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Homology torsion growth and Mahler measure

Thang Le*

Abstract. We prove a conjecture of K. Schmidt in algebraic dynamical System theory on the

growth of the number of components of fixed point sets. We also generalize a result of Silver and
Williams on the growth of homology torsions of finite abelian covering of link complements.
In both cases, the growth is expressed by the Mahler measure of the first non-zero Alexander
polynomial of the corresponding modules. We use the notion of pseudo-isomorphism, and also
tools from commutative algebra and algebraic geometry, to reduce the conjectures to the case
of torsion modules. We also describe concrete sequences which give the expected values of the
limits in both cases. For this part we utilize a result of Bombieri and Zannier (conjectured before
by A. Schinzel) and a result of Lawton (conjectured before by D. Boyd).

Mathematics Subject Classification (2010). 57M10, 57M25, 57Q10, 37B50, 37B10.

Keywords. Torsion growth, Mahler measure, Alexander polynomials, algebraic dynamical
System, entropy, pseudo-isomorphism.

Introduction

A conjecture of K. Schmidt. Suppose M is a finitely generated module over the
commutative ring St := Z[tfl,..., t^1]. Let S be the unit circle in the complex plane
C. There is a natural action of Zn on the compact abelian group M Hom(M, S),
the Pontryagin dual of M. For details on dynamical Systems of this type the reader is

referred to the remarkable book [Seh]. The entropy of this action, denoted by h(M),
can be defined in a Standard manner. Lind, Schmidt, and Ward [LSW] (see also [EW])
proved that if M is a torsion module, then

h(M) M(A0(M)), (1)

where Ao (Af) is the 0-th Alexander polynomial of M (also known as the order of
Af), and M(/) is the additive Mahler measure of the polynomial /. We will recall
the definitions of these notions in Section 1.

For a subgroup T C Zn of finite index let Fixp (Af) be the set of elements of Af
fixed by actions of elements of T. Then Fixp(Af) is a compact subgroup of M and

*The author was supported in part by National Science Foundation.
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has a finite number Py{M) of connected components. The following theorem was

conjectured by K. Schmidt [Sch], based on results in the torsion module case.

Theorem 1. For anyfinitely generated SR-module M one has

log Pr (M) 7/lim sup
(D^oo \£n/r\

If n 1 then one can replace the lim sup by the ordinary lim.

Here tov(M) is the torsion submodule of Af, and

(T) =min{|x|,x g T \ {0}},

where \x\ V5Zi k/12 for x (x\,... ,xn) e Zn.
The theorem had been proved for the case when M is a torsion module by Schmidt,

see [Sch], Theorem 21.1, and we will make substantial use of this case.

A conjecture of Silver and Williams. Suppose L is an oriented link with n ordered

components in an oriented integral homology 3-sphere Z, with the complement X
Z\L. There is a natural identification Hi(X, Z) Zn. For a subgroup T C Zn
of finite index let Xr be the corresponding abelian covering of X, and X^r the

corresponding branched covering of Z. There are defined the Alexander polynomials
A/(L) e 9t Z[tfl,..., t^1], i 0,1,2, We will recall the definition of
Ai (L) in Section 4.

Let A(L) Ay(L), where j is the smallest index such that A7 (L) ^ 0. For an

abelian group G, denote torz(G) the Z-torsion subgroup of G.

Theorem 2. Notations as above. One has

log \toxz(Hi (Xr,Z))\lim sup M(A(L)), (a)
(D^oo \LnIV\

log \toxz(H\(Xpr,Z))|
lim sup M (A (L)). (b)
(D^oo \zn/r\

If n 1 then one can replace the lim sup by the ordinary lim.

For the special case when A (L) A0(L), part (b) was proved by Silver and

Williams [SW], who, based on that result, formulated part (b), with the upper limit
replaced by the ordinary limit, as a conjecture. The proof in [SW] (for the case

A(L) A0(L)), written for Z S3 and for branched covering only, can be

modified for the case of general homology 3-spheres and non-branched coverings.
Hence the real new content of Theorem 2 is the case when A(L) ^ A0(L). The proof
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in [SW] is based on the torsion module case of Theorem 1. It is not surprising that if
one can get Theorem 1, then one can generalize the result of Silver and Williams to
the case A (L) ^ A0(L).

The investigation of the growth ofhomology torsions of finite covering ofknots has

a long history, with an interesting conjecture posed by Gordon [Go]. The conjecture
was proved by Riley [Ri] and Gonzalez-Acuna and Short [GS] using Gelfond-Baker
results in number theory. Silver and Williams' result mentioned above and Theorem 2

are generalizations of Riley and Gonzalez-Acuna and H. Short from the knot to the

link case. The surprising appearance of the Mahler measure can be explained from
the perspective of L2-torsion theory [Lü2]: The L2-torsion of the maximal abelian

covering of a link complement, at least when A0(L) ^ 0, is the Mahler measure
of A0(L). Theorem 2 more or less says that the L2-torsion in this case can be

approximated by its finite-dimensional counterparts.
In the non-abelian covering case the L2-torsion is given by the hyperbolic volume.

So one should expect the similar limit of the left-hand side of Equation (a) would
give the hyperbolic volume of the link complements. In [Le2], we will show that, if
L is a non-split link in S3, then

logltorzCJWr.Z))! ^ vol(L)
lim sup ; ; ; < (2)(D^ \zn/r\ -67t

where vol(L) is the sum of the hyperbolic volumes of the hyperbolic pieces in the
Jaco-Shalen-Johansson decomposition ofS3\L. Here T runs the set ofall subgroups
of 7ti (A) of finite index, and (T) is the minimal word length of T \ {1}, measured

using a fixed finite generator set of 7t\. In particular, if vol(L) 0, we have the

equality in (2). For example, if L is a torus knot, then one has equality in (2). For
works in this direction see also [Fei], [Mü], [BV]. It is expected that the non-abelian
case is much more complicated than the abelian case.

An algebraic version of Theorem 1. It is not difficult to reformulate Theorem 1

entirely in terms of module Af, without going through the Pontryagin dual M. We
will show that Theorem 1 is equivalent to the following.

Theorem 3. For anyfinitely generated 3t-module M one has

log \tovz(M (g) 7LVLn t T])|
lim sup

81 7

M(A(torM)).
(D^oo l^/O

If n 1 then one can replace the lim sup by the ordinary lim.

Theorem 3 is a special case of the following.
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Theorem 4. Suppose * is a chain complex offinitely generated free ^R-modules.

Thenfor every i > 0,

lim,up.oe|.°rz(//'yz[Z"/r1»|=M(AW(E)))
(r)^oo \Zn/T\

If n 1 then one can replace the lim sup by the ordinary lim.

In this paper we will prove Theorem 3, and from there deduce Theorem 2 and 4.

Application: abelian covering of CW-complex. Suppose X is a finite CW-com-
plex, equipped with a surjection p: H\ (X, Z) -> ZA Let X be the abelian covering
of X corresponding p. The CW-structure of X lifts to a CW-structure of X. The

group Zn acts as deck transformations on the covering X, making the cellular complex

*{X) of X a free finitely generated Si-complex.
For every subgroup T c Z" of finite index let pr: 7t\{X) -> Ar Zn /V

be the composition it\ (X) -> H\ (X, Z) Zn -> Ar, where the first map is the
abelianization map. Let Xr be the finite regulär covering corresponding to pr. Apply
Theorem 4 to the complex C (X) we get the following.

Theorem 5. Notations as above. Then

lim sup M(A(torjft//i(X,Z))).
(D^oo \zn/r\

If n 1 then lim sup can be replaced by the ordinary lim.

Ideas of proofs. To prove Theorem 3 (and the equivalent Theorem 1) we will reduce

it to the case when M is a torsion module, which had been proved in [Seh], and the

case when M is torsion-free, i.e. when tov(M) 0. Although the fact that M is

isomorphic to tov(M) 0 (Af/tor(M)) is not true in general, it would hold true if
we replace isomorphism by pseudo-isomorphism, a notion introduced by Bourbaki
[Bou]. The notion of pseudo-isomorphism is important for us, and we will review it
in Section 1. The following will be one of the main technical results used in the proof
of Theorem 3.

Theorem 6. Suppose M\ and M2 are two pseudo-isomorphic finitely generated $R-

modules. Then |torz(Afi 0 Z[Zn/T]) \ and |torz(M2 0 Z[Zn/T]) \ have the same

growth rate in the sense that

flog\torz(M1®Z[Zn/r])\ log|tnrz(M2(g)Z[ZVr])|
(IÄO l |Z"/r| |Z"/r|
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Note that the limit in Theorem 6 is the ordinary limit, not the upper limit.
In general, the directcalculation of | torz (M <g>Z[Zn/ F]) | (resp. the exact value of

|torz (Xpr, Z)) |) is very difficult, especially in the case when M is not a torsion
module (resp. the 0-th Alexander polynomial is 0). The only known formula for
tovz(X^r, Z), due to Mayberry and Murasugi [MM], applies only to the case when

Hi ((Xpr, Z)) itself is a torsion Z-group. When the 0-th Alexander polynomial is 0,

which is the case concerned in this paper, the only known result is that of Hillman and

Sakuma [HS] who calculated part of the torsion toxz(H\ (Xpr, Z)). The other not-
yet-calculated part is related to the more difficult theory of modular representations
of finite groups.

To circumvent this problem, we use an approximation ß(T) of Z[ZW/T], for
which the calculation of | torz (Mi (8) ß)\ is easier. Here ß(T) depends on T and

other data, and it approximates Z[Zn/T] in the sense that | torz (Mi (8) Z[Zn /T])\
and | torz (M\ ® ß (T) | have the same growth rate. The construction of ß (T) is based

on the theory of torsion points on algebraic varieties. Needless to say, we have to use
tools in commutative and homological algebra to get the desired estimates.

Sequence of converging subgroups. Theorem 3 guarantees there is a sequence of
subgroups Ts C Zn of finite index such that

lim '°g"orz(^ ® Ztz'7r,»| =M,A(mr«),.
$ ^oo \zn/rs\

In the case when M is a torsion module, half of the proof of Theorem 1 in [Seh] is

to construct such a sequence. The construction is long and difficult. In Section 5

(see Theorem 7) we give new sequences Ts that work for both torsion and non-
torsion modules. The proof is probably simpler, because we are able to use a result
of Bombieri and Zannier [SZ], [BMZ] on irreducibility of lacunary polynomials
which was conjectured before by Schinzel, and a result of Lawton on approximation
of Mahler measure which was a conjecture of Boyd. The methods and results of
Section 5 are independent of the other parts and give an independent proof of "half" of
Theorem 3 (or Theorem 1), namely that the left-hand side of the identity of Theorem 3

is greater than or equal to the right-hand side.

While writing this paper I was informed by Raimbault [Ra] that he gets an

independent result similar to Theorem 7 of Section 5 by modifying the sequences in
[Seh].

Structure of the paper. Section 1 contains notations, basic facts (with some en-
hancements) about torsion points on algebraic varieties, pseudo-isomorphism, order
of modules, lattices in Hermitian spaces, the integral group ring of finite abelian

groups. It also contains a proof that Theorems 1 and 3 are equivalent. In Section

2, the main technical section, we present the construction the approximation ß of
Z\Zn j T]. Section 3 contains proofs of Theorems 6, 3, and 4. Section 4 gives a proof
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of Theorem 2. The last section contains the construction of converging sequences of
lattices and Theorem 7.

Acknowledgements. I would like to thank M. Baker, Hailong Dao, J. Hillman, K.
Murasugi, S. Sakuma, K. Schmidt, D. Silver, and S. Williams for helpful conversa-
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the course of two years many things from diophantine approximations to his (Joint
with Bombieri and Masser) remarkable work on anomalous subvariety structures,
including a proof of a conjecture of Schinzel.
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(May 2009), Columbia University (June 2009), Osaka City University (November
2009), and would like to thank the Organizers for the chance to give talks there.

The paper grew out of my attempt to prove a topological volume conjecture [Lei],
[Le2]. This was part of a program aiming at understanding the question "Under what
conditions L2-torsions can be approximated by finite group counter parts?". I was
attracted to this program while trying to develop an approach to attack the volume

conjecture in quantum topology, and by the beautiful work of Lück work [Lül] on

approximation of L2-Betti number.

1. Notations and preliminaries

1.1. Modules over St Z[t^19..., t^1]. Fix a free abelian group Zn. Let St

Z[Zn], which we identify with Z[tfl,..., t^1] by sending k (k\,..., kn) e Zn

to tk nf=i tf1- The ring St is a unique factorization Noetherian domain. In
this paper St-modules are supposed to be finitely generated, and tensor products are
assumed over St unless otherwise indicated.

For a module M over a commutative domain R, the torsion submodule tovr(M)
is defined by

Xovr(M) {x e M | ax 0 for some 0/a G R}.

An i^-module M is a torsion module if M — tovrM. If tovrM 0, we call
M torsion-free. If R St we usually drop the subscript St in the tov notation.

For a subgroup T c Zn let Ar := Zn/T and 7(T) the ideal of Z\tfx,..., t„x]
generated by {1 — t\1 t^n, (k\,..., kn) e T}. Then we have the following exact

sequence

0 -> I(T) Sft Z[Ar] -> 0.

Hence for every JR-module M,

M/I(T) Z[Ar].
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Suppose /, g are functions with positive real values on the set of subgroups
T C Z" of finite index. We say /(T) has negligible growth rate if

lim ycn1/|z"/r| 1-
(r)^oo

We say / and g have the same growth rate, and write / ~ g if //g has negligible
growth rate. Note that we do not require the individual limit lim(r)^oo /
exists in this case.

We say two St-modules M\ and M2 have the same torsion growth, and write
M\ ~ Af2, if

|torz(Afi (8) Z[y4r])| ~ |torz(M2 ® Z[Ar])|.

1.2. Alexander polynomials. All definitions and facts here are Standard and can be

found in [Tu], [Hi].
Every finitely generated St-module M has a presentation by an exact sequence

gt«i $ftmo 0,

where 3i, given by a matrix of size m\ x mo with entries in St, is known as a

presentation matrix of M. A k-minor of 3i is the determinant of any sub-matrix of
size k x k of 3i. For y > 0, the y-th Alexander polynomial Ay (Af) is the greatest
common divisor of all the (mo — y)-minor of 3i.

It is known that Ay (M) depends only on Af, but not on any particular presentation
matrix. Each Ay (M) is defined up to units in St, so identity involving Ay (M) should
be understood "up to units".

The 0-th polynomial Ao (Af) is known as the order of Af, which is non-zero if
and only M is a torsion module. Besides, Ay (Af) divides Ay_i (Af) for every y > 1.

The rank of a module M over St is the dimension of the vector space M (g) ,F(St)
over the fractional field .F(St) of St. If M has rank r, then Ay (M) 0 if y < r, and

Aj-r(M) Ay(torM).

For any finitely generated St-module of rank r, define

A(M) := Ar(M) A0(tor(M)).

If M St/7, where 7 (/i,...,//) is the ideal generated by f\,..., //, then

A0(M) gcd(/i,..., //), the greatest common divisor of the elements f\,..., //.

1.3. Pseudo-isomorphism. Reference for this part is [Bou], [Hi].
An St-module N is pseudo-zero if for every prime ideal «T5 of height 1, the local-

ization N&> is 0. It is known that submodules and quotient modules of a pseudo-zero
module are pseudo-zero.
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In St, a prime ideal is of height 1 if and only if it is principal and generated by an

irreducible polynomial.
An St-morphism M\ -> M2 is a pseudo-isomorphism if the kernel and co-kernel

are pseudo-zero.
Two finitely generated torsion St-modules M\, M2 are pseudo-isomorphic if and

only Aj(Mi) Aj(M2) for every j > 0; in particular, a finitely generated torsion
St-module is pseudo-zero if and only if A0(M) 1, see [Hi], Theorem 3.5.

Let us formulate some well-known facts in the form that will be useful for us.

Lemma 1.1. Suppose I C St is a prime ideal, I ^ St.

a) St/7 is pseudo-zero ifand only if I is not principal.
b) If St/7 is pseudo-zero and 0 ^ p E 7, then there exists q E 7 such that

gcd (p,q) 1.

Proof a) Since 7 ^ St and 7 is prime, 7 (p\,..., /?/), where the pf s are

irreducible, non-unit, and distinct. One has

St/7 is pseudo-zero <<=> A0(7) gcd(/?i,..., p\) is 1

<= / > 2

<<=> 7 is not principal.

b) Suppose qi,... ,qi are all irreducible factors of p. Suppose the contrary that

every q e I is not co-prime with p, i.e. every q e I is divisible by one of the qf s.

Then 7 C 1J\=x(qi). Since each ideal (qi) is prime, there is an index i such that
7 C (qt). Because (qi) has height 1 and 7 is prime, this means 7 (/?;), which is

principal. This contradicts the fact that St/7 is pseudo-zero.

The following is the main fact about pseudo-isomorphism which we will use.

Theorem 1.2 ([Bou], Theorem VII.4.5). Any finitely generated module SR-module

M is pseudo-isomorphic to tov(M) 0 M/tov(M).

Remark 1.1. It follows from (1) that if M\, M2 are pseudo-isomorphic, then they
have the same entropy, h(M\) h(M2). In particular, if M is pseudo-zero, then

h(M) 0.

1.4. Equivalence of Theorem 1 and Theorem 3. Recall that S is the unit circle in
C. With the usual multiplication § is an abelian Lie group. For an abelian group
G, the Pontryagin dual G Hom(G,S) is a compact group. If G Zk, then
G Sk. On the other hand, if |G| < oo, then G G. If G Zk 0 torz(G), then

G ^ Sk x torz(G). In particular, the cardinality |torzG| of the Z-torsion G is the
number of connected components of the compact group G.
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Suppose M is a finitely generated 3t-module, and T C Zw a subgroup of finite
index. By definition

Fixp(M) {x e M \ y • x x for all y e T}

{x e M Hom(M, §) \ x(y) x(y(y)) for all y e T, y e M}
{x e Hom(M, §) | x((l — y)(j)) 1 for all y e T, y e M}
{x g Hom(M, S) | x(l(T) M) 1}.

It follows that

Fixr(M) ^ (M//(r) M)A ^ (M ® Z[Ar])A

We can conclude that Pr (M), the number of connected components of Fixr (M), is

From (1) and (3) we see that Theorem 1 and Theorem 3 are equivalent.

1.5. Theorem 3, the case when M is a torsion module. As explained in the intro-
duction, Theorem 3, in the case when M is a torsion module, has been proved (see

[Seh], Theorem 21.1). We will use this result for the case N is pseudo-zero. Since

A0(N) 1 if N is pseudo-zero, we have the following result.

Proposition 1.3. Suppose that N is pseudo-zero. Then N ~ 0, i.e.,

1.6. Lattices in Hermitian spaces and Z-torsion. Suppose W is a finite-dimen-
sional based Hermitian space, i.e. a C-vector space equipped with an Hermitian
product and a preferred orthonormal basis. The Z-submodule A C W spanned

by the basis is called the fundamental lattice.
For a Z-submodule (also called a lattice) 0 c A with Z-basis v\,..., v/ dehne

It is clear that vol(0) > 1.

For a lattice 0 C A dehne its orthogonal complement in A by

0i {xeA|(jj) O for all y e 0}.

It is clear that 0 C 0-1"1-. A lattice 0 is primitive is 0 0-1"1-. It is known that 0
is primitive if and only it is cut out by a subspace, i.e. 0 (0 <g>z Q) H A; and if
0 is primitive, then (see e.g. [Ber])

PV(M) |torz(M(g)Z[Ar])|. (3)

|torz(N <g> Z[Ar])| ~ 1.

vol(0) |det((u/,vy)(J=1)|1/2.

vol(0)2 |A/(0® 0"1-)!. (4)
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Lemma 1.4. For i 1,2 let W\ be a finite-dimensional based Hermitian space with
fundamental lattice A;. Suppose /: ©i -> 02 is a Z-linear map, where 0; C A;
is a lattice ofmaximal rank. Then

|torz(coker/)| < ||/||rk02 vol(@i).

Here ||/|| is the norm ofthe linear extension of f to a C-linear Operator from W\
to Wz.

Proof. Let /(0i) (/(©i) ®z Q) n A2. Then

torz(coker /) /(@i)//(@i).

Hence

|torz(coker/)| |/(@i)//(@i)|
vol(/(0i)/vol(/(0O).

It is known that

det'(/) vol(©i) vol(ker /) vol(/(0i)), (6)

where det'(/) is the product of all non-zero Singular values of /, i.e. the Square root
of the product of all non-zero eigenvalues of /*/. From (6) and (5) we have

|torz(coker /)| —det (/) vol(Qi)^ det'(/) vol(©i). (7)
vol(ker /) vol(/(©O)

The maximal Singular value of / is equal to ||/||. The number of non-zero-
singular values is less than or equal to the rank of /. Hence detr/, being the product
of the non-zero Singular value, is < || /1|rk Ll. Now from (7) we get the lemma.

1.7. Decomposition of the group ring of a flnite abelian group

1.7.1. Decomposition over C. Suppose A is a finite abelian group. The group ring
C [A\ is a C-vector space of dimension \A\. Equip C [A] with a Hermitian product so

that A is an orthonormal basis. Then the integral group ring Z [A] is the corresponding
fundamental lattice.

The theory of representations of A over C is easy: C [A] decomposes as a direct
sum of mutually orthogonal one-dimensional A-modules:

xeÄ

(8)



Vol. 89 (2014) Homology torsion growth and Mahler measure 729

where ex is the idempotent

777
' '

aeA

The vector subspaces Cex are not only orthogonal with respect to the Hermitian
structure, but also orthogonal with respect to the ring structure in the sense that

ex ex' ~ 0 if X 7^ x!• Each Cex is an ideal of the ring Z[A],
For a Z-submodule X CZ[4] let Xc the C-vector space spanned by X.

1.7.2. Decomposition corresponding to a subgroup. The integral group ring Z [A]
does nothave as nice a decomposition as (8). Given a subgroup 5 C d,we decompose
a subring of Z[A] as follows.

The natural projection A -> A/B gives rise to the exact sequence

0 -> ß(B) -> Z[A] -> Z[A/B] -> 0, (9)

where ß(B) is the ideal of Z[A] generated by 1 — b, b e B. As a lattice of Z[A],
ß{B) is primitive.

Let a{B) be the annihilator of ß{B):

a{B) {x e Z[A] \ xy 0 for all y e ß{B)}.

Then a(B) is also the orthogonal complement of ß(B) in Z[A]. It is known that

a(B) is the principal ideal generated by u ub := J2beB b, see e.g. [BM].
The complexification ac(B) and ßc(B) are easy to describe. Tensoring (9)

with C,
0 -> ßc(B) -> C[A] -> C[A/B] -> 0.

As a C[A]-module, C[A/B] is isomorphic to ac(B) ßcand
<xc(B) ßciB^© Cex, (10)

xeÄ,x\B l

rkz(a(B)) dim<c(acCB)) \A\/\B\. (11)

Proposition 1.5. Thefinite group Z[A]/(oi(B) 0 ß{B)) has order \B\^a^^b^.

Proof Let yi,... ,yi £ A be representatives of cosets of B in A. Then l \A/B\,
and the elements y\ ub, yi ub form a Z-basis of a{B). It is easy to see that

(.yiUB,yjUB) 0if/ ± j. Thelength ol'each vector is (J2i,B ll>V>ll2)'/2
|ß|x/2. It follows that

vol(a(5)) \B\e/2.

From (4) we have \Z[A]/ (a(B)© ß(B))\ \B\l
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1.7.3. Decomposition corresponding to a collection of subgroups. Suppose that

B\,..., Bk are subgroups of a finite abelian group A. Let

k k

ß(Bl,...,Bk)= f)ß(Bj).
7 1 7=1

Then a{B\,..., B^) and ß{B\,..., B^) are primitive lattices of Z[A\, and they
are orthogonal complement of each other in Z[A], In addition, both a{B\,..., B^)
and ß(B\,..., B^) are ideals of Z[A\, and they are the annihilator of each other.

Proposition 1.6. Thefinite group Z[A\/ (ß(B\,..., Bjc)^a(B \,..., B^)) has order

less than or equal to n*=i \Bj 11^1/1^71. Equivalently,

voi(«(ÄJ, *0) < ([] \Bj\^B^y/2.
7 1

Proofi We write a ar(2?i,..., 5^) and ß ß(2?i,..., Recall that ß

n)=1/-J(ß7). Wehave

k

Z [A]/{a+ £) (Z[A]/a)/ß (Z[X]/a)/( f| £(£;)).
7 1

Since (Z[^4]/af)/ i injects in

k k

Y\(Z[A]/a)/ß(Bj) Y\(Z[A]/ß(Bj))/a,
7=1 7=1

we have
k

\Z[A\/(a + ß)\<]~[|(Z[^]/i8(5y))/a| • (12)
7 1

Since a(i?7) C a, (Z[7l]/jß(2?y))/ar(2?/) surjects onto (Z[i4]/jß(5y)/af, hence

\(Z[A]/ß(Bj)/a\ < |(ZM]//J(ßy))/a(ßy)| |Z[^]/(a(ßy) + >Ö(ßy))| (13)

Inequalities (12) and (13), together with Proposition 1.5, show that

k

|Z [A]/(a®ß)\<Y\\Bj\^b^.
7 1

The equivalence between the two Statements follows from (4).
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1.8. Torsion points in algebraic varieties. We recall well-known facts about alge-
braic subgroups of (C*)w.

1.8.1. Algebraic subgroups of (C*)w. With respect to the usual multiplication
C* := C \ {0} is an abelian group, and so is (C*)w. An algebraic subgroup of
(C*)w is a subgroup which is closed in the Zariski topology.

For a lattice, i.e. a subgroup, A of Zn, not necessarily of maximal rank, recall
that 7(A) is the ideal of St generated by 1 — tk, k e A. Let G(A) L/(a), the

zero-set of /(A), i.e. the set of all z e Cn such that zk — 1 0 for every k e A.
Here for k (k\,..., kn) gZ" and z — {z\,..., zn) e (C*)" we set tk fli
and zk rVf' -

It is easy to see that G(A) is an algebraic subgroup. The converse holds true:

Every algebraic subgroup is equal to G(A) for some lattice A, see [Sch-W].
Every dement z eG(A) defines a character /z of the quotient group A a : Zn /A

via
Xz{tk) z\

and conversely, every character of Aa arises in this way. Thus one can identify G(A)
with Hom(dA, C*) via z -> /z. We will write ez for the idempotent /Xz, and the

decomposition (8), with A having maximal rank, now becomes

C[Aa] Cez. (14)

zeG(A)

1.8.2. Torsion points. A point z e (C *)n is a torsion point if it is a torsion dement
of the multiplicative group (C*)w. Let U denote the set of all roots of unity in C*.
Then the set of torsion points of (C*)w is Uw. For example, if T C Zn is a lattice of
maximal rank, then G(T) C Uw.

The following fact is well known in the theory of torsion points on algebraic
varieties.

Proposition 1.7. Suppose I / C" is an algebraic subset ofCn defined over Q.
There existafinite number ofnon-zero lattices Ai,..., A^ in Zn, such that\]n fll C
Uw f! (Uy=i ^(A/))> any torsion point in X belongs to Uy=i ^(A/)-

Proof A torsion coset is a coset uG, where u is torsion point and G is an
algebraic subgroup of (C*)w. It is well known that there is a finite number of torsion
cosets UjGj C X such that every torsion point in X belongs to (Jy- UjGj, see [Lau],
[Sch-W]. Since uj Gj Cl, the dimension of Gy is at most n — 1. Let üj be the finite
cyclic group generated by uj. Then Uj Gj is also an algebraic group of dimension
< n — 1. Hence UjGj G(Ay), with Aj a non-zero lattice. Since UjGj C UjGj,
it is clear that every torsion point in X belongs to (Jy- G(Ay
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1.9. Elementary bounds from exact sequences

Lemma 1.8. Suppose M is afinitely generated ^R-module with afree reSolution

^ y\m2 gfjrni q,

and Q is a ^R-module with \Q\ < oo. Then |Torp(Af, Q)\ < \Q\mi for every
i =0,1,....

Proof By definition, Torp(Af, <2) is the homology groups of the complex

— mm2 ® Q ^ ® Q ^ mm{) o.

Since the i-th term of the this complex is 9tm/ ® Q Qmi, a finite group of order
| Q \mi, its /-th homology group has < \Q\mi elements.

Lemma 1.9. Suppose in an exact sequence ofabelian groups

Nl (r) -> Mx (T) -> m2 (r) -> n2 (r) -> • • •

each Mi(T), Nf(T) is an abelian group depending on subgroups T C Zn offinite
index. Assume further that N\(T) and N2(T) are finite, and

|#i(r)| - l - |iv2(r)|.

Then

|torz(M!(r))| ~ \tovz(M2(T))\.

Proof Replacing N\ by an appropriate quotient and N2 by an appropriate subgroup,
we may assume that

0 -> NX(T) -> MX{T) -> M2{T) -> N2{T) -> 0

is exact. We then have

Mi/Ni ^ M2 N2. (15)

The inclusion in (15) shows that

\toxz(M{)\/\Ni\ < |torz(M2)|,

and the surjecion in (15) shows that

forz(M2) < \N2\ {torziMr/N^l \N2\

From there we get the conclusion of the lemma.
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Lemma 1.10. Suppose 0 is afree abelian group offinite rank, and p,q: 0 —0
are Z-linear Operators with p injective. Let C be the complex

0^0 92
0 0^0,

where d2iß) (—q(a), p(a)), dx(a,b) p(a) + q(b). Then the homology groups
of^C are finite, and

\HX()\ \H0(e)\.

Proof The complex C is the middle row of the commutative diagram with exact
columns:

p
0 -^0

0
92

-^0

0® 0

-^0 -^0

0

0 -^0 -^0 -^0 -^0.

Here i\{a) (a,0),i2(a,b) b. Let be the first row and *62 the last row.
Then 0 -> -> C -> *2 0 is exact. The long exact sequence, together with
#1(^1) H0QC2), gives us the followmg exact sequence

0 -> Hx() -> HXQ£2) "> HoQei) -> H0() 0.

Note that \HiQ£2)\ \Ho(Ci)\ I coker p|, which is finite smce p is injective.
It follows that HXQ£) and H0(C) are finite. In an exact sequence of finite abelian

groups, the alternatmg product of the cardmalities is 1. Hence, with the two middle
terms havmg \HiQ£2)\ \Ho(Ci)\, we must have \HXQ£)\ |//0(C)|.

2. Approximation of Z[Zn/Y]

2.1. Approximation of Z[Ay]: formulation of results. As mentioned m the m-
troduction, we search for a good approximation of Z[Zn/T] as (T) -> 00. The

approximation depends on some extra choice, namely, a non-zero dement p e St.

Fix a non-zero Laurent polynomial p e St Z[t±x,... ,t±n]. For each sub-

group T C Zn of rank n we will construct an St-module ß(p; T) with the followmg
properties.

Proposition 2.1. (1) For every finitely generated ^R-module M one has

|torZ(M <8> Z[Ar])\ ~ \torZ(M <8> ß(p\T))|.
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(ii) Suppose p E I, where I ^ St is ideal of$t such that St/7 is pseudo-zero.

Thenfor each i 0,1 the module Torp(ß(p;T),$R/1) isfinite, and

|TbrfG8(/>;r),3ft//)|~l.

The remaining part of this section is devoted to the construction of ß(p;T) and

the proof of Proposition 2.1.

2.2. Heuristics. There is no rigorous mathematics in this subsection. Logically the
reader can skip this subsection.

In the estimate of für%(M (g) Z[Ap]) using exact sequences, finiteness is very
helpful. We will try to decompose Z [A] as a sum of two submodules, one is negligible,
and the other if finite if tensoring with pre-given modules.

We have the decomposition (14) of C [Ap] into irreducible components

C[At]= © Cez.
zeG(r)

The module M © C [Ar] will decompose accordingly. Albeit over C, this gives us

hint that some z e G(T) are "good" and some are "bad". Here a good z must satisfy
some non-degeneracy property, and if a point is good, all its Galois conjugates are

good. Combining all good points together one should get some "integral" sub-module
of Z[Ap] for which non-degeneracy conditions imply some kind of finiteness. If S

is the set of all bad points, and S1- be its complement in G(T), then one has

c^r] (©Cez)®(© Cezy
zeS zeS1-

The module ß would be the "integral spine" of the second part.
The set of bad points will consists of those in G(T) which are zeros p. For good

points z, p{z) 7^ 0, and this will give us the non-degeneracy condition. We control
the set of bad points, which is the intersection G(T) D 1^, by using theory of torsion
points on Vp, see Proposition 1.7.

2.3. Definition of ß(p; T). The zero set

Vp := {(Z!,..., zn) e (C-T \p(zl9..., zn) 0}

is an algebraic subset of (C*)n of dimension < n — 1. Let A i,..., be the non-zero
subgroups of Zn described in Proposition 1.7 with X Vp. By construction,

k

if a torsion point z does not belong to G(Ay then p{z) ^ 0. (16)

7=i
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Suppose A Ar := Zn/ T, where T C Z" is a subgroup of maximal rank n.
The abelian groups Bj — (Aj + T)/ T are subgroups of A Zn /V. Let

a(p; T) a(B,,..., Bk), ß(p; T) ß(Bu..., Bk),

wherea(B\,..., Bk) and/3(i?i,..., Bk) areidealsofZ[A] definedasinSection 1.7.3.

We partition G(T) A into two disjoint subsets S, S1- by

5 G(r)pj(UG(Ay)), S± G( (17)

We will see that as (T) -> oo, S is small compared to its complement S-1. Note that

Xz, with z e G(T), takes value 1 on Bj exactly when z e G(Ay Hence from (10)
we have

otc{Bj) (J) Cz,

zeG(r)nG(Ay)

and hence

ßc(p\T) @ Cz, ac(p; T) (J)cz.

We will write a a{p; T), ß T). Let pr: > Z[Ap] be the canonical

projection. Note that pr-1 (0) is the ideal of all polynomials taking values 0 at every
point of G(T). Similarly, ä pr_1(a) is the ideal of all polynomials taking values
0 at every point of S^. Over C, äc is the reduced ideal of Stc C [tfx,..., t^1]
whose zero set is S-1, S^. In addition,

StcMc C[A]/ac ßc- (19)

The important facts concerning a(p; T) and ß(p; T) are the following.

Lemma 2.2. a) S1- V^c does not intersect Vp. It follows that the ideal of Ale
generated by p and äc is the whole Stc •

b) The multiplication map p: ß -> ß,x -> p - x, is injective. It follows that
Torf (St/(p),ß) 0.

c) The quotient group Q(p; T) := Z[Ar]/{ot{p\ T) 0 ß(p; T)) is finite and its
order is negligible, | Q(p] T)| ~ 1.

d) |S| rk^ a(p;T) is small compared to the rk^ Z[Ap] \Ar\ in the sense

that
rkza(j>;T)lim ; ; 0.

(F)^oo \AT\

e) One has vol(a)
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Proofi a) Suppose z E S^~. By definition (17), z is a torsion point not belonging
to Uy=i G(Aj). By (16), p(z) 7^ 0. In other words, Vp D Vüc 0. By the

Nullstellensatz, the ideal generated by p and äc is the whole Sic •

b) Note that C ez is a Stc-module by the action / • ez — f(z)ez.lfzeS±, then

p(z) 0, hence p: C ez —> C ez is an isomorphism. Since ßc ®zes^ ^
map p: ßc ^ ßc is also an isomorphism. It follows that p: ß ^ ß is injective.

One has Torf (St/(p),ß) ker (/?: ß -> ß, x -> p - x) 0.

c) We will first show that for each j 1

lim 12?y | oo. (20)
(r)^oo

By definition, Bj (Ay- + T)/r. Fix an element x G Aj, x / 0, and look at

the degree of x in Bj (Ay- + T)/r. If m\x\ < (T), then m\x\ does not belong to
T by the definition of (T), and hence mx is not 0 in Bj (Aj + T)/ T. This means
the cyclic subgroup of Bj generated by x has order at least (T)/|x|. It follows that

|Bj | > {T)/\x\. Hence lim(r)^oo \Bj \ — oo.
From Proposition 1.6,

7 1

from which together with (20) we get | Q{p\ T)| — 1.

d) By (11) one has vk(a(Bj)) |t!|/|2?/|. Since a J2a(Bj), one gets

k k

rk(a)/\A\ < ^rka(ßy)/M| £(1/|^-|), (21)
7 1 7 1

which, with (20), shows that lim(r)^oo rkz\AP\T^ 0.

e) This follows immediately from (4) and part (c).

2.4. Contribution from oc(p;T) is negligible. The ideals a and ß, being Z[Ar]~
module, can be naturally considered as St-modules.

Lemma 2.3. Suppose M is afinitely generated SR-module. Then

\torz(M (g) a(p; T))| — 1.

Proof Tensoring the presentation

3tmi -A 3tm° -* -* 0
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with Z[A] and a respectively, one gets

(Z[Ar])mi -^4 (Z [Ar])"10-* 0 Z[Ar] -* 0,

aMl am° -* 0 0! -» 0, (22)

with the restriction of 3i5r.
Recall that we have a Hermitian structure on C[A], It is not difficult to find an

upper bound, not depending on T, for all the Operator 3i5r. In fact, by Lemma 2.5 of
[Lül],

IICr|| < D := mimomax{|0,7|i},
hj

where for a Laurent polynomial a e Z [tf1,..., t„
1

] the norm \a\i is the sum of the
absolute values of its coefficients.

Because ac is an invariant subspace of C [A], we also have

l|ö«|| <D.

Applying Lemma 1.4 to the sequence (22) we get

|torz(Af <8)a)| < D±za vol(ar).

The right-hand side has negligible growth, by Lemma 2.2 d) and e).

2.5. Proof of Proposition 2.1 part (i)

Proofi Recall that A Ar := Zn/ T. We have an exact sequence

0 -> (a ® ß) -> Z[A\ -> Q -> 0, (23)

with Q |öO;F)| - 1 by Lemma 2.2a). Tensoring (23) with Af,

Torf (M,Q)-> ((M®a)®(M®/3)) -+M®Z[A] -> Torf(M, Q) -> 0.

(24)
Lemma 1.8 shows that |Torf (M, Q)\<Qfor some constant m,- depending on
M only. Since Q ~ 1, we also have

|Torf (M,g)|~ 1.

Applying Lemma 1.9 to the sequence (24), we get

|torz(Af ® a) ® tovz(M <g> ß)\ ~ |torz(Af ® Z[A])|.

Since |torz(Af (8)ar)| — 1 by Lemma 2.3, we have |torz(Af (8) ß)\ ~ |torz(M <g>

Z[A])\.
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2.6. The intermediate ideal J (p,q). To prepare for the proof ofProposition 2.1

part (ii), we first study the ideal / (p,q), where q e St is co-prime with p. The

reason is St// has a simple free resolution, and hence Torp (St//, ß(p; T)) is easy
to study.

Lemma 2.4. Bothmodules Torf* (St//, ß(p;T)) andTov^ (St//, ß(p;T)} arefinite,
have the same cardinality, and have negligible growth, i.e.

[Torf1 (9t/J, ß(p\T))| iTorjjl1 (9t/ T)) | ~ 1. (25)

Proof. We have the following free resolution of St//:

0 -* 9t ©9t -+0, (26)

where d2(a) (—qa, pa) and d\(a,b) pa + qb. This can be directly checked

easily, or can be deduced from the theory of Koszul complex as follows. Since p,
q are co-prime, the sequence (p,q) is a regulär sequence of St (see Exercise 5 of
page 102 of [Ka]). Hence the Koszul complex of (p,q), which is (26), is a free
resolution of St//.

From the free resolution (26), Torp (St//, yß) is the i -th homology of the complex

0^ ß
(~g"P)

> ß@ß 32* ß ^0. (27)

The module ß is a free Z-module of finite rank, and the map p: ß -> ß is in-
jective, by Lemma 2.2b). From Lemma 1.10 we see that both Torf*(St//, ß) and

Tor^(St//, ß) (St//) (8) ß are finite, and

|Torf(3t//,j8)| |3t//®j8|.

By Lemma 1.1, St// is pseudo-zero since p and q are co-prime. We have

| (St//) (8) ß\ ~ | (St//) (8) Z[34r]| by Proposition 2.1 (i)
1 by Proposition 1.3.

This completes the proof of the lemma.

2.7. Complexiflcation of tor modules. Recall that 9tc Cfä",..., Ob-

serve that

Stc St C, and Stc St Stc-

Let 7c be the C-span of 7 in Stc- Then 7c is also the extension of 7 from St to
Stc.
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Lemma 2.5. As Z-modules, for every i,

(Tor f(9t/I,ß))®zCsTorfc(9tc//c^c).

Proof Since C is flat over Z, we have (3t//) C 3tc/Ic•
Since 3tc is flat over 3t, we have (3t//) 3tc 3tc/Ic • It follows that

(3t//) ®z C ^ (3t//) 3tc. (28)

Suppose C -> ß is a free resolution of ß. By definition,

Torf(Sft/7,i8) ^/0e®8i(9l//)). (29)

Tensoring (29) with 3tc, a flat 3t-module, we get

Torfc(9tc/Ic,ßc) #,•(£ (9t//) 0m 9tc). (30)

Tensoring (29) over Z with C, a flat Z-module, we get

(Torf (St/I,ß)) 0z C //,((£ 0m (9t//)) 0Z C). (31)

Since C is free, each term of C is a direct of several 3t. It follows from (28) that the

right-hand sides of (30) and (31) are isomorphic as Z-modules, whence the lemma.

2.8. Proof of Proposition 2.1 (ii)

Proof. a) The case i 0. Recall that Torf (9tT»0
Since (p) C /, we have a natural surjection 3t/(p) 3t//. Tensoring with

ß ß(p; T) we get a surjective map

ß ® (3t/CP)) ß ® (3t//).

Now ß (g) (3t/(p)) ß/p, which is finite since p acts on the finite-rank free abelian

group ß by an injection, see Lemma 2.2 b). It follows that ß g> 3t// is finite.
Since 3t/1 is pseudo-zero, by Proposition 2.1 (i) and Proposition 1.3,

\ß ®3ft (3t//)| ~ I^Mr] ®sft (3t//)| ~ 1.

b) The case i 1. First we show that Torf (ß, 3t//) is finite.

By Lemma 2.2 a), the 3tc -ideal generated by a?c and p is 3tc, hence äc + Ic
3tc because p e I. It is well known then (see e.g. [AM], Chapter 1)

oic n Ic oic Ic • (32)

In a commutative ring R, it is known that Torf (R/1\, R/12) /i H /2/h Ii for
two ideals /i, /2. Hence from (32) we have
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Torfc(9tc/äc,9tc//c) 0.

Since ßc StcA*c> this can be rewritten as

Torfc0ßc,9tc//c) 0,

which, by Lemma 2.5, implies that

(TorfG8,3ft//))®zC =0. (33)

Since Torf (/3, St//) is a finitely generated abelian group, (33) is equivalent to
the fact Torf (ß, St//) is finite.

Now we show that |Torf (ß, St//)| — 1. Since St// is pseudo-zero, I ^ (p).
This means there is q e I such that q is not divisible by p. Since p is irreducible, p
and q are co-prime. Let J (p,q). Then (p) C J C /.

Tensoring ß with the exact sequence

0 St// -> St// -> 0

we get the exact sequence

Torf (9 l/J,ß)-*Torf (91//,/t) -* ((I/J) ® ß) -» (34)

The module / / J, being a submodule of the pseudo-zero module St/ J, is also pseudo-
zero. Hence by Proposition 2.1 (i) and Proposition 1.3,

|torz((///)®j8)|~l. (35)

By Lemma 2.4, Torf (9t/ J, ß) is finite and has negligible growth,

|Torf (9t/ J, ß)\ ~ 1. (36)

The middle term of (34), being finite, must satisfy

|Torf (9t/I,ß)\ < |Torf (9t/J, ß) \ |torz((///) 0

and hence by (34) and (36) is negligible, |Torf (St//, ß)\ ~ 1.

3. Proof of Theorems 6, 3, and 4

3.1. Pseudo-zero kernel

Lemma 3.1. Suppose M\, M2 are finitely generated SR-module, I C St is a prime
ideal such that St/ / is pseudo-zero, and

0 -> St// -> Mi -> M2 -> 0 (37)

is exact. Then M\ ~ M2.
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Proofi Choose a non-zero irreducible p e I and let ß ß(p;T). Tensoring (37)
with ß, we get the exact sequence

(31/1) <g> ß ^ M\ <g> ß ^ M2 <g> ß ^ 0. (38)

By Proposition 2.1 (ii), (3t//) <8) ß is finite and |(3t//) <g> ß\ ~ 1.

Applying Lemma 1.9 to the sequence (38), we get

|torz(Mi <g> /})| ~ |tnrz(M2 (8) ß)\.

By Proposition 2.1 (i), |torz(M/ ® >8)| ~ |torz(M/ ® Z[Ar])|. Hence we can
conclude that

|torz(Mi (8) Z[Ar]| ~ |torz(M2 (8) Z[Ar]|.

This means M\ ~ M2.

Lemma 3.2. Suppose N, M\ and M2 are finitely generated 3i-modules, and N is

pseudo-zero. If
0^N^M1^M2^0 (39)

is exact, Mi M2.

Proof. It is well known that there is a composition series

N NSD Ns-i D-OiViD#0 0 (40)

such that for each z, A/z + i/A/ 3t/// for some prime ideal //, see e.g. [Bou],
Theorem IV.4.1. We use induction on s. The case s 1 has been proved, see

Lemma 3.1.

Let M[ Mi/A^-i and Nf := N/Ns-! ^ 3t//, with / /5_i. From (39)
we have

0 -> N' -> M[ -> M2 -> 0. (41)

From M[ M\/Ns-\, we have

0 -> Ns-x ^ Mi ^ Mf -> 0. (42)

Note that TV' and Afy_i, being either a quotient or a submodule of the pseudo-
zero module N, are pseudo-zero. By induction and the case s 1, from the exact

sequences (41) and (42), we have

M/ ^ M"2, Mi ^ A/j.

Hence Mi — M2.
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3.2. Pseudo-zero quotient

Lemma 3.3. Suppose N, M\ and M2 are finitely generated M-modules, and N is

pseudo-zero. If
0^Mi^M2^A^0 (43)

is exact, then M\ ~ M2.

Proof Again using induction on the length of the composition series (40) like in the

proof of Lemma 3.2 we can assume that N St/ /, where I ^ St is a prime module.
Choose a non-zero irreducible p e I and let ß ß(p;T).

Tensoring (43) with ß, we have

Torf (St//, ß)->Mi ® ß-> M2®ß->Torf (St//, ß) -> 0. (44)

By Proposition 2.1 (ii), Torf (St//, ß)isfinite and |Torp (9t//, ~ 1 fori 0,1.
Applying Lemma 1.9 to the sequence (40), we get

|torz(Afi <g> )8)| ~ |torz(M2 <8> ß)\.

Using Proposition 2.1 (i), we get

\tovz(M\ <g> Z[Ap]| ~ |torz(M2 ® Z[Ar]|,

which means M\ ~ M2.

3.3. Proof of Theorem 6

Proof. Since Mi and M2 are pseudo-isomorphic, there are pseudo-zero N\ and A2
such that

0 -> Ni -> Mi -> M2 -> N2 -> 0

is exact. Then we have the following exact sequences:

0 -> M\/N\ -> M2 -> N2 -> 0, (45)

0 -> Ni -> Mi -> M\/N\ -> 0. (46)

From (45) and Lemma 3.3 we have M\/N\ ~ M2, while from (46) and Lemma 3.2

we have M\/N\ ~ Mi. It follows that Mi — M2, which is equivalent to the
Statement of Theorem 6.



Vol. 89 (2014) Homology torsion growth and Mahler measure 743

3.4. The case when M is torsion-free

Proposition 3.4. Suppose M is a torsion-free finitely generated ^R-module. Then

r log|torz(M ®Z[Z"/r])|lim ; ; ; 0.
(r)^oo |Z"/r|

We first prove the following lemma.

Lemma 3.5. Suppose N, M\ and M2 are finitely generated ^R-modules and

0^M1^M2^N^0 (47)

is exact. If M2 ~ 0, then M\ ~ 0.

Proofi Using induction on the length of a composition series (40) ofN we can assume
that TV St/7, where 7 C St is a prime ideal.

If St/7 is pseudo-zero, then by Lemma 3.3, M\ ~ M2 ~ 0.

We will consider the remaining case, when St/7 is not pseudo-zero. Then 7 is

principal, 7 (/?), where p e St.

If p 0, then TV St is free, and the sequence (47) is split, M2 ^ Mi 0 St. One

clearly has toxz{M\ (g) Z[Ar]) tovz(M2 (g) Z[Ar]), and the Statement follows.
Suppose now p ^ 0. Let ß ß(p;T). Tensoring (47) with ß, the following is

exact

• • • ^ Torf (St/(p),ß)^Mx®ß^M2®ß^ 3t/(p) ® -> 0.

By Lemma 2.2 b), the first term is 0. It follows that Mi (g) ß is a subgroup of M2 (g) ß,
and hence

|torz (Mi cg) ß)l < |tnrz(M2 (g) >8)|.

By Proposition 2.1 (i),

|torz(Mi <g> ß)\ ~ |torz(Af| <g>Z[Ar])\,

and since |tnrz(M2 (g)Z[^4r])| ~ 1, we can conclude that |torz(Mi <g>Z[Ar])\ ~ 1,

or Mi — 0.

ProofofProposition 3.4. Since M is torsion-free, the canonical map M -> L :

M (g)sft 7r, where T7 is the fractional field of St, is an embedding. This means M
is a lattice of V with respect to St, and hence there is a free St-module F such that
M embeds into T7, see Chapter 7 of [Bou]. One has an exact sequence of finitely
generated St-modules

O^M^F^N^O.
We have F ~ 0 since F is a free St-module. From Lemma 3.5 we conclude that
M -0.
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3.5. Proof of Theorem 3

Proof. By Theorem 1.2, M is and tor(M) 0 M/tor(M) are pseudo-isomorphic.
Hence by Theorem 6,

M ~ (tor(M) © M/tor(M))).

Since M/tov(M) is torsion-free, by Theorem 3.4, M/tov(M) ~ 0. Hence we have

M — tor(M). (48)

The proof is thus reduced to the case when M is a torsion module, which had been

proved by K. Schmidt, see [Seh], Theorem 21.1.

3.6. Proof of Theorem 4

Proof. Suppose <£) is a chain complex of free finitely generated modules over a

domain R,
dj-li 9/

> + i

For our application either R St or R Z.
In the exact sequence

0 -> (ker 3// Im 9/+i) -> (Rm7lm9/+i) -> (tfm7ker9;) -> 0

the first module is H\ (<£)), the second coker 9/ + i. Since the third is a torsion-free
i^-module, one has

torx(Hi(£))) torÄ (coker 9,-+i). (49)

Suppose now C is a chain complex of free finitely generated St-modules of the
form di_i_ 1 dj

> —> mmi —^ •••

Applying (49) to the above chain complex, we have

tor tor(M), (50)

where M coker 9; + i which has a presentation

fffni + i fftim ^ ^ Q_ (51)

Tensoring (51) with Z[A], where A 7Ln / T, we get the exact sequence

1[A]m'+^ a'+1'r> Z [A]mi-»0 Z[v4] -» 0,



Vol. 89 (2014) Homology torsion growth and Mahler measure 745

from which it follows that

M ® Z[A] coker(3/+i?r). (52)

The complex X <g) Z[A\ is

Z[A]m<+1 Z[A]mi (53)

Apply (49) to the chain complex (53), considered as complex over Z, we get

torz(Hi(e <g>Z[A])) torz(coker3|+i>r),

which, with (52), gives

torz{HiQ£ <8> Z[A])) tovZ(M <8> Z[A]). (54)

Theorem 3, with identity (54), gives

log \torz(HiQ£<g>Z[i4]))|
lim sup l7./rl M(A(tor(M)),
(D^oo \£n/r\

from which together with (50) we have

(r)^oo l^/1!
which completes the proof of Theorem 4.

4. Homology of abelian covering

4.1. Alexander polynomials of links. Suppose Z is an oriented integral homology
3-sphere, i.e. //;(Z,Z) ^ //;(iS3,Z), and L C Z is an oriented link with n

ordered components. Let N{L) be a small open tubulär neighborhood of L and

X — Z \ N(L). By Alexander duality H\(X,Z) ^ Zn, and there is a natural
identification of H\ (X, Z) with Zn such that /)• corresponds to the meridian of the
i -th component of the link. We fix such an identification of H\ (X, Z) with Zn.

Let X be the abelian covering corresponding to the abelianization Tti(X) ->
H\{X,Z) Zn. The homology groups //;(X, Z) has a structure of St Z[ZW]
module. The Alexander polynomials A;(L) (or A;(L C Z)), by definition, are
the polynomials A;(//i(X, Z)). Recall that if y is the smallest index such that

Ay(tfi(Z,Z)) ^ 0, then one defines A(#i(X,Z)) Ay(#i(X, Z)). We also

define A(L) A(Hx(X9Z)).
Note that X has Euler characteristic 0. It is known that X is homotopic to a finite

2-dimensional CW-complex 7, with one 0-cell, m + 1 1-cells ai,..., am+i, and m



746 T. Le CMH

2-cells/q,... &m,forsomenumberm. Certainlym > n. Letp: n\{Y) -> H\(Y,Z)
be the Standard abelianization map. By choosing an appropriate CW-structure, we
can assume further that p(a;) U for i 1,... ,n.

Let Y be the abelian covering of Y corresponding to the abelianization p: tti (7) ->
Hi (7, Z) 7Ln. The CW-complex of Y can be considered as a chain complex over
St Z[tfl,..., and has the form

0 -> 3im-A3fim+1 -L 9t -> 0. (55)

Here
< 1 - )^

9
1 - p(a2)

\1 — p(ßm+l)/
and 32 is an m x (m + l)-matrix with entries in St which can be calculated using Fox
derivative. There is only one 0-cell of 7, denoted by O. The lift of a\ beginning at

O will be denoted by ä\, i — 1,..., m + 1.

Remark 4.1. The module M2 coker(32) is known as the Alexander module. In
some texts, e.g. [Hi], the Alexander polynomials are defined as A; (M2), which differ
fromours onlybyashiftof index: A;(//i(X,Z)) A/ + i(M2) sinceboth//i(A, Z)
and M2 have the same St-torsion, see (49). In particular, A(L) A(Hi(X, Z))
A(M2).

4.2. Homology of the branched covering. Suppose T C Zn is a subgroup of finite
index, and A Ar Zn/T. Let Ar and 7p be the covering of X and 7 respectively
corresponding to the epimorphism it\ —> H\ A. Then the CW complex of 7p is

£(7) (g)atZ[A]:

0 Z[A]m Z[A]m+l Z - 0. (56)

The branched covering Apr, by definition, is obtained from Ap by Dehn Allings as

follows. The boundary of A is the union of n tori, each surrounding a link component.
The boundary of Ap is also the union of several tori, each is the covering of one of
tori in the boundary of A. Suppose T is a torus in the boundary of Ap covering the

i-th torus of the boundary of A. There is a simple closed curve C on T covering
the meridian of the / -th torus. To every boundary component T one does the Dehn

Alling on T that kills the homology class of C. The resulting 3-manifold is Apr.
The homology group //i(Apr, Z) is the quotient of Hi(Ap, Z) by the relation

C 0, for all the curves C described in the above Dehn Alling Operation. The

difAculty with working //i(Apr, Z) is these relations C 0 are local, they cannot
be obtained from a global relation in terms of St-modules.
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We now describe a universal St-module through which the Z-torsion of Hi (Xpr, Z)
can be calculated.

Recall that d2 in (55) is an m x m + 1 matrix. Let In,m+i be the n x (m + 1)

matrix obtained from the identity nxn matrix by adding (m + 1 — n) columns of 0,
and T be the n x n diagonal matrix

T diag(l -*i,...,l -tn).

Proposition 4.1. Let M be the Ai-module with thefollowing presentation matrix

which has size (m + n) x (m + 1 + n). Thenfor any subgroup T cZn offinite index

we have

torz(//1(^r,Z)) ^ torz(M UM)-

Proof For i 1,..., n let di <7;(T) be the degree of /)• in A Zw/T, and

Efiö1 CO' e
The homology of the branched covering H\ Z) is

#i(x£r,Z)

where (Rel) is the Z[A]-submodule of H\(Yr, Z) generated by w, <5;, i 1,...,
By definition, H\ (Fr»2) is //1 of the complex (56). By adding relations w, <5;

0, i 1,..., n, we see that H\ (Xpr, Z) is H\ of the following complex:

0 -> Z[A]m x Z[A]n A- ZZ[A] -> 0, (57)

where D1(x,y) d2>r(x) + U'(y), with U' \ Z[A]n -> Z[A]m+1 being the Z[A]-
linear map defined by

U (.X l xn) (u 1 X l u n xn, 0, 0^

Let U: Z[A]n -> Z[A]n be the Z[A]-linear map given by the diagonal matrix
U diag(wi,..., un). Certainly ker U ker U'.

Applying (49) to the chain complex (57), we get

Xoxz(H\{Xy Z)) ^ furz coker Di. (58)

The map U'\ Z[A]n -> Z[A]m+1 descends to U" \ (Z[Af/ker Uf) -> Z[A]m+1,
hence coker Di coker where

Di: Z[A]m x (Z[A]n /ker D) -> Z[A]m+\
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defined by D[ (x,y) d2(x) + U"{y). From (58) we have

toxz(H\(X^, Z)) ^ torz(coker Dj). (59)

By tensoring T: Ain ^ Ain with Z[A], we get 7p: Z[A]n -> Z[A]n, which is

given by a diagonal matrix. Note that TyU 0, i.e. Tr is 0 on the image of U,
hence Tr descend to a map T^ : (Z[A]n/ Im U) -> Z[A]n.

We have the following commutative diagram with exact vertical lines:

0 Z[A]m+l x (Z[i4f/kerC/)-

h

ira + 1

Z[i4

«2

Z[4]m+1xZ[4f Dr

ra + 1 o

1\A]m+l x Z[A]" ^ 0

71 72

0 (Z[^f/Im I/) Z[i4f 0,

where i\(x, y) (x,U(y)), i2(x) (x,0), ji(x,y) (0,y), j2(x,y) y, and

Dr is the matrix of presentation of Af, tensoring with Z[Z4].
Let the first complex be <£>i, the second <©2, and the third <©3. From the exact

sequence 0 ^ Di ^ £>2 ^ <03 ^ 0 we have a long exact sequence

HX{D3) -> //o(®i) -> //o(®2) -> //o(®3) -> o. (60)

The first term is 0 and the last term is a free abelian group, by Lemma 4.2 below.
Hence the second term and the third term in (60) have the same Z-torsion. Since

Hq{T>\) coker D[ and H0(T>2) M <g> Z[A\, we have

tnrz(coker D^) torz(M ®Z[Z4]),

which, together with (59), proves the proposition.

Lemma 4.2. For chain complex <©3,

Tf
0 -> (Z[A]n/ Im U) -X Z[A]n -> 0,

one has H\ (<©) 0 and Hq(T)) is afree abelian group.

Proof This is the same as to show that for the chain <£)',

0 -* Z[A]n -L Z Z[A]n -» 0,

one has (<£)') 0, and Hq(D') is free abelian.
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Since both U and 7p are diagonal, <£)' ®f=1 <©/, where <D- is the complex

0 -» Z[A]Z[A]n-^4Z -* 0.

As seen in Section 1.7, the principal ideals (w/) and (1 — t() are annihilator of each

other, hence H\ (<©•) 0. Besides, the ideal (1 — /)•) is primitive as a lattice in Z[A],
hence H0 (£>{) is a free abelian group.

4.3. Proof of Theorem 2

Proof. Part (a), the case of non-branched covering, follows immediately from Theorem

5.

Let us consider the case of branched covering. By Proposition 4.1, we have

log|torz(//i(Xj?,Z))| logtorz(M <g> Z[4r])lim sup -—— lim sup -—(r)^ \zn/r\(r)^
M(A(Af)) by Theorem 3. (61)

The module M\ $RnIT(3tw) has a free resolution

0 -> at" -ASRn -> Mx->0,

hence its projective dimension is 1. Also A0(Mi) nf=i(l ~~ U)-

Let M2 coker 92. From the matrix of presentation of M we see that there is an

exact sequence

0 -> M2 -> M -> Mi -> 0.

Since the projective dimension of M\ is < 1, by Theorem 3.12 of [Hi], one has

Aj(M) Ay(M2)A0(M1)
n

Aj(M2)Y\(l-ti).
i 1

It follows that A(Af) A(M2) n?=i(l—SinceM(l— /)•) landA(M2)
A(L), we have

M(A(M)) M(A(L)),

from which together with (61) one gets part (b) of Theorem 2.
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5. Converging sequences

5.1. Statement. For a non-zero vector x e Rn let r(x) x/||x|| E *SW_1 be the
unit vector positively colinear with x. Here *SW_1 is the (n — l)-dimensional sphere
of unit vectors in Rn. For a subgroup T C Zn of finite index let di di (r) be the

degree of ti in the quotient group Ar Zn /T. Let r (r) r {d\,..., dn) E

the part of *SW_1 with non-negative coordinates.

Theorem 7. Suppose M is afinitely generated Ai-module. For any k e there

exists a sequence offinite index subgroups Ts C Zn, s 1,2,..., such that

lim r(Ts) k
s—^oo

and
log|torz(M ®Z[Z"/rJ)| „limsup Sl Z7 M(A(M)).

SOO / 1 5 |

Remark 5.1. One could prove a similar Statement, replacing M <g) Z[ZW/ r5] with
//; (C <g) Z [Zw/ Ts]) like in Theorem 4.

The proof and methods of this section are independent of Theorem 3. It gives
an alternative proof of "half" of Theorem 3: The left-hand side in the identity of
Theorem 3 is greater than or equal to the right-hand side.

5.2. A result of Bombieri and Zannier: reduction from Zn to Z. For k e Zn let
k^~ {m E Zn | k • m 0}, where k • m is the usual dot product. Dehne

(k) {k~*~) min{|x|, x e k1^ \ {0}}.

The group homomorphism Zn -> Z given by m -> m k gives rise to the algebra
homomorphism r* : Q[tfx,..., t^1] -> Qf^1] dehned by

Xk(tm) tmk.

The following is a deep result of Bombieri and Zannier [SZ], [BMZ], which was
formulated as a conjecture by Schinzel.

Theorem 5.1. Suppose pi, P2 Q^1 > • • • An1] are co-prime. There is a constant
C C(p\, P2) such that if (k) > C, then gcd(r^(/>i), tk(P2)) is the product of
some (possibly none) cyclotomic polynomials.

From this one can easily deduce the following.
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Proposition 5.2. Suppose p\,..., pi e Z[tfx,..., t„x]. There exists a constant
C C(pi,..., Pk) such that if (k) > C, then

gcd(rjtOi )<•••< n {Pl))

where p is a product ofcyclotomic polynomials.

Proofi By dividing each of the p\ 's by gcd(/?i,..., pi) we can henceforth assume
that gcd(pi,..., pi) 1.

We will use induction on l. But first make the following well-known Observation

on the coefficients of Tu (p) of a polynomial p e Z having the form

P XI Cmfm'me<Af

where JV* C Z is a finite set. Then

*k(.p) c,n

meJS

If (k) is greater than |m —m'\ for any two m ^ m' e M, then k m ^ k • m', and

(62) shows that the coefficients of rk{p), in some order, are exactly the coefficients
of p.

Now we proceed with induction. Suppose 1 — 2. By Bombieri and Zannier
result, over Q^1,..., t„x]9 gcd(rk(pi),Xk(P2)) p, a product of cyclotomic
polynomials. Hence over Z[tfl,..., t^1], gcd(/?i, P2) ap, for some integer a. It
follows that a is the gcd of all the coefficients of tk(pi) and tk(p2)• By the above

Observation, with (k) big enough, this means a is the gcd of all the coefficients of p\
and P2, which must be 1. This proves the Statement when £ 2.

Now assume £ > 3. One has

gcd(r*Oi),..., xk{Pi)) gcd(r*Oi), gcd(r*02),..., Tk(Pi))

gcd(r*(pi),p Xk (gcd(/?2,..., Pi)) by induction

p' xk^gcd(pi,gcd(p2,..., Pi))} by case £ 2

p' r^(gcd(/7i, P2,..., Pi))-

Here p, p' are product of cyclotomic polynomials. The proof is completed.

5.3. A result of Lawton. Recall that the additive Mahler measure M (/) of f e

C[t^x,..., t„x], f 7^0, is definedby

M(/) f log \f(x)\da,
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where Sw is the /i-dimensional torus, and da is the invariant Haar measure on Sw

normalized so that da 1.

The Mahler measure is additive, M(/g) M(/) + M(g). It is known that

M(/) 0 is and only / is a generalized cyclotomic polynomial, see e.g. [SZ],
[Seh].

The following approximation result was a conjecture of D. Boyd, and was proved
by Lawton, see e.g. [Law], [SZ], [Seh].

Theorem 5.3 (Lawton). Suppose f gC^1,...,^1], / ^ 0. Then

lim M(r*(/)) M(/).
(£)—oo

5.4. A converging sequence. The following follows from Bombieri-Zannier and

Lawton results. Denote 3ti Z[t±x],

Proposition 5.4. Suppose that E Zn, s 1,2,..., is any sequence such

that limiy^00(A:^^) oo, and let M be finitely generated ^R-module. Let
M ® 9ti, where 3ti is considered as an ^R-module via xs := rk(S): 3t -> 3ti. Then

lim M(A(M(5))) M(A(M)).
s^oo

Remark 5.2. It not true in general that lim^oo A(M^) A(M).

Proof Suppose M has a presentation matrix 3 of size m\ x mo, with entries in 3t.
Then has presentation matrix rs(d)9 with entries in 3t i.

Let y be the smallest integer such that Aj (M) ^ 0. This means all the (mo — j ')-
minor of 3 is 0 if j' < y, and if the (mo — y)-minors of 3 are p\,..., pi e 3t,
then

A(M) Aj(M) Scd(p1,...,pl).
Note that every minor of ts(d) is obtained from the corresponding minor by

applying rs. It follows that all the (mo — y'O-minors of ts(d) are 0 if j' < y, and the

(m0 - y )-minors are rs{pi),..., xs{pi)-
By Proposition 5.2, for s big enough,

gcd(r^(/i), Xs{fr)) <p T, gcd(/i, fr)),

where 0 is a product of cyclotomic polynomials. This means

A(MW) 4>ts(A(M)).

Using additivity of the Mahler measure and the fact that the Mahler measure of a

cyclotomic polynomial is 0, we have

M(A(MW)) M (rs(A(M))).
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Since (k^) -> oo as s -> oo, by Lawton's theorem, we have

lim M(A(MW)) lim Mt,(A( M(A(M)).
S—>00 S—HX) V 7

5.5. Theorem 3, the case n — 1. In the previous section we approximate 7Ln by
7Ln/(A;-1), which has rank 1. Now we want to approximate abelian rank-1 group by
finite cyclic group. Here we give a short proof, independent of previous sections, of
the case n 1 of Theorem 3.

Proposition 5.5. Suppose M is afinitely generated -module. Then

torz(M <8>Z[Z/])
lim ^ ——= M(A(torM)).

£—00 £

Proof. The reason the case « 1 iseasy isthat Z[Z/T] 9ti/(l — tl), with (1 — tl)
a principal ideal.

For an 9t i-module N and an element a e 9ti, let aN be the a-torsion of TV:

0,/V {x G N | ax 0}.

A homological interpretation of aN is Tor^1 (N, 9ti/(a)) a A. If a\b then aN C
If A is a finitely generated torsion module, then there is b e 9ti, called a

universal annihilator of A, such that for every a e 9t i,

aN gcd(b,a)N.

For example, such b can be the product of all the generators of all prime ideals
associated to A. One can also dehne b as the least common multiple of the family
of annihilators of a generating family for A.

Since M' — M/tox{M) is torsion-free, by [Bou], Chapter VII, there is a free

9ti-module F such that M' C F and FIM' is a torsion module. Let / be a

universal annihilator of F/M'. Decompose / /i/2,where f\ is the product of all
cyclotomic factors (with multiplicity) in the prime decomposition of /. The identity
map F F descends to a surjective map

F/(fiF)^ h{F/M').

Since f\ is monic, F/f\F is a hnitely generated Z-module. It follows that fx (F/Mf)
is a hnitely generated Z-module, hence its Z-torsion part is a hnite set.

Tensoring the exact sequence

0 Mf ^ F ^ F/M' -> 0
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with Z[Z/£], we get

0 -> Torf1 (F/M', Z[Z/l])->0
-» F0Z[Z/£] -* (0Z[Z/] -* 0.

Since T7 is a free Sti-module, the third term is a free Z-module. It follows that the
Z-torsions of the first and the second terms are the same

torz(Torf1 (F/M' ,Z[Z/l]))torz(M' 0 Z[Z/£]).

Note that

Torf1 (F/M', Z[Z/ü]) {l_tl){F/M')

is a subset of fx (F/Mf) since 1 — t^ is a product of cyclotomic polynomials. Since

|tor{F/M')) \ is finite and does not depend on l, we conclude that forz(M' <g

Z[Z/l]) is finite and bounded from above.

Tensoring the exact sequence

0 -> tov(M) ->M ->M' -> 0

with Z]Z/l] /(1 — tl), taking into account Tor^1 (Mr, 3ti/(l — tl) 0, we
have

0 -> tor(Af) <8> Z[Z/] -> M ® Z[Z/] -> M' ® Z[Z/] -> 0.

Since the Z-torsion of the last term is bounded, we see that the Z-torsion parts of
the first two terms have the same growth, i.e. M ~ tor(Af). The proposition now
follows from the case of torsion modules, which was known [Seh] (see also [GS],
[Ri], [Lü2]).

5.6. Converging sequences

Lemma 5.6. Let M be afinitely generated fli-module, and £ Zn, s 1,2,...,
be any sequence such that lims^00(k^) oo and gcd (k[s\ ,k„^) 1 for
s > 1. For each positive integer j define the subgroup Tsj C Zn by

rsj o kw)x+ j
For every s there exists an integer rjs>0 such thatfor every js > rjs, we have

log Itorz (M 0 Z[Tr ]) I

lim M(A
oo | z«/rStjs\
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Proofi It is easy to see that for any k (k\,..., kn) e Zn with gcd(k\,..., kn)
1, and 0 < j e Z, the map m -> m • k (mod j) is an isomorphism between

Zn/(kL© jk)andZ/(j \k\2)-
It follows that, as St-modules,

M Z[Z"/r,j] ^ M(i) ®8ll Z[Z/(7 |*(s)|2)].

Since \Ln/Tsj \ j \k^\2,onehas
logltorz (M®Z[At, ,]) I ltorz (M(S) Z[Z/C/||*WH2)]) |

lim —- lim — —,j^oo \Zn/TsJ\ j^oo j\k^\2
log\tovz (M (g) Z[Ar •]) I ^ xlim — A— i—lAL. m(A(M(5))) by Proposition 5.5. (63)

j->°° \Zn/rsj\
Let asj be the left-hand side of (63). From (63), for fixed s, there is rjs > 0 such

that if j > rjs, then

|asJ -M(A(M(5))| < 1 /s.

It is clear that if js > rjs, then

lim as r- lim M(A= M(A(M)),
£—00 OO v v

where the last identity follows from Proposition 5.4.

5.7. Proof of Theorem 7. Assume the sequence k^ of Lemma 5.6 satisfies k\s^ ^
0 for i 1,..., n. If we choose js divisible by the product k[s^... k„ \ then

di(TsJs) \ js/k\s)\, and

r(rsJs) r(l/\k[s)\,...A/\k^\).

Thus Theorem 7 follows from Lemma 5.6 and the following result.

Lemma 5.7. Suppose k g There existsk^ (k[s\ k^) £ Zn such that

(i) k[s\ k^ > 0 and have greatest common divisor 1,

(ii) lirrwoo r(l/k[s),1 /kjf})k,

(iii) lim^oo (k(s)) oo.

Proof. Let S++1 be the subset of Sn~l consisting of points with all positive coordi-
nates. Let Inv: -> S++1 be the map defined by

Inv(xi r(l/xi,...,l/xn).
It is clear that Inv is an involution, and hence is a auto-diffeomorphism of S++1.
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The set Q of all points of the form r{ki,..., kn), with k\,..., kn positive and

co-prime, is dense in S+-1. If X is a finite collection of hyperplanes in Rw, then

Q \ X is still dense in S+_1.
For s > 1 let Ps be the set of all points in 7Ln having norm < s, and

zs= U
sePs

By definition if k $ Xs, then (k) > s.

Q \XS is dense in hence so is Inv(<2 \ £s)- This implies there is e

Q\£s such that
|| Inv(fc^) — k || < 1/s. (64)

By definition, r{k^) for some k^ (k^f\ ,k^) with positive and

co-prime k\s\ Since k^ $ Xs, we have (k^) > s, which establishes Property (ii).
Inequality (64) shows that Property (iii) also holds.
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