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The symplectic topology of some rational homology balls

Yanki Lekili and Maksim Maydanskiy

Abstract. We study the symplectic topology of some finite algebraic quotients of the An
Milnor fibre which are diffeomorphic to the rational homology balls that appear in Fintushel
and Stern's rational blowdown construction. We prove that these affine surfaces have no closed
exact Lagrangian submanifolds by using the already available and deep understanding of the

Fukaya category of the An Milnor fibre Coming from homological mirror symmetry. On the
other hand, we find Floer theoretically essential monotone Lagrangian tori, finitely covered by
the monotone tori which we study in the An Milnor fibre. We conclude that these affine surfaces
have non-vanishing symplectic cohomology.

Mathematics Subject Classification (2010). 53D35, 53D12, 53D40.

Keywords. Stein manifolds, exact Lagrangian submanifolds, monotone Lagrangian tori,
symplectic cohomology.

1. Introduction

Let p > q > 0 be relatively prime integers. In [11], Casson and Harer introduced
rational homology balls Bpq which are bounded by the lens space L(p2, pq — 1).
These homology balls were subsequently used in Fintushel-Stern's rational blowdown

construction [15] (see also, [32]). In fact, Bp q are naturally equipped with
Stein structures since they are affine varieties (cf. [23]) and here we are concerned
with the symplectic topology of these Stein surfaces.

The key topological fact is that Bp q are p-fold covered (without ramification) by
the Milnor fibre of the Ap-\ singularity. The latter has a unique Stein structure and

its symplectic topology is well-studied (see [24], [28], [41], [36]).
Following Seidel [35], we make the following definition:

Definition 1.1. A Stein manifold X is said to be empty if its symplectic cohomology
vanishes. It is non-empty otherwise.

We recommend [38] for an excellent survey of symplectic cohomology. Non-

empty Stein manifolds are often detected by the following important theorem of
Viterbo (here stated in a weak form):
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Theorem 1.2 (Viterbo, [44]). Let X bea Stein manifold. Ifthere exists a closed exact

Lagrangian submanifold ofX then X is non-empty.

The question of existence of closed exact Lagrangian submanifolds goes back
to Gromov, who proved that no such submanifold exists in Cn (see [19], Corol-
lary 2.3.B2). Of course Cn also has vanishing symplectic cohomology (as explained,
for example, in [38], Section 3f), which together with the above theorem reproves
Gromov's result.

We will exploit the relation of Bpq with the Milnor fibre of Ap-\ singularity to

prove the following theorem:

Theorem 1.3. For / 2, the affine surface Bp q has no closed exact Lagrangian
submanifolds. On the other hand, Bp q contains a Floer theoretically essential
Lagrangian torus, therefore Bp q is non-empty.

Although one expects to find many non-empty Stein surfaces with no closed exact

Lagrangian submanifolds, to our knowledge, the above examples represent the first
explicit construction of non-empty Stein surfaces with no closed exact Lagrangian
submanifolds. In higher dimensions (dim^ > 12), Abouzaid and Seidel exhibited
infinitely many examples in [1] where symplectic cohomology is non-zero with co-
efficients in Z but vanishes with coefficients in Z2. Such examples obviously cannot
contain closed exact Lagrangian submanifolds by Viterbo's theorem applied over Z2.
Our examples are not only of lower dimension but also have non-vanishing symplectic
cohomology with arbitrary coefficients. Therefore, there is no direct way of appeal-
ing to Viterbo's theorem in order to exclude existence of closed exact Lagrangian
submanifolds. Their non-emptiness is detected by the existence of Floer theoretically

essential tori ([38] Proposition 5.2). On the other hand, the non-existence of
closed exact Lagrangians is proved using a detailed understanding of closed exact

Lagrangians in the An Milnor fibres based on twisted symplectic cohomology applied
by Ritter in [34] which suffices for p odd. For p even, we utilize a deeper
understanding Coming fromhomological mirror symmetry and calculations on the iLmodel
provided by Ishii, Ueda, Uehara [22], [21]. It is remarkable that algebro-geometric
calculations on the mirror side can be utilized profitably towards an application to
symplectic topology.

En route, we study a class of tori in An Milnor fibres, which we call matching tori
(cf. matching spheres [5]). We will classify them up to Hamiltonian isotopy and show
that the Floer cohomology of these tori is non-zero. This fact is probably known to
experts in the field; however as we did not find a written account of this result for
n > 2, we take this opportunity to provide a proof as this fact will be used in proving
our main result above.

Acknowledgments. YL was supported by Herchel Smith Fund and Marie Curie grant
EU-FP7-268389. MM was supported by NSF grant DMS-0902763 and ERC grant
ERC-2007-StG-205349.
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2. Lagrangian tori in An Milnor fibres and their Floer cohomology

2.1. An Milnor flbre. The four-dimensional An Milnor fibre is given by the affine
hypersurface1:

Sn {Ol y,z) £ C3 : zn+1 + 2xy 1}.

Sn has the induced complex structure as a subvariety of C3, which makes it into a

Stein manifold, and can be equipped with the exact symplectic form inherited from
the Standard form on C 3 given by

i
co d9 - (<dx A dx + dy A dy + dz A dz)

where 0 \ (xdöc — xdx + ydy — ydy + zdz — zdz).
Due to the existence of many exact Lagrangian spheres in Sn, this hypersurface has

been instrumental in constructing many interesting examples in symplectic geometry
(see [24], [28], [41], [36]). We will recall some generalities about Sn, and we refer
the reader to loc. cit. for more.

The projection Tln: Sn -> C to the z-coordinate yields an exact Lefschetz fi-
bration with n + 1 critical points at the roots of unity, which is adapted to the Stein

structure. The fibre of this Lefschetz fibration is a one-sheeted hyperboloid. The

vanishing cycle of any critical point and any vanishing path in the regulär fibre is

always the core of the hyperboloid, given by

n_1(z) n {(x,y,z) C3 : |x| \y\}.

Let Dr be the disk of radius r centered at the origin in the base, and Cr 3Dr.
For r > 1, the three-manifolds Yr 3(II_1(Z)r)) are all diffeomorphic to the
lens space L(n + 1 ,n) and are equipped with the unique tight contact structure on
L(n + 1 ,n) induced by the filling provided by II_1(Z)r). (The fact that there is

a unique tight contact structure on L(n + 1, n) is used below and follows from the
Classification of tight contact structures on lens Spaces, see [17], [20]). The restriction

n|yr provides an open book supporting this contact structure and its monodromy is

given by (n + l)th power of the right-handed Dehn twist along the core of the fibre.
Note that the fibre has genus zero and clearly there is a unique factorization of this

monodoromy into a product of right-handed Dehn twists, therefore Wendl's theorem

([46]) implies that there is a unique Stein structure on Sn up to deformation, namely
the one Coming from the restriction of the Standard structure onC3. In this way, we
obtain an exact symplectic manifold (Sn,d9) with ci(Sn) 0. Topologically, Sn is

a linear plumbing of n disk bundles over S2 with Euler number —2.

Next, we consider a family of Lagrangian tori in An Milnor fibre. We call the tori
in this family matching tori, as they are obtained as unions of vanishing cycles.

'The factor 2 is for compatibility with the conventional description of An Milnor ßbre given by {(x, y,z) £
C3 : z/?+1 + x2 + y2 1}.
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2.2. Matching tori. Given a Lefschetz fibration II: E i-> D2, a closed embedded
circle y: [0,1] i-> D2 with y(0) y(l) p and a Lagrangian V in the fibre
Fp II-1 (/?), such that the symplectic monodromy f along y takes V to itself, we
dehne a matching Lagrangian L to be the union of all parallel translates of V over y.
Explicitly L [Jxey Vx where Vx is the parallel transport of V over y to II_1(x).

Note that L is diffeomorphic to the mapping torus of f1 y and is in fact a Lagrangian
submanifold of E by Lemma 16.3 in [36]. In the case when dimension of E is 4, and

V is a circle, we call L the matching torus of V along y.
In the case of the Milnor hbre Sn, we take the closed path y oriented in such a

way that the enclosed area is positive. We call the resulting Lagrangian torus Tn;y or
Tn if the particular choice of y is not important.

We will see below that the tori Tn bound holomorphic disks, in particular they
cannot be exact Lagrangian submanifolds of Sn. In contrast, there is an abundance of
exact Lagrangian spheres obtained by matching sphere construction, which we recall
now. Take an embedded path c: [0,1] i-> D2 such that c_1(Critv(II)) {0,1}. To
such a path c one can associate an exact Lagrangian sphere Vc dehned explicitly as the
union of vanishing cycles over c: Vc Uxec V* where Vx II"-1(z)D{(x,y,z) e
C3 : |x| | v|J. The fact that Vc is an exact Lagrangian can be seen by observing
that it can be split up as a union of Lefschetz thimbles for the Lefschetz fibration Tln
(see [36], 16g). We note that the core spheres in the plumbing picture of Sn can be
taken to be matching spheres of linear paths connecting the critical values.

As Sn is simply connected and 7t2(Tn) 0, from the homotopy exact sequence
we have

0 7t2(Sn) 7t2(Sn,Tn) 7Ti(T„) 0

which splits as it\(Tn) Z2 is free. Jt2(Sn) is generated by the cores of the disk
bundles in the plumbing description of Sn and are represented by Lagrangian matching
spheres, hence they have zero Maslov index and symplectic area. Furthermore, one of
the Z factors in it\(Tw) is generated by the vanishing cycle V, which is the boundary
of a Lefschetz thimble. Since the thimble is a Lagrangian D2, again its Maslov index
and the symplectic area vanishes. It remains to determine the index and the area on a

class ß e Jt2(Sn, Tw) such that II restricted to dß is a degree 1 map onto y. For this

purpose, we will need a more explicit computation.
Let us consider the parametrized curve

c(t) (n(t)e2jri(0l(t)+ß(t)) ,n(t)e2ni(a(t)-ß(t)

for t e [0,1], n{t) > 0, a(t)9 ß{t) real valued functions and y(t) is a degree 1

parametrization of y such that 2n{t)2eA7Zl0i^ 1 — y(t)n+1. Then c{t) is a curve
on Tn mapping onto y with a degree 1 map. The area of any disk with boundary on
such a curve is a sum of the areas of its three coordinate projections. This area is
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given by the integral of 6 over the curve by Stokes' theorem. We compute

jM ^-{zdz — zdz) + 2ji j a\t)n{t)2dt.

Here the first term is the area enclosed by the projection of c(t) on the z coordinate
plane, and the second term is the sum of the two other area contributions. Note that
the integral is independent of ß(t). This is a reflection of the fact the integral of 6

over V is zero, hence we could have taken a curve c(t) with ß(t) 0.

Lemma 2.1. I 2tt f* a\t)n{t)2dt > 0.

Proof Consider the map /: C \ Critv(IIw) i-> C \ {0}, /(z) -^====. This

is a composition of the holomorphic map p{z) l—zn+l and a smooth orientation

preserving map s(rel°) y^el° and has a continuous extension to F: C \-^ C.

The map / sends y(t) to n{t)eA7Zl0i^\ so the integral we are interested in is I
ff(y) \r2d0. If we denote the interior of y (in C) by G, then F(G) has boundary

/(y) andby Stokes theorem, I fF^ rdr AdO //-(G\critv(n„)) r^r AdO, which
is positive since / is orientation preserving.

We note in addition, that / //(G\Critv(n„)) r a /(G\Critv(n„)) f*(rdr A
dd). We put

o" cto + f*(rdr A dd)

where op |dz A dz is the Standard area form onC \ Critv(IIw) induced from C,
and note that since / is orientation preserving, er is an area form onC \ Critv(IIw).
Observe that er blows up near Critv(IIw) but is integrable across them, so for a region
G in C one always has a finite integral Jq er /G\Critv(n„) ö•

We summarize this discussion in the following lemma:

Lemma 2.2. Let ß E 7t2(Sn, Tn), and let a) and ö be symplectic forms on Sn and

C\Critv(n), respectively, as above. Then we have

iw=iJß Jn(ß)

Proof. Note that for the classes in 7t2{Sn,Tn) that are represented by matching
spheres or a Lagrangian thimble both integrals vanish. The equality for any other
class follows from the computations above.

Note that varying the path y outside of the critical value set of II leads to a

Lagrangian isotopy of Tn. We remark that this isotopy is Hamiltonian if and only if
it is exaet (see [33], Section 6.1), which in the Situation at hand is equivalent to the
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symplectic area of the disk discussed above staying constant during the isotopy (as

the other generator still bounds the thimble during such an isotopy). Therefore, we
dehne

which will be called the monotonicity constant. Note that ry is the area of region
enclosed by y with respect to er.

Lemma 2.3. Let (£,cr dX) be an exaet symplectic 2-manifold. Then any two
isotopic closed curves yo, y\ with X fyiX are Hamiltonian isotopic via a

compactly supported Hamiltonian isotopy.

Proof This is an adaptation of Proposition A.l in [2] and follows a similar route

- we hrst extend the isotopy connecting y0 to Yi to a global smooth isotopy such

that it ends at a symplectomorphism, then use parametrised Moser's trick to get a

symplectic isotopy connecting y0 to y\ (this works only in dimension 2). Finally,
this gives an exaet Lagrangian, and hence Hamiltonian, isotopy between y0 and y\.
The proof below follows this outline.

Let ft be an isotopy connecting y0 to yi, that is, a map /: aS
1 x [0,1] —> X) such

that ft i is an embedding. Without loss of generality, it sufhees to restrict
to a compact submanifold of £ which contains the image of / and in which y0 (and
hence yi) is separating (in fact, ft can be taken to be supported near embedded annuli
with core yo and bigons between y0 and y\; it is easy to see that support of such an

isotopy is contained in a sub-annulus of £ with core yo).
We hrst prove that ft extends to symplectic isotopy Ft of a neighbourhood of

yo (cf. Ex. 3.40 in [29]). Write yt ft(yo) and choose an increasing sequence
tk ^ [0,1] starting with t0 0 and ending with — 1» su°h that Ytk+X is in a

Weinstein tubulär neighbourhood of ytk and fort e [tkJk+i\> Yt are graphs of closed
1-forms on Ytk- Then (q, p) i(q,p + dt(q)) is a symplectic isotopy extending

ft on a neighbourhood of ytk. Taking the neighbourhood of yo small enough that it
lands in the domain of dehnition of these extensions for all times t e [0,1] gives the
desired extension Ft.

The isotopy Ft constructed above extends to a smooth compactly supported
isotopy of £ which coincides with Ft on a smaller neighbourhood of v(y0) of yo. We
denote this isotopy of £ by Gt. We next show that by a further compactly supported
smooth isotopy we can replace Gt with an isotopy Ht such that Gt and Ht agree
near y0 and H\ is a symplectomorphism.

Consider the compactly supported closed 2-form G^o — er. Since G\ is a

symplectomorphism near y0, G^o — o vanishes identically near y0. Hence, it represents
a class in //<?(£, v(yo)). In addition, as yo is separating, this last group is rank 2

corresponding to two connected pieces of S\v(y0), say £\ and £2-
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Now, by Stokes' theorem and since Gt is compactly supported, we obtain

,/s, -er) -V) fyi ^-fy0and similarly the in-

tegral of G^o — o vanishes over Y2. Therefore, we have G^o — o — da for some

compactly supported 1-form a which vanishes near y0.
Hence we have a family of symplectic forms os (1 — s)a + sG^ (a) a + sda

and Moser's trick yields the desired isotopy. In summary, we have produces a

compactly supported isotopy Ht such that H\ sends yo to y\ and is a symplectomorphism
on Y.

We have the following lemma:

Lemma 2.4. A compactly supported symplectomorphism H\ smoothly isotopic to

identity via a compactly supported isotopy is isotopic to identity via a compactly
supportedfamily ofsymplectomorphisms.

Proof This is a compactly supported version of Lemma A2 in [2], and is an applica-
tion of a parametrised Moser's trick.

Completion ofthe proofofLemma 2.3. Lemma 2.4 applied to Ht yields a symplectic
isotopy Kt connecting y0 to yi. Finally, as the embedded surfaces bounded by yt
(namely (Ei)) all have the same area, Kt(y0) is an exaet Lagrangian isotopy, and

so yo and y\ are Hamiltonian isotopic.

Applying Lemma 2.3 to (£ C \ Critv(nw), a) where er is as in Lemma 2.2,

we get the following:

Corollary 2.5. Suppose embedded circles yo and y\ are isotopic in C \ Critv(IIw)
and xyo ryi. Then Tn^yo and are Hamiltonian isotopic in Sn.

Proof By Lemma 2.3, yo and y\ are Hamiltonian isotopic, let yt be the image of yo
in such an isotopy then by Lemma 2.2 the Lagrangian isotopy of the corresponding
matching tori Tn^yt is exaet.

We also have the following obvious Observation.

Corollary 2.6. Suppose an embedded circle a is entirely contained inside an embedded

circle ß. Then xa < tß.

Remark 2.7. A direct computation shows that if we take yr to be a circle of radius

r > 1 centred at the origin, xYr approaches m 7T+ft + lasr approaches 1. As xr

grows to infinity when r grows, any r above m can be obtained by taking a circle of
some unique radius.

We next complete the computation of Maslov index on Jt2(Sn,Tn).
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Lemma 2.8. For ß e Jt2(Sn, Tn), the Maslov index /x(/3) is 2{ß • Tln ^O)).

Proof Since the Maslov index is invariant under Lagrangian isotopy, it suffices to

prove this formula for the matching tori above round circles yr (of any radius bigger
than 1). To this end, we construct a complex meromorphic volume form Q which is

nowhere vanishing and has a pole of order 1 along the divisor D II"1 (0) in Sn, and

with respect to which Tn is a special Lagrangian submanifold, i.e. 0.

Then Lemma 3.1 of [4] states that the Maslov index ß(ß) is twice the algebraic
intersection number of ß with the divisor of £2_1, that is, with II"1 (0).

Such an Q can be obtained by the restriction to Sn of Q fxy-i on ^3-
Note that Sn is cut out by the equation 2xy — 1 zn+1, hence on Sn we have

2xdy + 2ydx (n + 1 )zndz, so that dz A dy — A dx.
We see that on Sn \ D the form Q is non-vanishing, and since D is given by z 0

(and hence both x and y are non-zero on D), £2 blows up to order 1 at Z), as wanted.

It remains to show that the round Tn are special Lagrangian for Q. This is the

same as in Proposition 5.2 of [4]. Namely, we take the Hamiltonian function on Sn

given by H(x,y,z) |2xy — 1|2 and consider its Hamiltonian vector field Xh-
It is symplectically orthogonal to vertical tangent vectors because H is constant on
the fibres of Tln and is tangent to the level sets of //, that is, to the fibres. So

Xh is the horizontal lift of the tangent vector of yr, and so is tangent to Tn. The

tangent space to Tn is spanned by Xh and a vector field tangent to the vanishing
cycle, say £ (ix,—iy). Since igQ lX(^l^x — id\og(2xy — 1), we get
Im(£, Xh) d log |2xy — 1 \{Xh) which is zero because Xh is tangent to the level
set of FL. Hence Tn is special Lagrangian.

Recall that the minimal Maslov number of a Lagrangian L in a symplectic man-
ifold M is defined to be the integer Nl := min{/x(^4) > 0 | A e jr2(M, L)} where

/jl(A) is the Maslov index.
We summarize the above discussion as:

Proposition 2.9. Tn is a monotone Lagrangian torus in (Sn,d6), that is,

2 co(A) tfi(A)

for any A e 7t2(Sn,Tn) where r > 0 is the monotonicity constant, a fixed real
number depending only on the path y. The minimal Maslov index N^n equals 2.

For n — 0, we get a monotone Lagrangian torus T0 C C2, which is indeed the
Clifford torus ([4]) and for n — 1, we have a monotone Lagrangian torus T\ C
T*s2 xhe following proposition shows that one of the T\ is Hamiltonian isotopic
to Polterovich's construction of a monotone Lagrangian torus in T*S2 (see [3]).

Proposition 2.10. Under a symplectomorphism identifying S\ and T* S2,
Polterovich's torus becomes one ofthe Ti.
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Proofi Si is given by {z2 + 2xy 1} in C3. Under the exact symplectomorphism
Z Z0,x ^j(zl + iZ2),y ^(zl — izl) is taken to C {(z0,zi,z2) G

C3 | Zq + z2 + z\ — 1}. We take Sj and tj to be real and imaginary parts of zj
respectively, so that zj Sj + ztj, and let s (To,s\, ^2) and ^ £2)• Note
that the equations for Si are |s|2 — \t\2 1 and (s, z1) 0.

Further, we take T*S2 {v G M3, 11 G I3 | (v,w) 0, |i>| 1}. It is exact

symplectomorphic to C via the map (v sls]-1 ,u t\s\).
For a complex number written in polar form rel° we say that 6 is its phase

and we note that a vanishing cycle over the point z z0 given by \x\ \y\ can
be alternatively described by the condition that phase of z\ is equal to phase of z2
modulo TT.

The Polterovich torus T is the geodesic flow of unit covectors over (1,0, 0) ([3]).
Namely, let v (To, v\, v2) be a point in S2. If v is neither the north nor the
south pole, there are exactly two points in T projecting to v. To find them, denote

r (iq, v2), r \r |, so that v (To, r). Then the cotangent vectors in the torus T
projecting to v are u (—r, ^r) and —u —

Let's find the coordinates (s, t) of the point in S1 corresponding to (T, w). Since

\u\ |^| 1^1 1, we have \s\2 — \s\~2 1, so |,v| sjv^+1, so that s -\jv^+1i?

and z1 ^2lu' ^ote means zi and z2 have the phases that are either equal

(if v\ and i>2 have the same sign), or differing by tt. The point (z\, z2) corresponding

to (T, —u) has real part sj v^+1 v and imaginary part —sj v^~1rz, and zi and z2 also

have phases equal or differing by tt. As (iq, v2) varies over a circle, the points (v,u)
and (v, —u) trace out the vanishing cycles over z0 (sjv^+1i?o, y^v^~1 r) and

z0 (y^ v^+1^0, — y^v^,~1 r). We note that the circles that are intersections of the
Polterovich torus with cotangent fibres over the north and south poles are vanishing

cycles over the points (y^ v^+1, 0) and (— ^ v^+1", 0).

Hence the Polterovich torus is in fact the union of vanishing cycles over the ellipse

z (V y/2+1 ^0, \j v^~1 r). Note that v% + r2 1 means that the curve over which

we have the matching torus is the ellipse focal at ±1 and with eccentricity ^ v^~1.

This curve can be lifted to the torus T as before with x{t) y{t) ^(1 — y(02)>

which can be computed to be the same ellipse scaled down by V2, hence both x and

y projections enclose area f, giving the monotonicity constant tt + f + f —2tt,
as expected.

Remark 2.11. As 2tt > tt + 2, Remark 2.7 and Lemma 2.5 imply that T is Hamil-
tonian isotopic to one of the round matching tori.



580 Y. Lekili and M Maydanskiy CMH

2.3. Floer cohomology ofmatching tori. Since Tn is monotone ofminimal Maslov
index 2, its self-Floer cohomology is well-defined and can be computed using the pearl
complex. This complex was first described by Oh in [31] (see also Fukaya [16]) and

was studied extensively in the work of Biran and Cornea (see [7], [8] for detailed

accounts).
Before proceeding to the computation proper, we shall give a brief review of the

pearl complex. We generally follow [7] and [9] to which the reader is referred for
details, however we will adapt the Conventions of Floer cohomology, rather than Floer

homology (see also [43]).
Given a monotone Lagrangian L inside a geometrically bounded symplectic man-

ifold M (Stein manifolds in particular are geometrically bounded, see [13], Section 2,

for a definition and discussion), the pearl complex of L is a deformation of its Morse
complex by quantum contributions Coming from holomorphic disks with boundary
on L. In order to dehne this complex, we take the coefhcient ring to be the Laurent
polynomials A Z2[t, t~l], fix a Morse function / on L with set of critical points
Crit(/), a Riemannian metric p on L, and an almost-complex structure J on M
compatible with our symplectic form cd. The pearl complex has the underlying vec-
tor space C*(L; /, p, J) (Z2(Crit(/)) (8) A), which inherits a relative Z-grading
Coming from the Morse index grading on Z2(Crit(/)) and the grading given on A
by dQgt Nl-

We dehne a differential on C*(L; /, p, J) by counting pearls - sequences of
gradient howlines of / interspersed with holomorphic disks. Namely, denote by
—oo < t < oo the gradient how of (/, p). Given a pair of points x,y e L and

a class 0 / i G H2{M, L) consider for all / >0 the sequences (u\,..., ui) of
non-constant J-holomorphic maps Ui: (D, 3D) —(M, L) with

(i) gradient trajectory of possibly inhnite length t' from x to u\, i.e.,

$t'(x) wi(-l);

(ii) gradient trajectories of length t( between U( and w/ + i, i.e.,

(iii) gradient trajectory of possibly inhnite length t" from w/ to y9 i.e.,

<V(w/(l)) y;

(iv) [ui] H [ui\ A.

Two such sequences (u\,..., w/) and (u\,..., u'v) are equivalent if / — V and
each u\ is obtained from u\ by precomposing with holomorphic automorphism of
D that hxes 1 and —1. We dehne the moduli space 1PVY\(x, y;A; f, p,J) to be the

space of such sequences modulo equivalence. In addition, for A 0 we dehne
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^pri(x,y',A; /, p, J) to be the space of unparametrized trajectories of the gradient
flow <$h from x to y. If x and y are critical points of /, then the expected dimension

<5pri(x,y;A) of (x,y;A; f,p,J) is |j| - |x| + - 1.

Theorem 2.12 (cf. [7], Theorem 2.1.1). Foa generic choice ofthe triple (/, p, J)
we have:

• For all x,y E Crit(/) and A E //2(M, L) such that 8vr\(x,y;A) 0, the

moduli space 3*vr\ (x, y; A; f p, J) is afinite number ofpoints and we can define
fJi(A)

d(x) ^y A(#z23>pA(x, y, A\ f, p, J))t nl y.

• Extending d to **(L\ f p, J) linearly over A we get a chain complex (i.e.
d2 0), and the homology ofthis chain complex is independent ofthe choices

ofJ,fp.
• There is a canonical (graded) isomorphism /, p, /)) -> HF * (L; A).

Remark 2.13. Let us make a remark on the requirement in the above theorem that
the triples (f p, J) be generic. What we require is to have the pair (f p) be Morse-
Smale, making all stable and unstable manifolds of / transverse and hence making
the moduli Spaces of gradient trajectories smooth, and to have J that makes moduli
of holomorphic disks with boundary on L and two boundary marked points regulär;
in addition we require all the evaluation maps from the moduli Spaces above into
our symplectic manifold M to be transverse in tuples, so that the corresponding
moduli spaces tPvv\(x, y;A; f p, J) are transversally cut out. Note that only the
moduli spaces that appear in building 3*VT\(x, y; A; f p, J) with expected dimension

8pr\(x,y',A) < 1 need to be regulär. What we will use in our computation is a

complex structure that is regulär for disks of Maslov index 2 and a generic Morse-
Smale function; this is sufficient for a monotone two-dimensional Lagrangian torus.

Remark 2.14. HF*(L; A) is a unital (associative) ring with a relative Z-grading,
where the ring structure is given by counting pseudoholomorphic triangles of Maslov
index zero. We can indeed fix an absolute Z-grading by requiring that the unit lies in
HF°(L; A). Similarly, the relative Z-grading at the chain level C * (L; f, p, J) can be

upgraded to an absolute Z-grading by requiring that the generators of Morse index 0 lie
in degree 0. Finally, note that equivalently we could have worked with HF*(L; Z2)
by setting t — 1 in the definition of the chain complex. We then only get Z/AZ-
grading. On the other hand, HF * (L; Z2) and HF * (L; A) carry the same Information
since HF*(L; A) is Nl periodic in the sense that HF*+Nl (L; A) t-HF*(L; A).

Remark 2.15. The Lagrangians Tn are tori, hence they are orientable and can be

equipped with spin structures. This would allow us to take A Z[t, t~l] as our
coefficient ring. Döing so would require picking orientations and spin structures on
Tn, and paying attention to the induced orientations of moduli spaces of discs in
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Floer cohomology computations. We avoid this refinement as it is not needed for our
application.

Let L be a monotone Lagrangian in (M, cd) with minimal Maslov number Nl > 2.

In this case, following Biran and Cornea (Section 6.1.1 [7]), we dehne a homology
class c(L) e H\(L\Z2) as follows: Let J be an &>-compatible almost complex
structure such that all the holomorphic disks of Maslov index 2 are regulär (call such

J regulär). Monotonicity ensures that there are only hnitely many homology classes

in H2(M, L) represented by a holomorphic disk and an application of a lemma of
Lazzarini ([25]) shows that all such disks are simple. Thus, the set of regulär J is

of second category in the space of compatible almost complex structures. Pick a

(generic) point p e L such that the number of Maslov index-2 holomorphic disks

u: (D,3D) -> (M,L) with p e w(3D) is hnite, call this number /. Then the
boundaries of these holomorphic disks represent homology classes (counted with
multiplicity) c\,..., c/ e H\(L\ Z2) and the homology class c(L) is simply the sum

C(L) Yl\=i cl • Standard cobordism arguments show that c(L) is independent of
J and p.

The pearl complex model for self-Lagrangian Floer cohomology admits a degree
filtrationas follows: FkQ£*(L; f,p, /)) (Z2(Crit(/)) (8) !Fk(Z2[t, t-1])), where
!FkZ2[t,t~1] {P G Z2[M-1] | P(t) a^tk -\-ajc+itk+1 H }. Thedifferential
clearly respects this filtration and the degree preserving part corresponds to pearly
trajectories with ^4 0, which are indeed Morse trajectories. Therefore, one obtains
a spectral sequence from H*(L\ Z2) to HF*(L; Z2) (this is known as Oh's spectral

sequence [30]). Biran and Cornea's careful analysis of the algebraic structure of this

spectral sequence shows that in our Situation the class c(T) completely determines
the Floer cohomology HF*(T; Z2) additively, which we record as follows:

Proposition 2.16 ([7], Proposition 6.1.4). Let T be a monotone Lagrangian 2-torus
in a symplectic A-manifold (S, co) with minimal Maslov number Nj: > 2.

Ifc(T) 0, then HF*(T; Z2) — H*(T; Z2) (as Z2-graded vector spaces).

Conversely, ifc(T) ^ 0, then HF*(T; Z2) 0.

Remark 2.17. If we only wanted to show HF*(L; Z2) / 0 when c(L) 0, we
could argue as follows: We pick a Morse function / on L with a unique maximum,
call it m. Since it represents a generator for H2 (L), for degree reasons, it will survive
in HF*(L; Z2) if 3(m) 0. On the other hand, the knowledge of Maslov index-2
disks through m allows us to compute 3(m) PD(c(L)) • t where PD(c(L)) is a

chain consisting of linear combinations of index-1 critical points of / representing
the Poincare dual of c(L) e H\(L). Hence, if c(L) 0, then m represents a

nontrivial class in FIF*(L; Z2). Proposition 2.16 shows that when L is a torus, this is

actually equivalent to HF*(L; Z2) ~ H*(L; Z2)
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In view of Proposition 2.16, we determine the Floer cohomology of the tori Tn
via a calculation of c(Tn).

Lemma 2.18. c(To) ^ 0 and c(Tn) 0 for n > 0.

Proof Recall that if Tn Ty is a matching torus over a curve y and y bounds the
disc Dy C C, then for a J making 7tn holomorphic, by maximum principle, the
sections have to project to Dy. So, we will not distinguish Tln : Sn i-> C and its
restriction nw|n~1(Dy) i-> Dy when counting holomorphic sections of Tln with
boundary on Ty.

First we note that, if we have an isotopy of yt in C \ Critv(IIw) such that

xyt const, so that the isotopy lifts to a Hamiltonian isotopy Ft of Tyt bounding
discs Dt, as in Corollary 2.5, then Ft gives identifications of all H\ (Tyt, Z2) and the
moduli spaces of sections (Dt) i-> Dt with boundary on Tyt representing a

given class a e Hi (Tyt, Z2) of (minimal) Maslov index 2 are cobordant. This can be

seen as follows: For fixed to < t\ let Jto and Jtl be regulär almost complex structures

making the moduli spaces of Maslov index-2 sections Mti M(Tln, Tyt., /^.) regulär

one-dimensional manifolds. Consider the space # of almost complex structures in
the total space which are simultaneously regulär for counting sections in M{itr, Tyt)
for all t e [to,t\] and makes Tln holomorphic, this is a subset of second category in
the space of almost complex structures on Sn (since [to, t\\ is compact and it is of
second category for a fixed t). A generic path Jt of almost complex structures in this

space connecting Jto and Jtl gives a smooth cobordism Mt M(Tln, Tyt, Jt) of
moduli spaces Mto and Mtl since at no point during the isotopy Tyt bounds Maslov
index < 0 disks. Furthermore, since the matching tori Tyt are parallel transported to
each other, we get a bordism of the images of the evaluation maps ev^: Mt Tyt
by considering the parametrized evaluation map ev: [to, t\\ x Mt TytQ where we
use the parallel transport to identify Tyt with TytQ. Therefore, for the purpose of
algebraically counting of pseudoholomorphic sections of Tln with boundary on Ty
we are free to move y with such an isotopy.

Now, consider the deformation yt as in Figure 1 where y0 Y and y\ — a # ß
such that a is an embedded circle that encloses only one critical value and ß encloses
the remaining n critical values.

To be precise, a and ß are closed embedded circles in the base C that intersect
at a unique point p and yt is an isotopy through embedded curves with xyt const.
and y\ is very close to a V ß (we can find such an isotopy by Lemma 2.2). Let
Da, Dß be the disks that a and ß bound. Then we can consider the Lefschetz
fibrations TT« n„|II~l(Da) ^ Da and 7tß n„|II~l(Dß) ^ Dß. We also

set 7tn Iin\Ii~l{Dyi) i-^ Dyi. Now, we can deform y\ to a sufficiently close

neighborhood of a V ß so that the Lefschetz fibration 7ryi is a boundary sum of
the Lefschetz fibrations 7ta and 7tß and the matching torus Tn is obtained as a

connected sum Ta#Tß. To be careful, one first deforms the symplectic structure in a
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Figure 1. Deformation of y.

neighborhood of the fibre above p, so that it is a trivial symplectic bündle F x [-U]2
where F is the fibre, and the piece of the Lagrangian torus over y\ becomes two trivial
circle bundles over the intervals {±6} x [—1,1]. One then surgers the Lagrangian
boundary condition within this trivialization so that the outcome is T« and Tß. (For
more details, we refer to Proposition 2.7 and the preceding discussion in [39] for the
details of boundary sum of Lefschetz fibrations which carry Lagrangian boundary
conditions).

Now, let M(jra, Ta, Ja) be the moduli space of Ja holomorphic sections of 7ta

with boundary condition T« and similarly let M(itß, Tß, Jß) be the corresponding
moduli space for ß. Let V T« D Tß is the vanishing cycle on the fibre II" 1(p)
and, ev«: M(jta, Ta, Ja) -> V andevß : M(ita, Tß, Jß) -> V areevaluationmaps.
The basic gluing theorem ([39], Proposition 2.7) proves that if Ja and Jß are regulär
and ev« and evß are mutually transverse, then there exists a complex structure J so

that M{ityi, Tyi, J) is regulär and is given as a fibre product of

M(jryi,Tyi,J)k |_| Ta, Ja)p X]/ M(jtß,Tß, Jß)q
p+q—l=k

where the fibre product is taken with respect to the evaluation maps ev« and evß and the

superscripts are dimensions. Recall that we are interested in counting Maslov index-2
disks with boundary on Ty, which live in the moduli space of index p+dim(Ty)—3
1. Hence, according the gluing result above, it suffices to understand the Maslov
index-2 disks for T« and Tß.

In fact, by induction it suffices to understand only the base case Ta, Ja),
i.e. when only one critical point is enclosed, since if ß encloses more than one critical
point, we can apply the above deformation to ß separately to break it up into smaller

pieces until each piece encloses only one critical point, see Figure 2 for an illustration.
To tackle the base case, one applies a degeneration argument due to Seidel [39],

Section 2.3. Namely, for convenience, we can assume by an isotopy through curves
with fixed r xa, a is a round circle by the argument in the beginning of the proof.
Let Dr be disks of radius r e (0, a] where Da Da. One considers the restrictions
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Figure 2. Inductive deformations.

itr : 7ta\jt~1(Dr) -> Dr with Lagrangian boundary conditions given by matching
tori Tr above 3Dr. Exactly the same cobordism argument that we have given in
the beginning of the proof shows that the algebraic count of pseudoholomorphic
sections of 7ta with boundary Tr does not depend on r when we vary r in a compact
interval (Note that, again, none of the tori Tr bound a Maslov index < 0 holomorphic
disk). Now, Seidel proves a compactness result when as one lets r -> 0 ([39],
Lemma 2.15) to conclude that when r is sufficiently small, the moduli space of
sections can be computed using a model Lefschetz fibration. n: C2 -> C given by
7t: (x\, X2) G C2 i-> (x2 + xf) G C as in ([39], eq. (2.18)). Lemma 2.16 of [39]
explicitly computes all sections of 7t with boundary on TYr C C2, where yr is the
round circle of radius r centered at 0. These are the maps from closed disk of radius

s to C2 given by

ua,±(w) (r~l!2aw + r^2ä, ±i(r~1^2aw — rl^2ä))

for a G C with \a\ \ so this space is diffeomorphic to S1 U S1. Moreover by
the same lemma this moduli space of sections is regulär (for the Standard complex
structure on C2).

Lollowing[4], wenotethatTo,yr G C2isinfacttheCliffordtorus |x| \y \ r2.
Lrom the above explicit description, the images of the boundaries of the two families
of holomorphic disks on T0 are given by x const. and y const. (The same two
families were obtained as the outcome of the computation in [12], Theorem 10.1.

This again shows that these disks are regulär by [12], Theorem 10.2.) Note that there

are exactly two holomorphic sections with boundary through any given point p G T0
and their boundaries intersect transversely at a Single point. Therefore, the homology
classes in H\ (T0) represented by the boundaries of these two families are of the form
L and L + V, where both L and L + V project to the generator of H\ (S1) under II
and V is the class of the vanishing cycle.

Thus, we have determined M(ita,Ta, Ja) where a encloses only one critical
point and Ja is the Standard complex structure (which is regulär) and the computation
also gives the evaluation map ev«. It remains to perform the inductive Step of the

computation to compute the Maslov index-2 sections of Ty
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As discussed above the gluing theory shows that the count of sections for (Sn, Ty)
can be understood as the count of sections for the n-fold boundary connected sum
of (So, T0), which will be denoted by (£w, rn). To describe the holomorphic disks
in it we need a basis for H\ (rn). One dement of the basis can be taken to be the

vanishing cycle Vn. The choice of a second basis dement is obtained a posteriori by
the following lemma.

Lemma 2.19. Through any point on rn there are 2n+l disks ofMaslov index 2 in
Tn), and there exist elements Ln e H\ (rn) which together with Vn form a basis

of H\ (tn) and such that there are (W£ *) disks with boundary class kVn + Ln.

Proof We prove this by induction. As discussed above, the base case is the Clifford
torus, where there are indeed 2 holomorphic disks through every point, in classes

whose difference is V\. These moduli Spaces are regulär for Standard complex struc-
ture on Cn. Call one of them Li and another Li + V\. The inductive Step is given by
using the Seidel's gluing formula [39], Proposition 2.7 together with the base case.
Each of the 2n disks given by induction hypothesis in (£w-i, rn-i) glues to either of
the 2 disks in (So, T0). By the same proposition, the glued up moduli Spaces are
regulär. Denoting by Ln the class in Hi (rn) obtained by gluing Ln-\ and Li, we have

that the number of disks with boundary in class kVn + Ln is (£) + j) (W£ *),
as claimed.

Completion ofthe proofofLemma 2.18. We conclude that the total boundary class of
Maslov index-2 disks is given by + Ln) 2n+1 Ln + (n + l)2nVn,
which is 0 e Hi(rn;Z2) for all n >0 and [To] / 0 e Hi(xq',Z2) for n — 0.

Since the moduli Spaces of discs in (£w, xn) and (Sn, Tw) are identified, it follows
that c(Tq) 0 and c(Tn) 0 for n > 0.

Proposition 2.20. HF*(Tn;Z2) ~ L^*(Tn;Z2) forn > 0.

Proof The proof follows immediately from Proposition 2.16 together with Lemma

2.18.

Remark. In view of Proposition 2.10, Proposition 2.20 generalizes a theorem of
Albers and Frauenfelder from [3] where the authors computed HF*(Ti; Z2).

3. The rational homology balls Bp^q

3.1. A flnite group action on the An Milnor flbre. As before, let p > q > 0 be two
relatively prime integers. Let Zp e C : %p 1} be the cyclic group. Let us
consider a one-parameter smoothing of the isolated surface singularity of type Ap-1,
i.e. we consider the hypersurface singularity given by zp + 2xy 0cC3 and the



Vol. 89 (2014) The symplectic topology of some rational homology balls 587

smoothing of this singularity given by F: C3 —C, where F(x, y, z) zp + 2xy.
We let TPiq to denote the following action of Zp on C 3 given by

£: (x,y,z)^($x,rly-$qz)

Clearly, the action is free outside of the origin and the function F is invariant
under the action. Indeed, we get a QHD-smoothing of the singularity F~l (0)/FPjq.
The latter is known to be the cyclic quotient singularity of type (p2, pq — 1) ([45]
Example 5.9.1). We denote the Milnor fibre F~l (1)/Fp^ by Sp-\/Tp^q Bp q.

The action rPjq can be visualized easily in terms of the Lefschetz fibration
II: Sp-i -> C. Namely, Zp acts freely by lifting the rotation of the base of the
Lefschetz fibration around the origin by an angle of as well as rotating the fibres

by an angle of
Note that this makes it clear that Bp q is a rational homology ball. On the other

hand, since Sp-\ is simply-connected, we have jt\(Bp^q) Zp. Note also that
the Stein structure on Sp-\ induces a Stein structure on Bp q. Recall that Bp q is a

smoothing of the cyclic quotient singularity of type (p2, pq — 1), that is, C2/Zp2

whereZ^2 e C : %p2 ljactsby^: (wi,u;2) Therefore
the boundary of Bp q is the lens space L(p2, pq — 1). The Stein structure on Bp q
induces a contact structure $-Piq on L(p2, pq — 1), which is also filled by the Singular
fibre of the deformation. This can in turn be resolved to obtain a Milnor filling by the
resolution of the cyclic quotient singularity, which we denote by Cp^q. Cp^q is given
by the linear plumbing graph below:

-bk -bk-1 -bi

Figure 3. CPM.

Thus, Cp^q is the linear plumbing of disk bundles of over the 2-sphere with Euler
2

number—HereZ>/ areobtainedby theuniquecontinuedfractionexpansion pppi —

[bi^bk-i,..., b\\ with all bi > 2.

In fact, we claim that the Stein surfaces Bp,q are exactly those that are used by
Fintushel-Stern (and J. Park) in rational blow-down Operation. Namely, let K(m,n)
denote the 2-bridge knot, whose double branched cover is the lens space It
is known that K(p2, pq — 1) is slice (in fact ribbon) for p > q > 0 relatively prime
(see for ex. [27]). Fintushel-Stern's rational homology balls ([15]) are given by the
double branched cover of the four-ball branched over the slice disk for K{p2, pq — l).

Proposition 3.1. Bp q is diffeomorphic to double branched cover of D4 branched

along the slice disk bounding K{p2, pq — 1).
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Proof As we observed above, Cp^q yields a Milnor Alling of the contact structure
(L{p2, pq — 1), %p,q). Therefore, by [26], the contact structure %Piq must be univer-
sally tight. (This also follows from the fact that %Piq is the induced contact structure
on the boundary of the cyclic quotient singularity of type (p2, pq — 1)). Up to contact
isomorphism, it is known that there is a unique universally tight contact structure on
L(p2, pq — 1). Furthermore, Lisca has given a Classification result for the diffeo-
morphism types of the Allings of the tight contact structures on lens Spaces ([27]). It
follows from this Classification that in the case of (L {p2 ,pq — l), t-Piq), there are two
possibilities for the diffeomorphism types of symplectic Allings, and these classes

are realized by the manifolds Cp^q and the double branched cover of Z)4 branched

along the slice disk bounding K(p2, pq — \). The latter must then be diffeomorphic
to Bp q since BP« is a Stein Alling which is not diffeomorphic to Cp^q.

We have equipped the manifold Bp q with the Stein structure induced from Sp-\
given as the finite free quotient of the Stein structure on Sp-\. This is the same as

the Stein structure on Bp q thinking of it as an affine algebraic variety because Bp q
is an algebraic quotient of Sp-\. Note that there exists a unique Stein structure up
to deformation on Sp-\. This follows, for example, from [46]. Therefore, it seems

likely that Bp q in fact has a unique Stein structure, however we do not know how to

prove or disprove this. On the other hand, any putative exotic Stein structure on Bp q
would lift to the Standard Stein structure on Sp-\. Therefore, for our arguments, we
do not need to make precise which Stein structure is being considered on Bp q. Note
also that the same reasoning shows that any Stein structure on Bp q would have to All
the unique (up to contact isomorphism) universally tight contact structure.

3.2. Legendrian surgery diagram of Bp^q. In this section, we construct a Stein

structure on Bp q via Legendrian surgery on a Legendrian knot on S1 x S2. We see

from our description that the p-fold cover of the surgery diagram that we depict gives
a surgery diagram of the Stein structure on Sp-

Recall that the Stein structure on Sp-\ can be drawn as in top figure of Figure 4

starting from the Lefschetz fibration II. It is understood that all the framings are

given by tb — 1 framing, where tb denotes the Thurston-Bennequin framing. From
the Lefschetz fibration view, the 1-handle can be understood as the thickening of the
fibre over the origin and the 2-handles correspond to thimbles over the linear paths

connecting the origin to the critical values (pth roots of unity).
Now, we can apply q füll negative twists around the 1-handle, which would change

the smooth framing of individual handles from — 1 to — 1 — q, and this can be drawn
as in the middle figure of Figure 4, where there are p twisted handles which have

tb — 1 — 1 — q, as wanted. In other words, the middle figure also gives a Stein

structure on Sp-\ and since there is a unique Stein structure on Sp-\ up to Stein

deformation, we can in fact work with the middle figure. The advantage of doing
this is that it allows us to see the Tp^q action on the diagram. Namely, it sends the
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1-handle to the quotient 1-handle and translates the attaching circles of the 2-handles

(in the horizontal direction as drawn). The bottom figure in Figure 4 depicts the

quotient diagram for the action Tp^q on Sp-\ yielding Bpq. (See Section 6.3 [18] for
a discussion of finite Covers of handlebody diagrams). Here, there is a unique 2-handle
that passes through the 1-handle p times and it has framing tb — 1 —pq — 1.

© 1 Q

Figure 4. Legendrian surgery diagrams: Sp—\ (top and middle), Bp q (bottom).

Remark 3.2. The smooth handlebody description of Bp q consisting of just one
1-handle and one 2-handle seems to be not widely known for q > 1 (see Figure 8.41

in [18] for q 1 which matches with the above picture). Here, we provide not only
a smooth handlebody description but also a Legendrian realization of the attaching
circle of the 2-handle as a Legendrian knot in S1 x S2 such that the smooth framing
is given by tb — 1, hence this description equips Bp q with a Stein structure (see [18]
Chapter 11). From our description, it also follows that the Stein structure that we
obtain this way is the same as the Stein structure induced from Sp-\ via the action

IW
3.3. Lagrangian submanifolds of Bp^q. The exact Lagrangian submanifolds of
Sp-i has been studied extensively. We will use the understanding provided by Ritter
([34]) and Ishii, Ueda and Uehara ([22], [21]) to prove the following theorem:

Theorem 3.3. For p ^ 2, there does not exist any closed exact Lagrangian subman-

ifold in Bp q.

Before we give a proof of this theorem, we will make it clear what knowledge
of exact Lagrangian submanifolds in Sp-\ will be needed. In [34], it is proven
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using symplectic cohomology with twisted coefficients that every closed exact La-
grangian submanifolds in Sp-\ is diffeomorphic to S2. Since the intersection form
on H2{Sp-\) is negative defmite, and the homology class of an orientable closed

Lagrangian submanifold L in a Stein surface satisfies [L\ • [L\ —/(L), it follows
easily that orientable closed exact Lagrangians can only be sphere or tori. Ritter's
result teils us that in fact any closed exact Lagrangian in Sp-\ has to be orientable,
moreover it cannot be a torus.

Note that there is an abundance of inequivalent exact Lagrangian spheres in Sp-\
provided by the matching sphere construction. Ishii, Ueda and Uehara's results from
Lemma 38 of [21] (which in turn depends on [22]) imply that in the exact Fukaya
category of Sp-\ any spherical object is isomorphic to a matching sphere, Sc where

c: [0,1] -> C denotes the corresponding embedded path connecting critical values

of the Lefschetz fibration II: Sp-\ -> C. More precisely, if L,L' C Sp-i is

an exact Lagrangian submanifold, we know from [34] that they are spheres (which
are indeed spherical objects), hence by [22], [21] they are isomorphic to matching
spheres Vc, Vc' where c,c': [0,1] -> C denote the corresponding paths. This is

useful as it implies that HF*(L, V) ~ HF(VC, Vcr). Informally, for the purpose of
Floer theory, one can pretend that every exact Lagrangian submanifold of Sp-\ is a

matching sphere. Ishii, Ueda and Uehara's result uses homological mirror symmetry
to get a quasi-isomorphic model for the exact Fukaya category of Sp-\ (this makes

use of a formality result proved in [42]) and uses sheaf theoretical arguments on
the mirror category to characterize spherical objects (see also the discussion in [40],
Section 3b).2

Proofof Theorem 3.3. Let L be a closed exact Lagrangian submanifold in Bp q. Then
the preimage Lf of L in Sp-\ by the quotient map is a closed exact Lagrangian
submanifold of Sp-\ (possibly disconnected). By Theorem 52 of [34], V is a union
of spheres, and since L is covered by each connected component of Z/, L is either a

sphere or an R P 2. A Lagrangian sphere has self-intersection —2, and hence represents
a non-torsion class in H2{Bp^q). This is impossible as H2{Bp^q) 0. On the
other hand, a Lagrangian RP2 would have to be double covered by some number of
Lagrangian spheres in Sp-This is an immediate contradiction if p is odd.

Suppose p 2r is even. Let R be a generator of the cyclic group 7LP acting on

Sp-1. Then L' is a disjoint union of r Lagrangian spheres V, R(V),..., Rr~1(V)
and Rr maps each of these spheres onto themselves so that the quotient L is an RP2.

We now use Ishii, Ueda and Uehara's results from [22], [21] discussed above

to replace V with an isomorphic object Vc in the exact Fukaya category of Sp-\
where Vc is a matching sphere for a possibly quite complicated path c. Now, Rr
is the antipodal map, Rr(x, y, z) — (—x, —y, —z). Hence, RrV is represented by
the matching sphere over the path —c. Since RrV —V this means V-c and — V

2Added in proof: Recently, Wu [47] proved that any exact Lagrangian in Sp- \ is Hamiltonian isotopic to a

matching sphere.
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are isomorphic in the exact Fukaya category, which by [24] implies that c and — c

are isotopic (as unoriented paths) by a compactly supported isotopy in C that fixes
D [e27Zlk/p, k 0,1,— 1} pointwise. In particular, this implies that if
c(0) e2*iKlp then c(l) -e27lilc'P.

Since we assumed p > 2, V and i?(L) are disjoint exact Lagrangian spheres,
and we have 0 HF*(V, Ä(F)) HF*(VC, R(VC)). Note that R{VC) is simply
Vc' where c'(t) e27liq^pc{t) and by [24], Lemma 6.14, we have that rank of
FIF*(VC, Vcr) is 2t(c,cf) where i(c,cf) is the geometric intersection number, i.e.

minimal possible number of intersections among representatives of the isotopy class

of c and c' with respect to a compactly supported isotopy in C that fixes D pointwise.
The following lemma about plane geometry of curves proves that i(c, c') cannot be

zero for p > 2, which gives FIF*(VC, Vc') 0 contradicting the fact V and i?(L) are

disjoint and completes the proof of non-existence of exact Lagrangian submanifolds.

Lemma 3.4. Let p > q > 0 be relatively prime integers, and p 2r > 2 be an
even number. Let D {e2niklp ; k 0,1,..., p — 1}. Let c : [0,1] —> (C, D)
be an oriented embedded curve such that c(0) e2niKlp and c( 1) —e2nilclp for
some k G {0,1,..., p — 1}, and assume that the curve —c(t) is isotopic to c(—t) by
a compactly supported isotopy in C fixing D.

Further, let c'\ [0,1] —(C,D) be the curve given by cf(t) R(c(t))
e2niq/pc{t). Then the geometric intersection number ofc and c' (the minimal number

of intersections among representatives of the isotopy classes with respect to a

compactly supported isotopy in C fixing D) is non-zero.

Proof For curves with ends on different points of D we would like to replace the

geometric intersection number i (a, ß) by an algebraic one. Formally, we can consider
C U {oo} and take out small discs around the points of D and, to get I] - a compact
manifold with p boundary circles A\,..., Ap (which we Orient counterclockwise)
on which the cyclic group 7LP still acts, with the generator R sending A\ to A(+q
(as usual Ap+k A^ for all k). We pair up the opposite boundary components
Bi AiUAi+rq (Note that Af +rq Rr (Af) is the circle that isdiagonally opposite
of Ai). Then, our curve c represents a class in HifE, BK) and c' represents a class

in H\ (E, Bk+i). Lefschetz duality followed by the cup product gives a pairing:

Geometrically, for transverse curves a with [a] a and ß with [ß] b, (a,b) is

the number of intersections of a and ß counted with signs and in particular if it is

non-zero then i(a, ß) is also non-zero. We claim that ([c], [c']) ^ 0, and the lemma
follows from this.

To compute ([c], [c7]), write [c\ / + b where / is the class represented by the
linear path l(t) e27tlK^p(l — t) — e2nilclpt connecting the endpoints of c. Then
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b lies in the image of Hi(£) of the natural map F: H\(H) i-> //i(£, BK) in the

homology exact sequence of the pair (£, BK), which is to say can be represented by
union of closed curves in £. In fact, since A\ for i 1form a basis of H\ (£),
we can write b F(Y^ ai^i) and as ihe map F above has kernel spanned by AK and

AK+qr, there is a unique such representation with aK aK+qr 0.

Note that since —c(t) is isotopic to c(—t), in particular they are homologous, so

Rr[c] [—c] —[c] (here by abuse of notation R is used to denote the action of
the on £ sending //i(£, Bß) to //i(£, Bß+i), and the last minus sign comes form
orientation reversal).

Combined with Rrl —/, we have Rrb —b, that is, in the representation
b F(J] we must have o/ —üj+rq. Now, [<Z] i?[c] Rl + Rb and we
compute

<[c], [<:']} (/, /?/) + (/, R6) + {b, Rl) + (6, Rb)
1 + (ü/c-\-q ß/c+^r+r^r) (OsK—q+rq &ic—q) 1 H~ 2aK-\-q 2üK—q

which is an odd integer, hence is non-zero; as desired.

Remark 3.5. For p — 2, note that Sp-\ is exact symplectomorphic to T*S2 and
is exact symplectomorphic to F*RF2 which indeed has its zero section as an

exact Lagrangian submanifold.

Having dealt with exact Lagrangian submanifolds, we next look for essential

Lagrangian tori. We observe that the tori Tp-i C Sp-\ considered in Section 2

are invariant under the action TPiq. We will henceforth be concerned with the Floer
cohomology of the quotient tori in Bp q. We denote these tori by TPiq.

Proposition 3.6. HF*(Tp>q; Z2) is non-zero (and hence, by Proposition 2.16, is

isomorphic to //*(T^; Z2)).

Proofi Start with a pearl complex C*(Tp,q; /, p, J) of Tp^q, given by some generic
Morse function / and metric p on Tp^q and an almost-complex structure J on Bp q.
We can assume without loss of generality that / has a unique maximum, giving rise
to unique top degree generator m. Consider the lifted structures f, p' on Tp-\ and

on Sp-\. Then since every pearly trajectory in Sp-\ projects to one in Bp q, and

conversely, every pearly trajectory in Bp q lifts to Sp-\ uniquely given a starting
point, if the triple (/, p, J) is regulär for (Bp^q, T^), the triple (/', p', J') is regulär
for (Sp-i,Tp-i).

We see that /r, p', J') has p top degree generators m\,...,mp, the
lifts of m, with Rnii m/ +1 where F is a generator of the cyclic group acting on

Sp_i (wetakem^+i m 1). We note that by equivariance Rd'nii d'(Rmi), and

since the rank of the top degree homology is 1, the element M with d'M 0 must
have RM M (since we are working over Z2 coefficients). The only such element
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is M mi- Then again, by the correspondence between the pearly trajectories,
d'M is the (total) lift of dm. Since this is 0, then so is dm, hence m survives in
cohomology.

Proposition 3.7. IfT is a monotone Lagrangian 2-torus in a symplectic A-manifold
X, and HF* (T\ Z2) ~ H*(T; Z2), then SH*(X) is not zero.

Proofi This is essentially Proposition 5.2 of [38]. We only comment on the necessary
modifications. Firstly, note that by Bockstein long exact sequence it suffices to show
that SH*(X; Z2) + 0 (cf. [1], Remark 1.4).

By using no auxiliary connection in all our Floer-theoretic constructions we avoid
the need to work over coefficient ring K D Q, and use Z2 instead; additionally the
fact that TPjq is monotone, allows us to forego the Novikov ring coefficients and

lift the requirement in [38], Proposition 5.2, that T be Bohr-Sommerfeld. Finally,
being homologically essential over Z2 coefficients is by Proposition 2.16 the same

as HF*(Tp^q;Z2) ^ 0. This allows one to repeat the arguments of Sections 5a and

5b of [38] to conclude that SH*(X;Z2) ^ 0 just as in [38], Proposition 5.1.

Corollary 3.8. SH*(Bp>q) is non-zero, in other words, Bpq is non-empty.

Remark 3.9. Another way to prove SH*{Bp q) is non-zero goes as follows: Since

Sp-i has exact Lagrangian submanifolds (matching spheres), we conclude from
Theorem 1.2 that SH* (Sp-i) is non-zero. Now, there are obvious pull-back (total preim-
age) and push-forward (image) maps on symplectic cohomology for unbranched

Covers which commute with the maps from ordinary cohomology to symplectic
cohomology, which shows that SH*{Bp^q) ^ 0. Our method of proof above on the
other hand yields a geometric reason for the non-vanishing of SH*{Bp^q).

4. Concluding remarks

An exact Lefschetz fibration on Bp q can be found in [14]. This Lefschetz fibration
equips Bp q with a Stein structure, and Corollary 3.8 implies that the symplectic
cohomology is non-zero. It would be interesting to use Seidel's computational methods

([37]) to compute the symplectic cohomology of Bp q starting from this Lefschetz
fibration. Alternatively, Bp q can be constructed by Weinstein handle attachments
with one 1-handle and one 2-handle to Z)4 as in Section 3.2. The methods developed
in [6] might be useful in Computing the symplectic cohomology from this description.

Let D (0) be the fibre over the origin for IIp_i: Sp-\ -> C. There is a

special Lagrangian fibration on 5^-i\Z) with fibres {(x,y,z) e Sp-\ : |z|

L kl - \y\ ^} (compare [4], Section 5) where one could take the holomorphic
volume form as in Lemma 2.8. The matching tori that we considered in this paper
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corresponds to monotone fibres Tr?0 in this fibration. There is a unique Singular
fibre Ti5o with p nodal singularities. In addition, this special Lagrangian fibration is

equivariant under the action TPiq on Sp-1, hence it descends to a special Lagrangian
fibration in the quotient {SP-\\D)/ Tp^q which has only one Singular fibre with a

unique nodal singularity. This construction gives an interesting testing ground for
Strominger-Yau-Zaslow mirror symmetry conjecture and the related wall-crossing
problem (cf. [4]).

In this paper, we restricted our attention to dimension 4. However, there is a natural
extension of our set-up to dimensions Ak for k > 1. The action rPjq exists and is free

on the corresponding higher dimensional Ap-\ Milnor fibre. We then obtain a non-
displaceable Lagrangian S1 x S2k~l in the Ap-\ Milnor fibre and correspondingly,
we get a non-displaceable Lagrangian in the finite quotient.
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