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From Schanuel’s Conjecture to Shapiro’s Conjecture

Paola DD’ Aquino, Angus Macintyre and Giuseppina Terzo

Abstract. In this paper we prove Shapiro’s 1958 Conjecture on exponential polynomials, as-
suming Schanuel’s Conjecture.
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1. Introduction

We work with exponential polynomial functions over C of the form
fz) = Ae"F -+ Ayet Vi, (1)

The set of such functions forms a ring & under the usual addition and multiplica-
tion. We normally refer to exponential polynomial functions simply as exponential
polynomials. In (1), we assume without loss of generality that the exponents p’s are
distinct, and that the coefficients A’s are nonzero, unless f is the zero polynomial.

In 1974 during the Janos Bolyai Society Colloquium on Number Theory, H. L.
Montgomery mentioned the following conjecture, which he attributed to H. S. Shapiro
[15]:

Shapire’s Conjecture. If f and g are two exponential polynomials in & with in-
finitely many common roots, then there exists an exponential polynomial £ in & such
that /2 is a common divisor of f and g in the ring &, and /4 has infinitely many zeros

in C.

Montgomery pointed out, via an example given in [5], that the problem was not
likely to yield easily to any classical approximation argument.

It turns out that Shapiro’s Conjecture is naturally connected to Schanuel’s Con-
jecture in Transcendence Theory.

Schanuel’s Conjecture. Let Ay,..., A, € C. Then the transcendence degree of

Q(A1, ..., An, er L 6’1”) over { is greater or equal than the linear dimension of
Als.... A over Q.
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Schanuel’s Conjecture has played a crucial role in exponential algebra (see [10],
[17]), and in the model theory of exponential fields (see [11], [18], [12]).

In [13] Ritt obtained a factorization theory for exponential polynomials in &.
Subsequently, his ideas have been developed, and his results have been extended to
more general exponential polynomials over C, see [7], [9], [3], [4]. In [2], these ideas
have been put in the much broader context of general exponential polynomials (with
any iteration of exponentiation) over an algebraically closed field of characteristic 0
with an exponentiation.

In this paper we will study the Shapiro Conjecture in a context more general than
that of the complex field. We will be working over an algebraically closed field of
characteristic 0, with an exponential function, and having an infinite cyclic group of
periods, whose exponential is surjective onto the multiplicative group. The class of
such fields includes the very important fields introduced by Zilber (see [18] for the
basic notions). The preceding assumptions play a minor role in our work on Shapiro’s
Conjecture. Of crucial importance is our further assumption, true for Zilber’s fields,
but unproved for the complex field, that we work with exponential fields satisfying
Schanuel’s Conjecture.

One should note that in an exponential field satisfying the above assumptions
(even without the surjectivity of the exponential onto the multiplicative group) the
two element set of generators of the periods is first-order definable [8], the sine and
cosine function are unambiguously defined, and the two element set consisting of the
quotients of the period generators by twice a square root of —1 is definable (the set
does not depend on which root is chosen). In C this would define the set {7, —7}.
Finally, we can define the one element subset consisting of the element x such that
sin(x/2) = 1. In a general field satisfying our assumptions, we call this element 7.

In Section 2 we review the basic ideas of Ritt’s factorization theory for exponential
polynomials. His main theorem allows us to break the proof of Shapiro’s Conjecture
into two cases. One case was already done by van der Poorten and Tijdeman [5] for
simple polynomials (in Ritt’s sense) over C, without any use of Schanuel’s Conjecture.
In Section 3, we modify that argument so as to apply to fields satisfying all the
assumptions given above with the exception of Schanuel’s Conjecture.

Section 4 explains recent work of Bombieri, Masser and Zannier [ 1] on anomalous
subvarieties of powers of the multiplicative group.

The main result of this paper is in Section 5 where a positive solution to Shapiro’s
Conjecture is obtained for the remaining case of irreducible exponential polynomials,
assuming Schanuel’s Conjecture, using the work of Bombieri, Masser and Zannier,
and work of Evertse, Schlickewei and Schmidt on linear functions of elements of
multiplicative groups of f{inite rank.

A. Shkop has proved the Conjecture, assuming Schanuel’s Conjecture, for the
very special case of exponential polynomials over the algebraic numbers, see [16].

We feel obliged to make a philosophical remark about the use of Schanuel’s
Conjecture to “settle” a conjecture which emerged from complex analysis. A very
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distinguished number theorist has remarked that if one assumes Schanuel’s Conjec-
ture one can prove anything. The sense of this is clear if one restricts “anything” to
refer to statements in transcendence theory. In that domain the Conjecture is almost
a machine, leading one mechanically to “proofs” of any plausible conjectures about
algebraic relations between complex numbers and their exponentials. We suspect that
there is also a common intuition that statements about common zeros of exponential
polynomials should be related to statements about the transcendence theory of the ex-
ponential function. However, the original motivation for Shapiro’s Conjecture clearly
comes from reflection on distribution of zeros of individual exponential polynomials,
and predates Schanuel’s Conjecture. Moreover, our argument involves combinato-
rial considerations not previously connected to routine applications of Schanuel’s
Conjecture.

2. Factorization theory

We briefly review the main ideas in Ritt’s factorization for exponential polynomials
in &. Most of the theory adapts to the much more general context of the ring of
exponential polynomials over an algebraically closed field of characteristic O with an
exponential function (see [2]).

The fundamental idea due to Ritt was to transform problems of factorization of
exponential polynomials to those of factorization of classical multivariate polynomi-
als in the extended category of polynomials in fractional powers of the variables. This
brings in the notion of power irreducible multivariate polynomial explained below.

In general, if we consider an irreducible polynomial Q(x1,...,x,) it can hap-
pen that for some positive integers gi,. .., g, the polynomial Q(x}',...,x}") is
reducible.

If there is no sequence ¢y, - . . , g, of positive integers such that Q (x{*, ..., x!")

is reducible we will refer to Q as a power irreducible polynomial.

We briefly review how to associate a classical polynomial in one or more variables
to an exponential polynomial in &.

We collect some basic definitions and results.

Fact. The units in the ring &€ are the products of nonzero constants and e** for
constant & € C.

Definition 2.1. An element f in & is irreducible, if there are no non-units g and £
in & such that f = gh.

Definition 2.2. Let f = Z;N:l a;e”i” be an exponential polynomial. The support
of f, denoted by supp(f), is the (Q-space generated by g1, ..., n-

Definition 2.3. An exponential polynomial f(z) of & is simple if dim supp( f) = 1.
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It is easily seen that, up to a unit, a simple exponential polynomial is a polynomial
in e, for some p € C. An example of a simple exponential polynomial is

2riz e—2mz

2i

g(z) = = sin(2wz).

Remark 2.4. A simple exponential polynomial factorizes, up to units, into a f{inite
product of factors of the form 1 — ae*?, where «, u € C. This simply uses the fact
that the complex field is algebraically closed. If fractional powers of the variables
are allowed then a simple exponential polynomial may have infinitely many factors,
eg 1— ae't , foreachk € N,k #= 0.

Let f(z) = A1e?t? 4+ -+« + Aye”~N? where A; and pu; are complex numbers,
and let Bq,..., B, be a Z-basis of the additive group generated by the pu;’s. Let

Y; = efi? with J =1,...,r. If each y; is expressed in terms of the §;’s we have
that f is transformed into a classical Laurent polynomial Q over C in the variables
Y1,...,Y,. The best way to think of © is as a function on the product of r copies of

the multiplicative group variety. Remember that the ¥ ’s are exponentials and so take
value in the multiplicative group. More prosaically, one can write (J as a product of
a polynomial in the ¥’s and a quotient of monomials in the ¥’s.

Clearly, any factorization of f determines a factorization of Q(Yy,...,Y,). Ritt
saw the relevance, in terms of factorization theory, of understanding the ways in which
an irreducible polynomial Q (Y7, ..., Y;) can become reducible once the variables
are replaced by their powers. It is a fundamental problem to determine the set of
integer r-tuples g1, ..., g, for which the reducibility occurs. Ritt gave a uniform
bound for the number of irreducible factors of Q(Y., ..., ¥,1"), depending only on
the degree of 0.

For the factorization theorem of Ritt the following lemma is crucial.

Lemma 2.5, Let f(z) = Z;N:l a;eti? and g(z) = Zj‘il ;™% be non-zero expo-
nential polynomials. If f is divisible by g then supp(ag) is contained in supp(bf ),
for some units a and b, i.e., every element of supplag) is a linear combination of
elements of supp(bf) with rational coefficients.

Note that if f is a simple polynomial and g divides f then g is also simple. The
factorization theorem that we need is the following (see [13], [7] and [9]).

Theorem 2.6. let f(z) = A1e"V? + -+ Ane?N? where A;, pu; € C. Then f can

be written uniquely up to order and multiplication by units as
FE) =81 Se-Iy 1y

where S; are simple polynomials with supp(S;,) # supp(S;,) for j1 # j2, and I
are irreducible polynomials in €.
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We observe that the proof has nothing to do with analytic functions, and works
over any characteristic (} exponential field which is an algebraically closed field (see
[4], [2]). This is the context where we will be working.

Since a common zero of two products is a common zero of two factors, Theo-
rem 2.6 trivially implies that only two cases of the Shapiro Conjecture have to be
considered.

Case 1. At least one of the exponential polynomials f and g is simple.

Case 2. Both of the exponential polynomials f and g are irreducible.

3. Shapire Conjecture: Case 1

The case when either f or g is simple has been proved unconditionally by van der
Poorten and Tijdeman for the complex field, see [5].

Their proof uses various results from Ritt divisibility theory in [14] and a variant
of the usual p-adic argument from the proof of the Skolem—Mahler—Lech Theorem
on recurrence sequences with infinitely many vanishing terms. Ritt’s result most
specific to the complex field says that if f/g is an entire function, where f and
g are exponential polynomials, then f divides g. The proof ultimately relies on a
fundamental result of Tamarkin, Polya and Schwengler on the distribution of zeros for
exponential polynomialsasin(1). We observe thatitis not obvious what interpretation
to give this result in more general exponential fields, and for that reason we have sought
and found a proof that avoids this result of Ritt. We do not, however, avoid appeal to
the Skolem—Mahler—Lech Theorem. The latter theorem, as used in [5] on page 62,
in a formulation for exponential functions, is as follows:

Theorem 3.1 (Skolem, Mahler, Lech). If f(z) is a function as in (1) which vanishes
for infinitely many integers z then there exists an integer A and positive residues
dy,...,dy modulo A, such that f(z) vanishes for all integers z = d; (mod A),
i =1,....1, and f(z) vanishes only finitely often on other integers.

Inspection of the proof (by a suitable p-adic embedding) shows that it works for
all exponential fields of characteristic 0.

We extend the van der Poorten—Tijdeman result to the more general setting of
an exponential algebraically closed field K of characteristic 0, with standard periods
and exponential map surjective to the multiplicative group, making no use of analytic
methods. We need the following lemma.

Lemma 3.2. Let h(z) = A1e*17 +--- + AnetN?, where Aj, p; € K. If h vanishes
at all integers then sin(mwz) divides h.
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Proof. We proceed by induction on the length N of 2. It N = 2 the proof is a trivial
direct computation.

Let N > 2, and consider the first N positive solutions 1,..., N. The following
identities hold:

Arefl + RyeH? 4 .o+ ApetN =0,
Ai(eh)? + Ay(e2)? + - + An(ehN)? = 0,

M@ + Aa(e )V + 4 Ane )Y = 0.

Let §; = e1,--- ,§y = e*¥, so by substitution we can rewrite the identities in
matrix notation as follows:

81 8 ... SN\ (M 0
262 . & |[r] (o
sV oV V) \aw 0

Because of the existence of a non trivial solution of the system the determinant
of the matrix vanishes,

81 82 ... Oy
& 5 ... &
1 2 N _o
Y Y .. s
that is,
1 1 1
o1 8> ... 6N
8162...08 -] . . ) . | =0.
SN-1 gN-1  gN-1

This is a Vandermonde determinant, so

(B152...68)- || @i-sn=0.

1<i<f<N

So, 6; = §; forsome i # £, ie., et = e for some i # £, and without loss
of generality we can assume el = e#2. So, e#1" = ¢#2" for each n € 7. The
polynomial

(i + A2)e"17 £ 3 et

iz3
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also vanishes on all integers, and since it has length strictly less than N it is divisible
by sin(mz). Note that

k(Z) - ()Ll + )Lz)e‘ulz + ijelijz + )Lz(e‘ulz _ e,u,Q,Z)’

jz3

and therefore all integers are roots of e#27 — ¢#17_ [t follows that sin(zz) divides
eTHE — ¢7THZ 3 trivial exercise as noted for case N = 2. O

The Shapiro Conjecture for the case when one of the polynomials is simple follows
from the following theorem which implies that if one of the two polynomials is simple
so 1s the other one.

Theorem 3.3. Let [ be a simple exponential polynomial, and let g be an arbitrary
exponential polynomial such that | and g have infinitely many common roots. Then
there exists an exponential polynomial which divides both [ and g.

Proof. If f is simple then up to a constant, f is of the form, f = [[(1 — ae®?),
where ¢, € K. If f and g have infinitely common zeros then g has infinitely
common zeros with one factor of f, say 1 — ae®?. So g has infinitely many zeros
of the form z = (2kmwi — loga)/a with k € Z, and for a fixed value of loga. If
g%(z) = g(Qmiz —loga)/w) then g* has infinitely many zeros in Z. By Theo-
rem 3.1, g¥(z) vanishes on the set M = {dy + jA : j € Z}, for some A and dy in
Z,and 0 < dy < A. If h(z) = g*(dy + zA) then A vanishes on Z, and Lemma 3.2
implies that / is divisible by sin(zz). This is a contradiction if / is irreducible,
which is the case when g is irreducible. This forces g to be simple (up to a unit), e.g.
2(z) = 1 — beP? for some b, B € K. So, without loss of generality we can consider
the system

f(z) =1—ae* =0,

2
g(z) =1 —hef? =0, <)

where a, b, «, € K, with infinitely many common zeros. The roots of f are of the
form z = %(—loga + 2kmi), k € Z. It follows that, for infinitely many / in Z,
g vanisheson z = %(— loga + 2¢mi). We argue now as before, using Theorem 3.1,
to conclude that f and g vanish on

1
—(—loga 4+ 2(d + Aj)mi),
o

where d and A are integers, d < A, and for all j € Z. Via the change of variable
T(z) = al(— loga + 2(d + Az)mwi) the exponential polynomials f(7(z)) and
(T (z))both vanish on Z, and by Lemma 3.2 they are both divisible by sin(7z). Thus
f(w) and g(w) are both divisible by sin(z T~ (w)) = sin(ﬁ(aw +loga—2dmni))
which is a simple polynomial. 0
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4. Group varieties associated to exponential polynomials

We now adapt, to the system f = g = 0 the procedure of Ritt, thereby converting
the system to one defined by two conventional polynomials, defining a subvariety of
a power of the multiplicative group.

We work over an algebraically closed characteristic (} exponential field K with
standard periods, with the exponential surjective onto the multiplicative group, and
satisfying Schanuel’s Conjecture (SC).

Consider a system with no restriction on f and g:

f(z) = A% 4o F Ajet'N =0, (3)
g(z) = 1™ 4o £ Iy ™ =, ‘
where A;, pi. lj.m; € K.
Let D be the linear dimension of supp(f) U supp(g), and by, ..., bp a Z-basis
of the group generated by i, m. We introduce new variables

Yl = eblz! L YD = ebDZ’
and as in Section 2 we associate the Laurent polynomials
F(Y1.....Yp).G(1.....Yp) € QA D[Y1..... Yp]

to f(z) and g(z), respectively. As far as zeros from the multiplicative group are
concerned, one may replace F and G by ordinary polynomials got by multiplying
them by monomials. Note that F and G are polynomials over Q(A, 7). Let L be the
algebraic closure of this field. Obviously L has finite transcendence degree, a fact
which will be crucial later.

Clearly, if s is a common zero of f and g then (¢?1°, ..., e?P%)is a common zero
of F and G in the Dth power of the multiplicative group. The study of the set of

solutions of system (3) will be reduced to studying the solutions of the system

F(Y1,....Yp) =0,

(4)
GYy,....Yp)=0.

Remark 4.1. Let V(F) and V(G) be the subvarieties in the Dth power of the multi-
plicative group G2, associated to F and G, respectively. If £ and g are irreducible
then F and G are power irreducible. In this case dim V(F) = dim V(G) = D— L. If
we assume that f and g are distinct irreducibles (i.e. neither is a unit times the other)
then I" and G are power irreducibles, with neither a scalar multiple of the other. It
follows that the algebraic set defined by F = G = 0 has dimension no more than
D — 2. This is crucial in what follows.
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Recall that an algebraic subgroup in the group variety G2 is given by a finite set
of conditions each of the form

ay ap
Yot Yy =1
where ay....,ap € Z. We will refer to (aq,....ap) € 7P agthe exponent vector.

For such a variety, the dimension is D — i where / is the rank of the subgroup of Z7?
generated by the exponent vectors. A translate or coset of a subgroup is obtained by
replacing 1 by other constants in the finite set of conditions. A torus is a connected
algebraic subgroup.

The algebraic set C defined by (4) may be a reducible subvariety of the algebraic
group G2 over L. As remarked above, its dimension is at most D — 2 if F and G
are distinct irreducible over ..

Later, in the proof of the Shapiro Conjecture, we will work on a suitable irreducible
component of C.

Note that if f and g have infinitely many common zeros, and f is irreducible,
the algebraic set C above cannot be contained in any coset of any proper algebraic
subgroup of Gnlz . For otherwise, let

Yo YRR =0 (5)

be one of the equations defining the coset. This corresponds to a simple polynomial
in Ritt’s sense which has infinitely common zeros with f. By van der Poorten and
Tijdeman result and Lemma 2.5 we have a contradiction since f is not simple.

We now review the basic concepts concerning the notion of anomalous subvariety,
as used in [1] by Bombieri, Masser and Zannier. We will not give the full details of
the analysis obtained by Bombieri, Masser and Zannier but we will describe those
properties of anomalous varieties which we will need in the proof of our main result.
Their discussion 1s first done over the complexes, but they observe that it works over
any algebraically closed field of characteristic 0, and we use this fact. For us the case
of the I. introduced earlier is crucial because of its finite transcendence degree. We
will follow [1] for the notion of a subvariety of the algebraic group (¢}, and when
necessary we will specily if the variety is irreducible.

Let V be an irreducible subvariety of G, .

Definition4.2. Anirreducible subvariety W of V is anomalous in V' if W is contained
in a coset of an algebraic subgroup I' of G}, with

dim W > max{0, dim V' — codimI"}

Note that this definition has the same meaning in any algebraically closed field
over which V is defined.
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Definition 4.3. An anomalous subvariety of V' is maximal if it is not contained in a
strictly larger anomalous subvariety of V.

Theorem 4.4. Let V be an irreducible variety in G]. of positive dimension de-
Jined over C. Then there exists a finite collection @y of proper tori H such that
Il <n—dimf < dimV and every maximal anomalous subvariety W of V is a
component of the intersection of V with a coset HO for some H € dy and 0 € G)),.

For the proof see [1]. Note that this result is true (as is stated in [1]) when C is
replaced by any algebraically closed field K of characteristic 0, in the sense that the
cosets involved, for W defined over K, are also defined over K.

Theorem 4.4 implies, since every anomalous subvariety is contained in a maximal
one, that there is a finite number of subgroups of codimension 1, such that any
anomalous subvariety is included in a coset of one of them.

5. The full Shapiro Conjecture

We concentrate now on Case 2 of Shapiro’s Conjecture. Inthis case the conjecture has
the following formulation: If f and g are distinct irreducible exponential polynomials
then f and g have at most finitely many common zeros.

We will prove the following equivalent version (see [5]): Let f and g be expo-
nential polynomials, and assume f is irveducible. If { and g have infinitely many
common zeros then f divides g.

In the following unless otherwise specified the linear dimension and the transcen-
dence degree of a tuple will always be over Q.

Let D = Ld.(supp(f) U supp(g)), and let by, ..., bp a Z-basis of the group
generated by fi, m. We will denote the transcendence degree of X, 1 by 81, and the
transcendence degree of [i, m by 8, 1.e. §1 = t.d.(A,]), and 5, = t.d.(jx,m). We
denote by b the sequence (by,...,bp) and by B the set {by,...,bp}.

Assume that f and g have infinitely many common zeros. Let S be an infinite set
of nonzero common solutions. We will “thin” this set inductively to infinite subsets
using arguments of Schanuel type, and work of Bombieri, Masser and Zannier on
anomalous intersections, to reach an infinite .S such that the ()-space generated by
S is finite dimensional. We will then get a contradiction from using, inter alia, work
of Evertse, Schlickewei and Schmidt on linear functions of elements of finite rank
groups.

We begin with some simple bounds on Schanuel data. For any s € S let s stand

for the sequence (bys,...,bps) and e?s stand for the sequence (ebls, s est).
In terms of the set, for any s € S we denote by Bs = {bys,....bps}, and by
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eBs = {eb”, e ebDS}. For any subset T of the set of solutions §,
BT = | | Bs,
seT
and

eBT = ebs 1 <i<DbeB,seTk

For any finite subset 7 of §, let D(T) be the linear dimension of the space
spanned by BT . Notice that D(T) = D it T is a singleton, since 0 ¢ S. Moreover,
D(T) < D|T|, where |T| denotes the cardinality of 7. We show now that there is

an upper bound to the cardinality of T for which the equation D(7") = D|T| holds.

Lemma 5.1 (SC). For any finite subset T of § with D(T) = D|T| we have that
| 7| = 61 + 6.

Proof. Enumeratetheset7 assy,. .., s, ofelements of §. By previous observations,
upper bounds on the respective transcendence degrees of the sets ¢®7 and BT are

t.d.(efT) < k(D =2) + 81,
(because of the dimension estimate on /¥ = G = ( given in Remark 4.1) and
td(BT)<dé,+ k.
By Schanuel’s Conjecture we have
t.d.(BT,e®T) > D(T),

and this implies
DTy <kD -k + 6 +65. (6)

If D(T) = kD, inequality (6) implies that
81+ 82 = k, (7)

for all £ € N, proving the result since §; and §, are fixed and depend only on the
coefficients of the polynomials f and g. L

Remark 5.2. Let ky be the maximum cardinality of a 7 for which the equation
D(T) = D|T| holds. Let Sy be such a 7. If we extend Sy to a set S1, by adding k4
distinct elements, then we clearly have the following estimates:

D(So) =D(S1) =é1 + 62+ k(D —1).

Lemma 5.1 has a fundamental consequence on the transcendence degree of the
set B.S which will be crucial in the following.
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Lemma 5.3 (SC). The transcendence degree of BS over ) is less or equal than
81 + 285.

Proof. Fixanys € §—S8p. Then by maximality of S¢ forthe equation D(T) = D|T|,
we have a nontrivial linear function A over Q, such that A (bs) belongs to the Q-
vector space generated by the BSp. We note that b is linearly independent over Q
and A is linear, so we get that

s=AMB)-a

where a is in the (Q-vector space generated by the B Sy. Let F be the field generated
by BSo U B.

The transcendence degree of F is clearly finite, and the following inequalities
hold

t.d.o(F) = td.(B)+td.gm)(BSy) <8 +ko <81 + 82+ 82 =8 +28,. O

The following result will be crucial for completing the proof of Shapiro’s Con-
jecture.

Main Lemma (SC). For some infinite subset S’ of S the Q-vector space generated
by S’ is finite dimensional.

Proof. Consider the subvariety C of G defined by

Fl¥.... ¥p)l =8 .

G(Yy,....Yp)=0 ®)
over L = Q(A,1)*2. This may be a reducible subvariety of the algebraic group GE.,
so we work now with a fixed irreducible component V' of C containing solutions of
the form (ebls, . ,ebDS), for infinitely many s € §.

An upper bound on the dimension of V over L is D —2,and so D —2 + §; is the
corresponding upper bound over ) (see Remark 4.1).

We now thin § to an infinite subset S’ such that for s € §”, the D-tuple e?* is a
point of V. This might force to throw out part of the original So but this is irrelevant
for the estimates on the linear dimension of §”.

Fix a finite sequence § = (sy, ..., Sx) of distinct elements of S, of length %, and
let 7" be the set of entries §. The (Q-linear relations among hs1, ..., Bsk can be con-
verted into Z-linear ones, and these naturally induce multiplicative relations of group
type among the corresponding exponentials 51 .. e?S%_ Thus we determine an

algebraic subgroup I'; of G2 * on which ?5t, .. ., ebsi e, Clearly, the codimension
of I'y is Dk — D(T), and dimension of 'y over Q is D(T).
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Let V¥ be the product variety in the multiplicative group G2 k. The Dk-tuple

(el;sl e el;sk) (9)

lies on it, and this is true for any choice of k solutions s1, . . ., sx. Anupper bound for
the transcendence degree of any tuple as in (9) over L is k(D —2),and k(D —2) +

is a corresponding upper bound over Q).
The Dk-tuple

(eb_s1 s eESk)
belongs to the intersection of V% and I'y, which might be reducible, and we will work
with the variety Ws of the point (ebs1 - ,ebsk) over L.
Claim 1. For &k > §;1 + &, the variety W5 is either anomalous or of dimension 0

over L.
Suppose dim(W;) < dim(V ?*) — codim(T), Le.

dim(W5) < k(D —2) — (kD — D(T)) + é;.
Again Schanuel’s Conjecture implies
D(T) <k(D—-2)— (kD —D(T)) + 61 + 61 + 252,
and so
2k <281 + 265.
Hence the claim is proved.

We want to get results not sensitive to any particular enumeration. Now suppose
we rearrange the sequence § to s*. The set 7' does not change. It is easy to see that
we still get points on V¥, and dimension of T does not change. What may change
is W=. But consider the automorphisms (of affine Dk-space, of VK and of GD ky
got by simply permuting the natural D-blocks. These transform the Ws to the W,
and one sees easily that Wi has dimension 0 if and only if Ws—* has, and that W; is
anomalous if and only if W is. So the claim implies that for every k, if k& > 61 + 6>
then either each W has dimension 0, or each W is anomalous.

Claim 2. If dim W5 = 0 then D(T") < 281 + 24,.
Suppose dim W5 = 0. Hence the coordinates of all elements of W5 are algebraic
over I, which implies that

td (D1, ePsky < 8,
From Lemma 5.3 it follows that

t.d.(bsq, ..., bsy) < 81 + 28,
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and Schanuel’s Conjecture implies
D(T) =261 + 262.
This now gives that for any k-element subset 7 of §, if
D(T) > 261 + 26,
then Wj is anomalous, for any enumeration § of 7.

We consider now a countably infinite subset of S enumerated as sy, s;, . .., which
we will continue to call §. Define Sy as the set {sy,...,s;}. Let Wy be one of the
W5 for a sequence s enumerating Sy. If infinitely many W} are of dimension 0, then
the set {f/® b; € B,s € S} iscontained in L, and so by Schanuel’s Conjecture and
the preceding calculations, D(S;) < 2(81 + 62) for infinitely many k’s. So S spans
a finite dimensional space over (@, which is the required conclusion. Thus, there is a
k1 such that for k at least k1 no Wy has dimension (. Thus by Claim 1, all W, are
anomalous. Since W) was chosen for an arbitrary enumeration of Sy, we conclude
that each W is anomalous, for any enumeration s* of Sg.

We will make use of the Bombieri, Masser and Zannier results. Though the W
are defined relative to an enumeration, and would change if the enumeration did, there
are some basic results independent of the enumeration, and these will be needed in
the remaining stages of the proof.

Let k» € N be the least integer k such that for any &k, + 1 elements of §,

Ms-. .. Nkat1, the variety W oof the k> + 1-tuple ebm ,eb”k2+1 is anomalous in
V%21 From [1] it follows that there is a finite collection @y 4,+1 of proper tori
Hq,..., H of G,gCZH)D such that each maximal anomalous subvariety of pkatl g

a component of the intersection of V%21 with a coset of one of the I ’s.

We use a much less precise version for general anomalous subvarieties. This
version follows from the very precise Structure Theorem of Bombieri, Masser and
Zannier. We proceed as follows: from the above list f1y,. .., H; for each one we
pick one of the multiplicative conditions defining each of them. These define a finite
set {J1,...,J;} of codimension 1 subgroups so that every anomalous subvariety is
contained in a coset of one of them. Crucially, these cosets can be chosen defined
over L.

Let W be anomalous as above. Then there is a codimension 1 subgroup J; from
the above finite list defined by a nonzero D(k, + 1) integer vector,

O = U1, .., UiDka+1)

and Oy € L such that the following relation holds

WY = By (10)
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for all w € W. Notice that the finitely many vectors &, ..., 0&; depend only on
the variety V*2+1, Fix an order on the finite set of a;’s, j = 1,...,¢t. Toany
subset of § of cardinality K, + 1, & = {n1,..., Mky414, Where 7y < --+ < pp41
with respect to the fixed order on .S, we associate the anomalous variety of the tuple
65:71 e ,el;ﬂkz—o—l.

We now define a coloring of the subsets of § of cardinality £, 4 1. Consider the
function

@: [S] = ... L@

that associates to any set in [S]¥2+! the tuple «; for the minimum j such that the
anomalous variety corresponding to the subset is included in a coset (defined over L)
of J;.

By Ramsey’s Theorem there is an infinite set 7 € .S and a fixed jo such that
® takes the constant value o, on the set of k2 + 1 cardinality subsets of 7. Let
F e [T]%2*! and order the elements of F aseq < --- < €k,+1, Where < is the order
of T inherited from S. We write the D(k, + 1)-tuple &, as the concatenation of two
parts &, = j,4 ®j,—, where the minus part denotes the last block of D elements.

Casea) o, # 0. We fix the first ko elements of F, ey < --- < €g,,and we consider
all elements s of T' greater than €, . There are infinitely many such elements s, and if

we append the D-tuple bys,. .. bps to bey .. .Eekz, we get an element of [T]%2F1,
We now exploit the indiscernibility of [T]%211. For each s as chosen, there is an
element 6 in L such that

(6561 3 _egekz)%+ (655)%_ = 6,. (11)

Let Ap = (6561 ... ebexa )y®o+. Notice that the inner product b - o;,_ # O since
0 # 0 and the b are linearly independent over Q. (Recall that we always assume
§ 18 nonzero). So

- Qs
(")¥0- = = e L(Ar)

for each fixed s.
Then the transcendence degree of

{6(5‘%_)3 D 8 € T\{€10w » €k b

over (Q is bounded by the transcendence degree of L and Ap. Appealing to Schanuel’s
Conjecture we get the finiteness of the linear dimension of the (Q-space generated by
{(b - W,_)s: s € T\{ey,..., ex,t}. Clearly, then the set T\{ey,..., €, } is finite
dimensional over €.

Case b) oj,_ = 0. We shift to the next block to the left in o, not identically zero
suppose this corresponds to £, with £ < k,. As before we make the corresponding
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coordinate in the £th position in €; < --- < €; vary over all elements of 7 strictly
greater than €1 < --- < €y and completing the k, + 1 tuple respecting the order of
T. We argue then as before. L

An immediate consequence of the finite dimensionality of S is the following
corollary which can be viewed as a multiplicative version of the statement of the
Main Lemma.

Corollary 5.4. Let G be the divisible hull of G, the group generated by all e"i*’s
wheres € Sand j = 1,...,N. Then G has finite rank.

A basic result on linear functions on finite rank groups that will be relevant in the
remaining part of the proof is due to Evertse, Schlickewei and Schmidt (see [6]).

We recall that a solution («q, . .., a,) of alinear equation
ayxy +--+dpxy = 1 (12)
over a field K is non degenerate if for every proper non empty subset [ of {1, ..., n}
we have ) ;a0 # O

In our context we will be interested in solving the linear equation (12) in units of
the field. Hence it is natural to consider equations of the form

aixy+---+apx, =0

instead than (12).

Lemma 5.5 ([6]). Let K be a field of characteristic 0, n a positive integer, and I" a
[finitely generated subgroup of rank v of the multiplicative group (K™)". There exists
a positive integer R = R(n,r) such that for any non zero ay, . .., a, elementsin K,

the equation

arx1+---+anxy, =1 (13)

does not have more than R non degenerate solutions (o1,...,0y,) in I

We now apply this result to our context. Let p € N, be the linear dimension of
S, and {s1,...,5p,} be a (Q-basis of §. Forany s € § we have

P
s = Zc,-_rsz (14)
=1

where ¢; € Q. Substituting the expression of s asin (14) in f we have

N p
0= f(s) = At CimersD g ) ety il ersn) = Z)‘f H(eMjSJ)Cf (15)
i=1 =1
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Any solution s € § produces a solution @ of the linear equation associated to f,
AXi 4+ -+ ANy =0 (16)

where @; = e"“f(zf’ilcl’sf), i=1,....Nand @ € G (a subgroup of (C*)N, see
Corollary 5.4).

Since the coefficients of f are nonzero, we can transform this equation to the
form of the unit equation by replacing Ay by —Ay, and multiplying throughout by
(=Aw)~leHNS,

Lemma 5.6. Suppose f(z) = A1e#1% + -+ AnyetNZ is not simple, and sy, 5, are
two distinct solutions of f. Then the solutions of (16) generated by s1 and s are
different.

Proof. Letw = wy,...,0N and &€ = £q, ..., Ex be the solutions of (16) correspond-
ing to 51 and s;, respectively. If

(@1,...,08) = (§1,...,§N),

thenfor j =1,..., N,

P P
l_[(eMjSi)Cl,i — l_[(eujsi)cz,i’
=1 =1

iff

P
l_[(eMjS!)Cl,I—CZ,! =1
I=1

iff

r
iy ZSI(CI.J — 1) €2miZ.
=1

So,forany j = 1,..., N we have

P :
2w
D sier —can) = —h;
= i
where h; € Z. This implies

271 21 2w
M1 H2 N
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So we can write any exponents /4 ; in the polynomial f(z) in terms of j1q,1.e.,

H1

= —h,,

H2 I 2
H1

= " h,,

H3 B 3
H1

= —hy.

HAN B N

Ifoa= "‘—11 then f(z) is a polynomial in ¢%#, i.e. f is a simple polynomial. We geta
contradiction since f is not simple. 0

We restate the remaining case of Shapiro’s Conjecture.

Theorem 5.7 (SC). Let f(z) be an irreducible polynomial and suppose the following
system

(17)

f(2) = A7 4 oo 4 AyelN? =0,
g(z) =he™% 4+ ..o 4 pypeM? =0

has infinitely common zeros. Then f divides g.

Proof. We will use induction on the length of the polynomial g(z). Without loss of
generality we may assume N, M > 2, and g not simple otherwise we would be in
Case 1 solved by van der Poorten and Tijdeman.

Consider the linear equation associated to g(z) = 0,

hWXi+--+iluXy =0 (18)

We can transform this equation to a unit equation as in Lemma 5.5. Lemma 5.6
implies that equation (18) has infinitely many solutions & = («y, ..., o), wWhere
o, =e™ (=1 cese) (each one generated by s, a solution of (17)). From Lemma 5.5
it follows that all but finitely many of them are degenerate.

By the Pigeonhole Principle there exists a proper subset I = {iy,...,i,} of
{1,..., M} such that

lleil -|-----|—l,'err =0 (19)

has infinitely many zeros of the right form. Notice that / has at least three elements
since we are assuming that g is not a simple polynomial.

Itisuseful to write g(z) = g1(2)+g2(2), where g1(2) = I ™% 4. 41; e™Mir?,
and g»(z) = g(z) — g1(z). The polynomial gy has infinitely many common zeros
with f(z). Also, g2(z) has infinitely many common zero with f(z). Both g;(z) and
g>(z) have lengths strictly less than M.
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By inductive hypothesis and by the irreducibility of f, we have that f divides g,

and f divides gz, and hence f divides g. So the proof is completed. 0
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