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Zero Lyapunov exponents of the Hodge bündle

Giovanni Forni, Carlos Matheus and Anton Zorich

Abstract. By the results of G. Forni and of R. Trevino, the Lyapunov spectrum of the Hodge
bündle over the Teichmüller geodesic flow on the strata ofAbelian and of quadratic differentials
does not contain zeroes even though for certain invariant submanifolds zero exponents are present
in the Lyapunov spectrum. In all previously known examples, the zero exponents correspond to
those PSL(2, M)-invariant subbundles of the real Hodge bündle for which the monodromy of the
Gauss-Manin connection acts by isometries of the Hodge metric. We present an example of an
arithmetic Teichmüller curve, for which the real Hodge bündle does not contain any PSL(2, M)-
invariant, subbundles, and nevertheless its spectrum of Lyapunov exponents contains zeroes.
We describe the mechanism of this phenomenon; it Covers the previously known Situation as a

particular case. Conjecturally, this is the only way zero exponents can appear in the Lyapunov
spectrum of the Hodge bündle for any PSL(2, M)-invariant probability measure.
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1. Introduction

A complex structure on the Riemann surface X of genus g determines a complex g-
dimensional space ofholomorphic 1-forms £2(X) on X, and the Hodge decomposition

Hl(X\C) © H)~ ß(X) © ß(X).

The pseudo-Hermitian intersection form

(coi,co2):=l-JCO! AüT2(1.1)

is positive-definite on H1,0(X) and negative-definite on H0,1(X).
For any linear subspace V C H1(X,C) dehne its holomorphic and anti-holo-

morphic parts respectively as

Rbo :=vn Hho^x)
and

V0,1 := V H H0,1(X).

A subspace V of the complex cohomology which decomposes as a direct sum of
its holomorphic and anti-holomorphic parts, that is, V V1'° © V0,1, will be called a

split subspace (the case when one of the summands is null is not excluded: a subspace
V which coincides with its holomorphic or anti-holomorphic part is also considered
as split). Clearly, the restriction to any split subspace V of the pseudo-Hermitian
form of formula (1.1) is non-degenerate. Note that the converse is, in general, false.

The complex Hodge bündle H^ is the bündle over the moduli space Mg of
Riemann surfaces with über the complex cohomology H1(X,C) at any Riemann
surface X. The complex Hodge bündle can be pulled back to the moduli space
of Abelian or quadratic differentials under the natural projections Mg Mg or
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Q,g -> Mg respectively. A subbundle V of the complex Hodge bündle is called a

split subbundle if all of its fibers are split subspaces or, in other terms, if it decomposes
as a direct sum of its holomorphic and anti-holomorphic parts.

Let Z\ be an orbifold in some Stratum of unit area Abelian differentials
(respectively, in some Stratum of unit area meromorphic quadratic differentials with at

most simple poles). Throughout this paper we say that such an orbifold is SL(2, R)-
invariant (respectively, PSL(2, R)-invariant) if it is the support of a Borel probability
measure, invariant with respect to the natural action of the group SL(2, R) (respectively,

of the group PSL(2, R)) and ergodic with respect to the Teichmüller geodesic
flow. The action of SL(2, R) (respectively, of PSL(2, R)) on lifts to a cocycle on
the complex Hodge bündle H^ over by parallel transport of cohomology classes

with respect to the Gauss-Manin connection. This cocycle is called the complex
Kontsevich-Zorich cocycle.

It follows from this defmition that the pseudo-Hermitian intersection form is

SL(2, R)-equivariant (respectively, PSL(2, R)-equivariant) under the complex
Kontsevich-Zorich cocycle. The complex Kontsevich-Zorich cocycle has a well-
defined restriction to the real Hodge bündle (the real part of the complex Hodge
bündle), called simply the Kontsevich-Zorich cocycle.

By the results of H. Masur [Ma] and of W. Veech [V], the Teichmüller geodesic
flow is ergodic on all connected components of all strata in the moduli Spaces of
Abelian differentials and in the moduli Spaces of meromorphic quadratic differentials
with at most simple poles with respect to the unique SL(2, R)-invariant (respectively,
PSL(2, R)-invariant), absolutely continuous, finite measure. By the further results

of G. Forni [Fl] and of R. Trevino [Tr], it is known that the action of the Teichmüller
geodesic flow on the real or complex Hodge bündle over such SL(2, R)-invariant
(respectively, PSL(2, R)-invariant) orbifolds has only non-zero Lyapunov exponents.

In this paper we continue our investigation on the occurrence of zero Lyapunov
exponents for special PSL(2, R)-invariant orbifolds (see [FMZ1], [FMZ2]). Previous

examples of SL(2, R)-invariant (respectively, PSL(2, R)-invariant) measures with
zero exponents in the Lyapunov spectrum were found in the class of cyclic Covers over
CP1 branchedexactly atfourpoints (see [BMö], [EKZ1], [F2], [FMZ1] and [FMZ2]).
In all of those examples the neutral Oseledets subbundle (that is, the subbundle of
the zero Lyapunov exponent in the Oseledets decomposition) is a smooth SL(2, R)-
invariant (respectively, PSL(2, R)-invariant) split subbundle.

Our main contribution in this paper is the analysis of a cocycle acting on the

complex Hodge bündle over a certain PSL(2, R)-invariant orbifold (which projects
onto an arithmetic Teichmüller curve) in the moduli space of holomorphic quadratic
differentials in genus four. This particular example was inspired by the work of
C. McMullen on the Hodge theory of general cyclic Covers [McM3]. It is the first
explicit example of a cocycle with the Lyapunov spectrum containing zero exponents
such that the neutral Oseledets subbundle, which is by defmition flow-invariant, is

nevertheless not PSL(2, R)-invariant. In other words, the neutral subbundle in this
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example is not a pullback of a Hat subbundle of the Hodge bündle over the corre-
sponding Teichmüller curve.

In fact, the zero exponents in this new example, as well as those in all previously
known ones, can be explained by a simple common mechanism. Conjecturally such

a mechanism is completely general and accounts for all zero exponents with respect
to any SL(2, R)-invariant (respectively, PSL(2, R)-invariant) probability measure on
the moduli Spaces ofAbelian (respectively, quadratic) differentials. It can be outlined
as follows. We conjecture that a semisimplicity property holds for the complex Hodge
bündle in the spirit of Deligne's Semisimplicity Theorem. Namely, we conjecture
that the restriction of the complex Hodge bündle to any SL(2, R)-invariant (respectively,

PSL(2, R)-invariant) orbifold as above splits into a direct sum of irreducible
SL(2, R)-invariant (respectively, irreducible PSL(2, R)-invariant), continuous, split
subbundles.1

The continuous vector subbundles in the known examples are, actually, smooth

(even analytic, or holomorphic). However, in the context of this paper it is im-
portant to distinguish subbundles which are only measurable and those which are
continuous. To stress this dichotomy in the general case we shall always speak
about continuous subbundles, even when we know that they are smooth (analytic,
holomorphic). In particular, a SL(2, R)-invariant (respectively, PSL(2, R)-invariant)
subbundle of the Hodge bündle is called irreducible if it has no non-trivial continuous

SL(2, R)-invariant (respectively, PSL(2, R)-invariant) subbundle. In the special
case of subbundles defined over suborbifolds which project onto Teichmüller curves
all SL(2, R)-invariant (respectively, PSL(2, R)-invariant) subbundles are continuous,

in fact smooth, since by defmition the action of the group on the suborbifold is

transitive.
We describe this Splitting in our example. In fact, it was observed by M. Möller

(see Theorem 2.1 in [Mö]) that whenever the projection of the invariant orbifold X \ to
the moduli space Mg is a Teichmüller curve (as in our example) the Deligne Semisimplicity

Theorem [Dl] implies the existence and uniqueness of the above-mentioned

decomposition. The action of the group SL(2, R) (respectively, PSL(2, R)) on each

irreducible, invariant split subbundle of the complex Hodge bündle is a cocycle with
values in the group U(p,q) of pseudo-unitary matrices, that is, matrices preserving a

quadratic form of signature (p,q). It is a general result, very likely known to experts,
that any U(p, q)-cocycle has at least \p — q\ zero Lyapunov exponents (we include
a proof of this simple fundamental result in Appendix A).

In the very special case of cyclic Covers branched at four points, considered
in [BMö], [EKZ2], [FMZ1], [FMZ2], only pseudo-unitary irreducible cocycles of
type (0,2), (2,0) (0,1), (1,0), and (1,1) arise. In the first four cases the Lyapunov

lAdded inproof: this conjecture has been recently proved by S. Filip [Fil2]. Semisimplicity ofthe Kontsevich-
Zorich cocycle on the real Hodge bündle had been proved earlier by Avila, Eskin and Möller (see Theorem 1.5 in
[AEMö]) after a weaker semisimplicity result, establishing semisimplicity of the algebraic hulls of the cocycle,
was proved by Eskin and Mirzahani (see [EMir], Appendix A, also quoted as Theorem 2.1 in [AEMö]).
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spectrum of the corresponding invariant irreducible component is null, while in the

fifth case there is a Symmetrie pair of non-zero exponents. The examples which we
present in this paper are suborbifolds of the locus of cyclic Covers branched at six

points. In this case we have a decomposition into two (complex conjugate) continuous

components of type (3,1) and (1,3). It follows that the zero exponent has multiplicity
at least 2 in each component (which is of complex dimension 4). We prove that, in fact,
the multiplicity of the zero exponent is exactly 2. Our main example is a suborbifold
which projects onto a certain arithmetic Teichmüller curve. In this case we prove that
the above-mentioned decomposition is in fact irreducible. The irreducibility of the

components implies that the complex two-dimensional neutral Oseledets subbundles

of both components cannot be PSL(2, R)-invariant. For general suborbifolds of our
locus of cyclic Covers branched at six points, it follows from results of [FMZ2] (see
in particular Theorem 8 in that paper) that whenever the complex two-dimensional
neutral Oseledets subbundles of both components are PSL(2, R)-invariant, then they
are also continuous, in fact smooth. It follows then from our irreducibility result
that the neutral Oseledets subbundles are not PSL(2, R)-invariant on the füll locus of
cyclic Covers branched at six points, which contains our main example. Moreover,
recent work ofAvila, Matheus and Yoccoz [AMY] suggests that the neutral Oseledets
subbundles are also not continuous there.

As in all known examples, our cocycle is non-degenerate, in the sense that the

multiplicity of the zero exponent is exactly equal to \p—q\. Conjecturally, all cocycles
arising from the action of SL(2, R) (respectively, PSL(2, R)) on the moduli space of
Abelian (respectively, quadratic) differentials are non-degenerate in the above sense
and are simple, in the sense that all non-zero exponents are simple in every irreducible
SL(2, R)-invariant (respectively, PSL(2, R)-invariant) continuous component of the

complex Hodge bündle. (The simplicity of the Lyapunov spectrum for the canonical
invariant measure on the connected components of the strata of Abelian differentials
is proved in [AV]; an analogous Statement for the strata of quadratic differentials for
the moment remains conjectural.)

Note that currently one cannot naively apply the Deligne Semisimplicity Theorem
to construct an SL(2, R)-invariant (respectively, a PSL(2, R)-invariant) Splitting of
the Hodge bündle over a general invariant suborbifold X. Even though by recent
results of A. Eskin and M. Mirzakhani [EMir] each such invariant suborbifold is an

affine subspace in the ambient Stratum, it is not known, whether it is a quasiprojective
variety or not.2

Note also that the conjectural decomposition of the complex Hodge bündle into
irreducible SL(2, R)-invariant (respectively, PSL(2, R)-invariant) components might
be finer than the decomposition Coming from the Deligne Semisimplicity Theorem.
The summands in the first (hypothetical) decomposition are irreducible only with

2Added inproof: it has been proved recently by S. Filip [Fill] that all invariant suborbifolds are quasiprojective
varieties.
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respect to the action by parallel transport along the GL+ (2, R)-orbits in X, or equiv-
alently, along the leaves of the foliation by Teichmüller discs in the projectivization
PX, while the decomposition of the Hodge bündle provided by the Deligne Semisim-

plicity Theorem is invariant with respect to the action by parallel transport of the füll
fundamental group of X. For example, the Hodge bündle H^ over the moduli space
Mg of Abelian differentials splits into a direct sum of (1, l)-tautological subbundle
and its (g — 1, g — l)-orthogonal complement. This Splitting is GL+ (2, R)-invariant,
but it is by no means invariant under the parallel transport in the directions transversal

to the orbits of GL+ (2, R). The only case when the two Splittings certainly coincide
corresponds to the Teichmüller curves, when the entire orbifold X is represented by
a Single orbit of GL+(2, R).

We conclude the introduction by formulating an outline of the principal conjec-
tures.

Conjecture. LetX \ be a suborbifold in the moduli space ofunit area Abelian
differentials or in the moduli space ofunit area meromorphic quadratic differentials with
at most simple poles. Suppose that X \ is endowed with a Borel probability measure,
invariant with respect to the natural action of the group SL(2,R) (respectively, of
the group PSL(2, R)) and ergodic with respect to the Teichmüller geodesic flow. The

Lyapunov spectrum ofthe complex Hogde bündle H^ over the Teichmüller geodesic

flow on X\ has thefollowing properties.
(I) Let r be the total number ofzero entries in the Lyapunov spectrum. By pass-

ing, if necessary, to an appropriate finite (possibly ramified) cover X\ of X\ one

can decompose the vector bündle induced from the Hodge bündle over X \ into a
direct sum of irreducible SL(2,R)-invariant (respectively, irreducible PSL(2,R)-
invariant) continuous split subbundles? Denote by (pi,qt) the signature of the

restriction ofthe pseudo-Hermitian intersection form to the corresponding split
subbundle. Then JT \pt — q? r.

(II) By passing, if necessary, to an appropriate finite {possibly ramified) cover

l °f £ i one can decompose the vector bündle induced from the Hodge bündle

over X\ into a direct sum of irreducible SL(2, W)-invariant {respectively, irreducible
PSL(2, R)-invariant) continuous split subbundles, such that the nonzero part ofthe
Lyapunov spectrum ofeach summand is simple.

1.1. Statement of the results. Let us consider a Hat surface S glued from six unit
Squares as in Figure 1. It is easy to see that this surface has genus zero, and that
the Hat metric has live conical singularities with the cone angle tt and one conical
singularity with the cone angle 3tt. Thus, the quadratic differential representing the
Hat surface S belongs to the Stratum Q(l, — l5) in the moduli space of meromorphic
quadratic differentials.

3Added in proof: this part of the conjecture in a more precise form has been recently established by S. Filip
[Fil2].
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0 1 2 3 4 5

Figure 1. Basic Square-tiled surface S inÖ(l,—l5).

The equation
w3 (z Z\)... (z z6) (1.2)

defines a Riemann surface X of genus four, and a triple cover p: X -> CP1,

p(w,z) z. The cover p is ramified at the points z\,... ,z^ of CP1 and at no
other points. By placing the ramification points z\,..., z^ at the Single zero and at

the five poles of the flat surface S as in Figure 1 we induce onla flat structure,
thus getting a square-tiled surface S. It is immediate to check that S belongs to the

Stratum Q(7, l5) of holomorphic quadratic differentials in genus four.
Let us consider the corresponding arithmetic Teichmüller curve T C M4 and the

Hodge bündle over it. The following theorem, announced in [FMZ2], Appendix B,
summarizes the Statement of Proposition 3.1 and of Corollary 5.1.

Theorem 1. The Lyapunov spectrum ofthe real Hodge bündle H^ with respect to

the geodesic flow on the arithmetic Teichmüller curve T is

4 4 4 4
-,0, 0, 0, 0,

9' 9' 9' 9

The real Hodge bündle H^ over T does not have any nontrivial PSL(2, W)-invariant
subbundles.

It follows from the above theorem that the neutral Oseledets subbundle E$ over
T is not PSL(2, R)-invariant. It seems likely that it is also not continuous.

Note that the cyclic group Z/3Z acts naturally on any Riemann surface X as

in (1.2) by deck transformations of the triple cover p \ X —> CP1. In coordinates
this action is defined as

T : (z, w) ^ (z, £w), (1.3)

where £ e27tl^3. Thus, the complex Hodge bündle H^ splits over the locus of
cyclic Covers (1.2) into a direct sum of two flat subbundles (that is, vector subbundles
invariant under the parallel transport with respect to the Gauss-Manin connection):

Hl Stf) © 6?(£2), (1.4)

where £?(£), 8 (£2) are the eigenspaces of the induced action of the generator T of
the group of deck transformations.
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The above Theorem 1 has an equivalent formulation in terms of the complex Hodge
bündle, which summarizes the Statements of Proposition 3.1 and of Proposition 5.2
below.

Theorem 2. The complex Hodge bündle H^ over the arithmetic Teichmüller curve

7 does not have any non-trivial PSL(2, R)-invariant complex subbundles other than
f? (£) and 8 (£2). The Lyapunov spectrum ofeach ofthe subbundles 8 (£), 8 (£2) with

respect to the geodesie flow on 7 is

4 41
0, 0,—

9 9)

Actually, there is nothing special about the arithmetic Teichmüller curve 7 C
<2(1, —l5) considered above. By taking any PSL(2, R)-invariant suborbifold X c
<2(1, —l5) we can construct a cyclic cover (1.2) for each Hat surface S in X placing
the six ramification points at the zero and at the live poles of the quadratic differential.
We get the induced quadratic differential on the resulting cyclic cover. In this way
we get a PSL(2, R)-invariant suborbifold X c <2(7, l5). By construction, it has

the same properties as X, namely, it is endowed with a Borel probability measure,
invariant with respect to the natural action of the group PSL(2, R) and ergodic with
respect to the Teichmüller geodesic flow. (See the end of Section 2 for a generalization
of this construction.) Let Z denote the suborbifold of all cyclic Covers branched at

six points, namely, the suborbifold obtained by the above construction in the case

X <2(1, -l5) (see also [FMZ2], Appendix B).

Theorem 3. The complex Hodge bündle H^ over the invariant orbifold X decom-

poses into the direct sum of two PSL(2,R)-invariant, continuous split subbundles

H= 6(()®S (£2) ofsignatures (1, 3) and (3,1) respectively. The Lyapunov spectrum

ofeach ofthe subbundles 8 (£), 8 (£2) with respect to the Teichmüller geodesic
flow on X is

4 41
0, 0,—9' 9 J

The only difference between the more general Theorem 3 and the previous one,
treating the particular case X 7, is that now we do not claim irreducibility of the
subbundles £(£), f?(£2) for all invariant orbifolds X as above. Theorem 3 follows
from Theorem 4 below and from Proposition 6.2.

Note that the Stratum <2(1,— l5) is naturally isomorphic to the Stratum M{2).
Thus, the Classification of C. McMullen [McMl] describes all PSL(2, R)-invariant
suborbifolds in <2(1, — l5): they are represented by an explicit infinite series of sub-

orbifolds corresponding to arithmetic Teichmüller curves, by an explicit infinite series

of suborbifolds corresponding to non-arithmetic Teichmüller curves and by the entire
Stratum. By the way, note that the subbundles 8 (£), 8 (£2) of the Hodge bündle over
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the invariant suborbifold Z C Q(7, l5) (induced from the entire Stratum Q(l, —l5))
are irreducible: indeed, this follows from Theorem 2 as T C Z. Theorem 3

Continus the Conjecture stated in the introduction for all resulting PSL(2, R)-invariant
suborbifolds (up to the irreducibility of the decomposition in the case of suborbifolds
£ ^ f,Z).

As proved in [FMZ2], Appendix B, Theorem 8, from Theorem 1 and Theorem 3

above and from Theorem 3 of [FMZ2] we can derive the following result.

Corollary 1.1. Ifthe neutral Oseledets subbundle Eq ofthe Kontsevich-Zorich cocy-
cle over the invariant suborbifold X is PSL(2, W)-invariant, then it is continuous, in

fact smooth. In particular,; since T C Z, the subbundle Eq is not almost everywhere
PSL(2, R)-invariant over the suborbifold Z endowed with the canonical measure.

A. Avila, C. Matheus and J.-C. Yoccoz [AMY] have recently proved that indeed

Eq is also not continuous over the suborbifold Z.

Note that a Riemann surface X, or a pair given by a Riemann surface and an
Abelian or quadratic differential, might have a nontrivial automorphism group. This

automorphism group is always finite. The über of the Hodge bündle H^ over the

corresponding point x of the moduli space is defined as the quotient of H1(X, C)
by the corresponding finite group Gx of induced linear automorphisms. In other
words, the bündle H^ is an orbifold vector bündle, in the sense that it is a fibered
space H over a base M such that the über Hx over any x e M is the quotient
Hx Vx/Gx of a vector space Vx over a finite subgroup Gx of the group Aut(Tx)
of linear automorphisms of Vx.

Since the Hodge bündle H^ is an orbifold vector bündle, the complex Kontsevich-
Zorich cocycle is an example of an orbifold linear cocycle on an orbifold vector bündle
H over a flow Tt onM, i.e., a flow Ft on H such that the restrictions Ft: Hx -> HrtX
are well defined and are projections of linear maps Ft: Vx -> Vt(X. Note that such

linear maps are only defined up to precomposition with the action of elements of Gx
on Vx and postcomposition with the action of elements of GrtX on VrtX-

In this paper we always work within the locus of cyclic Covers. For any generic
cyclic cover x as in (1.2) the automorphism group is isomorphic to the cyclic group
Z/3Z. The induced action on the subspaces 8X (£) and 8X (£2) is particularly simple:
the induced group Gx of linear automorphisms acts by multiplication by the complex
numbers for k 0,1,2 (we recall that £ e2ju/3). This implies that any complex
vector subspace of 8X(£) or 8x(f2) is invariant. The elements of the monodromy
representations of the bundles £?(£) and £(£2), hence in particular the restrictions
of the Kontsevich-Zorich cocycle to those bundles, are thus given by linear maps
defined only up to composition with the maps Id, that is, up to multiplication by
f*,for k 0,1,2,
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1.2. Lyapunov spectrum ofpseudo-unitary cocycles. Consider an invertible trans-
formation (or a flow) ergodic with respect to a finite measure. Let U be a log-integrable
cocycle over this transformation (flow) with values in the group U(p,q) of pseudo-
unitary matrices. The Oseledets Theorem (i.e. the multiplicative ergodic theorem)
can be applied to complex cocycles. Denote by Ai,..., Xp+q the corresponding
Lyapunov spectrum.

Theorem 4. The Lyapunov spectrum of a pseudo-unitary cocycle U is Symmetrie
with respect to the sign change and has at least \p — q\ zero exponents.

In other words, the Lyapunov spectrum of an integrable cocycle with the values
in the group U (p, q) ofpseudo-unitary matrices has the form

Ai > •• • > Ar > 0 • • • 0 > —Ar > ••• > -Ai,

where r min (/?, q). In particular, ifr — 0, the spectrum is null.

This theorem might be known to experts, and, in any case, the proof is completely
elementary. For the sake of completeness, it is given in Appendix A.

1.3. Outline of the proofs and plan of the paper. We begin by recalling in Sec-

tion 2.1 some basic properties of cyclic Covers. In Section 2.2 we construct plenty of
more general PSL(2, R)-invariant orbifolds in loci of cyclic Covers.

By applying results of C. McMullen [McM3], we then show in Section 2.1 that
in the particular case of the arithmetic Teichmüller disc T defined in Section 1.1, the

Splitting H= S(^)®S (£2) of the complex Hodge bündle over T decomposes the

corresponding cocycle over the Teichmüller geodesic flow on T into the direct sum
of complex conjugate U(3,1) and U(l, 3)-cocycles. By Theorem 4 the Lyapunov
spectrum of each of the two cocycles has the form

{A, 0,0, —A},

with nonnegative A. Since the two cocycles are complex conjugate, their Lyapunov
spectra coincide. Hence, the Lyapunov spectrum of real and complex Hodge bundles

over T has the form
{A,A,0,0,0,0,—A,—A}.

To compute A we construct in Section 3.1 the PSL(2, Z)-orbit of the square-
tiled surface S. This orbit is very small: it contains only two other square-tiled
surfaces. Knowing the cylinder decompositions of the resulting square-tiled surfaces

in the PSL(2, Z)-orbit of S, we apply a formula from [EKZ2] for the sum of the

positive Lyapunov exponents of the Hodge bündle over the corresponding arithmetic
Teichmüller disc T to get the explicit value A 4/9. This computation is performed
in Section 3.2. (In Section 6 we present an alternative, more general, way to compute
Lyapunov exponents in similar situations.)
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In Section 5 we check the irreducibility of the subbundles 8 (£) and 8 (£2) essen-

tially by hands. Note that the monodromy representationof the subbundles 8 (£) and

8 (£2) factors through the action of the Veech group of T. We encode the action of
the group PSL(2, Z) on the orbit of S by a graph T associating oriented edges to the
basic transformations

Ä (J and r=(°
The resulting graph T is represented at Figure 5, p. 531. We choose a basis of
homology on every square-tiled surface in the PSL(2, Z)-orbit of S and associate to

every oriented edge of the graph the corresponding monodromy matrix. Any closed

path on the graph defines the free homotopy type of the corresponjding closed path on
the Teichmüller curve T. The monodromy along such path on T can be calculated
as the product of matrices associated to edges of the graph in the order following
the path on the graph. In Proposition 5.1 we construct two explicit closed paths and

show that the induced monodromy transformations cannot have common invariant
subspaces. This implies the irreducibility Claims in Theorems 1 and 2. The evaluation
of the monodromy representation is outlined in Appendix B. However, in order to
avoid overloading the paper, we have left the details to Appendix B of the extended
version [FMZ3] of this paper.

Following a Suggestion ofM. Möller, we compute in Section 5.2 the Zariski closure
of the monodromy group of 8 (£) (Lemma 5.2) and prove in Proposition 5.3 the strong
irreducibility^ of 8 (£) and of 8 (£2).

In Section 6 we prove the non-varying phenomenon for certain PSL(2, R)-invariant
loci of cyclic Covers. Namely, we show that the sum of the Lyapunov exponents is

the same for any PSL(2, R)-invariant suborbifold in such loci.
Finally, in Appendix A we discuss some basic facts concerning linear algebra of

pseudo-unitary cocycles and prove Theorem 4.

2. Hodge bündle over invariant suborbifolds in loci of cyclic Covers

2.1. Splitting of the Hodge bündle over loci ofcyclic Covers. Consider a collection
of n pairwise-distinct points z\ e C. The equation

wd (z - Zi).. .(z -zn)(2.1)

defines a Riemann surface X, and a cyclic cover p \ X —> CP1, p(w,z) z.
Consider the canonical generator T of the group Z/dZ of deck transformations; let

T*: H\X'X) -> H\X'X)
4I.e., the irreducibility of lifts of and 8(f2) to any finite (possibly ramified) cover of T.
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be the induced action in cohomology. Since (T*)d Id, the eigenvalues of T*
belong to a subset of {£,..., where £ exp (^p). We excluded the root
£° 1 since any cohomology class invariant under deck transformations would be a

pullback of a cohomology class on CP1, and H1 (CP1) 0.

For k 1,..., d — 1 set

Write

and

S(gk) := Ker(T* — t,kId)c Hl(X\C). (2.2)

S1'0^*) := S(£*) D H1'0

g°,i(^) := g(^) n ff0'1.

Since a generator T of the group of deck transformations respects the complex struc-

ture, it induces a linear map

T*: H1,0(X) -> H1,0(X).

This map preserves the pseudo-Hermitian form (1.1) on H1,0(X). This implies that
T* is a unitary Operator on H1,0(X)9 and hence H1,0(X) admits a Splitting into a

direct sum of eigenspaces of 7"\

d-1
Hh0(X) ® G1'0^*). (2.3)

k= 1

The latter Observation also implies that for any k 1,..., d — 1 one has 8 (£^)
81'0 (£^) 0 80' i (£^). The vector bündle 81'° (£^) over the locus of cyclic Covers (2.1)
is a holomorphic subbundle of H^.

The decomposition
H\X'X) ®G(f*),

is preserved by the Gauss-Manin connection, which implies that the complex Hodge
bündle H^ over the locus of cyclic Covers (2.1) splits into a direct sum of the sub-

bundles 8 (£^) invariant with respect to the parallel transport of the Gauss-Manin
connection.

Theorem (C. McMullen). The signature of the intersection form on 8 (f~k) is given
by p,q)([n(k/d) - 1], [«(1 - kfd) - 1]). (2.4)

In particular,

dimS(f')= I""2 Vi^eskn. (25)
\n — 1 otherwise.
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By applying these general results to the particular cyclic cover (1.2), we see that

H= £?(£) 0 8(£2), where the signature of the intersection form on 8(£) is (3,1)
and on f?(£2) £?(£) is (1,3).

Bibliographical remarks. Cyclic Covers over CP1 branched at four points were
used by I. Bouw and M. Möller in [BMö] to construct new series of nonarithmetic
Teichmüller curves. Similar cyclic Covers were independently used by G. Forni [F2]
and then by G. Forni and C. Matheus [FM] to construct arithmetic Teichmüller curves
with completely degenerate spectrum of the Lyapunov exponents of the Hodge bündle
with respect to the geodesic flow. The monodromy of the Hodge bündle is explicitly
described in these examples by C. Matheus and J.-C. Yoccoz [MY]. More general
arithmetic Teichmüller curves corresponding to cyclic Covers over CP1 branched at

four points are studied in [FMZ1]. The Lyapunov spectrum of the Hodge bündle over
such arithmetic Teichmüller curves is explicitly computed in [EKZ1 ]. More generally,
Abelian Covers are studied in this context by A. Wright [W]. Our consideration of
cyclic Covers as in (2.1) is inspired by the paper of C. McMullen [McM3], where he

studies the monodromy representation of the braid group in the Hodge bündle over
the locus of cyclic Covers.

For details on geometry of cyclic Covers see the original papers of I. Bouw [Bl]
and [B2] and of J. K. Koo [Koo], as well as the recent paper of A. Elkin [El] citing
the first three references as a source.

2.2. Construction of PSL (2, R) -invariant orbifolds in loci of cyclic Covers. Sup-

pose for simplicity that d divides n, where n and d are the integer parameters in equa-
tion (2.1). The reader can easily extend the considerations below to the remaining
case.

Let X be a PSL(2, R)-invariant suborbifold in some Stratum ß(mi,..., m^, — 1*)

in the moduli space of quadratic differentials with at most simple poles on CP1. For

any such invariant orbifold X and for any couple of integers (d, n) we construct a

new PSL(2, R)-invariant suborbifold X such that the Riemann surfaces underlying
the Hat surfaces from X belong to the locus of cyclic Covers (2.1). The construction
is performed as follows.

Let S (CP1,#) e X. In the simplest case, when the total number k + / of
zeroes and poles of the meromorphic quadratic differential q on CP1 coincides with
the number n of ramification points, one can place the points z\,... zn exactly at the

zeroes and poles of the corresponding quadratic differential q. (Here we assume that
d divides n, so that the cyclic cover as in (2.1) is not ramified at infinity.) Consider the
induced quadratic differential p*q on the cyclic cover X. By applying this Operation
to every Hat surface S e X, we get the promised orbifold X. Since by assumption
X is PSL(2, R)-invariant, the induced orbifold X is also PSL(2, R)-invariant, and in
the simplest case, when k + / n, we get dimX dimX. In particular, starting
with a Teichmüller curve, we get a Teichmüller curve.
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In the concrete example from Section 1.1 we Start with an arithmetic Teichmüller
curve T corresponding to the Stratum Q(l, — l5). Placing the points z\,... ,Zß at

the Single zero and at the five poles of each flat surface S in T we get an arithmetic
Teichmüller curve T corresponding to the Stratum Q(7, l5). By construction, T
belongs to the locus of cyclic Covers (1.2).

The latter construction can be naturally generalized to the case when k + l ^ n.
When PX is a nonarithmetic Teichmüller curve, the construction can be modified

by placing the points z\,..., zn at all possible subcollections of n distinct periodic
points; see [GHS] for details.

The construction can be generalized further. Let X\ be a PSL (2, R)-invariant
suborbifold of some Stratum Qi (m\,..., — 1,..., — 1) in genus zero. Fix a sub-

set £ in the ordered set with multiplicities {m\,..., — 1,..., — 1}; let j be the

cardinality of £. For each flat surface S (CP1, q) in <56, consider all possible cyclic
Covers as in (2.1) such that the points z\,...,Zj run over all possible configurations
of the zeroes and poles corresponding to the subset £, and the remaining points

Zj + \,..., zn run over all possible configurations ofn — j distinct regulär points in S.

Considering for each configuration a quadratic differential p*q on the resulting cyclic
cover X, we construct a PSL(2, R)-invariant suborbifold X of complex dimension

(dimX + n — j).
Of course, the proof that when X\ is endowed with a Borel probability measure,

invariant with respect to the natural action of the group PSL(2, R) and ergodic with
respect to the Teichmüller geodesic flow, the new suborbifold X\ is also endowed
with a PSL(2, R)-invariant measure satisfying the same properties, requires in gen-
eral case n — j >0 some extra work (see, for example, the paper [EMkMr] in
this spirit).

3. Concrete example: the calculations

In this section we treat in all details the example from Section 1.1.

3.1. The PSL(2,Z)-orbit. It is an exercise (left to the reader) to verify that the

PSL(2, Z)-orbit of the square-tiled surface S of Figure 1 has the structure presented
in Figure 2 below. For historical reasons, the initial surface S is denoted by S3 there.

Convention 1. For typographical reasons, we are forced to use a peculiar orientation
as in Figure 2 and in all remaining figures in this paper. The notions "horizontal" and

"vertical" correspond to this "landscape orientation": "horizontal" means "parallel
to the x-axes" and "vertical" means "parallel to the y-axes". Under this Convention,
the leftmost surface S3 of Figure 2 has a Single horizontal cylinder of height 1 and

width 6.
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Figure 2. PSL(2, Z)-orbit of S.

The three square-tiled surfaces S1, S2, S3 in the PSL(2, Z)-orbit of S S3 are

presented in Figure 5. This figure also shows how the surfaces S1, S2, S3 are related

by the basic transformations

h (o 1) and r (l o1)

given by the action of PSL(2, Z) on the flat surfaces S\, S2, S3.

3.2. Spectrum of Lyapunov exponents

Lemma 3.1. The sum ofthe nonnegative Lyapunov exponents of the Hodge bündle
H1 with respect to the geodesie flow on T is equal to 8/ 9.

Proof By the formula for the sum of Lyapunov exponents of the subbundle Hlj,

H\ from [EKZ2] one has

1 "dj(dj+ 4) TT2

Ai+-- + As d+2 +T'Carea(5"} (3'1}

j 1 J
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where the Siegel-Veech constant for the corresponding arithmetic Teichmüller disc

T is computed as

wf) 4 E E —•* «r<i(PSL(2,Z).S)s s w"
cylinders cyl/y

jsuch that

$i =Ucyl/y

In our case T C ö(7, l5), so the first summand in (3.1) gives

1 "dj(dj+4)
_ 1/7-11 1 - 5\ _

19

24 L dj +2 ~ 24 I 9
+ 5' ~3~ / ~ 27'

7 1 J

Observing the cylinder decompositions of the three surfaces in the PSL(2, Z)-orbit
of the initial square-tiled cyclic cover, we get:

TT2 171 71 IAA 5

T ' Cm*(J
3 \I8

2
\12 6// _ 27

Thus, taking the sum of the two terms in (3.1) we get

19 5 8
X14~ • • • 4~ A4 — — -(- — — —

27 27 9

Consider the PSL(2, R)-invariant subbundles £(£), S(<(2) of the Hodge bündle

over T as in (2.2). Note that in our case we have H^ 8 (£) 0 8 (£2).

Proposition 3.1. The Lyapunov spectrum of the real and complex Hodge bundles

H^ and H^ with respect to the geodesic flow on the arithmetic Teichmüller curve T
is

4 4 4 41
-,0,0,0,0,-9' 9'

The Lyapunov spectrum ofeach ofthe subbundles 8 (£), 8 (£2) with respect to the

geodesic flow on T is
4 4]

0, 0,—9' 9 j

Proof Note that the vector bundles 8 (£) and 8 (f2) are complex conjugate. Hence,
their Lyapunov spectra coincide.

The pseudo-Hermitian Hodge bilinear form on H^ is preserved by the Gauss-
Manin connection. By the theorem of C. McMullen cited at the end of Section 2.1, the



Vol. 89 (2014) Zero Lyapunov exponents of the Hodge bündle 505

signature of itsrestriction to £?(£),£?(£2) equals to (3,1) and (1, 3) respectively. Thus,
the restriction of the cocycle to 8 (£), 8 (£2) lies in U(3,1) and U(l, 3) respectively.
Hence, by Theorem 4 the spectrum of each of 8 (£) and 8 (£2) has the form

{A,0, 0, —A>,

whereA > 0. Since//^ f?(£)0f?(£2), the spectrum of Lyapunov exponents of the

Hodge bündle H^ is the union of spectra of 8 (£) and of 8 (£2). Since the Lyapunov
spectrum of coincides with the one of H^ we conclude that the spectrum of
is

{A,A,0, 0, 0, 0, -A,-A}.
By Lemma 3.1 we get A 4/9.

Recall that the Oseledets subspace (subbundle) Eq (the one associated to the zero
exponents) is called neutral Oseledets subspace (subbundle).

Proposition 3.2. The Kontsevich-Zorich cocycle over T acts by isometries on the

neutral Oseledets subbundle Eq of each ofthe bundles 8(£),8 (£2). In other words,
the restriction of the pseudo-Hermitian form to the subbundle Eq of each of the

bundles 8(£), 8(£2) is either positive-definite or negative-definite.

Proof The Kontsevich-Zorich cocycle over T on 8 (£), respectively, on 8 (£2), is a

U(3,1), respectively, aU(l, 3), cocycle. Moreover,by Proposition3.1, thedimension
of the corresponding neutral Oseledets subspaces is 2 3 — 1 |1 — 3|. By
Lemma A.5 below, this implies that the Kontsevich-Zorich cocycle acts by isometries

along the neutral Oseledets subspace.

Remark 3.1. This proposition was motivated by a question of Y. Guivarch to the
authors.

We prove in Section 6 a non-varying phenomenon similar to the one proved by
D. Chen and M. Möller in [ChMö] for strata in lower genera: certain invariant loci
of cyclic Covers share the same sum of the Lyapunov exponents.

4. Closed geodesics on an arithmetic Teichmüller curve

In this section we describe basic facts concerning the geometry of a general
arithmetic Teichmüller curve. We do not claim originality: these elementary facts are in

part already described in the literature (see [Hr], [HL1], [HS], [MMöY], [McM2],
[Schml], [Schm2], [Y], [Zm], [ZI] and references there); in part widely known in
folklore concerning square-tiled surfaces (as in recent experiments [DxL]); in part
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they can be extracted from the broad literature on coding of geodesics on surfaces of
constant negative curvature (see, for example, [Da] and [Ser] and references there).

Consider a general square-tiled surface So. Throughout this section we assume
that the flat structure on So is defined by a quadratic differential no matter whether
it is a global Square of an Abelian differential or not. In particular, we deviate from
the traditional Convention and always consider the Veech group T (So) of So as a

subgroup of PSL(2, R), and never as a subgroup of SL(2, R).
We use the same notation T for the arithmetic Teichmüller curve defined by So

and for the corresponding hyperbolic surface with cusps.
Note that, when working with geodesic flows, in some situations one has to

consider the points of the unit tangent bündle while in the other situations the points of
the base space. In our concrete example with arithmetic Teichmüller curves, the orbit
PSL(2, R) • So C Qg of a square-tiled surface So in the moduli space of quadratic
differentials &g plays the role of the unit tangent bündle to the arithmetic Teichmüller
curve T c Mg in the moduli space Mg of curves. The corresponding projection is

defined by "forgetting" the quadratic differential:

(£Lg 3 S (C,cf) i—C £ (M.g.

4.1. Encoding a Veech group by a graph. Recall that PSL(2, Z) is isomorphic to
the group with two generators h and r satisfying the relations

r2 id and (Ar)3 id. (4.1)

As generators r and h one can chose matrices

a=(ö ')md r=(i A
Given an irreducible square-tiled surface So defined by a quadratic differential,

construct the following graph G. Its vertices are in a bijection with the elements of
the orbit PSL(2, Z) • S0. Its edges are partitioned in two types. Edges of "r-type"
are not oriented. Edges of "/z-type" are oriented. The edges are naturally constructed
as follows. Each vertex S; £ G is joined by the edge of the r-type with the Vertex

represented by the square-tiled surface r • S;. Each vertex S; £ G is also joined by
the oriented edge of the "/z-type" with the vertex h • S;, where the edge is oriented
from Si to h • S;.

By construction, the graph G with marked vertex S0 is naturally identified with the

coset PSL(2, Z)/ T(So), where T (So) is the Veech group of the square-tiled surface

So. (Irreducibility of So implies that T(So) is indeed a subgroup of PSL(2, Z).)
The structure of the graph carries complete information about the Veech group

T(S0). Namely, any path on the graph G composed from a collection of its edges
defines the corresponding word in "letters" /z, /z_1, r. Any closed path starting at So
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naturally defines an element of the Veech group r(S0) G PSL(2, Z). Reciprocally,
any element of T(So) represented as a word in generators A, A_1, r defines a closed

path starting at So. Two closed homotopic paths, with respect to the homotopy in
G with the fixed base point S0, define the same element of the Veech group r(S0).
Clearly, the resulting map

tti(G, So) -> r(S0) c PSL(2, Z) (4.2)

is a group homomorphism, and even epimorphism.
For any flat surface S g • So in the PSL(2, R)-orbit PSL(2,R) • So of the

initial square-tiled surface So the Veech group T (S) is conjugated to the Veech group
of S0, namely, T(S) g • T(S0) • g~l. One can construct an analogous graph
Gs for S which would be isomorphic to the initial one. The only change would
concern the representation of the edges in PSL(2, R): the edges of the A-type would
be represented now by the elements ghg~l and the edges of the r-type would be

represented by the elements grg~l.
Note that by a result of P Hubert and S. Lelievre [HL2], in general, T(So) is not

a congruence subgroup.
One can formalize the properties of the graph G as follows:

(i) Each vertex of G has valence three or four, where one valence is represented
by an outgoing edge of the "A-type", another one - by an incoming edge of the

"A-type"; the remaining one or two valences are represented by an r-edge or an

r-loop respectively;

(ii) The path hrhrhr (where we follow the orientation of each A-edge) starting from
any vertex of the graph G is closed.

4.2. Partition of an arithmetic Teichmüller disc into hyperbolic triangles. Let
us consider the modular curve (modular surface)

MOS) PSO(2,R)\PSL(2,R)/PSL(2,Z),

and its canonical fundamental domain in the upper half plane, namely the hyperbolic
triangle (with angles 0, it/3, tt/3)

{z | Imz > 0} fl {z | —1/2 < Rez < 1/2} D {z | |z| > 1}. (4.3)

Any arithmetic Teichmüller curve T has a natural structure of a (possibly ramified)
cover over the modular curve, and, thus, it is endowed with the natural partition by
isometric triangles as above. We accurately say "partition" instead of "triangulation"
because of the following subtlety: the side of the triangle represented by the circle are
in the left picture of Figure 3 might be folded in the middle point B and glued to itself,
as it happens, for example, already for the modular surface MOS). The vertices and

the sides of this partition define a graph G embedded into the compactified surface
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T, where we apply the following Convention: each side of the partition, which is bent
in the middle and glued to itself, is considered as a loop of the graph, see Figures 3

and 4. In particular, the middle point of such side is not a Vertex of the graph G.

The degree of the cover T -> MOS) equals to the cardinality of the PSL(2, Z)-
orbit of the initial square-tiled surface So,

The cover T -> MOS) might be ramified over two special points of MOS). The first
possible ramification point is the point B (having coordinate i)\ it corresponds to the
Hat torus glued from the unit Square, see Figure 3. The second possible ramification
point is the point A represented by the identified corners e~171^ and el7t^3 of the

hyperbolic triangle (4.3). The latter point corresponds to the flat torus glued from the

regulär hexagon.

Any preimage of the point B (see Figure 3) is either regulär or has ramification
degree two. In the first case the preimage is a conical singularity of the hyperbolic
surface 7 with the cone angle n (as for the modular surface MOS) itself); in the
latter case it is a regulär point of 7.

Any preimage of the point A (see Figure 3) is either regulär or has the ramification
degree three. In the first case the preimage is a conical singularity of the hyperbolic
surface 7 with the cone angle 2tt/3 (as for the modular surface MOS) itself); in the
latter case it is a regulär point of 7.

For each of the two special points of the base surface MOS) some preimages might
be regulär and some preimages might be ramification points. The cover 7 -> MOS)
does not have any other ramification points.

C

Figure 3. Modular surface, its fundamental domain, and associated graphs G and G

deg (T -> MOS))card (PSL(2, Z) • So). (4.4)
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A square-tiled surface S (X, q) in the moduli space of quadratic differentials
defines a conical point X of the arithmetic Teichmüller disc if and only if (X, q) and

(X, —q) dehne the same point in the moduli space. In other words, a square-tiled
surface S projects to a conical point of the arithmetic Teichmüller disc if turning it
by tt/2 we get an isomorphic square-tiled surface.

4.3. Encoding an arithmetic Teichmüller curve by a graph. Note that the set

of the preimages in T of the point B (with coordinate i) in MOS) (see Figure 3)
under the cover T MOS) coincides with the collection of the projections of the

orbit PSL(2, Z) • So in the moduli space Og of quadratic differentials to the moduli

space Mg of curves. Since the cover T -> MOS) is, in general, ramihed over i,
the cardinality of the latter set might be less than the degree (4.4) of the cover. In
this sense, the square-tiled surfaces are particularly inconvenient to enumerate the

hyperbolic triangles as above.

Let us consider a hat torus T which does not correspond to any of the two conical
points of the modular surface MOS). For example, let T correspond to the point M
of the fundamental domain. Let

* (o ,/2)ePSL<2.R>-

We have that T g - To, where T0 Stands for the torus glued from the Standard unit
Square. Let us then consider the following two closed paths yh > Yr on the modular
surface starting at 4 i, see Figure 3. The path yh follows the horizontal horocyclic
loop, while the path yr descends along the vertical geodesic from M to i and returns
back following the same vertical geodesic. The point T of MOS) and the two loops

yh, yr can be considered as a realization of the graph Gr under the usual Convention
that the "folded" path yr is considered as the loop of the graph.

For any square-tiled surface So consider the surface S g • So in the PSL(2, R)-
orbit of So. By construction, it projects to T g • T0 under the cover T MOS).
Let us consider all preimages of T under this cover, and consider the natural lifts of
the loops yh and yr. Under the usual Convention that "folded" paths are considered
as loops of the graph, we get the graph Gs from Section 4.1.

The geometry of the hyperbolic surface T is completely encoded by each of the

graphs G ~ Gs and G. For example, the cusps of T can be described as follows
(see [HL1]).

Lemma 4.1. The cusps ofthe hyperbolic surface T are in the natural bijection with
the orbits ofthe subgroup generated by the element
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on G ~ PSL(2, Z)/T(S0). In other words, the cusps ofthe hyperbolic surface T
are in the natural bijection with the maximal positively oriented chains ofh-edges in
the graph G.

Remark 4.1. As it was pointed out by D. Zmiaikou, the lemma above should be

applied in the context of the action of PSL(2, R) and not of SL(2, R), see [Zm].

It is clear from the construction that the graphs Gs and G are in natural duality:
under the natural embedding of Gs into T described above, the vertices of the graph
Gs are in the canonical one-to-one correspondence with the hyperbolic triangles in
the partition of T; the edges of the graphs Gs and G are also in the canonical one-
to-one correspondence; under our usual Convention concerning the loops, one can

assume that the dual loops intersect transversally.
This allows us to encode the paths on T, and, more particularly, the closed loops on

T with a fixed base point (or rather the homotopy classes of such loops in a homotopy
fixing the base point), by the closed loops on the graph G. This Observation is used

in the next section, where we discuss the monodromy representation of our main

example, that is, the arithmetic Teichmüller curve T defined in Section 1.1.

Remark 4.2. One can go further, and encode the hyperbolic geodesics on any
arithmetic Teichmüller disc using the continued fractions and the associated sequences in
"letters" A, A_1, r. This coding is the background of numerous Computer experiments
evaluating approximate values of Lyapunov exponents of the Hodge bündle over gen-
eral arithmetic Teichmüller discs, as, for example, the ones described in [EKZ2] or
in [DxL]. We refer the reader to the detailed surveys [Ser] and [Da] (and to references
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cited there) for generalities on geometric coding of geodesics on the modular surface.

The coding adapted particularly to Teichmüller discs is described in [MMöY].

5. Irreducibility of the Hodge bündle in the example

In this section we prove that the orthogonal Splitting into the subbundles &(£) and

8 (£2) is the unique irreducible decomposition of the Hodge bündle into PSL(2, R)-
invariant (continuous) complex subbundles. We then determine the Zariski closure
of the monodromy representations on the bundles 8 (£) and 8 (£2) and generalize our
irreducibility result to all finite Covers of the Teichmüller curve T (strong irreducibility).

5.1. Irreducibility of the decomposition. We Start with the following elementary
lemma from linear algebra which we present without proof.

Lemma 5.1. Let A, B be two nxn-matrices. If det(AB — BÄ) 0, then the cor-
responding linear automorphisms of Rw (respectively Cn) do not have any common
one-dimensional invariant subspaces.

It would be convenient to work with the dual homology vector bündle over the
Teichmüller curve T and with its decomposition into direct sum of PSL(2, R)-invariant
subbundles £?*(£) 0 8*(£2), where

8*tfk) := Ker(r* — Id) c //i(Y;C),

compare to (2.2). Of course, since Hx(X;C) and Hi(X;C) are in duality, we
can safely replace 8(fk) with 8*f$k) in our subsequent discussion of the complex
Kontsevich-Zorich cocycle over T.

Proposition 5.1. The subbundles f?(£) and f?(£2) over the Teichmüller curve T
are irreducible, i.e., they do not have any nontrivial PSL(2,R)-invariant complex
subbundles.

Proof. We note that £?*(£) and f?*(£2) are complex-conjugate and the monodromy
respects the complex conjugation, hence it suffices to prove that one of them, for
instance 8* (g) is irreducible. We take the following two closed oriented paths p\ and

P2 starting and ending at the same Vertex Si, on the graph of Figure 5 (representing
the PSL(2, Z)-orbit of S):

px ; h • rh~3r • h • rh~2r,

p2 : rh~xr •h3•rh~xr,
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where each path should be read from left to right. The paths are chosen to be compat-
ible with the orientation of the graph. By the explicit calculation of the monodromy5
representation performed in Section B.3 of Appendix B (see also Section B.3 of
Appendix B of [FMZ3] for details), one can compute the monodromy X, Y : £?*(£) ->
£?* (£) along the paths p\, P2 respectively, and verify that det(X Y — YX) ^ 0. Hence,
the same property is valid for the monodromy along the two closed paths on the
Teichmüller curve T whose free homotopy types are represented by the paths p\, P2 on
the graph.

From Lemma 5.1 one concludes that £?*(£) does not have any one-dimensional
PSL(2, R)-invariant subbundles. Since the monodromy preserves the pseudo-Hermi-
tian intersection form, which is non-degenerate, by duality the complex four-dimen-
sional bündle £?* (£) does not have any PSL(2, R)-invariant codimension one subbundles,

i.e., three-dimensional ones.
Given the monodromy matrices X, Y along the paths pi, p2 one can compute

(see again Section B.3 of Appendix B of this paper or of [FMZ3] for details) the
induced monodromy matrices [/, V in the second wedge product A2f?*(£) of £?*(£),
and verify that det(UV — VU) ^ 0. This proves that £?*(£) does not have any
two-dimensional PSL(2, R)-invariant subbundles.

Remark. The same kind of a straightforward proof of irreducibility based on Lemma

5.1 was implemented in a similar setting in Appendix B of [Z2].

Proposition 5.2. The complex Hodge bündle over the Teichmüller curve T has

no nontrivial PSL(2,R)-invariant complex subbundles other than the subbundles

ß(f) and 8 (£2).

Proof. By Proposition 5.1 the bundles £?(£) and 8(f2) do not have any non-trivial
PSL(2, R)-invariant subbundles. Since the complex Hodge bündle over T can
be decomposed as an orthogonal direct sum

Hlc Stf) © 6?(£2),

this implies that cannot have PSL(2, R)-invariant subbundles of dimension 1,

2, 3, otherwise the orthogonal projections to the direct summands would produce
nontrivial PSL(2, R)-invariant subbundles. Moreover, since the Hat connection
preserves the nondegenerate pseudo-Hermitian intersection form, this implies that the

orthogonal complement to a PSL(2, R)-invariant subbundle cannot have dimension
1, 2, 3, and thus the Hodge bündle does not have any PSL(2, R)-invariant subbundles

of dimension 5, 6, 7.

If there existed a PSL(2, R)-invariant complex subbundle V of dimension 4 dif-
ferent from 8 (£) and 8 (£2), its orthogonal projections n\, tt2 to 8 (£) and 8 (£2),
respectively, would be PSL(2, R)-invariant isomorphisms. The composition itf1 o tt2

5 Note that all monodromy matrices are defined up to a multiplication by the complex numbers k
0, 1,2, induced by the action of the automorphism group of a cyclic cover (1.2).
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would establish a PSL (2, R)-invariant isomorphism between subbundles £?(£) and

8 (£2). This would imply that the vector bundles 8 (£) and 8 (£2) would be isomor-

phic and would have isomorphic monodromy representations. However the bundles

£?(£) and 8(£2) are complex conjugate and the monodromy representation respects
complex conjugation, hence the proof will be completed by Unding a monodromy
matrix C on 8 (£) which has a different spectrum from its complex conjugate C even

up to multiplication times for k — 0,1,2.
In fact, let us consider closed paths /xi and fi2 starting and ending at the same

vertex S3 S on the graph of Figure 5 given by

fi 1 := h and \i2 (r Xh lr) • (r lh V).„-U-F (5.1)

A closed path on the graph of the PSL(2, Z)-orbit of S defines the free homotopy
type of a path on the corresponding arithmetic Teichmüller curve T. An explicit
computation (see Sections B.2 and B.3 ofAppendix B of this paper or of the extended
version [FMZ3] for details) shows that the monodromy matrices A,B: £*(£) ->
£?*(£) associated to /xi, /jl2 are

/ 0

K

0

0

A := 4or

0

0

K

0

c2

£

£

-t2

(5.2)

/
B := Ar

1c2

c-c2
1-t2

K

0
1 - K2

l-c

0 \
0

0
1

(5.3)

0

0

£

V w2
We claim that the spectrum of the matrix C B • A is different from that of its

complex conjugate C even up to the action of the automorphism group of the cyclic
cover, that is, up to multiplication by the complex numbers k — 0,1, 2.

In fact, a computation shows that (see Appendix C of the extended version [FMZ3]
of this paper)

C := B-A
n-K

K2 -1
U-1

t2
0

C-1
c-c2

0

0

K

w2

-2^
t2
-2
2U

(5.4)

and that the characteristic polynomial of the matrix C is

T* + (Zz-Z)T3-2ZzTz + (Zz-l)T + Z (T -1)(T3 -2<;TZ + 2T -Q. (5.5)

If the spectrum of C and C up to multiplication times £k,k 0,1,2, have a common
dement not equal to 1, then there exist k e {0,1,2} and T e C such that

r3 - 2 $t2+2r- (^r)3 - 2£(^r)2 + 2$kT 0.
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By subtracting the two identities above, taking into account that £3 1, we can
derive the following identity:

- i;)T2+ 2{^k + f - 1/f 0.

The rootsof the above second degree equation can becomputedbyhandfor/: 0,1,2
and it can then be checked that none of them is a root of the characteristic polynomial
in formula (5.5). The argument is therefore completed.

Corollary 5.1. The real Hodge bündle H^ over the Teichmüller curve T has no
non-trivial PSL(2, W)-invariant subbundles.

Proofi Let V be a PSL(2, R)-invariant subbundle of the real Hodge bündle over

the Teichmüller curve T. Its complexification Vc is a PSL(2, R)-invariant subbundle

of the complex Hodge bündle. Moreover, by construction it is invariant under the

complex conjugation. Since 8(£) and 8(£2) are complex conjugate, Proposition 5.2

implies that V is trivial.

5.2. Zariski closure of the monodromy group. Following a Suggestion ofM. Möller
we compute in this section the Zariski closure of the monodromy group of the bündle

£?(£). This computation implies a stronger version of Proposition 5.1 stated in
Proposition 5.3. The idea of this computation is due to A. Eskin.

Lemma 5.2. The connected component of the identity of the Zariski closure of the

monodromy group of the bündle 8 (tf) over the Teichmüller curve T is isomorphic to

SU(3,1).

Proof It follows from the theorem of C. McMullen cited in Section 2.1 that the

monodromy group G of the Hat bündle 8 (£) preserves the pseudo-Hermitian form
of signature (3,1). The direct computation of the generators of G shows that it is

generated by matrices having determinant with k integer. Hence, the connected

component of the Zariski closure of G containing the identity element is isomorphic
to a subgroup of SU(3,1). In order to prove that this subgroup is in fact the whole
SU (3,1), it is sufficient to show that the Lie algebra of the Zariski closure of G has the

same dimension as the Lie algebra su(3,1), that is, 15. In other words, it is sufficient
to find 15 linearly independent vectors in the Lie algebra of the Zariski closure of G,
which we do, basically, by hands.

For any hyperbolic (or parabolic) element C in G the vector X log(C) belongs
to the Lie algebra go of the Zariski closure of G. Also, together with any vector X,
the Lie algebra go contains the vector Adg (X) gXg~l, where g is any element in
G. Thus, it is sufficient to find a Single vector in the Lie algebra g0> then conjugate
it by elements of G; as soon as we get by this procedure 15 linearly independent
vectors, the proof is completed.
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The rest of the computation is computer-assisted. We first find an explicit hy-
perbolic 4x4 matrix C in G and an algebraic expression for the matrix P which
conjugates C to a diagonal matrix D. This allows us to compute X logC
P • log D • P~l with arbitrary high precision.

As soon as we have a collection of linearly independent vectors in q0 we construct
a new vector as follows: we take some element g in G and compute the distance from
gXg_1 to the subspace generated by our collection of independent vectors. If the
distance is large enough, the new vector is linearly independent from the previous
ones and we add it to our collection. If the distance is suspiciously small, we try
another element g in G.

This algorithm is implemented in practice as follows. Let A and B be the matrices
of formulas (5.2) and (5.3) respectively. Both elements are elliptic; A has order 18,

B has order 6; the monodromy group G is generated by A and B. We check that
the matrix C := BA of formula (5.4) is hyperbolic, then we compute X log C as

indicated above, and show that the 15 vectors

Remark 5.1. Our initial plan was to use parabolic elements in the group and not
hyperbolic ones. Parabolic elements have an obvious advantage that their logarithms
are polynomials and thus, the vector in the Lie algebra corresponding to an integer
parabolic matrix can be computed explicitly. As a natural candidate for a parabolic
element one can consider the map in cohomology of a square-tiled surface induced

by a simultaneous twist of the horizontal cylinders by

with n equal to, say, the least common multiple of the widths of the cylinders.
In the case of square-tiled surfaces corresponding to Abelian differentials we

would certainly get parabolic elements in this way. However, in our case square-
tiled surfaces correspond to quadratic differentials. A direct computation shows that
the square-tiled surfaces Si, S2, £3 in the PSL(2, Z)-orbit (see Figure 5) have the

following property: the waist curve of any horizontal cylinder is homologous to zero.
As a result, the monodromy along any path on the Teichmüller curve T represented
by an element hn as above is elliptic (i.e. has finite order) and not parabolic. We do

not know whether the monodromy group in our example has at least one parabolic
element.

An X-A~n, n 0 8;

B An X A~n B~\ « 0,2,3,4,5,6,

are linearly independent (see Appendix C of [FMZ3] for details).
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5.3. Strong irreducibility of the decomposition

Proposition 5.3. The subbundles 8 (Jf) and 8 (£2) over the Teichmüller curve T are
strongly irreducible, i.e., their lifts to any finite (possibly ramified) cover ofT are
irreducible.

Proof. First note that 8 (£) and 8 (£2) are complex-conjugate and the monodromy
respects the complex conjugation. Moreover, for any finite, possibly ramified, cover
the induced vector bundles stay complex conjugate. Thus, it suffices to show that one
of them, say, 8 (£) is strongly irreducible.

The second Observation is that the component of identity of the Zariski closure of
the monodromy group of a vector bündle is invariant under finite Covers. In order to
see this it is sufficient to note that for any hyperbolic or parabolic dement g in the

original monodromy group, the monodromy group of the vector bündle induced on
a finite cover contains some power of g. Thus, Lemma 5.2 implies the Statement of
the proposition.

We would like to derive from the above Proposition 5.3 a generalization of Proposition

5.2 to arbitrary finite Covers of the Teichmüller curve T. The proof of that

proposition can be in fact generalized after we have established the following alge-
braic lemma.

Lemma 5.3. The matrix C in formula (5.4) has a simple eigenvalue /x E C of
modulus one which is not a root ofunity.

Proof. Let P$(T) T3 —2^T2+2T—£ be the factor of the characteristic polynomial
of the matrix C, written in formula (5.5). Since £3 1 the relation P^{T)
P$(l/T) holds, hence P$(T) has exactly one root /x e C of modulus one (note
that P$(T) cannot have all the roots on the unit circle since the sum of all of its
roots is equal to —2£ which has modulus equal to 2). We will compute the minimal
polynomial M(T) (with integer coefficients) of /x and check that it is not a cyclotomic
polynomial. The general procedure to compute the minimal polynomial of the roots
of P^{T) is to compute the resultant of P^{T) and £3 — 1. In this particular case, it
can be done by hand as follows. Assume P% (T) 0, then T(T2 + 2) £(2 + T2),
hence

T3{T2 + 2)3 £3(2 + T2)3 (2 + T2)3.

It follows then that P$(T) is a divisor of the following polynomial with integer
coefficients:

Q(T) := T9 + 6T1 - 8T6 + 12T5 - 12T4 + 8T3 - 6T2 - 1.

The above polynomial factorizes as follows into irreducible factors:

Q(T) (T - l)(T2 -T + 1 )(T6 + 2T5 + 8 T4 + 5T3 + 8 T2 + IT + 1).
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(The above factorization can be guessed by reduction modulo 2. In fact, Q(T) =2
T9 -1 and T9 -1 =2 (T-1 ){T2 - T+ 1 + 1) and it is immediate to

check that the factors T — l,T2 — T+1 and T6 — T3 + 1 are irreducible modulo 2.)
Since Pj(T) and (P — 1)(P2 — P + 1) have clearly no common roots, it follows that

M(T) T6 +2P5 + 8 P4 + 5P3 + 8P2 + 2P + 1.

The polynomial M(T) is not cyclotomic. In fact, it is known (see [Mi]) that for all
positive integers n with at most two distinct odd prime factors, the n-th cyclotomic
polynomial has all the coefficients in {0,1, —1}. It is also known that if n has r
distinct odd prime factors then 2r is a divisor of the degree of the n-th cyclotomic
polynomial, which is equal to the value cp(n) of the Euler's ^-function. It follows that
all cyclotomic polynomials of degree 6 (which in fact appear only for n 7, 9,14
and 18) have all the coefficients in {0,1, —1}.

Proposition 5.4. The complex Hodge bündle H^ over anyfinite (possibly ramified)

cover of the Teichmüller curve T has no nontrivial PSL(2,R)-invariant complex
subbundles other than the lifts of the subbundles 8 (£) and 8 (£2).

Proof By Proposition 5.3 the lifts of the bundles 8 (£) and 8 (f2) to any finite (possibly

ramified) cover of the Teichmüller curve T do not have any non-trivial PSL(2, R)-
invariant subbundles. By the same argument as in the proof of Proposition 5.2, the

proof can then be reduced to prove that there is no PSL(2, R)-invariant isomorphism
between the lifts of the subbundles 8{f) and f?(£2), which are complex conjugate
subbundles of the Hodge bündle. By Lemma 5.3, the monodromy matrix C BA
of formula (5.4) has a (simple) complex eigenvalue /x e C of modulus 1 which is

not a root of unity. It follows that any power of C has a non-real eigenvalue of
modulus 1, hence in particular the spectrum of any power of C is different from the

spectrum of its complex conjugate. Thus for any (possibly ramified) finite cover of
the Teichmüller curve T, the monodromy representations on the lift of the bundles
8 (£) and 8 (f2) are not isomorphic. In fact, for any finite cover of the 5", there exists

a path with monodromy representation on the lifts of 8 (£) and of 8 (£2) given by a

power Ck of C and by its complex conjugate Ck respectively, which have different
spectrum and thus are not isomorphic.

By the same argument as in the proof of Corollary 5.1, this time based on Proposition

5.4 (instead of Proposition 5.2) we can prove that the real Hodge bündle is

strongly irreducible.

Corollary 5.2. The real Hodge bündle H^ over anyfinite {possibly ramified) cover

ofthe Teichmüller curve T has no non-trivial PSL(2, R)-invariant subbundles.
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6. Non-varying phenomenon for certain loci of cyclic Covers

It is known that the sum of the Lyapunov exponents of the Hodge bündle along
the Teichmüller geodesic flow is the same for all SL(2, R)-invariant suborbifold in

any hyperelliptic locus in the moduli space of Abelian or quadratic differentials,
see [EKZ2]. In the paper [ChMö] D. Chen and M. Möller proved the conjecture
of M. Kontsevich and one of the authors on non-varying of the sum of the positive
Lyapunov exponents for all Teichmüller curves in certain strata of low genera. We
show that analogous non-varying phenomenon is valid for certain loci ofcyclic Covers.

Let Mbea flat surface in some Stratum of Abelian or quadratic differentials.
Together with every closed regulär geodesic y on M we have a bunch of parallel
closed regulär geodesics filling a maximal cylinder cyl having a conical singularity
at each of the two boundary components. By the width w of a cylinder we call the

flat length of each of the two boundary components, and by the height h of a cylinder

- the flat distance between the boundary components.
The number of maximal cylinders filled with regulär closed geodesics of bounded

length w(cyl) < L is finite. Thus, for any L > 0 the following quantity is well
defined:

Nm(M.L).= —Y. Areafcyl). (6.1)
V J

cylCM
w(cy\)<L

Note that in the above definition we do not assume that the area of the flat surface
is equal to one. For a flat surface M denote by a proportionally rescaled flat
surface of area one. The definition of Narea(M, L) immediately implies that for any
L > 0 one has

Nmta(M{l),L)Narea(M, Area(M)L). (6.2)

The following limit, when it exists,

rn/r\ ^areaC^(l)? rz i\^areaC^O •— lim T~^ (6.3)
L—>+oo JtL

is called the Siegel-Veech constant. By a theorem of H. Masur and A. Eskin [EMa],
for any PSL (2, R)-invariant suborbifold in any Stratum of meromorphic quadratic
differentials with at most simple poles, the limit does exist and is the same for almost
all points of the suborbifold (which explains the term "constant"). Moreover, by
Theorem 3 from [EKZ2], in genus zero the Siegel-Veech constant careSi(M) depends

only on the ambient Stratum & {d\,..., dm) and:

1 dj(dj+ 4)
Carea(M) - ^

(6.4)
7 — 1
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LetiS (CP1,#) e &\(n — 5, — \n 1),wheren > 4. Supposethatthelimit(6.3)
exists for S. Let p: C -> CP1 be a ramified cyclic cover

wd (z-Zi)... (z - z„) (6.5)

with ramification points exactly at the singularities of q. Suppose that d divides n,
and that d > 2. Let us consider the induced Hat surface S := (C, p*q). The lemma
below mimics the analogous lemma in the original paper [EKZ2].

Lemma 6.1. The Siegel-Veech constants ofthe twoflat surfaces are related asfol-
lows:

7t ' Carea(S) when d is odd,
4 (6.6)
-j ' ^area(*5) when d is even.

Proofi Let us consider any maximal cylinder cyl on the underlying hat surface S. By
maximality of the cylinder, each of the boundary components contains at least one

singularity of q. Since S is a topological sphere, the two boundary components of
cyl do not intersect. Since q has a Single zero, this zero belongs to only one of the

two components of cyl. Since the other component contain only poles, it contains

exactly two poles.
Each of these two poles is a ramification point of p of degree d. Thus, any closed

geodesic (waist curve) of the cylinder cyl lifts to a Single closed geodesic of the length
d when d is odd and to two distinct closed geodesics of the lengths d/2 when d is

even.
Now note that, since d > 2 the quadratic differential p*q is holomorphic. The

condition that d divides n implies that p is non-ramified at infinity. At each of the

ramification points z\,..., zn the quadratic differential q has a zero or pole, and it has

no other singularities on CP1. Hence, the (nontrivial) zeroes of p*q are exactly the

preimages of the points z\,..., zn, and, hence, any maximal cylinder on S projects
to a maximal cylinder on S.

Note also that since S has area one, S has area d. We consider separately two
different cases.

Case when d is odd. Applying (6.2) followed by the definition (6.1) and then followed
by our remark on the relation between the corresponding maximal cylinders cyl and

cyl we get the following sequence of relations:

NaKa(S(i), Vd -L) Narea(S, d L)

\ > Area (cyl) \ > Area (cyl)
A. Area(S) rA Area(,S)
cyICS

V ' C/Ic=5,
^ w(cy\)<L

w(cyl)<d-L

Aarea(5,L).
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Hence,

/c r ^area(^(l)>
Carea(5(l)) - Rhm^ —

v ^area(^(l)> \fdld)
lim j—n—L^+ oo TT • d • Lz

1

r ^area(iS, L)- lim —
d L^+oo 7TLz

~T * ^area(^)?
d

where we used the Substitution R := \[d,L.
Case when d is even. These time our relations are slightly modified due to the fact
that a preimage of a maximal cylinder downstairs having a waste curve of length l is

a disjoint union of two maximal cylinders with the waste curves of length d -1/2.

- Vd - d
^area(^(l)>

^
A) Aarea(*S,

Area(cyl) ^ Area(cyl)

Area(S) ^ Area(S)
cylC/S

v 7 Cylc^

«,(c?ixf-L w(cyl)<L

7Varea(5, L).

NareaCSq),

/?—>-+oo

^area(^(l),#^)
L^+oo TT • f
4
- lim —
d L—^ + oo TTL
4
"T * ^area(^)?
d

where we used the Substitution R := ^-L.

Proposition 6.1. Under the assumptions ofLemma 6.1 one gets

TT2 - ^
k (n — \){n — 2) Ii w/ien d is odd,

— ' Carea(S(i)) 77—7 7 where k=\ (6.7)
3 12 • a — 3 4 when d is even.

Hence,

Carea(^(l)) Üm
R^+(

lim
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Proofi By applying the formula (6.4) for the Siegel-Veech constant of any PSL(2, R)-
invariant suborbifold in a Stratum Qi (d\,..., dm) in genus zero to a particular case

of the Stratum Qi (n — 5, —\n~l), we get

- ' Carea(^) — 3(« 1)
3 24 V n — 3/12« — 3

By applying Lemma 6.1 we complete the proof.

Let bea PSL(2, R)-invariant suborbifold in the Stratum Q,\(n — 5, — lw_1).
It is immediate to check that the locus M\ of flat surfaces S(i) induced by cyclic
Covers (6.5), where d divides «, belongs to the Stratum

Q,\{d{n — 3) — 2, {d — 2)n~l) when d is odd,

(d{n — 3)/2 — l,(d/2— l)w_1) when d is even.

Applying Theorems 1 and 2 from [EKZ2] we get the following

Proposition 6.2. The sum ofthe Lyapunov exponents ofthe Hodge bündle H1 over
M\ is equal to

Ai + • • • + Ao- —

(d2-l)(n-2)
when d is odd,

12d
(6.8)

(n — 2){d2{n — 3) + 2n)
— when d is even.

12d(n - 3)

Consider the particular case, when d — 3 and n — 2m. Then

i i _
2n ~ 4

Ai + • • • + Ao- —

were, g n — 2, by the Riemann-Hurwitz formula.
Note that H1 £(£) 0 8 (£2), where by [McM3] the restriction of the Hodge

form to 8 (£) has signature (m — 1,2m — 1) and the restriction of the Hodge form
to f?(£2) has signature (2m — l,m — 1). Thus, each of the subspaces has m zero
exponents.

A. Lyapunov spectrum of pseudo-unitary cocycles: the proofs

In this appendix we prove Theorem4. Its presentation below is inspired by discussions

of the second author with A. Avila and J.-C. Yoccoz.
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Recall that we consider an invertible transformation T or a flow Tt preserving a

finite ergodic measure /xona locally compact topological space M. Let U be a log-
integrable cocycle over this transformation (flow) with values in the group U(p,q)
of pseudo-unitary matrices. The Oseledets Theorem (i.e. the multiplicative ergodic
theorem) can be applied to complex cocycles. Denote by

X\ ^ ^ Xp+q (A.l)

the Lyapunov spectrum of the pseudo-unitary cocycle U. Let

A(i) > ••• > A(5) (A.2)

be all distinct Lyapunov exponents from the above spectrum. By applying the
transformation (respectively, the flow) both in forward and backward directions, we get
the corresponding Oseledets decomposition

^A(i) 0 • • • 0 Ex(s) (A.3)

at /x-almost every point of the base space M. By definition all nonzero vectors of
each subspace Ex{k) share the same Lyapunov exponent A(^) which changes sign
under the time reversing.

Lemma A.l. For any nonzero X(x), the subspace Ex{k) ofthe Oseledets direct sum

decomposition (A.3) is isotropic. Any two subspaces Ex(iy Ex(J) such that X^) ^
—X(i) are orthogonal with respect to the pseudo-Hermitianform.

Proof Consider a (measurable family of) norm(s) ||.|| for which the cocycle U is

log-integrable. By Luzin's theorem, the absolute value of the (measurable family of)
pseudo-Hermitian product(s) of any two vectors v\, V2 in Cp+q is uniformly
bounded on any compact set X of positive measure in M by the product of their

norms,
l(^i> vi)\x S const(JC) • ||i>i ||^ • ||^2IIjc f°r any x e X,

up to a multiplicative constant const(JC) depending only on the norm and on the

compact set JC. By ergodicity of the transformation (flow), the trajectory of almost

any point returns infinitely often to the compact set X.
Suppose that there is a pair of Lyapunov exponents Ap), A(y) satisfying A(/) ^

—X(j). We do not exclude the case when i j. Consider a pair of vectors Vi, Vj
such that Vi e Exiiy Vj e Exur By definition of Ex(jy we have

ll^(ui)IU • \\Tt(v2)\\x ~ exp ((A(,) + A(7))

When X(j) + X(j) < 0 the latter expression tends to zero when t +oo; when

X(i) + Ä(j) > 0 the latter expression tends to zero when t —oo. In both cases,
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we conclude that for a subsequence of positive or negative times tx (chosen when the

trajectory visits the compact set X) the pseudo-Hermitian product (Ttk (vi ),Ttk(v2))
tends to zero. Since the pseudo-Hermitian product is preserved by the flow, this

implies that it is equal to zero, so (iq, v2) 0. Thus, we have proved that every
subspace E^.), except possibly is isotropic, and that any pair of subspaces Ex(i),
Ex{j) such that A(y) ^ ~^(i) is orthogonal with respect to the pseudo-Hermitian
form.

We proceed with the following elementary linear algebraic fact about isotropic
subspaces of a pseudo-Hermitian form of signature (p,q).

Lemma A.2. The dimension dimc V ofan isotropic subspace V ofa pseudo-Hermitian

form of signature (p, q) is bounded above by min (p, q).

Proof By choosing an appropriate basis, we can always suppose that (3,3) has the
form

(3, b) albl + • • • + apbp - ap+1bp+1 ap+qbp+q

where3 (a1,... ,ap+q),b (b1,... ,bp+q) and 3, b e Cp+q.
Without loss of generality we can assume that p < q. Let £ be the null cone of the

pseudo-Hermitian form, £ := {3 e Cp+q \ (3,3) 0}. We argueby contradiction.
Suppose that V C £ is a vector subspace of dimension r with r > p + 1. By
assumption, we can find p + 1 linearly independent vectors v\,..., vp+i e V. By
using the first p coordinates of these vectors, we obtain a collection of p + 1 vectors
\bi (vj,..., vf) eCp,l<i<p + 1. Thus, one can find a non-trivial linear
relation

t\W\ + ••• + tp-\-\Wp-\-\ 0 G Cp.

Going back to the vectors Vf, we conclude that the non-trivial linear combination

v t\v\ + • • • + tp+iVp+i G V — {0} C £ — {0}

has the form v (0,... ,0,vp+1,... ,vp+q), which leads to a contradiction since

the inclusion v G £ forces 0 |^+112 + • • • + \vp+q |2 (that is, 3 0).

Lemma A.3. The Lyapunov spectrum (A.l) is Symmetrie with respect to the sign
change, that is for any k satisfying 1 < k < p + q one has

^k — ^p+q + l—k•

Proof First note that together with any nonzero entry Xq) the spectrum (A.2) neces-

sarily contains the entry —Aq). Otherwise, by Lemma A.l the subspace Ex(j) would
be orthogonal to the entire vector space Cp+q, which contradicts the assumption that
the pseudo-Hermitian form is nondegenerate.
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Consider a nonzero entry Xq) in the spectrum (A.2). Let us decompose the direct
sum (A.3) into two terms. As the first term we choose Ex(i) 0 E-xiiy and we place
all the other summands from (A.3) to the second term. By Lemma A.l the two terms
of the resulting direct sum are orthogonal. Hence, the restriction of the pseudo-
Hermitian form to the first term is non-degenerate. By Lemma A.l both subspaces

Ex{i) and E-x{i) are isotropic. It follows now from Lemma A.2 that their dimensions
coincide.

Lemma A.4. The dimension ofthe neutral subspace Eq in the Oseledets decompo-
sition (A.3) is at least \p — q\.

Proof Consider the direct sum Eu of all subspaces in the Oseledets decomposi-
tion (A.3) corresponding to strictly positive Lyapunov exponents Xq) > 0,

Eu 0 EX(jy
X (/)>0

Similarly, consider the direct sum Es of all subspaces in the Oseledets decomposi-
tion (A.3) corresponding to strictly negative Lyapunov exponents A(y) < 0,

E'-= ®
A(7)<0

By Lemma A.l both subspaces Eu and Es are isotropic. Hence, by Lemma A.2 the
dimension of each of them is at most min{p, q). Since the dimension of the space
Eu 0 Eq 0 Es is p + q, it follows that the dimension of the neutral subspace E0
(when it is present) is at least | p — q |.

By combining the Statements of Lemma A.3 and of Lemma A.4, we get the
Statement of Theorem 4.

Concluding this appendix, we show the following simple criterion for the cocycle
U to act by isometries on E0.

Lemma A.5. Suppose that the neutral subspace (subbundle) Eq has dimension ex-

actly \p — q\. Then, the cocycle U acts on Eq by isometries in the sense that the

restriction ofthe pseudo-Hermitian form to the neutral subspace (,subbundle) Eq is

either positive definite or negative definite.

Proof We claim that {0}, where T, {v : (v,v) 0} is the null-cone of
the pseudo-Hermitian form preserved by U. Indeed, since Es and Eu have the

same dimension (by Lemma A.3), and E0 has dimension \p — q\ (by hypothesis), we
have that dimc Es dimc Eu min{p, q}. So, if E0 H I] ^ {0}, the arguments
of the proof of Lemma A.l show that Es 0 (£o H £) is an isotropic subspace whose
dimension is at least min{p, q} + 1, which contradicts Lemma A.2.
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Since the pseudo-Hermitian form is non-degenerate, the fact that i?o fl £
{0} implies that the restriction of to E0 is (positive or negative) definite. In other
words, the cocycle U restricted to E0 preserves a family of definite forms .)|^0,
i.e., U acts by isometries on E0.

B. Evaluation of the monodromy representation

We outline below the calculation of the monodromy representation. The reader will
find a more detailed version in Appendix B of [FMZ3].

B.l. Scheme of the construction. Our plan is as follows. We Start by constructing
the square-tiled cyclic cover S £3 of the initial square-tiled surface S of Figure 1.

Then we construct the PSL(2, Z)-orbit of S £3. The results of this calculation
are presented in Figure 5. In particular, the PSL(2, Z)-orbit of the initial square-tiled
surface S S3 has cardinality three, see Figure 5.

For each of the three square-tiled surfaces S1, S2, £3 in the PSL(2, Z)-orbit of
S3 we construct an appropriate generating set of integer cycles and a basis of the

eigenspace 8g, (£) c C). Then we compute the six matrices of the action

in homology induced by the basic horizontal shear h and by the counterclockwise
rotation r by angle tt/2 of these flat surfaces, where

!)• r=C '»')• <B1)

thus obtaining an explicit description of the holonomy representation. Note that we
work with the homology; the representation in the cohomology is dual.

Remark. Since we consider the representation of PSL(2, Z) we might consider all
matrices up to multiplication by — 1.

As a generating set of cycles of S3 we take the cycles

a 1, h\, c 1, d\ ö?i5i + ö?i52, • • • > ^3? ^3? £3? d3 ö?35i + <^3,2 (B-2)

represented in Figure 6, p. 532. Each of these cycles is represented by a close loop with
a base point C. The action of the generator T of the group of deck transformations,
defined in (1.3), transforms the generating cycles as follows:

T* : cii ai-i,
r* : bi bi-i,
T* : Ci 1 b Ci—i,

T* : di 1 b d\—\.
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This implies that the following elements of H\(S3, C),

(2-\- Cl\ ~\~ £@2 + £2Ö3,

t>+ '.= b\ + £A2 + £2^3>

c+ := C\ + £c2 + £2<?3,

(ijr

(B.3)

— d\ + £ö?2 H~ £2^?3

are eigenvectors of T* corresponding to the eigenvalue £ exp(2jri/3), and hence,

they belong to the subspace 8 (£). It can be verified that these elements are linearly
independent, and, thus, form a basis of this four-dimensional subspace.

Let /z3: S3 -> *S3be the affine map inducedby the horizontal shear/z e PSL(2,R)
of formula (B.l). (Let us recall that, by Convention 1 established in the beginning
of Section 3.1, the notions "horizontal" and "vertical" correspond to the "landscape"
orientation.)

By Computing the matrix of A3 with respect to the basis of formula (B.2) and by
the definition of the basis a+, A+, c+, <i+, we see that the matrix A^or of the induced

map
A3: %,(£)- «?,(£)

has the form

Ao0r

s3

/0

0

Vo

$3

t2\
K

-¥)
(B.4)

So far we have only used the horizontal cylinder decomposition for the initial
square-tiled surface S3. We now construct a pattern of the same Hat surface S3

corresponding to the vertical cylinder decomposition. Finally, we rotate the resulting
pattern by angle tt/2 clockwise. We renumber the Squares after the rotation. The

resulting surface is the surface *S2. It inherits a collection of generating cycles and

the basis of the subspace 8 (£) from the surface £3. By construction, the matrix R3

of the map

r3:S§ß)^S§ß),
induced by the counterclockwise rotation r e PSL(2, R) by angle tt/2, is the identity
matrix, that is r3 Id, for our choice of the basis in 8§ (£) and in 8^ (£).

Note that, by construction, the points of the PSL(2, Z)-orbit corresponding to the
surfaces £3 and S2 satisfy [S2] r—1 [^3] r [^3].

Let us consider the affine map *S2 -> S\ induced by the horizontal shear (in the

landscape orientation) h e PSL(2, R) and let us define a generating set of cycles in
the homology Z) of S1 and a basis of cycles in the subspace 8§ (£) as the

images of generating cycles previously defined in //i(iS2; Z). By construction, the
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matrix A^r of the induced map

h2:8§ß)^8§ß)
is the identity matrix, A^r Id, for our choice of the bases in S§2 (£) and in 8^ (£).

Let us then consider the affine map S\ -> S2 induced by he PSL(2, R). Now
both homology Spaces H\ (S\; Z) and H\ (S2IZ) are already endowed with the gen-
erating sets, so we can compute the matrix A\or of the induced map

For our choice of the basis in 8^ (£) and in 8^ (£) the matrix A\or coincides with the

matrix of the automorphism % (£) %2(£) induced by the affine map S2 -> S2

given by the horizontal shear h2 e PSL(2, R).
By Computing the matrix of the map h\ o h2 with respect to the basis (B.2) we

derive the following expression for A\or:

/l-£ £2-£ £2 0\
,hor 0 ?2 0 0

1 ?2 ?-l 0 0 '

V?-i ?-?2 ?-?2 1/

Finally, we compute the action on the homology of S1 induced by the automorphism

of S1 associated to the counterclockwise rotation r e PSL(2, R) by angle tt/2.
More specifically, we want to compute the matrix R\ of the induced map

ri:Ssß)^8gß).
with respect to the basis (B.3). Once again we compute the matrix of r\ with respect
to the basis (B.2), then derive the following expression for the matrix R\:

K 0 f - £2 1 \
0 0 1 ^

1 1-t2 1 i-f ^ •

Vi-? -1/
B.2. Choice ofconcrete paths and calculation of the monodromy. Let us consider
the maps on homology

t>! := r^1 h^1 rx: HX(SX-,Z) ^ Hx(Sy,

v2 r"1 -h'1 -r2:HX(-*
v3 := rf1 • h\l •r3: Hx(;-* ; Z)
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induced by the vertical shear v In the chosen bases of homology, the

restrictions of these linear maps to the subspaces 8^ (£) have respectively matrices

A\en R'1 • (AiT)"1 • Äi Id • Id -Ri Ri,

Alen R'1 • (A^y1 • R2 Id-O^T1 • Id (,4**)

3

?-l hor\ —1

and

Av3en R'1 • (A\or)~L • R3 R^L • 04*°TA • Id R^L • 04*or)/<hor\ —1 -1 /<hor\ —1 >-1 /<hor\ —1

By multiplying, we obtain

Ar
K

0

W2

0

0

1

- ¥ i \
l ?2

i-C ?2

Vi-? k2-K K2-K -1/

(0 ?2 0 ?\
0 0 ?2

1 0 0 1

U) 0 0 -K)

/0 0 1 ?2 \
o o

o o

Vo o o -?V

In the natural bases of homology, the restrictions of these linear maps to the

subspaces A 2 6?
^ have respectively matrices

W,hor

(F-l o 0 -?
- ?2 -? 0 ?2 - 1

0 ?-?2 1-? I-?2
-? 0 0 0

?2-l 0 0 1-?

o o\
0 0

?2-? ?2

0 0

?2 0

V?-?2 1-? ?2 2? — — 1 ?-l 0)
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wvert

0 1 -1 0 0

0 0 0 -K -1
0 0 0 0 0 -t2

K2 0 t2 0 -t2 0 '

0 0 -1 0 0 0

oo 0 0 -1 0

0 K 1 0 0 -K)
K 1 - K £2 K2--K -i 0

i-K2 £2-K -1 K2 + K-2 K-K2 0

0 £2- l -t2 l -£2 l
0 K- l 1 -£2 K- £2 i-K -K

0 0 l - K2 -K o)

w2vert

w3vert

0 0 0 K 1 -i\
-£2 0 -K 0 £2 0

0 0 0 0 -1 0

0 z -K 0 0 £2

0 0 0 0 0 -1
0 0 -K 0 0 0/

(° -K -1 0 0

0 0 0 -? -1 K

0 0 0 0 0 -K2
£2 0 t2 0 -t2 0

0 0 -1 0 0 0

lo 0 0 0 -1 0

and W1hor Id.

Let us consider now the following loop p\ on T: Start with a horizontal move
from Si and follow the trajectory:

hör vert vert vert hör vert vert
1 > 2 > 2 2 2 > 1 3 1. (B.5)

The corresponding monodromy matrices X in 8(£) and U in A2S(K) are given
respectively by the formulas

\ hör
i2

and

(Av2ert)3 • A\°\

3 - W7ert • ir2hor • (ir2vert)3 • <or.

X := Av3en A\ert • A

jj j^j/T-vert tt7-vert. hör /TT7-vert\3

Let us consider now the second loop p2 on T: Start with a vertical move from S\
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and follow the trajectory:

vert hör hör hör vert
1 3 3 3 3 1 (B.6)

The corresponding monodromy matrices Y in £?(£) and V in A2f?(£) are given
respectively by the formulas

Y := Alen (A\OT)3

and

V := W3vert • (W3hor)3 •

By explicitly Computing X, Y and U, V and by Computing determinants we get
the following numerical result:

det(XY - YX) -285

and

det {UV -VU) -5292.
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