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Quantitative properties of convex representations

Andrés Sambarino

Abstract. Let T be a discrete subgroup of PGL(/, R). Fix anorm || || on RY and let Np-(¢) be
the number of elements in I' whose operator norm is < ¢. In this article we prove an asymptotic
for the growth of N1 (¢) when ¢t — oo for a class of ['’s which contains, in particular, Hitchin
representations of surface groups and groups dividing a convex set of P(Rd). We also prove
analogue counting theorems for the growth of the spectral radii. More precise information is
given for Hitchin representations.
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1. Introduction

Let M be a simply connected complete manifold of sectional curvature K < —1
and I' be a torsion-free discrete co-compact group of isometries of M. This work
consists in studying specific quantitative properties of certain representations p: I' —
PGL(d, R).

Recall that T is a hyperbolic group, its boundary aT is identified with A s geo-
metric boundary, and that 9" has a natural structure of compact metrizable space
coming {rom some Gromov distance (see Ghys—de la Harpe [11]).
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Definition 1.1. We say that an irreducible representation p: I' — PGL(d,R) is
strictly convex if there exists a p-equivariant Hélder continuous map

(&.7): 9T - P(RY) x Gry—(RY),

where Grg_; (R9) is the Grassmannian of hyperplanes of R?, such that R? = £(x)&®
n(y) whenever x # y.

We show in Lemma 5.1 that strictly convex representations are proximal, that is,
every element p(y) is a proximal matrix. This implies (cf. Corollary 5.2) that for
each x € 9T one has §(x) C n(x), and that the equivariant map (£, ) is necessarily
unique.

Among strictly convex representations we find the following.

Deformations of hyperbolic manifolds in projective structures. A consequence
of the work of Koszul [14] and Benoist [4] is that if I" is the fundamental group
of a closed hyperbolic manifold of dimension d — 1 and p: I’ — PGL(d,R) isa
deformation of the embedding I' C PSO(d — 1, 1) — PGL(d, R), then p(T") leaves
invariant an open convex set Q of P(R?), and the quotient p(T')\Q is a compact
manifold. This gives an identification & : 3T — 3Q C P(RY).

Benoist [3] has shown that  is strictly convex and its boundary 9€2 is of class
C!*T®_ The identification § and the tangent space of 3Q at & (x),

n: ' —» Grd_l(Rd),

are thus p-equivariant and Holder. Since < is strictly convex we have R? = £(x) &
n(y) if x # y. These deformations are always irreducible and Zariski-dense when
the deformation is non-trivial. Hence we have that p: T' — PGL.(d,R) is a strictly
convex representation.

Groups dividing a convex set of P(R9). These examples contain the former but we
treat them separately because they do not fall exactly in our terminology. Neverthe-
less, the methods of this article apply directly to this setting.

Consider some open convex set Q of P(R¥) and Q its closure. Suppose that
P(V)NQ = @ forsome hyperplane V of R4, Assume there exists a discrete subgroup
I" of PGL(d, R) that leaves €2 invariant. The action of I" on 2 is necessarily properly
discontinuous, and we assume it is also co-compact.

Benoist [3] has shown that if Q is strictly convex then dQ is C'*® and the group
I" is hyperbolic in the sense of Gromov. Following the last example one finds that
I' € PGL(d, R) is strictly convex.

Hitchin representations of surface groups. Let % be a closed orientable hyperbolic
surface and let 7;(¥) C PGL(2,R) be its fundamental group. Labourie [15] has
shown that if p: m1(X) — PGL(d, R) is a deformation of the unique irreducible
morphism (up to conjugacy) PGL(2,R) — PGL(d, R), then p is irreducible and
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there exists a p-equivariant Holder map {: dm((X) — % where % is the space of
complete flags of R?. He shows that this curve is a Frenet curve: for x € dm1(Z) set
£;(x) to be the i-th space of the flag {(x), thenifd = dy + --- + dp and xy, ..., x%
are pairwise distinct, then

k
R = P 4, (x:),
1

andifn =ny+---+ np <d,then

k
lim A(x;) = {p(x).
wﬂ@%m & (%)
The first condition implies that, by considering the first and last coordinate of ¢,
£ := ¢y and np := {4, one obtains a strictly convex representation.

Composition. If p: I' — PGL(d,R) is a Zariski-dense Hitchin representation
then the composition of p with some irreducible representation A : PGL(d,R) —
PGL.(k, R) is strictly convex.

Fix anorm || || in R (not necessarily Euclidean). For an element g € PGL(d, R)
we define its norm ||g|| as the operator norm of some lift ¢ € GL(d,R) such that
detg € {—1,+1}. In the same way one can define the spectral radius of g, since
these quantities do not depend on the choice of the lift.

The main goal of this article is to prove the following result, a direct consequence
of Theorem A below.

Corollary (of Theorem A). Let p: T' — PGL(d, R) be a strictly convex representa-
tion. Then there exist positive real numbers h and ¢ such that

cR7"#{y eT: [lp(y)| = R} — 1

when R goes to infinity.

The constant / is independent of the norm chosen and is thus invariant under
conjugation of p by elements of PGL.(d, R). This follows from the fact that any two
norms in R are equivalent.

We shall now state the stronger result from which the corollary is deduced. The
dynamics of each y € T on 9T is of type north-south, i.e., y has exactly two fixed
points, v+ and y_, and the basin of attraction of y4 is 0" — {y_}.

Theorem A shows that these fixed points are well distributed on dT". Denote by
C(X) the space of continuous real functions over some space X and by C*(X) its
dual space.



446 A . Sambarino CMH

Theorem A. Let p: I' — PGL(d, R) be a strictly convex representation. Then there
exist positive real numbers h and ¢ and two probabilities (1 and ji on 91 such that

ce Pt Z Sy_ R0y, > L@
yel: log|e(y)| <t

when t — oo, in C* (" x aT").

The previous corollary is deduced from Theorem A by considering the constant
function equal to 1 and the change of parameter / = log R.

For a matrix g € PGL(d. R) denote by A{(g) the logarithm of the spectral radius
of g. An element g of a given subgroup G is primitive if it can not be written as a
positive power of another element of G.

Theorem B. Let p: I' — PGL(d, R) be a strictly convex representation. Then there
exists a positive real number h such that

hte ™™ #{[y] € [[] primitive: A1(p(y)) <1} — 1
when t — oo, where || is the set of conjugacy classes of T'.

The constant # is the same for both Theorems A and B. Theorem A, inspired by
Roblin’s work [24], implies the following corollary which explains how attractive
lines of p(T") are distributed in P (R9). Write g, for the attractive line of a proximal
matrix in PGL(d,R).

Corollary. Let p: I’ — PGL(d, R) be a strictly convex representation. Then there
exist positive real numbers h and ¢ and a probability v on P(R?) such that

—ht
che Z Sp(y)+ — v
vel: logllp(y)| =<t

when t — oc.

The probability v in the above corollary is non-atomic, ergodic for the action of
p(T") and its support generates R?. Moreover v verifies a Patterson—Sullivan property,
namely: forevery y € I one has

_h
d(p(y)sv) () = (IIP(V)UII) R A e

dv [l

We now turn our attention to hyperconvex representations introduced by Labourie
in [15]. Fix some real semi-simple algebraic non-compact group G and denote by P a
minimal parabolic subgroup. Write .% = G/ P; the set .% is called the Furstenberg
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boundary of the symmetric space of G. The product .# x .%# has a unique open
G-orbit, which we shall call 9*.% .

For example, when G = PGL(d, R) the set .% is the set of complete flags of R,
i.e., families of subspaces {Vg}‘fzo such that V; C V41 and dim V; = i; and the set
92.% is the set of flags in general position, i.e., pairs {V;} and {W; } such that for every
i one has

V; ® W = R,

Definition 1.2. We say that a representation p: I' — G is hyperconvex if it admits a
Hélder continuous equivariant map ¢: dI' — .% such that whenever x # y in 3T,
the pair (£(x), £(y)) belongs to 92.%.

As mentioned before, Labourie [15] has shown that Hitchin representations of
surface groups into PGL.(d, R) provide examples of hyperconvex representations.

The same method for proving Theorems A and B yields the following result.
Denote by a a Cartan subalgebra of G’s Lie algebra g, and let a: G — o be the
Cartan projection. Fix some Weyl chamber a™ and denote by A: T' — a™ the Jordan
projection.

Benoist [2] introduced the limit cone LA of a Zariski-dense subgroup A of G as
the closed cone containing {A(g) : g € A}. He has shown that this cone is convex
and has non-empty interior. We shall consider also the dual cone

Lri={pea” 9| L) =0}

For a hyperconvex representation write .%), for its limit cone and .Z ; for its dual
cone.

Theorem C (Theorems 7.8 and 7.13). let p: I' — G be a Zariski-dense hypercon-
vex representation and consider ¢ in the interior of .,2”;. Then there exists hy, > 0

such that
hote® ' #{[y] € [['] primitive: p(A(py)) <1} — 1.

Moreover there exists ¢, > 0 such that
cpe #{y e T: glalpy)) <1} — 1.

Of particular interest is the following corollary for PGL(d, R). The Cartan algebra
is
W= {0 o welid) c R4 cvp + vy =0}

and the Weyl chamber a™ = {v € a : vy > --- > vy}. The linear form ¢: v — R,

@(v1,...,0g) = V1 — Vg,

is strictly positive on the Weyl chamber (except at {0}) and thus with the change of
parameter / = log R one obtains the following.
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Corollary. Let % be a closed orientable surface of genus > 2 and let p: (%) —
PGL(d, R) be a Hitchin representation. Then there exists hy > O such that

IR log R#{[y] € [ (D)] primitive : 42=00) < Ry > 1.

when R — oo where Anax(g) (resp. Amin(g)) denotes the modulus of g’s maximal
(resp. minimal) eigenvalue. Moreover, for some fixed Euclidean norm || || on R,
there exists ¢ > O such that

cR™M#ly € m(D): |pMllleGy "Il < Ry — 1

when R — o0.

Remark. If one assumes that p(7;(2)) is Zariski-dense in the above corollary, then
the result is a direct consequence of Theorem C, if not, it is a consequence of our
method since Hitchin representations are irreducible (Labourie [15]). In fact, the
corollary holds for any strictly convex representation.

Theorem C has a non-trivial consequence for the orbital counting problem on the
symmetric space of . Let X be this symmetric space, o0 some point on X and dx
the induced distance for a G-invariant Riemannian metric on X . For a subgroup A
of G set

. log#{g € A 1 dx(0,g0) =< s}
ha = limsup ;
5§00 §

We then show the following:

Corollary (Corollary 7.15). Let p: I' — G be a Zariski-dense hyperconvex repre-
sentation. Then there exists C > 0 such that

e”heMiy e Tt dy (o, p(y)o) <1} < C
forevery t large enough.

In [25] we give an asymptotic for the orbital counting problem for hyperconvex
representations.

Counting problems in higher rank geometry have been studied for lattices and
for Schottky groups. In the case of lattices Eskin—-McMullen [10] find an asymptotic
for the growth of #{g € A : dx(o0, go) < t}. This asymptotic is (up to a constant)
the volume of the ball of radius 7 in X (for the Haar measure) and thus contains a
polynomial term. Similarresults to those of Eskin-McMullen [10]have been obtained
independently by Duke—Rudnick—Sarnak [9]. Gorodnik—Oh [12] prove a distribution
theorem (in the spirit of Theorem A) for lattices for an orbit on the symmetric space.

For Schottky groups the asymptotic equivalence of #{g € A : dx (0, go) < f}is
shown by Quint [23] to be exponential with no polynomial term. For these groups
there is also a distribution theorem due to Thirion [29].
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In Margulis® thesis [18] the following principle appeared: one should prove a
mixing property for an appropriate dynamical system to obtain a counting result. In
Eskin—McMullen’s work [10] it is the mixing property of the action of the Cartan
group that is needed. This principle is also applied by Roblin [24] and by Thirion
[29].

In this work we still exploit the relation with dynamical systems but in a slightly
different manner. We find a symbolic flow and apply counting theorems for periodic
orbits due to Parry—Pollicott [ 19] and the spatial distribution of these due to Bowen [7].

Method and techniques. Recall that we have identified the boundary of the group
" with the geometric boundary of M. Set B: 9I'x M x M — R to be the Busemann
function of M, ie.,if x € 9T and p,g € M then

Bi(p.q) = lim d(p,2) - d(g.2).

Using the Busemann function one constructs a homeomorphism between 7! M,
the unitary tangent bundle of M, and 3°T x R, where

°T = {(x,y) e T x 3T : x # y}.

In order to do so one fixes some point 0 € M and to (p, v) € T'M one associates

(P 0) = (V—c0: Voo, Bug, (1, 0))

where v_q, and v, are the origin and end points in 9T of the geodesic through p
with speed v. This is called the Hopf parametrization of the unitary tangent bundle.

Some key facts are that the action of anisometry g of M isread viathis parametriza-
tion as

g(x= y’t) = (gngyz‘t - By(0= g_lo))’

and that the geodesic flow is now the translation flow on #°I" x RR.

Hopf’s parametrization also shows that invariant measures of the geodesic flow
are in correspondence with I'-invariant measures on 3°T".

Patterson—Sullivan’s measure on 91" induces a I'-invariant measure on 32T whose
corresponding measure in I\ 7'! M is the measure of maximal entropy of the geodesic
flow. This fact is of particular importance in Roblin’s work [24] where he obtains
counting theorems in the negative curvature case.

The main idea of this work 1s then to construct a flow in a similar fashion to
Hopf’s parametrization, considering an appropriate cocycle, and give a description
of its measure of maximal entropy. We now explain how this flow is built.

Consider some Holder cocycle ¢: T x 0" — R, i.e., ¢ verifies

c(Yov1. x) = c(yo, v1x) + c(y1.x)
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for every pair yy, 1 € I'; and ¢(y, -) is Holder continuous for every y € I (the same
exponent is assumed for every y ).
The basic example of a Hélder cocycle is the Busemann cocycle

(¥, x) = By (0, 0).

However, when one has a strictly convex representation p: I' — PGL(d,R) with
equivariant map £: 9T — P(R9), for each norm || || on R? one has the following
cocycle of particular interest to us:

Lo )2l

B1(y. x) = log
[l

where v € £(x) — {0}.
We are interested in understanding T'’s action on 3T x R via any cocycle c,

vix,y, 1) = (yx,yy,t —c(y,y)),

and give conditions to obtain the translation flow in the quotient T\ 3°T" x RR.
The periods of a Hélder cocycle ¢ are defined as £.(y) = ¢(y, y4+), where y4 is
the attractive fixed point of y, and the exponential growth rate of ¢ is defined as

b = T log#{[y] € [['] : £c(y) = s}
¢ 1= limsup

§— 00 §

where [y] is the conjugacy class of y.

For example, the period |y| of y € T for Busemann’s cocycle is the length of the
closed geodesic associated to y, and its exponential growth rate coincides with the
topological entropy of the geodesic flow.

We then show the following:

Theorem (The reparametrizing Theorem 3.2). Consider a Holder cocycle c: I' x
T — R such that h. € (0, 00). Then the action of T on 0?°T x R via ¢ is proper
and co-compact. Moreover, the translation flow

Yy 1"\821" xR O, ¥ix,y.8) =(x,v.8—1),

is conjugated to a Holder reparametrization of the geodesic flow on F\TIM. It is
topologically mixing and its topological entropy is he.

This result is cohomology invariant, that is, if one adds to ¢ a cocycle of the form
(v.x) — U(yx)—U(x) for some function U/ : aI" — R, the statement of the theorem
does not change. Namely because with the function U one constructs I'-equivariant
homeomorphisms from one space to the other.
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Analysis on the cocycle 1 defined before and this theorem will imply Theorem B
and the first item of Theorem C. In order to prove Theorem A (and the second item
of Theorem C) further analysis of the flow i, is needed. Mainly because it is a fixed
cocycle we are interested in, and not only its cohomology class.

When a Holder cocycle has finite and positive exponential growth rate, Ledrappier
[16] has shown the existence of a Patterson—Sullivan measure associated to it, i.e., a
probability ¢ on dT" such that

oL (x) = e hect™12),
du

A dual cocycle of ¢ is a Holder cocycle ¢: T x 9" — R such that the periods
£z(y) = £:.(y™1). A Gromov product for a pair of dual cocycles {c, ¢} is a function
[, Jie.cr: 3T — R such that for every y € T and (x, y) € 3°T one has

[yx, y¥lic.er — [%, Y]ty = —(€(¥, x) + (¥, ¥)).

It is a consequence of the work by Ledrappier [16] (and we shall explain this
below) that given a Holder cocycle ¢ there exists a dual cocycle ¢ and a Gromov
product for the pair {c, ¢}.

We can now describe the measure of maximal entropy of the translation flow ;.

Theorem (The reparametrizing Theorem 3.2). Consider a Hiolder cocycle ¢ with
he € (0, 00), a dual cocycle ¢ and a Gromov product |-, | for the pair {c, c}. Denote
by 1 and i the Patterson—Sullivan’s probabilities forthe cocycles c and ¢ respectively.
Then the measure

e_hC['v']ﬁ ® ‘u) ® dS

is T-invariant on 3*T x R (for the action T ~, 9*°T x R via ¢) and induces (up to a
constant) Yy 's probability of maximal entropy on the quotient T\3°T x R.

Theorems A and the second item of Theorem C are consequences of these two
theorems by using appropriate cocycles, the key point is the following proposition
which sets strictly convex (and hyperconvex) representations in the context of Hlder
cocycles with finite and positive exponential growth.

Let p: I' - PGL(d, R) be a strictly convex representation with equivariant map
£: 3T — P(RY). Fix some norm || || on R¥ and consider the cocycle

o)l

P1(y, x) = log
[l

for some v € £(x) — {0}.

Proposition (Proposition5.4). Let p: ' — PGL(d, R) be a strictly convex represen-
tation, then the period B1(y, v+ ) is A1(py) i.e., the logarithm of the spectral radius
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of p(y), and the exponential growth rate of the cocycle By is finite and positive, that
is o say,

lim log#{[y] € [T'] : A1(p(y)) =< s}
sup

§—= 00 §

belongs to (0, c0).

Section 2 is devoted to the study of reparametrizations of Anosov flows. This
allows us to apply counting theorems for hyperbolic flows in our setting. In Section 3
we study Hélder cocycles with finite positive exponential growth rate. We prove
there the reparametrizing Theorem 3.2. In Section 4 we study consequences of
Parry—Pollicott’s prime orbit theorem and Bowen’s spatial distribution result for a
general cocycle. In Section 5 we show the above proposition. Section 6 is devoted
to the proof of Theorems A and B. Finally, in the last section we study hyperconvex
representations and prove Theorem C.

Acknowledgements. Without Jean-Francois Quint’s guidance and discussions this
work would have never been possible. The author is extremely grateful for this. He
would also like to thank Thomas Roblin for useful discussions concerning his work
and Matias Carrasco for discussions on hyperbolic groups.

2. Cross sections and arithmeticity of periods

The main objectives of this section are Lemma 2.4 and Corollary 2.10. The for-
mer explains how measures of maximal entropy of reparametrizations arise and the
latter deals with reparametrizations of geodesic flows on closed negatively curved
manifolds.

Let X be a compact metric space and ¢, : X O a continuous flow on X without
fixed points.

Definition 2.1. We will say that ¢, : X O is topologically weakly mixing if the only

solution to the equation

W¢1 — eanatw,

forw: X — ST continuous and ¢ € R, is @ = ¢ and w =constant.

Remark 2.1. Consider some periodic orbit 7 of period p(r) of the flow ¢, : X O. It
¢:: X Oisnotweak mixing letw: X — S'anda € R—{0} verify w¢, = 2™ % .
Since ¢p(;)x = x for any x € r one then finds exp{2miap(z)} = 1 which implies
that p(z) belongs to the discrete group a~'Z. That is, the periods of a non weak
mixing flow generate a discrete group of R.
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A closed subset K of X is a cross section for ¢, if the function Ty : K xR — X
given by Ty(x, 1) = ¢(x) is a surjective local homeomorphism.

Remark 2.2. If ¢, : X () admits a cross section then X fibers over the circle and the
projection of a periodic orbit (seen as map from S!' — S') has non-zero index.

Remark 2.2 admits a converse due to Schwartzman [27]:

Lemma 2.1 (Schwartzman [27], p. 280). There exists a continuous functionw: X —
S differentiable in the flow’s direction such that its derivative in the flow’s direction
w' is nowhere zero if and only if the flow admits a cross section.

We now turn our attention to reparametrizations of flows. Let £: X — R bea
positive continuous function. Set«: X xR — R as

t
K(x,1) :f Fos(x)ds, (1)
0

if 7 is positive, and K (x, ) := —«(¢p; x, —1) for ¢ negative. Thus, « verifies de cocycle
property k(x,f + ) = k(¢:x,s) + k(x,t) foreverys,s € Rand x € X.

Since F > 0 and X is compact F has a positive minimum and «{x,-) is an
increasing homeomorphism of R. We then have an inverse a: X x R — R that
verifies

aflx,k(x,1)) = x(x,a(x,t)) =1t (2)

forevery (x,1) € X x R.

Definition 2.2. The reparametrization of ¢, by F is the flow ¢, : X (O defined as
Yi(x) := ¢un(x). If F is Holder continuous we shall say that v, is a Holder
reparametrization of ¢;.

Remark 2.3. The cocycle property for « and equation (2) imply that ¥, is in fact a
flow.

The advantage of cross sections is that the definition is invariant via reparametri-
zations.

Lemma 2.2. Let y; be a reparametrization of ¢;. Then ¢; admits a cross section if
and only if ¥ does.

Proof. Let K be across section for ¢b;, we need to show thatthemap 7 : X xR — X,
(x,f) — ¥;(x), is a surjective local homeomorphism. But this is evident in view of
the relation

Ty =T1400¢,

where ¢ is the homeomorphism ¢: K X R O, (x,7) — (x,a(x,1)). O
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One then finds the following corollary.

Corollary 2.3. A flow ¢,: X O does not admit a cross section if and only if every
reparametrization of ¢; is topologically weakly mixing.

Proof. Consider some reparametrization yr; of ¢»; and assume ¥, is not weak mixing,
that is, there exists w: X — S! such that wir, (x) = e?*%w(x) for some a # 0.
Such w is differentiable in the direction of the flow and

w'(x)
2miw(x)

= i £ @

Applying Schwartzman’s Lemma 2.1 one obtains a cross section for yr, and thus a
cross section for ¢;.

If ¢, admits a cross section one applies Schwartzman’s Lemma 2.1 and finds a
continuous function w: X — S! whose derivative in the flow’s direction is never
zero. Set

_ o wix)
Fx) = 2miw(x)

and_consider Y, the reparametrization of ¢; by F. One easily verifies that wiyr, =
ety and thus v, is not topologically weakly mixing. O

If m is a ¢p;-invariant probability on X then the probability ' defined by
dm'[dm(-) = F(/m(F)

is yr,-invariant. In particular, if 7 is a periodic orbit of ¢, then it is also periodic for
Yr; and the new period 1s
[r
T

This relation between invariant probabilities induces a bijection and Abramov [1]
relates the corresponding metric entropies:

W) = h(ge.m) f Fdm. )

Denote by M?* the set of ¢, -invariant probabilities. The pressure of a continuous
function F': X — R is defined as

P(¢;, F) = sup h(qb;,m)—l—/de.
meM bt X

A probability m such that the supremum is attained is called an equilibrium state
of F.
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Lemma 2.4. Let ;0 X O be the reparametrization of ¢, by F: X — R, Assume

that the equation
P(p,,—sF)=0, sek,

has a finite positive solution h. Then h is the topological entropy of ;. In particular
the solution is unique. Conversely, if hi,(Y,) is finite then it is a solution to the
above equation. If this is the case, the bijection m — m’' induces a bijection between
equilibrium states of —h I and probabilities of maximal entropy for ;.

Proof. Abramov’s formula (3) directly implies

h(gb;,m)—s/de = (h(l,hz,m’)—s)dem,

for any ¢;-invariant probability m. If P(¢;, —hF) = 0, the last equation together
with the fact that F is strictly positive, imply

0= sup h(y,.m)—h
meMer
Applying the variational principle one has i = A (V7).

Conversely, if /115, (3r) is finite the result follows directly form Abramov’s formula
and F > 0.

If m r is an equilibrium state of —/t,0, (3, ) F then, since P(¢;, —lop(¥)F) = 0
one has that the metric entropy h(yr,,m’s) = hip(¥,). The bijection m + m’
induces thus a bijection between equilibrium states of —#,,(1,) F and probabilities
of maximal entropy for ;. (]

We now restrict our study to hyperbolic flows: Assume from now on that X isa
compact manifold and that the flow ¢,: X ( is C!. We say that ¢, is Anosov if the
tangent bundle of X splits as a sum of three d¢, -invariant bundles

TX = E* & EY ¢ E¥,

and there exist positive constants C and ¢ such that E? is the direction of the flow
and for every ¢ > 0 one has that for every v € E?®,

ldgev]l = Ce™ o],

and for every v € EY, ||[dp—v| < Ce™||v|.
In this setting there is an extra equivalence for the existence of cross sections:

Proposition 2.5. Let ¢;: X O be an Anosov flow. Then ¢; admits a cross section if
and only if there exists F : X — RZ Holder such that the subgroup of R spanned by

{fF : rperiodic}
T

is discrete.
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Proof. Assume such F exists, and assume (without loss of generality) that ({ [ F :
7 periodic}) = 7. Recall that we have defined

K(x,t)zfo F(psx)ds.

The cocycle ©: R x X — S given by O(x,1) = 2% s by Livsic’s
theorem [17], cohomologically trivial and thus there exists w: X — S! Holder
continuous such that

we, (x)
w(x)

and one finds a cross section applying Schwartzman’s Lemma 2.1.

:exp{2m’/ F(¢sx)ds},
0

Assume now that ¢»; admits a cross section. Applying Schwartzman’s LLemma 2.1
one finds a continuous function w: X — S! such that its derivative in the flow’s
direction is never zero. One can assume that such w is in fact differentiable (by con-
sidering another function close to w) and thus the function F(x) = w'(x)/2miw(x)
is differentiable with integer periods. L

The following proposition together with LLemma 2.4 implies that a Hélder repara-
metrization of an Anosov flow has a unique probability of maximal entropy.

Proposition 2.6 (Bowen—Ruelle [6]). Let ¢p;: X O be an Anosov flow. Then given a
Hélder potential G: X — R there exists a unique equilibrium state for G. FEquilib-
rium states are thus ergodic.

Corollary 2.7. Let ¢,: X O be an Anosov flow and y, be a Hélder reparametriza-
tion of ¢;. Then Yy has a unique probability of maximal entropy and it is ergodic
with respect to this measure.

We are interested in finding Markov partitions for reparametrizations of Anosov
flows.

Definition 2.3. Let ¢,: X O be a flow. We shall say that the triplet (3,7, 7) is a
Markov coding for ¢, if X is a sub-shift of finite type, 7: ¥ — X and r: ¥ — R%
are Hoélder continuous and the function 77, : 2 x R — X defined by

Tp(x.1) = @7(x)

verifies the following conditions:

1) m, 1s surjective and Holder.
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ii) Let o: X O be the shift and let 7: X x R (9 be defined by
F(x,t) = (0x,f —r(x)).

Then 7, is 7-invariant.
iii) 7, : £ x R/f — X is bounded-to-one and injective on a residual set Wthh 18

of full measure for every ergodic invariant measure of total support (for o; )

iv) Consider the translation flow o] : £ x R /7 O. Then 0] = ¢ 7Tr.

Remark 2.4. If a flow ¢,: X O admits a Markov coding, then it has a unique
probability of maximal entropy and the function 77, : xR /# — X isanisomorphism
between the probabilities of maximal entropy of o] and that of ¢,. In particular the
topological entropy of ¢, coincides with that of o7 .

Theorem 2.8 (Bowen [7], [8]). A transitive Anosov flow admits a Markov coding.

Lemma 2.9. Let (2, 7, v) be a Markov coding for a transitive Anosov flow ¢, - X O.
Set Y. X O to be a Holder reparametrization of ¢, by F: X — RY and define
f:Z— R} as

r(z)
fz) = fo Foy(m(2))ds.

Then (%, 7, ) is a Markov coding for ry. If, moreover, ¢, does not admit a cross

section, then the translation flow Jrf 1 XX R/f O is topologically weakly mixing.

We remark that every Markov coding for 1; can be obtained in this manner.

Proof. We need (o check that the function 77 : % xR — X defined by Ty (z,8) :=
Ys(m(z)) is f invariant and conjugates the translation flow on £ x R/ f with the
flow ;. To prove invariance by f we will prove that for every (z,5) € ¥ x R one
has
wr(z,s + f(z)) = nyp(oz,8).

The computation is intricate but direct. Recall that by definition we have f(z) =
k(m(z),r(z)) (see equation (1)). This immediately implies w(w(z), f(z)) = r(z).
We then have

Tz, 8 + f(2) = ¥s4p)(w2) = Y5 0 Yy()(72)
=y, qboz(rr(z),f(z))(n'z) = Y50 qbr(z)(n'z)
= Ys(m(0z))

since (3, 7, r) is a Markov coding for ¢»;. This proves invariance.
The remaining properties of Markov coding then follow.
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Suppose now that ¢»;| X does not admit a cross section. We must then show that
crtf is weak mixing. Applying Proposition 2.5 one has that the periods [ F generate a
dense subgroup of R. Since 7: ¥ xR — X is surjective, the periods of Jff -periodic

orbits also generate a dense subgroup of R and Remark 2.1 implies that Utf is weak
mixing. (]

We now find the following corollary:

Corollary 2.10. Let I' be a co-compact group of isometries of a complete simply
connected manifold of negative curvature M. Let ¢, F\TlM O be the geodesic
flow and yr, : F\TlM O be a Holder reparametrization of ¢;. Consider a Markov
coding (X, m, f) for yry. Then the flow Jlf is weak mixing.

Proof. Since the geodesic flow is a transitive Anosov flow, Lemma 2.9 applies. It
remains to prove that the geodesic flow on a compact manifold of negative curvature
does not admit a cross section. As observed before (Remark 2.2) we only need to find
a homologically trivial periodic orbit (since such orbit will always have zero index
asmap S! — S1).

In negative curvature we can find two elements in I, & and b, that do not commute,
the closed geodesic associated to the commutator aba™'5~! is then the required
periodic orbit. (]

3. Cocycles with finite exponential growth rate

Let I' be a torsion-free discrete co-compact isometry group of a complete simply
connected manifold with negative curvature A{. We identify the boundary of the
group ' with the geometric boundary of M.

Definition 3.1. A Holder cocycle is a function ¢: T' X dI' — R such that

c(yoy1. x) = c(yo, y1x) + c(y1.x)

for any yy, 1 € I' and x € aT', and where ¢(y, -) is a Hoélder map forevery y € T
(the same exponent is assumed for every y € I').

Given a Holder cocycle ¢ we define the periods of ¢ as the numbers

Cely) i=c(y.y+)

where y. is the attractive fixed point of ¥ in I — {e}. The cocycle property implies
that the period of an element y only depends on its conjugacy class [y] € ['].
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Two cocycles ¢ and ¢’ are said to be cohomologous if there exists a Hélder function
U: 91" — R such that for all y € T one has

e(y.x) — (v, x) = Ulyx) — Ulx).

One easily deduces from the definition that the set of periods of a cocycle is a coho-
mological invariant.

We shall be interested in cocycles whose periods are positive, that is, £.(y) > 0
for every y € I'. The exponential growth rate for such cocycle ¢ is defined as

he = lim sup l log#{[y] : £c(y) <t} € Ry U {oc}.
t—oc 1
Itis a consequence of Ledrappier’s work (ctf. Corollary 3.6) that a Holder cocycle
¢ with positive periods verifies i, > 0. If, moreover, ¢ has finite exponential growth
rate then, following Patterson’s construction, Ledrappier [16] shows the existence
of a Patterson—Sullivan probability p over dT" for the cocycle h.c, that is to say, u
verifies

tile (x) = e~ hecOTI0),
dp

Theorem 3.1 (Ledrappier [16], p. 102). Let ¢ be a Holder cocycle with positive
periods. Then ¢ has finite positive exponential growth rate h, if and only if there
exists a Patterson—Sullivan probability for the cocycle hec. If this is the case, the
Patterson—Sullivan probability is unique.

Let ¢ be a cocycle such that £z(y) = £.(y~!) (this always exists as shown in the
next section); such ¢ is called a dual cocycle of c.

Set 8°T" to be the set of pairs (x, y) € dT x 9T such that x # y. We shall say
that a function [-,-]: 9*T — R is a Gromov product for a pair of dual cocycles {c, ¢}
if for every y € " and (x, y) € 3°I one has

[yx.yy]—[x.y] = =(c(y.x) + c(y. ¥)).
Denote by g and i the Patterson—Sullivan probabilities associated to ¢ and ¢

respectively. The main theorem of this section is the following:

Theorem 3.2 (The reparametrizing theorem). Let ¢ be a Holder cocycle with positive
periods such that h, is finite and positive. Then the following holds.

(1) The action of T in 3°T x IR,

y(x,y,8) = (yx,yy,s —c(y, ¥)),

is proper and co-compact. Moreover, the translation flow ¥, : T\3?T x R 9,

wt(x!yas) = (x,y,s—t),
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is conjugated to a Holder reparametrization of the geodesic flow on F\TIJ\Z .
The conjugating map is also Holder continuous. The topological entropy of ¥;
is h,.
(2) The measure
e_hC['v']ﬁ ® !*L ® dS
on 8°T X R induces on the quotient T\3°T X R the measure of maximal entropy

of Y;.

Remark 3.1. The firstitem of the theorem is cohomology invariant. That is, a change
in the choice of the cocycle (in ¢’s cohomology class) does not change the statement
of Theorem 3.2. For the second item, it is the class of zero sets of the measure
e "<l @ u ® ds that is cohomology invariant as the following result of Ledrappier
[16] shows.

Theorem 3.3 (Ledrappier [16], p. 101). Let ¢ and ¢’ be Hélder cocycles with positive
periods and finite exponential growth rate. Let . and ' be two quasi-invariant
measures of Hélder cocycle hec and her¢’ respectively. Then p and ' have the same
zero sets if and only if hec and her¢” are cohomologous.

To prove Theorem 3.2 we shall find an approprnate cocycle: following Ledrappier
[16] we associate to the cocycle ¢ a I'-invariant Holder function F : T'M — R. The
fact that the cocycle is of finite exponential growth rate together with a LivSic-type
lemma will allow us to choose such I to be positive.

One then finishes copymg the Hopf parametrization of TiM. Namely we con-
struct a homeomorphism 7! M — 9T x R such that the action of ' on T'M is
sent to the action we need (this implies properness of the action) and the action of the
geodesic flow will be reparametrized on the right side.

Concerning the proof of the second item: Since the measure of maximal entropy
of areparametrization has the same zero sets as an equilibrium state (Lemma 2.4), we

will conclude giving a description of the induced measure by this equilibrium state
on 9°T.

Proof of the first item of Theorem 3.2. Identify the unit tangent bundle of M with
M x 3T and denote by ¢, the geodesic flow on M. For a given ['-invariant Hélder
function H: T'M — R, Schapira [26] introduced the following geometric cocycle:
for z € aI define BY : MxM — R by

s+Bz(p.q) s
BH(p.q) = lim H@(pondi = [ H@g. )t @&
S0 0 0
where B, : M x M — R is the Busemann function (when H = 1, BZ1 (p.q) is
exactly Bz (p.q)). The expression is convergent since H is Holder continuous and
the geodesic flow is Anosov.
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One finds the following properties:

Lemma 3.4. Leto, p.g € M and z € T. Then
i) BE(p,q) = BEL(yp.yq) foreveryy €T,
iy B (p.q) = B (p,0) + B (0.9),

i) if g belongs to the geodesic line from p to z one has
" q
B = [ 1
P
where f ;? H isthe integral of H over the unique oriented geodesic segment from

ploqg.

Proof. Property 1) follows directly from the I'-invariance of /7 and the Busemann
function. Property iii) is a direct consequence of the definition. We now prove

property ii). By definition

s+ Bz (p,0) §
B (p.0) = lim [ H@p.2)dt ~ | Heo2)dr

If we consider the change of parameter s + s + B;(0, ¢) the last limit becomes

H S+B2(p»0)+BZ(0.!Q) S+BZ(0=Q)
B (p.o) = lim H{d:(p, Z))dl—/{; H(pi(o,2))dt

S—00 0
and thus, since B,(p,0) + B;(0,q) = B,(p, q) we have

BE(p,0)+ BH(0,q)

5+BZ(P»Q') S+BZ(0J])
— i H(gu(p. 2))di — f Hgi(0, 2))d1
S—> 00 0 0
5+BZ(0=Q) s
+ lim H(gb,(o,z))dt—f H(p:i(q,2))dt
S—>00 0 0
= B (p,q).

(]

Given a T-invariant Holder function H: T'M — R one can associate to H a
Hdolder cocycle over the group I':

cu(y.z) = B¥(y7 0.0, ()

where o is some point on M fixed from now on.
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Two I'-invariant Holder functions H, H': T1M — R are said to be coh01rF1i010—
gous (according to Livsic) if there exists a Holder T'-invariant function V: T!M —
R, differentiable in the direction of the geodesic flow, such that

AV o ¢y

H(p.z)-H'(p.z) = Py

(p.z).

The conjugacy class [y], of an element y € I, is naturally identified with the
closed geodesic on T\T'M associated to y. The periods of the function H are
defined to be the numbers

H.
[¥]

One easily sees that the periods of / are exactly the periods of ¢y ; the periods of /7
are a LivSic-cohomology invariant. We can now state a theorem of Ledrappier.

Theorem 3.5 (Ledrappier [16], p. 105). The map H +— cg induces a bijection be-
tween cohomology classes of I'-invariant Holder functions and cohomology classes
of Hilder cocycles. The corresponding classes have the same periods.

Recall that |y | denotes the length of the closed geodesic on T\ M associated to y.

Corollary 3.6. et c be a Holder cocycle with positive periods. Then the exponential
growth rate h, is positive.

Proof. Let I: T'M — R be such that the Holder cocycles cp and ¢ are cohomol-
ogous. Since cr has positive periods F must have a positive maximum K and thus
£.(y) < K|y|, which implies

#{[yl e [Tl Le(y) =i = #{[y] e [I'] : [y| =t/ K}

The exponential growth rate of the quantity on the night is known to be strictly
positive and the corollary is proved. (]

We will need the following lemma.

Lemma 3.7 (Ledrappier [16], p. 106). Let ¢ be a Hélder cocycle with positive periods.
Then the exponential growth rate of ¢ is finite if and only if

Ce
inf L)

> 0.
vl |yl

We shall now state the positive Liv§ic-type lemma.
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Lemma 3.8. Let X be a compact metric space equipped with a flow ¢,: X O.
Consider a Holder continuous function f: X — R, differentiable in the flow’s

direction, such that
[ fdm > 0
X

for every ¢ -invariant probability m. Then f is cohomologous to a strictly positive
Hélder continuous function.

We thank Francois Labourie for the following argument:

Proof. Note that for every € R the function f is cohomologous to its Birkhoff
integral

X %/: fpsx)ds.

It then suffices to show that there exists f such that for every x one has

%fo fldsx)ds > 0.

If this is not the case for every £ > 0 there exists 7, — oo and x, € X such that

in
1]°f@ﬂaw<a
tn 0

Since the set of invariant probabilities is compact we can find & > 0 such that
[y fdm >k forallm M?1 . Consider an accumulation point 719 of the sequence
of probabilities m,, defined as

nmm=iﬁkwmma

In
Then my 1s a ¢;-invariant probability for which one has
f fdmy < e < k.
X

This finishes the proof. L

Our last tool 1s Anosov’s closing lemma.

Theorem 3.9 (Anosov’s closing lemma, cf. [28]). Let ¢, : X O be atransitive Anosov
flow. Then convex combinations of periodic orbits are dense inthe set M® of invariant
probabilities of ¢;.
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Proof of first item of Theorem 3.2. We begin with a Holder cocycle ¢ with positive

periods and finite exponential growth rate. By Ledrappier’s Theorem 3.5 we find a

T -invariant Holder function / : 7'M — R whose periods coincide with those of c.
Ledrappier’s Lemma 3.7 then implies that

ine 102,
b1 |7l
From Anosov’s closing lemma we get [ Hdm > 0 for every ¢, -invariant probability
m. Applying Lemma 3.8 we {ind that /{ is cohomologous to a strictly positive Holder
function F, and its cocycle ¢y (defined by the formula (5)) is cohomologous to c.
We shall prove the statement for the cocycle cp. The idea is to construct a
parametrization of T'M using BF, the geometric cocycle of F (equation (4)), as
follows:
Fix some point 0 € M and for a geodesic through (p, v) denote by v_o and v
its origin and end points in oT", then define

E:(p,v)— (v_oo,voo,Bfoo(p,o)).
Consider some geodesic a(f) in T'M with endpoints a(—o0) = v_s and

a(o0) = veo. Applying Lemma 3.4 we have, for every 1 € R, that

E(a(t)) = (v—co, Voo, By,_(a(0),0) —[0 Fa(s))ds).

Since F > 0 we deduce that ¥ is injective when restricted to the geodesic {a(f) : f €
R}, and since F has a positive minimum it is surjective over the set {{(v_qo, Voo )} X K.
This implies that £ is a homeomorphism from 7! M (o 3°T x R.

E is T-equivariant: Write E(p,v) = (x,y,Bf (p,0)) and consider some y € T,
then by definition

E(¥(p.v)) = (vx.yy. BL,(yp.0)).
Applying Lemma 3.4 one has

F F F F
Byy(yp: 0) = Byy(ypa yo) 7+ Byy(yozo) = By (p,o) —C'F(% y)

One concludes that E is a I'-equivariant homeomorphism between I' ~y T'M and
the action T ~ 32T x Rviacp. SinceT' ~ TM is proper (and co-compact), so is
the action on 3T x R viacp.

The geodesic flow is reparametrized: If (p, v) = (V—so, Voo Bfm (p.o))andg € M
is the base point of ¢;(p, v), then by definition

E(¢((p. v)) = (v—co. Voos B, (4, 0)).
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Applying again Lemma 3.4 yields

t
BE.(@.0) = BL(p.0)~ | Fu(p.vyd.
0
This means exactly
E(sz (ps U)) = W[Ot F(ﬁs(p’v)dSE(pa U),

in other words, the flow E~ 4, E is the reparametrization of the geodesic flow by F
(see Definition 2.2). [

Proof of the second item of Theorem 3.2. In the last subsection we showed that
the flow v, : T\3°T" x R (3 is Holder conjugated to a Holder reparametrization of
the geodesic flow.

We will thus prove the second statement of Theorem 3.2 in the following situation:
F:T'M — RY is a T-invariant positive Holder function and vy : T'M O is the
reparametrization of the geodesic flow by F. From now on we {ix the cocycle cf
associated to F.

Remark 3.2. To retrieve Theorem 3.2 for a general cocycle ¢ it suffices to remark that
the class of zero sets of the measure of maximal entropy is invariant under cohomology
and to observe that the measure

e_hﬂ['v']ﬁ ® ‘u) ® dS

is T'-invariant for the action of I’ on 8°T" x IR via c.
We need the following lemma of Ledrappier.

Lemma 3.10 (Ledrappier [16], p. 106). [fthere exists h such that P(—hF) = 0 then
h is the exponential growth rate of cp. Conversely, if the exponential growth rate h
of cF is finite and positive then P(—hF) = 0.

Corollary 3.11. The topological entropy of the flow Vi, is the exponential growth rate
of the cocycle cf.

Proof. LethbecF’sexponential growth rate. Then Ledrappier’s Lemma 3.10implies
P(—hF) = 0. Lemma 2.4 states that this condition determines ¥/,’s topological
entropy Ap (¥ ), and thus i1 = hyp (). L

Recall that 2 = A, .. We now give a precise description of the measure induced
on 3°T by the equilibrium state of —2F. Denote by a: T'M — T M the antipo-
dal map. The periods of the function F: (p,w) — F(a(p,w)) are the numbers
£c(y~') and thus éF := ¢ is a dual cocycle of cf.
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Lemma 3.12. The cocycles cg and ¢ have the same exponential growth rate.

Proof. The function y + y~! induces a bijection between the sets {y € T :

bep(y) <tyand{y €T : €. (y~") <1}. O
Define [-,-|F: 3°T — R as

[x, ylr = B (0,u) + Bf (0.u)
for any point u in the geodesic determined by x and y, where
BF,B?IBMX]\ZX]\Z%R
are the geometric cocycles defined by (4) for the functions F and F respectively.
Notice that [-, -] is a Gromov product for the pair {cFr, ¢F }.
Denote by . and 1 g the quasi-invariant measures whose cocycles are ¢y and

¢F respectively. The second item of the theorem is then deduced from the following
result of Schapira (Proposition 2.4 of [26]).

Proposition 3.13. Identify T M with 3 M x R via the Hopf parametrization. Then
the measure
mp = ¢ "N A ()dpr (v)ds

induces in the quotient T\T! M the Gibbs state of —hF.

In order to finish the proof of the second item of Theorem 3.2 we remark that,
as observed in Section 2 (Proposition 2.7), ¥, has a unique probability of maximal
entropy v. According to Lemma 2.4, v has the same zero sets as the equilibrium state
of —hF, and thus, according to the above proposition, the lift of v to 3*T x R has
the same zero sets as 1 @ p @ ds. This finishes the proof.

4. Counting periods and distribution of fixed points

In this section we extract as much counting information as we can for a general
cocycle. We study the consequences of Parry—Pollicott’s prime orbit theorem and
Bowen’s spatial distribution result via the reparametrizing Theorem 3.2.

From the first item of Theorem 3.2 we deduce the following counting result.
Recall that y € I' is primitive if it can not be written as a (positive) power of another
element of "

Corollary 4.1. Letc: I’ x dT' — R be a Hélder cocycle with non-negative periods
and such that h. € (0, 00). Then

hete "< #{[g] € [T primitive: £.(y) <1} — 1

as i — oo,
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In other words, in order to obtain a precise counting result for the periods of a
Holder cocycle ¢, it is sufficient to prove that it has finite exponential growth rate.

Proof. Following Theorem 3.2 the translation flow ¥, : T\0?T x R (J (I" acting on
9°T x R via c) is well defined and is a reparametrization of the geodesic flow. If t
is a periodic orbit of v, then any lift to 3°T x R is of the form (y_, y, s) for some
primitive y € I" and s € R. One checks that

Y= v+,8) = (= v+. 5 — L:(y)

which implies that the period p(t) of 7 is £.()) since y was chosen primitive. One
then has

#{v € ['] primitive : £.(y) <t} = #{t periodic : p(r) < t}.

We are led to count the number of periodic orbits of period < ¢ for the flow ;.
Since yr; is a reparametrization of the geodesic flow, Corollary 2.10 implies that we
have a weak mixing Markov coding (X, 7, f) associated to ;. Recall that ¥,’s
topological entropy coincides with the topological entropy of crzf . One finishes by
applying the following theorem of Parry—Pollicott [19] (see also [20]). This completes
the proof. (]

Theorem 4.2 (Prime orbit theorem [19]). Letr 3 be a sub-shift of finite type and let
f+E — RL be Hilder continuous. Suppose that the suspension flow Urff XX

R/f O is weak mixing, and set p(t) the period of a sz -periodic orbit. Then
hte_m#{t periodic: p(t) <t} — 1
/

when t — oo, where h is the topological entropy of the suspension flow o .

We prove now a distribution property of fixed points on dT" for a Hélder cocycle
¢ with non-negative periods and /. € (0, 00).

Consider a dual cocycle ¢, a Gromov product [, ] : 3*T — R and denote by p and
i1 the Patterson—Sullivan probabilities of ¢ and ¢ respectively. Finally write C,.(3°T")
for the space of real continuous functions on 32T with compact support.

The following proposition is inspired in Roblin [24].

Proposition 4.3. Let ||m.|| denote the total mass of the measure m, = e "<lv1g @
i @ ds on the compact quotient T\O?T x R. Then we have the convergence

v = lmellbee™ Y 8, ®8,, > e iy
yele(y)=<t

in CX(3°T) when t — oc.
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We shall use the following distribution result due to Bowen [7], [8].

Theorem 4.4 (Bowen [7], [8]). Let X be a sub-shift of finite type and f: X — R
be Hélder continuous. Then

#{1 of—periodic cp(n) < 137) Z
:p(r)<t

1
Leb
p(r)  F

converges to the probability of maximal entropy of crtf , where Leb, is the Lebesgue
measure on T of length p(t).

Proof of Proposition 4.3. As observed before we have a weak mixing Markov coding
for the flow ¥, : T\@*T x R (9 (Corollary 2.10). Applying Parry—Pollicott’s prime
orbit theorem (Theorem 4.2) together with Bowen’s result we find the convergence
of

1
kcle_h” Z ) Leb,

to the probability of maximal entropy of ¥, on I'\d?T" x R, when 1 — oo. The
reparametrizing Theorem 3.2 states that this measure is lifted to 32T x R as

:p(z)<t

e_hC["']ﬂ ® }uJ ® dS

I

Since periodic orbits of 7, are of the form (y—, y4, s) for some y € T primitive,
and since the period of such orbit is £.(y) we have the convergence

1 e~helln @ @ ds
h.te het — 5, ®5,, ®ds —>
¢ Z 4 (V) y = ”mc ”

¥ primitive: £ (y)<t

in 3°T x R.
We can delete the R-component by comparing the measures of sets of the form
A x B x I for some interval 7, and we find

1

0y .= ”mc”kcfe_hd Z mgy_ %4

y primitive: £, (p) <t

5]/+ — e_hﬂ['»']ﬁ ® )UL

when 1 — oc.
In order to finish the proof of the proposition we shall delete the terms 7/£.(y)
with the restriction “y primitive”. We will follow a method of Roblin ([24], p. 71)
The integer part of ££.(y)~! is the number of powers of y such that £.(y") < ¢,
that is,

[gct()/)} =#ne N L") =nl.y) <t}
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We then have that v; equals

s !
|| hce fick Z |:—€ (y)i|5y_ ®5y+

¥ primitive

Lo(y)=t

and we find v;(f) < o,(f) for every measurable f > 0.
For a complementary inequality fix some « > 0. Now, if e7™*7 < £.(y) <t we

have [t /€.(y)] = e t/£.(y) and

ey 1
v > melle™hete™ " ——8, ®36,,
Y primitive EC (y)

e X<l (y)=<t

1
— gy — Y R Z , Sy_ ® 8y,
¥ primitive ¢ (y)
Le(y)<e™*t

Since the second term goes to zero when /7 — oc we find that for every measurable
f =0,
limsup v (f) = e % lim supo:(f).

Since « is arbitrary, these two inequalities show the proposition. 0

5. Exponential growth of convex representations

Letp: I' — PGL(d, R) be a strictly convex representation with p-equivariant Hélder
map &: 3T — P (R9). For a fixed norm || || on R? define the Holder cocycle

o)l

P1(y, x) = log
[l

forv e £(x) — {0}.

In order to apply Theorem 3.2 we need to prove that the cocycle 85 is of positive
periods and has finite exponential growth rate. The main purpose of this section is
Proposition 5.4.

We shall first show that the period S (y, y+) is exactly A{(p(y)), the logarithm
of the spectral radius of some lift of p()) with determinant € {—1, 1}.

We say that g € PGL(d, R) is proximal if it has a unique complex eigenvalue of
maximal modulus, and its generalized eigenspace is one-dimensional. This eigen-
value is necessarily real and its modulus is equal to expA1(g). We will denote by
g+ the g-fixed line of R consisting of eigenvectors of this eigenvalue and by g_
the g-invariant complement of g4 (that is, R? = g+ & g-). g4 1s an attractor on
IP(R¢) for the action of g and g_ is a repelling hyperplane.
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Lemma 5.1. Let p: ' — PGL(d, R) be a strictly convex representation. Then for
every y € I, p(y) is proximal and &(y4) is its attractive fixed line.

Proof. Consider yg € T" and write, to simplify the notation, @ = exp A{{p(yp)). We
consider a lift of p(yg) to SL{d, R)+ which we still call p(yp).

Let V, be the sum of all generalized p(yy)-eigenspaces of eigenvalues with mod-
ulus equal to a. We will show that Vo = §(yo, ). Set V = V, N 5(yo_), and recall

that RY = E(ros) B nyo_)-

Since V is a sum of generalized eigenspaces in 7(yo_), it has a p(yp)-invariant
complement W C 5(yy_) and thus RY = Ero ) W e V.

We claim that £(yo, ) & W contains a p(I")-invariant subspace. Since p is irre-
ducible we obtain V' = {0} and Vy = £(yo, ), which implies the lemma. For this we
will show that

§0T) CPEQo4) @ W).

Let x € 0I' — {yo_}. Since yjx — o, the same occurs via £, that is,

p(yo)E(x) = E(voy) (6)

in P(R9). Take some 1, in the line £(x) and write, following the decomposition
RY=E(po) @V B W,
Uy =Uyp +V+ W

forsome uy € £(ypy ). v € V and w € W. We now consider the sequence

plyolux _ plyg)lus +v+w)

a’l a’l

Since the spectral radius of p(y)|W is strictly smaller than @ (by definition of V') we
have

plyg)w/a” — 0.
Also, since 14 is an eigenvector of p(yy) we must have either p(yo)uy/a = Fuy
or p(yguy/a" — 0.

On the other hand, since p(yp)|V consists of Jordan blocks of eigenvalues with
modulus ¢ we have a” < c||p(y{)v| for some ¢ > 0 and all # sufficiently large.
This implies that the sequence

plyg )y
an
is far from zero (when v # 0).

Consequently: if p(y})u4/a” — 0, then the limit line of p(y[)&(x) is contained
in P(V'). This contradicts equation (6) and the convexity of p. We then have that
p(yo)us/a = Tuy and, since p(yf)v/a” is far from zero, in order that (6) holds
we must have v = 0. Thus §(dI') C P(§(yoy) & W) which implies V' = 0. This
finishes the proof. (]
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We then find the following corollaries.

Corollary 5.2. Let p: I' — PGL(d, R) be a strictly convex representation. Thenthe
equivariant maps £: 3T — P(RY) and n: T — Grg_1(R?) are unique and for
every X € ol one has §(x) C n(x).

Proof. The fact that &(y4) is the attractive line of p(y) and the fact that attractors
{y+ : y € I'} form a dense subset of dI" prove uniqueness of £ and, by analogue
reasoning, uniqueness of 7.

Since 7(y—) is the repeller hyperplane of p(y) and £ (y_) is p(y ') s attractive line
we must have £ (y_) C n(y—). Again, density of repellers implies that £(x) C n(x)
forevery x € dT. 0

Corollary 5.3. Let p: I' — PGL(d,R) be a strictly convex representation. Thenthe
period B1(y, y+) is A1(p(¥)). Moreover A1(p(y)) > O foreveryy € T.

Proof. By Lemma 5.1 we have that £(y4) is the fixed attractive line of p(y). We
then have
loC )4 ||

= A1(p(y)
[l + ||

Bi(y,y+) = log

were Uy € E(y4).
The fact that the periods are positive is also a consequence of the fact that p(y)

is proximal. If A1(p(y)) = 0 then considering some lift of p(y) with determinant
in {—1, 1} one sees that every eigenvalue of this lift would be of modulus 1 and thus
p(y) would not be proximal. O

Since f; is a cocycle with positive periods, Corollary 3.6 implies that the expo-
nential growth rate of § is positive. The objective now is the proof of the following
proposition:

Proposition 5.4. Let p: I’ — PGL(d, R) be a strictly convex representation. Then
r log#{[y] € [T'] : A1(p(¥)) = s}
im sup

§— 00 §

is finite.

The following lemma provides a general property of hyperbolic groups for which
we refer the reader to Tukia [31]. For the second assertion of the lemma one can
apply explicitly Lemma 1.6 of Bowditch [5].

Lemma 5.5. Let T be a hyperbolic group and let {y,} be a sequence in T' going
to infinity. Then there exists a subsequence {y,, } and two points xy, yo € 9I" (not
necessarily distinct) such that y,, x — xo uniformly on compact sets of 0I' — {yo}.
Movreover one can assume that Yok 4 = Xo and yp. _ —> Yo.
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In order to prove Lemma 5.4 we need some quantified version of proximality.
Define Gromov’s product ¥ : P(Rd*) x P(R?) — A — R as

10(v)]
18I

4(0,v) = log

where A = {(0,v) : 6(v) = 0}. We say that a linear transformation g is (7, &)-
proximal for some r € R4 and £ > 01f it is proximal,

exp (g, g4) > 7.

and the complement of an e-neighborhood of g_ is sent by g to an e-neighborhood of
g+. The following lemmas (5.6 and 5.7) will also be used in the proof of Theorem A.

Lemma 5.6 (Benoist [2]). Let v and & be positive numbers. Then there exists & such
that for every (r, &)-proximal transformation g one has

|log [lgll — A1(g) + ¥(g—.g+)| < 4.

Proof. Consider the compact sets
P, o = {(r, £)-proximal linear transformations with norm 1}.

For a fixed r consider P, = ('), Pr. Aneclement 7 € P, is a rank-one operator with
the constraint ||7|| = 1 and such that im 7 N ker 7 = {0}. One explicitly writes

f(w)
(]

v

where v € R? and 0 € RY” are such that O(v) # 0. Itis easy to verify that the above
formula for 7" gives a rank-one operator with norm equal to 1.

One finishes with the remark that the function ¢ — A;(g) is continuous and
ATy =90, v)for T € P,. O

Define [-,+|: 3°T — R as
[x.¥] = G (n(x). £(»))

for x, y € oI distinct.

Lemma5.7. Letp: T' — PGL(d, R) be astrictly convex representation. Fixr € R4
and & > 0. Then the set

{y e T rexp(|y—, v+]) = r and p(y) is not (r, &)-proximal}

is finite.
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Proof. Let y, — oo be a sequence in I such that exp[y,,_, 4| > r. Since § and
n are uniformly continuous we have that d,(y,_, y»,) > « for some ¥ > 0 and
some Gromov distance d, in dT". By applying Lemma 5.5 we find a subsequence
(still called yy ) and two points xq, yo such that y,_ and y, | converge o yo and xg
respectively, and such that y,x — x, forevery x # yj.

We have xg # yo since do(yn_.yny) > k.

By considering again a subsequence we assume that

p(Yn)
loCya) |l

for some linear transformation 7 of R¢. We will prove that T is a proximal rank-one
operator, which implies that for sufficiently large #n, p(y,) is (¥, &)-proximal.

Since §(yn 4 ) is p(y,)-invariant for all n we have that §(xg) is T-invariant and by
analogue reasoning we also have that 7(yg) is 7-invariant (recall that we also have
R¥ = E(xq) @ n(yo) since p is strictly convex and xo # Vo).

Consider now a point x € 9" — {yg} and 1, a vector in the line £(x). Write
ux = u + vforsome u € £(xg) and v € (vp). Since p(y)&(x) — &(xp) we must
have Tu, € £(xp) and thus Tv = 0 (since n(yg) is T -invariant).

Consequently, £(3T") C P(£(xg) + ker T). Irreducibility of p implies that R4 =

E(xp) + ker T. 1In order to finish we remark that since ||7| = 1 we must have
T|&(xg) # Oand thus 7 # 0. We then have a rank-one operator whose image is not
contained in its kernel. U

The following lemma states that strictly convex representations are discrete and,
using the fact that the fundamental group of a negatively curved manifold is torsion-
free, they are also injective.

Lemma 5.8. et " be a non-elementary hyperbolic group and py: I' — PGL(d,R)
be an irreducible representation such that there exists a py-equivariant continuous
map £ 0T — P(R?). Then py is discrete with finite kernel. In particular, strictly
convex representations are discrete and injective.

Proof. Assume there exists a divergent sequence y,, — oo in I" such that pg(y,)
converges to g € PGL(d, R). Consider a subsequence (which we still call y,,) and
the points xy, vy € dI" given by Lemma 5.5. Then for any x € dI" different from y,
one has y,x — Xxgp.

Since &g is pg-equivariant we have that py(y;, )0(x) — £p(xp) and thus

g&o(x) = &o(xo)

for every x #£ yp. Since g is injective one obtains that &y is constant and thus pg fixes
a line in R¥. This contradicts irreducibility.

We proved that pg is proper and thus has finite kernel. This finishes the proof of
the lemma. (]
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We can now prove that the exponential growth rate of the cocycle 1 is finite.

Proof of Lemma 5.4. Since the actionof I" on T'! M is co-compact, one has a compact
fundamental domain D. Since a conjugacy class [y] € [I'] is identified with a closed
geodesic, one can always find a representative yg € |[y] such that the yg-invariant
geodesic on T'M intersects D. The fact that D is compact implies that the fixed
points of yp on 9T are necessarily far away by some constant independent of [y].

In other words, there exists some constant k& > 0 such that every conjugacy class
of [y] has a representative yy with d,(yo_, y04) > k for some Gromov distance d,
on oT".

Since the equivariant maps & and n are uniformly continuous one has that every
conjugacy class [y] has a representative yo such that explyg_, yo | > 7 for some r
independent of |y|.

From now on we fix some number § > 0 and consider & > 0 given by LLemma 5.6.
Thus, applying Lemma 5.7, all y’s with exp[y—, y4+] > r (but a finite number de-
pending only on r and €) are (7, £)-proximal and thus verify, according to Benoist’s
Lemma 5.6,

log [o(¥)|| +logr — & < A1(p(¥)).

One concludes, by choosing for each conjugacy class [y] a representative vy with
explyo_, Yo4] > 7, that

#yl € [T]: Ai(p(y)) =t}
< #{y :[y—,y4] > logr and log |[p(y)|| =t + 8 —logr}
+ #{finite set independent of ¢}
=#{y el :loglp)| =1+ —logr}
+ #{finite set independent of 7}.

Since the cardinal of the finite set is negligible when computing the exponential
growth rate, one is led to study the exponential growth rate of the quantity #{y € I :
log [|p()]| < £} when # — oo.

Lemma 5.8 states that p(I") is discrete and injective and thus the fact that the
exponential growth rate of #{y € T : log|p(y)| < f} is finite when 1 — oo is
implied by the following general fact. (]

We remark that the statement of the following lemma is independent of the norm
|| || chosen in R¥,

Lemma 5.9. Let A be a discrete subgroup of PGL(d,R). Then

. log#{g € A :log| gl = ¢}
1m sup < 00

=0 t
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Proof. This is a consequence of the following estimation of the Haar measure of
PGL.(d, R) which can be found in Helgason [13]:

. log Haar{g € PGL(d.R) : | g| = R}
lim sup < 00
R—oo log R

6. Theorems A and B
Counting the growth of the spectral radii. We prove now Theorem B.

Theorem 6.1. Let p: I' — PGL(d.RR) be a strictly convex representation. Then
there exists h > 0 such that

hte ™ #{[y] € [T] primitive: A1(py) <1} — 1

when t — oc.

Proof. Recall that according to Corollary 5.3 the cocycle 81 has periods S1(y, y+) =
A1(py). Proposition 5.4 states that 8 has finite and positive exponential growth rate
and thus Corollary 4.1 applies. The result then follows. U

Dual cocycle of 81 and Gromeov product. Inorderto prove Theorem A we introduce
a natural dual cocycle of §; and the Gromov product associated to this pair.

First recall that we have two p-equivariant Holder maps &: 9T — P(R?) and
n: a7 — Grg_1(R?) such that £(x) ¢ n(y) if x # y. We have defined the cocycle

le(r)v]l
[l

for any v € £(x) — {0}. Define then B1: T x 3l — R as

le() 8|
181

P1(y, x) = log

Bi(y.x) = log

forany 0 € R4 such that ker 6 = n(x).

Lemma 6.2. let g € GL(d,R) be proximal with maximal eigenvalue a, and let
*
6 € R?” such that ker = g_. Then g6 = a~ 4.

Proof. Since ker & = g_ one has g6 = b0 for some real ». Consider now some
U4 € g4. One has

bOGes) = gb(us) = ~6(u)

and, since O(uy) # 0, we have b = ™! O
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One trivially deduces the following lemma.

Lemma 6.3. The period Bi(v,v4) is Aoy~ ). One obtains thus that the pair
{B1, B1} is a pair of dual cocycles.

Recall that we have defined the Gromov product ¢ : P(Rd*) xP(R4)—-A - R

10(v)]
[

where A = {(8,v) : 6(v) = 0}, and [x, y] = ¥ (n(x),&E(y)) for x, y € dT distinct.

as

“4(0,v) = log

Lemma 6.4. The function |-,-]: 8°T — R is a Gromov product for the pair {B1, B1}.

Proof. One easily verifies that for every g € PGL(d, R) one has

0
G(g0,gv) —4(0.v) = _(10g 1800\ 1o |||f|gvv”||),

161
(recall*that the action of PGL(d,R) on P(Rd*) coherent with the identification
P(RZ") = Grg_1(R9)is > 0o g~1) this means exactly that forevery y € T one
has

[yx,yy] =[x, y] = =By, ©) + B1(v. ).
This finishes the proof. L

The proof of Theorem A. We can now prove Theorem A. To simplify notation write
£(y) for the periods

£Qy) = By, v+) = A1(py),

and A for the exponential growth rate of 1,

b log#ly] €[] 60) < 1)
= sup .

§— 00 hY

Let i and i be the Patterson—Sullivan measures of 51 and ,6_1 respectively. Write

||m,| for the total mass of the measure e "3 ® 1 @ ds on the compact quotient
T\&°T x R.

Theorem 6.5. One has

Imollhe™ ¥ 8, @8, >p®u
log |lpy | <t

ast — oo on C*(AT x aT").
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Proof. Since h € (0, oc) Proposition 4.3 applies and thus

Imollhe™ > 6, @8, ="M aeu
Ly)=<t

on C*(9°T).

Choose some positive § and let A, B C dI" be two disjoint open subsets small
enough such that |-,+]: A x B — R is constant 7 up to §, that is |[x, y] — 7| < & for
every (x,y) € A x B.

Lemma 5.7 allows us to assume (excluding a finite set of I' that depends on r and
d) thatif y_ € A and y4+ € B then p(y) is (expr, £)-proximal, where & comes from
Lemma 5.6 for expr and §.

We then have, by Benoist’s Lemma 5.6, that |log || p(y)|| — £(y) + | < 24. That
18,
Ey) —r =25 =loglpl = £(y) —r + 24.
Set
O == lmplhe™ 3" 5, ®8,,.
log || p(y} =t

The last inequalities imply that for all / > 0,

e—ZhSehr ||mp||he—h(f+f—25) Z 5)/_ (A)'Sy+ (B)
£(y)<t+r—24
< 0,(Ax B)
< eZhaehr||mp||he_h(t+r+28) Z 5y_(A)5y+ (B)
E(y)<t+r+28

Applying Proposition 4.3 we f{ind, when / — oo, that
e h =D g @ (A x B) < liminf 6,(4 x B)
{—oo
< limsupf,(A x B)

=0

< Mh0D g (A x B),
hence one has, since |r — [x, ¥]| < § forevery (x,¥) € A x B, that

e B(A)u(B) < liminf 6;(A x B) < limsup8,(A x B) < > a(A)u(B).
F=2.00 t—00
Since 4 is arbitrary this argument proves the convergence of 8; — 1 ® u outside
the diagonal, that is to say, subsets of 9" x 9" — {(x, x) : x € dT'}. In order to finish
we will prove the following: Given &g there exists an open covering U of dT" such
that Y ;yeq 8:(U x U) < &g for all ¢ large enough. The following argument was
personally communicated by Thomas Roblin.
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Since j& and g have no atoms and y, u < u for every y € I', one has that the
diagonal has measure zero for it @ y«p (forevery y € T').

Fix two elements yp and y; in I" and fix some ¢ > 0. We can assume that y and
y1 have no common fixed point in dI". Choose an open covering U of 3" such that
forevery i = 0, 1 one has

D U x plyi(U)) < e

UeU

By refining U we can assume that for every U/ € U there exists i € {0, 1} such that
yl-U N U = @ where U is U’s closure.

Since oT" is compact we may assume that the covering U is finite and thus, by
enlarging the U’s, we can consider a new covering V veritying the following:

(1) foreach U € U there exists V € Vsuchthat U C V, and foreach V € V there
exists a unique U verifying this condition;

(2) if y; [:] NU = @ for some i € {0, 1} then y; V NV = @ for the unique V such
thaa U C V;

3) D pev it @ yi u(V X V) < gy foreveryi € {0, 1}.

Consider some U/ € U and suppose that yoU N U = §. We study the set
Fy:={yel: (y_,y4) eUxU}

Lemma 6.6. Consider V € V such that U C V. Except for a finite number of
v € 'y, the repeller (Yoy)— of voy belongs to V and the attractor (Voy)+ € voV.

Proof. Consider a sequence y, € 'y and the points xp, yo given by Lemma 5.5.
Since y,_ — yo and y,, — xp we have that x, and yo belong to UcV,fora
unique V € V. Thus, since yg € Yo V, one has Yn(YoV) — xo uniformly.

This implies that the set

Fp={yeTy:y(roV) &V}

is finite.
Consider now some y € I'y — Fyy. The sequence (Y)Y )" v+ is contained in yoV
and thus (since y4 is not the repeller of yq)) the attractor of y5y also belongs to yo V.
Analogue reasoning gives the remaining statement of the lemma. O

It follows from the lemma that

0,(U x U) < [|mp|lhe™™ > 8y_(V) @8y, (yoV)
yilog [l p(¥)ll <log [ o(yo)ll+1
+ ||lm,||he ™" #{finite set independent of £},
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where V € Vissuchthat U C V. Since V x v,V is far from the diagonal and the
cardinality of the finite set does not depend on #, the right-hand side of the formula
converges to ||yo||Z (V) x w(yoV) when r — oo.

One then has, since V' is unique for each given U € U, that

DU xTY= Y Y V) V) < 280 max{||yoll, ly1]1}-

UeU i€f0,1} Vev

Since yg and y; are fixed and &g is arbitrarily small the theorem is proved. U

7. Hyperconvex representations: Theorem C

We are now interested in studying hyperconvex representations on some real algebraic
non-compact semi-simple Lie group G. The purpose of this section is to prove
Theorem C. In order to do so we must find an appropriate pair of dual Hélder cocycles
and the Gromov product associated to them.

Denote by P a minimal parabolic subgroup of G and write .# = G/P. The set
% 1is called the Furstenberg boundary of the symmetric space of G. The product
F x F has aunique open G-orbit, denoted by 8%.%.

Recall that I" is the fundamental group of some closed negatively curved mani-
fold M.

Definition 7.1. We say that a representation p: I' — G is hyperconvex il it admits
a Holder continuous equivariant map : dI' — % such that whenever x # y in 9T
one has that the pair (£(x), £(y)) belongs to 3%.5.

The relation between hyperconvex representations and strictly convex ones 1s
given by the following lemma:

Lemma 7.1. let p: I' — G be a Zariski-dense hyperconvex representation and let
A G — PGL(d, R) be a proximal irreducible representation. Then the composition
Aop: ' = PGL(d, R) is strictly convex.

Proof. Consider the highest weight y of A. Since A is proximal the weight space of
x is one-dimensional, one thus obtains that A (P) stabilizes a line in R . Considering

the dual representation one obtains an equiv;ariant mapping into hyperplanes and one
has that 92.% is mapped to P (R%) x P(R4") — A where

A ={@0) e PR x PR : 0(v) = 0.
One then obtains the equivariant mappings

Pr = PF - P(RY) x P(RY™).
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Irreducibility of A o p follows from Zariski density of p(I") and irreducibility of A.
L

Fix a maximal compact subgroup K of G, consider a Cartan subalgebra a of G’s
Lie algebra g and fix some Weyl chamber at. Denote by a: G — a the Cartan
projection following the Cartan decomposition G = K exp(a™)K. Consider also
the Jordan projection A: G — a*. These two projections are related by

= i e i)
I3

for every g € G, (cf. Benoist [2]).

One says that g € G is purely loxodromic if A(g) belongs to the interior of the
Weyl chamber a™. A purely loxedromic element g € G has two remarkable fixed
points in .#, namely g4 and g_. These points verify the following property: for
every z € & such that (z, g_) € 3°.% one has that g"z — g, whenn — 0o. One
then says that g4 is the attractor of g and g_ is the repeller.

The existence of sufficiently many irreducible representations of G implies that
Zariski-dense hyperconvex representations are purely loxodromic:

Consider the set I of simple roots of a on g such that

at ={vea:a@)>0forala e IT}

and consider the set {wy }yemr of fundamental weights of T1.

Proposition 7.2 (Tits [30]). Foreacha € 11 there exists afinite-dimensional proximal
irreducible representation Ay: G — PGL(Vy) such that the highest weight yo of
Ay is an integer multiple of the fundamental weight wy. Moreover, any other weight

of Ay is of the form
Yo — O — Z ngp

Bell
withng € N.

Corollary 7.3. Let p: I' — G be a Zariski-dense hyperconvex representation with
equivariant mapping . 01 — F. Then for every y € T the image p(y) is purely
loxodromic; moreover, {(y4) is the attractor of p(y) in F and {(y_) is the repeller.

Proof. We will show that for every & € Tl and y € T one has a(A(py)) > 0.

Fix some o € II and consider Tits’ representation Ay : G — PGL(Vy) ( [30]).
Recall that for every ¢ € G one has that y,(A(g)) = A1(Ayg) and a(A(g)) =
)Ll(Act (g)) - )LZ(Aa(g))-

Since p is Zariski-dense and hyperconvex, Lemma 7.1 implies that Ay © p 1s
strictly convex and thus (following Lemma 5.1) proximal. One concludes that

a(A(py)) = A1(Ag(py)) — A2(Agpy) > 0.
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The last statement follows from Lemma 5.1. This completes the proof. U

The equivariant function ¢ of the definition is then unique since attracting points
v+ are dense in dI".

Busemann cocycle. Let us recall Busemann’s cocycle on G introduced by Quint in
[22]. The set.# is K-homogeneous with stabilizer M. Quintdefineso: G X.% — a
to verify the following equation:

gk = Lexp(o(g, kM))n

following Iwasawa’s decompositionof G = Ke®N, where N is the unipotent radical
of G.
Note that 0: G X .# — a verifies the cocycle relation

o(gh,x) =o(g,hx) + o(h.x).

We need the following lemma of Quint [22]: Recall that for a given proxi-
mal irreducible representation A: G — PGL(d,R) we have an equivariant map
Ea: F — P(RY).

Lemma 7.4 (Lemma 6.4 of Quint [22]). Consider some proximal irreducible repre-
sentation A: G — PGL(d,R). Then there exists a norm || | on R? such that for
every X € % and g € G one has

|A(g)v]|

(e

log = x(o(g.x)),

where v € §a(x) — {0} and y is the maximal weight of A.

Consider now a hyperconvex representation p: I’ — G with equivariant map
{: ' — .%. Define the (a-valued) cocycle : I' x d" — a by

B(y. x) = a(p(y),{(x)).
Lemma 7.5. The periods of B are B(y, y+) = A(py).

Proof. The lemma follows directly from Quint [22], LLemma 7.4, Corollary 7.3 and
Corollary 5.3 for strictly convex representations. O

Recall that for a Zariski-dense subgroup A of G, Benoist [2] has introduced the
limit cone £ as the closed cone containing {A(g) : ¢ € A}. He has proved that this
cone is convex and has non-empty interior. Consider its dual cone

LrTi=fpea’ gL =0}

Ledrappier [16] (Theorem 3.5) implies the following corollary: Let .Z, denote
the limit cone of a hyperconvex representation p: I' — G and .7’ p* its dual cone.
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Corollary 7.6. Let p: I' — G be a Zariski-dense hyperconvex representation. Then
there exists a T-invariant Holder continuous function F: T'M — a such that

[ F = Mpy)
[¥]

for every conjugacy class [y] € [[']. The closure of the set
A
{M Ly e 1“}
b
is compact and generates the limit cone Z,.
Proof. The first statement is a consequence of Ledrappier [16] (Theorem 3.5) for the

vector cocycle §: ' x 3" — a together with Lemma 7.5. Fix some norm || ||, on a.
Since for every y € I' one has

A
I
one finds that the set %
{ Lo F}
¥
is bounded and thus has compact closure. (]

We remark that a priori the closure of {A(py)/|y| : ¥ € '} may contain zero,
nevertheless the following lemma forbids this to happen.

Lemma 7.7. Let p: I' — G be a Zariski-dense hyperconvex representation and
consider some ¢ in the dual cone gp*. Then the cocycle p o f: T x aT' — R has
Jfinite and positive exponential growth rate if and only if @ belongs to the interior

of £

Proof. We will first show that for every simple root «, the weight y, for Tits’s
representation Ay : G — PGL(V,,), is strictly positive on the limit cone .%,. Recall
that Agzp: T' — PGL(V,) is strictly convex and that y,(A(py)) = A(Agpy).
Proposition 5.4 states that the exponential growth rate of

#{[y] € [T] : A(Aapy) =1}
is finite and thus applying Ledrappier’s Lemma 3.7 we obtain

nf Lo (Alpy)) .

0.
[¥]elr] |v]
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The fundamental weight y, is then strictly positive on the closure of {A(py)/|V] :
[¥] € [T']}. Since this closure is compact and generates the limit cone (Corollary 7.6),
Xa i strictly positive on %, — {0}.

Consider now ¢ in the interior of .}, i.e. ¢|.Z, — {0} > 0. Since x, is also
strictly positive on %}, — {0} there exist two positive constants ¢ and C such that

¢ xaA(py)) = o(A(py)) = Cxa(A(py))

(recall that %, is closed by definition) for all ¥y € T'. As mentioned before the
exponential growth rate of

#{[v] € |T] : xa(A(py)) = s}

is finite. Since the periods of the cocycle ¢ o 8 are ¢ o B(y, y+) = @(A(py)), we
obtain that ¢ o § is of finite and positive exponential growth.

Conversely, if ¢ o B has finite exponential growth rate then Ledrappier [16]
(Lemma 3.7), applied to the cocycle ¢ ¢ 8, says that

o ¢(Apy)
inf ————
ylelrl |V
The linear functional ¢ is then strictly positive on the closure of {A(py)/|y| : [v] €

[T']}. Since this closure is compact and generates the limit cone (Corollary 7.6) we
conclude the proof. (]

> (.

From now on we shall write 8,: I x 9I" — R for the Holder cocycle
Bo(y. x) 1= @ o B(y, x)
and h,, for its exponential growth rate

b — limsun 2] € 1T - @(Aloy)) =5}
¢ = sup :

§— 00 §

We can now deduce the first item of Theorem C:

Theorem 7.8. Let p: I' — G be a Zariski-dense hyperconvex representation and
consider ¢ in the interior of £. Then

hote ™' #{[y] € [T'] : p(Apy)) < 1} — 1
when I — 0.

Proof. Recall that the periods of the cocycle 8, are
Be(v.v+) = ¢(A(py)).

The theorem is thus a direct consequence of the fact that the cocycle §, has finite and
positive exponential growth rate (Lemma 7.7), together with Corollary 4.1. L
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Dual cocycle and Gromov product. Consider the Weyl group W of & and denote by
wp the biggest element of W associated to the choice of at. The opposition involution

i:a— aisi:= —wy; it sends the Weyl chamber at to itself and i(A(g)) = A(g™")
for every g € G. This property implies that the Holder cocycle
Bo=g¢oip

is a dual cocycle of B,.

Consider some simple root ¢ € TT and the equivariant mappings &, : .F — P(Vy)
and £ : .F — P(V)) for A, and A}, respectively, where Ay: G — PGL(V,) is
the representation given by Tits [30] (see Proposition 7.2) for «.

We define the Gromov product 911: 3*.% — a as follows: Since {wy : a € I1}
is a basis of a* the same occurs for {y, : @ € T1}. The element ¥11(x, y) is thus
determined by yo(¥n(x, y)) for every a € TI. Consider the Euclidean norm || |4
on V determined by the formula

log [[Aa(g)le = xala(g)).
We then define y, (%1 (x, y)) as

10(v)]

o @ri(x, y)) 1= log ——2
Aedm E 10Nl

forsome 6 € £} (x) and v € &,(y).
Lemma 7.9. Forevery g € G and x, vy € 3*.F one has
“n(gx.gy) —¥n(x.y) = —(ic o(g, x) — 0(g, ¥)).

Proof. The lemma follows from the formula

|00 g7 (gv)] D] g1 lg v
—log = —log—— + log y
160 g~ llgvll (I 191 [l

for anorm on a vector space V, every g € PGL(V) and (6,v) € P(V*)xP(V)— A,
together with the definition of 941. O

Lemma 7.9 directly implies the following:

Lemma 7.10. Let p: ' — G be a Zariski-dense hyperconvex representation and
consider ¢ in the interior of the dual cone L7, then the function [-,-],: 0°T — R
defined as

[x. ¥l = ¢ o 9m(C(x). L())

is a Gromov product for the pair of dual cocycles {B,. ﬁ_g,}



Vol. 89 (2014) Quantitative properties of convex representations 485

Benoist [2] introduced the notion of (r, £)-proximal on .%#:

Definition 7.2. We say that g € G is (7, £)-proximal on % if for every simple root
a € TII the transformation A, g is (r, &)-proximal.

The following lemmas are the direct extension to this setting of Lemmas 5.6 and
5.7. Fix some norm || ||o on a.

Lemma 7.11 (Benoist [2]). Let r and § be two positives numbers. Then there exists
& > O such that for any g (r, &)-proximal on ¥ one has

la(g) — A(g) + ¥nig—. g+)a = 6.

Lemma 7.12. Let p: I' — G be a Zariski-dense hyperconvex representation and fix
somer € Ry and e > 0. Then the set of y € I' with

exp(|n(C(r-). Sy Dlla) > 7

such that p(y) is not (r, &)-proximal on F is finite.

Lemma 7.12 follows directly from Tits [30] (Proposition 7.2) and from the ana-
logue lemma for strictly convex representations 5.7.

Recall that /1, is the exponential growth rate of the Holder cocycle S:

Jy, B Tiim.gup log#ily] € [T'] : o(Mpy)) = s}

§—00 §

We obtain the following result:

Theorem 7.13. let p: I — G be a Zariski-dense hyperconvex representation and
consider ¢ in the interior of the dual cone ¥ p*. Let p, and [i, be the Patterson—

Sullivan probabilities on AT associated to the cocycles B, and ﬁ_¢,. Then there exists
¢ > O such that

ce—het Z 8y ® .SH — g @ te
vel': gla(py)) =<t

when [ — oc. In particular one has
ce Pl yly e T: pla(oy)) <1} — L.

The proof of Theorem 7.13 follows step by step the method of Section 5.
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A bound for the orbital counting problem. Let X = G/K be the symmetric space
of G and o = [K]| € X. Fix some Euclidean norm || || on a invariant under the Weyl
group such that

dx(0,80) = [la(g)lla

forevery g € . For adiscrete subgroup A of ¢ define A4 as the exponential growth
rate of an orbiton X:

o log#{y e I : dy(0.p(g)o) =< s}
ha = limsup

§—00 A)
o log#ly € T fla(o)le < 5}
= lim sup :
§—00 A)

We need the following theorem of Quint [21]:

Theorem 7.14 (Quint [21]). Let A be a Zariski-dense discrete subgroup of G. Then

there exists a linear form © p in the interior of the dual cone 5 such that

. log#{g € A 1 Op(alg)) =s}
1m sup =

§—00 Ay

1

and hpn = ||O|a

This form is called the growth form of the group A. Applying Corollary 7.13 to
the growth form of a hyperconvex representation one obtains a bound for the orbital
counting problem:

Corollary 7.15. Let p: I' = G be Zariski-dense hyperconvex representation. Then
there exists C > O such that

eTheMly € T dx (0, p(y)o) <1} = C

foreveryt large enough.
Proof. Write © for the growth form for ®,ry of p(I') and 2 := h ). One has

©(a(py)) = [®]lllaley)ll = 1Olldx (0, p(y)o).
Thus
#{y e :dx(0.p(y)o) <t} =#{y e I': Oalpy)) = O]}
Applying Theorem 7.14 and Theorem 7.13 one has # = ||®|| and
L log#{y e I : ©(A(py)) = s}
he = lim sup
§—= 00 A}
_ log#{y e ' : ®(a(py)) =s}
= lim sup =

§—=00 §

I
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It then follows that

#{yel 1dx(o.p(y)o) <t} =#{y eI : Ola(py)) = ht}

which, applying Theorem 7.13, is asymptotic to ce”® = ce”*. This finishes the
proof. (]
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