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Constructing equivalences with some extensions to the divisor
and topological invariance of projective holonomy

Rudy Rosas*

Abstract. Given topologically equivalent geims of holomorphic foliations S7 and 37', under
some hypothesis, we construct topological equivalences extending to some regions of the divisor
after resolution of singularities. As an application we study the topological invariance of the

projective holonomy representation.
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1. Introduction

Let h: (C2,0) i-> (C2,0) denote a topological equivalence between two germs
3r and 3rf of holomorphic foliations with isolated singularity at 0 e C2, i.e., h

is an orientation preserving homeomorphism mapping leaves of 3r onto leaves of
3r\ Cerveau and Sad in [24] pose the following problem: Assuming 3r is a non-
dicritical generalized curve, it is true that the projective holonomy groups of 3? and
3rf are topologically conjugated? Also in [24] the authors give a positive answer
for a generic class of foliations 3* and assuming that h is a topologically trivial
deformation. A stronger result is obtained by Marin in [12] under the assumption of
complex hyperbolicity of the singularities of 3r after a Single blow up and removing
the topological triviality of h. In [16], by using a notion of extended holonomy,
the authors give a positive answer under the assumption that all singularities of 3r
after a Single blow up are non-degenerate and have exactly two Separatrices. In
a recent work ([15]), D. Marin and J.-F. Mattei give a global monodromy notion
which allows to solve the problem for Generic General Type foliations. Following
[15], a non-dicritical generalized curve 3r is of General Type if after resolution all
singularities in the strict transform of 3* are linearizable or resonant. Such 3* is of
Generic General Type if "some" irreducible components of the exceptional divisor
have a non-solvable holonomy group (see genericity condition (G) in [15]). When

*This work was supported by the Vicerectorado de Investigacion de la Pontificia Universidad Catölica del
Peru.
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the resolution of 3r does not have nodal singularities the genericity condition (G)
is equivalent to the existence of a Single divisor component having a non-solvable

holonomy group, in this case the topological equivalence h is transversely conformal
([18]) and the principal result of [15] shows that the projective holonomy of each

irreducible component of the exceptional divisor is a topological invariant. In the

present work, given topologically equivalent germs of foliations 3? and 3rf and under

some additional hypothesis, we construct topological equivalences extending to some

regions of the divisor after the resolution of singularities of 3? and 3rf. We give the

precise Statement of this construction in Theorem 7. When 3r is a non-dicritical
generalized curve, it is known that 3rf is also a generalized curve and the resolutions
of 3r and 37' are isomorphic ([3]), although h does not extend necessarily to the
divisor after resolution. In this case Theorem 7 gives the following result.

Theorem 1. Let h be a topological equivalence between two non-dicritical generalized

curves 3? and 37' with isolated singularity at 0 E C2. Then we may construct
a topological equivalence h between 3? and 3rf which, after resolution, extends as

a homeomorphism to a neighborhood of each linearizable or resonant singularity of
3T which is not a corner1.

As a direct application we obtain:

Corollary 2. Let 3? be a non-dicritical generalized curve whose reduction of
singularities is achieved after a Single blow up. Assume that after resolution the strict
transform of3r has a linearizable or resonant singularity. Then the projective holonomy

representation of 3^ is a topological invariant.

If 3r is of general type, as was pointed out to me by the referee, we can combine
Theorem 1 with the results of [13] and [14] to prove the topological invariance of
the projective holonomy of some exceptional divisor components without using the

transverse rigidity hypothesis assumed in [15].

Corollary 3. Let 37 be singularity ofgeneral type. Let D be an irreducible component
ofthe exceptional divisor in the resolution of& such that D meets the strict transform
ofthe separatrix curve of3r. Then the projective holonomy representation of D is a

topological invariant.

Also as a corollary of Theorem 1 we obtain the following extension result.

Corollary 4. Let 3^ be a singularity ofgeneral type whose reduction ofsingularities
is achieved after a Single blow up. Then, if 3? and 3rf are topologically equivalent,
the strict transforms of 3? and 3rf after resolution are also topologically equivalent.

1A corner is a Singular point of the exceptional divisor.
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Following [15], a nodal separatrix of 3r is an irreducible separatrix whose strict
transform in the resolution of 3? meets the exceptional divisor at a nodal Singular
point. Is worth to notice as a corollary of Proposition 13 that the nodal Separatrices
of general type foliations are topological invariants:

Corollary 5. Let 3? be a singularity of general type and let h be a topological
equivalence between 3? and 3*'. Let S be a nodal separatrix of 3*. Then h(S) is a
nodal separatrix of 3r/ and the Camacho-Sad indices along the strict transforms of
S and h(S) coincide.

This corollary allows us to remove the JV-conjugacy hypothesis assumed in [15].
As a corollary of the proof of Theorem 7, we may replace the linearizing-resonant

hypothesis by the assumption that the holonomy group of 3r is non-solvable to prove
the following result, which is a particular case of the results obtained in [15].

Corollary 6. Let 3? be a non-dicritical generalized curve whose reduction ofsingu-
larities is achieved after a Single blow up. Assume that the holonomy group of 3* is

non-solvable. Suppose that 3^f is topologically equivalent to 3? by a homeomorphism
which preserves the orientation ofthe leaves. Then we may construct a topological
equivalence h between 3? and 3*f such that, after resolution, we have that

(1) h extends to the divisor as a homeomorphism,

(2) h preserves the Hopffibration,

(3) h is holomorphic close to each singularity whose eigenvalue is not a real positive
number, and

(4) ifp is a singularity ofthe strict transform of 3* with eigenvalue X E M+\Q+,
then the eigenvalue X remains invariant by h.

In particular, the analytic type ofall the singularities after resolution are invariants?

The paper is organized as follows. In Section 2 we State Theorem 7 and prove
Theorem 1. In Section 3 we prove Corollaries 2, 3 and 4. In Section 4 we make a first
construction in order to prove Theorem 7. In Section 5 we proof a topological lemma.
In Section 6 we divide the proof of Theorem 7 in two cases and in next section we

prove the theorem in the first case: when the singularity is a node. In the remaining
sections we prove Theorem 7 in the non-nodal case.

2. The extension theorem

Let 3r be a holomorphic foliation on the open set U cC2 with isolated singularity
at 0 E C2. Let jt:M i-^ C2 be the composition of a finite sequence of blow ups.

2Remember that the eigenvalue A determines the analytic type of a singularity, provided that A e R+ \Q+.
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We only consider blow ups at Singular points of E or some strict transform of E.
The divisor E tt-1 (0) is an union of projective lines with normal crossings such

that tt : M\E i-> C2\{0} is an isomorphism. Let S be an irreducible separatrix of
E through 0 e C2. It is possible to order the sequence of blow ups composing tt
and realize first all the blow ups involving points of S or some strict transform of S,
that is, we may write tt as composition of blow ups tt it\ o • • • o jtn such that for
some k e {1we have the following:

(1) 7ti is the projection associated to the blow up at 0 e C2.

(2) For all j e {2,...,k} the map tt7 is the projection associated to the blow up at

the point pj with 7t\ o • • • o 7tj~\(pj) 0 and such that pj is contained in the
strict transform of S by 7t\ o • • • o 7tj-i.

(3) Ify > k, then jtj is the projection associated to a blow up in a point outside the

strict transform of S by it\ o • • • o 7tj-\
It is easy to see that the number k depends only on tt and S. Let us denote k kn(S).
Consider another holomorphic foliation E' with isolated singularity at 0 e C2. Let
tt': M' i-> C2 be finite a composition of blow ups and let E' — tt-1 (0). Let E and

E' denote the strict transforms of E and E' by tt and n' respectively. Consider a

topological equivalence h: U i-> U' between E and E'. We know that h lifts to a

homeomorphism

h n'~1hjt: n~l(U)\E ^ n'~l(U')\E'

which takes leaves of E to leaves of E' and such that h(w) E' as w E.
Conversely, if W and W' are neighborhoods of E and E' respectively and h: W\E \->

W'\E' is ahomeomorphism taking leaves of E to leaves of E' and such that h{w)
E' as w E, then h induces a topological equivalence between E and E'. Thus,

by simplicity, we will say that any such h is a topological equivalence between E
and E'. Moreover, when no confusion arises we will often denote 3< and E' simply
by E and E' respectively.

We recall that a singularity p of a holomorphic foliation is called reduced if it is

generated in local coordinates by a vector field of the form

ß ß

X\x(l + • • •)-—b X*2y (1 + • • ')tt- >

öx öy

where X2 ^ 0 and X X1/X2 is not a rational positive number. The singularity
is non-degenerate when X\ • X2 7^ 0 and is called resonant if A1/A2 is a rational
(non-positive) number. The number X X1/X2 (or A_1) is called the eigenvalue of
the singularity.

Theorem 7. Let h be a topological equivalence between two holomorphic foliations
E and E' with isolated singularity at 0 e C2. Let 7t: M \-> C2 and 7t': M' \-^ C2
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be finite compositions of blow ups. Let S be an irreducible separatrix of 3*. Set
Sf h(S) and let S and S' denote the strict transforms of S and Sf by n and 7tf

respectively. Let p and p' be the intersections ofS and Sf with its respective divisors.
Let (t, x) and (tf, xf) be holomorphic coordinates at p and p' respectively. Suppose
that thefollowing conditions hold:

(1) The foliations are not degenerate at p and p'.

(2) The exceptional divisors are given by {x 0} and {xf 0} and they are
invariant by the strict transforms of!F and !Ff respectively.

(3) S and S'are given by {t 0} and {tf 0} respectively.

(4) kn(S) knfS>).

Then, given s > 0 we may construct a topological equivalence h between T and !Ff
such that, for some numbers a,b, af, bf £ (0, s), we have

(1) h maps {\t\ < a, 0 < \x\ < b} into {\t'\ < a', 0 < |x'| < b'},

(2) h maps {\t\ a, 0 < \x\ < b} into {\t'\ a', 0 < \x'\ < b'},

(3) close to the divisor and outside

{\t\ <s, |x| <s}{Jh~\\t'\ <e, \x'\

we have h h.

Moreover, ifp is linearizable or resonant, thefollowing additionalproperties hold:

(4) h extends as a topological equivalence to {\t\ < a, \x\ < b},

(5) h({\t | < a, x 0}) {|^| < af, x' 0} and h(0,0) (0, 0),

(6) h maps each disc Hu {t u,\x\ < b}, \u\ a, into a disc 5V {t
uf, \x\ < b}, \u'\ af.

Given a germ of holomorphic Singular foliation 3?, we know by Seidenberg's
desingularization Theorem that after a suitable finite sequence of blow ups, all the

singularities of the strict transform of 3? are reduced. If 3? is dicritical (infinitely
many separatrix), after some suitable additional blow ups we arrive to the following
Situation:

(1) The Separatrices of 3r have became smooth, disjoint and transverse to the divisor.

(2) No separatrix passes through a corner.

(3) The singularities appearing in the blow-up are reduced an lie in invariant pro¬
jective lines.

In this case the foliation 3r is said to be desingularized.

Definition 8 ([3]). A germ of holomorphic foliation 3r with isolated singularity at
0 £ C2 is called a generalized curve if after resolution all its singularities are non-
degenerate.
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Theorem. ([3]) If 3* is a generalized curve and 37' is topologically equivalent to 37

at 0 £ C2, then 3?' is also a generalized curve and both 3* and 3?' have isomorphic
desingularizations.

Proofof Theorem 1. Let tt : M \-> C2 and tt': M' i-^ C2 be the minimal resolu-
tions of 3? and 3rk Let p\,..., pn be the linearizable or resonant singularities of
the strict transform of 3r which are not corners. There are holomorphic coordinates

(t, x) in a neighborhood of p\ ~ (0, 0) such that

(1) the exceptional divisor is given by {x 0},

(2) S {t 0} is the strict transform of an irreducible separatrix S of TL

The set Sf h(S) is a separatrix (irreducible) of 3rf and its strict transform Sf

by 7tf intersects the exceptional divisor at a singularity p[. It is easily verified,
since the resolutions of 3r and 3rf are isomorphic, that k^S) k^fS'). Let us

apply Theorem 7 to construct a topological equivalence h\ between 3? and 3rf which
extends as a homeomorphism to a neighborhood V\ of p\. In the same way, we have

a singularity p2 in the desingularization of 3rf associated to p2. We apply again
Theorem 7 to obtain a topological equivalence h2 between 3r and 3rf which extends

to a neighborhood V2 of p2 and such that close to the divisor and out of

{|^| < £, kl < £} U h~\\tf\ < e, \xf\ < s)

we have h2 h\, where (t,x) and (t',xf) are holomorphic coordinates at p2 and

p'2 respectively. If s > 0 is taken small enough such that V\ and h\{V\) are disjoint
of {k| < e, |x| < £} and {\tf\ < e, \x'\ < £} respectively, we have h2 h\ on V\.
Then h2 actually extends as a homeomorphism to neighborhoods of both p\ and p2.
Repeating this argument a finite number of times we finish the proof.

3. Projective holonomy representation

Consider now a foliation 3r such that after a Single blow up tt : C2 i-^ C2 of the

origin the exceptional divisor D tt-1(0) is invariant by the strict transform 3< of
3r by tt, that is, D* Z)\Sing(Jr) is a leaf of Let q be a point in D* and

I] a small complex disc passing through q and transverse to TL For any loop y in
D* based on q there is an holonomy map H$r{y)\ (£, q) (S, q) which only
depends on the homotopy class of y in the fundamental group T tti(Z)*). The

map H$r; T i-^ Diff (S, q) is known as the projective holonomy representation of TL

Identifying (£, q) zz (C, 0) the image of H$r defines up to conjugation a subgroup
of Diff (C, 0) which is known as the holonomy group of TL

Definition 9. The representations H: T i-> Diff(C,0) and Diff(C,0)
are topologically conjugated if there exist an isomorphism cp: T \-^ Tf and a germ of
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homeomorphism A: (C, 0) i-> (C, 0) such that H' o <^(y) A o //(y) o A 1 for all

y e r.

Proofof Corollary 2. Let p be a linearizable or resonant singularity of 3r after res-
olution. By Theorem 1 we have a topological equivalence A between 3? and 3rf
extending to a neighborhood of p. Moreover, by the last property given by Theorem

7 there is a regulär point q in the divisor and a disc £ through q transverse to 3*

such that A(£) is contained in a disc £' through q' A(g) transverse to 3r\ At this

point we can follow the proof given in [12].

Proofof Corollary 3. Let 3rf be a foliation topologically equivalent to 3* and let D'
be the irreducible component of the exceptional divisor corresponding to D in the
resolution of 3r\ By Theorem 1 there is a topological equivalence A between 3r
and 3rf conjugating transverse sections £ and £' to D and D' respectively. We can

apply Theorem A of [14] to obtain a new homeomorphism g (not longer foliated)
conjugating the Separatrices S and S' of 3r and 3rf extending to the exceptional
divisor and inducing the same action that / omt\(U\S) -> n\{U'\S'), where U and

U' are suitable neighborhoods of the singularities constructed by foliated assembly
according to Definition 2.1.1 of [ 13]. Moreover, there are no topological obstructions
to have g — / on £. Consider f: g\o : D -> D' and its action in homotopy
level 0*: -> where D* and Z)r* are obtained from D and D'
by removing the singularities. Consider a loop y e tti(Z)*) and its corresponding
holonomy map h. For /?e£*:=£\D we consider a path ß contained in the leaf
L of 3r passing through p ß(0) and realizing the holonomy map A, that is, ß is

mapped onto y by the Hopf fibration associated to D and ß{\) h(p). Consider a

path 6 contained in £* joining h(p) and p. Then the loop f(ßd) is homotopic to
g(ßö) which is contained in a tubulär neighborhood W' of D'. According to [13]
we can choose W' such that it is l-.!FLconnected in (see Theorems 2.1.2 and
3.2.1 of [13]). Since / g on £ wededucethat f(ß) C L' := f{L) is homotopic
to g(ß) C W' with fixed endpoints. By the foliated 1-connexity of W' in Uf* we
obtain a path ßf C L' D W' which is homotopic to f(ß) in L' and to g(ß) in Uf*.
Let 7t': W' D' be the Hopf fibration associated to D'. Then we see that Jtf(ßf) is

homotopic to 0*(y) in D'*. Hence f(h(p)) f(ß)(1) ßf(l) hf(f(p)) where
hf is the holonomy map associated to the loop 0*(y) G tti(Z)/*). Consequently

f oh o f~x — A'.

Proofof Corollary 4. By Theorem 1 we have a topological equivalence A between

^ and which extends as a homeomorphism and preserves the Hopf fibration near
the singularities.The holonomy representations are topologically conjugated by an

isomorphism induced by a homeomorphism which coincides with h near
the singularities. By a lifting path argument using f we can redefine h outside some

neighborhoods of the singularities to obtain a topological equivalence h extending to
the divisor.
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4. A preliminary isotopy

As a first Step in order to prove Theorem 7, we will prove the following:

Theorem 10. Let hbea topological equivalence between two holomorphicfoliations
3r and 3r/ with isolated singularity at 0 e C1. Let n: M C1 and tt' : M' i-> C2

befinde compositions ofblow ups. Let S be an irreducible separatrix of 3*. Denote
Sf h(S) and let S and Sf be the strict transforms of S and Sf by 7t and 7t'

respectively. Letp and p' the intersections of S and S' with the respective exceptional
divisors. Let (t, x) and (L, xf) be holomorphic coordinates in the neighborhoods V of
p ~ (0, 0) and V' ofpf ~ (0, 0), respectively. Suppose that the following conditions
hold:

(1) The exceptional divisors are given by {x 0} and {xf 0} and are invariant
by (the strict transforms) 3r and 3rt respectively.

(2) S and S' are given by {t 0} and {tf 0}.

Then given s > 0 there is b E (0, e) and a topological equivalence h between 37 and
3?' with the following properties:

(1) h is definedin aneighborhoodofthe set {{0,x) : 0 < |x| < b}, whichis mapped
into {(0,x') : 0 < \xf\ < e}.

(2) There exists 8 > 0 such that for all r in a neighborhood of b, the set {11 \ <
8,\x\ r} is mapped by h into a set oftype {|jc7| r'} with r' E (0, s).

(3) For |z| close tob theset{\t\ < 8, x z}is mapped into a set oftype {x' cte}.

(4) Close to the divisor we have h h.

Proof. Let Co and C\ be the circles {(0,x) : |x| r0} and {(0,x) : |x| r\} in
V, where 0 < r0 < r\ < s. The curves Co and C\ are contained in the separatrix
{t 0} C V. Fix ao and bo in Co, with a0 7^ H is possible to modify
the homeomorphism h in such way, on some neighborhoods of ao and bo, the new
homeomorphism, still denotedby h, maps the sets {x cte} into the sets {xf cte}.
Take a circle C[ in the separatrix {tf 0} C V' containing h(Co) in its interior, that
is, C[ {(0,xr) : |x7| r[} with |xr| < r[ whenever (0,xr) E h(Co). By taking r\
small enough we may assume r[ < s. Let A be a segment of ratio with endpoints ao
and a\ E C\. Thus A connect Co and C\ and A\{ao, a\} is contained in the annulus
bounded by Co and C\. In the same way, let B be a segment of ratio, disjoint of A,
with endpoints bo and b\ E C\. Consider the usual orientations of Co and C\ an

take a diffeomorphism 6 : C\ \-^ C[ such that h(C0) and 9(Ci) are homologous in
{(0, xf) : x' 7^ 0}. Take injective maps a: A \-+ {tf 0} and ß : B \-+ {tf 0} such

that

(1) a(a0) h(a0),a(ai) 9{ax),

(2) ß(b0) h(b0),ß(b1) 9(b1),
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(3) a(A) n ß(B) 0,

(4) a(A\{a0,ai}) and ß(B\{bo,b\}) are contained in the annulus bounded by
h(£0) and Vx.

Let Ibe the annulus bounded by Co and Ci in {t 0}. We have J\{^4, B } DUZ),
where D and D are simply connected domains. The boundary of D is a Jordan curve
which is the union of the curves A, C0, B and Ci, where C0 and Ci are segments of
Co and Ci respectively. Let n be the projection (t,x) -> (0, x). Let Lx denote the
leaf of !F passing through xGjt"1 {af). If £ is a small enough neighborhood (a disc)
of a0 in ttfor all x e S there is a domain Dx in Lx such that x e Dx and

tt : Dx i-> D is a diffeomorphism (D is a lifting). The domain Dx in Lx is bounded

by a Jordan curve, which is the union of the paths Ax tt-1 (A), Cqx tt-1 (Co),
Bx tt-1 (D) and C\x tt-1 (Ci). Dehne g: 3D i-> {tf 0} as

on ^4,

on D,

on Co,

on C\.

It is easy to see that g is continuous and injective. Denote also by tt the projection
(C, x') -> (0, x'). Observe that the Jordan curve g(dD) in {tf 0} does not link
the point (0, 0). Therefore there is a lifting of g(dD) to any leaf close enough to the

separatrix. Then, if £ is small enough, there is a Jordan curve Jx in the leaf passing
through h{x) such that tt : Jx i-> g(dD) is a homeomorphism. Therefore we have
that the map fx: 3Dx i-> Jx dehned by tt o fx gon is a homeomorphism. Observe

that, on Co*, we have that tt o h is arbitrarily close to h o tt when x e S is close to ao.
Then, since tto /x go7r /zo7ron Cox, we have that tt o h is arbitrarily close

to tt o fx. Hence, since fx(x) A(x) when x is close to ao, we have that fx{y) is

arbitrarily close to h{y) for all y e C$x. Recall that, on neighborhoods Ua and Ub

of a0 and b0 respectively, we have that h takes fibres x ete to fibres x' — cte,
that is, h o jt tt o h. Then, on (Ua U Ub) PI Cox, we have that tt o fx n o h.

Thus, since fx(y) is close to h{y) and they are in the same leaf, we conclude that

fx(y) h(y) for all y e (Ua U Ub) PI C$x (whenever x is close to üq), Then the
funetion hx: 3Dx \-> V\ defined as hx — h on C0x and hx fx on 3Dx\C0x, is

continuous and its image is contained in a leaf.

Assertion. Ifx is close enough to üq, the map hx is injective.

Proofi Clearly hx is injective on C$x and dDx\Cox separately. Then it is sufficient
to prove that hx(C0x) and hx(dDx\C0x) are disjoint. Let Ix C0x\(Ua D Ub) and

I Co\(Ua H Ub). If x is close to ao, we have that tt o h is arbitrarily close to
hon gon,onIx C C$x. Then the set n oh(Ix) is arbitrarily close to gon(Ix). On
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the other hand, observe that, when x is close to a0, the set g o jt(Ix) is arbitrarily close

to the set g (/). Then, when x is close to üq, the set 7t oh (Ix) is arbitrarily close to g (/).
Thus, since / is compact and disjoint of the closure of 9Z)\Co, we have that tt o h(Ix)
is disjoint of g(dD\C0) 7t o fx(dDx\C0x). Therefore /z(Zx) hx(Ix) is disjoint
of fx(dDx\C0x). On the other hand, /zx(C0x H (t/fl U f/^)) h(C0x n (Ua U Ub))
fx(C0x H (Ua U Ub)) and is therefore disjoint of fx(dDx\C0x).

The Jordan curve hx(dDx) is the boundary of a simply connected domain Dx in
the leave passing through x. It follows from the construction that hx depends contin-
uously on x. Then, by Lemmal 1 below we have that hx extends to a homeomorphism
hx : Dx i-> Dx, which depends continuously on x. The homeomorphism hx has the

following properties:

(1) hx h on C0x,

(2) tt o hx a o n on Ax,

(3) TT o hx ß o 7t on BX9

(4) TT O hx 0 O TT on C\x.

The domain D is bounded by the union of the paths A, C0, B and Ci, where C0

and C\ are segments of and Ci respectively. For x e S, let Z)x be the lifting
of Z) to the leaf passing through x, that is, tt : Dx i-^ Z) is a diffeomorphism. Let

^ Cox tt-1 (C0), and 7T_1(ö)- Analogously,

reducing XI if necessary, for all x e X we construct the map hx : Dx V' such that

(1) hx is a homeomorphism onto its image,

(2) Dx hx(Dx) is contained in the leaf passing through h(x),

(3) hx h on C0x,

(4) tt o hx of o 7t on Ax,

(5) TT O ß o TT on i?x,

(6) 7t ° hx 6 o jx on Cix.

By reducing X we may assume that Dx and Dx are contained in L and that hx and hx
are defined for all x e X. Let£) UxeE and£) UxeE Dx. Let /: £) i-^ V'
and /: <© i-^ V' be defined by f — hx on Dx and / on Dx. Clearly / and

/ are continuous and it is easy to see that

/ / on <£) fl <£). (4.1)

In fact, if z e <© D <©, then tt(z) is contained in ^4 or B. Suppose that it(z) e B.
Then z e Bx Bx for some x,x. Then it suffices to show that f(w) f(w)
for all w e Bx BXi that is, hx(w) hx(w) for all w e Bx Bx. But

jt o hx(w) ß o tt(u;) — tt o hx(w) for all w e Bx, then, since is an interval, it
suffices to show that hx(w) hx(w) for some w e Bx Bx. Let wo g be the
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point such that 7t(w0) G C0. Then w0 G C0x H C0x and we have by definition that

hx(wo) hx(w0) h(w0)._
It is easy to see that <£) U <£) contains a set of type {(t,x) : \t\ < <5, r0 < \x\ < r\}

for 8 > 0. Let W be a neighborhood of the divisor E such that

(1) h is defined on W\E,
(2) WnV {(t,x)eV:\x\<r0},
(3) A(JF\i?) does not intersect the set {(t', x') e V' : \x'\ > r[}.

Dehne the map h on (W U <£) U £))\E as h h on W\E, h / on <£) and h /
on <©. It follows from (4.1) and conditions (1), (2), (3) above that_/z is a topological
equivalence between E and and maps the set {0 < |£| < S, \x\ r\} into
{| jc7 | r[} mV'. Moreover h maps the subsets {x cte} of{0 < |^| < 8, \x\ ri}
into the subsets {xf cte} of {|jc7| r[}. Finally, by a lifting path argument we
hnish the proof of Theorem 10.

Lemma 11. Let ft: 30 i->* C be an injective map for all t and suppose that ft
depends continuously on t. Let Ut be the interior domain of /^(3D). Then there
exists a continuous family of homeomorphisms ft: D i-^ Ux extending ft, that is,

such that ft ft on 3D for all t.

5. Homological compatibility

In this section we prove Theorem 12, which shows that some homological data is

preserved by the equivalence h. This result has been previously obtained in the

case of an orientation preserving homeomorphism in [15] (Theorem 6.2.1) using
Theorem 3.16 of [14].

Theorem 12. Let S and Sf be irreducible analytic curves with isolated singularity
at 0 G C2. Let h: U U' be a topological equivalence between S and Sf, that
is, h is an orientation preserving homeomorphism such that h(S D U) Sf D U',
h{0) 0. Let TT \ M i—> (C2 and jr': M' i-^ C2 befinde compositions ofblow ups
such that kn(S) knfSf). Let S and S' be the strict transforms of S and Sf by jt
and 7tf respectively. Let p and p' be the intersections ofS and Sf with its respective
divisors and take holomorphic coordinates (t, x) and (F, xf) at p and p' respectively
such that

(1) S and S' are given by [t 0} and {tf 0},

(2) the exceptional divisors are given by {x 0} and 0} respectively.

Take a,b,af,b' > 0 such that

(1) the set [\t | < a, 0 < \x\ < b} is contained in the domain ofdefinition ofh,
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(2) /z({(0,x) : 0 < \x\ < b}) C {(0,x') : 0 < \x'\ < b'},

(3) h({\t\ < a, \x\ b}) C {\t'\ < a', 0 < |xr| < b'}.

Let t^,x'0 e C with 0 < |^q| < af and 0 < |Xq| < b' and define the paths

a, ß: [0,1] h> M, a',ß': [0,1] h> M'by aß(s)
a'(.s) (t'0e2nis,x'0),ß'(s) (t^,x'0e2nis).Then,in the first homology group of
r {0 < \t'\ < a',0< \x'\<b'} wehave

[h(a)]=l[a'} and [h{ß)] $\ß%

where f 1 or —1 according to h preserves or reverses the natural orientations of
S and S'.

Proof. For some integers m, n we have

h(ß) mß' + na' in HX(T'). (5.1)

Leißo and ß'0be the paths definedbyßo (0, be27tls), ßf0 (0 ,b'e27Zls),s e [0,1].
If Q {\t\ < a, 0 < \x\ < b} and Q' — {\t'\ < af, 0 < |xr| < bf} it is easy to
see that ß ß0 in HX(Q), ßf ß'0 in Hi(Q') and h{ß0) %ß'0 in HX{Q').
Then h(ß) %ß' in H\ (Qf). On the other hand it follows from equation (5.1) that

h(ß) mß' in hence m £. Then we have

h(ß) %ß' + na' in HX(T'). (5.2)

Take neighborhoods W and W' of the divisors E tt_1(0) and Ef tt/_1(0)
respectively, with the following properties:

(1) W contains the set {\t\ < a,\x\ < b},

(2) W fl {t 0} is homeomorphic to a disc,

(3) h(w n {t o}) c {t' o},

(4) h(W\E) TT'\£,
(5) TT (IT) and jr'(W') are homeomorphic to balls.

Let S0 7t (W H {t 0}) and S'Q tt o /z(IT n {* 0}). Since tv(W) is

homeomorphic to C2 and S0 is closed in tt (IT) and homeomorphic to C, we have by
Alexander's duality that Hi(7t(W)\S0) — Z. Then, since 1T0 W\(E U {t 0})
is homeomorphic to tt(1T)\So, we have H\ (ITo) ~ Z and it is easy to see that a is a

generator of this group. In the same way, if JTq W'\(E' U {tf 0}) and we assume

Xq small enough3 we have that a' is a generator of the group H\(Wq) ~ Z. Since
/z preserves orientation it follows from the topological invariance of the intersection
number (see [7] p. 200) that

h(a) %af in Hx{Wq). (5.3)

3Without loss of generality we may suppose xr() arbitrarily small.
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Then, if ß ka (k e Z) in we obtain:

h(ß) k%af in H\(Wq). (5.4)

Since S and S' have isomorphic reductions and kJt(S) k7Zf{S') we also have

ß' ka' in H\{Wq). (5.5)

We may assume xf0 small such that ßf and a' are contained in a set of type T^ {0 <
\t'\ < a',0 < \x'\ < £} with T^ C Wq. Then it is easy to see that we may write
equation (5.2) in H\ (Tf) and therefore in H\ (Bq), that is,

h(ß) $ß' + na' in H\(Wq).

Then, by using equations (5.4) and (5.5) we obtain n 0. On the other hand, let

h{a) qaf + rßf in H\{Tf)

with q, r e Z. Then, since a' is homologous to zero in Q' we obtain

h(a) rß' in (5.6)

Clearly a is homologous to zero in {\t\ < a,\x\ b} and hence, since h({\t\ <

, \x\ b}) is contained in Q\ wededucethat h(a) Oin It follows from
equation (5.6) that r — 0 and thus h(a) qa' in As before, we may write
this equation in H\(Wq), that is, h(a) qa' in H\{Wq). Finally, it follows from
equation (5.3) that q £.

. Topological invariance of nodal Separatrices

The following proposition allows us to divide the proof of Theorem 7 in two cases:

(1) The singularities p and p' are nodes with equal (positive irrational) eigenvalue.

(2) The singularities p and p' are non-nodal.

Proposition 13. Under the conditions of Theorem 7, we have that p is a nodal
singularity ifand only p' is a nodal singularity. In this case the eigenvalues ofp and

p' are equal.

Proof Suppose that p has a real irrational positive eigenvalue. We know that in
this case p is linearizable. Then the holonomy associated to S is linearizable. Let
q e and I] a disc through q transverse to 3r. Let y C aS\{/z} be a simply
loop based on q and let g: (U,g) i-^ f^,q) its holonomy map. We know that

h(D) is a continuous disc transverse to !Ff through the point qf h(q). By a local
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deformation of h we may assume that X' A(X) is a complex disc transverse to
3r' and clearly h: (X,g) i-> (^,qf) is a topological conjugation between g and
the holonomy g': (X',q') i-> (X', g') associated to the loop A(y) in S'\{p'}. But

g is linearizable and this property is a topological invariant in Diff(C, 0), then the

holonomy associated to S' is also linearizable, hence the singularity p' is linearizable.
Consider holomorphic coordinates (t,x) and (t',x') at p and p' respectively such

that

(1) p and p' aregeneratedby the holomorphic vectorhelds and AV^4-
x'-^j respectively,

(2) the exceptional divisors are given by {x 0} and {xf 0} respectively,

(3) S and S' are given by {t 0} and {tf 0} respectively.

By Theorem 10 we may assume that

(1) there are numbers r, r8,8' > 0 such that the set {\t\ < 8, \x\ r} is mapped
by h into {\t'\ < 8', \x'\ r'}, and

(2) if |z| r, the set {\t\ < 8, x z} is mapped by h into a set of type {x' cte}.

Take (a, b), (af, b') e C2 suchthat \b\ r, \a\ < 8 and h(a,b) (a',bDehne
the paths ßo(s) (0,be2nis),s e [0,1] and ß'0(s) (0,b'e2nis),s e [0,1] in
S and S' respectively. The holonomy maps associated to ßo and ß'0 computed in
X {(t,b) : \t\ <5} and X' {(t',b') : \t'\ < <5'} are given by t i-> e2mXt an(j

t' i-> e27Zl)l F respectively. Suppose hrst that h preserves the orientation of the leaves.

Then h(ßo) is homotopic to ß'0 and therefore h: X i-> X' is a topological conjugation
between the maps t i-> e27Zl^t and t' i-> el7Zl^ t'. Then, since \el7Tl^\ 1 we have

by the topological invariance of the rotation number that

e27tiXf e2niX^ ^ ^
Since the holonomy maps are irrational rotations, the orbits of the points (a,b) and

are dense in the circles C {(t,b) : \t\ \a\} C X and C {(t',b') :

\t'\ |a'\} C X' respectively. Therefore h maps C onto C' and it is easy to prove
that h\c \ C —> C' is a given by

h\c(t,b) ((a'/a)t,b') for all (t,b) e C. (6.2)

Let {A} X — [X] and dehne the paths 6(s) {ae27Zl^x^l~s\b),s e [0,1] and

0'(s) {a'e27Zl^ ^l~s\b'), s e [0,1] in X and X' respectively. From (6.1) we have

{A} {2/} and from (6.2) we obtain h{6{s)) 6'{s) for all s e [0,1]. Dehne in M
the path y(s) (ae27TlÄS, be27Zls), s e [0,1]. This path is a segment of orbit of the

1-foliationinducedby 3? in{\t\ < 8,\x\ r}. The orbits of this foliation are mapped
by h into orbits of the 1-foliation induced by !F' in {\t'\ < 8', \x'\ r'}. It is easy to
see that h(y) is a positive reparametrization of the path y'(s) {a'e27Zl)l s, b'e2nis),
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s e [0,1] in M'. It follows that h{y *6) is a positive reparametrization of y' * 9' and

therefore

h(y *9) y' *6' in Hi(T% (6.3)

where T' {0 < \t'\ < \a'\,0 < \x'\ < |b'\}. Define the paths a, ß: [0,1] i->

M, a!9ß'\ [0,1] M' by a(s) (ae2jzi\b), ß(s) {a,be2jzis), a'{s)
(afe2nis,bf), ßf(s) (af,bfe2nis). If T {0 < \t\ < \a\,0 < |jc| < \b\}9 it
is easy to see that y * 9 [X\a + ß and y' * 6' [X']ar + ßf in the groups H\ (T)
and H\ (Tf) respectively. Then from equation (6.3) we obtain

h(y *6) [Xf]af + ß' in (6.4)

On the other hand, it follows from Theorem 12 that h(y * 9) [X\af + ß' in
so equation (6.4) gives [X\ar + ßf [X']ar + ßf. Thus [X] [Xf] and

therefore X X'. Suppose now that h reverses the orientation of the leaves. In this
case /z: X) i-^ reverses orientation and is a topological conjugation between the

holonomy map associated to ß0 and the inverse of the holonomy map associated to
/3q. Therefore h(t,b) ((<af/ä)t,bf) for all (t,b) e C and we obtain as before

that {A} {2/}. By redefining now 9f(s) {a^e~27ll^f^l~s\b^),s e [0,1] and

9'{s) (a'e~2ni^'e [0,1] we obtain again that h(y * 9) is a positive
reparametrization of y' * 9' and we may also write equation (6.3). As before y * 9 —

[X]a + ß in//i(r)butinthiscasewehavey/*(9/ —[Xf]af—ßf in Hx(Tf). Itfollows
from Theorem 12 that h{y*9) — [X]af — ß\ so wehave— [X]af — ßf — [X']af — ßf
and we obtain again X Xf.

7. Proof of Theorem 7 in the nodal case

This section is completely devoted to prove Theorem 7 when p and p' are nodal

singularities. Since the proof is slightly too long, the proof contains a series of
intermediary propositions (14 to 25). We also use some lemmas which are enounced
at the end of the section.

Let X be the eigenvalue of p and p'. There are coordinates (t, x) at p and (t', x')
at p' such that the following holds:

(1) The foliations are locally generated by the vector Heids + Xxj^ and t^p- +
Ax'öp respectively.

(2) The exceptional divisors E and E' are given by {x 0} and {x' — 0} respec¬

tively.

Let <S and be closed balls in the coordinates (t, x) and (tf, x') centered at p and

p' respectively. Each leaf of 3r\& other than the Separatrices {t 0} and {x 0} is

dense in a 3-submanifold which separates the ball <S in two connected components.
Each of those connected components contains a separatrix. Let <S* {(7, x) e <S :
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i/0} and {(t', x') e : xf ^ 0} and let M and J£-' be denote the space of
leaves of ^Is* and respectively.

Proposition 14. Consider L G M and assume that there is an open ball B centered

at p such that h{L D B) is contained in a leaf Lf G M'. Then there is a ball B'
centered at p' such that h~x (V D B') is contained in L.

Proof Since the set dB D L is compact and disjoint of the divisor, we may take a ball
B' centered at p' such that h~x (B') is disjoint of dB D L. If w is contained in L D B
we have h(w) e Lf. Thus, if w -> p, then h(w) tends to the divisor an we have

necessarily that h(w) i-> p'. Therefore we may take w e L D B with h(w) e B'.
Consider any point z e Lf D B'. Let C C L' D B' be a set connecting h(w) to z.
Since h~x(B') is disjoint of dB D L, the set h~l(C) is contained in L\dB, where L is

the leaf of 3* containing L. Observe that L D B is a connected component of L\dB.
Then, since the connected set h~l{C) C L\dB contains the point w e L D B we
have h~l{C) cLflß, hence h~l{z) e L.

Dehne A as the set of the leaves L G M for which there is an open ball B
centered at p such that h{L D B) is contained in a leaf V e M' denoted by /z*(L).
By Proposition 14, h*{A) is contained in the set A' of the leaves V e M' for which
there is an open ball B' centered at p' such that h~x (Lf D B') is contained in a leaf in M.
By applying the proposition in the other direction we conclude that h*(A) Af and

/z* is a bijection. Clearly A and Af are non-empty since they contain the Separatrices

{t 0} and {tf 0} respectively.

Proposition 15. IfL e M is close to the separatrix {t 0} then L e A.

Proof. Denote {t 0} and {t' 0} by S and S' respectively. Let B' be a ball
centered at p' with B' c B' and take a ball B centered at p such that h(B)4 does

not meet some neighborhood Q of the compact set Sf D dB'. Fix zq g S D B with
h(z0) G B' and assume z close enough to z0 such that h{z) e B'. Let Lz e M
and L'z e M' be the leaves through z and h(z) respectively. By assuming h(z) close

enough to /z(z0) G Sf we have that Uz D dB' C Q. Then h(Lz D B) C h(B) is

disjoint of Uz D dB' and we have h{Lz D B) C F'\dBwhere F' is the leaf of
through h{z). Observe that L'z HB' is a connected component of F'\dB'. Then

h(Lz D B) is connected and intersects (at least in h(z)) the connected component
L'z fl B' of F'\dB', hence h(Lz D B) C L'z D B' and therefore Lz G A.

Proposition 16. IfL e A, there is an open ball B such that h(L F B) is contained
in h*(L). Therefore any leaf contained in L is an element ofA.

4We denote by h(A) the set h(A H dorn(h)),
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Proofi Let B be an open ball centered at p such that h{L P B) is contained in a

leaf L' g M'. Let z g L D B and zn G L with zn -> z. Since B is open we
may assume that zn e B for all n g N. Then h(zn) G L' for all n G N and we
have h{z) limA(zw) G L'. Thus, if Li G M is contained in L\{/?} we have

A(Li D B) c Zz(L D i?) C Lf c T' and, since h(L\) is a connected subset of a leaf
of we conclude that h(L\) is contained in a leaf in M'.

Proposition 17. Let L e A and L' Zz*(L). TAere A a Z?aZZ i? centered at p
such that the connected component of B\L intersecting {t 0} is contained in the

connected component ofB\U intersecting {tf 0}.

Proof As in Proposition 16 we may find a ball B' centered at p such that

h~\B' DL') C L. (7.1)

Let V' be the connected component of B\L' intersecting {tf 0}. Take a neigh-
borhood W' of the divisor E' such that

(1) w'nD c B\
(2) if Q is the connected component of Wf\U intersecting {tf 0}, then Q C V'.

It follows from (7.1) and (1) above that

h~x(Wf PLf) C L. (7.2)

Let i?beaball centered at/? such that h{B) C W'. Let V be the connected component
of B\L intersecting {t 0}. Then h(V) C W is connected and it follows from (7.2)
that h(V) C W'\L'. Then, since h(V) is connected and intersects {tf 0}, we have

m h(V) C Q. Thus, it follows from (2) that h(V) C V'.

If F, L G M are not Separatrices, we will write F > L or L < F to means that F
and the separatrix 0} are contained in the same connected component of <S\L.

Proposition 18. If F > L and L e A, then F G A and h*(F) > h*(L).

Proof Let B a ball centered at p given by Proposition 17 and let V and V' be as in
the proof of this proposition. Since F > L, then F P B C V and by Proposition 17

we have h{F P B) C V' C B'. It is easy to see that this implies F G A and

h*(F) > A*(L).

Proposition 19. At least one of the equalities A M or A' JE holds.

Proof Assume by contradiction that A ^ M and A' ^ M'. As a first Step we will
prove that there exists L G M (not a separatrix) such that

F > L F G A and F < L F £ A. (7.3)
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The closure of a leaf L e M is contained in a set of type |x|/|^|^ r e (0,+00]. We
denote r r(L). It is easy to see that F > L is equivalent to r(F) > r(L). Then

(,r(F) > r(L),L e A) implies F e A andthereforewededucethatr(<A) C (0,+00]
is an interval. Since «A ^ M we see that p := inf (r(<A)) > 0. Now, if we take L e M
such that r(L) p it is easy to see that (7.3) holds.

Now we continue with the proof of Proposition 19. Suppose first that L A and

take L' e M'\A'. Let B' be a ball centered at p' with B' c B'. Since L is not the

separatrix {t 0}, there is a neighborhood W' of the divisor E' such that

(1) w'nD c B',

(2) if L'is the connected component of W'\L' intersecting {L 0}, then V' C B'.

Let B be a ball centered at p such that h(B) C W' and let V be the connected

component ofi?\L intersecting {t 0}. Letz e V and F e M be the leaf containing
z. Clearly F is contained in the connected component of B\L intersecting {t 0},
hence F > L and therefore F e «A, by (7.3). Then h*{F) e A' and we have

A*(F) fl L' 0, otherwise Lf C h*(F) and Proposition 16 implies Lf e A\
which is a contradiction. Therefore z £ U and it follows that h(V) D U 0, that
is h(V) C W'\L'. Therefore, since A(L) is connected and intersects {tf 0}, we
deduce from (2) thatA(L) C Lr C iL. Thus, since L D B C L, we have h(LHB) C

/z(L) C A(L) C B' C hence L g eA, which is a contradiction. Suppose now that
L e A and let Lr A* (L). Let .ß7 a ball centered at p' with B' c and take a ball
i? centered at/? suchthat A (LH ,ß) C L'HB'. Since 35/nL/is compact and farof the

divisor, we may assume B small enough such that A (5) is disjoint of a neighborhood
Q of U fl dB'. Choose a point z0 E L D B. Thus, since A(L D B) cL'fl iL, we
have A(z0) g Lr D It is easy to see that we may find a point z arbitrarily close
to z0 such that the leaf F e M through z satisfies F < L and therefore F A.
Since A(z0) g B' we may assume A(z) G B'. Let i77 g be the leaf through
A(z). Again by taking A(z) close enough to A(z0) g Lr we may also assume that and

F' fl dB' C Q. Let F' be the leaf of F' containing F' and observe that F' D B' is

a connected component of F'\dB'. Since h(F H B) C h(B) and F' D dB' C Q

we have that A(F fl B) is disjoint of i77 D Then h(F PI B) C F'\dBf. Thus,
since A(F D ,ß) is connected and intersect (at least in A(z)) the connected component
F' fl B' of F'\dB', we deduce that h(F D B) C F' D B'. But this means that i7 G «A,

which is a contradiction.

Given L'0 G 3C we will find a neighborhood IL^Lq) of the divisor E'
with the following property:

If L' > L'0 and F' is a leaf of F'\w> intersecting L', then F' C L'. (7.4)

Suppose first W' is any neighborhood of E' and let F' be a leaf of F\w, intersecting
L' > L>0.lfF' is not contained in L\ then F' intersects the boundary 3L' L' D dB
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of L'. But it is easy to see that the union of the sets {dLf}Lr>Lr *s contained in a

compact set K disjoint of the divisor E'. Then it suffices to take W' disjoint of K.

Proposition 20. Let B be a ball centered at p and W a neighborhood ofthe divisor
E such that B C W and h(W) C W'. Given z e B\E, let Lz e A be the leaf
through z and let Fz be the leafofE\w containing Lz D B. Then, ifh*(Lz) > Lq,
we have h(Fz) C h*(Lz).

Proof. It follows fromthe definition of h{Fz) that h{Fz) D h*{Lz) ^ 0. Then, since

h*(Lz) > Lq, the property 7.4 implies that the leaf F'z of F'\w' containing h(Fz) is

a subset of h*{Lz). Therefore h(Fz) C h*{Lz).

Now, by global considerations we prove the following.

Proposition 21. Both equalities A M and Af M' hold. Thus h* is a bijection
between M and J(f.

Proof. By Proposition 19 we may assume that A M. Suppose by contradiction
that Af J(f. Fix L'0 e J(f\Af and let W\ W, B, Lz and Fz as in Proposition 20.

Claim 22. For all z e B\F the set Fz intersects the divisor only at p.

Let z e B\E. Since h*(Lz) e A and L'0 ^ Af we deduce from Propositions 16

and 18 that h*(Lz) > Lf0. Then Proposition 20 implies that h(Fz) C h*{Lz). Now,

suppose that wn e Fz tends to the divisor as n oo. Then h(wn) e h*(Lz) tends

to the divisor and therefore h(wn) tends to p'. Since h*{Lz) e A\ if h(wn) is close

enough to p' we have necessarily wn e Lz, hence wn tends to p. Thus Claim 22 is

proved.

By a suitable finite composition of blow ups we construct a map ji: M M
such that the strict transform of F by ji has only reduced singularities. Since p is

yet a reduced singularity we may assume that jc does not involve any blow up at p.
Thus we may locally identify the Spaces M and M atthe points n~l (p) p. Let F
denote the strict transform of F restricted to the set W 7f_1(IL). For all z e B\E
the leaf Fz of F\w defines a leaf Fz of F. Let E 7r_1(L) and D c E be the

projective line containing p.

Claim 23. Any singularity q ^ p of E in D has a real negative eigenvalue.5

Let (L x) be holomorphic coordinates at q and a, b > 0 such that

(1) q zz (0,0) and D is given by {x 0},

5This a consequence of the contradiction hypothesis A / 3E
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(2) the set T {\t | < a, \x\ < b} is contained in W and q is the unique singularity
in 7,

(3) any point in R {\t \ a, 0 < \x\ < b} belongs to Fz for some z e B\E.
Let w be any point in R, let L be the leaf of E\t through w, and z e B such

that Fz contains w. We have by (2) that L C Fz. Then L C Fz and, since p £ T, it
follows from Claim 22 that L D D 0. Thus Claim 23 is a direct consequence of
Lemma 28 below.

Suppose that Di is a projective line in E intersecting D. Observe that the union
of the Fz contains a neighborhood of any regulär point in D. Then, since by Claim 23

the singularity at D H D\ has a real negative eigenvalue, there is a neighborhood ü
of this singularity such that

t/\(ÖUÖ!)c U
zeB\E

Let £i C U\D be a disc transverse to Di. Then, if q\ ^ q is a singularity in Di,
there are coordinates at q\ satisfying the conditions (1), (2) and (3) in the proof of
Claim 23 with q\ and Di instead of q and D. Thus we may prove that all singularities
in Di have eigenvalue in M<o. If we continue with this argument along the divisor
E we conclude that all the singularities of E other than p have eigenvalue in R<0.

Let S cMbe the strict transform of the union of the Separatrices of E in (C2, 0).
Since all singularity other than p has eigenvalue in M<o, there exists a neighborhood
Q of E such that the union of the Fz contains the set Q\(E U S). Then

SU U
zeB\E

contains the set Q\E and therefore

G =h(S) U h(\J Fz) U

is a neighborhood of the divisor E'. But this is a contradiction because it follows
from Proposition 20 that h({J Fz) is contained in (J h*(Lz) C B' and clearly hiß) U

B' U E' is not a neighborhood of E'. Proposition 21 is proved.

At this point we have a correspondence between the leaves in M with the leaves in
M'. Moreover, given corresponding leaves L e M andZ/ e M' wehave/z(LDD) c
V for a small enough ball B centered at p. Let F and F' be the leaves of E
and E' containing L and V respectively. The map h\f maps the pair (F, L H B)
onto the pair (D7, h{L D B)). From the topological structure of nodal singularities
and using the fact h{L D B) C Lf we can prove that the pairs (F, L D B) and

(F', h{L fl B)) are homeomorphic to (F, L) and (F', Lf). This allows us to construct
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anewhomeomorphism/zT?: F i-> F' mapping (F, L) onto (F\ Lf). Intheremainder
of the proof we construct the maps h F depending continuously on F and such that
hF h outside <S. We make this construction in such way the total homeomorphisms
obtained extends to the divisor in a neighborhood of the nodal singularity.

Naturally we may assume that the sets {\t\ < 1, kl < 1} and {\t'\ < 1, k'l < 1}
are contained in the balls <S and respectively. Take b e (0,1) and consider

w (1, b) e <S. Let Lw e M be the leaf through w. If b is taken small enough,

h*{Lw) intersects {\t'\ 1, k'l < 1} in a set of type {\t'\ \,\xf \ b'} for some
V G (0,1). SetT {0 < \t\ < 1,0 < \x| < b},T' {0 < \t'\ < 1,0 < k'l < b

R {\t| 1, kl < b}9 R' {\t'\ 1, k'l < n R* {\t\ 1,0 < |x| < b}
and R'x {\tf| 1,0 < kl 5 bf).

Proposition 24. There exists a homeomorphism onto its image f: R* i-> T such

that thefollowing holds:

(1) Ifz G L e M, then f(z)eL andh{f{z)) g h*{L).

(2) ä(/(ä*)) C r.
Proof. Consider the real flow (tangent to the foliation) (/>s(t,x) (te~s, xe~^s).
Given z (t, x) e R*, we have fs(z) -> p as s -> +oo and clearly fs(z), s > 0

is contained in a leaf L g M. By Proposition 21 we have L g A and therefore for
s big enough we have that h(fs(z)) is contained in a leaf V e M'. Since h(fs(z))
tends to the divisor and L' meets the divisor only at p we deduce that h(fs (z)) -> p'
when s +oo. Then we may dehne

to(z) infjr > 0 : h(fs(z)) e T' for all s > r}.

Let us prove that to: R* i-> [0, +oo] is upper semi-continuous. Suppose on the

contrary that there is a sequence (.zn)ne^ of points in R* with zn -> z e R* and

such that to(zn) > ro(z) + 2s for some s > 0. Then for all n e N we hnd
Sn > r0(z) + s such that h(fSn (zn)) £ p'. Suppose hrst that {sn} is bounded. Then

by passing to a subsequence if necessary we may assume sn -> s > ro(z) + e, so

that h{<pSn{zn)) -> h{<ps{z)), but this is a contradiction because h(<pSn(zn)) £ T'
for all n e N and s > To(z) implies h{<fis{z)) e Tf. Otherwise, again by passing
a subsequence we may suppose sn -> +oo. Then (j)Sn{zn) -> p and therefore
h{(j)Sn (zn)) tends to the divisor. Let Ln e M be the leaf through zn. Since zn -> z
there is L e M such that Ln> L for all n e N. Let V and V' be as in the proof of
Proposition 17. Thus, for n big enough we have fSn (zn) e V and, by Proposition 17,

h(fSn(zn)) g V'. Then, since h{<pSn{zn)) tends to the divisor, we conclude that
h{<pSn{zn)) -> p\ a contradiction since h{<pSn{zn)) £ T' for all n e N. Now, by
Lemma 29 below there exists a continuous function r: R* i-> M+ such that r > tq.
Then h(fT^z\z)) e T for all z g R* and we finally dehne /(z) (pT^z\z).
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Proposition 25. There exists a homeomorphism H: R i-> Rf with the following
properties:

(1) H({(t,x) e R:t u}) {(t',xf) e R' : t' — ujforallu.
(2) Ifz e L e M, then H(z) G h*(L).

Proof Let X* {(l,x) : 0 < \x\ < b} and X* : 0 < \x'\ < b'}. By
Proposition 24 the set <© h o /(X*) is contained in T'. Fix z G <© and yz C T'
a path in the leaf through z with yz(0) z and yz(1) G X*. Given z G <©, choose

a path az C £) joining z with z. Denote by tt the projection (F, xf) i-> t' and let

yz : [0,1] i-> V be the path in the leaf through z which is the lifting by the fibration
t' — cte of the curve 7i{az * yz)- Then yz( 1) is a point in X*. Suppose that äz C £>

is another path joining z with z0. Then äz * a~x C S) is the image by h of a closed

path 6 in /(X*). Since /(X*) is homotopic to X* in T we have that 6 does not
link the separatrix {t 0}. Thus, it follows from Theorem 12 that äz * a~x does

not link {tf 0}. Then the paths 7t(az * yz) and 7t(äz * yz) are homotopic in
{(F, 0) : f / 0} and therefore the point yz(1) e X^ does not depend on the path

az. Thus g(z) yz(1) defines a map g: £) i-^ X^. It is not difficult to prove that g
is injective6. Dehne H: X* i-^ X^ by H g o h o /. Then H is injective and it
follows from Proposition 24 that //(u;) G /z*(L) g whenever w G L g M. Let
w G X and Lw e M the leaf through u;. If w is close to (1,0) G X, then Lw is close

to {x 0}. In this case, we know that h*{Lw) is close to {xf 0}. Therefore, since

H{w) G h*{Lw), we have that H{w) (1, 0) G Xr as w (1,0) G X. Then by
setting H(l, 0) (1,0) weextend//asahomeomorphismofX {(l,x) : \x\ < b}
onto its image in Xr {(1,jv7) : |xr| < b'}. Let r: X ^ X and r': X' i-> Xr be
the holonomy maps associated to positively oriented circles around (0,0) in {x 0}
and {x' 0} respectively. Let us prove that H conjugates the maps r and where
£ 1 or — 1 according to h preserves or reverses the orientation of the leaves. Let
w G X and 6 c R be the path in the leaf through w joining it with r(w). Take any
path i] C X joining r(w) with w. Let a and a' as in Theorem 12. Then 6 * r] is

homologous to a in {t ^ 0} and therefore f{6 * rj) is homologous to a in {t ^ 0}.
Suppose first that h preserves the orientation of the leaves. Then by Theorem 12

we have that ho f(6 * rj) is homologous to a' in {tf ^ 0}. Parametrize the path
ho f(rj)c3) by zt, t G [0,1], zo h o f(r(w)), z\—ho f(w). For all t e [0,1]
we may construct the path yZt as above, depending continuously on t G [0,1]. The

path yZt is contained in a leaf and yZt (1) g(zt). The map G : [0,1] x [0,1]
defined by G(t, s) yZt (.s1) is continuous and maps the boundary of the Square onto

h o *yZl * (g oho* 7z"1.

Then this path is homotopically trivial in {tf ^ 0}, so that yZQ * h o /(0 * r])yzx

6We make a complete proof in a similar Situation in Subsection 10.1
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is homologous to

# Yz0*h of(ß)* * o h o f(rj)

in {L 7^ 0}. Then d is homologous to a' in {tf 0}. Observe that d has the part
yZ0*ho f(0) * y~x contained in a leaf and the part g oho f(rj) contained in X'. Then,
since path yZ()*ho f(0) * y"1 joins the point H(w) with H{r{w)), we conclude that

H(r(w)) r' o H(w). If h reverses the orientation of the leaves the proof follows
as above but in this case we have that d is homologous to —a! in {tf ^ 0}, so that

H(r(w)) r/_1 o H(w).
Recall that w e {(l,x) : \x\ b} implies that h*(Lw) D X' is contained in

{(1, jcr) : \xf\ bf}. Then //(X) intersects {(l,x/) : \xf\ bf} and, since //(X)
is invariant by the irrational rotation r\ we deduce that //(X) X'. Now, since
the 1-foliations induced in R and Rf are suspensions of r and r' respectively, it is

easy to extend H to a homeomorphism H : R \-^ Rf satisfying the assertions of the

proposition.

Dehne the function g: R i-> T by g(t, x) fx{t,x) xe~x). This map
is a homeomorphismbetween R and R {(t,x) : \t\ e~x, \x\ < be~A}.

Lemma 26. Let fg: R* -> T be homeomorphisms onto is image. Suppose that

f (z) and g(z) are contained in the leaftrough zfor all z G R*. Let Vf and Vg be the

closures in T ofthe connected components ofT\f (R*) and T\g(R*) containing R*,
whereT is the union ofleaves L G M meeting R*. Then there exists a leafpreserving
homeomorphism O: Ly i-> Vg such that id and 0(/(z)) g{z) for all
Z G R*.

Proof Given z g L*, let l{ and Lf be the leaves of 3*\vf and through z.

The interiors of l{ and Lf are conformally equivalent to the unit disc and we may
consider the Poincare metric on l{ and Lf. Let y/ : R i-> Ljf be the geodesic in

l{ with y/(—oo) z and y/(+oo) /(z) and set // y/(R±oo)- Dehne

analogously y/ : R i-^ Lf and //. Let <t>z: // i-> Lf be the homeomorphism such

that Oz(y/(s)) y/O?) for all s g R. Dehne O: Ly Lg by <t>|7/ for all

z G L*. It is not difhcult to see that O is a leaf preserving homeomorphism.

If / is given by Proposition 24 and g is the map dehned above, Lemma 26

gives us a leaf preserving homeomorphism O: Vf i-> Vg such that 0| id and

0(/(z)) g(z) for all z G L*. Take a neighborhood W of the divisor E containing
{\t | < 1, |jc| < b} and set W* W\({\t\ < 1}U E\Wf B^ULyandlLg IL*U
Lg. Since id we may continuously extend O to Wf by setting ®\w* — id.
Then O: ILy i-^ ILg is a leaf preserving homeomorphism. Dehne /': Rf* i-> T' by

f' hofo H~l and g7: Rf i-> Tf by g'(L, x') f1 (L, x') (Le_1, xfe~x). By
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Proposition 24 we may apply Lemma 26 to f and gf to obtain a homeomorphism
O': K// ^ Vgt such that O'k; id and &{f'{z')) g'{z') for all z' e R*. Set

W' h(W)9 Wi W'\{\t'\ < 1}, W'f, WlUVft and W'g, W£\JVg' andextend
<t>' to a leaf preserving homeomorphism O': Wj?, i-> Wg/. Then it is easy to see that

the homeomorphism h <t>' o h o O-1 is a topological equivalence between 3r\ wg

and^'ltv' Set/?* g(R*) {(L*) : kl < \x\ < be~x} and observe

that A | ^ g' o H o g_1. Then A extends to R and maps this set homeomorphically

onto R' {{t'x') : k'l e_1, |xr| < b'e~x}. Now we apply Lemma 27 below to
extend A to {kl < e~l,\x\ < Ae_A} as a topological equivalence and this finishes
the proof of Theorem 7 in the nodal case.

Lemma 27. Let 37 be the foliation in C2 generated by the holomorphic vectorfield
t-jj + Xx-^, where X is an irrational positive number. Let a,b,a',bf > 0 and
h: {k| a, \x\ < b} i-> {\t\ af, \x\ < b'} a homeomorphism such that

(1) h is a topological equivalence between the l-foliations induced by 3? in {\t\
a, \x\ < b} and {\t\ a', \x\ < b'},

(2) h is expressed as h(t,x) (h\ (t), A2<k, x)).
Then h extends as a topological equivalence between {kl 5 a,\x\ < b} and {kl <
af, \x\ < b'}.

Proof.1 Clearly h maps the disc {(<a,x) : \x\ < b} onto the disc {(hi(a),x) :

\x\ < b'} and h conjugates the holonomies (a, x) i-> (a, e27tl)"x) and (hi(a), x) i->
(h\(a),e2:n:i)lx) defined on these discs. Since X is irrational it is easy to see that h

maps the circle T {(a, x) : \x\ b} onto the circle Tf {(h\(a),x) : \x\ b'}
and there is v e C* such that h(a,x) (,h\(a), vx) for all x e C with \x\ b.
Since for any a,ß e C* the map (t,x) i-> (at,ßx) is a global auto-conjugation
of 3ri by composing h with a suitable such map if necessary we may assume that

a — b — a' — b' — h\{cT) — v — \. Then A(l,x) (l,x) for all x e C

with \x\ 1. Clearly the map Ai is a homeomorphism of the circle {kl 1} onto
itself. Since the map (t,x) i-> (t,x) is a global auto-conjugation of 3ri we may
assume that h\ preserves orientation. Then there is an increasing homeomorphism

f \ [0,1] -> [0,1] such that h\{e27Zls) e27Zlfor all s e [0,1]. The orbits
of the 1-foliation induced by 3? on {(t,x) : kl — \x\ — 1} are parametrized by
(e2nis, e27ZlXsz), s e R, |z| 1. Observe that A maps each circle {(«e2nis,x) :

\x\ 1} onto the circle {{e27Zl(^^s\ x) : \x\ 1}. Moreover h conjugates the 1-

foliation on {(t,x) : kl kl 1} with itself and A(l,z) (l,z) if |z| 1. Then
it is easy to see that

h f?2nis e2jtiXsz^ _ ^2tt/0O) e2nik(t>{s)

7We may also find a proof of this lemma in [5]
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fovs g [0,1], |z| 1. Let<f>t: [0,1] -> [0,1], t G [1/2,1] be a continuous family of
homeomorphism such that f\/2 — id and f. For 1/2 < r < 1, |z| 1 and

s G [0,1) dehne

^re2nis e27tiXsz^ _ ^re2ni<f>r(s) e2nik(f>r(s)

It is not difficult to see that this extends de conjugation h to the set {(t, x) : 1 > \t\ >
1/2, \x\ 1}. Moreover, if \t\ 1/2 and \x\ 1 we have h(t,x) (t,x) and

we can extend h to the set {(t, x) : \t\ < 1/2, \x\ 1} as the identity map. Then
the extended h is an auto-conjugation of the 1-foliation dehned by J on 3(D x D).
Finally, since the singularity at 0 G C2 is in the Poincare domain, topologically the

foliation 3* on the bidisc D x D is a "cone" generated by the 1-foliation on3(DxD).
Then it is easy to extend h to the interior of the bidisc.

Lemma 28. Let 3? be a holomorphic foliation on a neighborhood of the set T
{\t\ < a, \x\ < b} with an isolated singularity at 0 G C2. Suppose that

(1) the singularity atO £ C2 is reduced and D {x 0} is a separatrix, and

(2) ifL is the leafofS^lr passing through a point in R {\t \ a, 0< \x\ < b},
then L f! D 0.

Then the singularity at 0 G C2 has a real negative eigenvalue.

Proof By condition (2) we see that 0 G C2 could not be neither a hyperbolic neither
a nodal singularity. It remains to prove that 0 G C2 is not a saddle node. Suppose
that 0 G C2 is a saddle node and assume hrst that D is the strong separatrix. By
the Flower Theorem is easy to see that a leaf L through a point p £ R close enough
to D is such that L contains Z), which contradicts property (2). Suppose now that
D is the weak separatrix. By the topological structure (see for example [9]) of the
saddle node we may find a leaf L through a point in R such that L intersects the set

{0 < \t\ < a, \x\ b} at a point q close enough to the strong separatrix {t 0}
in such way (as above) L contains the strong separatrix. Then L contains 0 G C2,
which contradicts property (2).

Lemma 29. If to: R R is upper semi-continuous, there exists a continuous

function x: R ^ R such that x > Xq.

Proof It is easy to prove.

8. Topological structure of a non-nodal simply singularity

Let 3? be a holomorphic foliation with an isolated singularity at 0 G C2 of eigenvalue
X Rq. Let (x, y) becoordinates such that {x 0}and{y 0} are the Separatrices
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of the singularity. We may find a holomorphic vector field Z generating 3? such that

ß ß
Z — Xix(l+ •••)-—b X2y( 1 + • • —,ox ay

where re{X\) > 0 > re{X2). Thus, in a neighborhood U of 0 £ C2 we have

Z xA-^. + yB-S^ with re{Ä) > 0 > re{B). Let <fi be the real flow associated

to Z and let a,b > 0 be such that P {\x\ < a, \y\ < b} C U. Let z be any
point in T 0}. Write0(Lz) (x(t),y(t)) and put g(t) \x(t)|2. A
straightforward computation shows that

g'(t) 2\x(t)\2re{A(t)} > 0,

hence the function \x(t) \ is strictly increasing. Analogously we may prove that the
function \y(t)\ is strictly decreasing. Thus, since z (xo,yo) with |x0| < a and

| yo | < b we have that the orbit of z intersects the set {| x | < a, | y \ b } at exactly one

point w. Therefore we have z (j){s, w) with 0 < s < r(w), where x{w) > 0 is the

unique real number such that cp(r(w), w) is contained in the set {|x| a,\y \ < b}.
Since Z is transverse to {|x| a, \y\ < b}, we have that r depends continuously
on w. Moreover observe that Z is transverse to the sets {|x| cte ^ 0} and

{|j| cte ± 0}.

Lemma 30. Let b\ e (0,b) and let I and J be open intervals such that I C (0, a)
and J C (0, Zq). Then there exists 8 > 0 and a map g such that

(1) g is a homeomorphism between Q {(x,y) : |x| < a, 0 < \y\ < b} and

Q\{(0,y) : |j| 5 bi},

(2) g preserve the leaves of 5%

(3) g idon {(x,y) : (\x\-a)(\y\-b) 0},

(4) for all r e I we have that g maps {\x\ r, 0 < \y\ < 5} into a set of type
{\y\ r'} with r' e J.

Proof Let R {(x,y) : 0 < |x| < 8, \y\ b} with 0 < 8 < a. Take functions

a: [5, 6] i-^ R and ß: [0, 3] i-^ R such that

(1) a is strictly increasing with ar([5, 6]) /,
(2) ß is strictly decreasing with ß(0) b, ß(l) b\ and ß([2, 3]) 7.

It is easy to see that for 8 small enough the orbit of any z e R intersects each

set {\y\ ß(s)}. Since the flow is transverse to the sets {\y\ ß(s)}, we have

continuous functions rs: R \-> R+ such that f(rs(z),z) e {\y\ ß(s)} for all
z g R, s e [0, 3]. Make f(t, z) — (x(t), y(t)) and observe that

(1) |y(r3(z))| ß(3) > 0 and |x(r(z))| a > 0,
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(2) |x(r3(z))| -> 0 and \y{x{z))\ -> 0 as |z| -> 0.

Therefore by reducing 8 we may assume that

|y(r3(z))| - |x(r3(z))| > 0 > |y(r(z))| - |x(r(z))|.

Then, since \y(t)\ — \x(t)\ is strictly decreasing we have a continuous function
7:4: R \-> R+ defined by f(x4(z),z) e {|x| \y\}. By reducing 8 if necessary
we have |x(t4(z))| < a(5) and we also obtain continuous functions xs: R i-> M+
such that cp(xs(z),z) e {|x| a(s)} for all z e R, s e [5, 6]. Observe that r3 < x\
and 7:4 (z) oo as z ^ {i 0}. We dehne t4(z) oo if z e R D {x 0} and

construct a continuous family of functions xs : R \-> M+, s G (3,4) such that

(1) xs < xsr for all s, sf e [3,4], s < s\
(2) xs(z) -> x3(z) as s -> 3 for all z e R,

(3) xs(z) -> X4(z) as s -> 4 for all z e R.

We extend the family xs by making

xs (5 — s)x4 + (s — 4)t5 if s G [4, 5],

*s 0 - s)r6 + (s - 6)r7 if s e [6,7],

where r7 r. It is easy to see that xs < xsr for all s, s' G [0,7], s < s'. Take an

increasing homeomorphism /: [0,7] i-> [0,7] such /([5, 6]) [2,3], /([0,4])
[0,1]. We write w <p(xs(z),z), z e R, and dehne A(w) xf(s)(z) — xs(z).
Take a continuous function p: [0,5] i-> [0,1] such that p 1 on [0, 8/2] and p 0

near of 8. Dehne now g(w) 0(p(|z|)A(u;), w). The map g is dehned on V

{0(r?(z),z) : z e R, z e dom(r5)} and may be extended to Q by making g id
on <2\F. It is not difhcult to see that g satishes the assertions of the lemma.

Lemma 31. Given ci\ with a > ci\ > 0, there exists a map g such that

(1) g is a homeomorphism between P\{(x,0) : \x\ < a\} and P\{0},
(2) g preserve the leaves of 3%

(3) g maps {(x,0) : a\ < \x\ < a) onto {(x,0) : 0 < \x\ < a) with g(x, 0) ->
(0, 0) as \x\ -> a\,

(4) g idon {(x,y) :\x\=aor\y\= b},

Proof Let R {(x, y) : 0 < \y | < 8, \x\ — a} with 0 < 8 < b. Now, we denote

by f the real how associated to — Z. As in the proof of Lemma 30, for 8 small enough
we may construct a continuous family of functions xs: R h^lU{+oo},^ e [0, 3]

such that

(1) r0 0,
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(2) xs < xsr for all s, s' g [0, 3], s < s\
(3) for all s e (0,2) the function xs take values in R+,

(4) X2(z) e {\x\ |y|}forallz e R,

(5) r3(z) g {2\x\ ||} for all z G R.

Take an increasing homeomorphism /: [0,3] i-> [0,3] such /([0,1]) [0,2]. As

before, we write w <p(xs(z),z), z e R and dehne g(w) </>(p(|z|)A(u;), w),
where A(u;) if(s)(z) — ts(z) and p: [0,5] i-> [0,1] is such that p 1 on [0,8/2]
and p 0 near of 8. The map g is dehned on V {4>{xs{z),z) : z G R, z e
dom(r5)} andmaybeextendedto P\{(x,0) : \x\ < öi} by making g idonP\F.
Then g satishes the assertions of the lemma.

9. Proof of first part of Theorem 7 in the non-nodal case

In this section we prove the hrst part of Theorem 7, that is: Given s > 0 we con-
struct a topological equivalence h between 3? and T' such that, for some numbers

a,b, a', b' G (0, s), we have

(1) h maps {\t\ < a, 0 < \x\ < b} into {1^1 < a', 0 < \x'\ < V},

(2) h maps {\t\ a, 0 < \x\ < b} into {1^1 a', 0 < \x'\ < V},

(3) close to the divisor and outside

{\t\ < s, \x\ < £} U h~l(\t'\ < s, |xr| < s)

we have h h.

Actually we will prove the following stronger version of item (2) above:

(2r) For some öi G (0,a),a[ e (0,a'), the sets {\t\ r, 0 < \x\ < b}re[a 1>a] are

mappedby h into the sets {1^1 — r', 0 < \x'\ < b'}rre[a^ aq

It follows from Theorem 10 that there is a topological equivalence h such that for
some a, ar, b g (0, s) we have the following:

(1) For all s in a neighborhood of b, the set {\t\ < a, \x\ ^} is mapped by h into
the set {1^1 < ar, \x'\ ß(s)}9 where ß is an increasing continuous function.

(2) Close to the divisor we have h — h.

Take bi < b and an open interval J in the domain of definition of ß such that

J C (0,bi). Let bf ß(b), b'i iß(bi), J' — ß(J) and take open intervals I
and I' such that I C (0,a), F c (0,ar). Clearly we may assume a, a', b, br be

small enough such that {\t \ < a, \x\ < b} and {|F| < ar, \x'\ < br} are contained in
neighborhoods as in Section 8. Thus, by Lemma 30 there exist homeomorphisms g
and gf and numbers 8,8' > 0 such that
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(1) g maps Q {|£| < a, 0 < \x\ < b} onto ß\{0} x [0, bi],
(2) g' maps Q' {\t'\ < a', 0 < \xf\ < b'} onto ß7\{0} x [0, b[],

(3) g and g' are leaf preserving and are equal to the identity on {(t,x) e Q :

(\t\ —a)(|x| — b) 0}and{(t',xf) g Q' : (\t'\—a.')(\x'\ — b') 0}respectively,

(4) g maps the sets {\t\ s, 0< \x\ < 8}sej, into the sets {\x\ s}sej,
(5) g' maps the sets {\t'\ s, 0 < \x'\ < 8'}sep into the sets {|jc7|

Outside the exceptional divisor we may extend g and g' as the identity map. Clearly
g and g' are topological equivalences of 3r with itself and 3rf with itself respectively.
Then h g'~l o h o g is a topological equivalence between 3? and 3r and it is not
difficult to see that, if 8 is taken small enough, the following properties hold:

(1) The sets {\t \ s, 0 < \x\ < 8}sej are mappedby h into the sets {\t'\ s, 0 <
\X'\ < b'}srep.

(2) Close to the divisor and out of

{\t | <e,\x\ <8}{Jh~\\t'\ <e, \x'\ <e)

we have h h.

Let b' — b' and take a e I, a! e I be such that {\t'\ a', 0 < \x'\ < b'} contains

h(\t \ a, 0 < \x\ < 8).

Assertion. There exists 8 > 0 such that {\t'\ a', 0 < \x'\ < 5} is contained in
h(\t\ a, 0 < \x\ < 8).

Take <5 > 0 such that for all (tf, x') e h(\t\ a, \x\ 8) wehavelx'l > 8. Since
h is a homeomorphisms, the set X h(\t\ a, 0 < \x\ < 8) D {\t'\ af, 0 <
\x'\ < ^lisopeninjl^l a', 0 < \x'\ < 5}. Obviously the set X is non-empty, then

it suffices to show that X is closed in {\t '| af, 0 < |x'| < 8}. Let (tk,xk) e {\t\
a, 0 < \x\ < 5} be such that h(tk,Xk) tends to a point q in {\t'\ a', 0 < \xf\ < 5}.
We may assume that (tk,xk) -> (to, *o). Clearly x0 7^ 0 because q is not a point
in the divisor {x' — 0}. Then (*o,*o) £ {|*| — a,0 < \x\ < 5}. By the choice
of 8 and the injectivity of h we have that (to,xo) £ {\t\ a,0 < \x\ < 8}. Then

q h(to, xo) G X and X is therefore closed in {\tf\ a!, 0 < \x'\ < 5}. Assertion
is proved.

Take b e (0,5) small enough such that

A h({\t\ < a,0 < \x\ < b})

intersects B {\t'\ < a', \x\ < b'} in a set contained in {\t'\ < a', \x\ < 5}. Then

A fl dB C {\t'\ a', 0 < \x\ < 5}.

But {\tf\ a', 0 < \x\ < 5} is contained in the set h(\t\ a, 0 < \x\ < 8), which
is disjoint of A, since h is injective. Then A D dB 0. Finally, for complete the
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proof we show that A is contained in B. The set A is connected and it intersects the

separatrix {t' 0, \x'\ < b'} C B. Then A (f B implies A D dB ^ 0, which is a

contradiction.

10. The-linearizing/resonant case

Let h be the homeomorphism constructed in Section 9. By simplicity we denote h also

by h. Let ^ be the foliation of dimension 1 inducedini^ {\t'\ a',0 < \x'\ < b'}
by 5r/. Let f be the flow associated to H such that if z (t', *) G R\ then

4>{s,z) (e27Tlstf,*). For 8 G (0,b) let D D{8) {(<a,x) : 0 < \x\ < 5} and
<© <£>(<$) h(D). Let£ {(a',xf) : \xf\ < bf}. It is in the proof of the following
Proposition where the linearizing-resonant hypothesis is used. This proposition is the

key to redressing the transverse sections {t u, \x\ < b} in the proof of the
second part of Theorem 7. By [<c, d\ we denote the closed interval with endpoints c
and d, even if c > d.

Proposition 32. If 8 is small enough, there exists a continuous function x: <© i-> R
such that

(1) f(t,z) G R' and f(z) </>(r(z),z) G £ for all z G <©, t G [0, r(z)],

(2) /: homeomorphism onto its image,

(3) /(<©) where o (af, 0) G I] and £2 C H is a topological disc

containing o,

(4) f(z)^oasze£) tends to the divisor {xf 0}.

It is easy to see that there exists z0 G <© and ^ ^ such that (p(so,z0) G £
and f(s,z0) G for all s G [0,j?0]• Let z be any point in <£). Take any path

y: [0,1] i-> <£) with y(0) z0 and y(l) z. If z0 (to>*)> we maY write
y(s) (e27tl°(sho, *), where 0 : [0,1] i-> R is continuous and 0(0) 0. We define

r(z) £0 — 0(1). Let y': [0,1] i—> <0 be another path joining z0 and z and let
0': [0,1] R be the corresponding function. It is easy to see that Of1) — 0(1) is

the linking number between the path y-1 o y' and the vertical {t 0} and therefore

equal to zero, by Theorem 12. Thus r is well defined and it is easy to see that it is

a continuous function. Take 8 > 0 be such that Tf {\t'\ a',0 < \x'\ < 5} is

contained in A({|t| a, 0 < \x\ < b}). We divide the proof of Proposition 32 in
three cases.

10.1. Proof of Proposition 32 when the holonomy is a rotation. In this case we

may take 8 small enough such that for all z g <©, all the orbit of H passing through z
is contained in Tf. Therefore f(t, z) G Rf for all z G <£) and for all t G [0, r(z)]. It
follows from the construction of r that /(z) 0(r(z), z) G £. We shall prove that
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/ is injective. Suppose that /(z) /(zr). Let y: [0,1] i—> 4D be a curve joining z
andz'. Lets e [0,1] and let a and ß be thepaths </>((l — s)r(z),z) and(p(sr(z'),z')
respectively. Let(9betheclosedpathy*/3*a. For/1 e [0, l]wedefineyt,at and/3jby
theexpressions(p(troy(s),y(s))9(p((l—s-\-ts)r(z),z) and0((s +1(1 — s))r(zr),z')
respectively. It is easy to see that yt * ßt * wt dehne a homotopy between 6 and a

path contained in £. Then 6 does not link the separatrix {tf 0} and therefore, by
Theorem 12, the path h~x{6) does not link {t' 0}. Observe that the path h~x{6)
has the part h~x(y) contained in D. On the other hand, h~x (ß * a) is a path contained
in a leaf of the foliation 3? restricted to {0 < \t\ < a, 0 < \x\ < b}. Sineeh~x(ß*a)
joins h~x (z) and h~x (zr) (points in D) we have that h~x (z) g(h~x (z')), where g
is the holonomy map associated to the projection of h~x (6) in {x 0}. Then, since
h~x (6) does not link {t 0}, we have that g id, hence z z'. Let 0(z) be the
orbit of ^ passing through z. We know that 0(z) tends to {xf 0} as z tends to
{xf 0}. It follows that /(z) o as z tends to {xf 0}. Topologically, we may
identify <£) with D\{0}. Then we extend the function / to D by making /(0) o.
This extension is a homeomorphism and Q /(D) is therefore homeomorphic to a

disc. This hnishes the proof in this case.

10.2. Proof of Proposition 32 when the holonomy is hyperbolic. Given z e <©

take a complex disc passing through z and transverse to In a neighborhood
Uz of z is well defined a leaf preserving projection nz : Uz ^ It is not difficult to

prove, since <© is a continuous transversal to 3ri that in a small neighborhood Az of
z in £) the restriction 7tz : Az i-> Ez is a homeomorphism onto its image. The Charts

{jrz}ze£) dehne a natural complex structure on <£). Then <£), since it is homeomorphic
to an annulus, it is analytically equivalent to an annulus {zeC:0<r<|z|<l}
for some r > 0. The holonomy map of the separatrix x 0 is a contractive function

g: D D. Consider the map g' h o g o h~x: £) <£). Clearly : £) <£)

is not trivial at homology level and is holomorphic, because it is continuous and leaf
preserving. Then, since g' is not an isomorphism, it follows from the annulus theorem
(see [19], p. 211) that r — 0 and <£) is therefore analytically equivalent to a punctured
disc.

By using linearizing coordinates we may assume that the foliation ^ extends to the
set {(F, x') : \tf\ a', x' e C} and is the Suspension of a hyperbolic automorphism
of C. Then we have a map /: Ä) i-> {(a',x) : x E C} dehned by /(z)
4>{x (z),z). Observe that / is holomorphic, because it is a continuous leaf preserving

map. Identifying £) with D\{0}, we have by the Riemann Extension Theorem that

/ extends to a holomorphic map / : D ^ C, /(0) 0. Since ^ is the Suspension
of an hyperbolic automorphism of C, there exists a set R C T' such that

(1) R contains all segment of orbit with endpoints in R,

(2) R contains the set {(F, x') : \tf\ |x| < 6} for some > 0.

Since /(0) 0, by reducing <£) if necessary we may assume that <£) and /(<£)) are
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contained in R. It is not difficult to see that the proof of the injectivity of / given
in Case 1 also works in this case. Then / maps D homeomorphically into C and

therefore Q /(D) is a topological disc. This finishes the proof in the hyperbolic
case.

10.3. Proof of Proposition 32 when the holonomy is resonant non-linearizable.
In this case the foliations near the singularities p and p' are generated by vector fields
of the form t-^ + Xx{\ + • • -)^ and t' jp + X'x'(l + • • -)-^p with X, X' G Q<o-
Let \j/ and \//f be the real flows associated to these vector fields respectively. Given

z (a,x) e D, there is a unique s(z) e R such that \/f(s(z),z) e {|x| b}.
Let yz be the path s e [0,s(z)] and define p(z) \/f(s(z),z). For all
w e {0 < \tf\ < a', 0 < \x'\ < b'} define jr(w) as the intersection of the orbit of w
by the flow \jf' with R\ As in Section 4 we may construct a topological equivalence
h such that

(1) h is defined in a neighborhood of the set {(0, x) : 0 < \x\ < b}9

(2) {1^1 <a,\x\ < b} fl dom(Ä)} is mapped by h into {|F| < a', |xr| < b'},
(3) For > 0 small enough and for all p e S1 c C, h maps the set {\t\ < ,x

pb} into the set {\tf\ < a, x' — pb'},
(4) close to the divisor we have h — h.

If 8 is small enough we have yz C dorn(h) and h(yz) C {|^| < a', |xr| < b'}. The

path 7t(h(yz)) is contained in a orbit of the flow 0 and is homotopic in this orbit to
a path of the form cp(s, Ä(z)), s e [0, r_z\ for some rz e R such that <p(rz, h(z))
tr(Ä(p(z)). By (4)wemayassumethatÄ(z) /z(z)forallz e D. Thencp(s,w) e R'
for all w e <©, s e [0, ti(u;)], where ri(u;) Xh~l(w)- Let £>i {4>{x\(w), w) :

w e <©}. We will prove that there is a continuous function r2: £>i R such that
4>{s, w) e Rf and <fi(x2(w), w) e S for all w e <£>i, ^ g [0, t2(u;)]. Since £>i does

not link the vertical {tf 0} there exists a continuous function 6: S)\ ^ R such

that w (a'e27Zl°(w\ *) for all w e <©i.

Assertion. The function 0 is bounded.

Given p e S1 let Iß {(L pb) : t e (0, gi]}, where g (0, c) and is as in
item (3) above. Let Uß {(t,pb) : \t\ < c} and U'ß — {(t',pb') : \t'\ < a} and

observe that hlu^ : Uß U'ß conjugates the holonomies of the Separatrices {t 0}
and {tf 0} computed on Uß and Ufß respectively. Therefore, if rß > 0 and 6ß are
continuous real functions such that

KS) (rß(£)e2*w»«\fib') (10.1)

for all £ G Iß, it follows from Lemma 33 that 9ß{Iß) has finite diameter Mß e R.
Observe that, since the orbits of the flow \jf' are contained in the sets {t'/\t' \ — cte},
we have

nh($) nir^Oe27116^,^') (a'e2nie^\ *). (10.2)
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Moreover, the orbits of f passing through apoint of (J Iß are all contained in {(t,x) :

t G R>0}, then these orbits intersects {(L x) : \t\ a, \x\ < b} atpoints in D. Thus,
by taking \ small enough we may assume that (J Iß is contained in p{D). Then

txhQf) G for all £ g Iß and therefore jrh(£) {a'e27110^71^^,*). It follows
from equation (10.2) that there is some integer nß such that 6(jrh(%)) 9ßQf) + nß
for all £ G Iß. This implies that the diameter of 6(jth(Iß)) is equal to Mß. We may
take S\ G (0,8) small enough such that

(1) Iß intersects the set K p({(a,x) : 8\ < \x\ < 5}) for all /x g S1,

(2) p({(a,x) : 0 < \x\ < <5i}) is contained in (J Iß.

Then 0(©i) C Ojth(K) U {J6jrh(Iß) and each 6ith{Iß) intersects the compact
set 6jth(K). Thus, it suffices to show that {Mß : /x G S1} is bounded. Suppose

by contradiction that there is a sequence {/x^} C S1 with Mßk -> oo and puk ->
/x G S1. Since h is a topological equivalence, for large k there are holonomy maps
fk : {(t, ßkb) :\t\<i}^Uß and gk: h(Uß) i-> such that

(1) h{z) gk oh o fk{z) for all z G {(t,fikb) :\t\<i},
(2) fk and gk tends to the identity as k -> oo.

Wecanparametrizeh(fk(Ißk)) by {rk{f)e27Zl°k^\ ßb where rk> 0 and

6k are real continuous functions. If k is large enough we have that fk{Ißk) is C1-
close to Iß and Lemma 33 below implies that the image of 6k has diameter bounded

by some constant C independent of k. For k large we may write gk(w,ßbf)
{wck{w)e27Zl^k^w\ gikbf), where ck > 0 and $k are real continuous functions with
Pitll < 1. Then for all £ G Ißk,

m gk°h°Mt)
gk(rk(^)e2n'dk^), ßb')

{rk{^ie^ck(*)e2,'i^*\tLkb')
(rkcke27ti^)+^\iikh').

On the otherhand, we have from equation (10.1) that hßß) (rßk (^)e27Tld^k^\ /j,kbr)
for all £e Ißk.Thereforewe have 9ßk(i;) 6k(t,) + ßk(*) + nk for all £ e lßk
for some nk G Z. It follows that Mßk < C + 2 for all k big enough, which is a

contradiction. Assertion is proved.
Dehne x2(w) —6{w) for all w e ©i and let M > 0 be such that ||0|| < M.

Now, keeping 6 invariable we can reduce 8 in order to have f(s,w) G T' for all
w G ©i, s G [0, r2(w)\. Clearly we have 0(r2(u;), w) G I] for all w G ©i. The

injectivity of / follows as before, so Proposition 32 is proved.

Lemma 33. Let h map D {z e C : \z\ < r} homeomorphically into C with
h{0) 0. Suppose further that h is a topologically conjugation between two germs
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f,g: (C, 0) i-> (C, 0) ofbiholomorphism with resonantfixed point atO E C. Given

a simply path y: [0,1] i-> D with y(0) 0, take a real continuous function 9 such

that h(y(t)) \h(y(t))\e27tl0^ and define d(y) E R U {oo} as the diameter of
0([0,1]) C R. Then there is a constant C > 0 such that d(y) < C for all y whose

image is contained in the complement of {tu : t > 0} for some u E C*.

Proof Let D* D\{0}, B exp_1(Z>*) and B' exp_1(A(Z>*). The homeo-

morphism h may be lifted to a homeomorphism H : B i-> B' such that h o exp
exp oH. It is easy to see that any y satisfying the hypothesis of the lemma may be

lifted by exp into the set T B D {0 < im(z) <4tt } Then it is sufficient to show
that there is some constant k > 0 such that H(T) is contained in {|im(z)| < k}.
Suppose that there is some path T satisfying the hypothesis of the lemma and such

that d(T) < oo. Then we may find two lifting T\ and T2 of T in B such that the set

T is contained in the closed region K bounded by Ti and T2 in B. Since J(T) < oo
there is k > 0 such that H(Ti) and H(T2) are contained in {|im(z)| < k}. In this
case it is easy to see that H(K) c {|im(z) | < k} and therefore H(T) is contained in
{|im(z)| < k}. Now we prove the existence of T. By the Flower Theorem (Leau-
Fatou), considering a repelling petal of /, we may find a simply curveT: [0,1] i-> Z),

T(0) 0 and a disc Z)0 C D centered at 0 E C such that the following holds:

(1) The path T((0,1]) is contained in the complement of {tu : t > 0} for some

u E C*.

(2) For all z E T((0,1]) there is some n E Z>0 with fon(z) £ Z)0.

Again by the Flower Theorem, considering a attracting petal of g, we may find u o E C,
|wol 1 and ^ > 0 such that for all z E {tuo : 0 < t < c} we have gon(z) e /(D0)
for all n e Z>0. Then, since h conjugates / and g, we deduce that Tz(F) does not
intersect {tuo : 0 < t < e}. Thus Tz(F) intersects the ray {tuo : t > 0} only finitely
many times and therefore d(T) < oo.

Remark 34. We conjecture that Lemma 33 is true, in general, when the germs /
and g are non-linearizable. If this would be the case, the theorems of the paper
would be true without the linearizing/resonant hypothesis. The construction of an
extension to a neighborhood of p depends only on the boundedness of the function 9

(Subsection 10.3). In particular, the function 9 is bounded if the homeomorphism in
Lemma 33 is a conformal map, we have this Situation for example if the topological
equivalence between the foliations is transversely conformal. In [18] the author shows

some general situations where the topological equivalence is necessarily transversely
conformal, for example if the resolution of 3< is non-dicritical, has no nodes or
saddle-nodes and has some component of the divisor with non-solvable holonomy
group.
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11. Proof of the second part of Theorem 7 in the non-nodal case

In this section, under the linearizing/resonant hypothesis, we prove the second part
of Theorem 7. We continue with the notation established in Section 10. Denote also

C {\t\ a,x 0}, C' — {\t'\ a',x' ()}, R {\t\ a, 0 < \x\ < b}
and £0 (ß, 0). We have in R a foliation of dimension 1 induced by 3r. Recall
the real flow 0 on Rf defined in last section. We also denote by 0 the real flow on
R such that 0(s,z) (<e27Zlst, *) for z (t, *) G R. Choose the orientation of C
given by the flow 0. Let 6 be a oriented circle in R homotopic to C in R and take a

diffeomorphism g: C i-> C', g(£o) (ß\ 0) such that g(C) is homotopic to h{6)
in R' {\t'\ a', |xr| < //}. Let G Rf : |k| af, 0 < |xr| < <5'}

and assume 8' > 0 be such that

(1) 00, z) G R'for all z g R8>,s g [-1,1],
(2) 00'z) G {kl — kl < f°r all z G h~1(Rs^), s g [—1,1].

Given £ g C, dehne #(£) g [0,1) by £ 0(£o,#(£)) and let ^'(£) G be
such that 0O#/(£), g"(£o))> ^ ^ [0' 1] is a positive reparametrization of the path
g(0O#(£)> £o))> ^ ^ [0' !]• Clearly # and are continuous on C\{£} and they have

a simply discontinuity at £0. Let tt be the projection (t,x) -> t in R. Given z g R8^
make £0) n ° ä_1(z) and let $(z) G be such that 4>(—s6(z), z), s g [0,1] is a

positive reparametrization of h o 0(—s#(£(z)), h~x(z)), ^ £ [0,1]. From (2) and the
dehnition of 0 it is easy to see that 0(—0(z), z) e <© for all z g R8'. In Section 10

we found the function r defined on <£). Now, we extend r to R8/ by making:

r(z) -0(z) + r o 0(-0(z),z) + #'(£0)). (1kl)

Assertion. x is continuous and 0(sr(z), z) G R' for all z G s G [0,1).

Let z0 G <£). It is sufhcient to show that r(z) -> r(z0) whenever z -> z0 G <©

with 1/2 < $(£(z)) < 1. If #(£(z)) 1 we have that 0(z) -> 0o> where $o is such

that (p(—s6o,z0), s e [0,1] is a positive reparametrization of h o 0(—s, /z_1(z0)),
5 G [0,1]. Then z\ := 0(—0O, zo) ä ° 0(—k ä_1(zo)) ^ <0. Let y: [0,1] i-^ <©

be any path such that y(0) zi and y(l) z0. For all t G [0,1] dehne the paths yt
and at by yt(s) (p(tr o y(s), y0)) and

at(s) 0((1 -s)tr(z0) + s(tx(z{) - 0o),zo)

for s G [0,1]. The paths at * yt are closed and give a homotopy between oiq * y
and a\ * y\. By the dehnition of 6o, the path oiq is homotopic in R' to the path
h o 0(—s, /z_1(z0)), s G [0,1]. Then a0 * y is homotopic to the path h(ä * y),
where ä is the path 0(—s, h~x (z0)), s G [0,1] and y h~x o y. But the path y
is homotopic to — C in R. Then, it follows from the dehnition of g that * y
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is homotopic to g(—C) in R'. Therefore a\ * y\ is homotopic to g(—C) in R'.
Observe that, since y\ C S, the path a\ * y\ is homotopic in R' to the closed path
0((1 - s)x(z0) + s(t(zi) - 0o),g(£o)), s e [0,1]. Then g(-C) is homotopic to
<p(s(r(z!) - x(z0) - 90),q), s G [0,1], where q 0(r(zo), g(£o))- On the other

hand, since #(£(z)) 1 as z ^ z0 with 1/2 < #(£(z)) < 1, it follows from
the definition of that -> £, where £ (equal to 1 or —1) is such that

g(£o)), £ £ [0,1] is a positive reparametrization of g(—C) g o 0(—s, £0),

5 G [0,1]. Then g(—C) is homotopic to </>(—s£,g(£o)) (/>(—s^,q)9 s e [0,1]. It
follows that the paths (j){s{x{z\) — r(z0) — 9o),q) and 0(—#) are homotopic in
Z?' and this implies that

£ —r(zi) + r(z0) + 0o-

Thus,ifz -^z0withl/2 < #(£(z)) < 1, we have that 6 (z) -> $o, ro0(—0(z), z) ->
x o <p(—9o,z0) r(zi), #'(£(z)) -> £ -r(zi) + r(z0) + 90 and by replacing in
(11.1) we obtain that r (z) -> r (z0). Therefore r is continuous. On the other hand it
iseasy to seethat0(^r(z),z) g Z?'for all z G G [0,1]. The assertion is proved.

Dehne the map

/: Rg>h>- R',fThis map / is an extension of the map / : <0 —> X) given by Proposition 32. Given
£ (Yf, 0) G C, let g(£) (t£,0) and dehne the sets

<£>f h({(t$,x) : 0 < |x| < 5}),

Observe that /(z) g for all z g <©£ D Z?^/. Moreover, the map /f
H Z?*, i-> £/ may be expressed as ft — gf fohgh~x, where g(w)

#<V(?).«,) and /„ /bn8j, Clearly s ,„d V are

diffeomorphisms and by Proposition 32 the map /o is a homeomorphism. Then /f
is a homeomorphism onto its image and /f (z) tends to the divisor as z tends to the
divisor. Then we conclude that

(1) / is a homeomorphism onto its image,

(2) /(z) tends to the divisor as z tends to the divisor,

(3) / maps <©£ fl R$' into the vertical

Observe that, for some S\ > 0, / o h maps each vertical {(t$,x) : 0 < \x\ < <5i}

into the vertical : 0 < \x'\ < b'}.
Now, for some s > 0, 8" > 0, we will extend / to the set V {(tf ,xf) : af — e <

\t'\ < a' + s, 0 < \x'\ < 8"}. Take hrst any 8ff e (0,8f). For s > 0 small enough we

may extend the how 0 in the natural way:

(1) (j) is dehned on V,
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(2) F' is invariant by 0,

(3) 4>{s,z) («e27Zlst', *) whenever z (t', *).

By reducmg s lf necessary we have the followmg property: given z e V, there is a

path az: [0,1] i-> {(t, x) : 0 < \x\ < b} such that

(1) otz is contamed m the leaf of F and az(0) h~x (z),

(2) az(s) (tz(s),xz(z)) with t(s) (1 - s)tz(0) +
that is, az is the liftmg to a leaf of a radial segment m {x 0} such that az(0)
h~1(z) andaz(l) G Letyz(s) hoaz{s) (t'z(s), x'z{s)). There is acontmuous
function 6Z : [0,1] i-^ R with 0Z(O) 0 and such that

t'(s) \t'(s)\e27"0z(s)z{) \fzm
Observe that yz( 1) e Rf for all z e V and we may assume yz(1) e R$ lf 8" is taken
small enough. Then we extend r and / by the expressions

r(z) 0Z(1) + r(yz(l))
and

/(z) <p(z(z),z).

It is easy to see that these functions are contmuous. Let R$"(r) {\t'\ r,0 <
\x'\ < 8ff} and Rf(r) {\t'\ r, 0 < \x'\ < b'}. Letfo G C besuch that h({(to,x) :

0 < \x\ < <5o}) is contamed m R'(r)- We may wnte to kuo with k > 0 and

|w0| — a- Weknow h({(u0,x) : 0 < \x\ < <50}) is mappedby / homeomorphically
mto a set {(uf0,xf) : 0 < |xr| < b'} with \uf0\ af. It follows from the construction
that, lf <SD(f0,e) h({(to,x) : 0 < \x\ < c}) is contamed m /?'(/•), then £)(toe)
is mappedby / homeomorphically mto H(to) {((r\af)uf0, x') : 0 < \x'\ < b'}.
Then / maps each R$'{r) homeomorphically mto R'(r). Moreover, it is not difficult
to see that

(1) (p(sr(z),z) e R'(r) for all z g R$/, s e [0,1],

(2) for all p G [0,1] we have that gp(z) 0(pr(z),z), maps R$'{r) homeomor¬

phically mto R'(r),
(3) gp tends to the divisor as z tends to the divisor.

Now, take p: [af — s, a! + s\ i-> [0,1] such that p{a' — s) p{a' + s) 0 and p — 1

on a neighborhood of a! and dehne

F(z) (p(p(r)r(z),z) lfz G Rs>(r).

It is easy to see that

(1) F preserves the leaves of !F,
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(2) F maps V homeomorphically onto its image,

(3) F id on R^{af — s) U Rf8,(af + e),

(4) if > 0 is small and \to\ is close to a, then F maps each set <D(to,)
h({(t0, x) : 0 < \x\ < ^}) homeomorphically into a vertical {tf cte}9

(5) F(z) tends to the divisor as z tends to the divisor.

We may extend F to a topological equivalence of Ff with itself.
From above we have that h F o h is a topological equivalence between F and

F'. By reducing b if necessary we may assume that

(1) h maps {\t\ < a, 0 < \x\ < b} into {\t'\ < a', 0 < \x'\ < b'},

(2) there are numbers a\ e (0, a), a[ e (0, a') such that h extends as a homeomor-

phism to the set {(t, 0) : a\ < |^ | < a] which is mapped onto {(F, 0) : a[ <
\t\<a'}.

Let P {\t\ < a, < \x\ < b} and P' {|F| < a', 0 < |xr| < b'}. By Lemma 31

there are homeomorphisms g and g' such that

(1) g maps P\{(L 0) : 1^1 < öi} onto P\{(0,0)},

(2) g' maps P'\{{t', 0) : \tf\ < a[} onto 0)},

(3) g and gf preserve the leaves of F and Ff respectively,

(4) g maps {(t, 0) : a\ < \t\ < a} onto {(t, 0) : 0 < |^ | < a} with g(t, 0) (0, 0)
as \t\ a\,

(5) g' maps {(P, 0) : a[ < \t'\ < af} onto {(P, 0) : 0 < \tf\ < af} with g(t', 0)
(0, 0) as \t'\

(6) g idandgr idonj^l a, \x\ < Z?}and{|P| af, |xr| < ^^respectively.

We may extend g and g' to topological equivalences of F and F' respectively. Then
h g' o h o g~l is a topological equivalence between F and F' and it is easy to see

that h extends to P as a leaf preserving homeomorphism.

Proofof Corollary 6. If the projective holonomy is non-solvable, we can construct
a topologically equivalence extending after resolution (see Remark 34). Since the

equivalence is transversely holomorphic, by a well known lifting path argument we
can modify this equivalence near each non-nodal singularity to obtain a topologically
equivalence h which is holomorphic near each such singularity. The last Statement

of the corollary follows from Proposition 13.
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