by #p(x) the number of elements y e T for which
dy (x) p(x). We can assume y is chosen such that #p(y) is minimal (among points
in S where p is maximal).

We claim that p(y) > 8. Let us first show that this will prove the proposition.
Indeed, we have observed in the proof of Lemma 3.5 that if p{y) > 8 then T8/2m(y)
is finite, hence equal to H by maximality.

Now suppose contrarily that p(y) < 8. Let ß p(y), and let £ be the set of
non-elliptic elements y with dY{y) /x. Let A (//, £) and let N be the normal

nilpotent subgroup of A.
There are two cases. First, let us assume that £ contains a parabolic dement. Then

N contains parabolic elements, and therefore contains a central parabolic dement

yx e N. Since N has finite index in A, y\ has finitely many conjugates, say,

yi,..., y/c. Define D(x) JL dYi (x). Then for every a > 0, C D~l ([0, a]) is

closed, convex, and A-invariant. For sufficiently small a, y $ C. Let z e C be the

projection of y onto C, and let c: [0, oo) X be a geodesic ray with c(0) z and

"^For a proof of this, see the proof of Lemma 2.2 in [20]
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c(t0) y- Everyy g AkeepsC invariant, hence isnon-decreasing along c. Also,
since H fixes y and keeps C invariant, it also fixes z, and hence fixes c pointwise.
We claim that for some y e £, dy is strictly increasing along c. lfdyocis not strictly
increasing, then it is locally constant at some point, and since dy o c is analytic, this

implies that dy is constant along c. Since this is true for the generators of A, dy o c

is bounded and thus constant for every y e A. This would imply that D is constant
along c and thus y e C, which is a contradiction.

We have shown that for t > to, dy(c(t)) > /x for all y e £, and dy(c(t)) > /x
for at least one ]/gS. We may choose /h > to sufficiently small, such that for every
y e T, dy{c{h)) > fi whenever dy(c(to)) > /x.

Therefore, p{c{t\)) > /x, and if p(c(ti)) F then #p(c(ti)) < #p(j) — 1. This
is a contradiction to the choice of y.

Now, suppose £ does not contain a parabolic element, hence it consists of hyper-
bolic elements. Let i be the index of N in A. Then the elements yl, y G £, are

hyperbolic and thus commute. It follows that C p|yeA Min(y*) is non-empty,
and it is closed, convex and A-invariant. Let z e C be the projection of y to C.
Then, as before, z e S. By our assumption, there are no hyperbolic elements y with
Min(y) 3 S and min dy < 8. Therefore, C D S is properly contained in S. As in the

previous case, we take a geodesic ray in S which Starts at z and is perpendicular to C at

z. Along this geodesic, is non-decreasing for everyy g A, and is strictly increasing
for at least one y g £. This leads to contradiction, as in the previous case.

3.2. Stable Singular submanifolds. We now formulate a proposition which is key
to the inductive reasoning needed for the proof of the main theorem. This proposition
is an analogy to Gromov's Theorem 12.11 in [5], and parts of its proof follow along
the lines of his proof.

Let A C T be a set of stable semisimple isometries. If Y (~)aeA Min(cif) is

non-empty then it is a connected complete totally geodesic submanifold of X. If,
furthermore, min da < s for every a G A, we call Y a stable singular submanifold.
Two submanifolds Y\, Y2 are called non-conjugate if Y2 ^ y Y\ for all 1 / y G T.

Note that if A defines a stable singular submanifold Y then the elements of A
commute. Indeed, if a\,a2 G A then a\,a2 G Te(y) for some y e Y. If N is the
normal nilpotent subgroup of Te(y), then a[,al2 G N for some i < m. It follows
that a\ and al2 commute, hence by stability so do a\ and a2.

Lor a submanifold Y we denote by Ty the stabilizer of Y in T.

Proposition 3.6. Let W be a connected complete totally geodesic submanifold of
X, and let T be a group acting properly by isometries on W. Let £ be a set of
non-conjugate stable singular proper submanifolds in W. For every S\ > 0 there are
constants s2 s2(s\,X) and c c(si,X) such that

£ voln>c£l (7/1» < c • vol-2 (W/ r).
res

(1)
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Proof The proof is by induction on the dimension of W. Clearly, the claim is true
for submanifolds of dimension 0 because there are no proper submanifolds.

For 7 e £ we denote £7 {Z e £ : Z c 7}. Let Z e £7 and denote

by Z7, ^4z the (maximal) set of stable elements such that Y f]ae^Y Min(ar) and

Z f~)aeAz Min(cif). Then Ay ^4z- Fix some z e Z. The elements of ^4z

commute, from which we deduce that every element of ^4z keeps Y invariant. Thus,
Z can be considered a stable submanifold of Y with respect to Ty.

By induction, we may assume that there are constants s2 and c' such that (1) holds
for submanifolds with dimension lower than dim(IL). Hence, considering the action
of Ty on 7,

£ volic£l (Z/ Yz.y) < c'. vol- (Y/
ZeEy

where Yz,y F7 n Tz-
Note that from the fact that Tz,7 < Tz it is not hard to deduce that

vol-i(Z/rz)<vol-i(Z/rz,y).
The important point is that every element of Ay keeps Z invariant, so it commutes with
every Clifford isometry in Tz (by Lemma 2.5). Therefore, every Clifford isometry
in Tz keeps Y invariant. It follows that Z has the same Clifford Splitting w.r.t Tz or
Tz,F-

Let c Sbe the set of stable submanifolds which are maximal in £ with respect
to inclusion. Then we have

J2^\ni£l(Y/rY)< J2 £ voi^avi»
FeE ZelFZ^FeE

< £ voin>c£1(z/rz) + £ c'voi-,(z/rz) < (c' +1) £ voin^,(z/rz)
Ze£' Ze£' ZeEr

(here we assume s'2 < s 1). Our problem is thus reduced to the case of maximal stable

submanifolds.
We will henceforth assume that £ is a set of maximal stable proper submanifolds,

and prove that there exist £2 and c for which (1) holds. We may assume that s\ < s.

Let W W\ x Rd be the Clifford Splitting of W with respect to T. Suppose Y is

a maximal stable submanifold, and Ay is the set of stable elements a with min da < s

such that (~)aeAY Min(a) Y. By maximality, Mina Y for every a e Ay.
By Lemma 2.5, every element in Ay commutes with the Clifford transformations

in T. Hence, every Clifford isometry of W keeps Y invariant, and therefore restricts
to a Clifford isometry of 7. Therefore, the Clifford Splitting of 7 (with respect to
Ty) can be made compatible with that of W; it can be written as 7 Y\ x Rk x
with Y\ x Rk c W\. Since we are only interested in the projections of isometries to
W\ and to 7i, we may simply assume d — 0.
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Every ß G Ty can be written in the form ß (ßi,ß2) with ß\ G Isom(Fi) and

ß2 G Isom(R/:). Denoteby p\ theprojection of Ty toIsom(Fi). Recallthat Pi(Ty)
acts properly on Y\.

We will now describe a procedure that associates to a point in the ei-thick part of
Y\/p\(r7) a point in the £2-thick part of W/T (s2 will be defined in this process).

Let y' G Fi be a point with dpl(yY){y') > s\. Let y (yf, 0) G Fi x Rk F.
Let c: [0, 00) W be a geodesic ray with c(0) y and <F(0) _L F. For every
a G Ay, ol keeps F invariant, and da o c has a unique minimum at 0. Hence, by
convexity da o c is monotone increasing and unbounded. Fix z c(to), to > 0 such

that da(z) > s/2 for all a G Ay, and da(z) s/2 for some a G Ay. Wehenceforth
fix a to be the latter.

We proceed to find a constant £4 for which TS4 (z) is finite and bounded. Fix
£3 s\/2mM. Suppose that dß{z) < £3 for some ß G T. By Femma 2.4,

is m-stable for some j < M. Since dßj(y) < £, and a commute. It
follows that ßJ keeps F Min(a) invariant. Since y is the projection of z to F,
dßj(y) < dßj(z) < jdß(z) < Ms3 < s\.

Fet us turn our attention to the projections of ßJ. On one hand, dRj (yf) < s 1,
P\

so by our hypotheses ß{ must fix Fi pointwise. Therefore, ßJ is in the kernel of
the projection T T2. Recall that the action of this kernel on F2 is proper and

cocompact. Hence, by the Bieberbach theorem ([21], §4), ßJ2k is either trivial or
a translation for some k < m. Therefore, ßjk is either trivial or acts as a Clifford
translation on F. The latter is impossible; indeed, it would imply that Min(ßjk) d F,
and by maximality of F, Min(ßjk) F (recall that we are assuming there are no
Clifford translations on W). But this would imply that ß^k G Ay and contradicts
the choice of z, because dßjk(z) < mMs3 < s/2. Thus, the order of ß is bounded

by mM.
Now let £4 £3/2m. Fet N be the normal nilpotent subgroup of r,4 (z). Then

N is generated by elements that translate z by less than 2m£4 £3. It follows that

N is generated by elliptic elements whose order is bounded by mM. Therefore, N
is abelian, and its exponent is bounded by {mM)\. Since N is an abelian subgroup
of SO{n), it can be generated by a set of n elements, hence |Te4(z)| < m(mM\)n.

Now, by Femma 3.3 there is a positive constant s2 < £4 such that if |Te4(z)| <
m(mM\)n then there exists a point w G W with d(z,w) < £4/4 such that dy(w) >
s2. The point w is the point associated to y'. Note that

da(w) < da(z) ^ < (2)

Now let £ {F1,..., F5} be a set of maximal stable proper submanifolds of
W. For each /, choose a maximal set of points {y x,..., y-1 } in Yl that projects to

an £i-discrete set in the £i-thick part of Y\//?i(rF,). To each point y- • we attach



772 I. Samet CMH

a point Wij e W by the procedure described above. We have seen that these points
projectto the£2-thickpart of W/T. Letus denotetheprojection of Wij by Wij. The
set of Wij's is not necessarily £2-discrete. However, we claim that for every point

Wij, there are at most 2n — 1 points vbkj for which d(wij, Wk,i) < £2- If this is true,
we can find in {wij} a subset of size [\{wij}\/2n\ which is £2-discrete. Using the
volume estimates of Proposition 2.7, this will complete the proof. We turn to prove
this final claim.

First, we show that if that if d(wij, Wi,k) < 2£2 then j k. Indeed, if this

inequality holds, we may assume that the points are chosen such that d(wij, Wij) <
2&2- By the construction, it follows that

^ d(yUi,yU2) < 2£2 + 2- ^ < £1,

which is only possible if j k.
Next, suppose there is a point Wij for which there are 2n other points of distance

< £2. Then each two such points are at distance < 2£2. By the preceding paragraph,
the points correspond to different submanifolds, and we may thus renumber the
indices so that d(w 14, Wij) < £2 for i 2,..., 2n + 1. Also, we may assume
that d(w\j, Wij) <£2.

By our construction and (2), there are stable elements of/ (1 < i < 2n + 1)

such that daj (w< s. Hence, by their stability, these elements commute, and the
submanifolds 7/ Min(a;) have a non-empty intersection. Moreover, at the point of
intersection the submanifolds intersect orthogonally (see proof in [5] for additional
details). There is a one-to-one correspondence between these subspaces and their
tangent space at the point of intersection, and the tangent subspaces are orthogonal,
as well. Hence, there is an orthogonal basis of the tangent space, such that the tangent
space to each of the 7/ 's is spanned by vectors of this basis. Hence, there are at most 2n

such spaces the number of subsets of the basis). This contradicts our assumption
that Y\,..., Yn+i are distinct subspaces.

4. Proof of Theorems 1.1 and 1.2

First, we make a reduction of Theorem 1.1 to the case where G has trivial center.

Suppose the theorem holds for groups without center, and let G be a connected

semisimple Lie group with finite center Z. Denote by tt the projection of G to the

adjoint group G' — GIZ.
Let T < G be a lattice. Since Z is finite, every maximal finite subgroup in T

containsTnZ. Itiseasy to check that this implies that /(T) /(jr(r)). Therefore,

/(r) /Or(T)) < c • volCG'Mn) < C • vol T),

where c c(Gf).
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Assume now that G has trivial center. Let K be a maximal compact subgroup. The
associated Symmetrie space X K\G is of non-compact type, and we may assume
that the metric is normalized to meet the curvature bounds. There exists a constant
D D(G) such that vol(X/ T) D • vol(G/ T). Since X does not have Euclidean
factors, vol>ß(X/ T) < wol(X/T). Therefore, Theorem 1.1 follows directly from
the following.

Theorem 4.1. Let X be a global Symmetrie space ofnon-positive curvature. For a

group T actingproperly by isometries on X, denote by /(T) the number ofconjugacy
classes ofmaximal finite subgroups of T. Then there exist constants /x ß(X) and
c c(X) such that f(T) < c • voYfß(X/T).

Proof Throughout the proof, s and m are the constants of the Margulis Lemma, and

M is the constant of Lemma 2.4. We choose all constants so that these lemmas hold
for any Symmetrie space of dimension < dim(X).

We will prove by induetion that for every d < dim(X) there are constants /xd, cd
such that if Y is a connected complete totally geodesic submanifold of X of dimension
< d, and T is a group acting properly on Y then /(T) < cd • xoVfßd(Y/T).

If dim(7) 0, and T acts properly on 7, then T is finite, and therefore /(T) 1.

We may fix c0 1 and /xo to be any positive number.

Suppose now that /x; exist for i 0,..., d — 1, and let us prove that /x^ exists.

Let Y be a connected complete totally geodesic submanifold of X of dimension d,
and let T be a group of isometries acting properly on Y.

Step 1. Let us first assume that T contains Clifford isometries. Let T < T be the

subgroup of Clifford isometries, and let Y Y\ x Y2, Y2 — (k > 1) be the
Clifford Splitting with respect to T. Denote by T; the projection of T to Isom(7;),
i 1,2. Recall that Ti acts properly on Y\, and that the subgroup T is contained in
the kernel of the projection T —T\ and acts cocompactly on Y2.

Our goal is to show that a maximal finite subgroup of T has a bounded number
of possible projections to Ti and T2, up to conjugation in T. Then we will show
that this yields the appropriate bound on the number of conjugacy classes of maximal
finite subgroups in T.

Lor a finite subgroup H\ in Ti, define T(Hi) pfl(H\) and T2(H\)
p2{T(H\)). Since the restriction of p2 to T(//i) has finite kernel, T2(H\) acts

properly on Y2. Moreover, T is contained in T(//i) and injects into T2(//i), and

therefore T2(H\) acts cocompactly on 72.

We claim that f(T2(Hi)) is bounded by a constant D that depends only on

dim(X). This follows immediately from the fact that, up to isometry, there are

finitely many crystallographic groups of every dimension [4].

Now let {H^\ H^} be a maximal collection of non-conjugate maximal
(2) (2)finite subgroups in T\. Lor every 1 < i < r, let {//•/,..., H/J } be a maximal
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collection of non-conjugate maximal finite subgroups of r2(///1^). By the induction
hypothesis, r — /(Ti) < vol>A6rf_1 (Yi/Ti) vol>A6rf_1 (7/ T) (the latter equation

being the definition of volnc). Also, Sj < D for every i.
Let H < T be a maximal finite subgroup. By conjugating in T we may assume

that the projection of H to T\ is contained in for some i. Furthermore, by

conjugating by an element of T(H^) we may assume that H projects into H^2-

for some 1 < j < Si. Note that this conjugation does not change the projection of
H to Ti. Our claim will be proved if we show that there is a Single maximal finite
subgroup with such projections.

To this end, let y\ e Y\, y2 £ Y2 be points fixed by H^l\ H^2-, respectively. If
K2 are two maximal finite subgroups of T which both project into H^\ H^2-,

then they both fix (y i, y2). But by maximality, they are both equal to the stabilizer
of this point in T.

We conclude that

/(F) < Z) • vol^ ^F/r). (3)

Step 2. We henceforth assume T does not contain Clifford isometries.
Let £ be a maximal set of non-conjugate stable Singular proper submanifolds of

Y. For Z e £, denote by Tz the stabilizer of Z in T, by the fixator (pointwise
stabilizer) of Z in T, and by fz the number ofnon-conjugate maximal finite subgroups
of T that are contained in Tz-

Observe that if H is a maximal finite subgroup of T that keeps Z invariant, then

it fixes some point z e Z. By maximality, H Tz, and therefore H contains

F\. Therefore, maximal finite subgroups that are contained in Tz are in a natural
one-to-one correspondence with maximal finite subgroups of Tz/Txz. Moreover,
this correspondence respects conjugation by elements of Tz.

It follows that fz < /(Tz/ T^) < vol>A6rf_1 (Z/ Tz), by the induction hypothesis.

By Proposition 3.6, we have

L fz < £ (z/ rz) £ • vol^^ {ZITz), (4)
ZeE Ze£

with 8\ Äi(^_i), Ei EhOLz-i).
It remains to bound the number of non-conjugate maximal finite subgroups that

do not stabilize any stable Singular proper submanifold.

Step 3. Let M be a set of non-conjugate maximal finite subgroup of T that do not
stabilize any stable Singular proper submanifold. Let H £ M, and let y e Fix(//).
By maximality, H Ty.

We claim that there is no hyperbolic element a e T with Min(a) 3 Fix(//)
and < s/M (recall, M is the constant of Lemma 2.4). Suppose a is such an

element. Then for some j < Af, aJ is stable, and daj{y) < e. The elements in
{yaiy~x \ y e H} are all stable and contained in Te(y), hence they commute. It
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follows that Z f) H Min(yaJ y-1) is non-empty, and it is an //-invariant stable

Singular submanifold. By our assumption, there are no Clifford isometries in T, so

Z is a proper submanifold. But this contradicts our assumption on H.
Now, by Proposition 3.1 we may replace y with a point y e Fix(H) such that

^s/2mM 00 H.
Following the same reasoning, every element a e H has order bounded by M\

otherwise, C\yeH Min(yaOy-1) would be a non-empty //-invariant stable Singular

proper submanifold, for some j < M. By identifying H with a subgroup of SO(n),
we see that its normal abelian subgroup is generated by at most n elements. Since
the index of this subgroup is a most m, we deduce that \H\ < Mnm.

By Lemma 3.3 there is a positive constant S2 < s/S such that if
I ^s/2mM (j0 I

— M m

then there is a point z e Y with d(x,y) < s/S such that dr(y) > S2- We denote this

point zh
We claim that the set of points {zh : H e M} projects to a ^2-discrete set in the

^2-thick part of Y/ T. By the choice of z#, the projection is indeed in the ^2-thick
part. It remains to show discreteness. To this end, let H\,H2 e dt, let y\, y2 be
the corresponding fixed points, and let zi, z2 be the points obtained for each group.
Suppose, in contradiction, that the projections of z\, z2 are not ^-separated. By
replacing H2 by a conjugate, we may assume d(z\, z2) < 82- This implies that

d{yi,y2) < S2+2-g/8 < s/2.

Consequentially, H\ ryi < re(y2) H2, hence H\ H2, a contradiction. By
the volume estimate of 2.7,

\x\ < E2 • vol>52/2(F/r) E2 voln^2/2(7/r), (5)

where E2 is a constant depending on X.

Step 4. Take Cd max(Z),£'i + E2,Cd-1) and /x^ min(5i, 82/2, /id-i)- K
follows easily from (3), (4), and (5) that

/(T) < cd -vollcßd(Y/r).

Proofof Theorem 1.2. Assume G has R-rank at least 2, and Kazhdan's property (T).
In this case, we have the following result

Theorem 4.2. Suppsose that is a sequence of irreducible lattices in G such that
vol (G/Tn) 00. Then for every R > 0,

voi<Ä(x/r„) nlim ——— 0.
n VOl(X/r„)
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This is Corollary 4.8 of [1] (a version for simple groups appears as Corollary 2.5

of [2]). We note that by Wang's finiteness theorem (see [22], 8.1), if the Tn are

pairwise non-conjugate then indeed vol(G/Tn) -> oo.
We now reflect on the proof of Theorem 4.1. The basic technique of the proof is,

essentially, to bound the size of certain sets by assigning to each element of the set a

point in the <5-thick part of X/T (for some 8 > 0 which is smaller than e), and making
sure these points are <5-discrete. This is done in two places. The first, is in step 2 of
the proof, and relies on Proposition 3.6. The second is done directly in step 3. (Note
that we are restricting our attention to the proof of the last step of the induction, i.e.
d dim(X).) If we look closer into the proofs of the proposition and of step 3, we
see that in both cases the points in the <5-thick part are contained in the |-thin part of
X/T. In fact, this is crucial to the proof of <5-discreteness. Therefore, we also have

a bound

/(T) < c' • vol<e(A/r)
(of course, this bound does not lend itself to induction, and is therefore not highlighted
in the proof of the theorem). The proof is completed by appealing to Theorem 4.2.

5. A construction in SO (rf, 1)

5.1. We first describe a general setting that assures that a group contains a sequence
of subgroups of finite index for which the number of non-conjugate maximal finite
subgroups grows linearly with index. Later, we will construct lattices in SO(d, 1)°
that realize this setting.

Proposition 5.1. Let Qbe a countable group with a finite subgroup H. Assume that
there is an epimorphism <p: O -> Z such that the normalizer of H is contained in
ker <p. Let Ow be the kernel of the composition

O Z -> Z/nZ.

Then there are n non-conjugate subgroups of Ow that are all conjugate to H in O.

Proof Fix some t e (p~l{1). Consider the subgroups H\ — tl Ht~\ i > 0. Since

they are finite, they are all contained in ker cp, hence in Ow, for all n.
We claim that H0,..., Hn-\ are non-conjugate in Ow. Indeed, if Hj (0 <

i,j < n) are conjugate then t~igtl normalizes H for some g £ By our
assumptionon H and the definition of j — i <p(g) 0 (mod n), and therefore
i j.

In our application, O will be a lattice. As the covolume of is proportional
to n [O : Ow], the number of non-conjugate finite subgroups constructed in the
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previous proposition grows linearly with the covolume of <§n. We also remark that

if we Start with a maximal finite subgroup //, the construction yields non-conjugate
maximal subgroups.

5.2. Now, we construct an appropriate lattice in G SO(d, 1)°, the connected

component of SO(d, 1). The starting point of our construction is the result of Mill-
son [18] concerning the positivity of the first Betti number of certain congruence
subgroups in Standard arithmetic lattices of G.

Let X {(xi,..., Xd+\) | x\ H Vx2d —x^+1 —1, x^+i > 0}be the upper
sheet of the hyperboloid, induced with a metric from the Minkowski space. This is a

model for the J-dimensional real hyperbolic space. The linear action of G on R^+1
induces an isometric action on X.

Let q be a prime, and let Q(X\,X2,..., X^+i) X\ + • • • + Xd — <s/qXd+l
be a quadratic form. Let 0 be the ring of integers of Clearly, SO(<2, R) is

conjugate to SO(d, 1), and we denote by T the corresponding conjugate of SO(<2, 0)
in SO(d, 1), intersected with SO(d, 1)°. Then T is a lattice in G. For an ideal p in
0, let T(p) {y e T \ y I mod p}. We will fix a certain p shortly, and denote

a r(p).
Denote by Y the hyperplane {(xi,..., x<i+\) G X \ x\ 0}. Let the

subgroup of isometries in A stabilizing Y (in Millson's work, this is described as

the group of isometries commuting with the reflection around 7). For almost all

p, A is torsion-free, and it is shown that for p deep enough, Y/Ay embeds as a

non-separating oriented hyperplane in X/ A. We fix such an ideal p. Note that A is

normal in T.
As explained in [18], the homology class carried by Y/ Ay is non-trivial, and its

Poincare dual yields an epimorphism (f>: A —Z.
Denote by H < T the group of isometries stabilizing Y and fixing the point

(0,..., 0,1) e Y. Note that H is not trivial; it contains, for example, the diagonal
matrices with —1 in two of the first d entries, and 1 on the rest. Moreover, by
considering all the matrices of this form, we see that (0,..., 0,1) is the unique fixed
point of H.

Since H normalizes A, it acts by isometries on X/A. Furthermore, since H
stabilizes Y it normalizes Ay and stabilizes Y/Ay. It follows that H fixes the

homology class of Y/Ay and its Poincare dual. In other words, 4>{hyh~l) 4>{y)
for all y e A and h e H. By the following lemma, whose proof is left to the reader,

we can extend (f> to H ix A.

Lemma 5.2. Let A < T be a subgroup, and H < T a finite subgroup contained
in the normalizer of A. A homomorphism : A —Z can be extended to HA iff
4>{hyh~l) fi(y)for all y e A and h e Hß

§HA is a subgroup because H normalizes A. If//nA {l} then it is equal to H k A
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We will denote the extension of <fi to H ix A by fi. To use Proposition 5.1 (with
H ix A as the group O), we must show that the normalizer of H in H ix A is contained
in ker 0. Since H < ker 0, it suffices to show that H is self-normalizing in H ix A.
To this end, suppose y e A normalizes H. Then y must fix the unique fixed point of
//, but since A is torsion-free this forces y to be 1.

Finally, observe that H is a maximal finite subgroup in H ix A. Indeed, if
g e H k A, g ^ H, then there exists 1 / y G A such that gy~l £ H. Therefore,
the group generated by H and g contains y, and is therefore infinite.

6. Isotropy subgroups

Theorem 1.1 does not provide a bound on the number of conjugacy classes of
nonmaximal finite subgroups (or torsion elements) in T, because we have no effective
bound on the size of finite subgroups of T. However, we will now show that there
is an effective bound on the number of non-conjugate isotropy subgroups in T, i.e.

subgroups that are stabilizers of points in X. It is easy to see that a stabilizer of the
submanifold Y of X is a stabilizer of some (but not every) point in Y. Hence there
is a one-to-one correspondence between isotropy subgroups and fixed submanifolds.

Let us begin by proving a lemma regarding linear groups.

Definition 6.1. Let T be a subset of GLW(C). A set of vectors <S in Cn splits T, if
<S contains a basis of eigenvectors for every t e T.

If H < GYn (C) is an abelian group consisting of semisimple elements then there
is a set vectors of size n that splits H. This is a restatement of the fact that the
elements of H can be simultaneously diagonalized. If H is finite but not abelian,
there is generally no uniform bound (depending only on n) on the size of a Splitting
set. Indeed, the minimal Splitting set for a dihedral group Z)2m realized in the Standard

way as a subgroup of GL2(C) is 2m. Nonetheless, in this example, there is a cyclic
subgroup of index 2, and all other elements (oforder 2) constitute one or two conjugacy
classes. Thus, if one considers Splitting "up-to-conjugacy", the size of a minimal
Splitting set is 4 or 6. We make generalize this phenomenon:

Lemma 6.2. There exists a function f(n) such that for every finite group G of
GLW(C) there exists a set <S such that G<S splits G and |<3| < f(n).

Remark. Saying that G<S splits G is equivalent to saying that & splits a set of
representatives of the conjugacy classes in G.

Proof Byatheoremof Jordan [11], 36.13, there isanormal abelian subgroup A <1 G

such that [G : A\ < j(n), where j is a function of n alone. It therefore suffices to
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prove that for any coset gA there is a set of vectors G such that GG splits gA, and

|G | is bounded by a constant that depends only on n.
Let gA be a coset of A in G. Set H (A,g). Assume first that H acts

irreducibly onC". Since A is abelian, C := C^(g) < Z(//), andby Schur's lemma,

Z(H) < Z(GLn(C)).
Let

[^.g-1] {[a,g_1] : aeA}.
It is straightforward to check that K is a subgroup of A because A is normal and

abelian. Moreover, the map a i-> [a, g_1] isahomomorphismof A onto ÄT withkernel
C. Note that K < SLW(C), and hence K D C < Z(SLW(C)). Thus, \K D C| < n.
We conclude that

_ I^IICI _ |AT||C|
_ MI'*c| " W^c] ~ ~

hence the index of KC in A is at most n.
Choose representatives a\,..., as (s < n) for the cosets of KC in A. For each /,

choose a basis of eigenvectors for gal, and let G be the union of these bases. Clearly,
|G| < n2. We claim that HC, and moreover Ä, splits gA. To this end, let y e gA.
For some i, y e gatKC and write y gax [a, g~l]c ([a, g_1] e K, c e C). Then

y cga;a(g_1a_1g) cg(g~la~l g)ala ca^g^a.

Since G splits gax, ÄC splits a~1gala, and since c is a scalar matrix, it also splits y.
In the general case, decompose Cn to //-irreducible subspaces V\,... ,Vr. In

each subspace Vx, we take a set Cx such that Äx splits the restriction of gA to Vx,

and that |GJ < dim(Fj)2. Now G 1JG? has the required properties: Ä splits
gA and |G| < J]dim(F?)2 < n1.

Remark. The proof shows in fact that we may take a set & such that \S\ < f(n)
and A<S already (rather than G<S) is a Splitting set.

Corollary 6.3. Let G be a finite subgroup of GLn (C). Then the number ofG-orbits
in the set offixed subspaces {Fix(g) : g e G} is bounded by afunction ofn.

Corollary 6.4. Let X be a global Symmetrie space of non-compact type, and T a
discrete subgroup of Isom(X). Denote by i(T) the number ofconjugacy classes of
isotropy subgroups in F. There is a constant c' c\X) such that

*(F) < c' - f(T).

Proof. The claim will follow if we show that there is a uniform bound on the number
of isotropy subgroups contained in a maximal finite subgroup of F.

Let H < F be a maximal finite subgroup, and let x e Fix(//). We may identify
H as a subgroup of SO(n) (n dim(X)) through the action of H on Tx{X), the
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tangent bündle at x. We note that by replacing the action of H on X by an action on

Tx{X), the set of isotropy subgroups in H is unchanged. Since conjugacy classes of
isotropy subgroups correspond to //-orbits of fixed subspaces, the assertion follows
at once from the previous corollary.

Corollary 6.5 (Theorem 1.3 of the introduction). Let X be a Symmetrie space X of
non-compact type. Let M X/T be an X-orbifold. Denote by s(M) the number

ofstrata in the natural orbifold stratification ofM. Then

s(M) < c • vol(M),

with a constant c c (X). Ifthe rank ofX is at least 2 and Isom(X) hasproperty (T),
thenfor any sequence Mn of irreducible X-orbifolds thatare pairwise non-isometric
we have

v s^nlim 0.
n^oo vol(Mn)

Proof Strata correspond to conjugacy classes of isotropy subgroups. Hence, this
follows immediately from Corollary 6.4, and Theorems 1.1 and 1.2.
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