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The knot Floer complex and the smooth concordance group

Jennifer Hom

Abstract. We define a new smooth concordance homomorphism based on the knot Floer com-
plex and an associated concordance invariant . As an application, we show that an infinite
family of topologically slice knots are independent in the smooth concordance group.

Mathematics Subject Classification (2010). 57M25, 57R58.
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1. Introduction

The set of isotopy classes of knots in S3, under the operation of connected sum,
forms a monoid. Two knots are concordant 1f they cobound a smooth, properly
embedded cylinder in S3 x [0, 1|. The monoid of knots, modulo concordance, forms
the concordance group, denoted €. If we loosen the conditions and only require that
the cylinder be locally flat, rather than smooth, we obtain the topological concordance
group. Understanding the difference between these two groups sheds some light on
the distinction between the smooth and topological categories.

Ozsvath and Szabd [OS04], and independently Rasmussen [Ras03], defined an
invariant, knot Floer homology, associated to a knot in S3. This invariant comes in
many different flavors, the most robust being C FK°(K), a Z-filtered chain complex
over the ring F[U, U], where F = Z/2Z and U is a formal variable. There is
a second filtration induced by —(U-exponent) allowing us to view CFK®(K) as a
7. & Z-filtered chain complex. The filtered chain homotopy type of this complex
is an invariant of the knot K. The weaker invariant, CFK (K), takes the form of a
Z-filtered chain complex over [¥, and is obtained by taking the degree zero part of
the associated graded object with respect to one of the filtrations.

Within the complex CFK (K) lives a Z-valued concordance invariant, 7(K),
defined by Ozsvath and Szabd in [OS03b]. The total homology of CFK (K) has rank
one, and 7 measures the minimum f{iltration level where this homology is supported.
The invariant T gives a surjective homomorphism from the smooth concordance group
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€ to the integers:
1: € — 7,

which gives a new proof of the Milnor conjecture [OS03b] and is strong enough to
obstruct topologically slice knots from being smoothly slice (for example, [Liv(4]).

Often, we would like to be able to show that a collection of # knots is linearly
independent, that is, that they freely generate a subgroup of rank # in €. One way to
accomplish this is to define a concordance homomorphism whose domain has rank
at least 72, and to show that the image of this collection of knots has span equal to .
Thus, the Z-valued concordance homomorphism 7 is not sufficient for this type of
result.

We turn to the more robust invariant CFK*(K). In [Hom14], we defined a
{—1,0, 1}-valued concordance invariant, &( K'). The invariant ¢ is associated to the
Z. @ Z filtered chain complex C F K in a manner similar to how 7 is associated to the
Z.-filtered chain complex CFK ; that is, we ask when certain natural maps vanish on
homology. We will sometimes write £(C F K (K)), rather than £(K), to emphasize
that £ is an invariant associated to the knot Floer complex of K.

The goal of this paper is to use ¢ to define a new concordance homomorphism
that is strong enough to detect linear independence in €. The main idea is to turn the
monoid of chain complexes CFK® (K) (under tensor product) into a group, which
we will denote ¥, in much the same way that the monoid of knots (under connected
sum) can be made into the group € by quotienting by slice knots.

Let CFK®(K)* denote the dual of CFK®(K); see Section 2 for the precise
definition of the dual complex.

Definition 1. Define the group ¥ to be
F = ({CFK®(K) | K C §°}.®)/ ~,
where

CFK®(Ky) ~ CFK®(K;) <= e(CFK®(K;) ® CFK®(K3)*) = 0.

Theorem 2. The map
€ = F,

sending a class in € represented by K to the class in ¥ represented by CFK*®(K)
is a group homomorphism.

This group F has the advantage that it can be studied from an algebraic per-
spective, much like the algebraic concordance group defined by Levine [Lev69Yal,
[Lev69b] in terms of the Seifert form. However, Levine’s homomorphism factors
through the topological concordance group, while ours does not.
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One algebraic feature of ¥ is that it is totally ordered, with an additional well-
defined notion of domination,”<”’; see Definition 4.1 and Proposition 4.2. Moreover,
we can use the relation < to define a filtration on F that can be used to show linear

independence of certain classes. Let O denote the identity of the group ¥, ie.,
[C FK®°(unknot)]. Given a chain

0 < [CFK™(K)] € [CFK™(K;)] <« --- < [CFK*™(K,)],
it follows that the collection
{[CFK® (K}, _,
is linearly independent in ¥, and hence

{[Ki]}le

is independent in €. (It is also possible to use spectral sequences to define a second,
independent filtration on the group ¥.) One consequence of this filtration is that ¥
contains a subgroup isomorphic to Z°°; see Theorem 3 below. We will use this rich
structure on ¥ to better understand €.

Let T, 4 denote the (p, g)-torus knot, K, 4 the (p, g)-cable of K (where p denotes
the longitudinal winding and ¢ denotes the meridional winding), and D the (positive,
untwisted) Whitehead double of the right-handed trefoil. We write 73, . 5 4 to denote
the (p, g)-cable of the (m, n)-torus knot. Let —K denote the reverse of the mirror
image of K, thatis, the inverse of K in €.

Theorem 3. The topologically slice knots

Dppr1#—Tppyr1, p=1

are independent in the smooth concordance group; that is, they freely generate a
subgroup of infinite rank.

The first example of an infinite family of smoothly independent, topologically
slice knots was given by Endo [End95]. His examples consist of certain pretzel
knots. More recently, Hedden and Kirk [HK12] showed that an infinite family of
(untwisted) Whitehead doubles of certain torus knots are smoothly independent. The
structure of ¥ shows that our examples (when p > 1) are smoothly independent
from both of these earlier families.

Let P(K) denote the satellite of K with pattern P; thatis, P isaknotin § 1x D2,
which we then glue into the (zero framed) knot complement S — nbd K to obtain
the knot P(K) C S?. Recall that the map P(—): € — € given by

[K] = [P(K)]

is well defined, by “following” the concordance along the satellite.
We obtain a similar well-defined map on ¥:
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Proposition 4. The map P(—): ¥ — F given by

[CFK*™(K)] — [CFK®(P(K))]
is well defined.

By composing £ with 7, we obtain a new concordance invariant
w»(K) = t(P(K)),

since K1 being concordant to K, implies that P(K) is concordant to P(K3). In the
following theorem, we relate this to [CFK*(K)].

Theorem 5. [CFK>®(K,)|] = [CFK®(K,)] if and only if tp(K,) = 1p(K3) for
all patterns P C §' x D2,

Recall that 7 is associated to the weaker, Z-filtered chain complex CFK. The
above theorem says that knowing information about a weaker invariant, namely z, of
satellites of K tells us information about the stronger invariant, C FK°°, of the knot
itself.

Does the map P(—): € — € always take linearly independent collections of
knots to linearly independent collections of knots? We address this question for
cables in the following theorem:

Theorem 6. Foreachn € N, there exists a collection of linearly independent knots
K N
such that form > n*> —n — 1,

{Ké,2m+1 }?:1

is a collection of linearly independent knots in €.

This result should be compared to the work of Hedden and Kirk [HK12], where
they use instantons to prove that the Whitehead doubles of (2,2"” + 1)-torus knots
are linearly independent.

Central to the definition of F is the concordance invariant £, which exhibits the
following properties:

* If K is smoothly slice, then (K) = 0.
« Ife(K) =0, then 7(K) = 0.

* There exist knots K with t{K) = 0 but 2(K) # 0; that is, & is strictly stronger
than t at obstructing sliceness.
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« g(—K) = —&(K).
o Ife(K) = e(K'), then e(K#K') = &(K). If e(K) = 0, thene(K#K") = ¢(K').

These facts are proved in [Hom14]; we give sketches of their proofs in Section 3.
Notice that since e(K) = 0 implies that z(K) = 0, the map

1: €= Z
factors through ¥ .

Organization. We begin by recounting the necessary definitions and properties of
the complex CFK®° (Section 2) and the concordance invariant & (Section 3). With
these definitions in place, we proceed to define the group ¥, describe its various
algebraic properties, and give examples (Section 4). We study satellites in Section 5.
We conclude with the algebraic details in Section 6.

We work with coefficients in ¥ = 7 /27 throughout.

Acknowledgements. 1 would like to thank Paul Melvin, Chuck Livingston, Matt
Hedden, Rumen Zarev, Robert Lipshitz, Peter Ozsvath, and Dylan Thurston for help-
ful conversations, and Peter Hom for his comments on an earlier version of this

paper.

2. The knot Floer complex CFK *°

To a knot K C S3, Ozsvith and Szabs [OS04], and independently Rasmussen
[Ras03], associate CFK*®(K), a Z-filtered chain complex over F[U, U _1], whose
filtered chain homotopy type is an invariant of K. The complex CFK™ can be
considered as a 7 @ Z-filtered chain complex, with the second filtration induced
by —(U-exponent). The ordering on Z @ 7 is given by (i, j) < (@', j))ifi < i’
and j < j’. We assume the reader is familiar with this invariant, and the various
related flavors, CFK~(K) and CFK (K); for an expository introduction to these in-
variants, see [OS06]. The knot X is specified by a doubly pointed Heegaard diagram,
(X, e, B, w, z), and the generators (over F[U, U~!|) of CFK®(K) are the usual g-
tuples of intersection points between the «- and 8-circles, where g is the genus of X
and each «-circle and each S-circle is used exactly once. The differential is defined

as
ix = Z Z #M(p) U@ .y

YEG(H) pema(x,y)
ind(¢)=1

This complex is endowed with a homological Z-grading, called the Maslov grad-
ing M, as well as a Z-filtration, called the Alexander filtration A. The relative Maslov
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and Alexander gradings are defined as

M(x) — M(y) = ind(¢) — 2ny(¢) and A(x) — A(y) = n:(¢) — nw(¢),

for ¢ € mo(x,y). The differential, d, decreases the Maslov grading by one, and
respects the Alexander filtration; that is,

M(dx) = M(x)—1 and A(dx) < A(x).
Multiplication by U shifts the Maslov grading and the Alexander filtration as follows:
MU - -x)=M(x)—2 and AU -x) = A(x)—1.

It is often convenient to view this complex in the (7, j )-plane, where the i-axis
represents —(U/-exponent) and the j-axis represents the Alexander filtration. The
Maslov grading is suppressed from this picture. We place a generator x at posi-
tion (0, A(x)); more generally, an element of the form U* - x will have coordinates
(—i, A(x) —1).

Given S C Z & Z,let C{S} denote the set of elements in the plane whose (i, j )-
coordinates are in § together with the arrows between them. The complex CFK™(K)
is the subcomplex C{i < 0}, that is, the left half-plane. The complex CFK (K) is
the subquotient complex C{i = 0}.

A basis {x;} for a filtered chain complex (C, d) is called a filtered basis if the set
{xi | x; € C{S}}isabasis for C{S} forall filtered subcomplexes C{S} C C. Given
a filtered basis for C FK°°, we may visualize the differential by placing an arrow from
a generator x to a generator v if y appears in dx. The differential points non-strictly
to the left and down. Often, it will be convenient to consider only the part of the
differential that preserves the Alexander grading, 1.e., the horizontal arrows. We will
denote this by 9", Similarly, we will use ¥ to denote the part of the differential
that preserves the filtration by powers of U, i.e., the vertical arrows.

The integer-valued smooth concordance invariant t(K) is defined in [OS03b] to
be

(K)=min{s |t: C{i =0,j <s} = C{i =0}

induces a non-trivial map on homology},

where ¢ is the natural inclusion of chain complexes. Alternatively, 7(K) may be
defined in terms of the U/ -action on H FK™(K), as in Appendix A of [OSTO8]:

T(K) = —max{s | there is [x] € HFK (K, s) such that U%[x] # 0 for all d > 0},

where HFK—(K,s) = H,.(C{i <0, = s}).
The complex CFK*(K) satisfies certain symmetry and rank properties [OS04],
Section 3. The complex obtained by interchanging the roles of 7 and j is filtered
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chain homotopic to the original. Also, the rank of the homology of any column or
row is one; more generally, modulo grading shifts, any column or row is filtered chain
homotopic to CFK (K).

By Theorem 7.1 of [OS04], we have the filtered chain homotopy equivalence

CFK®(K#K,) ~ CFK®(K1) ®gy.u-1] CFK®(K>).

Let —K denote the reverse of the mirror image of K. The knot Floer complex 1s not
sensitive to changes in orientation of the knot, but it is sensitive to changes in the
orientation of the ambient manifold [OS04], Section 3.5. In particular,

CFK>™(—K) =~ CFK*®(K)*,
where C FK®(K)* denotes the dual of CFK*(K), i.e.,
HOmIF[U,U—l](CFKOO(K),IF[U, U_l]),

In order to depict the complex CFK®°(K)” in the (7, j)-plane, we take the complex
CFK®(K) and reverse the direction of all of the arrows as well as the direction of
both of the filtrations. (In practice, we can accomplish this by reversing the direction
of all of the arrows and then turning our heads upside down. )

We point out that when we write CFK ™ (K), we are really denoting an equiva-
lence class of filtered chain complexes. We may always choose as our representative
the £ page of the spectral sequence associated to one of these complexes, that is,
the homology of the associated graded object together with the induced differentials.
In other words, we may choose our representative to be reduced, in the sense that any
differential strictly lowers the filtration (in at least one direction).

3. The invariant &

The invariant & can be defined in terms of the (non-) vanishing of certain cobordism
maps, which, using the relation between large surgery and knot Floer homology
([OS04], Theorems 4.1 and 4.4) has an algebraic interpretation in terms of the filtered
chain complex CFK*(K).

Let N be a sufficiently large integer. (It turns out that N > 2g(K) will suffice;
see [OS08], Theorem 1.1, and [OS04], Theorem 5.1.) We consider the map

Fy: HF(S3) — HF(S3\(K).[s]).

induced by the 2-handle cobordism, W*,.. As usual, [s] denotes the restriction to
§3 v (K) of the Spin® structure 35 over W4, with the property that

(c1(35), [F]) + N = 2s,
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where |s| < % and F denotes the capped off Seifert surface in the four manifold.
We also consider the map

Gy: HF (S3(K),[s]) — HF(S%),

induced by the 2-handle cobordism, —WR}, that is, the cobordism W; turned “upside
down” and with its orientation reversed.

The maps Iy and G5 can be defined algebraically by studying certain natural maps
on subquotient complexes of CFK™(K), as in [OS04]. The map F; is induced by
the chain map

Ci{i =0} - C{min(i, j —s) = 0}

consisting of quotienting by C{i = 0, j < s}, followed by inclusion. Similarly, the
map G, 1s induced by the chain map

Cimax(i,j —s) =0} > C{i =0}

consisting of quotienting by C{i < 0, j = s}, followed by inclusion.

(a) (b) (c)

Figure 1. Left, the subquotient complex C{i = 0}. Center, the subquotient complex C{i =
0, j < s}. Right, the subquotient complex C{max (i, j —s) = 0}.

For ease of notation, we will often write simply t for (K) when the meaning is
clear from context. Notice that for s > r, Fj is trivial, since quotienting C{i = 0}
by C{i = 0,j < s} will induce the trivial map, as the homology of C{i = 0} is
supported in filtration level 7.

For s < 1, Fj is non-trivial, since any generator of H,(C{i = 0}) will still be in
the kernel, but not the image, of the differential on C{min(7, j — s) = 0}.
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The map £, may be trivial or non-trivial, depending on whether the class rep-
resenting a generator of H,(C{i = 0}) lies in the image of the differential on
C{min(i, j — ) = 0} or not.

The maps (G, behaves similarly. For s > t, the map Gy is non-trivial, and for
s < 1, Ggistrivial. The map G, will be non-trivial if the class representing a generator
of H,(C{i = 0}) lies in the kernel of the differential on C {max (7, j —s) = 0}, and
trivial otherwise.

Because C{j = t}1is a chain complex, and so 3> = 0, it follows that F; and
G5 cannot both be trivial; that is, a class cannot lie in the image but not in the kernel
of the differential. (This is made precise in [Homl14].) Therefore, there are three
possibilities for I; and G: either exactly one vanishes, or neither vanishes.

Definition 3.1. The invariant ¢ is defined in terms of F, and G, as follows:
* (K) = lifandonlyif F7 is trivial (in which case G is necessarily non-trivial).

* 2(K) = —1 if and only if G is trivial (in which case I is necessarily non-
trivial).

* #(K) = 0if and only if both F; and G, are non-trivial.

Let |x] be a generator of H,(C{i = 0}), the so-called “vertical” homology. In
light of the preceding discussion, the definition of & corresponds to viewing [x] as a
class in the “horizontal” complex C{j = 7} as follows:

* £(K) = 1if and only if [x] is in the image of horizontal differential.
* 2(K) = —1 if and only if [x] is not in the kernel of the horizontal differential.

* £(K) = 01if and only if [x] is in the kernel but not the image of the horizontal
differential.

Notice that € 1s an invariant of the filtered chain homotopy type of CFK®°; at times,
to emphasize this point, we will write e(C FK°°(K)) rather than simply £(K).

This idea of associating numerical invariants to filtered chain complexes is com-
mon; for example, to any Z-filtered chain complex whose total homology has rank
one, we can define an integer-valued invariant that measures the minimum filtration
level at which this homology is supported, e.g., T(K), which is an invariant of the
Z-filtered chain homotopy type of CFK (K).

Similarly, to any Z & Z-filtered chain complex whose ‘“‘vertical” homology has
rank one, we can define a {—1, 0, 1}-valued invariant that measures how this class
appears in the “horizontal” complex, i.e., in the image of the horizontal differential,
in the kernel but not the image, or not in the kernel, respectively. In particular,
when (K) = 0, then CFK®(K) is filtered chain homotopic to a complex with
a distinguished generator that is non-trivial in both the vertical and the horizontal
homology.
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Proposition 3.2 ([Hom14]). The following are properties of e(K):
(1) If K is smoothly slice, then e(K) = (.

(2) Ife(K) = 0, then t(K) = 0.

(3) e(—=K) = —&(K).

@) (a) Ife(K) = e(K'), then s(K#K") = e(K) = &(K").
(b) Ife(K) = 0, then e(K#K') = e(K').

For completeness, we sketch the proof below.

Sketch of proof. To prove (1), we consider the d-invariants of large surgery along K.
If K is slice, then the surgery correction terms defined in [OS03a] vanish, i.e., agree
with the surgery correction terms of the unknot, and the maps

HF (S}(K).[0)) > HF(S*) and HF(S) — HF (S’ y(K).[0])

are non-trivial. Indeed, the surgery corrections terms can be defined in terms of the
maps
HF*(S%) — HF (52, (K). [s])

and we have the commutative diagram

ﬁ(Sf*)L’ﬁ(SEN(K)a[S])

L l lg l
F;*

HF*(5%) —> HF* (S, (K). [s).

Let N > (. If the surgery corrections terms vanish (that is, agree with those of
the unknot), then FI"' is an injection [Ras04], Section 2.2, and so the composition
t o F is non-trivial. By commutativity of the diagram, it follows that F, must be
non-trivial. A similar diagram in the case of large positive surgery shows that G,
must be non-trivial as well. Hence £(K) = 0.

The proof of (2) follows from the fact that if ¢(K) = 0, then there is a class x in
CFK®(K) which generates both H,(C{i = 0}) and H,(C{j = 0}). In the former
complex, x has Alexander grading A(x), and in the latter, viewed as a Z-filtered
complex, x has filtration level —A(x). Hence t(K) = —t(K) = 0.

The proof of (3) follows from the symmetry properties of the knot Floer complex
[OS04], Section 3.5; in particular, we have the filtered chain homotopy equivalence
CFK®(—K) ~ CFK®(K)*.

To prove the first part of (4): if [x] and [x'] are generators of H, (Cﬁ (K))
and H, (Cﬁ(K’)), respectively, then [x ® x'] is a generator of H, (CW(K#K’)).
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(Here, we are identifying CFK with C{i = 0}.) Suppose e(K) = &(K’) = 1. Then
both [x] and [x/] are both in the image of the horizontal differential, and hence [x ® x|
is also. The other cases follow similarly. 0

Notice that Proposition 3.2 implies that ¢ is a concordance invariant. If K and K’
are concordant, then ¢(K# — K') = 0, in which case ¢(K) = —e(—K’) by (4), or
e(K) = e(K').

Note that we have the following subgroup of €:

{[K]|e(K) =0} CC.

This subgroup will appear again in the next section.

4. The group ¥

In this section, we define the group F as well as some of its algebraic structure.
We will give examples of knots that demonstrate the richness of this structure. In
particular, we give an infinite family of topologically slice knots that are linearly
independent in ¥, and hence also in the smooth concordance group €, as needed for
the proof of Theorem 3.

4.1. Definition of the group . We define the group ¥ as
F = ({CFK®(K) | K C §*}.®)/ ~,
where
CFK*® (K1) ~ CFK®(K;) <= ¢(CFK*®(K;) @ CFK®(K3)*) = 0,

CFK®(K)* denotes the dual of CFK®(K), and the tensor product is over
F[U, U™!]. We have the well-defined group homomorphism

€ = F,
given by
[K] — [CFK®(K)].

Theorem 2, including well-definedness, follows from the following facts (the first
two from Section 3.5 of [OS04] and the last from Proposition 3.2):

« CFK®(—K) >~ CFK*®(K)*.
o CFK™(K1#K3) ~ CFK®® (K1) @ CFK*™(K>).
« If K is smoothly slice, then e(CFK*(K)) = 0.
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Notice that ¥ is isomorphic to the quotient
F = ¢/{[K] | &(K) = 0}.

For ease of notation, from now on, we will write
[K]
to denote [C FK*(K)], and, when convenient, we will write
[K1] + [K2]

to denote the operation on the group, which can be thought of as either [CFK*°(K1)®
CFK™(K;)] or [CFK®(K#K3;)]. Note that —[K] = [-K]. We denote the
identity of 7, [unknot], by 0.

The group ¥ has a rich algebraic structure: it has a total ordering, and a “<&”
relation that satisfies the certain properties (e.g., Lemma 4.3) and induces a filtration
on the group. This algebraic structure on ¥ will in turn be useful in understanding
the structure of the smooth concordance group €.

Proposition 4.1. The group F is totally ordered, with the ordering given by
[K1] > [K2] <= e(K1# - K3) = 1.

Proof. We may think of £( K) as the “sign” of [ K|, and then the order relation between
any two classes 1s determined by the sign of their difference.
This relation is clearly transitive, since given

[Ki] > [K2] and [K3] > [K3].
it follows that
[K1] > [K5].
Indeed,
E(Kl# — K3) = S(Kl# — Kz#Kz# = K3)
=1
by (4) of Proposition 3.2 since e( K 1# — K3) = | and e( Kp# — K3) = 1.
This relation is also translation invariant. Given
[K:1] > [Ka],
it follows that
[Ki] + [K5] > [K2] + [K3].
since
8(K1#K3# — K3# — Kz) = E(Kl# — Kz)
=1. O
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Totally ordered groups give rise to many natural algebraic constructions, which
we will utilize below. For example, we have a notion of absolute value; that is, given
an element [ K], either [ K] or —[ K] is greater than the identity, so we define the
absolute value as

—[K] otherwise.

A natural question to ask is: Do there exist knots Ky and K, with ¢(K;) =
e(K>) = 1 (i.e., they are both “positive” with respect to the ordering), and

[K1] > n[K,] foralln € N?
The answer, it turns out, is yes, motivating the following definition:
Definition 4.2. The class [ K] dominates | K;], denoted
[K1] > [K2].
if [Kq] > n[K3] > 0 foralln € N.

Transitivity of 3> follows exactly as for the total ordering. We have the following
lemma, showing a useful property that the > relation satisfies:

Lemma 4.3. If
[Ki] > [K2] and  [Ki] > [K5]

then
[K1] > [K2] + [K5]-

Proof. To see that this is true, we proceed by contradiction. Assume there exists
n € N such that

[K1] = n([K2] + [K3])-
Then 2[ K] < 2n([K2] + [K3]). ie.,

[K1] - 27[K2] + [K1] — 2n[K3] <o.

But [K1] —m[K3] > 0and [K;] —m[K3] > O forallm € N, giving us the desired
contradiction. O

Remark 4.4. These ideas could alternatively be phrased in terms of Archimedean
equivalence classes. Recall that two elements @ and b of a totally ordered group are
Archimedean equivalent if there exist natural numbers M and N suchthat M -|a| > |b|
and N - |b| > |a|. Then we say that @ > b ifa > b > 0, and ¢ and b are not
Archimedean equivalent. Note that the set of Archimedean equivalence classes is
naturally totally ordered, and this ordering corresponds to the > relation.
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Definition 4.5. Let 5% denote the collection of elements
Fre = {[JT| 1IN < IKT-
Proposition 4.6. Fx is a subgroup of .

Proof. If [J] is in Fx, then —[ J]| clearly is as well. Given [J1] and [ /2] in Fk, is
follows immediately that [ J;] + [J2] is also in Fg, by Lemma 4.3. O

Notice that given a sequence of knots Ky, K>, ..., K}, satisfying
[K1] > [K2] > - > [Ka.

we obtain a filtration
fFKl D) fFKZ IR fFKn.
Lemma 4.7. If [Kq| > [Kz] > --- > [Ku] > 0, then the knots
Kl: KZ, ---,Kn

are linearly independent in ¥ and hence in C; that is, they generate a subgroup of
rank n in both ¥ and €.

Proof. By Lemma 4.3, for any positive integer m, m[K;]| dominates any linear

combination of [K3],...,[K,], and thus cannot be expressed as a linear com-
bination of these classes. Similarly, m[K;] dominates any linear combination of
[Kis1],-- -, [Ku], fori < n. O

4.2, Examples. We now give examples of families of knots that can be shown to
independent in €.

Proposition 4.8. Let O < p < gq. Then we have the following relations in the group
F

D) [Tp.pt1] K [Tgq+1].

) [Dp.p+1] < [Dgg+1l.

) [Tp.pt1] < [Dp,p+1].

(4) [[Tp,p+1;2,2m+1ﬂ < [[Tq,q+1;2,2m+1ﬂ, m = 6]2 —g— L

We will prove this proposition at the end of Section 6.

Remark 4.9. A straightforward consequence of (2) and (3) of the preceding propo-
sition is the relation

[[Dp,p+1# - Tp,p+1]] < HDq.q+1# - Tq,q+1]]-
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We are now ready to prove Theorem 3; that is, we will show that the knots

Dpp+1#t—Tppr1, p=1,

are smoothly independent while being topologically slice.

Proof of Theorem 3. Recall that D is the (positive, untwisted) Whitehead double of
the right-handed trefoil. The Alexander polynomial of D is equal to one, and so by
Freedman [Fre82], it follows that D is topologically slice. Hence, the (p, p + 1)-
cable of D, D 541, 1s topologically concordant to the (p, p + 1)-cable of the unknot,
Le., the torus knot 7, 4. Thus, D, ,1# — T}, 41 1s topologically slice.

It follows from Lemma 4.7 and Remark 4.9 that the knots

Dpp+1#—Tppr1, p=1,

are linearly independent in ¥, and hence also in €. 0

Proof of Theorem 6. We need to find a collection of linearly independent knots
{K'}"_, such that the collection {Kéqu +14i—1 is also linearly independent for suf-
ficiently large m.

LetK! = T; i+1.and consider the (2, 2m + 1)-cable of K!, wherem > n*—n—1.
By Lemma 4.7 and Proposition 4.8, it follows that the collection

(K'Y

is linearly independent in ¥, hence also in €. Again, by Lemma 4.7 and Proposi-
tion 4.8, the collection

(K 2m1ti=1;

is also linearly independent in ¥ and thus in €. O

5. Satellites and ¥

Recall that P(K) denotes the satellite of K with pattern P; that is, P is a knot in
S! x D2, which we then glue into the (zero framed) knot complement S* — nbd K.
The map P(—): € — € given by

[K] = [P(K)]

is well defined, by “following” the concordance along the satellite. We will show
that an analogous result holds for the group ¥; this is a restatement of Proposition 4
from the Introduction.
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Proposition 5.1. The map P(—): ¥ — ¥ given by

[K] = [PK)]
is well defined.

The following theorem from [Hom14] gives a formula for (K, ) in terms of
7(K), e(K), p,and g:

Theorem 5.2 ((Hom14]). Let K C S3, andlet p, q be relatively prime integers with
p > 0. Then the behavior of T(K, ) is completely determined by p, q, t1(K), and
e(K). More precisely:

(1) If e(K) = 1, then 1(Kp 4) = pt(K) + —(p_l)z(q_l)_
(2) Ife(K) = =1, then 1(Kp 4) = pt(K) + Lt%.w_l)

(p—1){g+1) ifg <0
(3) Ife(K) = 0, thent(K) = Oand t(Kp.g) = ©(Tp.) = 3 (porZory -

We see that knowing (K, 1) and (K, _1) is sufficient to determine e(X). More
precisely:

e If (K5 1) is odd, then e(K) = —1.
* If (K, —1)is odd, then e(K) = 1.
e Ifr(K71) =t(Kz—1) =0, then &(K) = 0.

The proof of Proposition 5.1 will rely on this observation.

The proof will also rely on facts from bordered Heegaard Floer homology, as
defined by Lipshitz, Ozsvath and Thurston [LOT08]. We will need only a special
case of the formal properties of these invariants, which we recount here.

To a framed knot complement Yk, we associate a left differential graded module
@(YK), whose homotopy equivalence class is an invariant of the framed knot
complement [LOTO08], Theorem 1.1. Furthermore, the homotopy equivalence class
is completely determined by the complex CFK*(K) and the framing n [LOTO08],
Theorem 11.27 and A.11. For our purposes here, it will be sufficient to let Yk be the
zero framed knot complement. In [Hom14], it is shown that if ¢(K) = 0, then

CFD(Yyex) ~ CFD(Y)) & A,

for some left ditferential graded module A which depends on CFK*(K).
Toaknot P in S x D2, we associate a right #A,-module CFA=(5! x D?, P).

Let gCFK™(K) denote the associated graded complex of CFK™ (K),i.e., ®;C{i <

0, j = s}. Notice that HFK™(K) = H,(gCFK™(K)). Then the pairing theorem
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for bordered Heegaard Floer homology ([LOTO08], Theorem 11.21) states that we
have the following graded chain homotopy equivalence:

gCFK™ (83, P(K)) ~ CFA~(S' x D2, P) & CFD(Yx),

where we choose the zero framing for the knot complement Y, and where ® denotes
the A -tensor product, a generalization of the derived tensor product. In particular,
& respects summands.

Proof of Proposition 5.1. Assume e(K# — J) = 0. We would like to show that
e(P(K)y#—P(J))=0.
Utilizing the observation above, it is sufficient to show that

T((P(K)#— P(J))2,41) = 0.

10

Figure 2. The knot (P(K H— P(K))2 {» in the case where P is the pattern for the Whitehead
double. !

Let U denote the unknot. There exists an embedding Q of (P(U #— P(J ))

2,+1
into S x D2 such that

Q(K) = (P(K)#_ P(J))z,:lzl'

See Figure 3. We consider the bordered invariant
CFA=(S' x D%,0)

associated to (S x D2, Q). Notice that Q(J) = (P(J)# — P(J)) is slice and

SO r((P(J)# — P(J))z_,il) =

2,£1
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Figure 3. The knot (P(U)# — P(K))2 | embedded in § ' % D? as the pattern knot Q, where
again, P is the pattern for the Whitehead double.

The knot K is concordant to the knot K" = J#K# — J. Since e(K# — J) = 0,
we have the following chain homotopy equivalence:

CFD(Yx) ~ CFD(Y;) & A,

for some A.
Theknot O (K) is concordantto Q(K'), since K is concordantto K'. The invariant
T(Q(K")) is determined by
gCFK™(Q(K") ~ CFA~(S! x D2, 0) & CFD(Yx')
~ CFA~(S' x D2, Q) & (CFD(Yy) & A)
~ ¢gCFK=(Q(J)) & B
where B is the complex CFA~(S! x D?, Q) @ A. Notice that H,(B) is U-torsion,

since the ranks of HFK—(Q(K')) and HFK—(Q(J)) as F[U]-modules are both
one. Thus,

(Q(K)) = 1(Q(K") = 1(Q(J)) =0,

since Q(J) is slice. Recalling that Q(K) = (P(K)# — P(J))Z,:l:l’ we have that
T((P(K)#— P(J))2,+1) =0,

implying that
e(P(K#—P(J) =0,

as desired. O
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We now prove Theorem 5, which we restate here:

Theorem 5.3. [K]| = [J] if and only if tp(K) = 1p(J) for all patterns P C
St x D2

Proof. The forward direction is true by Proposition 5.1 and the fact that the map
7: € — Z factors through . We must now show that if [K] # [J], then there
exists some pattern P such that t(P(K)) # t(P(J)).

Without loss of generality, we may assume that e(K# — J) = —1. Let
P(K)y=(K#—-J)21.
Then Theorem 5.2 tells us that
(P(K)) =2(t(K)—t(J))+1 and (P(J)) =0,

as desired. O

6. Calculations and a refinement of ¢

An element of ¥ is an equivalence class of filtered chain complexes. The goal of
this section is to define more tractable invariants associated to such a class, compute
these invariants for a few families of knots, and show that these invariants are related
to the algebraic structure, namely the > relation, on F.

To this end, we will define a refinement of . Recall that ¢ is defined in terms of
whether or not certain maps on subquotient complexes of C F K *° vanish on homology.
Our refinement of € will be defined in a similar manner.

The invariant £(K) is equal to one when the class generating the “vertical” ho-
mology of CFK*°(K) lies in the image of the horizontal differential. We would like
a well-defined way to measure the “length” of the differential that hits that class, that
is, how much it decreases the horizontal filtration. We will do this by examining
certain natural maps on subquotients of CFK®°.

The definition of ¢ involved examining the map /7, induced by

C{i =0} - C{min(i, j — ) = 0}.

In particular, if F; is trivial, then e{K) = 1. Consider now the map H; induced on
homology by
C{i =0} > C{min(i,j — 1) =0, i <s},

for some non-negative integer s. Notice that Hy is non-trivial, and for sufficiently
large s, Hy agrees with F;.
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Suppose that £(K) = 1; that is, F, is trivial. Then define a,(K) to be
a1(K) = min{s | Hy is trivial}.

The idea is that when e(K') = 1, the class generating the vertical homology lies in the
image of the horizontal differential, and @ is measuring the “length” of the horizontal
differential hitting that class.

Now consider the map H,;, ; induced on homology by

C{i =0} — C{{min(i,j —n=0i<a)}Ui=a,1—5<j< r}},
for some non-negative integer s. Clearly, H,, ¢ is trivial. Define
a>(K) = min{s | Hg,, s is non-trivial}.

Notice that a,(K) may be undefined; that is, the map H,, s may be trivial for all s.
Effectively, a; is measuring the “length” of a certain vertical differential, if it exists.

Lemma 6.1. The invariants ay and a, are invariants of the class | K].
Proof. Suppose [J| = [K]. Then
[J] = [K] = [K#— J#J].

Since e(K# — J) = 0, it follows from Lemma 3.3 of [Hom14] that there exists a
basis for CFK®(K#— .J) with a distinguished element, say xp, with no incoming or
outgoing horizontal or vertical arrows. Similarly, there is a basis for CFK*(J#—J)
with a distinguished element yg. Then we may compute a (K#— J#J ) and a, (K#—
J#J) by considering either

{x0} ® CFK*(J) or CFK™(K)® {yo}.

the former giving us a1 (J) and a5 (J ), and the latter givingus a1 (K) anda,(K). U

Lemma 6.2. Let ay = a((K). Then there exists a basis {x;} over F|U, U] for
CFK® with basis elements xg and xq with the following properties.

(1) There is a horizontal arrow of length ay from x1 to Xp.
(2) There are no other horizontal or vertical arrows to or from xy.
(3) There are no other horizontal arrows to or from x.

If we also have that ay = a»(K) is well defined, then there exists a basis {x;} with
basis elements xq, X1, and xy with the following properties, in addition to the ones
above:

(4) There is a vertical arrow of length a, from xq to x;.
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(5) There are no other vertical arrows to or from x1 or Xx;.

Proof. We will give the proof for the case where a5 is well defined. The proof in the
case where a7 is not well defined is a straightforward simplification of this proof.
For ease of notation, let

A=C{min(i,j —7) =0,i <ay},
B=C{{min(i,j—1)=0i <a}U{i=ai,t—ar <j <t}},

so that f,, and H,, 4,, respectively, are the maps on homology induced by

Cl{i =0} — A,
C{i =0} — B

See Figure 4. Since H,, 1s trivial, it follows that there is a generator, say xg, of
H,(C{i = 0}) in position (0, 7) that is in the image of the differential on A, but not
in the image of the differential on B. Since H,, 4, is non-trivial, there exists a class
x1 supported in position (a1, t) whose boundary, in A, is xg, and whose boundary, in
B.is aclass, say xg + x2, where x» is supported in position (a1, T — a;). Moreover,
we may replace xg with "o x . since a priori, ghorz might include elements with
negative i-coordinate. Similarly, we may replace x, with 9**"x;. We now complete

a1 1451
Xpeée—0X]

das

eXo

\a) (b) (c)

Figure 4. Left, the complex A in the (i, j)-plane. Center, the complex B. Right, part of the
basis in Lemma 6.2.

{x0,x1,x2} to a basis {x;} for CFK*(K), and conditions (1) and (4) above are
satisfied. To satisfy the remaining three conditions, we will use a change of basis in
order to remove the unwanted arrows.

There are no vertical arrows leaving xg, since it is in the kemel of the vertical
differential. Since x¢ is not in the image of the vertical differential, if there is an
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incoming vertical arrow to x¢ from, say, y, then there is also a vertical arrow from
y to, say, z. Changing basis to replace z with z + xo will remove the vertical arrow
to xg. All of the incoming vertical arrows to xo may be removed in this manner, and
filtration considerations ensure that we have not changed x; or x;.

Since xg is in the image of 3"°Z, it follows immediately that there are no horizontal
arrows leaving xo, by the fact that "% o 9" = (. We must now remove any
horizontal arrows entering xo. Suppose there is an arrow of length £ from y to xq. If
£ < ay, we may remove the arrow as in the preceding paragraph. If £ > aq, then we
replace y with y + x. In this manner, we can remove all of other horizontal arrows
into xgq.

There are now no horizontal arrows entering x;, because MOZx, = xg, M2 o
gtz — (), and there are no other horizontal arrows to xg.

We may remove unwanted vertical arrows involving x; and x; in the same manner
that we removed unwanted horizontal arrows involving x; and xp. ]

Note that if we have such a basis {x;} for CFK°°(K), then we have a basis {x}
for CFK®(K)* satisfying the following:
* There is a horizontal arrow of length @ (K) from xj to x7.
* There is a vertical arrow of length a,(K) from xJ to x7.
¢ There are no other horizontal or vertical arrows to or from x;.
* There are no other horizontal or vertical arrows to or from x7.
* There are no other vertical arrows to or from x3.

If x; has filtration level (i, j), then x; has filtration level (—i, — j ). We will use these
types of bases to prove the following lemmas:

Lemma 6.3. Ifa1(J) > a1(K), then
[K] > [/].
Proof. We proceed using induction. We will show that e(K# — J) = | and that
ay(K#—J) = a1(K)
from which we can conclude that
e(K#t—nJ)=1

foralln € N.

Let {x;} be a basis for CFK*(K) found using the first part of Lemma 6.2.
Similarly, let {y;} be such a basis for CFK°°(J), and hence {y/} is a basis for
CFK®(—J). We consider the knot K# — J and its knot Floer complex. Notice that
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Xoyg generates H,(C{i = 0}), the “vertical” homology of CFK*(K# — J). Let
T =1(K#-J).
Consider the subquotient complex

A = C{min(i, j — ) = 0}.

There is a direct summand of A consisting of generators xqy, and x;y;, with a
horizontal arrow of length @ ( K) from the latter to the former. Hence, e( K#—J) = 1
and a1 (K# — J) = a,(K), as desired. O

Lemma 6.4. Ifa,(J) = a(K) and ar(J) > a,(K), then
171 > [K].

Proof. We again proceed using induction. We will show that e(J# — K) = 1 and
that

ai(J# = K) = a1(J),
ax(J# — K) = az(J),

from which we can conclude that
e(J#—nK)=1

foralln € N.

Let {x;} be a basis for CFK*(K) found using LLemma 6.2. Similarly, let {y;}
be such a basis for CFK®(J). We consider the knot J# — K and its knot Floer
complex. For ease of notation, let 7 = t(J# — K).

Let

A= Cimingi, j —7) = 0,i < ar(J)},
B=Clmin(i,j—7)=0,i =a;(JNU{i =ar(J),t —ax(J) < j < 1}}.
We claim that the element x; yo + x7 y1 generates H, (C{i = 0}), is zeroin H,(A4),

and is non-zero in H,(B). Indeed, there is a direct summand of B with the following
generators in the following (7, j)-positions:

xg¥o, x1y1  (0,7(J# — K)),
Xg V1 (ar (), t1(J#— K)),
X5 )2 (@1(J), t(J# = K) — a2 (),
X3V (0. 7(J# — K) + a2(K)),
and the following differentials:
Ixgy1) = Xg Yo + X y1 + X5 y2,
dx;y1) = x7y1.
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See Figure 5 (d). From this observation, the claim readily follows; that is,
e(J#—-K) =1,

a1(J# — K) = a;(J),
ax(J# — K) = ax(J),

as desired. O
®.X5 )1
ex;

x* o *

X0 @d——wX] Yoo e V] 1y1*.t:=-ox0y1
XoMo
x] o(—oxg
®Xo

"3 -w %

L) LRy

(a) (b) (c) (d)

Figure 5. Far left, a portion of the basis {x; } for CFK®°(K), followed by a portion of the basis
{x"} for CFK®°(K)™. Next, a portion of the basis {y;} for CFK°(J). TFar right, a direct
summand of the subquotient complex B.

Recall that an L-space is a rational homology sphere ¥ for which
tk HF(Y) = |H\(Y. Z)|.

We call a knot K C S? an L-space knot if there exists n € N such that n-surgery
on K yields an L-space. In [OS0S5], Theorem 1.2, Ozsvath and Szabé prove that if
K is an L-space knot, then the complex CFK*(K) has a particularly simple form
that can be deduced form the Alexander polynomial of K, Ag(f). (Note that the
results in [OS05] are stated in terms of HFK (K), but by considering gradings, they
are actually sufficient to determine the full CFK®°(K) complex.)

One consequence is that if K 1s an L-space knot, then the Alexander polynomial
of K has the form

k
Ag(t) = (1)1,
=0
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for some decreasing sequence of non-negative integers ngy > 1y > --- > ny with the
symmetry condition
ni +ng—; = 2g(K),

where we have normalized the Alexander polynomial to have a constant term and no
negative exponents. Note that k is always even since there are always an odd number
of terms in the Alexander polynomial.

Lemma 6.5. let K be an L-space knot with Alexander polynomial

k
Ag(t) =Y (—1)yem,
i=0

for some decreasing sequence of integers ng > ny > «++ > ny. Then

al(K) =Hgo—Hy,

a(K) =ny —ns.

Proof. Theorem 1.2 of [OS05] tells us that for K an L-space knot, HFK (K) is com-
pletely determined by Ak (¢). Moreover, up to filtered chain homotopy equivalence,
CFK®(K) is generated as a F[U, U ~!]-module by Fﬁ(K), where [ FK is the
homology of the associated graded object of CFK (K) = C{i = 0}. By considering
the gradings on the complex CFK*°(K), and the fact that the differential decreases
the Maslov grading by one, the lemma follows. L

Remark 6.6. More generally, it can be deduced from Theorem 1.2 in [OS05] that
there is a basis {xg, ... x; } for CFK*°(K) such that

ox; = xj—1 + x;41 fori odd,

dx; =0 otherwise,

where the arrow from x; to x;_; is horizontal of length n; — n;_;, and the arrow
from x; to x; 41 is vertical of length ;41 — n;. The complex looks like a “staircase”,
where the differences of the n; give the heights and widths of the steps. See Figure 6.

Recall that positive torus knots are I.-space knots since (pg =+ 1)-surgery on the
torus knot 7, ,, p,q > 1, results in a lens space.

Lemma 6.7. For p > 3, the Alexander polynomial of the torus knot Ty, 11 is

k
AT, (1) =D (=DM,
i=0
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X)eé—o X
Xpeé—ex]
v
X2 o0 X3
X2 o f———eoX3

@ o€ e X5

X4 X4 l
L 3
X5

(a) (b)

Figure 6. Left, the basis from Remark 6.6 for CFK®° of the torus knot 73 4 with Alexander
polynomial Az, ,(f) = 1® —#> 4+ 13 — ¢ + 1. Right, the basis for CFK®® of the torus knot

T4 5 with Alexander polynomial A7, (f) = 12 W 8 — 46 4 ¢4 —¢ 4 1. The lengths of
the differentials are given by the differences of the exponents of the Alexander polynomial.

for a decreasing sequence of integers ng > ny > -+ > ny with

ng = p* — p,
n=p*—p-—1,
n2=p2—2p,

ny=p*—2p—72.
In particular,

al(Tp.p+1) =1,

az(Tp’p_F]) = p s 1

Proof. Recall that
(P9 -1t - 1)
7 =T - 1)’

Following the proof of Proposition 6.1 in [HLR12], we see that

Ar, (1) =

et -1 = R
(t7 — (Pt —1) - Zt —I;I '

i=0
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Indeed, multiplying both sides by (17 — 1)(17+! — 1), we obtain two telescoping
sums on the right-hand side:

p—

1 p—2
(t? — 1)(Ert+! - 1)( DT Zt(p+1)i)
i=0

=0
— (IP+1 _ 1)(IP(P—1)+P — L 2 = 1)(I(P+1)(P—2)+P+1 —1)

2 2
S LR AR L A Ny |

= (PP _ ¢ - 1)

as desired.
The last statement now follows from Lemma 6.5. [l

Remark 6.8. For the torus knot 75 3, i.e., the case where p = 2, we easily see that

ai(Tr3) =1,
a(Tr3) =1,

since Az, (1) =12 —1 + L.

Remark 6.9. More generally, for the torusknot T, 4 1, the horizontal arrows increase
in length by one at each “step”, from 1 to p — 1, and the vertical arrows decrease in
length by one at each “step”, from p — 1 to 1. See Figure 6.

Lemma 6.10. The iterated torus knot T> 3.5 p+1, p = 2, is an L-space knot with
Alexander polynomial

k
AT2,3;p,p+1 (1) = Z(_l)i‘tni ,
=0

for a decreasing sequence of integers ng > ny > -+ > ny with

no = p* + p,
ny=p*+p—1,

n, = p2—1.
In particular,

al(T2,3;p,p+1) =1,
az(T2,3;p,p+1) = p-
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Proof. The fact that T 3. p 541 18 an L-space knot follows from Theorem 1.10 of
[Hed09] (cf. [Hom11]), where Hedden gives sufficient conditions for the cable of an
1.-space knot to again be an /.-space knot.

The form of the Alexander polynomial follows from the formula for the Alexander
polynomial of the cable of knot, i.e.,

AT2.3;p,p+1 (I) = A3'!'"2,3 (Ip) ) A’J-"Z.f.?,LL?-O-l (I)s
and Lemma 6.7. More precisely, for p = 3,
ATZ,S;p,p—H = (IZP —t? + 1)(l‘p2_p — )jpz_P_l 5 IPZ—ZP _ tp2—2p—2

+ lower order terms)

= (PP _ PP+l 4 P14 Jgwer order terms.
The case p = 2 follows easily from the fact that
ATy 4,,(0) =0 —P+P -1+ 1.

(]

Lemma 6.11. Ffor p > 2, m > p2 — p—1, and m # 1, the iterated torus knot
Ty p+1:2,2m+1 is an L-space knot with Alexander polynomial

k
ATy pitz2mi () = Z(—l)ll‘n‘i,
i=0

for a decreasing sequence of integers ng > ny > -+ > ny with
ng =2p%>—2p 4+ 2m,
no=2p*—2p+2m—1,
ny =2p* —4p +2m.

In particular,

al(TZ,S;p,p+1) =1,
a(T2 3:p.p+1) = 2p — L.

Proof. This iterated torus knot is an L-space knot by [Hed(09], Theorem 1.10. The
form of the Alexander polynomial follows from the following facts:

ATp,p-l-l;Z,Zm-O-l (I) = ATp,p+1 (12) ‘ AT2!2m+1 (I),

2m

AT2,2m+1 (‘t) = Z(_l)itia

i=0
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and Lemma 6.7. More precisely,

ATp,lzﬁ+1;2,2m—0—1 (‘t)

p—1 p—2 m m—1
_ (thpi _s2 Zt(2p+2)f)(ztzf _ Z jfzi+1)
i=0 i=0 i=0 i=0
p—2 p—3 m m—1
_ (I2p2_2p _ j2p%-2p—2 n Zt2pi _ 42 Zt(2p+2)i)(ztzi _ Z tzf+1)
i=0 i=0 i=0 i=0

2. 2 2 - 2L o s
::2P 2p+2m_12p 2p 2_12p 2p+2m 1_|_12p 2p—1

P2 p—3 m m—1
n (lepx _ 42 Zl(zpﬂ)a)(zlza _ Z tzx+1)
i=0 i=0 i=0 i=0

2. 2_ 55— 2. _ I
::2P 2p+2m_12p 2p 2_12p 2p+2m 1_|_12p 2p—1

2_
+ (IZP 4p+2m 4 |ower order terms)

3. 2. o 2_
— (2P772pH2m _ 2p7=2p+2m—1 | [ 2p7—4pH2m | |Gwer order terms,

where the last equality follows from the hypothesis that m > p. U

Recall that D denotes the (positive, untwisted) Whitehead double of the right-
handed trefoil.

Lemma 6.12. As elements of the group ¥,
[D] = [T2.5].

Proof. In [Hed()7], Theorem 1.2, Hedden determines the Z-filtered chain homotopy
type of CFK of the Whitchead double of K in terms of CFK (K). We can use this
result to determine CFK (D), from which we will deduce the class | D] using rank
and grading considerations.

Using Hedden’s result, we see that

2 2 LR
o IET(30) 6W(—;)’ j=1
CFK(D,j) =~ {F}  @®FL,. =0

IF(2—2) b F(2—3)’ Jj=-1

where the subscript denotes the Maslov, or homological, grading, and j denotes the
Alexander grading. Moreover, Hedden proves that every non-trivial differential on
this complex lowers the Alexander grading by exactly one, which is sufficient to
completely determine the Z-filtered chain homotopy type of CFK (D). Note that
(D) = 1.
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Let x be a generator of ﬁ(S3) >~ H,(C{i = 0}). Note that x necessarily is
positioned at (0, 1) in the (7, j)-plane. Then [x] must be zero in H.(C{j = 1})
since the homology of C{j = 1} is supported in i-coordinate 2. By considering
the support of CFK (D), we see that x is in the kernel of 3", so in order to vanish
in H,(C{j = 1}), it must be in the image of ahorz_ i e.. there exists a class, say vy,
positioned at (1, 1), such that

ahorzy - x.

The class [y] is equal to zero in H4(C{i = 1}) since the homology of C{i = 1}
is supported in j-coordinate 2. But y cannot be in the image of the differential on
C{i = 1}, since 3> = 0, where 9 is the differential on CFK®°, and 8"7?y =£ 0.
Hence, the boundary of y in C{i = 1} must be non-zero; denote this boundary by z.
Notice that z has (i, j )-coordinates (1, 0).

Again, for 3% = 0 reasons, the boundary of z in C{j = 0} must be zero, and by
grading considerations, z is not in the image of the differential on C{j = 0}.

The complex CFK®(—T5 3) is generated over F[U, U~!] by

a, b, c,
with the differential

da = b,

dc = b,

where the generators are have the following (i, j)-coordinates:

a (0,1),
b (0,0),
¢ (1,0).

Then in the tensor product
CFKOO(_TZ”_),) ®IF[U,U_]‘] CFKOO(D)

the generator
az+ by +cx

is non-trivial in both vertical and horizontal homology. Indeed, it is clearly in the
kernel of the vertical differential, and cannot be in the image of the vertical differential,
since cx does not appear in the vertical boundary of any element. Similarly, it is in
the kernel but not the image of the horizontal differential.
Thus,
E(CFKOO(— T2’3) ®IF'[U,U_1] CFKOO(D)) = O,

as desired. O



Vol. 89 (2014) The knot Floer complex and the smooth concordance group 567

We are now ready to prove Proposition 4.8, showing that we have the following
relations in ¥, where 0 < p < g:

* [Tp.p+1] € [Tgq+1],

* [Dpp1l €[ Dy g4l

* [T p+1] < [Dp,p+1l

* [Tpp122me1] € [Tggt+1:2,2mt1], form > g> —q — 1.

Proof of Proposition 4.8. The proposition is now an easy consequence of the preced-
ing lemmas. We have from Lemma 6.7 that

al(Tp,p+1) =1,
az(Tp’p_F]) = p = 1

Now Lemma 6.4 states thatif a1 (J) = a1(K)and a»(J) < a2(K),then [J] « [K],
implying that
[Tp,p+1] € [Tgq+1].

which proves the first assertion in the proposition.
From Lemma 6.12, we have that

[P] = [T2.5].
and from Proposition 5.1 that

[[Dp.p+lﬂ = [[T2,3;p,p+1]]-

Hence by Lemmas 6.1 and 6.10,

al(Dp,p+1) =1,
az(Dp,pﬂ) =P

so by Lemma 6.4,

[Dp.p+1] € [Dgg+1] and [Ty pi1] < [Dp,p+1]-

Finally, by Lemma 6.11, we have that

ar(Tp,p+132,2m+1) = L,
ax(Tp pr1:2,2m+1) =2p — 1,

forp>=2,m=>p?>—p—1,m#1,and so
[[Tp.p+1;2,2m+1]] £ HTqaq+1;2,2m+1ﬂ-

This completes the proof of the proposition. (]



568 J. Hom CMH

We conclude this paper by showing that our examples, { D, ,11#—T, 541}p>2, 01
smoothly independent, topologically slice knots are smoothly independent from the
examples of Endo [End95] and Hedden—Kirk [HK12]. Recall that Endo’s examples

are pretzel knots of the form
Ki=K(-2r—1,4r+1,4r4+3), =1

In particular, they are of genus one. The examples of Hedden—Kirk are (positive,
untwisted) Whitehead doubles of certain torus knots.

Proposition 6.13. If K is a knot of genus one and e(K) = 1, then either
a(K)#1 or a1(K)=a(K)=1.

Proof. Notice that the assumption that £( K') = 1 does not cause any loss of generality,
since e(—K) = —&(K).

Assume that @1(K) = 1. We first notice that if K is a knot of genus one and
e(K) = 1, then t(K) # —1. This follows from the adjunction inequality for knot
Floer homology [OS04], Theorem 5.1, and the basis from Lemma 6.2

Now, supposea1(K) = land t(K) = 0. Using the adjunction inequality [OS04],
Theorem 5.1, and a basis found using the first part of Lemma 6.2, we see that the
basis element x| must be in the kernel of the differential on C{i = 1}. Moreover,
for 3 = 0 reasons, it cannot be in the image of the differential on C{i = 1}. But
|x1] cannot be zero in H,(C{i = 1}, because t(K) = 0 implies that 7, (C{i = 1})
is supported in (i, j)-coordinate (1, 1).

Hence, we may assume that ¢;(K) = 1 and 7(K) = 1, in which case the
arguments in the proof of Lemma 6.12 lead us to the desired result. L

In the proof of Proposition 4.8, we showed that

al(Dp,p+1# - Tp,p+1) =1,
ax(Dp pr1#—Tp pt1) = p.

Hence, by Proposition 6.13, along with LLemmas 6.3 and 6.4, it follows that when
p > 1, our examples are independent from those of Endo and Hedden—Kirk.

The following proposition describes the subgroup of ¥ generated by Whitehead
doubles:

Proposition 6.14. Whitehead doubles are contained in the rank one subgroup of ¥
generated by the right-handed trefoil.

Proof. The argument in Lemma 6.12 can be used to show that for a Whitehead double
WD with e(WD) = 1, the class [WD]| = [T2.3] in . This is sufficient for the
result, since e(W D) = —1 implies that e(—WD) = 1, and (WD) = ( implies that
[WD] = 0. O
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