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The symplectic topology of some rational homology balls

Yank: Lekili and Maksim Maydanskiy

Abstract. We study the symplectic topology of some finite algebraic quotients of the A,
Milnor fibre which are diffeomorphic to the rational homology balls that appear in Fintushel
and Stemn’s rational blowdown construction. We prove that these affine surfaces have no closed
exact Lagrangian submanifolds by using the already available and deep understanding of the
Fukaya category of the 4,, Milnor fibre coming from homological mirror symmetry. On the
other hand, we find Floer theoretically essential monotone Lagrangian tori, finitely covered by
the monotone tori which we study in the A, Milnor fibre. We conclude that these affine surfaces
have non-vanishing symplectic cohomology.

Mathematics Subject Classification (2010). 53135, 53112, 53D40).

Keywords. Stein manifolds, exact Lagrangian submanifolds, monotone Lagrangian tori, sym-
plectic cohomology.

1. Introduction

Let p > g > 0 be relatively prime integers. In [11], Casson and Harer introduced
rational homology balls B, ; which are bounded by the lens space L(p?, pg — 1).
These homology balls were subsequently used in Fintushel-Stern’s rational blow-
down construction [15] (see also, [32]). In fact, B, , are naturally equipped with
Stein structures since they are affine varieties (cf. [23]) and here we are concerned
with the symplectic topology of these Stein surfaces.

The key topological fact is that B, , are p-fold covered (without ramification) by
the Milnor fibre of the A,_; singularity. The latter has a unique Stein structure and
its symplectic topology is well-studied (see [24], [28], [41], [36]).

Following Seidel [35], we make the following definition:

Definition 1.1. A Stein manifold X i1s said to be empty if its symplectic cohomology
vanishes. It is non-empty otherwise.

We recommend [38] for an excellent survey of symplectic cohomology. Non-
empty Stein manifolds are often detected by the following important theorem of
Viterbo (here stated in a weak form):
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Theorem 1.2 (Viterbo, [44]). Let X be a Stein manifold. If there exists a closed exact
Lagrangian submanifold of X then X is non-empty.

The question of existence of closed exact Lagrangian submanifolds goes back
to Gromov, who proved that no such submanifold exists in C” (see [19], Corol-
lary 2.3.B;). Of course C" also has vanishing symplectic cohomology (as explained,
for example, in [38], Section 3f), which together with the above theorem reproves
Gromov’s result.

We will exploit the relation of B, ;, with the Milnor fibre of A,_; singularity to
prove the following theorem:

Theorem 1.3. For p # 2, the affine surface By 4 has no closed exact Lagrangian
submanifolds. On the other hand, B, , contains a Floer theoretically essential La-
grangian torus, thervefore By, ;4 is non-empty.

Although one expects to find many non-empty Stein surfaces with no closed exact
Lagrangian submanifolds, to our knowledge, the above examples represent the first
explicit construction of non-empty Stein surfaces with no closed exact Lagrangian
submanifolds. In higher dimensions (dimg > 12), Abouzaid and Seidel exhibited
infinitely many examples in [1] where symplectic cohomology is non-zero with co-
efficients in Z but vanishes with coefficients in Z,. Such examples obviously cannot
contain closed exact Lagrangian submanifolds by Viterbo’s theorem applied over Z 5.
Our examples are not only of lower dimension but also have non-vanishing symplectic
cohomology with arbitrary coefficients. Therefore, there is no direct way of appeal-
ing to Viterbo’s theorem in order to exclude existence of closed exact Lagrangian
submanifolds. Their non-emptiness is detected by the existence of Floer theoreti-
cally essential tori ([38] Proposition 5.2). On the other hand, the non-existence of
closed exact l.agrangians is proved using a detailed understanding of closed exact
Lagrangians in the 4,, Milnor fibres based on twisted symplectic cohomology applied
by Ritter in [34] which suffices for p odd. For p even, we utilize a deeper under-
standing coming from homological mirror symmetry and calculations on the B-model
provided by Ishii, Ueda, Uehara [22], [21]. It is remarkable that algebro-geometric
calculations on the mirror side can be utilized profitably towards an application to
symplectic topology.

En route, we study a class of tori in A, Milnor fibres, which we call matching tori
(cf. matching spheres [5]). We will classify them up to Hamiltonian isotopy and show
that the Floer cohomology of these tori is non-zero. This fact is probably known to
experts in the field; however as we did not find a written account of this result for
n > 2, we take this opportunity to provide a proof as this fact will be used in proving
our main result above.

Acknowledgments. YL was supported by Herchel Smith Fund and Marie Curie grant
EU-FP7-268389. MM was supported by NSF grant DMS-0902763 and ERC grant
ERC-2007-StG-205349.
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2. Lagrangian tori in 4, Milnor fibres and their Floer cohomology

2.1. A, Milnor fibre. The four-dimensional A, Milnor fibre is given by the affine
hypersurface':
Sy ={(x,y,2) e C3: 2" 4 2xy = 1}

S, has the induced complex structure as a subvariety of C3, which makes it into a
Stein manifold, and can be equipped with the exact symplectic form inherited from
the standard form on €3 given by

w:d@:%(dx/\dfc—l—dy/\df—l—dZ/\dé)

where 6 = % (xdx —xdx + ydy — ydy + zdz — zdz).

Due to the existence of many exact Lagrangian spheres in 5, this hypersurface has
been instrumental in constructing many interesting examples in symplectic geometry
(see [24], [28], [41], [36]). We will recall some generalities about S,, and we refer
the reader to loc. cit. for more.

The projection I1,: §;, — C to the z-coordinate yields an exact Lefschetz fi-
bration with n 4 1 critical points at the roots of unity, which is adapted to the Stein
structure. The fibre of this Lefschetz fibration is a one-sheeted hyperboloid. The
vanishing cycle of any critical point and any vanishing path in the regular fibre is
always the core of the hyperboloid, given by

Ve =I7'@) N {x,y,2) € C: x| = |y}

Let D, be the disk of radius r centered at the origin in the base, and C, = 90D,.
For r > 1, the three-manifolds ¥, = d(I171(D,)) are all diffeomorphic to the
lens space L.(n 4 1,n) and are equipped with the unique tight contact structure on
L(n + 1,n) induced by the filling provided by II71(D,). (The fact that there is
a unique tight contact structure on L(n + 1, 1) is used below and follows from the
classification of tight contact structures on lens spaces, see [17], [20]). The restriction
IT|y, provides an open book supporting this contact structure and its monodromy is
given by (n + 1)™ power of the right-handed Dehn twist along the core of the fibre.
Note that the fibre has genus zero and clearly there is a unique factorization of this
monodoromy into a product of right-handed Dehn twists, therefore Wendl’s theorem
([46]) implies that there is a unique Stein structure on $, up to deformation, namely
the one coming from the restriction of the standard structure on C?. In this way, we
obtain an exact symplectic manifold (S,, d0) with ¢;(S,) = 0. Topologically, S, is
a linear plumbing of # disk bundles over $? with Euler number —2.

Next, we consider a family of Lagrangian tori in A; Milnor fibre. We call the tori
in this family matching tori, as they are obtained as unions of vanishing cycles.

The factor 2 is for compatibility with the conventional description of A,, Milnor fibre given by {(x, ¥,z} €
C3 .zt 4 x2 4 92 =1},
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2.2. Matching tori. Given a Lefschetz fibration IT: E ~ D2, a closed embedded
circle y: [0, 1] — D? with y(0) = y(1) = p and a Lagrangian V in the fibre
F, = TI7!(p), such that the symplectic monodromy ¢ along y takes V to itself, we
define a matching Lagrangian L to be the union of all parallel translates of V' over y.
Explicitly L = |, ey Vx where Vy is the parallel transport of V' over y to IM=1(x).

Note that 1. is diffeomorphic to the mapping torus of ¢p|  and is in fact al_agrangian
submanifold of £ by Lemma 16.3 in [36]. In the case when dimension of  is 4, and
V is a circle, we call L the matching torus of V along y.

In the case of the Milnor fibre §,, we take the closed path y oriented in such a
way that the enclosed area is positive. We call the resulting Lagrangian torus T,;, or
T,, if the particular choice of y is not important.

We will see below that the tori T, bound holomorphic disks, in particular they
cannot be exact Lagrangian submanifolds of S,,. In contrast, there is an abundance of
exact Lagrangian spheres obtained by matching sphere construction, which we recall
now. Take an embedded path ¢: [0, 1] — D2 such that ¢~ ! (Critv(I1)) = {0,1}. To
such a path ¢ one can associate an exact Lagrangian sphere 1, defined explicitly as the
union of vanishing cycles over¢: V., = | ), .. Vy where V, = TI"Hz)N{(x, y,z2) €
C?3 : |x| = |y|}. The fact that V, is an exact Lagrangian can be seen by observing
that it can be split up as a union of Lefschetz thimbles for the Lefschetz fibration I1,,
(see [36], 16g). We note that the core spheres in the plumbing picture of $, can be
taken to be matching spheres of linear paths connecting the critical values.

As S, is simply connected and 7, (T, ) = 0, from the homotopy exact sequence
we have

0— Wz(Sn) —= j'i'Z(Sr.!ar]Fn!) —= jTl(jrn!) — 0

which splits as 7(T,) = Z? is free. 72(S,) is generated by the cores of the disk
bundles in the plumbing description of S, and are represented by Lagrangian matching
spheres, hence they have zero Maslov index and symplectic area. Furthermore, one of
the Z factors in 71(T,, ) is generated by the vanishing cycle V', which is the boundary
of a Lefschetz thimble. Since the thimble is a Lagrangian D2, again its Maslov index
and the symplectic area vanishes. It remains to determine the index and the area on a
class § € m,(S,, T;) such that IT restricted to 9§ is a degree | map onto y. For this
purpose, we will need a more explicit computation.

Let us consider the parametrized curve
() = (H(I)eZﬂ(ﬂ(fHﬁ(l))’n(:)ehi(ot(f)—ﬁ(f))’ y(0))

fort € [0,1], n(z) > 0, a(r), B(t) real valued functions and y(¢) is a degree 1
parametrization of y such that 252(£)2e4™¢®) = 1 — y(£)"+1. Then ¢(¢) is a curve
on T, mapping onto y with a degree 1 map. The area of any disk with boundary on
such a curve is a sum of the areas of its three coordinate projections. This area is
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given by the integral of § over the curve by Stokes’ theorem. We compute

_ [ ia5_5 o 2
£9_£4(zdz Zdz)—|—2n'f0 a'(t)n(t)<dt.

Here the first term is the area enclosed by the projection of ¢(¢) on the z coordinate
plane, and the second term is the sum of the two other area contributions. Note that
the integral is independent of (7). This is a reflection of the fact the integral of &
over V is zero, hence we could have taken a curve ¢(¢) with 5(¢) = 0.

Lemma 2.1. [ =2x fol o’ (OHn(t)*dt > 0.

I_Z!’l+1

—=———_This
A/ 2[1—z 1|

is a composition of the holomorphic map p(z) = 1 — z"*! and a smooth orientation

Proof. Consider the map f: C\ Critv(IT,) = C\ {0}, f(z) =

preserving map s(re'?) = \/gem and has a continuous extension to F: C — C.

The map f sends ¥(¢) to n(z)e*™®®) 5o the integral we are interested in is / =
ff(y) 2r2d6. 1f we denote the interior of y (in C) by G, then F(G) has boundary
f(y) and by Stokes theorem, I = fF(G) rdr Adf = ff(G\Critv(Hn)) rdr Andf, which
is positive since f is orientation preserving. (]

We note in addition, that 7/ = ff(G\Critv(l'[n)) rdr ndf = f(G\Cmv(nnD FHrdr A
d0). We put
g =0y + f*(i‘di‘ A d@)

where 0 = %d z A dZ is the standard area form on C \ Critv(II,) induced from C,
and note that since f is orientation preserving, o is an area form on C \ Critv(Il,).
Observe that o blows up near Critv(I1, ) but is integrable across them, so for a region
G in C one always has a finite integral [ o = fG\Critv(Hn) 0.

We summarize this discussion in the following lemma:

Lemma 2.2. [et B € 72(Sy, Ty), and let @ and o be symplectic forms on 8, and
C\Critv(I1), respectively, as above. Then we have

[o=] @
B T(8)

Proof. Note that for the classes in 72(S,, T,,) that are represented by matching
spheres or a Lagrangian thimble both integrals vanish. The equality for any other
class follows from the computations above. L

Note that varying the path y outside of the critical value set of II leads to a
Lagrangian isotopy of T,,. We remark that this isotopy 1s Hamiltonian if and only if
it is exact (see [33], Section 6.1), which in the situation at hand is equivalent to the
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symplectic area of the disk discussed above staying constant during the isotopy (as
the other generator still bounds the thimble during such an isotopy). Therefore, we
define

: 1
Ty = / iz(zdf —zdz) + 271[ o (H)n(1)2dt
y 0

which will be called the monotonicity constant. Note that 7, is the area of region
enclosed by ¥ with respectto o.

Lemma 2.3. let (¥,0 = dA) be an exact symplectic 2-manifold. Then any two
isotopic closed curves yy,y1 with fyo & = fm A are Hamiltonian isotopic via a
compactly supported Hamiltonian isotopy.

Proof. This is an adaptation of Proposition A.1 in [2] and follows a similar route
— we first extend the isotopy connecting g to ) to a global smooth isotopy such
that it ends at a symplectomorphism, then use parametrised Moser’s trick to get a
symplectic isotopy connecting yp to y; (this works only in dimension 2). Finally,
this gives an exact Lagrangian, and hence Hamiltonian, isotopy between yq and y;.
The proof below follows this outline.

Let f; be an isotopy connecting y to yq, thatis, amap f: S! x [0, 1] — X such
that f; = fg1,y is an embedding. Without loss of generality, it sulfices to restrict
to a compact submanifold of 3 which contains the image of f and in which y, (and
hence y1) is separating (in fact, f; can be taken to be supported near embedded annuli
with core yp and bigons between yg and yq; it is easy to see that support of such an
isotopy is contained in a sub-annulus of 3 with core y).

We first prove that f; extends to symplectic isotopy F; of a neighbourhood of
vo (cf. Ex. 3.40 in [29]). Write y; = f;(yp) and choose an increasing sequence
tr € [0,1] starting with fo = 0 and ending with /x5 = 1, such that y,, , isina
Weinstein tubular neighbourhood of y,, and for¢ € [fg, fx41], y; are graphs of closed
1-forms p, on yy, . Then (g, p) — (q. p + n:(q)) is a symplectic isotopy extending
f: on a neighbourhood of y;, . Taking the neighbourhood of y, small enough that it
lands in the domain of definition of these extensions for all times ¢ € |0, 1] gives the
desired extension F;.

The isotopy F; constructed above extends to a smooth compactly supported iso-
topy of 2 which coincides with F; on a smaller neighbourhood of v(yy) of yp. We
denote this isotopy of X by G,. We next show that by a further compactly supported
smooth 1sotopy we can replace G, with an isotopy H, such that G, and H, agree
near yp and H; is a symplectomorphism.

Consider the compactly supported closed 2-form G{o — o. Since Gy is a sym-
plectomorphism near yg, G{o — o vanishes identically near y,. Hence, it represents
a class in H2(X,v(yo)). In addition, as yp is separating, this last group is rank 2
corresponding to two connected pieces of X\ v(yp), say 21 and X,.
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Now, by Stokes’ theorem and since G, is compactly supported, we obtain
[5,(Gi(o) —0) = fm(Gi" (A —A) = fm A — fyo)u = 0, and similarly the in-
tegral of G{ o — o vanishes over X,. Therefore, we have G{o — 0 = du for some
compactly supported 1-form « which vanishes near y;.

Hence we have a family of symplectic forms oy = (1 —s)o +5G{(0) = 0 +sda
and Moser’s trick yields the desired isotopy. In summary, we have produces a com-
pactly supported isotopy 1, such that /, sends ), to y; and is a symplectomorphism
on 2.

We have the following lemma:

Lemma 2.4. A compactly supported symplectomorphism Hq smoothly isotopic to
identity via a compactly supported isotopy is isotopic to identity via a compactly
supported family of symplectomorphisms.

Proof. This is a compactly supported version of Lemma A2 in [2], and is an applica-
tion of a parametrised Moser’s trick. U

Completion of the proof of Lemma 2.3. Lemma 2.4 applied to H, yields a symplectic
isotopy K; connecting )y to y1. Finally, as the embedded surfaces bounded by y;
(namely K;(31)) all have the same area, K,()y) is an exact Lagrangian isotopy, and
s0 Yo and y; are Hamiltonian isotopic. [

Applying Lemma 2.3 to (X = C \ Critv(I1,), o) where ¢ is as in Lemma 2.2,
we get the following:

Corollary 2.5. Suppose embedded circles vy and yy are isotopic in C \ Critv(I],)
and ty, = ty,. Then Ty y, and 1y, ,, are Hamiltonian isotopic in Sy,.

Proof. By Lemma 2.3, yg and y; are Hamiltonian isotopic, let y; be the image of yp
in such an isotopy then by Lemma 2.2 the Lagrangian isotopy of the corresponding
matching tori Ty, ,, is exact. 0

We also have the following obvious observation.

Corollary 2.6. Suppose an embedded circle o is entirely contained inside an embed-
ded circle . Then 7, < 1g.

Remark 2.7. A direct computation shows that if we take y, to be a circle of radius
r > 1 centred at the origin, 7y, approachesm = m +n + 1 as r approaches 1. As 7,
grows to infinity when r grows, any 7 above m can be obtained by taking a circle of
some unique radius.

We next complete the computation of Maslov index on 7, (S,. T},).
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Lemma 2.8. For f € (S, Ty,), the Maslov index p(B) is 2(8 - I1 1 (0)).

Proof. Since the Maslov index is invariant under Lagrangian isotopy, it suffices to
prove this formula for the matching tori above round circles y, (of any radius bigger
than 1). To this end, we construct a complex meromorphic volume form €2 which is
nowhere vanishing and has a pole of order 1 along the divisor D = IT!(0)in S,, and
with respect to which T}, is a special Lagrangian submanifold, i.e. Im(Q2)|t, = 0.
Then Lemma 3.1 of [4] states that the Maslov index p(f) is twice the algebraic
intersection number of B with the divisor of Q7!, that is, with T, 1(0).

Such an € can be obtained by the restriction to S, of @ = % on C3.
n+1

Note that S, is cut out by the equation 2xy — 1 = z"7", hence on S, we have
2xdy +2ydx = (n + 1)z"dz, so that g;;\fjl’ = (’;‘;Zl)dz Ady = —%dz Adx.
We see that on S, \ D the form €2 is non-vanishing, and since D is given by z = 0
(and hence both x and y are non-zero on D), © blows up to order 1 at D, as wanted.

It remains to show that the round T,, are special Lagrangian for 2. This is the
same as 1n Proposition 5.2 of [4]. Namely, we take the Hamiltonian function on S,
given by H(x,y,z) = |2xy — 1|? and consider its Hamiltonian vector field X .
It is symplectically orthogonal to vertical tangent vectors because /7 is constant on
the fibres of ITI, and is tangent to the level sets of [, that is, to the fibres. So
X g 1s the horizontal lift of the tangent vector of y,, and so is tangent to T,,. The
tangent space to T,, is spanned by Xy and a vector field tangent to the vanishing
cycle, say § = (ix,—iy). Since Q2 = %@ = idlog(2xy — 1), we get
Im(&, X7) = dlog|2xy — 1|( Xy ) which is zero because X is tangent to the level
set of /1. Hence T,, is special Lagrangian. (]

Recall that the minimal Maslov number of a Lagrangian L in a symplectic man-
ifold M is defined to be the integer Ny, := min{u(A) > 0 | A € n,(M, L)} where
#(A) is the Maslov index.

We summarize the above discussion as:

Proposition 2.9. T,, is a monotone Lagrangian torus in (S, d0), that is,
2w(4) = u(4)

for any A € wy(S,,T,) where © > 0 is the monotonicity constant, a fixed real
number depending only on the path y. The minimal Maslov index Nt, equals 2.

For n = 0, we get a monotone Lagrangian torus To C C2, which is indeed the
Clifford torus (|4]) and for n = 1, we have a monotone Lagrangian torus Ty C
T*S?. The following proposition shows that one of the T; is Hamiltonian isotopic
to Polterovich’s construction of a monotone Lagrangian torus in 7*52 (see [3]).

Proposition 2.10. Under a symplectomorphism identifving Sy and T*S?, Polte-
rovich’s torus becomes one of the 1.
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Proof. S1is givenby {z2 + 2xy = 1} in C3. Under the exact symplectomorphism
Z = Z§, % = %(21 +izz),y = %(21 —izp)itis taken to C = {(z¢9,21,22) €
C3 | z5 + z3 + z3 = 1}. We take s; and #; to be real and imaginary parts of z;
respectively, so that z; = s; + if;, and let s = (89, 51.52) and { = (fp,#;,1). Note
that the equations for Sy are |s|? — |£|> = 1 and {s,7) = 0.

Further, we take 7*82 = {v € R3, u € R¥ | (v,u) = 0, |v| = 1}. Itis exact
symplectomorphic to C via the map (v = s|s|™!, u = ¢]s]).

For a complex number written in polar form re!® we say that @ is its phase
and we note that a vanishing cycle over the point z = z¢ given by |x| = |y| can
be alternatively described by the condition that phase of z; is equal to phase of z;
modulo 7.

The Polterovich torus 7 is the geodesic flow of unit covectors over (1,0, 0) ([3]).
Namely, let v = (vp,vy,v2) be a point in § 2. If v is neither the north nor the
south pole, there are exactly two points in 7 projecting to v. To find them, denote
7 = (v1,v2),r = |F|, so that v = (vg, 7). Then the cotangent vectors in the torus T
projecting to v are u = (=7, =27) and —u = (r, —=27).

Let’s find the coordinates (s, 7) of the point in Sy corresponding to (v, u). Since

u| = |s||t] = 1, we have |s|?> — |s|™2 = 1, s0 |s| = @,sothatsz @v
Z 2
V5—1

2
(if v1 and v have the same sign), or differing by . The point (21, Z,) corresponding

V541 \/ﬁ

to (v, —u) has real part >—v and imaginary part — >—1u, and Z; and Z; also
have phases equal or differing by . As (vq, vy) varies over a circle, the points (v, u)

and (v, —u) trace out the vanishing cycles over zy = (\/ “/§2+1v0, \/ “/52_1 r) and

andf =

1. Note that this means z; and z, have the phases that are either equal

Zog = (4 @vo, ) @r). We note that the circles that are intersections of the
Polterovich torus with cotangent fibres over the north and south poles are vanishing

cycles over the points ( @, 0) and (— @ ,0).
Hence the Polterovich torus is in fact the union of vanishing cycles over the ellipse

7 = (\/“/gz"'lvo, \/“/gz_lr). Note that vJ + r? = 1 means that the curve over which

we have the matching torus is the ellipse focal at =1 and with eccentricity @
This curve can be lifted to the torus 7 as before with x(¢) = y(¢) = %(1 —y(£)?),
which can be computed to be the same ellipse scaled down by +/2, hence both x and

y projections enclose area %, giving the monotonicity constant w + Z + Z = 2,
as expected. (]

Remark 2.11. As 27 > 7 + 2, Remark 2.7 and Lemma 2.5 imply that 7" is Hamil-
tonian isotopic to one of the round matching tori.
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2.3. Floer cohomology of matching tori. Since T, is monotone of minimal Maslov
index 2, its self-Floer cohomology is well-defined and can be computed using the pearl
complex. This complex was first described by Oh in [31] (see also Fukaya [16]) and
was studied extensively in the work of Biran and Comea (see [7], [8] for detailed
accounts).

Before proceeding to the computation proper, we shall give a brief review of the
pearl complex. We generally follow [7] and [9] to which the reader is referred for
details, however we will adapt the conventions of Floer cohomology, rather than Floer
homology (see also [43]).

Given amonotone Lagrangian 1. inside a geometrically bounded symplectic man-
ifold M (Stein manifolds in particular are geometrically bounded, see [13], Section 2,
for a definition and discussion), the pearl complex of L is a deformation of its Morse
complex by quantum contributions coming from holomorphic disks with boundary
on L. In order to define this complex, we take the coefficient ring to be the Laurent
polynomials A = Z»[t,™!], fix a Morse function f on L with set of critical points
Crit( f), a Riemannian metric p on {., and an almost-complex structure J on M
compatible with our symplectic form @. The pearl complex has the underlying vec-
tor space €*(L; f,p, J) = (Z,{(Crit( f)) ® A), which inherits a relative Z-grading
coming from the Morse index grading on Z{Crit( f)) and the grading given on A
by degt = Np.

We define a differential on €*(L; f, p, J) by counting pearls — sequences of
gradient flowlines of f interspersed with holomorphic disks. Namely, denote by ®;,
—oc < t < oo the gradient flow of (f, p). Given a pair of points x,y € L and
aclass 0 #£ A € Hy(M, L) consider for all / > 0 the sequences (uq,...,u;) of
non-constant J-holomorphic maps u; : (I, D) — (M, L) with

(i) gradient trajectory of possibly infinite length " from x to 1y, i.e.,

Dy (x) = ur(=1);
(i) gradient trajectories of length 7; between u; and u; 41, L.e.,
Oy, (ui(1)) = uip1(=1);
(iii) gradient trajectory of possibly infinite length " from u; to y, i.e.,
Dy (uy(l)) = y;

(i) [a1] + -+ [ur] = A

Two such sequences (u1,...,u;) and (u),...,u},) are equivalent if / = [/’ and
each u} is obtained from u; by precomposing with holomorphic automorphism of
I that fixes 1 and —1. We define the moduli space #pn(x, y: 4; f, p, J) to be the
space of such sequences modulo equivalence. In addition, for 4 = 0 we define
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Por(x, y: A; f. p, J) to be the space of unparametrized trajectories of the gradient
flow ®; from x to y. If x and y are critical points of f, then the expected dimension

Spr(x, y: A) of Ppalx, v; A fop, J)is |y| — |x] + pu(4) — L.

Theorem 2.12 (ctf. [7], Theorem 2.1.1). For a generic choice of the triple ( f,p, J)

we have:

* Forall x,y € Crit(f) and A € Ho(M, L) such that §pn(x,y; A) = 0, the
moduli space Py (x, y: A; £, p, J) is a finite number of points and we can define

2(A)
d(x) = 3, a(#z, Poa(x, y: 45 f,p, )V .

» Extending d to €*(L; f,p, J) linearly over A we get a chain complex (i.e.
d? = 0), and the homology of this chain complex is independent of the choices

of I, f, p.
» Thereis acanonical (graded) isomorphism H* (€™ (L; f.p,J)) = HF*(L; A).

Remark 2.13. Let us make a remark on the requirement in the above theorem that
the triples ( f, p, J) be generic. What we require is to have the pair ( f, p) be Morse—
Smale, making all stable and unstable manifolds of f transverse and hence making
the moduli spaces of gradient trajectories smooth, and to have J that makes moduli
of holomorphic disks with boundary on I. and two boundary marked points regular;
in addition we require all the evaluation maps from the moduli spaces above into
our symplectic manifold M to be transverse in tuples, so that the corresponding
moduli spaces Ppa(x, y; A; f, p, J) are transversally cut out. Note that only the
moduli spaces that appear in building #pn(x, y; A; £, p, J) with expected dimension
Spn(x,¥;4) = I need to be regular. What we will use in our computation is a
complex structure that is regular for disks of Maslov index 2 and a generic Morse—
Smale function; this is sufficient for a monotone two-dimensional Lagrangian torus.

Remark 2.14. HF*(L;A) is a unital (associative) ring with a relative Z-grading,
where the ring structure is given by counting pseudoholomorphic triangles of Maslov
index zero. We can indeed fix an absolute Z-grading by requiring that the unit lies in
HFO(L; A). Similarly, the relative Z-grading at the chain level €*(L; f, p, J) canbe
upgraded to an absolute Z-grading by requiring that the generators of Morse index Olie
in degree 0. Finally, note that equivalently we could have worked with H F*(1.; Z5)
by setting £ = 1 in the definition of the chain complex. We then only get Z /Ny -
grading. On the otherhand, H F*(L;Z,) and H F*(L; A) carry the same information
since HF*(L; A)is Ny, periodic in the sense that HF*¥NL (L: A) = - HF*(L: A).

Remark 2.15. The Lagrangians T, are tori, hence they are orientable and can be
equipped with spin structures. This would allow us to take A = Z[t,t~!] as our
coelfficient ring. Doing so would require picking orientations and spin structures on
T, and paying attention to the induced orientations of moduli spaces of discs in
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Floer cohomology computations. We avoid this refinement as it is not needed for our
application.

Let L. be amonotone Lagrangian in (M, @) with minimal Maslov number Ny > 2.
In this case, following Biran and Cornea (Section 6.1.1 [7]), we define a homology
class ¢(L) € H;(L;Z>) as follows: Let J be an w-compatible almost complex
structure such that all the holomorphic disks of Maslov index 2 are regular (call such
J regular). Monotonicity ensures that there are only finitely many homology classes
in Hy(M, L) represented by a holomorphic disk and an application of a lemma of
Lazzarini ([25]) shows that all such disks are simple. Thus, the set of regular J is
of second category in the space of compatible almost complex structures. Pick a
(generic) point p € L such that the number of Maslov index-2 holomorphic disks
u: (D, D) — (M, L) with p € u(dD) is finite, call this number /. Then the
boundaries of these holomorphic disks represent homology classes (counted with
multiplicity) ¢y, ... ,¢; € Hy(L; Z,) and the homology class c(L) is simply the sum
c(L) = Zle 7. Standard cobordism arguments show that ¢(1.) is independent of
J and p.

The pear]l complex model for self-Lagrangian Floer cohomology admits a degree
filtration as follows: FX(E*(L: £, p, J)) = (Z,(Crit( £)) @ F*(Z,[t, 1)), where
FEZLt. 17 = {P € Zo[t,t7 1] | P(t) = axt® +agy t¥T1+--- ). The differential
clearly respects this filtration and the degree preserving part corresponds to pearly
trajectories with A = @, which are indeed Morse trajectories. Therefore, one obtains
a spectral sequence from H*(L; Z,) to HF*(L; Z,) (this is known as Oh’s spectral
sequence [30]). Biran and Cornea’s careful analysis of the algebraic structure of this
spectral sequence shows that in our situation the class ¢(T ) completely determines
the Floer cohomology H F*(T; Z,) additively, which we record as follows:

Proposition 2.16 (7], Proposition 6.1.4). Let T be a monotone Lagrangian 2-torus
in a symplectic 4-manifold (S, w) with minimal Maslov number N7 > 2.
If c(T) =0, then HF*(1; Z,) =~ H*(T; Z,) (as Z,-graded vector spaces).
Conversely, if c(T) # 0, then HF*(T;Z,) = 0.

Remark 2.17. If we only wanted to show HF*(L;Z,) # 0 when ¢(L) = 0, we
could argue as follows: We pick a Morse function f on I with a unique maximum,
call it . Since it represents a generator for 712(L), for degree reasons, it will survive
in HF*(L;Z,) if 3(m) = 0. On the other hand, the knowledge of Maslov index-2
disks through m allows us to compute d(m) = PD{(c(L)) -t where PD{c(L))isa
chain consisting of linear combinations of index-1 critical points of f representing
the Poincaré dual of ¢(1.) € Hy(L). Hence, if c(1.) = 0, then m represents a non-

trivial class in HF*(L;Z,). Proposition 2.16 shows that when £ is a torus, this is
actually equivalent to HF*(L; Z,) >~ H*(L:;Z5,)



Vol. 89 (2014) The symplectic topology of some rational homology balls 583

In view of Proposition 2.16, we determine the Floer cohomology of the tor1 T,
via a calculation of ¢(T5).

Lemma 2.18. ¢(Ty) # O and c(T,) =0 forn > 0.

Proof. Recall that if T;,; = T, is a matching torus over a curve y and y bounds the
disc D), C C, then for a J making 7, holomorphic, by maximum principle, the
sections have to project to Dy,. So, we will not distinguish I1, : S, +— C and its
restriction T1,|TT,, (D) +~ D, when counting holomorphic sections of TT,, with
boundary on T,.

First we note that, if we have an isotopy of y, in C \ Critv(Il,) such that
75, = const, so that the isotopy lifts to a Hamiltonian isotopy I of T,, bounding
discs Dy, as in Corollary 2.5, then F, gives identifications of all 77,(T,, , Z,) and the
moduli spaces of sections I, |1, ' (D;) ~ D, with boundary on T,, representing a
givenclassa € Hy(T,,, Z;) of (minimal) Maslov index 2 are cobordant. This can be
seen as follows: For fixed fy < 1 let Jy, and J;, be regular almost complex structures
making the moduli spaces of Maslov index-2 sections M,, = M(I1,, Ty, , J; ) regu-
lar one-dimensional manifolds. Consider the space g of almost complex structures in
the total space which are simultaneously regular for counting sections in M(w,, T,,)
for all 1 € [fg, £1] and makes TT,, holomorphic, this is a subset of second category in
the space of almost complex structures on S, (since [fy, 1] is compact and it is of
second category for a fixed 7). A generic path J, of almost complex structures in this
space connecting J,, and J;, gives a smooth cobordism M; = M(II,,T,,, J;) of
moduli spaces M, and M, since at no point during the isotopy T, bounds Maslov
index =< 0 disks. Furthermore, since the matching tori T, are parallel transported to
each other, we get a bordism of the images of the evaluation maps ev,: M, — T,,
by considering the parametrized evaluation map ev: [fp.11] X M; — T,, where we
use the parallel transport to identify Ty, with T,, . Therefore, for the purpose of
algebraically counting of pseudoholomorphic sections of II, with boundary on T,
we are free to move y with such an isotopy.

Now, consider the deformation y; as in Figure 1 where yg = yand yy = a#
such that « is an embedded circle that encloses only one critical value and 8 encloses
the remaining # critical values.

To be precise, o and § are closed embedded circles in the base C that intersect
at a unique point p and y; is an isotopy through embedded curves with 7;,, = const.
and y; is very close to @ v 8 (we can find such an isotopy by Lemma 2.2). Let
Dy, Dg be the disks that o and B bound. Then we can consider the Lefschetz
fibrations 7, = Hn|H;1(Da) H Dy and mg = Hn|H;1(D5) = Dg. We also
set wy, = I,|TI;1(Dy,) — Dy,. Now, we can deform y; to a sufficiently close
neighborhood of « v 8 so that the Lefschetz fibration 7, is a boundary sum of
the Lefschetz fibrations my and g and the matching torus T, is obtained as a
connected sum Ty, #Tg. To be careful, one first deforms the symplectic structure in a
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Figure 1. Deformation of p.

neighborhood of the fibre above p, so thatitis a trivial symplectic bundle F x[—1, 1]?
where F is the fibre, and the piece of the Lagrangian torus over y; becomes two trivial
circle bundles over the intervals {£e} x [—1, 1]. One then surgers the Lagrangian
boundary condition within this trivialization so that the outcome is Ty, and Tg. (For
more details, we refer to Proposition 2.7 and the preceding discussion in [39] for the
details of boundary sum of Lefschetz fibrations which carry Lagrangian boundary
conditions).

Now, let M(m,, Ty, Jy) be the moduli space of J, holomorphic sections of m,,
with boundary condition T, and similarly let M(mg, Tg, Jg) be the corresponding
moduli space for 8. Let V = T, N Tg is the vanishing cycle on the fibre I 1(p)
and, evy: M(my, To, Ju) — Vandevg: M(my, Tg, Jg) — V are evaluation maps.
The basic gluing theorem ([39], Proposition 2.7) proves that if J, and Jg are regular
and evy and evg are mutually transverse, then there exists a complex structure J so
that M (), Ty, , J) is regular and is given as a fibre product of

M(rty, . Ty, ) = |_| M(y, Ta, Ju)? xv Mg, Tg, Jg)?
pta—1=k

where the fibre product is taken with respect to the evaluation maps ev,, and evg and the
superscripts are dimensions. Recall that we are interested in counting Maslov index-2
disks with boundary on T, which live in the moduli space of index p+dim(T, )—3 =
1. Hence, according the gluing result above, it suffices to understand the Maslov
index-2 disks for Ty and Tg.

In fact, by induction it suffices to understand only the base case M(mwy, Ty, Jy),
i.e. when only one critical point is enclosed, since if 8 encloses more than one critical
point, we can apply the above deformation to  separately to break it up into smaller
pieces until each piece encloses only one critical point, see Figure 2 for an illustration.

To tackle the base case, one applies a degeneration argument due to Seidel [39],
Section 2.3. Namely, for convenience, we can assume by an isotopy through curves
with fixed T = 74, « 1s a round circle by the argument in the beginning of the proof.
Let D, be disks of radius r € (0, a] where D, = D,. One considers the restrictions
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Figure 2. Inductive deformations.

w7yl (Dy) — D, with Lagrangian boundary conditions given by matching
tori T, above dD,. Exactly the same cobordism argument that we have given in
the beginning of the proof shows that the algebraic count of pseudoholomeorphic
sections of 7, with boundary T, does not depend on r when we vary r in a compact
interval (Note that, again, none of the tori T, bound a Maslov index < ) holomorphic
disk). Now, Seidel proves a compactness result when as one lets r — 0 ([39],
Lemma 2.15) to conclude that when r is sufficiently small, the moduli space of
sections can be computed using a model Lefschetz fibration. 7: C? — C given by
7 (x1,x2) € C? > (xf + x3) € C asin ([39], eq. (2.18)). Lemma 2.16 of [39]
explicitly computes all sections of 7 with boundary on T,, C C?, where y, is the
round circle of radius 7 centered at 0. These are the maps from closed disk of radius
s to C? given by

Ug +(w) = (r_l/zaw + rl/zé, :I:i(r_l/zaw - rl/zfz))

fora € C with |a| = % so this space is diffeomorphic to S U S!. Moreover by
the same lemma this moduli space of sections is regular (for the standard complex
structure on C?2).

Following [4], we note that Ty, € €2 isin fact the Clifford torus |x| = |y| = re.
From the above explicit description, the images of the boundaries of the two families
of holomorphic disks on Ty are given by x = const. and y = const. (The same two
families were obtained as the outcome of the computation in [12], Theorem 10.1.
This again shows that these disks are regular by [12], Theorem 10.2.) Note that there
are exactly two holomorphic sections with boundary through any given point p € Ty
and their boundaries intersect transversely at a single point. Therefore, the homology
classes in H1(Ty) represented by the boundaries of these two families are of the form
L and L + V, where both L and L + V project to the generator of Hy(S!) under IT
and V' is the class of the vanishing cycle.

Thus, we have determined M (mwy, Ty, Jy) where o encloses only one critical
point and ./, is the standard complex structure (which is regular) and the computation
also gives the evaluation map ev,. It remains to perform the inductive step of the
computation to compute the Maslov index-2 sections of T,
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As discussed above the gluing theory shows that the count of sections for (S, T,)
can be understood as the count of sections for the n-fold boundary connected sum
of (Sp, Ty), which will be denoted by (%,,, 7,,). To describe the holomorphic disks
in it we need a basis for H1(z,). One element of the basis can be taken to be the
vanishing cycle V,,. The choice of a second basis element is obtained a posteriori by
the following lemma.

Lemma 2.19. Through any point on 1, there are 2"+ disks of Maslov index 2 in
(X5, Tn), and there exist elements L., € Hy(t,) which together with V,, form a basis
of Hy(ty) and such that there are (n}'c'l) disks with boundary class kVy,, + L.

Proof. We prove this by induction. As discussed above, the base case is the Clifford
torus, where there are indeed 2 holomorphic disks through every point, in classes
whose difference is V4. These moduli spaces are regular for standard complex struc-
ture on C”. Call one of them L and another £ + V1. The inductive step is given by
using the Seidel’s gluing formula [39], Proposition 2.7 together with the base case.
Each of the 2" disks given by induction hypothesis in (¥,_1, 7,—1) glues to either of
the 2 disks in (S, Tg). By the same proposition, the glued up moduli spaces are reg-
ular. Denoting by L, the class in H,(z,) obtained by gluing L,—; and L, we have
that the number of disks with boundary in class kV,, + L, is (7) + (.",) = (”;CH),
as claimed. O

Completion of the proof of Lemma 2.18 . We conclude that the total boundary class of
Maslov index-2 disks is given by >, (HII)UC Vo + Ly)=2"TL, 4+ (n + 12"V,
which is 0 € H(7,;7Z,) foralln > Oand [Vy] # 0 € H (1g;Z;) forn = 0.
Since the moduli spaces of discs in (%,, 7,) and (S, T,,) are identified, it follows
that ¢(Ty) # Oand ¢(T,) = 0 forn > 0. O

Proposition 2.20. [HF*(T,;7Z,) =~ H*(T,;7Z,) forn > 0.

Proof. The proof follows immediately from Proposition 2.16 together with Lem-
ma 2.18. O

Remark. In view of Proposition 2.10, Proposition 2.20 generalizes a theorem of
Albers and Frauvenfelder from [3] where the authors computed H F*(T1; Z-).

3. The rational homology balls B, ,

3.1. A finite group action on the A, Milnor fibre. Asbefore,let p > g > Obetwo
relatively prime integers. Let Z, = {§ € C : §# = 1} be the cyclic group. Let us
consider a one-parameter smoothing of the isolated surface singularity of type Ap—1,
i.e. we consider the hypersurface singularity given by z? + 2xy = 0 C C? and the
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smoothing of this singularity givenby F: C? — C, where F(x, y,z) = z? + 2xy.
We let T, to denote the following action of Z, on C* given by

£ (x,y.2) = (Ex. £y, £92)

Clearly, the action is free outside of the origin and the function ¥ is invariant
under the action. Indeed, we get a QHD-smoothing of the singularity F~1(0)/ T, .
The latter is known to be the cyclic quotient singularity of type (p?, pg — 1) ([45]
Example 5.9.1). We denote the Milnor fibre F~1(1)/Tp 4 by Sp—1/Tpg = Bpg-

The action I', ; can be visualized easily in terms of the Lefschetz fibration
II: Sp—1 — C. Namely, Z, acts freely by lifting the rotation of the base of the
Lefschetz fibration around the origin by an angle of 2—;‘1, as well as rotating the fibres
by an angle of 2?”.

Note that this makes it clear that B, ;4 is a rational homology ball. On the other
hand, since S,_1 is simply-connected, we have m1(B,,) = Z,. Note also that
the Stein structure on S,_; induces a Stein structure on B, 4. Recall that B, , is a
smoothing of the cyclic quotient singularity of type (p?, pg — 1), that is, C?/7Z 2
whereZ,» = {§ € C :épz = Dactsby£: (wy, wa) — (Ewy, £797 Yw,). Therefore
the boundary of B, , is the lens space L(p?, pg — 1). The Stein structure on B, ,
induces a contact structure £, , on L(p?, pg — 1), which is also filled by the singular
fibre of the deformation. This can in turn be resolved to obtain a Milnor filling by the
resolution of the cyclic quotient singularity, which we denote by Cp, 4. Cp 4 18 given
by the linear plumbing graph below:

—br  —br—1 —b
P = = = = —_—
Figure 3. Cp, 4.

Thus, Cp 4 is the linear plumbing of disk bundles of over the 2-sphere with Euler
number —b; . Here b; are obtained by the unique continued fraction expansion pg il =
[bk, br_1..... bl] with all b; > 2.

In fact, we claim that the Stein surfaces B, , are exactly those that are used by
Fintushel-Stern (and J. Park) in rational blow-down operation. Namely, let K(nm, n)
denote the 2-bridge knot, whose double branched cover is the lens space L{m, n). It
is known that K(p?, pq — 1) is slice (in fact ribbon) for p > ¢ > O relatively prime
(see for ex. [27]). Fintushel-Stern’s rational homology balls ([15]) are given by the
double branched cover of the four-ball branched over the slice disk for K(p?, pg—1).

Proposition 3.1. B, ; is diffeomorphic to double branched cover of D* branched
along the slice disk bounding K(p?, pg — 1).
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Proof. As we observed above, C, , yields a Milnor filling of the contact structure
(L(p?, pq —1),&p.4). Therefore, by [26], the contact structure £, , must be univer-
sally tight. (This also follows from the fact that £, , is the induced contact structure
on the boundary of the cyclic quotient singularity of type (p2, pg —1)). Up to contact
isomorphism, it is known that there is a unique universally tight contact structure on
L(p?, pqg — 1). Furthermore, Lisca has given a classification result for the diffeo-
morphism types of the fillings of the tight contact structures on lens spaces ([27]). It
follows from this classification that in the case of (L{p?, pg — 1), §p 4), there are two
possibilities for the diffeomorphism types of symplectic fillings, and these classes
are realized by the manifolds C, , and the double branched cover of D* branched
along the slice disk bounding K (p?, pg — 1). The latter must then be diffeomorphic
to By 4 since B) 4 is a Stein filling which is not diffeomorphic to C, 4. ([

We have equipped the manifold B, , with the Stein structure induced from S,_4
given as the finite free quotient of the Stein structure on S,_q. This is the same as
the Stein structure on B 4 thinking of it as an affine algebraic variety because B, 4
is an algebraic quotient of S,—q1. Note that there exists a unique Stein structure up
to deformation on S,_y. This follows, for example, from [46]. Therefore, it seems
likely that B, , in fact has a unique Stein structure, however we do not know how to
prove or disprove this. On the other hand, any putative exotic Stein structure on B, 4
would lift to the standard Stein structure on S,—1. Therefore, for our arguments, we
do not need to make precise which Stein structure is being considered on B, ,. Note
also that the same reasoning shows that any Stein structure on B, ; would have to fill
the unique (up to contact isomorphism) universally tight contact structure.

3.2. Legendrian surgery diagram of B, ,. In this section, we construct a Stein
structure on B, , via Legendrian surgery on a Legendrian knot on § 1'% §2?. We see
from our description that the p-fold cover of the surgery diagram that we depict gives
a surgery diagram of the Stein structure on S,_;.

Recall that the Stein structure on S,_1 can be drawn as in top figure of Figure 4
starting from the Lefschetz fibration Il. It is understood that all the framings are
given by b — | framing, where ¢b denotes the Thurston—-Bennequin framing. From
the Lefschetz fibration view, the 1-handle can be understood as the thickening of the
fibre over the origin and the 2-handles correspond to thimbles over the linear paths
connecting the origin to the critical values (p™ roots of unity).

Now, we can apply g full negative twists around the 1-handle, which would change
the smooth framing of individual handles from —1 to —1 — ¢, and this can be drawn
as in the middle figure of Figure 4, where there are p twisted handles which have
th —1 = —1— g, as wanted. In other words, the middle figure also gives a Stein
structure on S,_1 and since there is a unique Stein structure on S,_; up to Stein
deformation, we can in fact work with the middle figure. The advantage of doing
this is that it allows us to see the I', , action on the diagram. Namely, it sends the
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1-handle to the quotient 1-handle and translates the attaching circles of the 2-handles
(in the horizontal direction as drawn). The bottom figure in Figure 4 depicts the
quotient diagram for the action I';, , on S, yielding B, ;. (See Section 6.3 [18] for
a discussion of finite covers of handlebody diagrams). Here, there is aunique 2-handle
that passes through the 1-handle p times and it has framing 16 — 1 = —pg — 1.

Figure 4. Legendrian surgery diagrams: Sp—1 (top and middle), By 4 (bottom).

Remark 3.2. The smooth handlebody description of B, , consisting of just one
1-handle and one 2-handle seems to be not widely known for ¢ > 1 (see Figure 8.41
in [18] for ¢ = 1 which matches with the above picture). Here, we provide not only
a smooth handlebody description but also a L.egendrian realization of the attaching
circle of the 2-handle as a Legendrian knot in §! x $2 such that the smooth framing
is given by £b — 1, hence this description equips B, 4 with a Stein structure (see [18]
Chapter 11). From our description, it also follows that the Stein structure that we
obtain this way is the same as the Stein structure induced from S,_; via the action

FP:Q'

3.3. Lagrangian submanifolds of B, ,. The exact Lagrangian submanifolds of
Sp—1 has been studied extensively. We will use the understanding provided by Ritter
([34]) and Ishii, Ueda and Uehara ([22], [21]) to prove the following theorem:

Theorem 3.3. For p # 2, there does not exist any closed exact Lagrangian subman-
ifold in By 4.

Before we give a proof of this theorem, we will make it clear what knowledge
of exact Lagrangian submanifolds in 5,_; will be needed. In [34], it is proven
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using symplectic cohomology with twisted coefficients that every closed exact La-
grangian submanifolds in S,—; is diffeomorphic to S2. Since the intersection form
on H,(S,_1) is negative definite, and the homology class of an orientable closed
Lagrangian submanifold L in a Stein surface satisfies [L] - [L] = — y(L), it follows
easily that orientable closed exact Lagrangians can only be sphere or tori. Ritter’s
result tells us that in fact any closed exact Lagrangian in S,_1 has to be orientable,
moreover it cannot be a torus.

Note that there is an abundance of inequivalent exact Lagrangian spheres in S,
provided by the matching sphere construction. Ishii, Ueda and Uehara’s results from
Lemma 38 of [21] (which in turn depends on [22]) imply that in the exact Fukaya
category of S,—1 any spherical object is isomorphic to a matching sphere, S, where
¢: [0,1] — € denotes the corresponding embedded path connecting critical values
of the Lefschetz fibration IT: S,_; — C. More precisely, if L,L" C S§p—1 is
an exact Lagrangian submanifold, we know from [34] that they are spheres (which
are indeed spherical objects), hence by [22], [21] they are isomorphic to matching
spheres 1, V.r where ¢,¢’: [0,1] — C denote the corresponding paths. This is
useful as it implies that A F*(1, L") =~ HF(V,, V,). Informally, for the purpose of
Floer theory, one can pretend that every exact Lagrangian submanifold of S, is a
matching sphere. Ishii, Ueda and Uehara’s result uses homological mirror symmetry
to get a quasi-isomorphic model for the exact Fukaya category of S,_1 (this makes
use of a formality result proved in [42]) and uses sheaf theoretical arguments on

the mirror category to characterize spherical objects (see also the discussion in [40],
Section 3b).?

Proof of Theorem 3.3. Let L be aclosed exact Lagrangian submanifoldin B, ;. Then
the preimage L’ of L in S,—1 by the quotient map is a closed exact Lagrangian
submanifold of S,_; (possibly disconnected). By Theorem 52 of [34], L' is a union
of spheres, and since L is covered by each connected component of L./, L is either a
sphereoran R P2. A Lagrangian sphere has self-intersection —2, and hence represents
a non-torsion class in H>(Bj 4). This is impossible as H>(5,4) = 0. On the
other hand, a Lagrangian R P2 would have to be double covered by some number of
Lagrangian spheres in S,_1. This is an immediate contradiction if p is odd.
Suppose p = 2r is even. Let R be a generator of the cyclic group Z, acting on
Sp—1. Then L’ is a disjoint union of r Lagrangian spheres V, R(V),..., R"™™1(V)
and R” maps each of these spheres onto themselves so that the quotient L is an R P2.
We now use Ishii, Ueda and Uehara’s results from [22], [21] discussed above
to replace V' with an isomorphic object 1, in the exact Fukaya category of S,_¢
where V. is a matching sphere for a possibly quite complicated path ¢. Now, R’
is the antipodal map, R"(x, v,z) = (—x,—y,—z). Hence, R"V is represented by
the matching sphere over the path —¢. Since R"V = —V this means V_, and —V

2Added in proof: Recently, Wu [47] proved that any exact Lagrangian in S5 is Hamiltonian isotopic to a
matching sphere.
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are 1somorphic in the exact Fukaya category, which by [24] implies that ¢ and —c
are isotopic (as unoriented paths) by a compactly supported isotopy in C that fixes
D = {e?™k/r k= 0,1,..., p— 1} pointwise. In particular, this implies that if
c(0) = 2™/ P then ¢(1) = —e2™iK/P,

Since we assumed p > 2, V and R(V') are disjoint exact Lagrangian spheres,
and we have 0 = HF*(V, R(V)) = HF*(V,, R(V,)). Note that R(V,) is simply
V.. where ¢/(f) = e2%!4/P¢(t) and by [24], Lemma 6.14, we have that rank of
HF*(V., Vgr) is 2i(e, ¢’) where (¢, ¢’) is the geometric intersection number, i.e.
minimal possible number of intersections among representatives of the isotopy class
of ¢ and ¢’ with respect to a compactly supported isotopy in C that fixes D pointwise.
The following lemma about plane geometry of curves proves that ¢(c, ¢’) cannot be
zero for p > 2, which gives HF*(V,, V,+) # Ocontradicting the fact I and R(V') are
disjoint and completes the proof of non-existence of exact Lagrangian submanifolds.

O

Lemma 3.4. let p > g > O be relatively prime integers, and p = 2r > 2 be an
even number. Let D = {ezmk/ﬁ ck=01,....p—1}. Letc: [0,1] - (C, D)
be an oriented embedded curve such that ¢(0) = e*™*/P and c(1) = —e>™¥/? for
some k € {0,1,..., p — 1}, and assume that the curve —c(t) is isotopic to c(—t) by
a compactly supported isotopy in C fixing D.

Further, let ¢’ [0,1] — (C, D) be the curve given by ¢'(t) = Rc(t)) =
e2714/P ¢ (1), Then the geometric intersection number of ¢ and ¢’ (the minimal num-
ber of intersections among representatives of the isotopy classes with respect to a
compactly supported isotopy in C fixing D) is non-zero.

Proof. For curves with ends on different points of I we would like to replace the
geometric intersection number ¢ (&, §) by an algebraic one. Formally, we can consider
C U {oo} and take out small discs around the points of 2 and, to get ¥ — a compact
manifold with p boundary circles A4,..., Ap (which we orent counterclockwise)
on which the cyclic group Z, still acts, with the generator R sending 4; to A;4,
(as usual A,y = A for all k). We pair up the opposite boundary components
B = A; UAi4rg (Note that A; 1,4, = R"(A4;) is the circle that is diagonally opposite
of A;). Then, our curve ¢ represents a class in Hq (3, B) and ¢’ represents a class
in Hy(Z, Bg4+1)- Lefschetz duality followed by the cup product gives a pairing:

(,): H(Z,B,) x Hi(Z,B,) — H*(X,0%) = Z.

Geometrically, for transverse curves o with [¢] = « and B with [B] = b, (a, b) is
the number of intersections of o and § counted with signs and in particular if it is
non-zero then t(e, §) is also non-zero. We claim that {|c], [¢/]} # 0, and the lemma
follows from this.

To compute ([c], [¢']), write [¢] = I 4+ b where [ is the class represented by the
linear path /(1) = e2%%/P(1 — 1) — ¢2%%/P; connecting the endpoints of ¢. Then
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b lies in the image of H{(X) of the natural map F: H{(%) — H{(X, By) in the
homology exact sequence of the pair (%, B, ), which is to say can be represented by
union of closed curves in 3. In fact, since A; fori = 1, ..., p formabasis of H,(X),
we can write b = F(D_ a; A;) and as the map F above has kernel spanned by 4, and
Ay 44r» there 1s a unique such representation with @, = a4, = 0.

Note that since —c(f) is isotopic to ¢(—f), in particular they are homologous, so
R7|e] = |—¢] = —|¢] (here by abuse of notation R is used to denote the action of
the on X sending H(%, B,) to H1(X, B, +1), and the last minus sign comes form
orientation reversal).

Combined with R"/ = —I, we have R"h = —b, that is, in the representation
b= F(Q a;A;) wemusthave a; = —a;4,4. Now, [¢'] = R[c] = Rl + Rb and we
compute

{lel, €]y = (U, Rly + (I, Rb) + {b, RI) + (b, Rb)

which is an odd integer, hence is non-zero; as desired. ]

Remark 3.5. For p = 2, note that S,— is exact symplectomorphic to 7*S? and
B, is exact symplectomorphic to T*R P2 which indeed has its zero section as an
exact Lagrangian submanifold.

Having dealt with exact Lagrangian submanifolds, we next look for essential
Lagrangian tori. We observe that the tori T,—y C Sp_1 considered in Section 2
are invariant under the action I', ;. We will henceforth be concerned with the Floer
cohomology of the quotient tori in B, ;. We denote these tori by T 4.

Proposition 3.6. HF*(T, ,;Z2) is non-zero (and hence, by Proposition 2.16, is
isomorphic to H* (T, 4: 7))

Proof. Start with a pearl complex €* (T, 4: f. p. J) of T 4, given by some generic
Morse function f and metric p on T, , and an almost-complex structure J on B, .
We can assume without loss of generality that f has a unique maximum, giving rise
to unique top degree generator m. Consider the lifted structures f”, o’ on T_; and
J” on Sp_1. Then since every pearly trajectory in S,_; projects to one in B, ,, and
conversely, every pearly trajectory in B, lifts to S,_; uniquely given a starting
point, if the triple ( 1, p, J) is regular for (B, 4, T, ;). the triple ( /7, p’, J') is regular
for (Sp_l, Tp_l).

We see that €*(T,_¢; f". p'. J') has p top degree generators my,....m,, the
lifts of m, with Rm; = m,; 1 where R is a generator of the cyclic group 7, acting on
Sp—1 (we take mpyq1 = myq). We note that by equivariance Rd'm; = d’(Rm;), and
since the rank of the top degree homology is 1, the element M with d'M = 0 must
have RM = M (since we are working over Z, coelficients). The only such element
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is M = > m;. Then again, by the correspondence between the pearly trajectories,
d’'M is the (total) lift of dm. Since this is 0, then so is dwm, hence m survives in
cohomology. L

Proposition 3.7. If T is a monotone Lagrangian 2-torus in a symplectic 4-manifold
X, and HF*(T:7Z,) >~ H*(T; Z>), then SH*(X) is not zero.

Proof. This is essentially Proposition 5.2 of [38]. We only comment on the necessary
modifications. Firstly, note that by Bockstein long exact sequence it suffices to show
that SH*(X;7Z,) # 0 (cf. [1], Remark 1.4).

By using no auxiliary connection in all our Floer-theoretic constructions we avoid
the need to work over coefficient ring K > (@, and use Z, instead; additionally the
fact that T, , is monotone, allows us to forego the Novikov ring coefficients and
lift the requirement in [38], Proposition 5.2, that 7 be Bohr—Sommerfeld. Finally,
being homologically essential over Z, coefficients is by Proposition 2.16 the same
as HF*(T, ,:Z>) # 0. This allows one to repeat the arguments of Sections 5a and
5b of [38] to conclude that SH*(X; 7Z5) # 0 just as in [38], Proposition 5.1. ]

Corollary 3.8. SH*(B, ) is non-zero, in other words, By 4 is non-empty. L

Remark 3.9. Another way to prove SH™* (B, ;) is non-zero goes as follows: Since
Sp—1 has exact Lagrangian submanifolds (matching spheres), we conclude from The-
orem 1.2 that SH™*(S,_1) is non-zero. Now, there are obvious pull-back (total preim-
age) and push-forward (image) maps on symplectic cohomology for unbranched
covers which commute with the maps from ordinary cohomology to symplectic co-
homology, which shows that SH*(B, ;) # 0. Our method of proof above on the
other hand yields a geometric reason for the non-vanishing of SH* (B, 4).

4. Concluding remarks

An exact Lefschetz fibration on B, , can be found in [14]. This Lefschetz fibration
equips B, , with a Stein structure, and Corollary 3.8 implies that the symplectic co-
homology is non-zero. It would be interesting to use Seidel’s computational methods
([37]) to compute the symplectic cohomology of B, 4 starting from this Lefschetz
fibration. Alternatively, B, , can be constructed by Weinstein handle attachments
with one 1-handle and one 2-handle to D* as in Section 3.2. The methods developed
in [6] might be useful in computing the symplectic cohomology from this description.

Let D = H;ll (0) be the fibre over the origin for I1,_;: S;—1 — C. Thereisa
special Lagrangian fibration on S,_1\ D withfibres T, ; = {(x,y,z) € Sp—1 : |z] =
r, |x| — |¥| = A} (compare [4], Section 5) where one could take the holomorphic
volume form as in Lemma 2.8. The matching tori that we considered in this paper
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corresponds to monotone fibres 1, o in this fibration. There is a unique singular
fibre Ty,9 with p nodal singularities. In addition, this special Lagrangian fibration is
equivariant under the action I, ; on §,_;, hence it descends to a special Lagrangian
fibration in the quotient (S,—1\D)/I'p 4 which has only one singular fibre with a
unique nodal singularity. This construction gives an interesting testing ground for
Strominger—Yau—Zaslow mirror symmetry conjecture and the related wall-crossing
problem (cf. [4]).

In this paper, we restricted our attention to dimension 4. However, there is a natural
extension of our set-up to dimensions 4k for k > 1. The action I, , exists and is free
on the corresponding higher dimensional A,_; Milnor fibre. We then obtain a non-
displaceable Lagrangian S x §2*~1in the A p—1 Milnor fibre and correspondingly,
we get a non-displaceable Lagrangian in the finite quotient.
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