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Embedding functors and their arithmetic properties

Ting-Yu Lee

Abstract. In this article, we focus on how to embed a torus T into a reductive group G with
respect to a given root datum W over a scheme S. This problem is also related to embedding
an étale algebra with involution into a central simple algebra with involution (cf. [PR10]). We
approach this problem by defining the embedding functor, which is representable and is a left
homogeneous space over 5 under the automorphism group of G. In order to fix a connected
component of the embedding functor, we define an orientation u of ¥ with respect to G. We show
that the oriented embedding functor is also representable and is a homogeneous space under
the adjoint action of G. Over a local field, the orientation w and the Tits index of G determine
the existence of an embedding of T into G with respect to the given root datum ¥. We also
use the techniques developed in Borovoi’s paper [Bo99] to prove that the local-global principle
holds for oriented embedding functors in certain cases. Actually, the Braver—Manin obstruction
is the only obstruction to the local-global principle for the oriented embedding functor. Finally,
we apply the results on oriented embedding functors to give an alternative proof of Prasad and
Rapinchuk’s Theorem, and to improve Theorem 7.3 in [PR10].

Mathematics Subject Classification (2010). 11E57. 141.15, 141.30, 141.35, 20G30.

Keywords. Torus, root datum, reductive group, central simple algebra, étale algebra, local-
global principle, Tits index.

Introduction

Let K be a field, A be a central simple algebra over K with involution 7, and E be an
étale algebra over K with involution . Suppose that 7| = o|g. Letk be the field of
invariants K, which is a global field. Motivated by the weak commensurability and
length-commensurability between locally symmeiric spaces ([PR09]), Prasad and
Rapinchuk discuss in [PR10] the local-global principle for embeddings of (E, o) into
(A, t) over K. This embedding problem is also related to studying the condition under
which the isomorphism classes of simple groups are determined by their isomorphism
classes of maximal tori over a number field (ctf. [Gal2] and [PR09], Thm. 7.5).
Motivated by the work of Prasad and Rapinchuk, we consider the embedding
problem of a twisted root datum. Loosely speaking, a twisted root datum is a torus
equipped with some extra data related to the roots. In this article, we transform such
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embedding problem of algebras into a embedding problem of algebraic groups, in
order to work in a more conceptual framework. Moreover, in this framework, our
criteria can be applied not only to the classical groups but also to the exceptional
groups. Instead of a global field, we work over an arbitrary scheme.

Let S be a scheme and G be a reductive group scheme over S. Given an S-torus
T and a twisted root datum W associated to T, we want to know when it is possible
to embed T in G so that the corresponding twisted root datum ®(G, T) is isomorphic
to &. To approach this problem, we first define the embedding functor (G, V).
Roughly speaking, each point of the embedding functor is a closed immersion f
from T to G such that the twisted root datum ®(G, f(T)) is isomorphic to . For
the formal definition, we refer to Section 1.1. Then our problem can be reformulated
as: when is the set €(G, T)(S) nonempty?

We first prove that the embedding functor is a sheaf for the étale topology (in the
sense of big étale site). To be more precise, the embedding functor is a homogeneous
sheaf under the action of the automorphism group Autg, (G) over S, and it is a
principal homogeneous space under the automorphism group Aut(W) over the scheme
of maximal tori of G. Then by the result in [SGA3], Exp. X, 5.5, we conclude that
the embedding functor &(G, W) is representable.

However, the embedding functor &(G, W) can be disconnected if Autg , (G) is.
Therefore, instead of dealing with &(G, V), we fix a particular connected component
of &(G, ¥) which will be called an oriented embedding functor. The way we fix a
connected component is to fix an orientation of W with respect to G. An orientation
between semisimple S-groups was previously defined by Petrov and Stavrova ([PS]).
Here, we generalize it to an orientation between a twisted root datum W and a reductive
S-group G, which is an element  in Isomext(¥, G)(S) (Section. 1.2.1). We show that
the oriented embedding functor €(G, ¥, 1) is homogeneous under the adjoint action
of G over S and is principal homogeneous under the action of the Weyl group W(W).
Hence, &(G, ¥, 1) is also representable (ref. [SGA3], Exp. X, 5.5). Moreover, in
Theorem 3.12, we show that over a local field L, the orientation together with the
Tits index of the given group determine the existence of I-points of the oriented
embedding functor.

The main application of embedding functors is to the embedding problem of
Azumayaalgebras withinvolutions. Let R be acommutative ring, where 2 is invertible
in R. Let E be an étale algebra over R with involution o and A bean Azumaya algebra
with involution 7. Suppose 0|z = 7|p. We ask when (E, o) can be embedded into
(A, t). The case where Risa global field is discussed in Prasad and Rapinchuk’s
paper ([PR10]).

Over a commutative ring R in which 2 is an invertible element, we let R be the
ring of invariants R*. If R is equal to R, then 7 is said to be of the first kind. If R is
a quadratic extension of R, then 7 is said to be of the second kind. We consider the
reductive group G = U(A, 7)°, the torus T = U(E, 0)° over R, and a twisted root
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datum W attached to T. There is a nice correspondence between the R-points of the
embedding functor &(G, W) and the embeddings ¢: (E, o) — (A, 7), namely:

Theorem. Keep all the notation defined above. The set of k-embeddings from (E, o)
into (A, T) is in one-to-one correspondence with the set of R-points of (G, V),
except for G of type D4 or A of degree 2 with T orthogonal.

For G of type D4, we have a finer treatment and we refer to Proposition 2.17.
Moreover, for the involution 7 of the second kind, we prove that there is an orienta-
tion # such that all R-points on the connected component €(G, ¥, u) are in one-to-
one correspondence with R-embeddings from (E, o) into (A, 7) (see Remark 2.16,
Lemma 3.23).

The second part of this article is devoted to the arithmetic properties of the em-
bedding functor. In particular, we want to know if the Hasse principle holds for
the existence of k-points of the oriented embedding functor &(G, W, 1), when & is
a global field. Since &(G, W, 1) is a homogeneous space under the group G whose
stabilizer is a torus, we use the technique developed by Borovoi to solve this problem,
cf. [B0o99]. Actually, in [Ba99], Borovoi proved that the Brauer—-Manin obstruction
to the Hasse principle is the only obstruction in this case. He also computed the
obstruction using the Galois hypercohomology. We apply his result to show the
following:

Theorem. Let G, V be as above, and T be the torus determined by V. Let u €
Isomext(V, G)(k) be an orientation. Suppose that \V satisfies one of the following
conditions:

1. all connected components of Dyn(W)(k®) are of type C, where k¥ is a separable
closure of k.

2. T is anisotropic at some place v € £2.

Then the local-global principle holds for the existence of a k-point of the oriented
embedding functor ©€(G, Y, u). In particular, when U is generic, the local-global
principle holds.

Finally, for a global field k of characteristic different from 2, we combine these
techniques and the correspondence established in Theorem 2.15 and Proposition 2.17
to give an alternative proof of Theorem A and Theorem 6.7 in [PR10]. Besides,
we provide an example (3.22) to show that the Hasse principle fails in some cases
when the involution 7 is orthogonal and A is M5, (D), where D is a division algebra
over K. The main reason for the failure is that the embedding functor &(G, V) is
disconnected in this case. Let &(G, ¥) = X [[X5. Then it may happen that the
embedding functor has a k,-point at each place v, but only X; has a k,, -point, at
some place vy, and only X, has a k,, point, at another place v,. This explains the
failure of the Hasse principle.



674 T.-Y. Lee CMH
1. Some general facts and notation

In this section, we briefly recall the notation and definitions which will be used later.
We also state some well-known theorems which are necessary for the development of
the main results about the embedding functor. Most of the material here can be found
in [SGA3], and in the Appendix A of the book by Conrad, Gabber, and Prasad [CGP].

1.1. Notation and conventions. Let S be a scheme and S’ an S-scheme. For an
S-scheme X, we let X¢ be the scheme X >S< S’ over §’. For aset A, we let Ag denote

the disjoint union of the schemes S;, where i € A and each S; is isomorphic to S,
i.e. Ag = [];ea Si- We call Ag the constant scheme over S of type A. (ref. [SGA3],
Exp. 1, 1.8).

Let Sch/S be the category of all S-schemes. Throughout this article, the étale site
of S means the big étale site. Namely, we equip the category Sch/S with the following

topology: for an S-scheme U, {U; £> U}; is a covering of U if for each 7, f; is an
étale morphism and U = | J; fi(U;). For a detailed introduction to Grothendieck
topology, we refer to the lecture notes by Brochard [Br].

1.2. Torsors and homogeneous spaces. Let G be an S-group sheaf for étale topol-
ogy. Let ¥ and X be S-sheaves. let p: ¥ — X be a morphism between S-
sheaves. Then ¥ is called a right (resp. left) G-sheaf over X with respect to p if ¥
is equipped with an G-action satisfying p(fg) = p(f) (resp. p(gf) = p(f)) for
all (f, g) € (FxG)(S') and for all S-schemes S’. Note that XxG can be equipped
with a right G-action as (x, g)o = (x, go). Let px be the projection from XxG to
X. Then XxG is a right G-sheaf over X with respect to px. A G-sheaf ¥ over X
with respect to p is trivial if it is isomorphic to XxG with respect to px as G-sheaves
over X. A right G-sheaf ¥ over X with respect to p is called a G-torsor over X if
there is an epimorphism of S-sheaves 7: Y — X such that Y X F overY is a trivial
(5-sheatf.

Proposition 1.1. Let G be an S-group sheaf, X be a sheaf overS. Let ¥ be a G-sheaf
over X with respect to an S-sheaf morphism p: ¥ — X. Then ¥ is a torsor over X if
and only if p is an epimorphism of S-sheaves and the morphismi: FxG — F x F
defined as i(x,h) = (x, xh) is invertible. x

Proof. [DGT0], Chap. III, §4, Corollary 1.7. O

Let G be an S-group sheat. Let ¥ and X be S-sheaves. Let p: ¥ — X be
a morphism between S-sheaves. A G-sheaf F over X with respect to p is called
a G-homogeneous space if p is an epimorphism of S-sheaves and the morphism
i: FxG— 3‘7;537 defined asi(x, h) = (x, xh) is an epimorphism between sheaves
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1.3. Root data and twisted root datum. Lety = (M,MY,R,R"Y) be aroot datum
(ref. [SGA3], Exp. XXI, 1.1.1). Let A € R be a system of simple roots of R. The
root datum ¥ plus a system of simple roots A of R is called a pinning root datum,
and we denote it as (M,M"Y,R,RY, A).

The subgroup of the automorphism group of M generated by the reflections
{Sa taer is called the Weyl group of ¥, and we denote it by W ().

For a finite subset R (resp. RY)of M (resp. M), we let To(R) (resp. ['o(R"Y)) be
the subgroup generated by R (resp. RY) and we let V(R) (resp. V(RY) be the vector
space defined by T'h(R) ®z Q (resp. To(RY) ®z Q).

A root datum is called reduced if for all @ € R, we have 2« ¢ R. A root datum
is called semisimple if rank(To(R)) = rank(M). A root datum (M, MY ,R,RY) is
called adjoint (resp. simply connected) if M = T'o(R) (resp. MY = Io(RY)).

We define the dual root datum of ¥ to be (MY, M, R"Y, R), and denote it as V.

1.3.1. Radical and coradical of root data. Let
N={xeM|a"(x)=0foralla” € RV}

Then the dual of N can be identified with MY /V(RY) N MY (ref. [SGA3], Exp. XXI,
6.3.1).

Define the coradical of ¥ to be the root datum (N, N, @, @) and denote it as
corad(vy). We define the radical of v to be corad(yy")Y, and denote it as rad ().

1.3.2. Induced and coinduced rootdata. Givenarootdatumy = (M,MY,R,R"Y),
and a subgroup N of M which contains T'y(R), let iy : N — M be the natural inclu-
sion, and iy : MY — NV be the corresponding map on MY. Let Ry = R and
Ry = iy (RY). We define the root datum ¥y as (N, NV, Ry, RY), which is called the
induced root datum of ¥ respect toN. If N = I'p(R), then vy is an adjoint root datum,
and we denote it as ad(y). If N = V(R) ()M, then yry is a semisimple root datum,
and we denote ¥ as ss(yr). We let der(yr) = ss(y")", and sc(y) = ad(yr¥)".

1.3.3. Morphisms between root data. Let
Y1 = (M. M{.Ry.R{) and v = (M2, M;.R3.R;)

be two root data. A module morphism f : My — Mj is amorphism between {1 and
Y, if f induces a bijection between Ry and R; and the transpose map’ f: MY — MY
is a bijection between R} and Ry'.

Proposition 1.2. Keep all the notation above. If f: My — M is a morphism
between 1 and yrp, then ' f(f(a)") = «V, and the map so — Sy for o € Ry
extends to an isomorphism between W (yr1) and W (),
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Proof. [SGA3], Exp. XXI, 6.1.1 and 6.2.2. O

Let Aut(yr) be the automorphism group of ¥, and fix a system of simple roots A
of R. Define the abstract group

Ea(¥) = {u € Aut(yr) | u(A) = A}

Then we have the following:

Proposition 1.3. W(y) is anormal subgroup of Aut(yr), and Aut(yr) is a semi-direct
product of W(r) by EA(¥r).

Proof. [SGA3], Exp. XXI, 6.7.1 and 6.7.2. (]

1.3.4. Twisted rootdata. LetT be an S-torus. Let M be the character group scheme
associated to T, i.e. M(S") = Homg o(Ts/, Gy, 7). Let ¥ = (M, MY, R, RY) be
a twisted root datum associated to T (ref. [SGA3], Exp. 22, Def. 1.9).

The root datum W is split 1f T is split. A twisted root datum is called reduced it
for all S-schemes S and all & € R(S'), we have 2o ¢ R(S').

Let v = (M, MY, R,RY) be aroot datum. A twisted root datum W is said to have
type V¥ at the point s of S if W5 >~ (M;, MY, R5, RY).

Let¥ = (M, MY, R, RY) be a twisted root datum. Since at each s € S, there is
an étale neighborhood such that T splits, we can define ad(W), sc(\W), ss(W), der(\V')
étale locally, and by the functoriality of induced root data, define them over S by
descent ( [SGA3], Exp. XXI, 6.5).

Let ¥y = (Mq, M, R, RY), V2 = (Mz, M), Rz, R)) be two twisted root
data. Let Ty, T be the tori determined by ¥; and ¥, respectively. An S-group
morphism f : T, — Ty is a morphism from Wy to W, if f induces an isomorphism
from R4 to R, and an isomorphism from R to R;". We can also define the induced
twisted root data by étale descent, and define ad(¥), ss(¥), der(V) and sc(\V) as we
have done for the root data.

1.3.5. Weyl groups, Isom, Isomext and Isomint for twisted root data. Let W be
a twisted root datum. Suppose W is split and ¥ = (Mg, M{, R, RY). Let ¢ be the
root datum (M, MY, R, RY). Let W be the Weyl group of v, and define W(¥) = Ws.
Suppose that ¥ is not split. Then we can find an étale covering {S; — S} such that
Wy, is split. By Proposition 1.6, the canonical isomorphism between (Ws, )s; and
(Ws; )s; gives a canonical isomorphism between W (Ws, )5, and W(Ws; )s; and hence
gives a descent data for {W(Ws;)};, which allows us to define W(W).

Let Aut(W) be the automorphism functor of . By descent, we can define the
Weyl group W(W¥). Then by Proposition 1.3, we can define the following exact
sequence by étale descent:

I — W(¥) — Aut(¥) — Autext(¥) — 1.
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Then we have the following proposition:

Proposition 1.4. Keep the notation above. The automorphism group Aut(W) is
representable by a twisted constant S-scheme, and W(W) is normal in Aut(W). Let
Autext(\W) be the quotient group of Aut(¥) by W(WV). Then Autext(WV) is also
representable by a twisted constant S-scheme.

Proof. Note that we can f{ind an étale covering {S; — S}; such that Ws; is split
( [SGA3], Exp. X, 4.5). By Proposition 1.3, Aut(Ws. ) and Autext(W¥s; ) are constant
group schemes over S;. By [SGA3], Exp. X, 5.5, {S; — S}; gives an effective
descent datum, so Aut(Ws. ) and Autext(Ws, ) are representable. L

Let Wy, ¥, be two twisted root data. Suppose ¥, is a twisted form of W;. Let
Isom (W, W,) be the isomorphism functor between ¥; and W,. Then Isom(W, ;)
is a right principal homogeneous space of Aut(\¥;) and a left principle homogeneous
of Aut(W¥;). Since Aut(W,) is representable, Isom(¥, ¥,) is also representable.

Define Isomext(Wy, ¥,) = W(W,) \ Isom(Wq, ¥,).

Note that for f € Isom(¥y, ¥,)(S), we have f~! o W(W¥,) o f = W(¥) by
Proposition 1.2. Therefore we have a natural isomorphism from Isomext(\/;, ¥5) to
Isom(Wy, W,)/W(Wy). Then Isomext(¥, W) is a left Autext(W;)-principal homo-
geneous space and a right Autext(\W; )-principal homogeneous space. An orientation
of W with respect to W5 is an S-point of Isomext(\¥;, ¥5).

Suppose that there is ¥ € Isomext(¥;, ¥,)(S). Then we can regard S as an
Isomext(¥, \W,)-scheme through u and define

Isomint, (W, ¥,) := S X Isom(¥, ¥5).

Isomext(¥q,¥>)

1.4. Reductive groups. An S-group scheme G is called reductive (resp. semi-
simple) 11 it 1s affine and smooth over S, and all the geometrical {ibers are connected
and reductive (resp. semisimple) (ref. [SGA3], Exp. XIX, Def. 2.7).

Let G be a reductive S-group scheme and suppose that T is a maximal torus in
G. We let ®(G, T) be the twisted root datum of G with respect to T (ref. [SGA3],
Exp. XXII, 1.10).

Forapoint s € S, let k(s) be the residue field of s and «(s) be the algebraic closure
of k(s). Let s be the scheme Spec(f?s)). The type of G at s is the type of ®(G;, Tp),
where Ty 1s a maximal torus of Gy (ref. [SGA3], Exp. 22, Def. 2.6.1, 2.7). Note that
the type of G is locally constant over S (ref [SGA3], Exp. 22, Prop. 2.8).

A reductive S-group G is split if there is a maximal torus T of G and a root datum
(M, MY, R,R") suchthat ®(G, T) =~ (Ms, M{, R, RY) and satisfying the following:

1. S is nonempty and each root & € S (resp. ¥ € RY) can be identified as a
constant map from S to M (resp. MY).
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2. Let ¢ = Lie(G/S) and t = Lie(T/S). Under the adjoint action of T, g =
t @ [[,eg g% where the g*’s are free 9g-modules.

In this case, we say that G is split relatively to T (ref. [SGA3], Exp. XXII, 1.13 and
2.)

Let us endow S with the étale topology. Let S’ be an S-scheme, and G be an
S-group scheme. Let Autg , (G) be the sheaf of group automorphisms of G. Then
we can define the group homomorphism

ad: G — Autg  (G)

which maps an element g of G(S') to an automorphism of Ggs defined by the conjuga-
tion by g. Let Centr(G) be the center of G. Then the image sheaf of ad is isomorphic
to G/Centr(G) and ad(G) is normal in Autg . (G). So we have the exact sequence of
S-group sheaves:

1 — ad(G) — Autg . (G) — Autext(G) — L.

Theorem 1.5. Let S be a scheme and G be a reductive S-group scheme. For the exact
sequence of S-sheaves:

I — ad(G) — Auts , (G) —> Autext(G) —> 1,

we have the following:
(1) Auts_gr(G) is represented by a separated, smooth S-scheme.
(i) Autext(G) is represented by a twisted finitely generated constant scheme.

(iii) Suppose that G splits relatively to T, and (G, T) =~ (Mg, M, Rs,RY). Let
(¥, A) = (M, MY,R,RY, A) be apinning root datum. Thenthere is a monomor-
phism between sheaves a: Ex(Y)s — Aulg  (G) such that

poa: Ea(¥)s — Autext(G)
is an isomorphism.

Proof. [SGA3], Exp. XXIV, Theorem 1.3. (]

For a subgroup scheme H of G, let Autg , (G, H) be the subsheaf of Autg , (G)
which normalizes H, i.e. Auts_gr(G, H) = Norm ot ﬂ(G)(H) (cf. [SGA3], Exp. Vg,
Def. 6.1 (iii)). We let Autext(G, H) be the quotient sheaf

Autg (G, H)/Norm, ) (H).
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1.5. Dynkin diagrams. For each reductive S-group G, we can associate a Dynkin
diagram scheme Dyn(G) to G (ref. [SGA3], Exp. XX1V, 3.2 and 3.3). Moreover we
have the following:

Proposition 1.6. If G is semisimple (resp. adjoint or simply connected), then the
morphism

Autext(G) — Auty,, (Dyn(G))

is a monomorphism (resp. isomorphism).
Proof. [SGA3], Exp. XXIV, 3.6. 0

Given a twisted root datum W over S, we can also define the Dynkin scheme of
W in a similar way and denote it by Dyn(W). We also have a natural morphism from
Autext(W) to Auty, , (Dyn(¥)), which will be a monomorphism (resp. isomorphism)
if W is reduced semisimple (resp. reduced adjoint or reduced simply connected).

For a root datum v, we can associate to each connected component of its Dynkin
diagram Dyn(y) a type according to the classification of Dynkin diagrams (ref.
[SGA3], Exp. XXI, 7.4.6). Let T be the set of all types of Dynkin diagram. Simi-
larly, for each Dynkin scheme I over S, we can associate the scheme of connected
components Dy to D (ref. [SGA3], Exp. XXIV, 5.2). We can also define a morphism

a:D0—>Ts.

Letv € T. If Dy = a~1(v), then we say D is isotypical of type v. If the Dynkin
scheme Dyn(\Y) is connected at each fiber over S and is of constant type v, then we
say that WV is simple of type v.

1.6. Parabolic subgroups. l.et S be a scheme and G be a reductive S-group. A
subgroup scheme P of G over S is called parabolic if

1. P is smooth over S.
2. Foreach s € S, the quotient G;/P5 is proper.

Let us keep the notation in Section 1.4. Let & = {G, T, R, A, {X,}aea} bea
pinning of G and P be a parabolic subgroup. The pinning E is said to be adapted to
P if P contains T and Lie(P/S) = t & [ [,cgs 6%, where R’ is a subset of R which
contains all the positive roots. In this case, we denote A(P) = A N —R".

Let Of(Dyn(G)) be the functor defined as the following: for each S-scheme S’,
Of(Dyn(G))(S’) is the set of all subschemes of Dyn(G)s which are open and closed.
Then Of(Dyn(G)) is a twisted finite constant scheme. Let Par(G) be the functor
defined by Par(G)(S’) is the set of all parabolic subgroups of Gg. for each S-scheme
§’. One can define a morphism

t: Par(G) — Of(Dyn(G))

satisfying the following:
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1. tis functorial in G.
2. If € is a pinning of G adapted to the parabolic subgroup P, then t(P) = A(P)s.
For a parabolic subgroup P of G, we call t(P) the type of P.

Proposition 1.7. Let S, G be as above. Let P be a parabolic subgroup of G. Let '
be a section of Of (Dyn(G)) over S and t’ O t(P). Then there is a unique parabolic

subgroup P’ of G which contains P and the type of P' is t'.

Proof. |SGA3], Exp. XX VI, Lemme 3.8. L

2. Embedding functors

Let S be a scheme and G be a reductive group over S. Let T be an S-torus and ¥ be
a root datum associated to T. We would like to know if we can embed T in G as a
maximal torus such that the twisted root datum ®(G, T) is isomorphic to ¥. To answer
this question, we first define the embedding functor &(G, V). The embedding functor
is representable and is a left Autg , (G)-homogeneous space. Briefly speaking, each
S-point of E(G, ¥) corresponds to an embedding from T to G with respect to W.

In the second part, we first define an orientation v of W with respect to G. Once
we can fix an orientation, we can fix a connected component of E(G, W), which is
called an oriented embedding functor. The oriented embedding functor &(G, ¥, v)
is also representable and is a left G-homogeneous space.

In the end of this section, we show that the embedding functor has an interpreta-
tion in the embedding problem of Azumaya algebras with involution. Moreover, we
show that there is a one-to-one correspondence between the k-points of the embed-
ding functor and the k-embeddings from an étale k-algebra with involution into an
Azumaya algebra with involution.

2.1. Embedding functors. Let S be a scheme, GG be a reductive S-group scheme.
Let T be an S-torus. Let M be the character group scheme associated to T, and
U= (MM’ R, R)be aroot datum associated to T. We define the embedding
functor by

f is both a closed immersion and a group
homomorphism which induces an

©(G, ¥)(S)?{ f: Ty — Gy | isomorphism f¥: ¥y =5 &(Gy, f(Ts))
such that f¥(@) = a o f_1|f(Ts’) for all
o € M(S"), for each S§'-scheme S”

'y

for §" a scheme over S. In this article, we always assume that at each geometric point
§ € S, the root datum W5 is isomorphic to the root datum of G;. Therefore, &(G, W)
is not empty in our case.
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The embedding functor &(G, ¥) is naturally equipped with a left Auty , (G)-
action defined as compositions of functions. Namely define

I: Autg  (G) X (G, ¥) — E(G, V)

asl(o, f) = oo f forallo € Autg . (G)(S'), f € €(G, ¥)(S') and §' an S-scheme.

Since Aut(V) < Autg (M) and Autg , (T) = Autg, (M)°P, we can regard
Aut(V) as a subgroup of Auty ,.(T) through the inverse map between Autg , (M)
and Autg  (M)P. We define a right Aut(W)-action on (G, V) as a composition of
an automorphism of T followed by a closed embedding from &(G, V).

Now, let 7 be the scheme of maximal tori of G (cf. [SGA3], XII, 1.10). We
think about the morphism 7w : €(G, V) — T defined as n(f) = f{(Ts), where
f € (G, ¥)(5'), and S is a scheme over S. Then we have the following:

Theorem 2.1. In the sense of the étale topology, ©(G, V) is a homogeneous space
over S under the left Autg  (G)-action, and atorsor over T under the right Aut(\V)-
action. Moreover, €(G, V) is representable by an S-scheme.

Proof. We divide the argument into the following three parts:
Claim. &(G, V) is a sheaf for the étale topology.

Proof. Let {S; — S} be an étale covering. Since &(G, V) is a subfunctor of
Homg_, (T, G) and Homg_ (T, G) is a sheal, we only need to prove that for f €
Homg , (T, G)(S)if fs; € (G, ¥)(5;), then f € &(G, ¥)(S).

We note that to verify that f is a closed immersion and f(T) is a maximal torus,
it is enough to verify it étale locally. Since fs, is in (G, ¥)(S;), by the definition
of &(G, V), fs, is a closed immersion and f(T)s; is a maximal torus. Hence f isa
closed immersion and f(T) is a maximal torus. Finally, ¥ is an isomorphism étale
locally, so ¥ is an isomorphism. We conclude that &(G, V) is a sheaf. O

Claim. &(G, V) is homogeneous under the left Auls , (G)-action, which is defined
as composition of functions.

Proof. Let 8’ be a scheme over S, and f1, f2 be two elements in (G, ¥)(S). Let
F; = fi(Ty), i =1, 2 respectively. Then there exists an étale neighborhood U of
S” where F; and F; are conjugated (ref. [SGA3], Exp. 12, Theorem 1.7), so we can
assume Fy y = F2 . Moreover, we can even assume Gy is split relatively to Fq 1y
(ref. [SGA3], Exp. 22, 2.3). By abuse of notation, we still use f> o f77! to denote
the morphism from F; y to Fp y. Then by the definition of the &(G, ¥)-functor,
we know that f> o f;~! induces an automorphism on ®(Gy, f(F; y)). According to
Theorem 1.5, we can find o, which is an automorphism of Gy, such thato o f, = f1,
which proves the claim. L
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Claim. &(G, V) is a right Aut(V)-torsor over T for étale topology.

Proof. Wefirst prove that w: €(G, V) — T is surjective as an S-sheaf morphism for
the étale topology. For an S-scheme S’ and an element F in 7 (S’), which means that
F is a maximal torus in Gg, foreach " € S, we can find an étale open neighborhood
U’ — § such that Yy splits and Gy splits relatively to Fyr. Therefore, W and
®(G, F)y are isomorphic as we assume that both of them are with the same type at
each geometric point. Hence, there is f € &(G, ¥)(U’) such that #(f) = F X u’.

Next, let us show that &(G, ¥) X Aut(¥) ~ &(G,¥) ? &(G, V) as Aut(W¥)-

space. By identifying Aut(\¥) with a subgroup of Aut(T), we regard o € Aut(\W)(S')
as an element of Autg , (T)(S'). Define

m: €(G,¥) ?M(‘I’) — €(G. V) ? &(G, ¥)
as m(f,o) = (f, f o o) for all §’ a scheme over S.
Given (f1. f2) € (€(G,T) x &G, ¥)(S), we let F = fi(Ty) = fa(Ts)

and ® = ®(Gg/,F). Then both fl‘l’, fz‘l’ induce isomorphisms from Wg to &, so
(D)o £,¥ is an automorphism of Ws. So we can define

0 (G, ) X €(G. V) > G(G. ¥) x Au(¥)

asi(fi. f2) = (fi. /7' o f2). Then we have

iom(f,0)=i(f.foo)=(ff o foo)=(fio)
moi(fi, o) =m(f1, il o f2) = (fi. /o).

Therefore i is the inverse map of m and the claim follows from Proposition 1.1. LI

Now we want to show that &(G, V) is a scheme. As we have mentioned in
Proposition 1.2, the group scheme Aut(W) is étale locally constant. Therefore, the
Aut(W)-torsor €(G, V) is representable by [SGA3], Exp. X, 5.5. O

For a maximal torus X of G, we let X! be the corresponding torus in ad(G). Note
that X/Centr(G) = X (ref. [SGA3], Exp. 24, Prop. 2.1). For f € &(G, ¥)(5),
we define the stabilizer of f under the Auty , (Gs/) as

Stab(£)(S”) = {x € Autgr4(Cs») | x o for = fsr}.

Proposition 2.2. Let [ € (G, V)(S) and X = f(Ts). Then Stab( f) is isomor-
phic to X,

Proof. Leto € Autgy o(Gg»). Theno € Stab( f)(S”) ifand only if o|x is the identity
map on X, which means Stab( /) = Autg (G, idx). Since Autg (G, idx) = xad
(ref. [SGA3], Exp. 24, Prop. 2.11), Stab( ) = X*. O
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2.2. Oriented embedding functors

2.2.1. The definition of an orientation. lLet ¥ = (M, MY R, RY) be a twisted
reduced root datum over S, and G be a reductive group over S. Suppose that ¥ and
G have the same type at each s € S. From Theorem 2.1, we know that &(G, V) is
a homogeneous space under the action of Autg , (G). However, Autg , (G) may be
disconnected, so we would like to fix an extra datum *“v” to make our embedding
functor together with “v” to be a homogeneous space under the adjoint action of G.
The “v” will be called an orientation of ¥ with respect to G.

First, we suppose that G has a maximal torus T. Let ®(G, T) be the twisted root
datum of G with respect to T.

For an S-scheme S, and for o € Autg (G, T)(S'), o induces an automorphism
on ®(G, T), and induces a left action on f € Isom(W¥, ®(G, T))(S’) which is defined
as

- [)x) = fx)oo™,

forall x € Mg (S”), where S” is an S’-scheme.
Let T be another maximal torus of G, and Transt; (T, T') be the strict transporter

from T to T (cf. [SGA3], Exp. Vg, Def. 6.1 (ii)). Then we have a natural morphism
(for the convention, we refer to [Gir], Chap. III, Def. 1.3.1.):

m(T)

Normg (T
Transt(T,T) ™ A Isom(¥, &(G,T)) — Isom(¥, &(G,T)).

Since Transt. (T, T') is a right principal homogeneous space under Norm,, (T) and
Norm(T) acts on the left of Isomext(V, ®(G, T)) trivially, we have the following
canonical morphism:

Normg (T)

i
Isomext(¥, ®(G, T)) >~ Transt (T, T) ™ A Isomext(¥, &(G, T))
~ Isomext(¥, (G, T')).

Therefore, for G with a maximal torus T, we can define
Isomext(¥, G) := Isomext(¥, $(G, T)).

In general, since G has a maximal torus étale locally, we can find an étale covering
{S; — S}; such that Gs; has a maximal torus, and we can define Isomext(W, G) by
the descent data of Isomext(Ws, , Gs, ).

An orientation of W with respect to G is an S-point of Isomext(W, G). A twisted
root datum ¥ together with an orientation v € Isomext(\V, G)(S) is called an oriented
root datum and we denote it as (W, v).

One can also define the functor Isomext(G, ¥) in the same way. Suppose that
G i1s with a maximal torus T. Then there is a natural isomorphism : between
Isom(¥, ®(G, T)) and Isom(®(G, T), ¥) sending u to »~!. This isomorphism also



684 T.-Y. Lee CMH

induces an isomorphism between Isomext(W, ®(G, T)) and Isomext(®(G, T), V).
Let T” be another maximal torus of G. We have the following commutative diagram:

, Normg (T} Normg (T} ,
Transt, (T, T") A Isom(¥, (G, T)) —— Isom(P(G,T), W) A  Transt,;(T', T)

l l

Lsom(¥, ®(G. T)) Lsom(®(G. T'). ¥)

Therefore, the morphism ¢ defines an isomorphism between Isomext(W, G) and
Isomext(G, V) and we can define ¢ for an arbitrary reductive group G by descent.

Remark 2.3. Actually, in our case, there is no difference between the transporter
Trans, (T, T') and the strict transporter Transt (T, T') since both T and T” are maximal
tori.

Proposition 2.4. Let G’ be another reductive group over S. Suppose that G' and ¥
have the same type at each fibre over S. Then we will have the following map:

Isomext(V, G') x Isomext(G, V) — Isomext(G, G').

Proof. To see this, we first suppose that both G and G” have maximal tori. Let T
and T" be the maximal tori of G and G’ respectively. Then the natural map from
Isom (W, ®(G', T)) x Isom(P(G, T), ¥) to Isom(P(G, T), P(G’, T)), induces the
map

Isomext(\V, &(G’, T")) x Isomext(P(G, T), ¥) — Isomext(P(G, T), B(G’, T')).

We now want to show that Isomext(®(G, T), (G’, T')) =~ Isomext(G, G'). Note
that we have natural morphisms from lsomg (G, T; G, T)/Norm,, ¢, (ad(T)) to
Isomext(P(G, T), P(G’, T')). By [SGA3], Exp. XXIV, 2.2, we have

Isomg (G, T; G, T')/Notm, 4, (ad(T)) —= Isomext(G, G)
So we have a map
11 : Isomext(G, G') — Isomext{®(G, T), (G’ T')).

Note that Isomext(G; G) and Isomext(®(G, T), ®(G’, T')) are principal homo-
geneous spaces under Autext(G) and Autext{®(G, T)) respectively.

By [SGA3], Exp. XXIV, 2.1, we have that Autext(G, T) >~ Autext(G). Moreover,
by Theorem 1.5 and Proposition 1.3, the natural map between Autext(G,T) and
Autext(®(G, T)) is an isomorphism on each geometric fiber, so

Autext(G) >~ Autext(G.T) >~ Autext(®(G,T)).

Under these identifications, the map 11 is a morphism between Autext(G)-principal
homogeneous spaces. So it is an isomorphism.
For general reductive groups G and G’, we can define this map by descent. [
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Remark 2.5. For a semisimple group G, there is also a definition of an orentation
of G (ref. [PS]). Let G?° be a quasi-split form of G, and T’ be a maximal torus of
G7°%. If we replace ¥ above by ®(G9°,T”), then an orientation of ¥ with respect to
G 1s called an orientation of G in [PS], §2.

2.2.2. Oriented embedding functors. Given an oriented twisted root datum (W, v)
of W with respect to GG, we define the oriented embedding functor as:

f € (G, ¥)(5'), and the image }

G‘(G, ‘I’, U)(S ) = {f TS’ =2 GS’ of f‘lJ in Isomext(qj: G)(S!) is v.

With all the notation defined above, we have the following result similar to Theo-
rem 2.1:

Theorem 2.6. Suppose that G is reductive. Then in the sense of the étale topology,
&(G, W, v) is a left homogeneous space under the adjoint action of G, and a torsor
over T under the right W(\W)-action. Moreover, €(G, ¥, v) is representable by an
affine S-scheme.

Proof. Since &(G, V) and Isomext(V, G) are sheaves, &(G, ¥, v) is an S-sheaf.

Let 8’ be an S-scheme, f1, 2 € G(G, ¥, v)(S) and T; = fi(Ty), fori = 1,2
respectively. There is an étale neighborhood U of 8§’ such that G splits relatively to
T; u’s and hence there is g € Transt(Ty, T2)(U) (ref. [SGA3], Exp. XXI1V, 1.5).
By the definition of (G, ¥, v), we know that f;¥ and f£,¥ have the same im-
age in Isomext(W, G)(8'), and therefore g - fl'l’ and fz'l’ have the same image in
Isomext(\W, ®(G, T2))(S"). Since Gy splits relatively to T, y, we can find n €
Norm(T)(U) such thatn - g - fl‘l’ = fz‘l’, which proves that &(G, ¥, v) is a ho-
mogeneous space under the adjoint action of G.

Next, we show that w: €(G, ¥, v) — T is surjective as a morphism of sheaves.
As we have seen in the proof of Theorem 2.1, 7 : &(G, ¥) — T is surjective, so for
an S-scheme S’ and X € 7 (S'), there is an étale covering {S; — S’} such that for each
i,thereis f; € €(G, ¥)(S)) withm(f) = Xg;- Moreover, we can assume ng is split
relatively to Xy Then Autg , (G, T)(S;) is mapped surjectively to Autext(G)(S;)
(ref. [SGA3], Exp. XXV, 2.1), which allows us to find 0; € Autg , (G, T)(S}) such
that o0; o f; € €(G, W, v)(S;). Therefore, 7 : &(G, W, v) — T is surjective.

Finally, we want to prove that &(G, ¥, v) is a right W(¥)-torsor over 7. We
identify W(¥) with a subgroup of Autg  (T). So for w € W(W)(S’), we can regard
it as an element in Autg, (T)(S"). By the definition of Isomext(¥, G), W (W) acts
trivially on Isomext(W, G). Therefore, we can consider the map

my: (G, ¥, v) X W(W) - C(G, YV, v) ; (G, Y, v)

defined as m,( f, w) = (f, f ow), for f € &(G, P, v)(S), w € W(¥)(S'), where
S’ is an S-scheme.
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On the other hand, given f1, f, € &(G, W, v)(S') with f1(T) = f,(T), fl'l’ and
1Y have the same image in Isomext(¥, ®(G, f1(T))),s0 f; o f> defines an element
in W(W)(S8).

Then we can define the map

iy: (G, ¥, v) ; C(G, ¥, v) = &G, ¥, v) X W(T)

as iy( f1, f2) = (f1. f{ ' o fo) for (f1. f2) € €(G, ¥, v)(S) X &(G, ¥, v)(5), §

an S-scheme. As what we have verified in the proof of Theorem 2.1, we have that
iy, My are the inverse maps of each other. Again, by Proposition 1.1, we conclude
that &(G, ¥, v) is a W(W)-torsor over 7 and by [SGA3], Exp. X, 5.5, €(G, ¥, v) is
representable. Since 7 is affine and W(W) is finite, €(G, W, v) is represented by an
affine S-scheme. L]

For a reductive group G, we let der(G) be the derived group of G and ss(G) be the
semisimple group associated to . Let sc(G) be the simply connected group associ-
ated to der(G). The following corollary allows us to reduce the oriented embedding
problem of reductive groups to that of semisimple simply connected groups, which
is useful for arithmetic purposes.

Corollary 2.7. Let v € Isomext(V, G)(S). Then v induces an orientation Vg, €
Isomext(der(W), der(G))(S). Moreover, we have a natural isomorphism

& (G, ¥, v) = €(der(Q), der(¥), vger).

One can also replace der(V) and der(G) by ad(V) and ad(G), ss(¥) and ss(G),
sc(W) and sc(G) respectively.

Proof. The key point lies in the functoriality of the induced and coinduced operation
on the root data and the one-to-one correspondence between the maximal tori of G and
the maximal tori of der(G) (resp. ad(G), sc(G)), which gives us a natural isomorphism
from Isomext(V,G) to Isomext(der(¥),der(G)) (resp. Isomext(ad(¥),ad(G)),
Isomext(ss(W), ss(G)), Isomext(sc(¥), sc((3))). Hence, we only prove the case for
der(W) and der(G) in detail, all the other cases can be proved similarly.

Suppose that G has a maximal torus T. Let T" = T N der(G). Then T’ is
a maximal torus of der(G) and der(®(G,T)) = D(der(G), T'). Moreover, the
scheme of maximal tori of G is isomorphic to the scheme of maximal tori of der(G)
(ref. [SGA3], Exp. XXII, 6.2.7, 6.2.8). Therefore, there 1s a natural morphism 7ge,
from Isom(¥, ®(G, T)) to Isom(der(¥), ®(der(G), T')). Moreover, by Proposi-
tion 1.6, the natural morphism from W to der(¥) induces an isomorphism from
W (W) to W(der(\W)), soiqe induces a natural morphism from Isomext(\W, (G, T)) to
Isomext(der(W), ®(der(G), T')), and hence a natural morphism from Isomext(¥, G)
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to Isomext(der(\W), der(G)) by descent. Therefore, given v € Isomext(¥, G)(S), we
can have vg.; € Isomext{der(¥), der((3)) induced by v.

Since W(W) is isomorphic to W{der(¥)), by Theorem 2.6, both &(G, ', v) and
&(der(G), der(¥), vge) are W(W)-torsors over the scheme of maximal tori. Thus,
the natural morphism

@(Gs \I’, U) ;> @(del‘(G), der(lp)s Udf:l")
is an isomorphism. (]

2.3. Examples—embedding functors and embedding problems of Azumaya al-
gebras with invelution. In this section, we want to show the relations between
the embedding functors and embedding problems of Azumaya algebras with involu-
tion. For the background of Azumaya algebras, we refer to the book by Knus [KN],
Chap. I1I, §5, and the paper [KPS90].

Let K be a commutative ring and suppose that 2 is invertible in K. Let A be an
Azumaya algebra over K of degree n equipped with an involution . Letk = K* be
the elements in K fixed by t. If £ = K, then 7 is said to be of the first kind. If K is
an étale quadratic extension over k, then 7 is said to be of the second kind. LetE be a
commutative étale algebra over K of rank n equipped with an involution . Assume
o|K = 1|K.

Let U(E, o) and U(A, 1) be two algebraic k-groups defined as follows: for any
commutative k-algebra C,

UE,c)(C) ={x c E®; C | xo(x) = 1},
and
UA,)C) ={x e AR C| xt(x) = 1}.

Let T = U(E, 0)°, the identity component of U(E, ¢ ), and G = U(A, t)°. Since 2
is invertible in K, G is smooth at each fiber.

Then we associate a root datum W to T. The idea is to associate a “split form”
{Ag, To) (resp. (Eg, 0g)) toeach (A, 1) (resp. (E, 0)). From the split form (A, 79), we
get a group Gg with a split maximal torus Ty. Let ®(Gg, Tp) be the root datum of Gy
with respect to Ty. Then we use the isomorphism between Aut(Ey, 0g) and Aut(Wy)
to associate atwisted rootdatum W to (E, o). This allows us to transfer a k-embedding
from (E, o) to (A, t) to a k-point of the embedding functor €(G, V). Moreover, we
will show that the k-points of &(G, V) are in one-to-one correspondence with the
k-embeddings from (E, o) to (A, 7). To simplity things, we always assume that A
and E have constant rank over K.
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2.3.1. The root datum associated to T

Notation for the case where the involution t is of the second kind. If 7 is an
involution of the second kind, then we let Ag be M, ;. xM % where M,, . stands for
the n X n-matrix algebra defined over &, and let Ey be k" x k” which is viewed as an
étale algebra over k xk. Inthis case, we let 7g be the exchange involution of Ay defined
by o(M, N) = (N, M). Letig: Eg — Agbedefined asio(xy,..., Xy, V1,...,¥Vn) =
(diag(xy,...,x,),diag(y1, ..., y»)), where diag(xy, .. ., x5) stands for the diagonal
matrix with the (i, )-th entry x;. Clearly it is a kK x k-homomorphism and the image
of tp 1s invariant under tp. Let o be the exchange involution on Eg induced by 7p. Let
Ty = U(Eg,0p) and Gy = U(Ay, 7p) and fy: Ty — Gy be the embedding induced
by 1. Let Wy be the root datum associated to Ty defined as

o (C) = @(Go, fo(To))(C) © fo

for any k-algebra C.
We letit,: Gy — To (resp. iy : Gm,k — Go) denote the embedding defined

by the k x k-structure morphism of Ey (resp. Ap), and let it: R /k(Gm k) — T

(resp. ig: RK / k(Gm» k) — G) denote the embedding defined by the K-structure
morphism of E (resp. A).

An isomorphism between (Eg, 09,k x k) and (E, 0, K) is a k-isomorphism be-
tween Eg and E commuting with the involutions, and sends £ x k£ to K. Let X =
Isom((Eq, 09, k x k), (E, 0, K)) be the isomorphism functor between (Eg, 09, k X k)
and (E, 0, K). Note that X(5) is not empty for each geometric point § of Spec(k),
if and only if rankz E = rankgE. Throughout this article, we assume that X is
non-empty. Then X is a right Aut(Eyg, 09, k x k)-torsor.

Notation for the case where the involution 7 is of the firstkind. For r an involu-
tion of the first kind, we let Ag = M, 4, and Eg = £". Let 1g: Eg — Ay be defined
ASLCETs ¢ 5 0 1) = dlaglo ; » wosBu)

If 7 is an orthogonal involution and # is odd, we let # = 2m 4+ 1l and B =
(Dij)o<i,j<2m, Where

| ifi=j=0,
bij =141 ifi=j+m withi,j > 1,

0 otherwise.

For 7 an orthogonal involution andn even, weletn = 2mandB = (b; j)1<i, j<2m,
where

b 1 ifi =jxmwithi, j>1,
" o otherwise.
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For t a symplectic involution, we let 7 = 2m and B = (b; j)1<i, j<2m, Where

1 ifj=i4m,
bij=1-1 ifj=i—-—m,

0 otherwise.

Let gy be the involution on Ag defined by 1o(M) = BM' B!, and let oy be the
involution on Eg induced by 19. Let To = U(Eg, 0p)° and Gy = U(Ag, 79)°. Let
fo: To — Gg be the embedding induced by ig.

Let Wy be the root datum associated to Ty defined as

Vo (C) = ®(Go, fo(To))(C) e fo

for any k-algebra C. For 7 of the first kind, let X = Isom((Eg, 09), (E, 0)).
Note that X(5) is non-empty for each geometric point 5 of Spec(k) if and only if
rankgE? = [%rankKE]. Throughout this article, we assume that X is non-empty.

The definition of the twisted root datum W

Definition 2.8. 1. Suppose that 7 is of the first kind. A k-embedding t: (E, o) —
(A, 7) is an injective k-homomorphism commuting with the involutions.

2. A k-embedding 1: (E,0) — (A, 7) is an injective k-homomorphism commut-
ing with the involutions and sending X to XK.

3. Lett be a k-embedding from (E, o) to (A, ). Define the isomorphisms
between (Eg, Ag, tp) and (E, A, ) to be pairs (&, ), where « is an isomorphism
between (Eg,09) and (E, ¢), B is an isomorphism between (Ag, 7p) and (A, 7), and
a, B osatisfy toa = B oig. Let Isom((Eg, Ao, 0), (E, A, 1)) be the isomorphism
functor between (Eg, Ag, t9) and (E, A, ).

4. A morphism f : T — G is called an embedding if it is a closed immersion and
a group homomorphism. Let f : T — G be an embedding. Define the isomorphisms
between (Ggy, Ty, fp) and (G, T, f) to be pairs (h, g), where £ is an isomorphism
from Ty to T and g is an isomorphism from Gg to G, and A, g satisfy f oh = go fy.
Let Isom((Gg, Ty, fo), (G, T, f)) be the isomorphism functor between (Gg, Ty, fo)
and (G, T, f).

Remark 2.9. Suppose that 7 is of the second kind, and ¢ is an embedding from
(E,o0) to (A, t). For a k-algebra C and («, B) € Isom((Eg, Ag, o), (E, A, 1))(C),
o will automatically be in Isom((Eg, 09,k x k), (E, 0, K))(C), because § sends the
center of Ag to the centerof Aandtow = f o 1p.

Remark 2.10. Let f be a k-point of &(G, V). Since f induces an isomorphism
between ¥ and ®(G, f(T)), f induces an isomorphism between rad(W) and
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rad(®(G, f(T))). As iT(Rl(Kl/)k(Gm,K)) (resp. ig(Rl(Kl}k(Gm,K))) is the torus associ-
ated torad (W) (resp. rad(®(G, £(T)))), f maps ir(RG); Gy k) 106 (RY) (G k).

The following lemma enables us to attach a twisted root datum to the torus T.

Lemma 2.11. Ler S = Spec(k). Then we have the following:

(1) The canonical homomorphism from Aut(Eg, Ay, tg) o Ms-gr(GO’ fo(To)) is
an isomorphism except for Gg of type D4 or A of degree 2 with t orthogonal.

(2) Ifthe involution ty is of the first kind, then there is a canonical monomorphism
JEq from Aut(Ey, 09) to Aut(Wy). In particular, if Wy is not of type Dy, then
the homomorphism jg, is an isomorphism.

(3) Ifthe involution vy is of the second kind, then there is a canonical isomorphism
from Aut(Eg, 00, k X k) 10 Aut(P).

Proof. To verify that the canonical homomorphism j, from Aut(Eg, Ag, o) to
Autg  (Go, fo(To)) is an isomorphism, it suffices to verify that the natural mor-
phism from Aut(Ao, 7o) to Aulg , (Go) is an isomorphism, since the automorphism
preserves to(Eg) if and only if it preserves fy(Ty). To see that the natural morphism
from Aut(Ao, 7o) to Autg,(Go) is an isomorphism, we check it case by case. For
Gy of type A,, let ¢ be the automorphism of (Ag, 7o) which maps (M, N) € Ay to
(N, M"), where N’ denotes the transpose of N. Then Aut(Ag, 7o) is PGL, 41 XZ /27,
where 7 /27 is generated by ¢. Note that ¢ induces the outer automorphism of
Go = GLy+1, and we have Autg , (Go) = Aulg , (GLn41) = PGLpyy % Z/27Z.
For Gy of type B,;,, we have

Aut(Ag, 79) = PGO(Ay. 1) = Gy

(cf. [KMRT98], Thm. 12.15 and Prop. 12.4). Since Gy is adjoint of type B, in this
case, we have Gp = Autg . (Go) and hence

Aut(Ag, 70) = Go = Autg , (Go).

Similar calculation can be done for Gy of type C,, or Gy of type D, with n > 2 and
n # 4, and we refer to [KMRT98], Theorem 26.14 and Theorem 26.15.

To prove (2), we first note that there is a natural isomorphism jg, from Aut(Eo. o)
to Autg , (To). To see that the image of jg,, is contained in Aut(¥), we verily it case
by case. Forexample, for oy orthogonal and E of degree 2m, the automorphism group
Aut(Ey, 0p) is isomorphic to the constant group scheme ((Z /27)™ x S;,)s. We can
check that the corresponding action of ((Z/2Z)™ % S,,)s on Ty actually preserves
the root datum Wy. Moreover, by [Bou], Plan. IV, we know that ((Z /2Z)" % Sy,)s is
exactly the automorphism group of Wy for m # 4 and is a subgroup of Aut(W¥,) for
m = 4. From this, we conclude that jg, maps Aut(Ey, 0p) isomorphically to Aut(V)
for Wy not of type D4. One can check the other cases in the same way, which allows
us to conclude the statement (2). One can prove (3) in the same way. L
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Since Ty is a maximal torus of Gy, we have the following exact sequence:

by Proposition 1.3 and [SGA3], Exp. XXIV, Proposition 2.6. Therefore, we can
summarize the above lemma as the following diagram:

| ] lﬁ

O —_— a.d(TO) E—— Msfgr(GDJ fo (TD)) —_— M(‘I’O) — O

where «, f are isomorphisms if 7y is of the first kind and Gy is not of type Dy4. For
7o of the second kind, we just replace Aut(Eq, o) by Aut(Eq, 0,k x k) and o, § are
isomorphisms. Now if the involution g is of the first kind, we define the twisted root
datum Y related to T as
Aut(Ep,op)
V=X VAN Wy,
If the involution 1y is of the second kind, we define the twisted root datum W related

to T as
Aut(ED,O'D,ka)
V=X N ‘1’0.

Remark 2.12. If we regard Wy as a set of combinatorial data satisfying the axioms
of root data, the canonical morphism 8 between Aut(Eg, 69) and Aut(\Wy) is defined
over any arbitrary base. However, for the involution 7y of the first kind, the group Gy
is not reductive over arbitrary base. Hence, we ask 2 to be invertible over the base so
that Wq can be regarded as a root datum of Gg.

Remark 2.13. We have a canonical morphism from X to Isom(W,, W) which is an
isomorphism except if Wy is of type D4 by Lemma 2.11. The natural morphism from
Isom((Ag, 79), (A, 7)) to Isom(Gy, G) over k is a canonical monomorphism which
is an isomorphism except if G is of type D4, since Aut(Ag, 7o) = Aut(Gy) except
for Gy of type D4 ([KMRT98], Chap. IV, §23 and §26).

Remark 2.14. For A of degree 2 with t orthogonal, the corresponding split group Gg
is actually the one dimensional split torus. Therefore Gg acts trivially on itself but non-
trivially on Ag. However, the conjugation by ( g1 ) induces a nontrivial isomorphism
of Gy. Hence the natural morphism from Aut(Agy, Eg, tp) to M&gr(Go, fo(Ty)) is
surjective but not injective. However, in this case, we have

Aut(Ey, 09) =~ (Z/QZ)K ~ Aut(Wy),

so the natural map from Isom(Eg, E) to Isom(Wy, W) is still an isomorphism.
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2.3.2. Embedding functors and embedding problems for algebras with involu-
tion

Theorem 2.15. Keep the notation defined above. Then:

(1) The set of k-embeddings from (B, o) into (A, 1) is in one-to-one correspondence
with the set of k-points of €(G, V), except for G of type D4 or A of degree 2
with T orthogonal.

(2) If T is of the second kind, then the set of K-algebra embeddings from (E, o) into
(A, 1) is in one-to-one correspondence with the set of k-points f of €(G, V)
which satisfy f o it = ig.

Proof. The crucial ingredient of the proofis Lemma 2.11. We prove (1) first. Let: be
a k-embedding from (E, o) to (A, ). Clearly, : induces anembedding f : T — G. To
see that f is a k-point of &(G, V), we need to verity that f induces an isomorphism
between W and (G, f(T)).

Let ) = Isom((Ey, Ao, to), (E, A, t)). By Lemma 2.11, we have

V) = Isom((Go. fo(To)). (G, f(T))).

Aut(Ep,Ap,tp)
This allows us to define an isomorphism from %} A (Go, fo(Tp))to (G, f(T)),
Aut(Ep,A0.t0)
which induces an isomorphism from %)) A ° ®(Gy, fo(To)) to &(G, fF(1)).

Given a k-algebra C and (w, ) € Y(C), we have a natural map from %)} to
X which maps («, 8) to «. By the definition of Wy, fy induces an isomorphism
between ®(Gy, fo(To)) and 4. Therefore we have the following natural map

Aut(Go, fo(To)) Aul(Go, fo(To)) Aul(¥o)
G0 JoD 4 (Go, £o(To)) = POV g 20 g, — w0,

i Au{Go, fo(To)) L ]
Since %)} A ®(Gy, fo(Tp)) is isomorphic to (G, f(T)), we conclude that
f induces a natural map from ®(G, f(T)) to . Since this natural map becomes an
isomorphism at each geometric fiber, itis anisomorphismand hence f € €(G, ¥)(k),
and we denote it as [z (¢).

Given f € &(G, ¥)(k), now we want to define a k-embedding ¢ associated to f .
Note that f induces an isomorphism from ®(G, f(T)) to W by definition.

Let 3 = Isom((Gg, Ty, fo), (G, T, f)). Note that for a k-algebra C and (h, g) €
3(C), g induces an isomorphism between ®(Gy, fo(Ty)) and (G, f(T)). Hence
h is an element of Isom(Wg, ¥)(C) and we have a natural morphism from 3 to
Isom(Wo, ¥).

By Lemma 2.11, there is a canonical isomorphism from Isom((Eq, 69), (E, 0))
(resp. Isom((Eg, 09,k x k), (E, 0, K)), if 7 is of the second kind) to Isom(Wy, W),
so we have a canonical morphism from 3 to Isom((Eq, 09), (E,0)), and hence a
canonical map from 3 A (Eg, 0p) to (E, ). Similarly, by Remark 2.13, we have a
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canonical map from 3 to Isom({(Ay, 7p), (A, 7)), and hence a canonical map from
3 A (Ag. 7o) to (A, 7). Therefore, we get a k-embedding ¢: (E, o) — (A, 7) from
the map 3 A (Eg, 0g) to 3 A (Ag, 7p) induced by ¢y, and we denote ¢ as Jg( f).

Clearly, IsJg( /) = f since we construct: from 3 and 3 /\(Gy, To, fo) is canon-
ically isomorphic to (G, T, f). On the other hand, we have

Jgola(t) =1
because of the canonical isomorphism from

Isom((Eg, Ag. to), (E. A, 1))

to
ISﬂ((Go, TO, fO)a (G! Ta f))s

where f is induced by :. Hence, the first assertion follows.

We now prove (2). Clearly, if :: (E,0) — (A. 1) is a K-embedding, then
the corresponding k-embedding f will be a k-point of &(G, V) and f satisfies
f o] iT = ig.

Now suppose that f € ©(G, ¥)(k) and f cip = ig. Then we need to verify
that the map Jg( f) from 3 A (Ep,00) to 3 A (Ag, 7p) is a K-morphism. From
the construction of Jg( f) it is clear that it suffices to prove that the two maps

from Isom((Go, To. fo). (G, T, £ ))(R) to Isom(Gpm &, RY ), (Gm.x))(R), which map

(h,g)twirlohoiprandiz! o goig g respectively, coincide. However, it is a direct
consequence from the fact that f o iy = ig, since

i{l ohoigy = igl o fohoigr
:ial ogofooiho
= igl °og OiO,G-
Therefore, Jg( f) is a K-algebra morphism. O

Remark 2.16. Let t be of the second kind. Suppose that (G, W)(k) is nonempty
and fix f € &(G,¥)(k). I f oir # i, then f o o will satisfy (f c o) cit = ig
since ¢ acts on Rl(Kl} «(Gm, k) as -1. Therefore, the existence of a k-embedding will
imply the existence of a K-embedding. Moreover, we will see that the condition
f eir = ig gives a particular orientation u € Isomext(WV, G)(k).

Now we want to consider the case where G 1s of type D4. Note thatsince thereisa
natural monomorphism from Aut(Ag, Eg, tp) to Mk—gr(Go’ fo(Tp)), we can still get
a k-point of the embedding functor &(G, V) from ak-embedding:: (E,c) — (A, 7).
The problem is that given a k-point f of the embedding functor €(G, ¥), we can not
get a k-embedding from f as we have done in the proof of Theorem 2.15, because the
canonical map from Aut(Ag. Eo. t0) to Aut; , (Go, fo(To)) is not an isomorphism.
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To fix the problem, we first observe that ad(Gy) (resp. W(Wy)) is in the image of
the canonical morphism from Aut(Ag, 7o) (resp. Aut(Eo, 09)) to Auty . (Go) (resp.
Aut(Wy)). So instead of associating a split form (Ag, 7p) to (A, ), we consider
all quasi-split forms of (A, 7). Note that Aut(Ag, 7o)/ad(Gp) is the constant group
scheme (Z/27); and we can find a section from (Z /27Z); to Aut(Ay, Eg, ty). For
example we can send 1 in Z /27 to the matrix

(000010 0 0)
01000000
00100000
00010000
1 0000O0O0O
00000100
000000T10
\0 0 0 0 0 00 1)

Let us fix the section from (Z/27Z); to Aut(Ayp, Eg, o) as above. Let
Isomext(Ap, To; A, 7) := Isom(Ayp, 79; A, 7)/ad(Gy).

Then for each (A, t) we can associate a quasi-split form

(Z/2Z)y
(Ag.14) = Isomext(Ag, t0: A7) A (Ao, T0).

Moreover, since the section has image in Aut(Ag, Eg, (), we get an étale algebra
with involution (E,, 04) and a embedding ¢, : (E;,0,) — (A4, 74) from the datum
(Ao.Eo.10). Let G, = U(A,,7,5)° and T; = U(E,.04) and f;: T, — Gy be the
morphism induced by ¢,.

From our construction, the group G in an inner form of G4, so we can always fix
an orientation v in Isomext(G,, G)(k). Then we have the following result:

Proposition 2.17. let u be a k-point of Isomext(V, G). Then each k-point of the
oriented embedding functor &(G, ¥, u) corresponds to a k-embedding ¢ from (E, o)
to (A, 1).

Proof. The way to prove it is exactly the same as in Theorem 2.15. The only
different thing is that we stay in the inner case. First we fix an orientation v in
Isomext(G,, G)(k). Let u, be the orientation in Isomext(¥,, G, )(k) which comes
from the map f;. Then there is an orientation v’ = u~!ovou, in Isomext(¥,, ¥)(k)
by Proposition 2.4.

For f € €&(G, ¥, u)(k), we consider the No_nnad(Gq)(ad(fq (T,)))-torsor

Isomint, (G,, f;(T,): G, f(T)).
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Let 3" = Isomint, (G, f,(T,): G, f(T)). Clearly, we have a canonical morphism
from 3’ to Isomint, (G4, G) which is an ad(Gy)-torsor. We also have a canonical
morphism from 3’ to Isomint,, (¥,, W) which is a W (¥, )-torsor. Note that ad(G,)
(resp. W(¥,)) are in the image of the canonical morphism from Aut(Ay, 7,;) (resp.
Aul(E,, 0,)) to Aut,  (Gy) (resp. Aut(W,)) as they do in the split case. So we get a

W) ad(Ggq)
k-embedding ¢: (E, 0) — (A, 7) from the map 3’ A (Eg.04)t0 3 A (Ag. 74)

induced by ¢,. (]

3. Arithmetic properties of embedding functors

In this section, we focus on the arithmetic properties of the embedding functor. The
main arithmetic technique which we use here has been developed by Borovoi [Bo99].

In the first part, we recall the main result in [Bo99]. In the second part, we give
a criterion for an oriented embedding functor to satisfy the local-global principle.
Besides, over a local field L., we use the Tits index to give a necessary and sufficient
condition for an oriented embedding functor to have an L-point.

For a field & with characteristic different from 2, embedding an étale algebra
over k into a central simple algebra over k£ commuting with involutions is equiva-
lent to finding a k-point of the corresponding embedding functor. In Section 2.4,
we use the arithmetic properties of oriented embedding functors to give an alterna-
tive proof of Theorem A, Theorem 6.7 and Theorem 7.3 in the work of Prasad and
Rapinchuk [PR10].

Throughout this section, we let k be a global field and k*® be a separable closure.
Let I' be the absolute Galois group of &, and €24 be the set of all places of k.

We start this section with some general facts of the local-global principle of ho-
mogeneous spaces established in Borovoi’s papers.

3.1. The local-global principle for homogeneous spaces. First, we let k be a
number field. For a k-linear algebraic group G, we let G° to be the connected
component containing the neutral element of G. Let G" be the unipotent radi-
cal of G°; G™ = G°/G"; G* be the derived group of G™; G'=G™ /G, Let
G*' = ker[G° — G"]. If G/G*" is abelian, we let G™" = G/G*" which is a
multiplicative group.

Let X be a left homogeneous space under a connected linear algebraic group G
overk. Let x € X(k®) and H = Stabg, (x) be the stabilizer of x.

Throughout this section, we will assume that G* is simply connected, and H/H*"
is abelian.

Since T" has a natural action on G(k*), we can define & to be the semidirect
product G(k®) x I". We have a &-action on X(k*®) defined as (g, 0)x = g-o(x). Let
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$ = Stabg (x). Then we have the following exact sequence:

(*) 1 —=H(kY) —> % —=T 1,

where i (1) = (h, 1), and p is the projection to T.

Since H™" is commutative, we can define a I'-action on H™" by conjugation.
To be precise, for o € T, choose (g5,0) € p~'(0). Then since g - o(x) = x, we
have int(g, )" H™!" = H™! Note that the above definition does not depend on the
lifting of o in & because H™! is commutative. Hence we get a T'-action on H™!.
Since the point x is defined over some finite extension L of k, H™" is defined over L.
Moreover, for each 0 € Gal(k®/L), we can choose g = 1. Hence, there is a k-form
H™ of H™! defined by this I'-action (cf. [BS64], 2.12, [Se], Chap. V, §4, n°. 20,
and [FSS98], 1.15). One can verify that the isomorphism class of H” is independent
of the choice of the geometric point x. Therefore, given G and X, the isomorphism
class of H" is well-defined ([Bo99], 1.2).

Let j: H — Gys be the natural inclusion. Then j induces a group morphism
from H™! to G'7, which descends to a group morphism j : H” — G over k.

ks»
Consider the complex

0 Hm J GtDr 0’

where H™ is in degree —1 and G*' is in degree 0. Let H!(k, H” — G®') be the first
Galois hypercohomology group of the above complex, and I (k, H” — G'") be the
kernel of the localization map H!(k, H" — G*") — [Tyea, H!(k,, H" — G").

Foro e I',let(g,.0) € . Letugy, = 25:(8578:) 71, tiy. be the image of 1, ,
in H™!*(k%), and g, be the image of g, in G (k®). Then (i, §) is a hypercocycle,
and we let n(X) = Cl(#, ) € H'(k, H" — G""). Note that 5(X) is well defined
(see [B099], 1.4).

We will make use of the following two theorems later.

Theorem 3.1. Let ky, be a nonarchimedean local field of characteristic 0. Let G, X
be as above. If n(X) = 0, then X has a ky-point.

Proof. [B0o99], Thm. 2.1. [

Theorem 3.2. Let k be a number field, and let G, X be as above. Assume that X (k)
is nonempty for every place v of k and n(X) = 0. Then X has a rational point.

Proof. [B0o99], Thm. 2.2. ]

Remark 3.3. Note that if X has a k,-point at all places v € Qy, then 7(X) lies in
! (k, H* — G©").
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Remark 3.4. In fact, up to a sign, 7(X) is the Braver—Manin obstruction of X
(ref. [Bo99], Thm. 4.5).

Now, we let k be a global function field, for example, k& = F,(z), where [, is
a finite field with ¢ elements. One may ask if Theorem 3.1 holds over k. Indeed,
we have similar results when G is a connected reductive group over & and X is a
G-homogeneous space for the étale topology. Since X is a G-homogeneous space for
the étale topology, the set X (k*) is nonempty. Let x € X(k*) and H = Stabg, s (x).
Suppose that H is connected reductive. Then we can define an k-torus H”, which is
an k-form of H™! as above. Let $ and (X) be defined as above. Then we have the
following:

Proposition 3.5. Let k be a global function field. Let G be a connected reductive
group over k and X be a G-homogeneous space forthe étale topology. Let x € X(k*).
Define H as above. Suppose that G** is simply connected and His atorus. Ifn(X) = 0,
then X has a k-point. The same result also holds over k, for v € Q.

Proof. The key point of the proof is that H! (k, G*%) = 0, for G*° semisimple simply
connected ([H75], Satz A and [ThO8], Thm. A).
Foro e T, let (gs,0) € . Letugs, = 2oe(25%g2:)~ L. As above, we have

n(X) = Cl(@, 8) € H' (k, H" > G*).

Since H is a torus, we have H™" = H and H” is a k-form of H. Suppose that
m(X) = 0. Then we have a, € H”?(k®) and s € G(k*®) such that

(e, 80) = (—0(ag), jlas)ds),

1.8 Mgy = aor(as’ar) ™ and g5 = s71- j(as) - s (mod G*). After replacing
2o by aslg,, we can assume u,, = 0. We also replace x by s - x, and we get
2o € G*¥(k*) and 15, = 0. Therefore, (g5) is a cocycle of T" with values in G¥.
Since H(k, G*) = 0 when G* is semisimple simply connected, there is 1 € G*(k®)
such that s, = =1 9¢. Then £ - x is a k-point of X. 0

Remark 3.6. For k& with positive characteristic, we ask G to be reductive because
we want to ensure that G™¢, G* and G are properly defined. Otherwise, it may
happen that the k-unipotent radical of G is trivial but G is not reductive (see [CGP],
Example 1.1.3).

Remark 3.7. The above proposition is also true over a totally imaginary number field
k, because in this case, H!(k, G*) = 0 by Kneser’s Theorem ([K], Chap. IV, Thm. 1
and Chap. V, Thm. 1).
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3.2. Local-global principle for oriented embedding functors. Let k£ be a global
field. Unless otherwise specified, G is areductive k-group, W is a twisted root datum,
and T is the k-torus determined by W. In the following, we always assume that G
and V¥ have the same type.

Let sc(T) be the torus determined by the simply connected root datum sc(\V).
We will show that the only obstruction to the local-global principal for the oriented
functor €(G, ¥, u) lies in the Shafarevich group 1112 (k, sc(T)). Moreover, the local-
global principle holds for the oriented embedding functor &(G, ¥, u) if Dyn(W) is
of type C or T is anisotropic at some place v. o

Note that since G is reductive, we have G¥ = der((G). A direct application of
Theorem 3.2 is the following:

Proposition 3.8. Lef 1 be an orientation of V with respect to G. Then the only
obstruction for €(G, WV, u) to satisfy the local-global principle lies in the group
112(k, sc(T)). In particular, if G has no outer automorphisms and 1% (k, sc(T))

vanishes, then ©&(G, U) satisfies the local-global principle.
Before proving the above proposition, we prove the following lemma:

Lemma 3.9. Suppose further that G is a semisimple simply connected group over
k, and that V¥ is a twisted simply connected root datum. Let u € Isomext(\W, G)(k).
As we have shown in Theorem 2.6, the oriented embedding functor ©(G, ¥, u) is a
left homogeneous space under the adjoint G-action. Then under this G-action, the
corresponding H™ (which is defined in Section 3.1) is isomorphic to T.

Proof. Given f € (G, W, u)(k%), the stabilizer of f in Gys is f(Tys). Since f(Tys)
is atorus, we have f(Tgs)™! = f(Tys). Foro e I',oactson f as® f = oo foo™ L.
Let & = G(k®%) x T, and $ = Stabg( f). For g € G(k®), we let int(g) denote the
conjugation action of g on G. Then for (g,,0) € 9, we have int(ggs)o ° f = f,
which means g, - ° f(1) - g;' = f(¢) forall 1 € T(k®). Therefore, we have

g 0(f(1)- 85" = flo)).

which means f is a k-isomorphism between T and f(Tys)™. Therefore, the H”
defined in Section 2.1 is isomorphic to T. U

Now, we are ready to prove Proposition 3.8.

Proof of Proposition 3.8. By Corollary 2.7, it suffices to prove this proposition for
E(sc(G), sc(W), us). Since E(sc(G), sc(W), 1) is a homogeneous space under
sc(G), by Lemma 3.9 we know that the H” corresponding to this sc(G)-action is
isomorphic to sc(T).

Since sc{G)™ is trivial, by Theorem 3.2 and Proposition 3.5, the only obstruc-
tion for &(sc(G), sc(V), uy) to satisty the local-global principle lies in the group
112 (k, sc(T)). The rest of the proposition then follows. O
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Let k, be a nonarchimedean local field. Then by combining previous results, we
get the following corollary:

Corollary 3.10. If the group H?(k,, sc(T)) is trivial, then the oriented embedding
functor ©(G, W, u) has a ky-point.

Proof. By Corollary 2.7, it is enough to prove that &(sc(G), sc(V), 1 )(k,) is non-
empty. As a result of Lemma 3.9, the group H” for the sc(G)-homogenecous space
€ (sc(G), sc(WV), 1) is isomorphic to sc(T). Since sc(G)™" is trivial, we have

H!(k,, H" — sc(G)*) = H2(k,. sc(T)).

By Theorem 3.1 and Proposition 3.5, the set &(sc(G), sc( V), uy) (ky) is nonempty
if H2(k,, sc(T)) is trivial. O

For a twisted root datum W, the Galois group I' has a natural action on Wys.
Therefore, we have a group homomorphism from T" to Aut(¥)(4®). Recall that W is
said to be generic if the image of I" in Aut(W)(k*®) contains the Weyl group W (W) (£*).

Theorem 3.11. Let G be a reductive group over k, ¥ be a twisted root datum over
k, and T be the torus determined by V. Let u € lsomext(W, G)(k). Suppose that ¥
satisfies one of the following conditions:

(1) All connected components of Dyn(W)(k*) are of type C.
(2) T is anisotropic at one place v € 2.

Then the local-global principle holds for the existence of a k-point of the oriented
embedding functor €(G, W, u). In particular, when ¥ is generic, the local-global
principle holds.

Proof. Tt W satisfies one of the above conditions, then sc(W) also satisfies one of
them. Therefore, we can assume that ¥ and G are semisimple simply connected.

By Proposition 3.8, the local-global principle holds for the existence of k-points
of the oriented embedding functor €(G, ¥, i) if II*(k, T) vanishes. Therefore, it is
enough to prove 112 (k, T) = 0 for ¥ satisfying either condition.

Suppose that W satisfies condition (1). Let Wq be the split simple, simply con-
nected root datum of type C,, (ref. [Bou], Plan. IIT). Let E, be the étale algebra k" x k"
and oy be the involution which exchanges the two copies of k. When W is simple
simply connected of type C,,, W corresponds to some twisted form (E, o) of (Eg, 09)
by Lemma 2.11, and the torus T determined by W is U(E,0) = Rgo /¢ (R](;/)EU (Gm)).

Consider the exact sequence:

| — R](EI/LU (Gm) — Reype (Gp) Gm L.
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By Hilbert Theorem 90, we have

0 — H2(E?, R (Gm)) — H2(E”, Rg/ge (Gm))-
By Shapiro’s Lemma, I1*(E?, Rg /g (Gy,)) = II*(E, Gp,). By the Brauer—Hasse—
Noether Theorem, 11I*(E, G,,) = 0. Therefore, we have

2k, T) = I12(E°, R,gl/;a(@m)) — 0.

For ¥ not simple, since we can decompose Wy into a product of isotypic root
data ( [SGA3], Exp. XXI, 6.4.1 and 7.1.6), we can also decompose V into a product
of isotypic twisted root data \V; by descent. By the same reasoning as in [SGA3],
Exp. XX1V, 5.8, or in [CGP], Theorem A.5.14, we know that there exists some
€tale algebra F; over & such that W; g, is a product of copies of the twisted simple
root datum W¥; o over F;, and the automorphism group Aut(F;/k) acts on W; g, by
permuting W; o’s. So we have W; = Rg, ;1 (W; o) and the torus T will take the
form HI- Rg, %(Ti o), where T; g is the torus determined by the twisted root datum
W; 0. Then we know that W; o is a twisted root datum defined by an étale algebra
with involution over F; (Section 2.3.1). As in the above discussion, we will have
T;. 0 = U(E;, 0;) where E; is an étale algebra over F;. By Shapiro’s Lemma,

U (k. R, /4 (Ti.0)) = WP(Fp, Tio) = WP RS o, (Gm)) = 0.

By Proposition 3.8, the theorem holds when W satisfies the first condition.

Now, suppose that T is anisotropic at some place v € ;. Then by Kneser’s
Theorem (ref. [San81], Lemma 1.9), we have I112(k, T) = 0.

To complete the proof, we will show that if W is generic, then T is anisotropic
at some place v. Suppose that W is generic. Let L be a finite Galois extension of k
which splits T. Then there exists an element ¢ € Gal(L/k) such that o acts on Wy,
as the Coxeter element > € W(W)(L.). Let M be the character group of Ty . Then the
set M® = 0 by Theorem 1 in [Bou], Chap. V, §6, and hence M? = (. By Cebotarev
Density Theorem, there exists a place v such that o generates the Frobenius map at
v, so T is anisotropic at v. (]

3.3. Oriented embedding functors over local fields. Let G be a reductive group
over a local field L., and W be a twisted root datum over L.. Suppose that G and W
have the same type and Isomext(W, G)(1.) is not empty. Let u € Isomext(\WV, G)(L).
In the following, we are going to show that the existence of an L-point of the oriented
embedding functor is actually determined by the Tits indices of W and G. Note that
the existence of an orientation u is important here, because it gives a map between the
Dynkin schemes Dyn(G) and Dyn(\), which allows us to compare the Tits indices of
G and ¥. An orientation also allows us to replace the reductive group G by the adjoint
group ad(G) or simply connected group sc(G) as we have shown in Corollary 2.7.
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3.3.1. Tits indices. We recall briefly the definition of the Tits index. For a detailed
introduction on Tits indices, we refer to Tits’s paper [T66]. For the Tits indices of
reductive groups over connected semilocal rings, one canrefer to [SGA3], Exp. XX VI,
§5, §6, and §7. One can also look at Petrov and Stavrova’s paper [PS], §5. For the
Tits indices of a twisted root datum, we refer to Gille’s paper [Gi], §7.

Let S be the spectrum of a semilocal ring. Let G be an S-reductive group. For
each G, there exists a minimal parabolic subgroup P, of G. Let £, be the type of
Ppin. Note that given G, the type /i, is well defined (ref. [SGA3], Exp. XX VI, 5.7).
Moreover, if S is connected, then we call the type £, the Tits index of G, and denote
it by A°(G).

For a reduced root datum ¥ = (M, M"Y, R, RY), a parabolic subset P is a closed
subset of R which contains a system of simple roots. For a reduced twisted root
datum ¥ = (M, MY, R, R") over S, a parabolic subsheaf (fpgc) & is a subsheaf of
R which is locally isomorphic to a parabolic subset. Let Par(\¥) be the functor such
that for each S-scheme S’, Par(W)(S’) is the set of all the parabolic subsheaves (fpqc)
of W over §’. Similarly, we can define a type map ty from Par(¥) to Dyn(W).

Let fyiy be the type of a minimal parabolic subsheaf of W ([Gi], Prop. 7.1). If S is
connected, then we call 7,,;, the Tits index of W, and denote it by A°(W). Note that
A®(G) and A® (V) only depend on the roots, so they are invariant under the operations
sc, ad,....

3.3.2. A criterion for the existence of points of the oriented embedding functor
over a local field L.. Let L. be a local field of arbitrary characteristic. We have the
following criterion for the existence of an L-point of the oriented embedding functor:

Theorem 3.12. Let G be a reductive group over a local field L, and V be a twisted
root datum over L. Suppose that G and W have the same type and Isomext(V, G)(1.)
is not empty. Let u € Isomext(\W, G)(L). Then &(G,V,u)(L) # 0 if and only if
u(A*(1)) 2 A*(G).

Proof. First, we suppose that &(G, W, u)(L) # @andlet f € &(G, Y, u)(L). Since
U ~ &(G, (1)), from Prop. 7.3.2 in [Gi], u(A°(¥)) = A°(G).

Now, suppose u(A°(¥)) 2 A°(G), and we want to show that &(G, W, u)(L) is
nonempty. Again, by Corollary 2.7, we only need to consider the problem for sc(G)
and sc(W). Therefore, we can assume G is simply connected, and W is reduced simply
connected.

Let T be the torus determined by W and I = A°(W). We start with the case where
T is anisotropic, i.e. I = Dyn(W)(L).

Case 1. L is non-archimedean. Since T is anisotropic, by Tate—Nakayama Theorem,
we have H*(L,T) = 0 (cf. [K], 3.2, Thm. 5). Since G and W are simply connected,
by Corollary 3.10, the oriented embedding functor &(G, W, 1) has an L-point.
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Case 2. L = R. In this case, we consider the oriented embedding functor
€(ad(G),ad(W), uag). Let o be the nontrivial element of Gal(C/R). Let ad(T)
be the torus associated to the root datum ad(¥). Since T is anisotropic, the torus
ad(T) is also anisotropic and ad(T) ~ (ng/)c (Gm))' .

Suppose that ad((G) is anisotropic and pick a maximal torus S of ad(G). Since
ad(\W) and ad(G) have the same type, there is a C-point f of &(ad(G), ad(V),1,q)
which maps ad(T) to S. Since ¢ acts on the character group of the anisotropic torus
by —1, 0 commutes with f. Therefore, f is an R-point of the oriented embedding
functor €(ad(G), ad(¥), 1,q)-

Suppose that ad(G) is not anisotropic. Then we can find an anisotropic form G
of ad(G) by [Ge91], Corollary 7. Since G has the same type with ad(¥), by the
above argument, we have an R-point f of (G, ad(¥)). Then f defines an R-point
7i of Isomext(ad(¥), G). The orientation . together with # gives an orientation
uaaoti~! € Isomext(G, ad(G))(R). Hence ad(G) is an inner form of G. However, the
natural inclusion from H'(R, f(ad(T))) to H!(R, G) is surjective ( [Ge91], Thm. 3),
so ad(G3) has an anisotropic torus S. Let 2 belong to €(ad(G), ad(W), u,4)(C) and
suppose that 2 maps ad(7') to S. Again, since ¢ acts on the character group of
the anisotropic torus by -1, o commutes with 4 and /4 is an R-point of the oriented
embedding functor &(ad(G), ad(W),u,4). By Corollary 2.7, the oriented embedding
functor €(G, ¥, 1) has an R-point.

Therefore, the proposition is true when T is anisotropic.

Now, suppose that T is arbitrary. Since u#(I) 2 A°(G), we can find a parabolic
subgroup P; of G such that the type of P is u(I) by Proposition 1.7. Let L; be a
Levi subgroup of P; and T" be a maximal torus of L;. Let ¥ = ®(G,T'), and
W = ®(L;. T'). Let £ be the subsheaf of roots of ¥’ which is determined by P;.
Note that u# corresponds to an element in Isomext(\W, ¥')(1.), which we still denote
as u.

Let W = (M, MY, R, RY). Let P be a minimal parabolic subsheaf of R. Then
by definition, type # = 1. Let R, be the subsheaf of & defined by the property: for
any l-scheme X,

x € Ri(X), if and only if both x and —x are in P(X).

Let Wy be the root system given by (M, M"Y, Ry, R;"). Define
Q = Isomint, (¥, P; ¥, P) = [som(V, P; ¥, 7)) m Isomint, (W, ¥').

Note that Q is a right W(W;)-torsor over Spec(L) (for the étale topology), so Q is
representable. By the definition of Q, each # € Q(X) will send the sheaf R; to the

sheaf of roots of Ly, because L; is the unique Levi subgroup of P; which contains T".
Therefore, we have a natural map

i1 Q — Isom(¥;, ¥)).
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Let L3 be a separable closure of L. Let x € Q(L®). By the definition of Q, the image
of x in Isomext(W, W)(L®) is u. Moreover, since Q is a right W(W)-torsor and
W (W) acts trivially on Isomext( ¥, ¥/), i1(x) defines an L-point of Isomext(W¥;, ¥))
and hence an L.-point of Isomext(W¥, E;). We denote it by ;. Note that the definition
of u; is independent of the choice of T".

Now we consider the functor &(L;, W;, u1). We claim that if &(L;, ¥y, 11) has an
L-point, then (G, ¥, u) has an L-point.

Suppose that &(L;, Wy, ;) has an L-point. Let f € &(L;, ¥y, u;)(L). Then we
replace the torus T” above by f(T). By the definition of Q and u;, we have a natural
morphism

J 1 Q — Isomint, (W, V).

Since both of them are W (\;)-torsors, j is an isomorphism. As &(L;, ¥, u;) has
an L-point, Isomintul(llll, Wi)(L) is not empty, so Q has an L-point as well, which
means Isomint, (¥, W')(L) # ¢. Hence, €(G. W, 1) has an L-point.

Now, by Corollary 2.7 it is enough to prove that &(der(L;), der(\¥;), 11 ger) has
an L-point. Note that der(¥) is reduced simply connected as W is (ref. [SGA3],
Exp. XXI, 6.5.11). Since the torus der(T) determined by der{W¥) is anisotropic, it
follows that &(der(L;), der(\W), 11 4er) has an L-point as we have seen above. This
finishes the proof. (]

Example 3.13. The above theorem does not hold over arbitrary fields. Here is an
example. Let K = Q(+/—1) and o be the conjugation on K, and k = @. Let T be
the torus T = Rg; w{Gm). Since T is of dimension 1, there is only one semisimple
simply connected root datum with respect to T. Let \ be this root datum. Let vy,
vy be two places of (@ of the form 4n + 1. Then W splits at vy and v,. Let D be a
quaternion algebra over © corresponding to 1/2in Q/Z ~ H*(Q,,.Gy,) fori = L,
2, and corresponding to O in the other places. Note that such a quaternion exists by
the Brauer—Hasse—Noether’s Theorem. Let G be SL (D). Since G has no outer form,
there 1s an orientation u# between W and G. Since both W and G are anisotropic over
Q, we have u(A°(¥)) 2 A°(G). However, at place vy and v,, the root datum W
splits but G is anisotropic, so &(G, W, u)(Q,,) = @. Therefore, &(G, ¥, u)(Q) = 0
and Theorem 3.12 does not hold over Q.

3.4. Applications-the problem of embedding an étale algebra in a central simple
algebra with respect to involutions. Let K be afield, (E. o) be an étale K-algebra
with involution ¢, and (A, 7) be a central simple algebra over K with involution 7.
Assume 0 |[g= 1 |g. Letk = K?. From now on, we assume that & is a global
field of characteristic different from 2. Let Qj be the set of all places of k. Fix a
separable closure £* of k. Let ¥ = Gal(k®/k) and &, = Gal(k}/ky) for v € Q.
Let T = U(E,0)°, and G = U(A, 7)°. Note that by the definition of U(E, c)",
T = Rgoy ;C(R](;/)EU (Gm)). We keep the notation defined in Section 1.3.
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In the paper [PR10], Prasad and Rapinchuk consider the local-global principle for
the K-embedding from (E, ) into (A, 7). As we have mentioned in Theorem 2.15,
the local-global principle for the existence of k-embeddings from (E, o) into (A, 1)
is equivalent to the local-global principle for the existence of k-points of &(G, V).
Here, we will reduce the original problem to the existence of k-points of oriented
embedding functors, and prove that the local-global principle holds in certain cases
by computing the Shafarevich group I1I(k, sc(T)). In the special case where G is an
orthogonal group, Bayer-Fluckiger gives necessary and sufficient conditions for the
local-global principle to hold ([B]).

3.4.1. Symplectic involutions. For t symplectic, ¥ and G are semisimple simply
connected of type C,,, which is the first case in Theorem 3.11, so we just restate the
result as the following:

Proposition 3.14. If t is symplectic, then the local-global principle holds for the
existence of K-embeddings of (E, o) into (A, 7).

3.4.2. Orthogonal invelutions. Throughout this subsection, for an étale algebra F
over K, we let Mp be the character group of the torus Rg/ g (Gy,) and let Jr be the

character group of the torus Rl(:})K(Gm). Note that K = & when 7 is an orthogonal
involution.

The case where the degree of A isodd. Let us consider the case where 7 is orthog-
onal, and A = M3, 4+1(K). In this case, the corresponding group G is adjoint of type
B, so there is no outer automorphisms. By Theorem 2.15 and Proposition 3.8, to
prove the local-global principle for the K-embeddings here, it suffices to prove that
II1%(K, sc(T)) vanishes. Note that in this case, E = K x E’ and ¢ acts trivially on
the component K, so T = RE’U/K(R](;}E!U (G ).

Let B = []i_, F;, where F; is a field over K foralli. Letd = (dy,...,d,)
be an element in E' such that B = E[x]/(x? —d) = [[;_ Fi[x]/(x* — d;). Let
E;, = Fi[x]/(x? — d;) foralli and E; ,, (resp. F; ,) be E; @k K, (resp. F; @k K,,)
forall v e Q.

Theorem 3.15. Suppose t is orthogonal, and A = My, +1(K). If there is a place
v € Qg such that the following condition holds:

foralli, d; € Fl-x2 if and only if d; € (F,-,v)xz,
then the local-global principle for the existence of K-embeddings from (E, o) into
(A, T) holds.

We start with some calculations:
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Lemma 3.16. sc(T) = RU) o (Gm) /RUS /¢ (Gin).

Proof. Consider the exact sequence over E°:

l —= G — Rijeo (Gm) — RY) Lo (Gp) — 1,

where the map from Rg/ /g0 (Gy,,) to R](;,;E,U (Gy,) sends x in Ry pro (G )(R) 1O
x/o(x), for any K-algebra R. Let us take the Weil restriction of the above sequence
over K. Then we get the exact sequence:

(1) ] — RE’U/K(Gm) —_— RE’/K(Gm) T 1.

Let M (resp. P) be the character group of T (resp. sc(T)).

First, suppose that (E’, o) is split. Then Auwt(E’, 0) = (Z/2Z)" % S,, and there
is a basis {e; }; of M such that the S,,-part of Aut(E’, o) acts on {¢;}; by permuting
the indices and (Z/27)" acts on {e;}; by change the sign of e¢;. In this case, P =
M+ %(61 + -+ + ¢,). We choose a basis {&;,¢;}] | (resp. {h;}7_,) of Mg (resp.
Mgro) on which Aut(E’, o) acts as the following: S,, permutes the indices i and
(Z/27)" exchanges ¢;, €; (resp. (Z/27)" acts trivially on A;).

The we have the following exact sequence corresponding to (1):

1 I

0 M Mg

ME’U — N

where 7 maps ¢; to &; — ¢; and j maps &;, €; to h;. Consider the map 7 from M to
Jgs induced by . Theni(e; + --- + e,) = 2(81 + --- + &), where &; is the image
of &1 in Jgr. Hence 7 induces a map from P to Jg» and we have the following exact
sequence:

(2) 0 P Jg Jgro 0.
Since all the maps constructed are equivariantunder Aut(E’, ¢'), we conclude sc(T) =
I 1
R £ (Cm)/RED 5 (Cm). O

Now we use the above lemma to compute IT1I? (K, sc(T)).

Proof of Theorem 3.15. Keep the notation of Lemma 3.16. By the Poitou-Tate
duality (ref. [NSW], Chap. VIII, Thm. 8.6.9), we have

2(K, sc(T)) ~ I (K, P)*.

Hence, it is enough to show that III' (K, P) = 0.
From the exact sequence (2) in the proof of Lemma 3.16, we derive the commu-
tative exact diagram:
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0 0
0 7 x2 7

0 — M¥ MZ, MZ,,

= p¥ % I HI(K,P) — HY(K, Jg/) — - -

HY(K,Z)=0  HYK,Z)=0

Again, ITY( K, Jg/) = I12(K, R](;,; #(Gm))*. By Hilbert Theorem 90, we have that
H?(K, R](E}}K(Gm)) injects into H*(K, Rg'/x (Gp)). However, II*(K, R/ g (Gm))
vanishes, so does III' (K, Jg/). Let x € III' (K, P). Since (K, Jg/) = 0, we have
y € JE,U mapped to x.

LetT = {1,2,...,7r}. LetI; be the subset of I such thati € I; if and only if
d; € Ff?. LetI, = I\ 1. Note that M§,; = @]_; Mf and Mg, = @5]_, Mf . For
i € 11, E =~ F; xF, so MEI: o Mﬁ, EBMEI: and Mgl, is mapped surjectively onto
MY .

Let y; be a basis of ij. Fori € I, we have the following observation:

Lemma 3.17. fori € I, and y € Mgi, y is in the image of Mgl if and only if the
coefficient of y; in y is even.

Proof of Lemma 3.17. Since E; is a field over F; with degree 2 for i € I,, the mod-
ule Mgi is of rank 1 and is generated by »_ (e; + €;). Since the element

Zq, £ €My, (¢; + €;) is mapped to 2y; in Mgi , the lemma then follows. L

ej,EjEMEi

We return to the proof of Theorem 3.15. Since Mga 1s mapped surjectively onto
Jga , Jgg is generated by y;’s. Let y; be the image of y; inJgo. Let y = Zle a;Vi.
If foralli € I,, the a;’s have the same parity, then we can find z = Zle b;y;, which

is a lifting of y in Mg,a, such that b; is even for any i € I;. Then by Lemma 3.17,

z is in the image of Mg, and hence y is in the image of Jg,. So it 1s enough to prove
that for all i € I, the a;’s have the same parity.

Now, let v be a place of K such that foralli, d; € F;‘z ifandonly if d; € (F,-_,U)Xz.
Gy

Ey/Kv~
a square in F; ,, there is some /¢y € Mg, such that there exists 7;;) € , which

Since x is in III' (K, P), y is in the image J For each i € 15, since d; is not
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exchanges €;(;y and ¢;(;). Therefore, for all i € I, the coefificients of h i@)'s in the
expression of y have the same parity. Since the coefficient of %;¢;y in y is a;, we

know that all a;’s have the same parity fori € I,. By Lemma 3.17, y is in the image

of Jg, which means 111 (K, P) = 0. O

Remark 3.18. A special case of the above theorem is when there is a place v such that
sc(T) is anisotropic over K. We now show that sc(T) is anisotropic over K, implies
2 : ; ; g ;o
all d; ¢ (F,-_J,,)X . To see this, we note that in our case here, sc¢(T) is anisotropic if
. . . . . 2

and only if T is anisotropic. If there is d; € (F; )™, then Mg, ,/k, = MF, /K, D
M =

14 E; ,v/ Ky
and it is in the image of M, which means M®' is nontrivial and contradicts to the

o . g
/Ky Let @ be a nontrivial element in M sz /Ky Then (o, —a) € M

condition that T is anisotropic over K. Therefore, d; & (F ,-_J))x2 for all ;.

The case where the degree of A is even. Throughout this paragraph, we let A be
M, (K), or M, (D) with orthogonal involution z, where D is a quaternion division
algebra over K. In this case, the corresponding group G is semisimple of type Dy,
and Isomext(W, G3) satisfies the local-global principle.

For A satisfying one of the conditions in Theorem 3.19, we first show that
&(G, ¥)(K,) is nonempty implies that &(G, ¥, u)(K, ) is nonempty for any orien-
tation . (See Lemma 3.20.) Then we prove that the local global principle holds for
the oriented embedding functor &(G, ¥, 1). By Theorem 2.15 and Proposition 2.17,
we get the local-global principle for the existence of K-embeddings from (E, o) into
(A, 7).

We first fix some notation. Let EC = H;:l F;, where the F;’s are fields over K.
Letd = (dy,...,d,) be in E? and E = E7[x|/(x? —d) =[]}, Fi[x]/(x? — d;).
Let B; = F;[x]|/(x? — d;), and E; , (resp. F; ;) be E; @k K, (resp. F; @k K,) for
allv € Qp.

Theorem 3.19. Suppose that A is equal to one of the following:
(1) Man(K), 1 > 1.
(2) My 41(D), where D is a quaternion division algebra over K.

(3) My, (D), where D is a quaternion division algebra over K, and at each place

v € Qg, if A is not split and the discriminant splits, then By, is not split over
ES. ie By &£ E; WE;.

If there is a place v € Qg such that for all i, d; € Fl-x2 if and only if d; € (Fi,v)xz,
then the local-global principle for the K-embedding of (E, o) into (A, T) holds.

First we prove the following lemma:
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Lemma 3.20. For A satisfying one of the three conditions in Theorem 3.19, the
existence of a Ky-point of (G, V) implies the existence of a Ky-point of €(G, U, u)
Jor any u € Isomext(¥, G)(K,).

Proof. Suppose that there is a K,-point f of &(G, V). By Theorem 3.12, there is
an orientation ¥’ induced by f such that u’'(A°(Wg,)) 2 A°(Gk,)-

According to the list of all possible Tits indices (ref. [T66]), if A satisfies (1) or (2)
in Theorem 3.19, then the Tits index of Gg, will be symmetric under Autext(Gg, ).
Therefore, for any ¥ € Isomext(V,G)(K,), we have that u(A°(Wg,)) contains
A°(Gkg, ), and again, by Theorem 3.12, we have €(G, ¥, u)(Ky) # 9.

Now assume that A satisfies (3) in Theorem 3.19. If over K, A is not split and
the discriminant splits, then G is a non-split inner form over X,. In this case, the
possible Tits indices of G are symmetric except the following case:

Suppose that A°(Gg, ) takes the above nonsymmetric form. We will show that
condition (3) in Theorem 3.19 forces A°(Wg, ) to be symmetric under Autext(Wg, )
in this case.

Consider the Dynkin diagram of W:

1 2 3 4 2m
:2m—1

Suppose that [ = A°(Wg, ) is not symmetric under Autext(¥). Without loss of
generality, we suppose that the vertex 2m is notin I. Let I’ be the Dynkin subdiagram
with vertices 1, ...,2m — 1 which is of type Az;;—1. SoI C I'.

Since there is f € €(G, W)(K,), Gk, has a parabolic subgroup P; with the type
I and P; contains f(Tk, ) by Proposition 1.7. Let Go, W be the split form of G and
W respectively (Section. 2.3.1), and let T, be the split torus determined by W,. Let
Py 1 be a parabolic subgroup of Gy g, with type I and contains Ty g, -

Let #; (resp. $, 1) be the subsheaf of the sheaf of roots of W (resp. ¥, ) determined
by P; (resp. Py 1). Define Wy = W(Wo 1) and W; = W(W) as we have done in the
proof of Theorem 3.12. Define Wy ;r = W (W 17) in the same way.

Let ¥y be (Mg, My, Ro. Ry), and {e; }7™, be a basis of Mg such that Ry is the set
{te;  e;};;, where the vertex i correspondstoe; —e; g fori =1,...,2m — 1,
and the vertex 2m corresponds to €2,,—1 + €24. Let S, be the permutation group of
n elements. Then we have

Au(Wo x, )(Ky) = (Z/22)*™ X Som,

where Sy, acts on Ro by permuting the indices of {e;}>,, and (Z/2Z)*" acts

on Ry by exchanging the sign of ¢;’s ( [Bou], Plan. IV). Under this basis, Wq
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is just the permutation group of the set {e; }?” . Therefore, the natural inclusion

1w Wor — Aut(Wy g, ) sends w € Wy > So to (1, w) € (Z/27)*™ 1 Sopm.
Since Gk, is an inner form of Gy g, , there is an orientation

p € Isomext(Wy g, P(Ck, , [Tk, )(Ky).
The orientation g together with #'~! gives an orientation
v € Isomext(Wo k. Wi, (Ky).
We then define
Q = Isomint, (Vo .k, . Po,1; Yk, . P1)
as we have done in the proof of Proposition 3.12. Since Wy € Wy 17, we can regard
w
Wo 1 asasubgroup of {1} XS5, € Aut(Wy) through 1. Since Vg, = Q /S'I Vo .k, »

by Remark 2.13, (Ey,0) = Q W/Q'I (Eo.v. 00). Therefore, E, ~ E! x E/ with ¢ acts
on E, as the exchange of the two copies of E/,, which contradicts to the assumption
(3) in Theorem 3.19! Therefore, I is symmetric under Autext(Wg, ) and we conclude
that #(A°(VYg,)) 2 A°(Gg,) for any orientation u. Again, by Theorem 3.12, we
have &(G, ¥, u)(K,) # O, for any u € Isomext(¥, G)(K,). O

Next, we prove that the Autext(G)-torsor Isomext(W, G) satisfies the local-global
principle. Namely,

Lemma 3.21. Let G (resp. V) be the corresponding semisimple group (resp. root
datum) defined by A (resp. E). If the Autext(G)-torsor Isomext(V, G) has a K-
point at each place v € Q g, then Isomext(\W, G) has a K-point.

Proof. Tf A is not equal to Mg(K) or A = My (D), then Autext(G) is (Z/2Z%)k, so
the local-global principle for Isomext(¥, G) holds in this case.

For G an inner form, the outer automorphism group Autext(G) is the sym-
metric group S3. Therefore, to prove the local-global principal for the Ss-torsor
Isomext(¥, G), we only need to prove III' (K, S3) = 0. Consider the exact sequence:

(1) 0> Z/37Z — S35 — Z/27Z — 0.
From the above exact sequence, we get the following exact sequence
0— Z/37 — 83 — 2/27 — HY(K,7Z/37) — HY(K,S3) — HY(K, Z/27).
Since the map from S; ro Z /27 is surjective, we have

0 - HYK.Z/3Z) — HY(K,S;) - HU(K,Z/27Z).



710 T.-Y. Lee CMH

However, the group II'(K, Z/2%) = 0, so the set III'(K, S3) is in the image of
HY(X,7Z/37).

Recall that § is the absolute Galois group of K. Note that H'(K,7Z/37) =
Hom,, (¢, 72 /3%), where Hom,, (&, Z/3Z) is the set of continuous homomorphisms
from § to Z/3Z. Suppose & € Homy (K, Z/3Z) is mapped into II' (K, S3). Then
since the symmetric group S;, is surjective to the group Z /27 for each place v € Q.
we have

0 — HY(K,,Z/3Z) — H(K,,S3) - H(K,.Z/27).

Hence, the homomorphism « is in II' (K, Z /37). Now we claim that 11 (K, Z /37)
is trivial, i.e. for each o € Homg, (K, Z/3Z), if « is in (K, Z2,/3%), then « is the
trivial homomorphism. Suppose that « is not the trivial homomorphism. Let # be
the kernel of . Let I = (K%)#*. Then L is a Galois extension of K with Galois
group Z /3% and we can regard it as a Z/3Z-torsor. Since the homomorphism o
is in I0' (K, Z /3Z), L, is split completely over K, for each place v € Qg. This
contradicts Chebotarev’s density Theorem! Therefore, & is the trivial homomorphism
and IY(K, 7. /37) is trivial. Since II1'(K,S,) is in the image of II'(K, Z /37),
11'(K,S,) is also trivial.

For A = M4(D) and G an outer form, let L be the splitting field of the discriminant
of A. We choose a splitting z from Z /27 to S; and we twist the sequence (1) by z.
Since z acts on Z /37 as —1, we have the exact sequence

(2) 0— R (Z/32) — -(S3) = Z/2L — 0.

where we regard 7, /37 as a constant group scheme. Note that z is invariant under the
twisting because 7 /27 is commutative. Therefore, the sequence still splits. Consider
the exact sequence derived from (2):

(1
0—>RL/K

1 (1)
— H (K,RL/K

(Z/3Z)(K) = (S3)I(K) = (Z/2Z4)(K)

(Z/3Z)) — HI(K, Z(S3)) — Hl (K,R(l)

O (Z/[2T)).

Since the sequence (2) splits, - (S3)(K) is mapped onto (Z/27Z)(K). Hence we have
the exact sequence

0 — H'(K. R (2/32)) - H' (K. 2(S3)) - H' (K. R (2/22)).

Since IMY(K, 7Z/27) = 0, the set IIT'(K, ,(S3)(K)) is contained in the image of
HY(K, Rg/) «(Z/3Z)). Again, because the exact sequence (2) splits, for each place
v € Qg, we have

0— H'(Ky. Ry 5, (Z/37) — H'(Ky, 2(83) = H'(Ku. RY) i (Z/27).

Therefore, 111 (K, ,(S3)(K)) is in the image of I (K, RS}K(Z/3Z)). Now, we

only need to prove I1'(X, RIEI/)K(Z /3%)) = 0. By Shapiro’s Lemma, we have
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that N1 (K, Ry jx(Z/3Z)) = W' (L, Z/3Z). As we have proved above, the group
1IY(L, Z/37) = 0, so (K, Ry k(Z/3Z)) = 0. Consider the following exact
sequence:

0 — RS (Z/37) — Ryyx (T/37) ~> L/3Z — 0.
In our case, the norm map Nr from Ry ;x(Z/3Z)(K) = Z/37Z o Z/37 is just the
multiplication by 2. Hence the map Nr is a surjective map from Ry ; x(Z/37Z)(K) to
(7./37)(K), and thus the map from H!(X, R(I)K(Z/SZ)) to H'(K, Ry /g (Z/37Z))

L/
is injective. Hence, II'(X, Rg/)K (Z/37.)) is also trivial. Therefore, in both cases,
the local-global principle for Isomext(\¥, G) holds. 0

Now we have all the ingredients to prove Theorem 3.19.

Proof of Theorem 3.19. Suppose that (E ® K,,0 ® idg,) can be embedded into
(A ® K,,7 ®idg,) over K, for each v € Qk, ie., BE(G, ¥)(K,) # @ for each
v € Q. Then we have Isomext(V, G)(K,) # @ for each place v. By Lemma 3.21,
we can fix an orientation .

By Lemma 3.20, the oriented embedding functor &(G, W, u) has a K,-point for
each v € Qg . By Proposition 3.8, the only obstruction for &(G, W, u) to satisty the
local-global principle lies in II1*(K, sc(T)). As the proof of Theorem 3.15 shows,
II1%(K, sc(T)) vanishes if there is a place v € Q such that forall i, d; € F;‘z if and

only if d; € (F; ®x KU)XZ. Therefore, the oriented embedding functor E(G, ¥, u)
satisfies the local-global principle in this case. By Theorem 2.15 and Proposition 2.17,
the local-global principle for the existence of K-embeddings from (E, o) into (A, 1)
holds. O

In the following, we provide an example when the local-global principle for the
embedding functor fails.

Example 3.22. Let K be Q(v/—1), andF = K[x]/(x2—3). Let B’ = FxF x F and
E = E' x E'. Let ¢ be the K-automorphism of E which exchanges the two copies of
E’. Then o is an involution and E° ~ E’. With the notation defined in Section 2.3,
we know that the right Aut(Ey, og)-torsor Isom((Eg, 0p), (E, 0)) defines a class in
H!(K,Sg), where Sg is contained in the Weyl group of ¥, ([Bou], Plan. IV). Let ¥
be the corresponding root datum. Since W comes from a class of H! (K, Sg), ¥isan
inner form of W,.

Let us fix four places of K such that F is not split over K,,. For example, we can
take a place v which corresponds to a prime number of the form 7 4 12/, where / is
a positive integer. By Gauss reciprocity, x> — 3 is not split at v. Let vy,..., v4 be the
four places mentioned above. At these places, the corresponding Tits index of W is

the following:
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Consider the following central isogeny:
1 — p2 X g — Sping — PSOg — 1.
Since we have no real places, by [San81], Corollary 4.5, we have
HY(K,PSOg) = H3 (K, ta X th2).
Also at each finite place v, we have
H(K,,PSO¢) = H2(Ky, tha X pia) =~ Z /27 X L] 27.

(ref. [K], Chap. IV, Thm. 1 and Thm. 2). Let [§;] be the class in Hl(Kvi,PSOG)
corresponding to (1,0) in Z/27 x Z/2Z, for i=1, 2. Let [&] be the class in
HI(KUI. . PSQOg) corresponding to (0, 1) in Z /27 x 7 /2%, for i=3, 4. For the other
places v € Qg \ {v1, va, v3, v4}, we let [§] in H(K,,PSOg) correspond to
(0,0) € Z/27 x Z/27Z. By the Brauer-Hasse—Noether Theorem, we know that
there exists a class [£] in H! (K, PSOg) such that the image of [£] in H! (K, PSOs)
is [&y] for each v € Q.

Choose a cocycle ¢ which represents the class [£]. Let G be the K-form of Gy
twisted by {. Since G and W are inner forms of Gy and Wy respectively, we can fix an
orientation u# of ¥ with respect to G. Without loss of generality, we can choose the
orientation u such thatu (A*(Vk, )) 2 (A°(Gg,, )). Note that there is no orientation
u’ such that u'(A°(Wg,)) contains A°(Gg, ) for both v = vy and v = vs.

For each place v € Qg \ {vs, vg}, we have u(A°(Vg,)) 2 A°(Gg,), so by
Theorem 3.12, there is a K, point of €(G, ¥, u). On the one hand, for the place
v € {vs, v4}, by Theorem 3.12, &(G, ¥, u)(K,) is empty. Therefore, the em-
bedding functor &(G, ¥, 1) has no K-points. For the same reason, we conclude
E(G, v, u')(K) = @ for the other orientation . Hence &(G, ¥) has no K-point.
Howeuver, at each place v, we can always find an orientation #,, € Isomext(\W, G)(K})
such that 1, (A°(Wg,)) 2 A°(Gg,), so the embedding functor €(G, V) has a K-
point for each place v. Therefore, the local-global principle fails in this case.

3.4.3. Involutions of the second kind. In this section, A is of degree n over K and
7 is of the second kind. The corresponding reductive group G is of type 4,—1. In
this case, K and k are no longer the same.

Recall that it: Rg}k(Gm,K) — T (resp. ig: Rl(,fl/)k(Gm,K) — G) denote the
embedding defined by the K-structure morphism of E (resp. A). We first interpret
the K-morphism condition into an orientation. Namely, we show that the following
are equivalent:

1. A k-embedding f is a K-embedding.
2. f o iT = iG.
3. f is a k-point of &(G, W, u) for some particular orientation u.
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Using the following lemma, we can concretely define the orientation ¥ mentioned
above.

Lemma 3.23. Let 7 = RY),(Gp) and Uy = O(Z.Z). Then

(1) The natural homomorphism from Aut(\WV) to Aut(rad(¥)) induces an isomor-
phism from Autext(\W) fo Aut(Wy).

(2) Isomext(W¥,G) is a trivial Aut(\Wy)-torsor.

Proof. Let jr be the homomorphism from the character group of T to the character
group of Z induced by #. Then jy induces an isomorphism between rad(W) and Wy,
and we have a canonical way to identify Aut(rad(¥)) and Aut(Wy). Consider the
natural morphism from Aut(W) to Aut(rad(\¥)). Since the Weyl group acts trivially on
Aut(rad(¥)), we have a natural morphism 7 from Autext(V) to Aut(rad(W)). Note
that since Z is a torus of dimension one, Aut(Wy) ~ Z/27Z. Hence, Aut(rad(¥V)) ~
7/27.

To prove that 1 is an isomorphism, we only need to check it over k%, so we can
assume that W is split and of type (M, MY, R,RY).

We first prove the injectivity of . By the definition of W, we can find a basis
{eiti=1...nof M suchthat A = {e; —e;41}i—1... »—1 is a system of simple roots of
R (ref. [Bou], Plan. I). By Proposition 1.3, Autext(W) >~ EA(W). Let i € EA(WV)
and suppose that / acts on rad(WV) trivially. We claim that /2 acts on W trivially.

To see this, we note that 2 induces an isomorphism on the Dynkin diagram, so /

.....

can only act on A trivially or exchange ¢; — ¢;4.1 withe,_; —e,_;41.
Let h(er) = > 1, aie;.
Suppose that s exchanges e; — ¢;4+1 with e,—; — e,—;j+1. Since

a”(er) = h(o)Y(h(ey)) foralla” € RY,
we have

ayp—1 = dap + 1;

B S sy = ksl — L

Besides, 1 acts onrad(\) trivially, so e; —h(eq) = Z?:l bi{e; —e;+1). By summing
up the coefficients, we have Z?:l a; = 1 and hence na,_1 = 2. Since a;’s are
integers, the only possibility is # = 2 and @; = 1. In this case, h(e1) = ey and
h(e1 —ep) = e1 — ea, so h is identity.

Now suppose that / acts on A trivially. Then by the same reasoning, we have

a; =dz + 1,
ar, =da;, [ =2,...,n.
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Besides, £ acts on rad(\W) trivially, so Zle a; = 1. Therefore,a; = landa; = 0
fori # 1, which means 4 is the identity.

This proves that 7 1s injective.

On the other hand, since the —1 map on ¥ induces the —1 map on rad(¥) and
Aut(rad(W¥)) ~ Z /27, we have n is surjective and hence an isomorphism.

To prove (2), we choose a maximal torus T of G. Note that since K is in the center
of A, ig(Z) is in the center of G and hence ig(Z) is in T”. Let jg be the map between
character groups of T” and Z induced by ig. Let Vg = ®(G,T’). Then we have
a natural morphism from Isom (W, W) to Isom(rad(¥), rad(Ws)). Since the Weyl
group W (W) acts trivially on rad(\¥), the above morphism induces an morphism from
Isomext(W¥, Wg) to Isom(rad(¥), rad(\Wq)), which is an isomorphism. Through jr
and jg, we have an isomorphism from Isom (rad(¥), rad(¥g)) to Aut(WVz), which
sends f¥ to jgo f¥ o ji!. Therefore, we have

£: Isomext(WV, Yg) — Aut(Wy;).

Since Autext(¥) ~ Aut(W¥,) and { is compatible with the Aut(W¥,)-action, { is
an isomorphism between Aut(W;)-principal homogeneous spaces. Since there is
a canonical isomorphism from Isomext(W¥, W) to Isomext(W, G), the result then
follows. (]

With the notation defined in the above lemma, we let 1 € Isomext(W, G)(k) be
¢71(1). Then for a k-embedding f, we see that f o iy = ig if and only if f is a
k-point of &(G, W, u). Hence again, we can reduce the embedding problem to the
existence of rational points of f € &(G, W, 1) and reformulate Prasad—Rapinchuk’s
Theorem as follows ([PR10], Thm. 4.1):

Theorem 3.24. Suppose that t is an involution of the second type. If E is a field,
then the local-global principle for the K -embeddings from (E, o) to (A, t) holds.

Proof. By Lemma 3.23, we can fix an orientation # such that f is a k-point of
&(G, ¥, u) if and only if f is a K-embedding. By Remark 2.16, &(G, ¥, u)(k,) is
nonempty if and only if €(G, V)(k,) is nonempty. Hence, it suffices to show that
the local-global principal for €(G, W, ) holds. By Theorem 3.2, we only need to
show that 1112 (k, sc(T)) vanishes. Consider the exact sequence

0 —> se(T) — Reo /i Ripe (Gm)) —> R ) (Gm) —> 0,
from which we derive the long exact sequence

— H'(k, s¢(T)) — H'(k. Rgo 4 R (Gm))) — HU (K. RG) (G )

— H2(k, se(T)) —> H2(k, Ro /(R (Gn))) —> -+ .



Vol. 89 (2014) Embedding functors and their arithmetic properties 715
Since 12(k. Rgo /5 (RUgo (Gm))) = WIZ(ET RUL(Gm)) = 0, we know that
112 (k, sc(T)) is in the image of H! (k, Rg)k (Gp)) = k™ /Nrg; (K*), where Nrg
denotes the norm map from K to k. Let x be an element of £* and suppose that x is
mapped to I11%(k, sc(T)). Ateach place v € Q, let x, be the image of x in k,. Since
x is mapped to INI*(k, sc(T)), x belongs to k> (") Nrgo/ (Ige )Nrg /1 (Ix), where Iga
and Ix are idéle groups of E? and K respectively. By Hasse multinorm principle
(ref. [PIR], Prop. 6.11), x belongs to Nrgo /¢ (E? )Nrg /¢ (K), so x is in the image of
H!(k, REU/k(R](;/)Ea (Gm))). Hence x is mapped to 0 in 12 (k, sc(T)), which implies
I1%(k, sc(T)) = 0. The theorem then follows. L
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