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The knot Floer complex and the smooth concordance group

Jennifer Horn

Abstract. We dehne a new smooth concordance homomorphism based on the knot Floer complex

and an associated concordance invariant s. As an application, we show that an infinite
family of topologically slice knots are independent in the smooth concordance group.
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1. Introduction

The set of isotopy classes of knots in F3, under the Operation of connected sum,
forms a monoid. Two knots are concordant if they cobound a smooth, properly
embedded cylinder in S3 x [0,1]. The monoid of knots, modulo concordance, forms
the concordance group, denoted C. If we loosen the conditions and only require that
the cylinder be locally Hat, rather than smooth, we obtain the topological concordance

group. Understanding the difference between these two groups sheds some light on
the distinction between the smooth and topological categories.

Ozsväth and Szabö [OSCH], and independently Rasmussen [Ras03], defined an

invariant, knot Floer homology, associated to a knot in S3. This invariant comes in

many different flavors, the most robust being CFK00(K), a Z-filtered chain complex
over the ring F[C7, C/_1], where F Z/2Z and U is a formal variable. There is

a second filtration induced by —(C/-exponent) allowing us to view CFK°°{K) as a

Z 0 Z-filtered chain complex. The filtered chain homotopy type of this complex
is an invariant of the knot K. The weaker invariant, CFK(K), takes the form of a

Z-filtered chain complex over F, and is obtained by taking the degree zero part of
the associated graded object with respect to one of the filtrations.

Within the complex CFK(K) lives a Z-valued concordance invariant, r(K),
defined by Ozsväth and Szabö in [OS03b]. The total homology of CFK(K) has rank

one, and r measures the minimum filtration level where this homology is supported.
The invariant r gives a surjective homomorphism from the smooth concordance group
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C to the integers:

r: C -+Z,
which gives a new proof of the Milnor conjecture [OS03b] and is strong enough to
obstruct topologically slice knots from being smoothly slice (for example, [Liv04]).

Often, we would like to be able to show that a collection of n knots is linearly
independent, that is, that they freely generate a subgroup of rank n in C. One way to
accomplish this is to dehne a concordance homomorphism whose domain has rank
at least n, and to show that the image of this collection of knots has span equal to n.
Thus, the Z-valued concordance homomorphism r is not sufhcient for this type of
result.

We turn to the more robust invariant CFK°°(K). In [Homl4], we dehned a

{—1,0, l}-valued concordance invariant, s(K). The invariant s is associated to the
Z 0 Z filternd chain complex CFK00 in a manner similar to how r is associated to the

Z-hltered chain complex CFK\ that is, we ask when certain natural maps vanish on

homology. We will sometimes write e(CFK°°(K)), rather than e(K), to emphasize
that s is an invariant associated to the knot Floer complex of K.

The goal of this paper is to use s to dehne a new concordance homomorphism
that is strong enough to detect linear independence in C. The main idea is to turn the

monoid of chain complexes CFK°°{K) (under tensor product) into a group, which
we will denote F, in much the same way that the monoid of knots (under connected

sum) can be made into the group C by quotienting by slice knots.

Let CFK°°(K)* denote the dual of CFK°°(K); see Section 2 for the precise
dehnition of the dual complex.

Definition 1. Dehne the group F to be

F({ CFK°°(K)| K C 0)/
where

CFK°°(Ki)~ CFK°°(K2)s(C0CFK°°(K2)*) 0.

Theorem 2. The map
C -+ F,

sending a class in C represented by K to the class in F represented by CFK°°(K)
is a group homomorphism.

This group F has the advantage that it can be studied from an algebraic
perspective, much like the algebraic concordance group dehned by Levine [Lev69a],
[Lev69b] in terms of the Seifert form. However, Levine's homomorphism factors

through the topological concordance group, while ours does not.
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One algebraic feature of F is that it is totally ordered, with an additional well-
defined notion of domination,"<^"; see Definition 4.1 and Proposition 4.2. Moreover,
we can use the relation to define a filtration on 3? that can be used to show linear
independence of certain classes. Let 0 denote the identify of the group F, i.e.,

[CFK00 (unknot)]. Given a chain

0 < [CFK°°(Ki)] « [CFK°°(K2)] « « [CFK°°(Kn)l

it follows that the collection

{[CFK°°(Ki)]}ni=1

is linearly independent in F, and hence

!»)!"„
is independent in C. (It is also possible to use spectral sequences to define a second,

independent filtration on the group F.) One consequence of this filtration is that F
contains a subgroup isomorphic to Z°°; see Theorem 3 below. We will use this rieh
structure on F to better understand C.

Let Tp^q denote the (/?, g)-torus knot, Kp^q the (/?, g)-cable of K (where p denotes

the longitudinal winding and q denotes the meridional winding), and D the (positive,
untwisted) Whitehead double of the right-handed trefoil. We write Tm^n;p^q to denote
the (p, g)-cable of the torus knot. Let — K denote the reverse of the mirror
image of K, that is, the inverse of K in C.

Theorem 3. The topologically slice knots

Dp,p+i# — Tp^p-|_i, p > 1,

are independent in the smooth concordance group; that is, they freely generate a

subgroup of infinite rank.

The first example of an infinite family of smoothly independent, topologically
slice knots was given by Endo [End95]. His examples consist of certain pretzel
knots. More recently, Hedden and Kirk [HK12] showed that an infinite family of
(untwisted) Whitehead doubles of certain torus knots are smoothly independent. The
structure of F shows that our examples (when p > 1) are smoothly independent
from both of these earlier families.

Let P (K) denote the satellite of K with pattern P; that is, P is a knot in S1 x D2,
which we then glue into the (zero framed) knot complement S3 — nbd K to obtain
the knot P{K) C S3. Recall that the map P(—): C C given by

[K\ » [P(K)]

is well defined, by "following" the concordance along the satellite.
We obtain a similar well-defined map on F:
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Proposition 4. The map P (—): 3? -> F given by

[CFK°°(K)\ i-> [CFK°°(P(K))]

is well defined.

By composing P with r, we obtain a new concordance invariant

tp(K) T(P(K)),

since K\ being concordant to K2 implies that P{K\) is concordant to P{K2). In the

following theorem, we relate this to [CFK°°(K)\.

Theorem 5. [CFK°°{Ki)] [CFK°°{K2)\ if and only if xP{Kx) xP{K2)for
all patterns Pc^x D2.

Recall that r is associated to the weaker, Z-filtered chain complex CFK. The
above theorem says that knowing information about a weaker invariant, namely r, of
satellites of K teils us information about the stronger invariant, CFK00, of the knot
itself.

Does the map P (—): C -> C always take linearly independent collections of
knots to linearly independent collections of knots? We address this question for
cables in the following theorem:

Theorem 6. For each ngN, there exists a collection of linearly independent knots

{K'}U
such thatfor m > n1 — n — 1,

{*2,2m+ lKU
is a collection of linearly independent knots in C.

This result should be compared to the work of Hedden and Kirk [HK12], where

they use instantons to prove that the Whitehead doubles of (2, 2n + l)-torus knots

are linearly independent.
Central to the definition of F is the concordance invariant e, which exhibits the

following properties:

• If ÄT is smoothly slice, then e(K) 0.

• If^OT) 0, then x{K) 0.

• There exist knots K with x{K) 0 but s{K) ^ 0; that is, s is strictly stronger
than x at obstructing sliceness.
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• s{-K) -s{K).

• If^CT) e{K'),i\\zne{K#K') e(K). If6r(ÄT) 0,theng^#^) e(K').

These facts are proved in [Homl4]; we give sketches of their proofs in Section 3.

Notice that since e(K) 0 implies that r (K) 0, the map

r: e

factors through F.

Organization. We begin by recounting the necessary definitions and properties of
the complex CFK00 (Section 2) and the concordance invariant s (Section 3). With
these definitions in place, we proceed to define the group F, describe its various

algebraic properties, and give examples (Section 4). We study satellites in Section 5.

We conclude with the algebraic details in Section 6.

We work with coefficients in F Z /2Z throughout.

Acknowledgements. I would like to thank Paul Melvin, Chuck Livingston, Matt
Hedden, Rumen Zarev, Robert Lipshitz, Peter Ozsväth, and Dylan Thurston for help-
ful conversations, and Peter Horn for his comments on an earlier version of this

paper.

2. The knot Floer complex CFK 00

To a knot K C *S3, Ozsväth and Szabö [OSCH], and independently Rasmussen

[Ras03], associate CFK°°{K), a Z-filtered chain complex over F[C/, C/_1], whose
filtered chain homotopy type is an invariant of K. The complex CFK00 can be
considered as a Z 0 Z-filtered chain complex, with the second filtration induced

by — (C/-exponent). The ordering on Z 0 Z is given by (7, j) < (i', jf) if i < V

and j < j'. We assume the reader is familiar with this invariant, and the various

related flavors, CFK~(K) and CFK{K)\ for an expository introduction to these in-
variants, see [OS06]. The knot K is specified by a doubly pointed Heegaard diagram,
(E, a, ß, w, z), and the generators (over F[C7, C/-1]) of CFK°°(K) are the usual g-
tuples of intersection points between the a- and /3-circles, where g is the genus of £
and each a-circle and each /3-circle is used exactly once. The differential is defined
as

dx= J2 £/"-w • y.
ye<5(M) 0G7T2(x,y)

ind(0)=l

This complex is endowed with a homological Z-grading, called the Maslov grad-
ing M, as well as a Z-filtration, called the Alexanderfiltration A. The relative Maslov
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and Alexander gradings are defined as

M(x) - M(y) ind(0) - 2nw(<fi) and A(x) - A(y) nz(<fi) - nw(<fi),

for cj) e 7t2(x,y). The differential, 3, decreases the Maslov grading by one, and

respects the Alexander filtration; that is,

Af(3x) M(x) — 1 and A(dx) < A{x).

Multiplication by U shifts the Maslov grading and the Alexander filtration as follows:

M(U - x) M(x) - 2 and A(U • x) A(x) - 1.

It is often convenient to view this complex in the (7, j)-plane, where the i-axis
represents — (C/-exponent) and the j -axis represents the Alexander filtration. The
Maslov grading is suppressed from this picture. We place a generator x at Position

(0, A(x)); more generally, an element of the form Ul • x will have coordinates

(—i, A{x) — i).
Given S cZ0Z,letC{iS} denote the set of elements in the plane whose (7, j)-

coordinates are in S together with the arrows between them. The complex CFK~ (K)
is the subcomplex C{i < 0}, that is, the left half-plane. The complex CFK(K) is

the subquotient complex C{i 0}.
A basis {x;} for a filtered chain complex (C, 3) is called a filtered basis if the set

{x/ | Xi e C {iS}} is a basis for C {£} for all filtered subcomplexes C {£} c C. Given
a filtered basis for CFK00, we may visualize the differential by placing an arrow from
a generator x to a generator y if y appears in 3x. The differential points non-strictly
to the left and down. Often, it will be convenient to consider only the part of the
differential that preserves the Alexander grading, i.e., the horizontal arrows. We will
denote this by 3horz. Similarly, we will use 3vert to denote the part of the differential
that preserves the filtration by powers of U, i.e., the vertical arrows.

The integer-valued smooth concordance invariant r (K) is defined in [OS03b] to
be

r(K) min{s | i: C{i =0,7 < s} C{i 0}

induces a non-trivial map on homology},

where i is the natural inclusion of chain complexes. Alternatively, r (K) may be

defined in terms of the U-action on HFK~{K), as in Appendix A of [OST08]:

r(K) —max{s | there is [x] e HFK~(K,s) such that Ud[x\ ^ 0 for all d > 0},

where HFK~(K,s) H*{C{i < 0,y s}).
The complex CFK°°(K) satisfies certain symmetry and rank properties [OS04],

Section 3. The complex obtained by interchanging the roles of i and j is filtered
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chain homotopic to the original. Also, the rank of the homology of any column or
row is one; more generally, modulo grading shifts, any column or row is filtered chain

homotopic to CFK(K).
By Theorem 7.1 of [OS04], we have the filtered chain homotopy equivalence

CFK00(K1#K2) ~ CFK00(Ki) <8>mtr-i] CFK°°(K2).

Let — K denote the reverse of the mirror image of K. The knot Floer complex is not
sensitive to changes in orientation of the knot, but it is sensitive to changes in the

orientation of the ambient manifold [OS04], Section 3.5. In particular,

CFK°°(—K) ~ CFK°°(K)*,

where CFK°°(K)* denotes the dual of CFK°°(K), i.e.,

In order to depict the complex CFK°°(K)* in the (7, j)-plane, we take the complex
CFK°°(K) and reverse the direction of all of the arrows as well as the direction of
both of the filtrations. (In practice, we can accomplish this by reversing the direction
of all of the arrows and then turning our heads upside down.)

We point out that when we write CFK°°(K), we are really denoting an equivalence

class of filtered chain complexes. We may always choose as our representative
the Ei page of the spectral sequence associated to one of these complexes, that is,
the homology of the associated graded object together with the induced differentials.
In other words, we may choose our representative to be reduced, in the sense that any
differential strictly lowers the filtration (in at least one direction).

3. The invariant e

The invariant s can be defined in terms of the (non-) vanishing of certain cobordism

maps, which, using the relation between large surgery and knot Floer homology
([OS04], Theorems 4.1 and 4.4) has an algebraic Interpretation in terms of the filtered
chain complex CFK°°(K).

Let N be a sufficiently large integer. (It turns out that N > 2g(K) will suffice;
see [OS08], Theorem 1.1, and [OS04], Theorem 5.1.) We consider the map

Fs: HF(S3)^HF(S3_n(K),[s]),

induced by the 2-handle cobordism, W*N. As usual, [s] denotes the restriction to
(K) of the Spinc structure &s over W*N with the property that

(Cl(zs),[F]) + N 2s,
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where |s| < y and F denotes the capped off Seifert surface in the four manifold.
We also consider the map

Gs: HF(S3N(K),[s]) ^ HF(

induced by the 2-handle cobordism, — that is, the cobordism turned "upside
down" and with its orientation reversed.

The maps Fs and Gs can be defined algebraically by studying certain natural maps
on subquotient complexes of CFK°°(K), as in [OS04]. The map Fs is induced by
the chain map

C{i 0} -> C{min(7, j — s) 0}

consisting of quotienting by C{i 0, j < j?}, followed by inclusion. Similarly, the

map Gs is induced by the chain map

C{max (7, j — s) 0} -> C{i 0}

consisting of quotienting by C {i < 0, j j?}, followed by inclusion.

(a) (b) (c)

Figure 1. Left, the subquotient complex C{i 0}. Center, the subquotient complex C{i
0,j < s}. Right, the subquotient complex C{max (i, j — s) =0}.

For ease of notation, we will often write simply r for r (K) when the meaning is

clear from context. Notice that for s > r, Fs is trivial, since quotienting C{i 0}
by C{i 0, j < x} will induce the trivial map, as the homology of C{i 0} is

supported in filtration level r.
For s < r, Fs is non-trivial, since any generator of //* (C {i 0}) will still be in

the kernel, but not the image, of the differential on C {min(7, j — s) 0}.
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The map Fx may be trivial or non-trivial, depending on whether the class rep-
resenting a generator of H*{C{i 0}) lies in the image of the differential on
C{min(7, j — r) 0} or not.

The maps Gx behaves similarly. For s > r, the map Gs is non-trivial, and for
s < r, Gs is trivial. The map Gx will be non-trivial if the class representing a generator
of //* (C {i 0}) lies in the kernel of the differential on C {max (7, j — s) 0}, and

trivial otherwise.
Because C{j r} is a chain complex, and so 32 0, it follows that Fs and

Gs cannot both be trivial; that is, a class cannot lie in the image but not in the kernel
of the differential. (This is made precise in [Horn14].) Therefore, there are three

possibilities for Fx and Gx: either exactly one vanishes, or neither vanishes.

Definition 3.1. The invariant s is defined in terms of Fx and Gx as follows:

• e(K) 1 if and only if Fx is trivial (in which case Gx is necessarily non-trivial).

• s(K) — 1 if and only if Gx is trivial (in which case Fx is necessarily
nontrivial).

• e(K) 0 if and only if both Fx and Gx are non-trivial.

Let [x] be a generator of H*(C{i 0}), the so-called "vertical" homology. In
light of the preceding discussion, the definition of s corresponds to viewing [x] as a

class in the "horizontal" complex C{j r} as follows:

• s(K) 1 if and only if [x] is in the image of horizontal differential.

• s(K) — 1 if and only if [x] is not in the kernel of the horizontal differential.

• s(K) 0 if and only if [x] is in the kernel but not the image of the horizontal
differential.

Notice that s is an invariant of the filternd chain homotopy type of CFK00; at times,
to emphasize this point, we will write s(CFK°°(K)) rather than simply e(K).

This idea of associating numerical invariants to filternd chain complexes is common;

for example, to any Z-filtered chain complex whose total homology has rank

one, we can define an integer-valued invariant that measures the minimum filtration
level at which this homology is supported, e.g., t(K), which is an invariant of the

Z-filtered chain homotopy type of CFK(K).
Similarly, to any Z 0 Z-filtered chain complex whose "vertical" homology has

rank one, we can define a {—1,0, l}-valued invariant that measures how this class

appears in the "horizontal" complex, i.e., in the image of the horizontal differential,
in the kernel but not the image, or not in the kernel, respectively. In particular,
when s(K) 0, then CFK°°(K) is filtered chain homotopic to a complex with
a distinguished generator that is non-trivial in both the vertical and the horizontal
homology.
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Proposition 3.2 ([Horn14]). Thefollowing are properties ofs{K):
(1) IfK is smoothly slice, then e(K) 0.

(2) Ifs(K) 0, then x{K) 0.

(3) e(-K) -e(K).

(4) (a) Ife(K) e(K'), then s(K#K') e(K) e(K').

(b) Ife(K) 0, then s(K#K') e(K').

For completeness, we sketch the proof below.

Sketch ofproof. To prove (1), we consider the d-invariants of large surgery along K.
If K is slice, then the surgery correction terms defined in [OS03a] vanish, i.e., agree
with the surgery correction terms of the unknot, and the maps

HF(S3N(K),[0])-» HF(S3)and-* [0])

are non-trivial. Indeed, the surgery corrections terms can be defined in terms of the

maps
HF + (S3)^ HF+(S3_n(K),[s])

and we have the commutative diagram

HF(S3) HF(S3_n(K), [*])

l is

HF+(S3)— HF+(S3_n(K), [*]).

Let N 0. If the surgery corrections terms vanish (that is, agree with those of
the unknot), then F+ is an injection [Ras04], Section 2.2, and so the composition
l o Ft+ is non-trivial. By commutativity of the diagram, it follows that Fx must be

non-trivial. A similar diagram in the case of large positive surgery shows that Gx

must be non-trivial as well. Hence e(K) 0.

The proof of (2) follows from the fact that if s(K) 0, then there is a class x in
CFK00 (K) which generates both //* (C {i 0}) and //* (C {j 0}). In the former
complex, x has Alexander grading A(x), and in the latter, viewed as a Z-filtered
complex, x has filtration level —A(x). Hence r(K) —r(K) 0.

The proof of (3) follows from the symmetry properties of the knot Floer complex
[OSCH], Section 3.5; in particular, we have the filtered chain homotopy equivalence

CFK°°(-K) - CFK°°(K)*.
To prove the first part of (4): if [x] and [xr] are generators of Fl*{CFK{K))

and Fl*{CFK{Kr)), respectively, then [x (8) x'] is a generator of H^(CFK(K#K')).
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(Here, we are identifying CFK with C{i 0}.) Suppose s(K) e(K') 1. Then
both [x] and [xf] are both in the image of the horizontal differential, and hence [x (g) x']
is also. The other cases follow similarly.

Notice that Proposition 3.2 implies that s is a concordance invariant. If K and K'
are concordant, then e(K# — K') 0, in which case e(K) —s{—K') by (4), or
s{K) e(K').

Note that we have the following subgroup of C:

{[X] I s(K) 0}ce.
This subgroup will appear again in the next section.

4. The group 3*

In this section, we dehne the group 3r as well as some of its algebraic structure.
We will give examples of knots that demonstrate the richness of this structure. In
particular, we give an infinite family of topologically slice knots that are linearly
independent in 3r, and hence also in the smooth concordance group C, as needed for
the proof of Theorem 3.

4.1. Definition of the group 3?. We dehne the group 3r as

F({ CFK°°(K)I K c S3},®)/

where

CFK°°(Ki)~CFK°°(K2) e(CFK°°(Ki) 0 0,

CFK°°(K)* denotes the dual of CFK°°(K), and the tensor product is over
F [U, U~1]. We have the well-defined group homomorphism

- F,

given by
[K\ ^ [(CFK°°(K)].

Theorem 2, including well-dehnedness, follows from the following facts (the hrst
two from Section 3.5 of [OS04] and the last from Proposition 3.2):

• CFK°°(-K) ^ CFK°°(Ky.
• CFK00(K1#K2)~CFK00(K1)®CFK00(K2).
• If ÄT is smoothly slice, then s(CFK°°(K)) 0.
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Notice that F is isomorphic to the quotient

•F */m I s(K) 0}.

For ease of notation, from now on, we will write

IK\
to denote [CFK°°{K)\, and, when convenient, we will write

M + |[Ä:21

to denote the Operation on the group, which can be thought of as either [CFK00
CFK°°(K2)] or [CFK°°(Ki#K2)]. Note that -{Kj {-K}. We denote the

identity of F, [unknot], by 0.

The group F has a rieh algebraic structure: it has a total ordering, and a

relation that satisfies the certain properties (e.g., Lemma 4.3) and induces a filtration
on the group. This algebraic structure on F will in turn be useful in understanding
the structure of the smooth concordance group *.

Proposition 4.1. The group F is totally ordered, with the ordering given by

M > IK2J ^8(K1#-K2) 1.

Proofi We may think of e(K) as the "sign" of |W], and then the order relation between

any two classes is determined by the sign of their difference.
This relation is clearly transitive, since given

[*!] > [*2] and Itf2] > I*3],
it follows that

[*!] > [*3].
Indeed,

e(Ki# - K3) e(Ki# - K2#K2# - K3)

1,

by (4) of Proposition 3.2 since s(Ki# — K2) 1 and s(K2# — K3) 1.

This relation is also translation invariant. Given

[*!] > [*2],
it follows that

[*!] + [*3] > 1*2] + 1*3],
since

£(*i#*3# - *3# - K2) e(*i# - K2)
1.
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Totally ordered groups give rise to many natural algebraic constructions, which
we will utilize below. For example, we have a notion of absolute value; that is, given
an element |W], either |W] or — |W] is greater than the identity, so we dehne the
absolute value as

|M|= IM if£(X) > 0,

|—[^] otherwise.

A natural question to ask is: Do there exist knots K\ and K2 with &{K\)
s{K2) 1 (i.e., they are both "positive" with respect to the ordering), and

[^i] > n\K2\ for all n e N?

The answer, it turns out, is yes, motivating the following dehnition:

Definition 4.2. The class |^i] dominates \K2\, denoted

[^] » {K2l

if [^1] > n\K2\ > 0 for all n e N.

Transitivity of follows exactly as for the total ordering. We have the following
lemma, showing a useful property that the relation satisfies:

Lemma 4.3. If
and M » [tf3]

then

[tfj] » [*2] + [*3].

Proofi To see that this is true, we proceed by contradiction. Assume there exists

n e N such that

M <«([x2] + [x3]).
Then 21*!] < 2n([*2] + [*3]), i.e.,

[*!]-2n[*2]+ [*!]-2n[*3] <0.

But [^i] — > 0 and I^il — mI^3l > 0 for all m e N, giving us the desired
contradiction.

Remark 4.4. These ideas could alternatively be phrased in terms of Archimedean
equivalence classes. Recall that two elements a and b of a totally ordered group are
Archimedean equivalent if there exist natural numbers M and N such that M • \a\ > \b\
and N • \b\ > \a\. Then we say that a^>bifa>b>0, and a and b are not
Archimedean equivalent. Note that the set of Archimedean equivalence classes is

naturally totally ordered, and this ordering corresponds to the relation.
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Definition 4.5. Let 3rK denote the collection of elements

PK m i \m\«njqi}.
Proposition 4.6. 3*k is a subgroup of 3r.

Proofi If [/] is in Pk, then —1/| clearly is as well. Given [/i] and lJ2} in Pk, is
follows immediately that [/1] + [/2I is also in 5^, by Lemma 4.3.

Notice that given a sequence of knots K\, K2,..., Kn satisfying

[*!] » [*2] » -• » [*„],
we obtain a filtration

^Ki ^ ^K2 3 • • • D ^Kn -

Lemma 4.7. [^2] l_KnJ > 0, then the knots

Ku K2,...,Kn

are linearly independent in 3* and hence in *; that is, they generate a subgroup of
rank n in both 37 and C.

Proof By Lemma 4.3, for any positive integer m, m[Äi] dominates any linear
combination of l_K2J,..., l_KnJ, and thus cannot be expressed as a linear com-
bination of these classes. Similarly, m[^] dominates any linear combination of
lKi +1l...,lKnlfori <n.

4.2. Examples. We now give examples of families of knots that can be shown to
independent in

Proposition 4.8. Let 0 < p < q. Then we have thefollowing relations in the group
F:
(1) IWil « [7W1],
(2) [^/7,/7+ lJ ^ +

(3) [^/7,/7 + lJ ^ +

(4) lTp,p + l;2,2m + l} ^ lTq,q + l;2,2m + l}> m > q2 — q — 1.

We will prove this proposition at the end of Section 6.

Remark 4.9. A straightforward consequence of (2) and (3) of the preceding proposition

is the relation

\Dp,p + \# — Tp,p +1] l_33q,q + l# — Tq,q +1]-
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We are now ready to prove Theorem 3; that is, we will show that the knots

DPiP+\#-TPiP+i, p> 1,

are smoothly independent while being topologically slice.

Proofof Theorem 3. Recall that D is the (positive, untwisted) Whitehead double of
the right-handed trefoil. The Alexander polynomial of D is equal to one, and so by
Freedman [Fre82], it follows that D is topologically slice. Hence, the (p, p + 1)-
cable of Z), Dp^p+1, is topologically concordantto the (p, p-\- l)-cable of the unknot,
i.e., the torus knot TPiP+i. Thus, DPiP+1# — Tp^p+\ is topologically slice.

It follows from Lemma 4.7 and Remark 4.9 that the knots

DPiP+\#-TPiP+i, p> 1,

are linearly independent in 3r, and hence also in C.

Proofof Theorem 6. We need to find a collection of linearly independent knots

{K1}f=1 such that the collection {^2,2m+i)f=i a^so linearly independent for suf-

ficiently large m.
LetKl 7/5; + i,andconsiderthe(2,2m + l)-cableofZf\wherem > n2—n — 1.

By Lemma 4.7 and Proposition 4.8, it follows that the collection

{K'}U
is linearly independent in 3ri hence also in <£. Again, by Lemma 4.7 and Proposition

4.8, the collection

{Ki,2m + !>?=!,

is also linearly independent in 3? and thus in C.

5. Satellites and 3?

Recall that P(K) denotes the satellite of K with pattern P\ that is, P is a knot in
S1 x Z)2, which we then glue into the (zero framed) knot complement S3 — nbd K.
The map P (—): C —C given by

[K\ » [P(K)]

is well defined, by "following" the concordance along the satellite. We will show
that an analogous result holds for the group 3?; this is a restatement of Proposition 4

from the Introduction.
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Proposition 5.1. The map P{—): 3? -> F given by

M ^ lP(K)j

is well defined.

The following theorem from [Homl4] gives a formula for x(Kp^q) in terms of
x(K), e(K), p, and q\

Theorem 5.2 ([Horn14]). Let K C S3, and let p, q be relatively prime integers with

p > 0. Then the behavior ofx(Kp^q) is completely determined by p, q, x (K), and

s(K). More precisely:

(1) Ifs(K) 1, thenx{Kp,q) px(K)+

(2) Ifs(K) -1, then x(Kp,q)px(K)+
Q—l)(ff+l) jC Q

(3) Ifs(K) 0, then x(K) 0andx(Kp,q) t(Tp,q) l ^ > Q

We see that knowing x(K2,i) and x(K2~i) is sufficient to determine s{K). More
precisely:

• If r(X2,i) is odd, then e{K) —1.

• If x(K2-\) is odd, then e(K) 1.

• If r(X2,i) t(K2-\) 0, then e{K) 0.

The proof of Proposition 5.1 will rely on this Observation.

The proof will also rely on facts from bordered Heegaard Floer homology, as

defined by Lipshitz, Ozsväth and Thurston [LOT08]. We will need only a special
case of the formal properties of these invariants, which we recount here.

To a framed knot complement Yk, we associate a left differential graded module

CFD{Yk), whose homotopy equivalence class is an invariant of the framed knot
complement [LOT08], Theorem 1.1. Furthermore, the homotopy equivalence class

is completely determined by the complex CFK°°(K) and the framing n [LOT08],
Theorem 11.27 and A. 11. For our purposes here, it will be sufficient to let Yk be the

zero framed knot complement. In [Homl4], it is shown that if s{K) 0, then

CFD(Yj#k) - CFD(Yj) © A,

for some left differential graded module A which depends on CFK°°(K).
To a knot P in S1 x Z)2, we associate a right «Aoo-module CFA~(S1 x D2, P).

Let gCFK~(K) denote the associated graded complex of CFK~(K), i.e., ®sC{i <
0,y' s}. Notice that HFK~(K) ^ F[*(gCFK~(K)). Then the pairing theorem
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for bordered Heegaard Floer homology ([LOT08], Theorem 11.21) states that we
have the following graded chain homotopy equivalence:

gCFK~(S3,P(K))~ CFA~(Slx)0
where we choose the zero framing for the knot complement Yk, and where (8) denotes

the cAoo-tensor product, a generalization of the derived tensor product. In particular,
(§> respects summands.

ProofofProposition 5.1. Assume e(K# — J) 0. We would like to show that

e(P(K)#-P(J)) 0.

Utilizing the Observation above, it is sufficient to show that

r((P(K)#~ P(J))2,±l) 0.

Figure 2. The knot (P{K)# — P(K))2 l, in the case where P is the pattern for the Whitehead
double.

Let U denote the unknot. There exists an embedding Q of (P(C/)# — P(J))2 ±1
into S1 x D2 such that

Q(K) {P(K)#-P(J))2±v

See Figure 3. We consider the bordered invariant

CFA'iS1 x

associated to (»S1 x D2, Q). Notice that Q(J) (P(J)# — P(J))2 ±1 is slice and

sox((P(J)#~ P(J))2,±1) 0.
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Figure 3. The knot (P(U)# — P(K))2 x
embedded in S1 x D2 as the pattern knot ß, where

again, P is the pattern for the Whitehead double.

The knot K is concordant to the knot Kf J#K# — J. Since s(K# — J) 0,

we have the following chain homotopy equivalence:

CFD(Yk0 ~ CFD(Yj) ® A,

for some A.
The knot Q(K) is concordant to Q (K'), since K is concordant to K'. The invariantris determined by

gCFK~(Q(K')) ~ CF^CS1 x Z)2, ß) ® CFD(YK,)

~ x Dz, Q) ® (CFD(Yj) © 4)
~ gCFK~(Q(J)) © B

where B is the complex CF/1~(.S'1 x D2. Q) <g> /l. Notice that H*(B) is U-torsion,
since the ranks of HFK~(Q(K')) and H))as F[Z/]-modules are both
one. Thus,

t(Q(K)) x(Q(K')) r 0,

since Q(J)is slice. Recalling that Q(K)(F(F)# — P(J))2 ±1, we have that

t((P(K)#-P(J))2,±i) 0,

implying that

s(P(K)#~ P(J)) 0,

as desired.
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We now prove Theorem 5, which we restate here:

Theorem 5.3. {Kj [/] if and only if xp (K) xp(J) for all patterns P C
S1 x D2.

Proofi The forward direction is true by Proposition 5.1 and the fact that the map
x: C -> Z factors through F. We must now show that if |W] ^ [/], then there
exists some pattern P such that x (P(K)) ^ x{P{J)).

Without loss of generality, we may assume that e(K# — J) — 1. Let

P(K) (K#-J)2,1.

Then Theorem 5.2 teils us that

x(P(K)) 2(x(K) - x(J)) + 1 and x(P(J)) 0,

as desired.

6. Calculations and a reflnement of e

An element of F is an equivalence class of filternd chain complexes. The goal of
this section is to dehne more tractable invariants associated to such a class, compute
these invariants for a few families of knots, and show that these invariants are related
to the algebraic structure, namely the relation, on F.

To this end, we will dehne a rehnement of s. Recall that s is dehned in terms of
whether or not certain maps on subquotient complexes of CFK°° vanish on homology.
Our rehnement of s will be dehned in a similar manner.

The invariant e(K) is equal to one when the class generating the "vertical"
homology of CFK°°(K) lies in the image of the horizontal differential. We would like
a well-dehned way to measure the "length" of the differential that hits that class, that
is, how much it decreases the horizontal hltration. We will do this by examining
certain natural maps on subquotients of CFK00.

The dehnition of s involved examining the map Fx induced by

C{i 0} —C{min(7,y — x) 0}.

In particular, if Fx is trivial, then e(K) 1. Consider now the map Hs induced on

homology by

C{i 0} —C{min(7,y — r) 0, i < s},

for some non-negative integer s. Notice that H0 is non-trivial, and for sufhciently
large s, Hs agrees with Fx.
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Suppose that s{K) 1; that is, Fz is trivial. Then define ci\{K) to be

a\{K) min{s | Hs is trivial}.

The idea is that when e(K) 1, the class generating the vertical homology lies in the

image of the horizontal differential, and a\ is measuring the "length" of the horizontal
differential hitting that class.

Now consider the map Hai,s induced on homology by

C{i 0) C {{min(7, j — r) 0, i < ci\} U {i a\,x — s < j < r}},

for some non-negative integer s. Clearly, Hai$ is trivial. Define

ü2(K) min{s | Hai^s is non-trivial}.

Notice that <22(K) may be undefined; that is, the map Hai^s may be trivial for all s.

Effectively, <22 is measuring the "length" of a certain vertical differential, if it exists.

Lemma 6.1. The invariants ci\ and ü2 are invariants ofthe class [AT].

Proofi Suppose [/] [^]. Then

[/] M
Since s(K# — J) 0, it follows from Lemma 3.3 of [Homl4] that there exists a

basis for CFK°°(K# — J) with a distinguished element, say xo, with no incoming or
outgoing horizontal or vertical arrows. Similarly, there is a basis for CFK00 (J# — J)
with a distinguished element y0 • Then we may compute a\(K#— J#J) and a2(K# —

J#J) by considering either

{x0} (8) CFK°°(J) or CFK°°(K) ® {y0},

the former giving us a\ (/) and <22(-0, and the latter givingusai(X) and <22(^0-

Lemma 6.2. Let a\ a\{K). Then there exists a basis {x;} over F[C/, U~l] for
CFK00 with basis elements Xo and X\ with thefollowing properties.

(1) There is a horizontal arrow of length a\ from X\ to Xq.

(2) There are no other horizontal or vertical arrows to orfrom Xo-

(3) There are no other horizontal arrows to orfrom X\.

Ifwe also have that ^2 is well defined, then there exists a basis {x;} with
basis elements Xo, X\, and X2 with thefollowing properties, in addition to the ones
above:

(4) There is a vertical arrow of length 02 from X\ to X2>
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(5) There are no other vertical arrows to orfrom X\ or %2>

Proof We will give the proof for the case where a2 is well defined. The proof in the

case where <22 is not well defined is a straightforward simplification of this proof.
For ease of notation, let

A C{min(7, j — r) 0, i < a 1},

B C{{min(7, j — r) 0, i < a 1} U {i a\, x — <22 < j < r}},

so that Hai and HaiA2, respectively, are the maps on homology induced by

C{i =0}^^,
C{i =0B.

See Figure 4. Since Hai is trivial, it follows that there is a generator, say x0, of
//* (C {i 0}) in position (0, r) that is in the image of the differential on A, but not
in the image of the differential on B. Since Hai>a2 is non-trivial, there exists a class

x\ supported in position (a\, r) whose boundary, in A, is xo, and whose boundary, in
B, is a class, say xo + X2, where X2 is supported in position (a 1, r — 02). Moreover,
we may replace xo with 3horzxi, since a priori, 3horzxi might include elements with
negative i -coordinate. Similarly, we may replace X2 with 3vertxi. We now complete

CL\ Cli

X0

<22

• Xi

• x2

(a) (b) (c)

Figure 4. Left, the complex A in the (/, / )-plane. Center, the complex B. Right, part of the
basis in Lemma 6.2.

{xo,xi,X2} to a basis {x;} for CFK°°{K), and conditions (1) and (4) above are
satisfied. To satisfy the remaining three conditions, we will use a change of basis in
order to remove the unwanted arrows.

There are no vertical arrows leaving xo, since it is in the kernel of the vertical
differential. Since xo is not in the image of the vertical differential, if there is an
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incoming vertical arrow to x0 from, say, y, then there is also a vertical arrow from

y to, say, z. Changing basis to replace z with z + xo will remove the vertical arrow
to xo. All of the incoming vertical arrows to xo may be removed in this manner, and

filtration considerations ensure that we have not changed x\ or x2.
Since xo is in the image of 3horz, it follows immediately that there are no horizontal

arrows leaving xo, by the fact that 3horz o 3horz 0. We must now remove any
horizontal arrows entering xo. Suppose there is an arrow of length l from y to xo. If
l < a\, we may remove the arrow as in the preceding paragraph. If l > then we
replace y with y + x\. In this manner, we can remove all of other horizontal arrows
into xo.

There are now no horizontal arrows entering xi, because 3horzxi x0, 3horz o

ghorz _ an(j are no 0ther horizontal arrows to xo.
We may remove unwanted vertical arrows involving x\ and x2 in the same manner

that we removed unwanted horizontal arrows involving x\ and xo.

Note that if we have such a basis {x;} for CFK00 (K), then we have a basis {x*}
for CFK°°(K)* satisfying the following:

• There is a horizontal arrow of length a\{K) from xa to x*.

• There is a vertical arrow of length a2(K) from x| to x*.

• There are no other horizontal or vertical arrows to or from xa.

• There are no other horizontal or vertical arrows to or from x*.

• There are no other vertical arrows to or from x%.

If Xk has filtration level (7, j), then x^ has filtration level (—i, —j). We will use these

types of bases to prove the following lemmas:

Lemma 6.3. Ifa\{J) > a\(K), then

1*1» ui
Proof We proceed using induction. We will show that s(K# — J) 1 and that

a\(K# — J) ci\{K)

from which we can conclude that

s(K#-nJ) 1

for all n e N.
Let {x;} be a basis for CFK°°{K) found using the first part of Lemma 6.2.

Similarly, let {y;} be such a basis for CFK°°(J), and hence {y*} is a basis for
CFK°°(—J). We consider the knot K# — J and its knot Floer complex. Notice that
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x0Jo generates H*{C{i 0}), the "vertical" homology of CFK°°(K# — J). Let

r r(K# — J).
Consider the subquotient complex

A C{min(7, j — r) 0}.

There is a direct summand of A consisting of generators xoJq and xiTo' a

horizontal arrow of length a\ (K) from the latter to the former. Hence, s(K#— J) 1

anda\(K# — J) a\(K), as desired.

Lemma 6.4. Ifa\{J) a\{K) andü2(J) > ^2(K), then

[•/]» m.
Proof We again proceed using induction. We will show that s(J# — K) 1 and

that

a2(J# - K) a2(J),

from which we can conclude that

s(J# -nK) 1

for all n e N.
Let {x(} be a basis for CFK°°(K) found using Lemma 6.2. Similarly, let {y;}

be such a basis for CFK°°(J). We consider the knot J# — K and its knot Floer
complex. For ease of notation, let r r(J# — K).

Let

A C{min(7, j — r) 0, i <

B — C{{min(7, j — r) 0, i < a\{J)} U {i a\{J), r — a2{J) < 7 < r}}.
We claim that the dement Xq yo + y 1 generates //* (C{i 0}), is zero in //* (d),
and is non-zero in //* (,ß). Indeed, there is a direct summand of B with the following
generators in the following (7, y')-positions:

x^yo, x*iyi (0 ,x(J#-K))
xZyi (ai(J), r(J# —

x^y2 (a1(J),T(J#-K)-a2(J)),
x%y1 (0,r(J#-K) + a2(K)),

and the following differentials:

3(^o Ji) xoJo + x*yi + Xq

d(x*2y1) x*1y1.
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See Figure 5 (d). From this Observation, the claim readily follows; that is,

s(J# — K) 1,

ai(J# — K) cii(J),
a2(J#-K)=a2(J),

as desired.

x0 •Xi

•x2

(a)

xT

(b)

yo^i

• J2

(c)

•x2yi

-Wo
Wl

(d)

Figure 5. Far left, a portion of the basis {x;} for CFK00 (K), followed by a portion of the basis

{x*} for CFK°°(K)*. Next, a portion of the basis {y;} for CFK°°(J). Far right, a direct
summand of the subquotient complex B.

Recall that an L-space is a rational homology sphere Y for which

rk HF(Y) |//i(Y, Z)|.

We call a knot ^ C *S3 an L-space knot if there exists tz e N such that w-surgery
on K yields an L-space. In [OS05], Theorem 1.2, Ozsväth and Szabö prove that if
K is an L-space knot, then the complex CFK°°{K) has a particularly simple form
that can be deduced form the Alexander polynomial of K, Ak(?). (Note that the

results in [OS05] are stated in terms of HFK{K), but by considering gradings, they
are actually sufficient to determine the füll CFK°°{K) complex.)

One consequence is that if K is an L-space knot, then the Alexander polynomial
of K has the form

k

/=ü
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for some decreasing sequence of non-negative integers n0 > n\ > - - > with the

symmetry condition

«; + nk-i 2g(K),

where we have normalized the Alexander polynomial to have a constant term and no
negative exponents. Note that k is always even since there are always an odd number
of terms in the Alexander polynomial.

Lemma 6.5. Let K be an L -space knot with Alexander polynomial

k

ak(O yy-i
/=()

for some decreasing sequence of integers no > n\ > • • • > n^. Then

a\(K) /7 o — /71.

a2(K) — n \ — n2-

Proof Theorem 1.2 of [OS05] teils us that for K an L-space knot, HPK(K) is com-
pletely determined by AKif)- Moreover, up to filternd chain homotopy equivalence,

CFK°°(K) is generated as a F[C/, f/_1]-module by HFK(K), where HFK is the

homology of the associated graded object of CFK(K) ~ C{i 0}. By considering
the gradings on the complex CFK°°(K), and the fact that the differential decreases

the Maslov grading by one, the lemma follows.

Remark 6.6. More generally, it can be deduced from Theorem 1.2 in [OS05] that
there is a basis {x0,... for CFK°°{K) such that

dxi X(-i + x/ + i for i odd,

dxi 0 otherwise,

where the arrow from x; to x;_\ is horizontal of length ni — ni-\, and the arrow
from Xi to x/ + i is vertical of length ni + \ — ni. The complex looks like a "staircase",
where the differences of the n; give the heights and widths of the steps. See Figure 6.

Recall that positive torus knots are L-space knots since (pq =b l)-surgery on the
torus knot Tp^q, p,q > 1, results in a lens space.

Lemma 6.7. For p > 3, the Alexander polynomial ofthe torus knot Tp^p+\ is

k

i=0
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x0

x0 < mxi

X2 9< 9X3

X4

i 9Xl

X2 9< 9X3

X4
-•X5

x6

(a) (b)

Figure 6. Left, the basis from Remark 6.6 for CFK00 of the torus knot 73 4 with Alexander
polynomial Ar3A(t) t6 — t5 + t3 — t + 1. Right, the basis for CFK00 of the torus knot
74 5 with Alexander polynomial At4 5 (0 t12 — t11 + t8 — t6 + t4 — t + 1. The lengths of
the differentials are given by the differences of the exponents of the Alexander polynomial.

for a decreasing sequence of integers no > n\ > • •• > with

«0 p,

«t p2 - p - 1,

«2 2p,

nz p2 — 2p — 2.

In particular,

Proof Recall that

(TpJp+1) — 1
>

a2(Tp,p+1) 1.

Ar„(,)=c"-I>C-D
(tp - mq -1)

Following the proof of Proposition 6.1 in [HLR12], we see that

(tp(p+i) _ i)(? _ i) ^
p

t(P+\)i
(tp - \){tp+i-!)
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Indeed, multiplying both sides by (tp — 1 ){tp+1 — 1), we obtain two telescoping
sums on the right-hand side:

p-1 p-2
-1 )(tp+i~i)( tPi-{Li=0 i =0

(tp+1 - 1)0 p(p-D+p-l) - t(tp - i)(f0>+D0'-2)+/>+i _ ^
tP2+P+i _tP2+P _t + i

(tp(p+1)-i)(f - l)

as desired.

The last Statement now follows from Lemma 6.5.

Remark 6.8. For the torus knot r2j3, i.e., the case where p — 2, we easily see that

öi(T2,3) 1,

<22(72,3) 1>

since Ap2 3(0 t2 ~ t + 1.

Remark 6.9. More generally, for the torus knot Tp^p+\, the horizontal arrows increase

in length by one at each "step", from 1 to p — 1, and the vertical arrows decrease in
length by one at each "step", from p — 1 to 1. See Figure 6.

Lemma 6.10. The iterated torus knot T2^p,p+1, p > 2, is an L-space knot with
Alexander polynomial

k

Ar2,3;^+1(0 £(-1)2"''.
/'=()

for a decreasing sequence of integers n$ > n\ > • •• > n^ with

«o p2 +

n\ p2 + p - 1,

«2 p2 -1.

In particular,

<21(72,3^,^+1) 1,

<22(72,3^,^+1) P•
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Proof The fact that T2^; p,p+i is an L-space knot follows from Theorem 1.10 of
[Hed09] (cf. [Homl 1]), where Hedden gives sufficient conditions for the cable of an

L-space knot to again be an L-space knot.
The form of the Alexander polynomial follows from the formula for the Alexander

polynomial of the cable of knot, i.e.,

A72,3;P,P+i0) AT2,3

and Lemma 6.7. More precisely, for p > 3,

AT2,3:p,p+1 t2P~tP+ \)(tp2~P ~ tp2~P~l + ~ tp2~2P~2

+ lower order terms)

tp2+p - tp2+p~1 + tp2~x + lower order terms.

The case p — 2 follows easily from the fact that

A72,3:2,3(0 — t5 -\- — t + 1.

Lemma 6.11. For p > 2, m > p2 — p — 1, and m 7^ 1, the iterated torus knot

Tp,p+\;2,2m+\ is an L-space knot with Alexander polynomial

k

ATp,p+ v,2,2m + l^)
/'=()

for a decreasing sequence ofintegers no > n\ > • •• > n^ with

no 2p2 — 2p + 2m,

n 1 2/72 — 2p + 2m — 1,

n2 2p2 — \p + 2m.

In particular,

ai(T2,3;p,p+ l) 0
02(^2,3^,^+1) 2/7 — 1.

Proof. This iterated torus knot is an L-space knot by [Hed09], Theorem 1.10. The
form of the Alexander polynomial follows from the following facts:

P + l;2,2m + l (t) A Tp,p+1(t2)•A ,2m + 1 (0.
2m

AT2,2m+l(t)
/=ü
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and Lemma 6.7. More precisely,

ATP, P + l;2,2m + l (0
p—1 p—2 m m—1

(t2pi -t2j2 t(2p+2)i) (E t2i - t2i+1)
i= 0 i =0 i =0 i =0

p—2 p—3 m m—1

_ ^f2/>2-2/> _ t2p2-2p-2 _j_ ^ f2/>( - t2^2 (2^+2)') ^ f2' — ^ f2, + 1)
i =0 i =0 i =0 i =0

j.2p2—2p+2m _ j.2p2—2p—2 _ j.2p2—2p+2m — \
_|_ ^2p2—2p—\

p—2 p—3 m m—1

+ (E?2/"' -?2 E ^+2)i) (Ef2i - Ef2i+1)
i =0 i= 0 i =0 i =0

j.2p2—2p+2m _ j.2p2—2p—2 _ ^2p2—2p-\-2m — \
_|_ ^2p2—2p—\

+ ^2JP2_4JP+2m _|_ lower order terms)

t2p2-2p+2m _ t2p2-2p+2m-\ + t2p2-Ap+2m + lower order terms?

where the last equality follows from the hypothesis that m > p.

Recall that D denotes the (positive, untwisted) Whitehead double of the right-
handed trefoil.

Lemma 6.12. As elements of the group F,

m [72j3I.

Proofi In [Hed07], Theorem 1.2, Hedden determines the Z-filtered chain homotopy

type of CFK of the Whitehead double of K in terms of CFK(K). We can use this

result to determine CFK(D), from which we will deduce the class [D] using rank
and grading considerations.

Using Hedden's result, we see that

Z2 ^2
CFK(D, j) ~

F(o) 0 F(-i)' J l

(-1) 0 F(-2)

(-2) 0 F(-3)

Fr-n 0 Fr-2V J ~ <-1'

1F?2,0 F* —1,

where the subscript denotes the Maslov, or homological, grading, and j denotes the
Alexander grading. Moreover, Hedden proves that every non-trivial differential on
this complex lowers the Alexander grading by exactly one, which is sufficient to

completely determine the Z-filtered chain homotopy type of CFK(D). Note that

x(D) 1.
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Let x be a generator of HF(S3) H*{C{i 0}). Note that x necessarily is

positioned at (0,1) in the (z,y)-plane. Then [x] must be zero in //*(C{y 1})
since the homology of C{j 1} is supported in z-coordinate 2. By considering
the support of CFK(D), we see that x is in the kernet of 3horz, so in order to vanish
in //*(C{y 1}), it must be in the image of 3horz, i.e., there exists a class, say y,
positioned at (1,1), such that

3horzy x.

The class [y] is equal to zero in H^{C{i 1}) since the homology of C{i 1}
is supported in y -coordinate 2. But y cannot be in the image of the differential on

C{i 1}, since 32 0, where 3 is the differential on CFK°°, and 3horzy ^ 0.

Hence, the boundary of y in C{i 1} must be non-zero; denote this boundary by z.
Notice that z has (i, y)-coordinates (1,0).

Again, for 32 0 reasons, the boundary of z in C {y 0} must be zero, and by
grading considerations, z is not in the image of the differential on C {y 0}.

The complex CFK°°(—T2,3) is generated over F [U, U~l] by

a, b, c,

with the differential

da b,

de b,

where the generators are have the following (/, y)-coordinates:

a (0,1),
b (0,0),

c (1,0).

Then in the tensor produet

CFK°°(—T2^) ®F[cw-i] CFK°°(D)

the generator
az + by + cx

is non-trivial in both vertical and horizontal homology. Indeed, it is clearly in the
kernel of the vertical differential, and cannot be in the image of the vertical differential,
since cx does not appear in the vertical boundary of any element. Similarly, it is in
the kernel but not the image of the horizontal differential.

Thus,

s(CFK°°(-T2,3) CFK°°(D)) 0,

as desired.
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We are now ready to prove Proposition 4.8, showing that we have the following
relations in 3ri where 0 < p < q:

# lTp,p + l;2,2m + lj < [7^+ l;2,2m + l], for J71 > q2 - q - 1.

ProofofProposition 4.8. The proposition is now an easy consequence of the preced-
ing lemmas. We have from Lemma 6.7 that

(Tp,p+\) 1
>

a2(TPip+i) p - 1.

Now Lemma 6.4 states that iföi(/) a\(K) and 02 («0 < ^(K), then [/] [^],
implying that

IWi] « lTq,q+il
which proves the first assertion in the proposition.

From Lemma 6.12, we have that

m [72>3]i,

and from Proposition 5.1 that

+ [72,3;/>,/> + l]-

Hence by Lemmas 6.1 and 6.10,

(Dp,p+1) 1
>

a2(DPiP+1) p,

so by Lemma 6.4,

Finally, by Lemma 6.11, we have that

^1 (^/>,/>+ l;2,2m + l) 1?

02(7/?,/?+ l;2,2m + l) 2/7 — 1,

for p > 2, m > p2 — p — 1, m ^ 1, and so

[7}?,/?+ l;2,2m + lJ < [7tf,tf+ l;2,2m + l J-

This completes the proof of the proposition.
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Weconcludethispaperby showing thatourexamples, {DPip+i#—TpiP+i}p>29 of
smoothly independent, topologically slice knots are smoothly independent from the

examples of Endo [End95] and Hedden-Kirk [HK12]. Recall that Endo's examples
are pretzel knots of the form

Kt K{-2t - 1,4* + 1,41 + 3), t > 1.

In particular, they are of genus one. The examples of Hedden-Kirk are (positive,
untwisted) Whitehead doubles of certain torus knots.

Proposition 6.13. IfK is a knot ofgenus one and e(K) 1, then either

a\(K) ^ 1 or ai(K) a2(K) 1.

Proofi Notice that the assumption that e(K) 1 does not cause any loss of generality,
since£(—K) —s{K).

Assume that a\(K) 1. We first notice that if K is a knot of genus one and

e(K) 1, then r (K) ^ — 1. This follows from the adjunction inequality for knot
Floer homology [OSCH], Theorem 5.1, and the basis from Lemma 6.2

Now, supposeai(K) landr(K) 0. Using the adjunction inequality [OSCH],
Theorem 5.1, and a basis found using the first part of Lemma 6.2, we see that the
basis element x\ must be in the kernel of the differential on C{i 1}. Moreover,
for 32 0 reasons, it cannot be in the image of the differential on C{i 1}. But
[jci] cannot be zero in //* (C{i 1}, because r (K) 0 implies that //* (C{i 1})
is supported in (i, 7')-coordinate (1,1).

Hence, we may assume that a\{K) 1 and r(K) 1, in which case the

arguments in the proof of Lemma 6.12 lead us to the desired result.

In the proof of Proposition 4.8, we showed that

ai — Tp^p+i) 1,

ß2(Dp^p-\-i# — Tp^p+f) p,

Hence, by Proposition 6.13, along with Lemmas 6.3 and 6.4, it follows that when

p > 1, our examples are independent from those of Endo and Hedden-Kirk.
The following proposition describes the subgroup of 3? generated by Whitehead

doubles:

Proposition 6.14. Whitehead doubles are contained in the rank one subgroup of 37

generated by the right-handed trefoil.

Proof The argument in Lemma 6.12 can be used to show that for a Whitehead double
WD with s(WD) 1, the class [ILD] [X^] in 5^. This is sufficient for the

result, since e{WD) —1 implies that e{—WD) 1, and e{WD) 0 implies that

IWDj =0.
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