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Homology torsion growth and Mahler measure

Thang Le*

Abstract. We prove a conjecture of K. Schmidt in algebraic dynamical system theory on the
growth of the number of components of fixed point sets. We also generalize aresult of Silver and
Williams on the growth of homology torsions of finite abelian covering of link complements.
In both cases, the growth is expressed by the Mahler measure of the first non-zero Alexander
polynomial of the corresponding modules. We use the notion of pseudo-isomorphism, and also
tools from commutative algebra and algebraic geometry, to reduce the conjectures to the case
of torsion modules. We also describe concrete sequences which give the expected values of the
limits in both cases. For this part we utilize a result of Bombieri and Zamnier (conjectured before
by A. Schinzel) and a result of Lawton (conjectured before by D. Boyd).

Mathematics Subject Classification (2010). 57M 10, 57M25, 57Q10, 37B50, 37B10.

Keywords. Torsion growth, Mahler measure, Alexander polynomials, algebraic dynamical
system, entropy, pseudo-isomorphism.

Introduction

A conjecture of K. Schmidt. Suppose M is a finitely generated module over the
commutativering R := Z [, ..., 1E!]. Let S be the unit circle in the complex plane
C. There is a natural action of Z" on the compact abelian group M = Hom(M, S),
the Pontryagin dual of M. For details on dynamical systems of this type the reader is
referred to the remarkable book [Sch]. The entropy of this action, denoted by /(M ),
canbe defined in a standard manner. Lind, Schmidt, and Ward [LSW] (see also [EW])
proved that if M is a torsion module, then

h(M) = M(Ao(M)), (L)

where Ag(M) is the O-th Alexander polynomial of M (also known as the order of
M), and MI( f) is the additive Mahler measure of the polynomial /. We will recall
the definitions of these notions in Section 1.

For a subgroup I' C Z” of finite index let Fixp (M) be the set of elements of M
fixed by actions of elements of I". Then Fixp (]12 ) is a compact subgroup of M and

*The author was supported in part by National Science Foundation.
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has a finite number Pr (17\’4\r ) of connected components. The following theorem was
conjectured by K. Schmidt [Sch], based on results in the torsion module case.

Theorem 1. For any finitely generated R-module M one has

I log Pr(M)
im sup ———
(Ty—o0 |Zn/1"|

If n = 1 then one can replace the lim sup by the ordinary lim.

= h(tor(M)).

Here tor(M) is the torsion submodule of M, and
{I'} = min{[x],x € I\ {0}},
where [x| = /), [xi]? for x = (x1,...,x,) € Z".

The theorem had been proved for the case when M is atorsion module by Schmidt,
see [Sch], Theorem 21.1, and we will make substantial use of this case.

A conjecture of Silver and Williams. Suppose L is an oriented link with 7 ordered
components in an oriented integral homology 3-sphere Z, with the complement X =
Z \ L. There is a natural identification H1(X,7Z) = Z". For a subgroup I' C Z"
of finite index let Xt be the corresponding abelian covering of X, and X llir the
corresponding branched covering of Z. There are defined the Alexander polynomials
ALy e B = ZiE, e FY i = 0,1,2,.... We will recall the definition of
A;(L) in Section 4.

Let A(L) = A; (L), where j is the smallest index such that A;(L) # 0. For an
abelian group G, denote torz(G) the Z-torsion subgroup of G.

Theorem 2. Notations as above. One has

log [torg (H1(Xr, Z))|

y — M(A(L)),
Moo 27T A N
' log |torz (H1 (XY, 7))

[ = MI(A(L)). b
)ot 27T (D )

If n = 1 then one can replace the lim sup by the ordinary lim.

For the special case when A(L) = Ag(L), part (b) was proved by Silver and
Williams [SW], who, based on that result, formulated part (b), with the upper limit
replaced by the ordinary limit, as a conjecture. The proof in [SW] (for the case
A(L) = Ap(L)), written for Z = §3 and for branched covering only, can be
modified for the case of general homology 3-spheres and non-branched coverings.
Hence the real new content of Theorem 2 is the case when A(L) # Ag(L). The proof
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in [SW] is based on the torsion module case of Theorem 1. It is not surprising that if
one can get Theorem 1, then one can generalize the result of Silver and Williams to
the case A(L.) # Ag(L).

The investigation of the growth of homology torsions of finite covering of knots has
a long history, with an interesting conjecture posed by Gordon [Go]. The conjecture
was proved by Riley [Ri] and Gonzalez-Acuna and Short [GS] using Geltond—Baker
results in number theory. Silver and Williams’ result mentioned above and Theorem 2
are generalizations of Riley and Gonzalez-Acuna and H. Short from the knot to the
link case. The surprising appearance of the Mahler measure can be explained from
the perspective of L2-torsion theory [Lii2]: The L2-torsion of the maximal abelian
covering of a link complement, at least when Ag(l) # 0, is the Mahler measure
of Ag(L). Theorem 2 more or less says that the I.2-torsion in this case can be
approximated by its finite-dimensional counterparts.

In the non-abelian covering case the £.%-torsion is given by the hyperbolic volume.
So one should expect the similar limit of the left-hand side of Equation (a) would
give the hyperbolic volume of the link complements. In [Le2], we will show that, if
L is a non-split link in S3, then

. log [torz, (H (X1, Z))| _ vol(L)
lim sup ~ = .
(M= 00 |27/ T| 61

2)

where vol(1) is the sum of the hyperbolic volumes of the hyperbolic pieces in the
Jaco—Shalen—Johansson decomposition of S3% L. Here I runs the set of all subgroups
of w1 (L) of finite index, and (T") is the minimal word length of T" \ {1}, measured
using a fixed finite generator set of 1. In particular, if vol({.) = 0, we have the
equality in (2). For example, if L is a torus knot, then one has equality in (2). For
works in this direction see also [Lel], [Mii], [BV]. It is expected that the non-abelian
case is much more complicated than the abelian case.

An algebraic version of Theorem 1. It is not difficult to reformulate Theorem 1
entirely in terms of module M, without going through the Pontryagin dual M. We
will show that Theorem 1 is equivalent to the following.

Theorem 3. For any finitely generated R-module M one has

_logftorz (M @ Z[2"/T))]
lim sup

= M(A M.
i Suf Z7/T (Ator M)

If n = 1 then one can replace the lim sup by the ordinary lim.

Theorem 3 is a special case of the following.
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Theorem 4. Suppose € is a chain complex of finitely generated free Jt-modules.
Then for everyi > (},

: log |torz (H; (€ ® Z[Z"/T)))|
lim sup
(T)— 00 12" /T

If n = 1 then one can replace the lim sup by the ordinary lim.

= M(A(H;(€))).

In this paper we will prove Theorem 3, and from there deduce Theorem 2 and 4.

Application: abelian covering of CW-complex. Suppose X is a finite CW-com-
plex, equipped with a surjection p: H(X,7Z) — Z". Let X be the abelian covering
of X corresponding p. The CW-structure of X lifts to a CW-structure of X. The
group Z" acts as deck transformations on the covering X, making the cellular complex
€(X) of X a free finitely generated Jt-complex.

For every subgroup I' C Z" of finite index let pr: mi(X) — Ar = Z"/T
be the composition 73 (X ) — H1(X,7Z) Lo Ar, where the first map is the
abelianization map. Let Xt be the finite regular covering corresponding to pr. Apply
Theorem 4 to the complex €(X) we get the following.

Theorem 5. Notations as above. Then

r |torz (H;(XT, Z))|
im sup .
(T)— 60 |Z"/T|

If n =1 then lim sup can be replaced by the ordinary lim.

= M(A(torg Hi (X, Z))).

Ideas of proofs. To prove Theorem 3 (and the equivalent Theorem 1) we will reduce
it to the case when M is a torsion module, which had been proved in [Sch], and the
case when M is torsion-free, i.e. when tor(M) = 0. Although the fact that M is
isomorphic to tor(M) & (M [tor(M )) is not true in general, it would hold true if
we replace isomorphism by pseudo-isomorphism, a notion introduced by Bourbaki
[Bou]. The notion of pseudo-isomorphism is important for us, and we will review it
in Section 1. The following will be one of the main technical results used in the proof
of Theorem 3.

Theorem 6. Suppose My and M, are two pseudo-isomorphic finitely generated R-
modules. Then |torg (M @ Z|Z" /T|)| and |torg (M, @ Z|Z" ] T'|)| have the same
growth rate in the sense that

- (log torg.(Mi @ Z[2"/T])|  log|torz (M2 ® Z[Z”/T])I) _o
|Z"/T| 17" /T '

(Ty—o
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Note that the limit in Theorem 6 is the ordinary limit, not the upper limit.

In general, the direct calculation of [torz (M Q Z|Z" / T'|)| (resp. the exact value of
|torg, (H(XP, Z))]) is very difficult, especially in the case when M is not a torsion
module (resp. the 0-th Alexander polynomial is 0). The only known formula for
torg(X llir, Z), due to Mayberry and Murasugi [MM], applies only to the case when
H((X2, 7)) itself is a torsion Z-group. When the 0-th Alexander polynomial is 0,
which is the case concerned in this paper, the only known result is that of Hillman and
Sakuma [HS] who calculated part of the torsion torg (H (X Pr, 7.)). The other not-
yet-calculated part is related to the more difficult theory of modular representations
of finite groups.

To circumvent this problem, we use an approximation S(I") of Z[Z"/T|, for
which the calculation of |torz (M ® )| is easier. Here S(I") depends on I" and
other data, and it approximates Z[Z" /T'| in the sense that |[torz (M1 @ Z|Z"/T))|
and |torz (M7 ® B(T")| have the same growth rate. The construction of 8(T") is based
on the theory of torsion points on algebraic varieties. Needless to say, we have to use
tools in commutative and homological algebra to get the desired estimates.

Sequence of converging subgroups. Theorem 3 guarantees there is a sequence of
subgroups [y C Z”" of finite index such that
lim log |torz (M ® Z|Z" ]/ Ts])|
S— 00 |Z” / I’ |

= MI(A(torM)).

In the case when M is a torsion module, half of the proof of Theorem 1 in [Sch] is
to construct such a sequence. The construction is long and difficult. In Section 5
(see Theorem 7) we give new sequences I'y that work for both torsion and non-
torsion modules. The proof is probably simpler, because we are able to use a result
of Bombieri and Zannier [SZ], [BMZ] on irreducibility of lacunary polynomials
which was conjectured before by Schinzel, and a result of Lawton on approximation
of Mahler measure which was a conjecture of Boyd. The methods and results of
Section 5 are independent of the other parts and give an independent proof of “half” of
Theorem 3 (or Theorem 1), namely that the left-hand side of the identity of Theorem 3
is greater than or equal to the right-hand side.

While writing this paper | was informed by Raimbault [Ra] that he gets an in-
dependent result similar to Theorem 7 of Section 5 by modifying the sequences in
[Sch].

Structure of the paper. Section 1 contains notations, basic facts (with some en-
hancements) about torsion points on algebraic varieties, pseudo-isomorphism, order
of modules, lattices in Hermitian spaces, the integral group ring of finite abelian
groups. It also contains a proof that Theorems 1 and 3 are equivalent. In Sec-
tion 2, the main technical section, we present the construction the approximation § of
Z[Z" /T']. Section 3 contains proofs of Theorems 6, 3, and 4. Section 4 gives a proof
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of Theorem 2. The last section contains the construction of converging sequences of
lattices and Theorem 7.

Acknowledgements. I would like to thank M. Baker, Hailong Dao, J. Hillman, K.
Murasugi, S. Sakuma, K. Schmidt, D. Silver, and S. Williams for helpful conversa-
tions. I am particularly indebted to U. Zannier who has patiently explained to me over
the course of two years many things from diophantine approximations to his (joint
with Bombieri and Masser) remarkable work on anomalous subvariety structures,
including a proof of a conjecture of Schinzel.

I lectured on parts of this work at conferences in Fukuoka (March 2009), Trieste
(May 2009), Columbia University (June 2009), Osaka City University (November
2009), and would like to thank the organizers for the chance to give talks there.

The paper grew out of my attempt to prove a topological volume conjecture [Lel],
[Le2]. This was part of a program aiming at understanding the question “Under what
conditions 2-torsions can be approximated by finite group counter parts?”. I was
attracted to this program while trying to develop an approach to attack the volume
conjecture in quantum topology, and by the beautiful work of Liick work [Liil] on
approximation of L2?-Betti number.

1. Notations and preliminaries

1.1. Modules over i = Z[tfl, ..., tE1]. Fix a free abelian group Z". Let R =
Z|7Z™|, which we identify with Z[#E!, ... tE!] by sending k = (ky,..., k) € Z"
to t* = Hf-c:l tl.k":. The ring JR is a unique factorization Noetherian domain. In
this paper Jt-modules are supposed to be finitely generated, and tensor products are
assumed over Jt unless otherwise indicated.

For a module M over a commutative domain R, the torsion submodule torg (M)
is defined by

torg(M) ={x e M |ax = 0forsome 0 # a € R}.

An R-module M is a torsion module if M = torgM. If torpgM = 0, we call
M torsion-free. If R = I we usually drop the subscript R in the tor notation.

For a subgroup T' C Z" let Ap := Z"/T and I(T) the ideal of Z[¢F!, ..., ¢F!
generated by {1 — ticl ... t,ff”, (k1,...,ky) € T'}. Then we have the following exact
sequence

0 — I(T) = % —> Z[Ar] — 0.

Hence for every J-module M,

M/ITYM = M @ Z[Ar].
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Suppose f, g are functions with positive real values on the set of subgroups
' C Z" of finite index. We say f(I') has negligible growth rate if

lim f()YE/Tl =1.

(T—o

We say f and g have the same growth rate, and write f ~ g if f/g has negligible
growth rate. Note that we do not require the individual limit limry_, o f (T)V/12"/ T
exists in this case.
We say two Ji-modules M and M, have the same torsion growth, and write
My~ M, it
[torz (M1 @ Z[Ar])| ~ |torz(M2 @ Z|Ar])|.

1.2. Alexander polynomials. All definitions and facts here are standard and can be
found in [Tu], [Hi].
Every finitely generated ft-module M has a presentation by an exact sequence

d
R Lm0 s M ),

where dy, given by a matrix of size my X m with entries in 5, is known as a
presentation matrix of M. A k-minor of 91 is the determinant of any sub-matrix of
size kK X k of dy. For j > 0, the j-th Alexander polynomial A;(M) is the greatest
common divisor of all the (mg — j)-minor of d;.

Itis known that A ; (M) depends only on M , but not on any particular presentation
matrix. Each A; (M) is defined up to units in R, so identity involving A; (M) should
be understood “up to units”.

The 0-th polynomial Ag(M) is known as the order of M, which is non-zero if
and only M is a torsion module. Besides, A; (M) divides A;_{ (M) forevery j > 1.

The rank of a module M over Ji is the dimension of the vector space M ® F(3t)
over the fractional field F(R) of R. If M has rank r, then A; (M) = 0if j < r, and

Aj_r(M) = Aj(iDI‘M).
For any finitely generated Jt-module of rank r, define
AM) := Ay (M) = Ap(tor(M)).

ItM=3/I where I = (fi..... f;)is the ideal generated by fi,..., f, then
Aog(M) = gcd( fi, ..., f1), the greatest common divisor of the elements fy,..., f;.

1.3. Pseudo-isomorphism. Reference for this part is [Bou], [Hi].

An J-module N is pseudo-zero if for every prime ideal # of height 1, the local-
ization N is 0. It is known that submodules and quotient modules of a pseudo-zero
module are pseudo-zero.
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In 3%, a prime ideal is of height 1 if and only if it is principal and generated by an
irreducible polynomial.

An Jt-morphism M| — M, is a pseudo-isomorphism if the kernel and co-kernel
are pseudo-zero.

Two finitely generated torsion Jt-modules M, M, are pseudo-isomorphic if and
only A; (M) = Aj(M>) for every j > 0; in particular, a finitely generated torsion
PR -module is pseudo-zero if and only if Ag(M) = 1, see [Hi], Theorem 3.5.

Let us formulate some well-known facts in the form that will be useful for us.

Lemma 1.1. Suppose I C 3t is a prime ideal, I # .

a) /I is pseudo-zero if and only if I is not principal.

b) If R/ is pseudo-zero and O # p € I, then there exists ¢ € I such that
ged(p,q) = 1.

Proof. a) Since I # 9t and [ is prime, I = (pi1,..., pr), where the p;’s are
irreducible, non-unit, and distinct. One has

/1T is pseudo-zero <— Ag(/) = ged(py,...,pr)isl
=1 =2
<= [ is not principal.

b) Suppose g1, ..., g; are all irreducible factors of p. Suppose the contrary that
every g € I is not co-prime with p, i.e. every g € [ is divisible by one of the ¢;’s
Then I C Ule(qf). Since each ideal (g;) is prime, there is an index 7 such that
I C (g;). Because (g;) has height 1 and 7 is prime, this means I = (p;), which is
principal. This contradicts the fact that )/7 is pseudo-zero. O

The following is the main fact about pseudo-isomorphism which we will use.

Theorem 1.2 ([Bou], Theorem VIL4.5). Any finitely generated module Rt-module
M is pseudo-isomorphic to tor(M) & M/tor(M).

Remark 1.1. It follows from (1) that if My, M, are pseudo-isomorphic, then they
have the same entropy, 2(M) = h(M,). In particular, if M is pseudo-zero, then
h(M)=0.

1.4. Equivalence of Theorem 1 and Theorem 3. Recall that S is the unit circle in
€. With the usval multiplication S is an abelian Lie group. For an abelian group
G, the Pontryagin dual G = Hom(G, §) is a compact group. If & = 7%, then
G =~ S*. On the other hand, if |G| < 0o, then G = G. If G = Z* @ torz(G), then

G =~ SF x m. In particular, the cardinality [torz G| of the Z-torsion G is the
number of connected components of the compact group G.
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Suppose M is a finitely generated Jt-module, and ' C Z" a subgroup of finite
index. By definition

Fixr(ﬂ) ={x € M |y -x=xforally e I'}
={x € M= Hom(M,S) | x(y) = x(y(y)) forally e ', y € M}
= {x € Hom(M,S) | x((l — y)(y)) =l1lforallyel, y e M}
= {x € Hom(M,S) | x(I(F) M) = 1}.
It follows that
Fixp (M) = (M/I(T) M)" = (M ® Z[Ar])".
We can conclude that Pr (]lZf ), the number of connected components of Fixp (]lZf ), 18
Pr(M) = |torz(M ® Z[Ar])|. 3)
From (1) and (3) we see that Theorem 1 and Theorem 3 are equivalent.
1.5. Theorem 3, the case when M is a torsion module. As explained in the intro-
duction, Theorem 3, in the case when M is a torsion module, has been proved (see

[Sch], Theorem 21.1). We will use this result for the case N is pseudo-zero. Since
Ap(N) = 1 it N is pseudo-zero, we have the following result.

Proposition 1.3. Suppose that N is pseudo-zero. Then N ~ 0, i.e.,
[torg(N & Z[Ar])| ~ 1.

1.6. Lattices in Hermitian spaces and Z-torsion. Suppose W is a finite-dimen-
sional based Hermitian space, i.e. a C-vector space equipped with an Hermitian
product (., .) and a preferred orthonormal basis. The Z-submodule A C W spanned
by the basis is called the fundamental lattice.

For a Z-submodule (also called a lattice) ® C A with Z-basis vq,...,v; define

vol(®) = | det ((vi, v)t ;)2

It is clear that vol(®) > 1.
For a lattice ® C A define its orthogonal complement in A by

O ={xeA|(x,y)=0foralye ©}

It is clear that ©@ C ©~1. A lattice © is primitive is ©® = ®—=_ It is known that ®
is primitive if and only it is cut out by a subspace, i.e. ® = (0@ ®z ) N A; and if
© 1is primitive, then (see e.g. [Ber])

vol(©)% = |A/(® 3 ©1)|. (4)
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Lemma 1.4. Fori = 1,2 let W; be a finite-dimensional based Hermitian space with
Jundamental lattice A;. Suppose f: ©1 — O, is a Z-linear map, where ®; C A;
is a lattice of maximal rank. Then

[torz (coker £)| < || F]I™®2 vol(©).

Here || f|| is the norm of the linear extension of f to a C-linear operator from Wi

to Ws.
Proof. Let f(©1) = (f(®1) ®z Q) N A,. Then

torg(coker f) = F(©1)/f(O1).

Hence

[torz (coker £)| = | F(©1)/f(O1)]

- (5)
= vol( f(®1)/ vol( f(©1)).

It is known that

det’( /) vol(®1) = vol(ker 1) vol( f(©1)), (6)

where det’( ) is the product of all non-zero singular values of f, i.e. the square root
of the product of all non-zero eigenvalues of f* f. From (6) and (5) we have

det’( 1) vol(®1) !
vol(ker f) vol( f(©1)) < det’(f) vol(©1). (7)

The maximal singular value of f is equal to || f||. The number of non-zero-
singular values is less than or equal to the rank of f. Hence det” f, being the product
of the non-zero singular value, is < || £||™* 2. Now from (7) we get the lemma.  [J

|tory (coker )| =

1.7. Decomposition of the group ring of a finite abelian group

1.7.1. Decomposition over C. Suppose A is a finite abelian group. The group ring
C[A4] is a C-vector space of dimension |A|. Equip C[A] with a Hermitian product so
that A is an orthonormal basis. Then the integral group ring Z| A] is the corresponding
fundamental lattice.

The theory of representations of A over C is easy: C|[A] decomposes as a direct
sum of mutually orthogonal one-dimensional A-modules:

ClA] = P Ce,. (8)

€A
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where ¢, is the idempotent

|
ey = m Z y(a Ya.

acA

The vector subspaces Ce, are not only orthogonal with respect to the Hermitian
structure, but also orthogonal with respect to the ring structure in the sense that
ey e, = 0if y # y'. Each Ce, is an ideal of the ring Z[A].

For a Z-submodule X C Z|A] let X¢ the C-vector space spanned by X .

1.7.2. Decomposition corresponding to a subgroup. The integral group ring Z[A]
does not have asnice adecomposition as (8). Givenasubgroup B C A, wedecompose
a subring of Z|A] as follows.

The natural projection A — A/B gives rise to the exact sequence

0 — B(B) — Z|A] — Z|A/B] — 0, (9)

where S(B) is the ideal of Z|A] generated by 1 — b, b € B. As a lattice of Z[A],
B(B) is primitive.
Let «(B) be the annihilator of S(B):

a(B)={xeZ|A| | xy =0forall y € 8(B)}.

Then a(B) is also the orthogonal complement of S(B) in Z[A]. It is known that
o(B) is the principal ideal generated by u = up := Y , g b, see e.g. [BM].
The complexification a¢(B) and S (B) are easy to describe. Tensoring (9)
with C,
0 — Bc(B) — ClA] - C[A/B] — 0.

As a C[A]-module, C[A/B] is isomorphic to ac(B) = Bc(B)*, and

ac(B)=Bc(B)y- = P Cey, (10)
x€A. x| g=1
tkz(@(B)) = dimc(ac(B)) = |A|/|B]. (11)

Proposition 1.5. The finite group Z[A]/(OJ(B) & ﬁ(B)) has order |B|‘A|/‘B|.

Proof. Let y1,..., yp € A be representatives of cosets of B in A. Then £ = |A/B|,
and the elements yy up,...,ygup form a Z-basis of a(B). It is easy to see that
(yviup.yjup) = 0ifi # j. Thelength ofeach vector y;up is (}_,cp ly:b|2)Y? =
| B|Y/2. It follows that

vol(a(B)) = |B|*/>.

From (4) we have |Z[A]/(«(B) & B(B))| = |B|* = |B|A/Bl. O
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1.7.3. Decomposition corresponding to a collection of subgroups. Suppose that
Bq,..., By are subgroups of a finite abelian group A. Let

k k
a(Bi.....By) =) a(B;). P(Bi.....Bx) =] B(B)).
i=1 i=1

Then a(By,...,Br) and B(By, ..., By) are primitive lattices of Z[A], and they
are orthogonal complement of each other in Z[A]. In addition, both (B, ..., By)
and 8(Bjy, ..., By) are ideals of Z|[A], and they are the annihilator of each other.

Proposition 1.6. The finite group Z[A]/(ﬁ(Bl, ., Br)®a(By, ..., Bk)) has order
less than or equal to ]_[jle |Bj|‘A|/|BJ' | Equivalently,

k
\1/2
vol{(w(B1. ..., Bg)) < (H |Bj|\A|/|BJ|) _
j=1

Proof. We write ¢ = a(By,...,B;) and § = B(By,...,Br). Recall that § =
ﬂjf:l B(B;). We have

k
LA/ (@ + B = (LAl )8 = @zl [ ( () BB)).

j=1
Since (Z[A]/a)/ (ﬂle ﬁ(Bj)) injects in
k k
[T@i41/e)/88;) = [[@IA1/B(B)/a.
i=1 j=1
we have .
ZLAl/ (@ + B)] < [ | (Z1A1/B(B;)) /] (12)
j=1

Since w(B;) C a, (Z[A]/B(B;}))/a(B;) surjects onto (Z[A]/B(B;)/w, hence
(ZA]/B(Bj)/ee| < |(ZIA)/B(B; ) /e(B;)| = |ZA]/(@(B;) + B(B;)|. (13)

Inequalities (12) and (13), together with Proposition 1.5, show that

k
2141/« ® B)| = [ 1B,/

j=1

The equivalence between the two statements follows from (4). [
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1.8. Torsion points in algebraic varieties. We recall well-known facts about alge-
braic subgroups of (C*)".

1.8.1. Algebraic subgroups of (C*)". With respect to the usual multiplication
C* := € \ {0} is an abelian group, and so is (C*)". An algebraic subgroup of
(C*)" is a subgroup which is closed in the Zariski topology.

For a lattice, i.e. a subgroup, A of Z", not necessarily of maximal rank, recall
that 7(A) is the ideal of & generated by 1 — r*, k € A. Let G(A) = Vi(a), the
zero-set of I(A), ie. the set of all z € C” such that z¥ — 1 = 0 forevery k € A.
Here fork = (ky,...,k,) € Z" and z = (zq, ..., 2,) € (C*)" we set t¥ =[], tl.k":
and z¥ =[], zF.

It is easy to see that G(A) is an algebraic subgroup. The converse holds true:
Every algebraic subgroup is equal to G(A) for some lattice A, see [Sch-W].

Everyelement z € G(A) defines acharacter y; of the quotient group A5 = Z" /A
via

xz{t k) =z ka
and conversely, every character of A arises in this way. Thus one can identify G(A)
with Hom(AA,C*) viaz — x,. We will write e, for the idempotent y,,, and the
decomposition (8), with A having maximal rank, now becomes

ClAa] = @ Ce,. (14)

2€G(A)

1.8.2. Torsion points. A pointz € (C*)" is atorsion point if it is a torsion element
of the multiplicative group (C*)”. Let U denote the set of all roots of unity in C*.
Then the set of torsion points of (C*)” is U”. For example, if ' C Z" is a lattice of
maximal rank, then G(I") C U".

The following fact is well known in the theory of torsion points on algebraic
varieties.

Proposition 1.7. Suppose X # C" is an algebraic subset of C" defined over Q.
There exist a finite number of non-zero lattices Ny, . .., Ay in Z", suchthat U"NX C
urn (Uf:1 G(Aj)), i.e. any torsion point in X belongs to Ujle G(A;).

Proof. A torsion coset is a coset u(G, where u is torsion point and ( is an alge-
braic subgroup of (C*)". Tt is well known that there is a finite number of torsion
cosets #;G; C X such that every torsion point in X belongs to | J 1 Gy, see [Lau],
[Sch-W]. Since u;G; C X, the dimension of G; is atmostn — 1. Let U; be the finite
cyclic group generated by u;. Then I/; G; is also an algebraic group of dimension
< n—1. Hence U; G; = G(A;), with A; a non-zero lattice. Since u;G; C U;G;,
it is clear that every torsion point in X belongs to | L G(A). O
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1.9. Elementary bounds from exact sequences

Lemma 1.8. Suppose M is a finitely generated R-module with a free resolution

J 0
e 2 2 e L | s M 0,

and Q is a R-module with |Q| < oo. Then |T0r:“-R(M, Q)| < |Q|" for every
i=01,....

Proof. By definition, Torf-R (M, Q) is the homology groups of the complex
e R0 R0 —->R"R O 0.

Since the 7-th term of the this complex is " @ Q = @™, a finite group of order
| O™, its i -th homology group has < |Q|™ elements. O

Lemma 1.9. Suppose in an exact sequence of abelian groups
o= Ni(I) = Mi(T) — Ma(T) — No(I') — -

each M;(I), N;i(I') is an abelian group depending on subgroups I C Z" of finite
index. Assume further that N1(I") and N(I') are finite, and

|INI(I)| ~ 1 ~ [N2(T)].

Then
[torz (M1(T'))| ~ |torz (Ma(T'))|.

Proof. Replacing N; by an appropriate quotient and N, by an appropriate subgroup,
we may assume that

0— Ni(T') - M(T") - M(T') > N(T') = 0

is exact. We then have
M{/Ny — M, —- N,. (15)

The inclusion in (15) shows that
torz (M1)|/|N1] = [torz (M>)],
and the surjecion in (15) shows that
torg (M) = |Na| [torg(My/Ny)| = |No| [torz (M1)|/|N1].

From there we get the conclusion of the lemma. L
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Lemma 1.10. Suppose O is a free abelian group of finite rank, and p,q: ® — ©
are Z-linear operators with p injective. Let € be the complex

8 5 B
00 "0 —00—=20,

where 02(a) = (—q(a), p(a)), d1(a, b) = p(a) + q(b). Then the homology groups
of € are finite, and
|H1(€)| = [Ho(T)].

Proof. The complex € is the middle row of the commutative diagram with exact
columns:

0 0 0O—2 =@ 0
i
d 0
0 O—>0p0—=0 0
0 o—2 -0 0 0.

Here i1(a) = (a,0),i2(a,b) = b. Let €1 be the first row and €, the last row.
Then 0 — € — € — €, — 0is exact. The long exact sequence, together with
H(€1) = Hp(€,), gives us the following exact sequence

00— Hl (f) — Hl (82) — HO(fl) — Ho(f) — 0.

Note that |H,(€2)| = |Ho(€1)| = | coker p|, which is finite since p is injective.
It follows that H(€) and Ho(€) are finite. In an exact sequence of finite abelian
groups, the alternating product of the cardinalities is 1. Hence, with the two middle
terms having |11 (C2)| = |Ho(€1)|, we must have | H{(C)| = |Ho(T)|. O

2. Approximation of Z[Z" /T |

2.1. Approximation of Z[Ar]: formulation of results. As mentioned in the in-
troduction, we search for a good approximation of Z|Z"/T'] as {I') — oo. The
approximation depends on some extra choice, namely, a non-zero element p € R.

Fix a non-zero Laurent polynomial p € | = Z[tT',....%"]. For each sub-
group I' C Z" of rank n we will construct an Jt-module S(p; I') with the following
properties.

Proposition 2.1. (i) For every finitely generated R-module M one has

[torz (M & Z[Ar])| ~ [torz(M ® B(p;T))|.
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(ii) Suppose p € I, where I # I is ideal of W such that N/ 1 is pseudo-zero.
Then for each i = 0,1 the module TOI‘ER (B(p: 1), R/I) is finite, and

Tor (B(p: T). /)| ~ 1.

The remaining part of this section is devoted to the construction of 8(p;T") and
the proof of Proposition 2.1.

2.2. Heuristics. There is no rigorous mathematics in this subsection. Logically the
reader can skip this subsection.

In the estimate of torz(M ® 7Z|Ar]) using exact sequences, finiteness is very
helpful. We will try to decompose Z [ A] as a sum of two submodules, one is negligible,
and the other if finite if tensoring with pre-given modules.

We have the decomposition (14) of C[Ar| into irreducible components

The module M @ C[Ar] will decompose accordingly. Albeit over C, this gives us
hint that some z € G(T") are “good” and some are “bad”. Here a good z must satisfy
some non-degeneracy property, and if a point is good, all its Galois conjugates are
good. Combining all good points together one should get some “integral” sub-module
of Z|Ar] for which non-degeneracy conditions imply some kind of finiteness. If S
is the set of all bad points, and S+ be its complement in G(I"), then one has

Q[Ar] = (%cez) ea( an (Cez).

ze§L

The module 8 would be the “integral spine” of the second part.

The set of bad points will consists of those in G(I') which are zeros p. For good
points z, p(z) # 0, and this will give us the non-degeneracy condition. We control
the set of bad points, which is the intersection G(I") N V¥, by using theory of torsion
points on V), see Proposition 1.7.

2.3. Definition of 8(p;I'). The zero set

Vo :i=4(z1,....22) € (CH" | plz1,....24) = 0}

is analgebraic subset of (C*)? of dimension < n—1. Let Ay, ..., Ay bethe non-zero
subgroups of Z" described in Proposition 1.7 with X = V). By construction,

k
if a torsion point z does not belong to U G(Aj), then p(z) # 0. (16)
j=1
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Suppose A = Ar := Z"/T’, where I' C Z" is a subgroup of maximal rank 7.
The abelian groups B; = (A; +I')/T are subgroupsof A = Z"/T". Let

a(p: ') =a(By,...,Br), B(p:T') = p(B1,....By),

wherea (B, ..., By)and B( By, ..., By)areideals of Z|A] defined as in Section 1.7.3.
We partition G(I") = A into two disjoint subsets S, S* by

s=6mN (U G(Aj)), St = G\ S. (17)
J

We will see thatas {I') — oo, § is small compared to its complement S-. Note that
Xz, with z € G(I'), takes value 1 on B; exactly when z € G(A;). Hence from (10)
we have

w®B)= @ .,

zeG(MNG(A;)

and hence

Be(p:T) = P C.. ac(p:D) =EHC.. (18)

zeSL zes

We will writew = a(p; '), 8 = B(p: ). Letpr: # — Z[Ar] be the canonical
projection. Note that pr=1(0) is the ideal of all polynomials taking values 0 at every
point of G(T"). Similarly, & = pr~!(«) is the ideal of all polynomials taking values
(0 at every point of S-+. Over C, @ is the reduced ideal of Re = C[tlil, s ,tnil
whose zero set is S—, Vi =8 - In addition,

Re/oae = ClA]/ac = Bc.- (19)

The important facts concerning a( p; I') and B(p; T") are the following.

Lemma 2.2. a) S+ = Va. does not intersect V. It follows that the ideal of Re
generated by p and d¢ is the whole R¢.
b) The multiplication map p: B — B,x — p - x, is injective. It follows that
Torf (3t/(p). B) = 0.
c) The quotient group Q(p;T") := Z[Ar]/(()l(p; ) & B(p; F)) is finite and its
order is negligible, |Q(p;T)| ~ L.
d) |S| = tkz a(p; ') is small compared to the tkg, Z|Ar] = |Ar| in the sense
that
. tkga(p:T)
lim —— =

0.
(T)—»oo  |Ar|

e) One has vol{a) ~ 1.
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Proof. a) Suppose z € S+. By definition (17), z is a torsion point not belonging
to Ujle G(A;). By (16), p(z) # 0. In other words, V, N V. = @. By the
Nullstellensatz, the ideal generated by p and & is the whole J¢.

b) Note that C ¢, is a i¢-module by the action f -e, = f(z)e;. Ifz € S+, then
p(z) # 0.hence p: Ce; — Ce; isanisomorphism. Since fc = P, g1 Ces, the
map p: B¢ — B is also an isomorphism. It follows that p: 8 — 8 is injective.

One has Torgl’}(ﬂ%/(p),ﬁ) =ker(p: = B.x—>p-x)=0.

c) We will first show that foreach j = 1,... £,

(Fl)igloo |B;| = oo. (20)

By definition, B; = (A; + I')/T". Fix anelement x € A;, x # 0, and look at
the degree of x in B; = (A; + T')/T". If m|x| < (I}, then m|x| does not belong to
I' by the definition of {I'}, and hence mx is not Oin B; = (A; 4+ I')/I". This means
the cyclic subgroup of B; generated by x has order at least (I')/|x|. It follows that
|B;| = (T")/|x|. Hence lim;ry_, o | Bj| = oo.

From Proposition 1.6,

k
10(p: DM < [T 18111551,
i=1
from which together with (20) we get |Q(p; T')| ~ 1.
d) By (11) one has rk(a(B;)) = |A4|/|B;|. Since o« = > a(B;), one gets
k k
tk(e)/|A4] = ) rka(By)/|Al = Y (1/IB;). @)
F=1

i=1

which, with (20), shows that limpr_, o %ﬁﬂ = 0.

e) This follows immediately from (4) and part (c). [

2.4. Contribution from o (p;T') is negligible. The ideals @ and g, being Z|Ar |-
module, can be naturally considered as J-modules.

Lemma 2.3. Suppose M is a finitely generated R-module. Then

|torz (M ® a(p; T))| ~ L.

Proof. Tensoring the presentation

mmlﬂmmoéM_)O
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with Z[A] and « respectively, one gets
0
Z[Ar)™ == (ZIAr)™ - M ® Z|Ar] -0,

Mo
o™ L% gm0 s M @ o — 0, (22)

with 01 o the restriction of d¢ .

Recall that we have a Hermitian structure on C[A]. It is not difficult to find an
upper bound, not depending on I, for all the operator d; . In fact, by Lemma 2.5 of
[Lul],

1Or|| < D :=mymy Hl.lﬂ}x{lgijll},
where for a Laurent polynomial a € Z[tlil, T
absolute values of its coefficients.

Because a¢ is an invariant subspace of C[A], we also have

| the norm ||y is the sum of the

[Oull = D.
Applying Lemma 1.4 to the sequence (22) we get

[torz (M ® a)| < D™2% vol(w).
The right-hand side has negligible growth, by Lemma 2.2 d) and e). L
2.5. Proof of Proposition 2.1 part (i)
Proof. Recallthat A = Ap := Z"/T". We have an exact sequence

0= (adf)— Z[A] — 0 — 0, (23)
with O = |Q(p;I")| ~ 1 by Lemma 2.2 a). Tensoring (23) with M,

o= Torf (M, Q) > (M @a)d (M ®B)) > M Z|A] — Torg (M, Q) — 0.

24)
Lemma 1.8 shows that |T01rf.R (M, Q)] < |Q|™ for some constant m; depending on
M only. Since Q ~ 1, we also have

|TOI.ER(M5 Q)| ™~ 1
Applying LLemma 1.9 to the sequence (24), we get
[torz (M @ a) @ torz(M @ B)| ~ |torz(M @ Z|A])|.

Since |torz (M ®@«)| ~ 1 by Lemma 2.3, we have |torz (M ® B)| ~ |[torz(M &
ZIAD). O
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2.6. Theintermediateideal J = (p, g). To prepare for the proof of Proposition 2.1
part (ii), we first study the ideal J = (p, g), where ¢ € JR is co-prime with p. The
reason is J/J has a simple free resolution, and hence Torf-R(S% /J.B(p;T)) is easy
to study.

Lemma 2.4. Bothmodules T0r£1R (S‘t/.], B p: F)) azndTorOER (S‘t/.], B(p: F)) are finite,

have the same cardinality, and have negligible growth, i.e.
| Tor{ (R/7, B(p: T))| = |Torg (R/J. B(p; T))| ~ L. (25)

Proof. We have the following free resolution of :t/J:

0% nen- R R/T—0, (26)

where dy(a) = (—qa, pa) and dy(a,b) = pa + gb. This can be directly checked
easily, or can be deduced from the theory of Koszul complex as follows. Since p,
g are co-prime, the sequence (p,q) is a regular sequence of Jt (see Exercise 5 of
page 102 of [Ka]). Hence the Koszul complex of (p, g), which is (26), is a free
resolution of /7.

From the free resolution (26), Torf-R (R/J, B) isthe i-th homology of the complex

058 e g0 27

The module § is a free Z-module of finite rank, and the map p: § — f is in-
jective, by Lemma 2.2b). From Lemma 1.10 we see that both TorT (R/J, B) and
Torom(ﬂ%/J,ﬁ) = (R/J) ® B are finite, and

[Tor{ (/1. )| = 1%/ ] @ B|.
By Lemma 1.1, 3t/J is pseudo-zero since p and g are co-prime. We have

[(R/J)YR B| ~ [(R/J) @ Z|Ar]| by Proposition 2.1 (i)

~ 1 by Proposition 1.3.
This completes the proof of the lemma. (]
2.7. Complexification of tor modules. Recall that Rg = C [tlil, e, t,?fl . Ob-

serve that
Rez2zhzC, and e = Ry Re.

Let /¢ be the C-span of I in R. Then /¢ is also the extension of / from R to
Re.
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Lemma 2.5. As Z-modules, for every i,
(Tor®(R/1, 8)) ®z C = Tor)© (Re /I, Be).

Proof. Since C is flat over Z, we have (R/]) @5 C = R /1.
Since R is flat over R, we have (R/7) @p Re = Re /I, It follows that

(R/1) @z C = (R/T) dn Re. (28)
Suppose € — f is a free resolution of §. By definition,
Tor (R/1.B) = H; (€ @ (/1)) (29)

Tensoring (29) with R, a flat Jt-module, we get
Tor} (e /Ie, Be) = Hi(€ @x (R/1) @ ). (30)
Tensoring (29) over 7 with C, a flat Z-module, we get
(Tor'(R/1.B)) ®z C = H,((€ @x (R/])) ®z C). (31)

Since € is free, each term of € is a direct of several Jt. It follows from (28) that the
right-hand sides of (30) and (31) are isomorphic as Z-modules, whence the lemma.
L

2.8. Proof of Proposition 2.1 (ii)

Proof. a) The case i = 0. Recall that Torom(ﬂ%/l, Bp:T)) =R/ R B.
Since (p) C I, we have a natural surjection t/(p) — 3R /I. Tensoring with
B = B(p;I') we get a surjective map

B® (R/(p) - B (/1)

Now B ® (R/(p)) = B/ p. which is finite since p acts on the finite-rank free abelian
group B by an injection, see LLemma 2.2 b). It follows that § ® R/ is finite.
Since i /1 is pseudo-zero, by Proposition 2.1 (i) and Proposition 1.3,

1B @ (R/D)| ~ |Z[Ar] ®@x (/)] ~ 1.

b) The case i = 1. First we show that TorélR (B, Jt/1)is finite.
By Lemma 2.2 a), the R¢-ideal generated by @ and p is R, hence d¢ + Ig =
R because p € I. Itis well known then (see e.g. [AM], Chapter 1)

e 11 Je = G I (32)

In a commutative ring R, it is known that Tor‘lR (R/1/,R/I) = LI/ 111, for
two ideals /4, /. Hence from (32) we have
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Tor!'© (Re fdc, Re/Ic) = 0.
Since f¢ = J¢/dg, this can be rewritten as
Tor]' (B, e /lc) = 0,
which, by Lemma 2.5, implies that
(Tord (8, /1)) @z C = 0. (33)

Since T0r£1R (8. /1) is a finitely generated abelian group, (33) is equivalent to
the fact TcrrélR (8. R/1) is finite.

Now we show that |TC#I£1Ft (B, R/I)| ~ 1. Since Jt/1 is pseudo-zero, I # (p).
This means there is g € I such that g is not divisible by p. Since p is irreducible, p
and ¢ are co-prime. Let J = (p,g). Then(p) Cc J C I.

Tensoring B with the exact sequence

01/ -R/JT >R/ -0
we get the exact sequence
oo = Tor] (R/J, B) — Tory (R/LB) — ((I/T) @ B) — -+ (34)

The module 7/J, being a submodule of the pseudo-zero module R/ J , is also pseudo-
zero. Hence by Proposition 2.1 (i) and Proposition 1.3,

torz((1/J) & B)| ~ L. (35)
By Lemma 2.4, TorélR (R/J, B) is finite and has negligible growth,
Tory (3t/7. B)| ~ 1. (36)
The middle term of (34), being finite, must satisfy
[Torl (R/1, B)| < [Tor] (R/J, B)| [torz ((1/T) ® B)]
and hence by (34) and (36) is negligible, |T01r£1]:t (R/1,B)| ~ L O

3. Proof of Theorems 6, 3, and 4

3.1. Pseudo-zero kernel

Lemma 3.1. Suppose My, M, are finitely generated R-module, I C R is a prime
ideal such that R/ 1 is pseudo-zero, and

0—-NR/T - M — M, -0 (37)
is exact. Then M{ ~ M.
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Proof. Choose a non-zero irreducible p € [ and let 8 = S(p; '). Tensoring (37)
with 3, we get the exact sequence

> R/ ->M R - M @6 — 0. (38)

By Proposition 2.1 (ii), (R/7) @ B is finite and |(R/T) @ 8| ~ 1.
Applying LLemma 1.9 to the sequence (38), we get

[torz (M & B)| ~ [torz(M> @ B)|.

By Proposition 2.1(i), |[torg(M; & )| ~ |torz(M; ® Z[Ar])|. Hence we can
conclude that
[torz (M & Z|Ar]| ~ |torg(M> ® Z|Ar]|.

This means M; ~ M>. O

Lemma 3.2. Suppose N, My and M, are finitely generated Nt-modules, and N is
pseudo-zero. If
0O—=>N-—->M —-M,—0 (39)

is exact, then My ~ M>.

Proof. 1t is well known that there is a composition series

N=N;DON;212---DN1DNp=0 (40)
such that for each i, Njy1/N; = 9t/I; for some prime ideal /;, see e.g. [Bou],
Theorem IV.4.1. We use induction on s. The case s = 1 has been proved, see
Lemma 3.1.

Let M{ = M i/Ns_yand N := N/Ns_y = ®/I, with I = I;_;. From (39)
we have

0= N' = M| = M, — 0. 41)
From M| = M;/Ns_1, we have
0— Nyoy > My —> M{ - 0. 42)

Note that N and N;_, being either a quotient or a submodule of the pseudo-
zero module N, are pseudo-zero. By induction and the case s = 1, from the exact
sequences (41) and (42), we have

M|~ M,, M~ M].

Hence My ~ M. ]
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3.2. Pseudo-zero quotient

Lemma 3.3. Suppose N, My and M, are finitely generated Nt-modules, and N is
pseudo-zero. If

O0O—->M - M, —- N—-0 (43)

is exact, then My ~ M>.

Proof. Again using induction on the length of the composition series (40) like in the
proof of Lemma 3.2 we can assume that N = R/ T, where I # R is a prime module.
Choose a non-zero irreducible p € [ andlet 8 = S(p; ).

Tensoring (43) with 8, we have

e > Torh (R/LB) > My @B — My ® B — Tord (R/1,B) = 0. (44)

By Proposition 2.1 (ii), Tor] () /1, B) is finite and |Tor? (R/J, )| ~ L fori = 0, L.
Applying Lemma 1.9 to the sequence (40), we get

torz (M1 @ B)| ~ |torz (M2 @ B)|.
Using Proposition 2.1 (i), we get
[torz (M1 @ Z|Ar]|| ~ |torz (M, ® Z|Ar]|,

which means My ~ M. L

3.3. Proof of Theorem 6

Proof. Since M, and M are pseudo-isomorphic, there are pseudo-zero N and N,
such that

0N - M - M, — N, =0

is exact. Then we have the following exact sequences:

0— M/Ni—- My - N, = 0, (45)

0— Ny —> M - M{/N1 = 0. (46)

From (45) and Lemma 3.3 we have M;/N; ~ M,, while from (46) and Lemma 3.2
we have M{/N; ~ M. It follows that My ~ M,, which is equivalent to the
statement of Theorem 6. O
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3.4. The case when M is torsion-free

Proposition 3.4. Suppose M is a torsion-free finitely generated Jt-module. Then

log |torz(M ® Z[Z"/T])|
(T) oo 77T -

We first prove the following lemma.

Lemma 3.5. Suppose N, My and M, are finitely generated R-modules and
0> M - M, —- N—=0 (47)
is exact. If My ~ 0, then My ~ 0.

Proof. Usinginduction on the length of a composition series (40) of N we can assume
that N = /I, where I C 3 is a prime ideal.

If R /T is pseudo-zero, then by Lemma 3.3, M7 ~ M, ~ (.

We will consider the remaining case, when /7 is not pseudo-zero. Then 7 is
principal, I = (p), where p € 3.

If p = 0,then N = 3t is free, and the sequence (47)is split, M, = M; & R. One
clearly has torz (M1 ® Z|Ar]) = torgz(M, ® Z|Ar|), and the statement follows.

Suppose now p #£ 0. Let § = B(p;T'). Tensoring (47) with 8, the following is
exact

s Torf (R (p),B) > MI®B = Ma®B — RI(P) @B — 0.

By Lemma 2.2 b), the first term is 0. It follows that M; ® 8 is a subgroup of My ® 8,
and hence

[torz (M1 Q f)| < [torz(M2 Q B)].
By Proposition 2.1 (1),

[torz (M; ® B)| ~ |[torz(M; & Z[Ar]),

and since |[torz (M2 @ Z[Ar])| ~ 1, we can conclude that [torg (M, @ Z[Ar])| ~ 1,
or M; ~ 0. [

Proof of Proposition 3.4. Since M 1s torsion-iree, the canonical map M — V =
M ®Rx F, where F is the fractional field of R, is an embedding. This means M
is a lattice of V' with respect to #&, and hence there is a free R-module F such that
M embeds into F, see Chapter 7 of [Bou]. One has an exact sequence of finitely
generated Jt-modules

0—-M—-F—->N-—=0

We have F ~ 0 since F is a free Jt-module. From Lemma 3.5 we conclude that
M ~ 0. O
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3.5. Proof of Theorem 3

Proof. By Theorem 1.2, M is and tor(M) & M/tor(M) are pseudo-isomorphic.
Hence by Theorem 6,

M ~ (tor(M) ) M/tor(M))).
Since M /tor(M) is torsion-free, by Theorem 3.4, M/tor(M) ~ 0. Hence we have
M ~ tor(M). (48)

The proof is thus reduced to the case when M is a torsion module, which had been
proved by K. Schmidt, see [Sch], Theorem 21.1. U

3.6. Proof of Theorem 4

Proof. Suppose D is a chain complex of free finitely generated modules over a

domain R,
d;
H EECRE I

. di+1 .
cee— R 5 R

For our application either R = R or R = Z.
In the exact sequence

0 — (kerd;/Imd;+1) = (R™ /Im 0;41) — (R™ /kerd;) — 0

the first module is H; (D), the second coker d; 1. Since the third is a torsion-free
R-module, one has

torg(H; (D)) = torg(coker dj4+1). (49)
Suppose now € is a chain complex of free finitely generated Jt-modules of the
form

oo P
Applying (49) to the above chain complex, we have
tor(H;(€)) = tor(M), (50)

where M = coker ;1 which has a presentation

d;
gmi+r L ymi o opp 0, (51)

Tensoring (51) with Z[A], where A = Z" /T", we get the exact sequence

di41.T

Z[A] 1 L ZA > M @ Z[A] — 0,
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from which it follows that
M ® Z|A] = coker(9d; +1,r)- (52)
The complex € @ Z[A] is

dit1ir dir

e Z|AH —— ZA —— .. (53)
Apply (49) to the chain complex (53), considered as complex over 7, we get
torg (H; (€ @ Z[A])) = torg(coker d;4+1.1),

which, with (52), gives
torg (H; (€ @ Z[A])) = torz(M @ Z[A]). (54)
Theorem 3, with identity (54), gives

: log [torg (i (€ ® Z|A)]))]
lim sup
(Ty—=ro |ZR/F|

from which together with (50) we have

. log [torg (H; (€ ® Z[A]))|
lim sup =
{T'y—oo |Z /F|

which completes the proof of Theorem 4. (]

= M(A(tor(M)),

= M(A(tor(H; (€))),

4. Homology of abelian covering

4.1. Alexander polynomials of links. Suppose Z is an oriented integral homology
3-sphere, ie. H;(Z,7Z) =~ H;(S§%,7Z), and . C Z is an oriented link with n
ordered components. Let N(L) be a small open tubular neighborhood of . and
X = Z \ N(L). By Alexander duality H(X,Z) = Z", and there is a natural
identification of H(X,Z) with Z" such that ¢; corresponds to the meridian of the
i-th component of the link. We fix such an identification of H(X, Z) with Z".

Let X be the abelian covering corresponding to the abelianization 71(X) —
H(X,Z) = Z". The homology groups H; (X, Z) has a structure of f = vavia
module. The Alexander polynomials A;(L) (or A;(L C Z)), by definition, are
the polynomials A;(H; (X Z)). Recall that if j is the smallest index such that
Ay (H, (X,7)) # 0, then one defines AIL(X, 7)) = A; (Hl(X Z)). We also
deﬁne A(L) = A(H(X, 7).

Note that X has Euler characteristic 0. It is known that X is homotopic to a finite
2-dimensional CW-complex Y, with one O-cell, m 4 1 1-cells aq,...,a;41, and m
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2-cellshy, . ... by, forsome numberm. Certainlym > n. Letp: m(Y) — H(Y,Z)
be the standard abelianization map. By choosing an appropriate CW-structure, we
can assume further that p(a;) = ¢, fori = 1,... n.

Let ¥ be the abelian covering of ¥ corresponding to the abelianization p: my(¥)—
H(Y,7Z) = Z". The CW-complex of ¥ can be considered as a chain complex over
R = Z|eF, . ¢!, and has the form

d1

0— w2 gmmt O g (55)
Here
1 — play)
81 — 1 — p(a2)
1 — plam+1)

and d, is anm x (mm + 1)-matrix with entries in it which can be calculated using Fox
derivative. There is only one O-cell of Y, denoted by O. The lift of ¢; beginning at
O willbe denoted by @;,i = 1,...,m+ 1.

Remark 4.1. The module M, = coker(d,) is known as the Alexander module. In
some texts, e.g. [Hi], the Alexander polynomials are defined as A;(M>), which differ
from ours only by ashiftofindex: A; (H,(X, 7)) = A;4+1(M>)since both H (X, 7)
and M; have the same Ji-torsion, see (49). In particular, A(L) = A(Hl(f, 7)) =
A(M>).

4.2. Homology of the branched covering. Suppose I' C Z" is a subgroup of finite
index,and A = Ar = Z"/I". Let Xt and Y1 be the covering of X and Y respectively
corresponding to the epimorphism 7y — Hy — A. Then the CW complex of YT is
C(Y)@q Z[A]:

02 d1
0 — Z[A]" =5 z[A"+H 5 Z[4] — 0. (56)

The branched covering X llir, by definition, is obtained from X by Dehn fillings as
follows. The boundary of X is the union of # tori, each surrounding a link component.
The boundary of X is also the union of several tori, each is the covering of one of
tori in the boundary of X. Suppose 7T is a torus in the boundary of X1 covering the
i-th torus of the boundary of X. There is a simple closed curve C on T covering
the meridian of the 7-th torus. To every boundary component 7" one does the Dehn
filling on 7" that kills the homology class of C'. The resulting 3-manifold is X llir.

The homology group H;(X llir, 7)) is the quotient of I11(Xr, Z) by the relation
C = 0, for all the curves C described in the above Dehn filling operation. The
difficulty with working H (X ltlr, Z) is these relations C = 0 are local, they cannot
be obtained from a global relation in terms of Jt-modules.
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We now describe a universal Jt-module through which the Z-torsion of Hy (X llir, Z)
can be calculated.

Recall that d; in (55) is an m x m + | matrix. Let [, ;,4+1 be the n x (m + 1)
matrix obtained from the identity » X n matrix by adding (m 4+ 1 — n) columns of 0,
and T be the n x n diagonal matrix

T =diag(l1 —11,....1 —1).

Proposition 4.1. Ler M be the R-module with the following presentation matrix

ds 0
J-rr.!,nv1+1 T}]

which has size (im + n) x (m + 1 + n). Then for any subgroup T' C Z" of finite index
we have
torg (H(XY, 7)) = torzg (M ®@x Z[Ar)).

Proof. Fori = 1,...,nletd; = d;(I") be the degree of ; in A = Z"/T', and
w; = YO 1) e Z[A].
The homology of the branched covering H;(X llir, Z)is

H(XY,Z) = Hi(Yr,Z)/(Rel),

where (Rel) is the Z[A]-submodule of H(¥Yr,7Z) generated by u; d;,i = 1,...,n.
By definition, Hy (YT, Z) is H of the complex (56). By adding relations u; a; =
0,i =1,...,n, we see that H; (Xllir, Z) is Hy of the following complex:
m n m+1 o.r
0 — Z|A|" x Z|A]" — Z|A] —— Z[A] = 0, (57)

where Dy (x,y) = d, r(x) + U'(y), with U’: Z[A]" — Z[A]"*! being the Z[A]-
linear map defined by

U'xi, ... xn) = (U1 x1, ..., un %,,0,...,0).
Let U: Z[A]" — Z[A]" be the Z[A]-linear map given by the diagonal matrix
U = diag{uy, ..., uy). Certainly ker I/ = ker U".
Applying (49) to the chain complex (57), we get
torg (H (X}, 7)) = torg coker D;. (58)

The map U’: Z[A]" — Z[A]™! descends to U": (Z[A]"/ker U’) — Z[A]"T!,
hence coker 1D = coker D/, where

DY ZIA™ x (Z[A]" [ ker U) — Z[A]"T1,
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defined by D (x, y) = 92(x) + U”(y). From (58) we have
tory (HI(XIET, 7)) = torg( coker D). (59)

By tensoring 7: R" — " with Z[A], we get Tt : Z|A]" — Z|A]", which is
given by a diagonal matrix. Note that 70/ = 0, i.e. Tr is 0 on the image of U,
hence Tt descend to a map Tp.: (Z[A]"/ImU) — Z[A]".

We have the following commutative diagram with exact vertical lines:

Dy
0 —— Z[A]" ! x (Z[A]" [ ker U) ——— Z[A]"T! —— 0
I iz
D

0 —— Z[A]"H x Z[A]" ——— Z[A]"! x Z[A]" —0

i J2

0 — (Z|A|"/Im U)

ZIA]" ————0,

where iy (x, y) = (x, U(y)), 12(x) = (x,0), ji(x,y) = (0,y), j2(x,y) = y, and
Dr is the matrix of presentation of M, tensoring with Z[A].

Let the first complex be Dy, the second D,, and the third 3. From the exact
sequence 0 — Dy — Dy — D3 — 0 we have a long exact sequence

coo = H{(D3) = Ho(Dq) — Ho(Dr) — Ho(D5) — 0. (60)

The first term is O and the last term is a free abelian group, by Lemma 4.2 below.

Hence the second term and the third term in (60) have the same Z-torsion. Since
Hy(D1) = coker D and Hy(D,) = M & Z|A|, we have

tory ( coker Di) = tory (M R Z[A]),
which, together with (59), proves the proposition. 0

Lemma 4.2. For chain complex s,

/

T
0= (Z[A]"/ImU) -5 Z[A]" — 0,
one has H(D) = 0 and Hy(D) is a free abelian group.

Proof. This is the same as to show that for the chain D',

T
0= Z[A]" L Z[A] 25 Z14]" > 0

]

one has H{(D") = 0, and Hy(D') is free abelian.
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Since both U and Tt are diagonal, D' = P;_; D/, where D! is the complex

i 1—1;
0 Z[4] 25 74" =5 2[4] — 0.

As seen in Section 1.7, the principal ideals (u;) and (1 — ;) are annihilator of each
other, hence I (D)) = 0. Besides, the ideal (1 — ;) is primitive as a lattice in Z[A],
hence Hy (D)) is a free abelian group. O

4.3. Proof of Theorem 2

Proof. Part (a), the case of non-branched covering, follows immediately from Theo-
rem 5.

Let us consider the case of branched covering. By Proposition 4.1, we have

_logltorz(Hy (XX Z)| . logtorz(M ® Z[Ar))
lim sup m = lim su m
(T)—00 |2"/ T| (TH>5e 12"/ T|
= M(A(M)) by Theorem 3. (61)

The module M, = 3" /T(I") has a free resolution

0—>Eft”l>§}t”—>M1—>O,

hence its projective dimension is 1. Also Ag(My) = [];_,(1 — ).
Let M, = coker d,. From the matrix of presentation of M we see that there is an
exact sequence

O—= M, - M — M —0.

Since the projective dimension of My is < 1, by Theorem 3.12 of [Hi], one has
Aj(M) = Aj(M3)Ag(My)

= 8;(My) [ a1 -1).

i=1

It followsthat A(M) = A(M) [1;_,(1—1;). Since M(1—#;) = 1 and A(M;) =
A(L), we have

MI(A(M ) = MI(A(L)),

from which together with (61) one gets part (b) of Theorem 2. [
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5. Converging sequences

5.1. Statement. For a non-zero vector x € R” let r(x) = x/||x| € S*7! be the
unit vector positively colinear with x. Here S”~! is the (n — 1)-dimensional sphere
of unit vectors in R"”. For a subgroup I' C Z" of finite index let d; = d;(I") be the
degree of #; in the quotient group Ap = Z"/T. Letr(T') = r(dy,...,dy) € S_’f__l,
the part of $”~1 with non-negative coordinates.

Theorem 7. Suppose M is a finitely generated R-module. For any k € S_’f__l, there
exists a sequence of finite index subgroups IU's C 2", s = 1,2,. .., such that

lim r(I'5) =«
§— 00

and

— M(A(M)).

. log [torz (M @ Z[Z" [ T])|
lim sup
500 |7/ Ts|

Remark 5.1. One could prove a similar statement, replacing M ® Z|Z" /T's| with
H;(€ ® Z[Z" [ Ts]) like in Theorem 4.

The proof and methods of this section are independent of Theorem 3. It gives
an alternative proof of “half” of Theorem 3: The left-hand side in the identity of
Theorem 3 is greater than or equal to the right-hand side.

5.2. A result of Bombieri and Zannier: reduction from Z" to Z. Fork € 77" let
k* = {m e Z" | k -m = 0}, where k - m is the usual dot product. Define

(k) = (k) = min{|x|, x € k=~ \ {0}}.

The group homomorphism Z" — 7Z given by m — m - k gives rise to the algebra
homomorphism 7 : Q¢! ..., 1F] — Q[r£!] defined by

(™) = 1™k

The following is a deep result of Bombieri and Zannier [SZ], [BMZ], which was
formulated as a conjecture by Schinzel.

Theorem 5.1. Suppose p1, p2 € Q[Ilil, ... ,t;ttl] are co-prime. There is a constant
C = C(p1, p2) such that if (k) > C, then ged(tx(p1), i (p2)) is the product of

some (possibly none) cyclotomic polynomials.

From this one can easily deduce the following.
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+1
5tn

Proposition 5.2. Suppose p1,....ps € Z[tlil, . . There exists a constant

C =C(p1,..., px) such that if (k) > C, then

ged(rr(p1), - - - we(pe)) = ¢ ilged(pa, - -, pe)),

where ¢ is a product of cyclotomic polynomials.

Proof. By dividing each of the p;’s by ged(p1, - .., p¢) we can henceforth assume
that ged(py..... pg) = L.

We will use induction on £. But first make the following well-known observation
on the coefficients of 7z (p) of a polynomial p € Z[¢F!, ..., £E!] having the form

p= Z Cmt"™,

meN
where N C 7 is a finite set. Then
g = ) | om ¥, (62)
meN

If (k) is greater than |m — m'| for any twom # m’ € N, thenk -m # k - m’, and
(62) shows that the coefficients of 7 ( p), in some order, are exactly the coefficients
of p.

Now we proceed with induction. Suppose £ = 2. By Bombieri and Zannier
result, over Q[Ilil, s g ,t;':l], ged(tx (p1), te(p2)) = ¢, a product of cyclotomic
polynomials. Hence over Z[tiF!, ..., tE1], ged(py, p2) = a¢, for some integer a. It
follows that « is the ged of all the coefficients of 7z (p1) and 7% (p2). By the above
observation, with (k) big enough, this means « is the gcd of all the coetficients of p;
and p,, which must be 1. This proves the statement when £ = 2.

Now assume £ > 3. One has

ged(ze(p1). - - e pe)) = ged(zr(p1), ged(tr(p2). - - -, T (pe))
= ged(tr(p1), ¢ rk(gcd(pz, — pg)) by induction
= ¢ rk(gcd (1. ged(pa, .. ., pg))) by case £ =2
= ¢ (1, po. . p2)).

Here ¢, ¢’ are product of cyclotomic polynomials. The proof is completed. 0

5.3. A result of Lawton. Recall that the additive Mahler measure MI(f) of f €
CleEY, .. tE1], f # 0, is defined by

M) = [ loglf(ldo,
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where S” is the n-dimensional torus, and do is the invariant Haar measure on S”
normalized so that [¢, do = 1.

The Mahler measure is additive, M( fg) = MI(f) + M{(g). It is known that
M{(f) = 01is and only f is a generalized cyclotomic polynomial, see e.g. [SZ],
[Sch].

The following approximation result was a conjecture of D. Boyd, and was proved
by Lawton, see e.g. [L.aw], [SZ], [Sch].

Theorem 5.3 (Lawton). Suppose f € C[tEY, ... tEl], f # 0. Then

Alim M (/) = M(f).

5.4. A converging sequence. The following follows from Bombieri—Zannier and
Lawton results. Denote &, = Z[t1].

Proposition 5.4. Suppose that k) e zn s = 1,2,..., is any sequence such
that lims_,oo(k(s)) = 00, and let M be finitely generated R-module. Let M8 =
M ® Ry, where Ry is considered as an R-module via ts := T : R — Ry. Then

lim M(AM®)) = M(AM)).

Remark 5.2. It not true in general that lim,_, . A(M©®) = A(M).

Proof. Suppose M has a presentation matrix d of size m; X mg, with entries in Jt.
Then M ©) has presentation matrix z,(3), with entries in 3.

Let j be the smallest integer such that A; (M) # 0. This means all the (mg — j')-
minor of 9 is 0 if j* < j, and if the (mg — j)-minors of d are py,..., py € R,
then

AM) = A;j(M) = ged(pr. ..., po)-

Note that every minor of 7,(d) is obtained from the corresponding minor by

applying ;. It follows that all the (r¢ — j")-minors of 7,(9) are 0 if j* < j, and the

(my — j)-minors are 7,(py), ..., Ts(pe).
By Proposition 5.2, for s big enough,

ged(zs(f1), ... ts(fr)) = ﬁbfs(ng(fl, s fr)),

where ¢ is a product of cyclotomic polynomials. This means
AMD)y = ¢, (AM)).

Using additivity of the Mahler measure and the fact that the Mahler measure of a
cyclotomic polynomial is 0, we have

M(A(M®))) = M (z,(A(M))) .
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Since (k(s)) — 00 as § — oo, by Lawton’s theorem, we have
lim M(A(M®)) = lim Mz (A(M)) = M(A(M)). O
§— 00 §— 00
5.5. Theorem 3, the case n = 1. In the previous section we approximate 7" by
7" /(k*), which has rank 1. Now we want to approximate abelian rank-1 group by

finite cyclic group. Here we give a short proof, independent of previous sections, of
the case n = 1 of Theorem 3.

Proposition 5.5. Suppose M is a finitely generated Ry-module. Then

torz (M ® Z[Z/{])

{—o0 £

= MI(A(torM)).

Proof. The reason the case n = 1 is easy is that Z[Z /£] = Ry /(1 —t%), with (1 —1%)
a principal ideal.
For an 3t{-module N and an element a € R4, let ;N be the a-torsion of N:

aN ={x e N |ax =0}

A homological interpretation of ;N is Torglﬂ1 (N, Ri1/(a)) = 4N. Ifalbthen ;N C
pN. If N is a finitely generated torsion module, then there is b € $;, called a
universal annihilator of N, such that for every ¢ € Ji;,

aN = gcd(b,a)N-

For example, such 5 can be the product of all the generators of all prime ideals
associated to N. One can also define b as the least common multiple of the family
of annihilators of a generating family for V.

Since M" = M/tor(M) is torsion-free, by [Bou], Chapter VII, there is a free
Ri-module F such that M’ C F and F/M’ is a torsion module. Let f be a
universal annihilator of F/M'. Decompose f = fi f>. where fj is the product of all
cyclotomic factors (with multiplicity) in the prime decomposition of f. The identity
map F — F descends to a surjective map

F/(f1F) = n(F/M).

Since f1ismonic, F/f1 F is a finitely generated Z-module. It follows that £ (F/M")
is a finitely generated Z-module, hence its Z-torsion part is a finite set.
Tensoring the exact sequence

0>M —>F—-F/M -0
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with Z[Z /£], we get
0 — Torl (F/M', Z|Z./{]) — M’ @ Z|7./4]
— FQZZ/] - (F/M') ® Z|Z/€] — 0.

Since F is a free R{-module, the third term is a free Z-module. It follows that the
Z-torsions of the first and the second terms are the same

torg (TorélRI (F/M',ZIZ /1)) = torg(M' ® Z|Z/1]).

Note that
Tory  (F/M', Z[Z/{]) = (_e)(F/M")

is a subset of 7 (F/M') since 1 — 1t is a product of cyclotomic polynomials. Since
|torg (7, (F/M"))| is finite and does not depend on £, we conclude that tory (M’ ®
27 /£]) is finite and bounded from above.

Tensoring the exact sequence
0—tor(M) > M > M —0

with Z[Z /€] = R1/(1 — t*), taking into account T01r51Rl (M, R,/(1 =15 =0, we
have

0 — tor(M) @ Z|Z/f] — M @ Z|Z/¢] - M’ @ Z|Z/{) — 0.

Since the Z-torsion of the last term is bounded, we see that the Z-torsion parts of
the first two terms have the same growth, i.e. M ~ tor(M). The proposition now
follows from the case of torsion modules, which was known [Sch] (see also [GS],
[Ri], [Li2]). O

5.6. Converging sequences

Lemma 5.6. Let M be a finitely generated R-module, and k©® ¢ 2t g=1,2. 0
be any sequence such that lims_mo(k(s)) = oo and gcd(k(s), <55 k,(f)) = 1 for
s > 1. For each positive integer | define the subgroup T's ; C Z" by

Ty = &)+ k@,
For every s there exists an integer 1y > 0 such that for every j; > n;, we have

. log |1:m‘z (M ® Z[Al"s,js]) |

= MI(A(M)).
§—00 |ZR/FS,JS| ( ( ))
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Proof. Tt is easy to see that for any k = (kq,..., k) € Z7" with ged(ky, ..., k) =
l,and 0 < j € Z, the mapm — m -k (mod j) is an isomorphism between
20kt @ jk) and Z/(j 1k [2).

It follows that, as Jt-modules,

M @q ZIZ"/Ts ;| = M® @g, Z|Z/(j |k)].

Since |2"/Ts;| = j [k*)|?, one has

log |torz (M ® Z[Ar, ;) | |tm'Z (M(S) @, ZIZ/(j ||k(s)||2)]) |

lim = [im ,
j—oo |Z"/ Ts ;| j—oo jl1k@)2

log |tory (M @ Z]Ar. .
T — [torz ( lAr, D1 _ M(A(M®))) by Proposition 5.5. (63)
j—oo |ZR/FS’J‘|

Let as, ; be the left-hand side of (63). From (63), for fixed s, there is n; > 0 such
that if j > n;, then
las,j — M(AM )| < 1/s.

It is clear that if jg; > 74, then

lim as,;, = lim M(A(M @) = M(A(M)),

S 00

where the last identity follows from Proposition 5.4. 0

5.7. Proof of Theorem 7. Assume the sequence k* of Lemma 5.6 satisfies kl.(s) ==
OQfori = 1,...,n If we choose j; divisible by the product k%s) ... k,SS), then

di(Ts.j,) = |js/ k&), and
r(Tsi) = r (/1] 1)),
Thus Theorem 7 follows from LLemma 5.6 and the following result.

Lemma 5.7. Suppose k € Sf__l. There exists kK = (k(s), - kff)) € 2" such that

(i) k?), . k,(f) > O and have greatest common divisor 1,
(i) limso 00 7 (1/ S, 17K = &,
(iii) limy_ 00 (k®)) = o0

Proof. Let S_’ﬁ_l be the subset of $”~1 consisting of points with all positive coordi-
nates. Let Inv: Sff:,_l — S_’ﬁ_l be the map defined by

Inv(xy,....xp) = r(1/x1,....1/x,).

It is clear that Inv is an involution, and hence is a auto-diffeomorphism of S _’f:,_l
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The set O of all points of the form r(ky, ..., k;,), with &kq,. .., k, positive and
co-prime, is dense in Sff__l. If £ is a finite collection of hyperplanes in R”, then
O\ & is still dense in 771

For s > 1 let Ps be the set of all points in Z”" having norm < s, and

o=

sePls

By definition , if & & X£;, then (k) > s.
QO \ &£ is dense in S_’f__l, hence so is Inv(Q \ £,). This implies there is x® €
O \ £, such that
[ Inv(k®) — k|| < 1/s. (64)

By definition, x®) = F(k©)) for some k&) = (kgs), . k,ﬁ”) with positive and
co-prime kl.(s). Since k) ¢ &£, we have (k) > 5, which establishes Property (ii).
Inequality (64) shows that Property (iii) also holds. 0
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