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On the geometry of horospheres

Cicero Pedro Aquino and Henrique Fernandes de Lima

Abstract. The aim of this paper is to investigate Bernstein-type properties of horospheres of the
hyperbolic space IT" 1. Our approach is based on the use of appropriate generalized maximum
principles in order to obtain new characterization results of such horospheres. Furthermore, by
supposing a linear dependence between support functions naturally attached to a hypersurface,

we also establish a classification theorem conceming horospheres and hyperbolic cylinders of
H L
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1. Introduction

In the theory of isometric immersions, the study of Bernstein-type properties concern-
ing complete hypersurfaces of the hyperbolic space H"*! constitutes an important
theme. In this research branch, do Carmo and Lawson [9] have used the well know
Alexandrov’s reflexion method to show that any complete hypersurface properly em-
bedded with constant mean curvature in H” ! with a single point at the asymptotic
boundary is a horosphere. Moreover, they also observed that the statement 1S no
longer true if we replace embedded by immersed. Later on, Alias and Dajczer [2]
have proved that a surface properly immersed in H? with constant mean curvature
—1 < H <1 and contained in a slab (that is, the region between two horospheres
that share the same point in the asymptotic boundary) must be, in fact, a horosphere.

In [8], the second author and Caminha have studied complete vertical graphs of
constant mean curvature in I1?T1. Under appropriate restrictions on the values of
the mean curvature and the growth of the height function, they used a generalized
maximum principle due to Akutagawa [1] to establish necessary conditions for the
existence of such a graph. Moreover, in 13, they proved that such a graph must be
a horosphere. In [7], by extending a technique of Yau [21], the second author jointly
with Camargo and Caminha obtained rigidity results concerning to the horospheres of
H”*!, without the assumption of the constancy of the mean curvature. Proceeding,



618 C. P. Aquino and H. Fernandes de Lima CMH

they also treated the case of the higher order mean curvatures. More recently, the
authors [3] generalized the results of [8] to the context of warped products obeying an
appropriate convergence condition. Moreover, in [5], they obtained characterizations
theorems of the totally umbilical hypersurfaces of H”*! under natural restrictions on
their Lorentz Gauss mapping.

Here, motivated by these works described above, we treat the following question:
underwhat reasonable geometric restrictions must a complete hypersurface immersed
in the hyperbolic space be a horosphere !

In order to obtain satisfactory answers for such question, in Section 3 of this
paper we apply some appropriate generalized maximum principles which enable
us to establish suitable rigidity theorems related to the horospheres of T"+!, In
our approach, an important point is the understanding of the geometry of support
functions naturally attached to a hypersurface of TI"*1, as well as, the study of the
behavior of the corresponding Lorentz Gauss mapping.

Finally, in Section 4, we characterize horospheres and hyperbolic cylinders as the
only complete hypersurfaces with constant mean curvature of H”*! whose support
functions determined by a nonzero null vector are linearly related. We point out
that such characterization result deals with the case that was not contemplated in
Theorem 4.1 of [5].

2. Preliminaries

In order to obtain our first results, it will be convenient to consider the hyperbolic
space as a hyperquadric of the Minkowski space IL"*2. So, we will represent by
[L"*2 the vector space R”"*2 endowed with the Lorentz metric

n+1

{ wyan ) = Z VWi — VptaWnto.
i=1

and the hyperbolic space will be identified with
I ={p e L™ (p. p) = 1, puy2 2 1}

equipped with the Riemannian induced metric from IL” 2. In this setting horospheres,
hyperspheres and spheres can be obtained intersecting H” ! with affine hyperplanes
of IL"*2. For example, as it has been observed by Lpez and Montiel in [13], any
horosphere of TI"*! is given by

Le={p el (p,a) =1}, 2.1

where @ € IL""? is a nonzero null vector, that is, {a,a) = 0, and 7 is a positive
number. When one fixes that vector ¢ and moves 7 € R one obtains a foliation of
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H"*1 by means of horospheres having the same point at the infinity. It is easy to see

that |
E(p)=—-p— —a 22)

is a unit normal field on I, with respect to which the horosphere has constant mean
curvature 1.

Now, let ¥: " — H"*T! C LL"*2 be an orientable hypersurface immersed into
the hyperbolic space. We will denote by A the shape operator of 2" with respect
to a globally defined unit normal vector field . In order to set up the notation, let
us represent by VO,V and V the Levi-Civita connections of 1”2, 1?1 and =7,
respectively. Then the Gauss and Weingarten formulas for £ in H"*! are given,
respectively, by

VoY = VyY + (AX.YI)N + (X, Y )y

and
AX = —VxN = —VoxN,

for all tangent vector fields X, ¥ € X(X).

By fixing an arbitrary vector a € L"*2, we will consider two support functions,
fa = (N,a)andl, = (¥, a), naturally attached to the immersion y - " — " +! C
L%%2_ It is immediate to verify that

Vig=a' and Vf, =—-A@"),

where @ € X(X) denotes the tangential component of @ along the immersion 1,
that is,

al =a— fuN + 1,y (2.3)

For0 <r <nand p € £", let S,(p) denote the r-th elementary symmetric
function on the eigenvalues of 4, in this way one gets 7 smooth functions S, : %" —
R, such that

det(t] — A) = Y (=D S *,
k=0

where Sy = 1 by convention. If p € X" and {e;} is a basis of T, % formed by
eigenvectors of A, with corresponding eigenvalues { Ay}, one immediately sees that

Sr = O-r()hl,...,)hn),

where 0, € R|[X1,..., X,] is the r-th elementary symmetric polynomial on the
indeterminates Xy,..., X,.

Also, we define the r-th mean curvature H, of £",0 <r < n, by (f)Hr = 5.
We observe that Hy = 1, while H; is the usual mean curvature A of %", For
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0 < r < n, one defines the r-th Newton transformation £, on %" by setting Py = [
(the identity operator) and, for 1 < r < n, via the recurrence relation

P, =S.1—AP,_;.

On the other hand, given f € C®(X), for each 0 < r < n, the second order
differential operator L, is defined as follows:

L, f =u(P-Hessf).

When r = 0, Ly is nothing but the Laplacian operator A. Moreover, for a smooth
function ¢: R — R and f € C*(X), it follows from the properties of the Hessian
that

Li{go ) = " (L) + " (/IUPV LV ).
Based on the ideas of Reilly [ 18], Rosenberg in [19] showed the following

Lemma 2.1. Let x: %" — Tt be a orientable hypersurface immersed in the
hyperbolic space H"T 1. Then, forthe support functions f, and l, previously defined,
we have

Lilg =+ 1S 41 fa+(n—71)S:1, (2.4)

and
Ly fo=—(S18r41 = (r + 2DSpp2) fu — ¢ + DSq1la — (VS,41.a 7). (2.5)

In order to obtain some of our results, we will also need the well known generalized
maximum principle of Omori—Yau [17], [20].

Lemma 2.2. Let 3" denote an n-dimensional complete Riemannian manifold having
Ricci curvature bounded from below. Then, for any C? function u: " — R with
u* = supy u < 400, there exists a sequence of points { py }p>1 in X" satisfying the
following properties:

i

(i) ul(pr) >u*— 1,
i) [Vul(pi) < L, and
(i) Au(p) < 4,
Jorallk = 1.

3. Uniqueness results in the hyperbolic space

Along this work, we will always suppose that all considered hypersurfaces are ori-
entable and connect. The next lemma plays an essential role along this work.
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Lemma 3.1. Let ¥ : X% — H"*! be a hypersurface immersed in H*T1 with mean
curvature —1 < H < 1. Then the function laz is subharmonic, for all nonzero null
vectora € "2,

Proof. From Lemma 2.1 we obtain that
AlZ = 2nHf,l, +2nl2 + 2|V, |°.

Now, by a direct computation, it is easy to verify that

A2 =n(fo+ HL) +n(2 = f2) +n(l— H)I2 +2|VL[2.  (B.1)
Finally, using that @ 1s a nonzero null vector, we have from (2.3) that

la = f& =Vl
Thus, from (3.1), we get
A2 =n(fo+ HL) +n(1— H2)I2 + (n 4+ 2) |V (3.2)

Therefore, from our restriction on 1, we conclude that / 5 is a subharmonic function
on X", O

We recall that the Gauss mapping N of a hypersurface %" of H”*! < [L”*2 can
be regarded asamap N : X" — S'IH'I, where S’f‘H denotes the (r + 1)-dimensional
unitary de Sitter space, that is,

Sitl = {p e L"*2; (p, p) = 1}

In this setting, N is called the Lorentz Gauss mapping of £”. In a dual context,
given a spacelike hypersurface X7 of S'f'H s IL”*2 (that is, a hypersurface of S'IH'I
whose induced metric is a Riemannian metric), its Gauss mapping N can be thought
of asamap N : X" — H"t1; 50, N is said the hyperbolic Gauss mapping of Z".

In [16], Montiel have proved that if a complete spacelike hypersurface X" in the
de Sitter space S'f"'l with constant mean curvature 1 > 1 is such that the image
of its hyperbolic Gauss mapping is contained in the closure of the interior domain
enclosed by a horosphere, then its mean curvature is, in fact, equal to 1. Whenn = 2,
this implies that $2 is also an umbilical surface and the image of its hyperbolic Gauss
mapping is exactly a horosphere. On the other hand, from (2.2) we have that the
image of the Lorentz Gauss mapping of the horospheres of H” 1 are the following
hypersurfaces of S’f‘H:

£.={peSiT(p.a) =1},

for some nonzero null vector @ € 1L"*2, which are totally umbilical hypersurfaces
of S’f‘H, isometric to the Buclidean space R” and with mean curvature H? = 1
(cf. [14]). In this sense, we will call &£, a hyperplane of S’f'H.
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Motivated by this previous discussion, we will state our first result. In what
follows, we say that a hypersurface X7 is under a horosphere L, of I* 1 < 1,742
determinated by a nonzero null vector ¢ € IL”*2, when its corresponding support
function /, satisfies /; < . Moreover, in this same context, we say that the image of
the Lorentz Gauss mapping of %" is under a plane £; of S"T1 — L"+2, when its
corresponding support function f, satisfies f, < 7.

Theorem 3.2. Let i : £2 — T3 be a complete surface with non-negative Gaussian
curvature and under a horosphere L, of TI°, with (not necessarily constant) mean
curvature H satisfying —1 < H =< 1. If the image of its Lorentz Gauss mapping is
under a plane £|;— of S3, for some & € (0, |t|), and contained in the closure of the
interior domain enclosed by a plane £y, for some 8 > 0, then %2 is a horosphere.

Proof. Consider @ € L."*? the nonzero null vector that determines the horosphere
L inTI? and the planes £ and &£,—, in Si. The hypothesis on the Lorentz Gauss
mapping of 2 assure us that 8 < f, < |t| — &. Using equation (2.3), we also have

[VLF 4 £ =3, (3:3)

from which we conclude that /2 > §2 and thus either /, > S orl, < —f on %2

By the hypothesis on the mean curvature H, we have from Lemma 3.1 that /2 is
a subharmonic function. Now, suppose that /, > £ on %2, Since %2 is under a horo-
sphere L., weobtain that § </, < tr and thus/ 5 is a bounded subharmonic function.
However, a classical result due to A. Huber [11] assures that complete surfaces of
nonnegative Gaussian curvature must be parabolic. Therefore, I, is constant on X2,
that is, X2 is a horosphere of TI°. Let us consider the case that [, < — B, and suppose
that 7 > 0. Thus, /, < 0 < 7 and, since %2 isunder the horosphere £ ., we must have
by continuity thateither /2 < 2 or/? > 7% on £?. Suppose that /> > z2. Since /, is
bounded from above, we have from Omori—Yau maximum principle (cf. Lemma 2.2)
that there exists a sequence of points {pz }r=1 in X? such that lim/7,(pg) = supl,
and |VI,|(pr) < 1/k, for all k = 1. Therefore, from equation (3.3) we conclude
that

lim £ (px) = 77,
k—oo

and this gives us a contradiction, since 2 < (|z| — £)* < 2 on Z%. The previous
argument guarantees that /2 < 2 and from this we can apply once more the result
of A. Huber to conclude that X2 is a horosphere of H?>. Finally, if ¢ < 0, since by
hypothesis /, < t < 0, we get that / 5 > 12 and, hence, we can reason as before to
assure again that X2 is a horosphere of T1°. O

Now, we apply once more Huber’s result [11], which was quoted along the proof
of Theorem 3.2, to obtain the following
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Theorem 3.3. Let : X2 — HS be acomplete surface immersedin a slab of H> with

nonnegative Gaussian curvature. If the (not necessarily constant) mean curvature
H of 32 satisfies —1 < H < 1, then 2 is a horosphere.

Proof. Let us assume that the %2 is contained in a slab of H?>. From this, we have
that there exists a nonzero null vector @ € I.° and positive constants 7; and 7, such
that the support function I, = (y, a) satisfies 7y < l,(p) < 15, forall p € X2
Now, from the Lemma 3.1 we have that /2 is a bounded subharmonic function on
%2, Thus, we are in position to use again Huber’s result [11] to conclude that /, is a
constant function on X2, that is, X2 is a horosphere of T1°. O

In the paper [21], Yau obtained the following version of Stokes” Theorem on an
n-dimensional, complete noncompact Riemannian manifold £7: ifw € Q"~1(Z) is

an (n — 1)-differential form on 3", then there exists a sequence B; of domains on X"
such that B; C Biy1, 2" = ;. Bi and

lim dw = 0.

=400 B;

By applying this result to @ = ty s, where f: X" — R is a smooth function, V f
denotes its gradient and ty s the contraction in the direction of V f, Yau established
an extension of H. Hop!’s theorem on a complete noncompact Riemannian manifold.
In what follows, £!(X) denotes the space of Lebesgue integrable functions on X7,

Lemma 3.4 (Corollary on page 660 of [21]). Let 3" be an n-dimensional, complete
Riemannian manifold and let f: X" — R be a smooth function. If [ is a subhar-
monic (or superharmonic) function with |V f| € (%), then f must actually be
harmonic.

In [2], Alfas and Dajczer studied complete surfaces properly immersed in a slab
of TI3. Using the warped structure of 113, they obtained a Bernstein-type result for
the case of constant mean curvature —1 < H < 1 (cf. Theorem 1 of [2]). Now, with
a new approach, we are able to give an extension of such result.

Theorem 3.5. Let : X7 — T be a complete hypersurface immersed in a slab
of TI"*Y determined by the nonzero null vector a € 1.*72 with (not necessarily
constant) mean curvature —1 < H < 1. If|a'| € £'(X) then " is a horosphere.

Proof. From Lemma 3.1 we conclude that /7 is a subharmonic function on ". On
the other hand, observing that V/, = a " and |V/2| = 2|I,||Vl,]| is integrable on X",
we have from Lemma 3.4 that /2 is a harmonic function. Now, using the equation
(3.2) we have that |V/,|*> = 0 on X" therefore /, is constant and this shows that %"
is a horosphere of H" 1!, O
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The following lemma is known as the tangency principle in the hyperbolic space,
which is a celebrated geometric consequence of the classical Hopf’s maximum prin-
ciple (cf. [9] for details and definitions; see also Theorem 3.1 of [6]).

Lemma 3.6. Let X and X% be complete hypersurfaces immersed in H* 1 with
mean curvature Iy and H;, respectively. In a neighbourhood of a common tangent
point, ifwe have that X7 lies above X5 and Hy < I, then X7 and ¥’ must coincide
on such neighbourhood.

In order to establish our next result, it will be convenient to leave the hyperquadric
model of TI”*! that we have utilized before and consider its half-space model, that
is, H*t1 = f(x1,....xn+1) € R”*1: x, .1 > 0} endowed with the complete metric
{, )gn+1 = ﬁ(dx%—k- -+dx] ). Inthis setting, given ahypersurface y : " —

H"*!, we define the normal angle O of " as being the smooth function §: X" —
[0, 7] given by

cosf = (N, €n+1 )H”'H .

The following result is an extension of Theorem 5.2 of [8] and Theorem 3.3
of [12].

Theorem 3.7. Let yr: " — H"t! be a complete hypersurface which lies under a
horosphere of H' 1 and with (not necessary constant) mean curvature —1 < H < 1,
If the normal angle 8 of X" satisfies | cos 8| = sups. |H |, then X" is a horosphere.

Proof. Let us consider a complete hypersurface ¥" immersed with mean curvature
|H| < 1in H"*!, and such that it lies under a horosphere L. This means that X" is
included in the open compenent of the region H"*! — L where the mean curvature
vector of L points. Without lost of generality, we can consider L. the hyperplane
{x € TI"*1: x, 11 = 1}. Then, since we are supposing that X" lies under L, we have
that Z" C {x ¢ H"t!; x,41 > 1}.

Now, let Hy = supy, | |. Suppose, by contradiction, that 1y < 1 and consider
the family of equidistant hypersurfaces with a given common axis of rotation, having
constant mean curvature Ho and such that their corresponding mean curvature vector
is pointing up, coming from the infinity {x € R"*!; x,,{ = 0}. By arigid motion of
this family, we arrive until the first contact point of X" with one of such equidistant
hypersurfaces, which occurs in some common interior point of both hypersurfaces.
Consequently, from Lemma 3.6, we have that 3" must be one of these equidistant
hypersurfaces. But equidistant hypersurfaces do not lie under a horosphere. So, we
arrive at a contradiction and, hence, f1; = 1. Therefore, we use the hypothesis
|cos 8| = Hp to conclude that cosf = 1 on %", that is, %" is a horosphere of
Hn+1 . O
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Remark 3.8. As observed in Remark 5.5 of [4], our restriction on the normal angle
) of the hypersurface X" in Theorem 3.7 is motivated by the gradient estimate (19)
of [13].

4. Hypersurfaces in H"*! satisfying I, = Af,

Our purpose in this last section, is to classify the complete hypersurfaces of H"+! <
[L"*2 whose support functions /, and £, with respect to some fixed nonzero null
vector a € IL"*2, are linearly related. In this setting, from (2.2) we observe that
the support functions of a horosphere L. of H"*! satisfy /, = — f,,, where « is the
nonzero null vector which defines such horosphere. Furthermore, since the horo-
spheres L, foliate all hyperbolic space TI"*1, for any hypersurface ©” immersed in
" +! we have from (2.1) that its support function /, has strict sign. Proceeding, we
get the following result.

Theorem 4.1. Let : X7 — T be a complete hypersurface immersed in a slab
of "+ determined by a nonzero null vector a € 1.," 72, Suppose that I, = Af,,
for some smooth function A: X" — R, and that the (not necessarily constant) mean
curvature H of " satisfies % > —1. Suppose that one of the following conditions
is satisfied:

(a) n = 2 and the Gaussian curvature of %° is non-negative.
b) |a'| e £Y(Z).

Then, 2" is a horosphere.

Proof. Initially, from the causal character of a, we observe that the function A has
strict sign on X". From Lemma 2.1 and hypothesis on support functions of X", we
have that

H
AlZ = 2”(T + 1)15 + 2| Vi, |2 (4.1)

Since " is contained in a slab of " +! determined by a, we have that /2 is a bounded
subharmonic function on 3",

We observe that if £? has non-negative Gaussian curvature, by a result due to A.
Huber [11], we have that /, is constant.

Now, suppose that |a ' | € £1(X), then V/2 has integrable norm on %”. Thus,
from equation (4.1), we conclude, from LLemma 3.4, that / j is harmonic and therefore
we have |V/,;|? = 0, hence we conclude that /, is constant.

To finish the proof, we note that from the definition of /,, if [, = t on a com-

plete hypersurface X", then 2" C L,. Therefore, by completeness, we must have
2" = L O
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Now, we consider an integer k satistying 0 < & < n. Let us define the smooth
function F: I"*! — R by

F(P)ZP%+"'+PI%+1=

where p = (p1...., pnt+2). Forp > 0,let " = F~1(p?). It is not difficult to see
that %" is a complete orientable constant mean curvature hypersurface immersed in
H"*1 If p = (p1...., Pat2) is a point of X7 then, by considering the standard
immersions S¥(p) — R¥*1 and H" % (/1 + p2) — L%+ we get

o = §K(p) x H'" % (/1 + p?) — H"*1,
Moreover, we have that
VF 1
——=—(p) = ———=(p) + p*p)
|VF| pyv1+p?

defines a Gauss mapping for %", where v(p) = (p1,..., Pr+1,0,...,0), and the
Weingarten operator A of £ with respectto N has the following principal curvatures:

V14 p?

A==t = X0 R and Rt =y =

p V14 p2

Furthermore, from (4.2) we easily verily that

= Y1TP
o p s

N(p) = (4.2)

where f, and /, are the support functions of 2" with respect the nonzero null vector
a=1(0,...,1,1) e L"*2,

In [5], the authors have studied complete constant mean curvature hypersurfaces
%7 immersed in TI?*! assuming that the support functions of X7 satisfy the linear
dependence relation [, = Af,, for some unitary timelike or spacelike vector @ €
[L"*2 and some real number A, showing that the X" is either a totally umbilical
hypersurface or a hyperbolic cylinder.

Motivated by the previous discussion, now we are able to deal with the case that
was not contemplated in Theorem 4.1 of [5]. More precisely, we have the following

Theorem 4.2. Let : " — ™! be a complete hypersurface immersed in TI" 1
with constant mean curvature H. Ifl; = A f, for some nonzero null vectora € IL"+?
and some constant A € R, then X" is either a horosphere or isometric to a hyperbolic

cvlinder S¥(p) x TI"~% (/1 + p2).
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Proof. Suppose that @ is a nonzero null vector in IL”*2 such that {, = Af, for some
real number A. Then, using once more that the support function /, has strict sign on
2", we have A # 0. Observe that Al, = AA f,. Now, by Lemma 2.1 we conclude,
from the previous equality, that

1 A 1 n
S, = =57 (— —) S1+ =.
2T TG T T g
on 2". This equality shows that S is also a constant function on X". Repeating the
previous argument for the operator L. we have from formulas (2.4) and (2.5) that

285 fu 4 (1= DiaSy = —A(S152 — 383) fu — 2481,

Now, using that A # 0, we obtain from above equality, after a straightforward com-

on X". As before, we conclude that S5 i1s constant on 2”. Iterating this argument
we show that S, is a constant function on 3" for all » and from this, by a elemen-
tary algebraic argument, we have that all the principal curvatures of X" are constant.
Therefore, taking into account the classification of 1soparametric hypersurfaces of
H7"*+1 due to E. Cartan [10], we conclude that %" is either a totally umbilical hyper-
surface or isometric to a hyperbolic cylinder S%(p) x H*=%(/1 + p2). In the case
that 2" is a totally umbilical hypersurface, from the description of the foliations of
" *1 due to Montiel in Example 3 of Section 4 of [15] and taking into account the
causal character of the vector @, we see that X" must be a horosphere. L
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