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Removable and essential singular sets for higher dimensional
conformal maps

Charles Frances*

Abstract. In this article, we prove several results about the extension to the boundary of confor-
mal immersions from an open subset {2 of a Riemannian manifold L into another Riemannian
manifold N of the same dimension. In dimension # > 3, and when the (# — 1)-dimensional
Hausdorff measure of d€2 is zero, we completely classify the cases when d€2 contains essential
singular points, showing that L. and N are conformally flat and making the link with the theory
of Kleinian groups.

Mathematics Subject Classification (2010). 53A30, 30C65, 30F40 and 32U30
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1. Introduction

The aim of this paper is to make progress toward the understanding of singular sets for
conformal maps between Riemannian manifolds of dimension at least 3. The general
problem we are considering can be stated very easily: assume that (L, g) and (N, h)
are two smooth, connected, Riemannian manifolds of same dimension #n > 2, and
assume that we have a smooth immersion s: L \ A — N, from the complement of
a closed subset A C L, to the manifold N, which is conformal, namely s*h = e¥¢
for some smooth function ¢ on . \ A. The set A is called a singular set for the
conformal immersion s, and a data s: . \ A — N as above is referred to as a
conformal singularity. A basic question is to understand under which conditions the
singular set A 1s removable, namely it is possible to extend s “across” A.

The main contribution of the article is an almost complete understanding of the
situation when the dimension # is at least 3, and the (# — 1)-dimensional Hausdorff
measure of A, denoted "~ !(A), is zero. Under those assumptions, our principal
result is Theorem 1.3, stated in Section 1.2 below, which yields a local classification
of essential conformal singularities, namely those for which s: . \ A — N does
not extend to a continuous map from 1. into the one-point compactification of N.
Theorem 1.3 implies that such essential singular sets can only occur when L and N are
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conformally flat, and moreover N 1s a Kleinian manifold. As aconsequence, exceptin
very peculiar situations that are completely classified, singular sets with "~ 1(A) =
(} are removable (maybe adding a point at infinity to N, when N is noncompact),
and the extended map is still a conformal immersion (see Theorem 1.1). Finally,
under the extra assumption that L is compact and the (n — 2)-dimensional Hausdorff
measure of A is zero, we also classify globally essential conformal singularities in
Theorem 1.4: in this case 1. and N are both Kleinian manifolds.

Since conformal immersions are very peculiar instances in the much larger class
of quasiregular mappings, it is natural, before describing our results into more de-
tails, to mention the existing theorems about removable sets and boundary behavior of
quasiregular maps. Quasiregular mappings (see [IM], [R2], [V1] for comprehensive
introductions to the subject) are usually presented as the “good” higher dimensional
generalization of holomorphic functions of one complex variable. And indeed, clas-
sical theorems of function theory, such as Picard’s theorem, or Painlevé’s theorem
on removable sets, find analogous statements in the framework of quasiregular map-
pings (see for instance [R1], [R3], [V2]). Most of those results, though, only deal
with quasiregular mappings between domains of the extended space R”. Although
more recent works (for instance [BH], [HP], [P] and [Zo1], among others) aimed at
some generalizations involving broader classes of target manifolds N, they do not
help much for the problem we are considering, except in very peculiar cases. More-
over, let us stress that the tools used in the theory of quasiregular mappings involve
elaborate analysis, while the very rigid behavior displayed by conformal immersions
in higher dimension allow to settle the problem in the conformal framework by purely
geometric arguments. Actually, we hope that the ideas introduced here will be helpful
to study removable and essential singular sets for conformal structures which are not
Riemannian, the Lorentz signature being of particular interest, and maybe for other
geometric structures of the same kind, such as Cartan geometries.

1.1. Extension results. Throughout the paper, manifolds and maps between them
are assumed to be smooth.

We consider as above a conformal immersions: L. \ A — N, where (L, g) and
(N, h) are two connected Riemannian manifolds of dimensionn > 3. The conformal
structure on L \ A is that induced by (L., g). We will assume that "~ 1(A) = 0,
where #7~! stands for the (#n — 1)-dimensional Hausdorff measure on (M, g) (we
refer to Chapter 4 of [Ma] for basic notions on Hausdorif measures). In particular,
L.\ A is connected and dense in L. In the sequel, those sets satisfying the condition
FH"1(A) = 0 will be referred to as thin singular sets. The points of a (thin) singular
set A split naturally into three categories.

— The removable singular points are those xo, € A at which the map s extends
continuously. In other words, there exists a point y € N so that for every sequence
(xr) of L\ A converging to x,, the sequence s(xy ) tends to y.
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— The poles are those points xo, € A such that for every sequence (xz) of L\ A
converging to X, the sequence s(xy) leaves every compact subset of N.

— Finally, the points of A which are neither removable, nor poles are essential
singular poinis.

One thus gets a partition A = Ay U Apge U Agg into removable singular points,
poles and essential singular points. The results of this article will allow to determine
the structure of those three sets for thin singularities. We begin with A .

Theorem 1.1. Let (1., g) and (N, h) be two connected n-dimensional Riemannian
manifolds, n > 3. Let A C L be a closed subset such that #"~1(A) = 0, and
s: L\ A — N aconformal immersion. Then the set Aoy, is open in A and s extends
to a conformal immersion s': L\ (Apge U Aggs) — N.

In view of this result, it will be interesting to find criteria ensuring that A is
empty. We will prove in Theorem 3.7 that under the condition #"~!(A) = 0, an
injectivity assumption on the immersion s is enough for that.

1.2. Local classification of thin essential singularities. Our next step will be to
understand, when it is nonempty, the set A, of essential singular points. First, we
introduce the following definition.

Definition 1.2 (Essential singular set). Lets: L\ A — N beaconformal singularity.
We will say that A is an essential singular set as soon as A # @. When A, = @
and Aggs # 9, we will say that A is minimal essential.

The reader might like to see examples of conformal immersions admitting (mini-
mal) essential singularities. That’s what we do quickly now, referring to Section 4.1
for more details on the construction. Let I' be an infinite Kleinian group, namely a
discrete subgroup of the Mdébius group PO(1,n + 1) acting properly on a nonempty
open subset £ C S”. We assume that the action of T" on € is free and denote by
N := Q /T the corresponding Kleinian manifold. The conformal covering map
7:S"\ A — N, where A stands for the complement of €2 in §”, is an instance of
conformal singularity which, under our assumption that I" is infinite, turns out to be
essential. Actually (see Section 4.1), A = Aggs U Apgle, and Aggs coincides with the
limit set A(I") of I". Such conformal singularities will be said to be of Kleinian type.

Our main result says basically that locally, all thin conformal singularities which
are minimal essential (see Definition 1.2) are of Kleinian type. In particular, the
existence of essential singular points imposes strong restrictions on the geometry:
the source manifold must be conformally flat, and the target manifold has to be
Kleinian. It is interesting to notice that this geometric restriction does not appear in
dimension two, where all Riemannian manifolds are conformally flat.
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Observe thatin view of Theorem 1.1, studying thin singular sets which are essential
reduces to studying minimal essential ones.

Theorem 1.3. Let (L, g) and (N, h) be two connected n-dimensional Riemannian
manifolds, n > 3. Let A C L be a closed subset such that 3"~ 1(A) = 0. Assume
that s: L.\ A — N is a conformal immersion for which A is a minimal essential
singular set. Then:

(1) There exist an infinite Kleinian group I' C PO(l,n + 1), a connected open
set Q C 8" onwhich T acts freely properly discontinuously, and a conformal

diffeomorphism yr: N — Q /T

(2) Foreach xo, € A, there exist an open neighborhood U C L containing x,
and a conformal diffeomorphism ¢ : U — V, where V is an open subset of S",
which makes the following diagram commute:

U\A—2 > 17\ 3Q

o,k

N Q2/T,

where w: Q — Q /T is the covering map. In particular, (U NA) =V N
and o(U N Ags) = VN A(D), where A(T') denotes the limit set of the group T.

In Corollary 5.5, we will derive from Theorem 1.3 precise information about the
behavior of a conformal immersion near an essential singular point. In particular, we
will get an higher dimensional analogue of Picard’s theorem.

1.3. Global classification of essential singularities. Theorem 1.3 describes com-
pletely the geometry of the target manifold N, for a thin essential conformal singular-
ity s: L\ A — N. Thelocal geometry of L is also determined, but in full generality,
we cannot expect to determine I, globally. Now, if we assume that L is compact, and
under the stronger assumption that the singular set has (n — 2)-dimensional Haus-
dorff measure zero, the singularity s: L \ A — N can be described globally. In the
statement below, for a Kleinian group T", we will denote by A(T") the limit set of T",
Q(T) = §” \ A(T) its domain of discontinuity, and M (I") the quotient Q(T")/T (see
Section 4.1 for the definitions).

Theorem 1.4. Let (1., g) and (N, h) be two connected n-dimensional Riemannian
manifolds, n = 3. We assume that L is compact. Let N C L be a closed subset such
that H"~2(A) = 0. Assumethats: L\ A — N is a conformal immersion for which
A is a minimal essential singular set. Then:
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(1) There exists an infinite Kleinian group I' C PO(l,n + 1), a connected open
subset Q C S" onwhich T acts freely properly discontinuously, and a conformal

diffeomorphism - N — Q /T.

(2) There exists a subgroup I'" C T with A(I'") © A(T") such that I' acts freely
properly discontinuously on Q(I''), and a conformal diffeomorphism ¢: L —
M(T").

(3) Letuscalls': Q/T" — Q /T the natural covering map, and let us define the
closed subsets N and A in M(I'") as the quotients (0Q \ A(T"")) /T and

(A(T)\A()) / IV, Then the conformal diffeomorphism ¢ can be chosen such
that g(A) = A/, (Aess) = A, and the following diagram commutes:

css?

IANA —2 - M)\ A

L

N Q/T.

We will apply this theorem to get a full description of punctured essential singu-
larities on compact manifolds in Theorem 7.1.

1.4. Organization of the paper. As we already mentioned it, the tools used in this
paper are of geomeiric nature. Especially, the proofs heavily rely on the interpretation
of conformal structures (in dimension > 3) in terms of Cartan geometries. The
necessary background on this topic, as well as the first technical results, are introduced
in Section 2. They allow to begin the study of conformal singularitiesin Section 3. The
main point is to understand the behavior of the 2-jet of a conformal immersion in the
neighborhood of the singular set, as explained in Section 3.1. Theorem 1.1 is proved
in Sections 3.2, and 3.3 contains another extension result for conformal embeddings,
namely Theorem 3.7. In Section 3.4, we show that thin essential singular sets only
occur on conformally flat manifolds, an important step toward Theorem 1.3.

Section 4 reviews some basic results about conformally flat structures. The reader
familiar with this material may skip it, except maybe for Section 4.1 which gives more
details about essential singularities of Kleinian types, and Section 4.3 which deals with
the notion of Cauchy completion for conformally flat structures. This preparatory
work allows to complete the proofs of Theorems 1.3 and 1.4 in Sections 5 and 6
respectively. We conclude the paper with Section 7, which provides a full description
of punctured essential singularities on compact Riemannian manifolds.
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2. Conformal structures and Cartan connections

Let (1., g) be a Riemannian manifold of dimension n > 3. lLet L be the bundle of
2-jets of orthogonal frames on L, and 7y, : L — L the bundle map. The bundle L
is a P-prncipal bundle over L, where P is the conformal group of the Euclidean
space R”. The group P is a semi-direct product (R% x O(n)) x R", where the
factor R} corresponds to homothetic transformations of positive ratio, O(n) is the
group of linear orthogonal transformations, and R” is identified with the subgroup of
translations. Let S” be the n-dimensional sphere, and G := PO(1, n 4 1) the Mobius
group, namely the group of conformal transformations of the sphere. The group P is
realized as the subgroup of G fixing a point v € §*. We denote by g := o(l,n + 1)
the Lie algebra of the Mdbius group, and by p C o(1,n + 1) the Lie algebra of P.

2.1. Canonical Cartan connection associated to a conformal structure. Good
references for the material presented in this section are Chapter IV of [Ko] and
Chapter 7 of [Sh].

Itis a fundamental fact, known since Elie Cartan, that under the assumptionn > 3,
the conformal class [g] defines on the bundle La unigue normal Cartan connection
wL with values in o(1, n + 1). The connection w’ is a 1-form on . with values in
the Lie algebra o(1, n + 1), and satisfying the following properties:

(1) Forevery x € L, a);.:‘ : TeL — o(1,n+1)isan 1somorphism of vector spaces.

(2) Forevery X € p, the vector field X on L defined by X@®) = %h:o %.etX,
where ¥ > e¥ denotes the exponential map on PO(1,n + 1), satisfies
ol (X) = X.
(3) For every p € P, if R, denotes the right action by p on L, then (Rp)"‘a)”L =
Ad p~let.
The normality condition is put on the curvature of the connection to ensure uniqueness.
The reader will find a precise statement of this condition in [Ko], Theorem 4.2, p. 135,
or [Sh], Proposition 3.1, p. 285. The triple (L, i ; wl ) will be referred to as the normal
Cartan bundle associated to the conformal structure (L., g). For the conformally
flat model S* = PO(l,n + 1)/ P, the normal Cartan bundle is the Mdbius group
G = PO(1, n + 1), and the Cartan connection is the Maurer—Cartan form .
Letus observe thatif (1., g) and (V, k) are two connected n-dimensional Rieman-
nian manifolds, # > 3, andif s: (1., g) — (N, &) is a smooth immersion, then s lifts
to an immersion § between the bundles of 2-jets of frames of L and N respectively. If
moreover s is conformal, § maps 2-jets of orthogonal frames to 2-jets of orthogonal
frames. This yields a bundle map §: L—>N lifting s. The 1-form §*w? is a Car-
tan connection on I, with values in o(1,n + 1). Because »? is the normal Cartan
connection associated to [#], and because the normality condition is tensorial on the
curvature of the connection, we get that §* " also satisfies the normality condition.
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By uniqueness of the normal Cartan connection, one must have §*w?® = ol. We

say that the lift § is a geometric immersion from (f,,a)L) to (ﬁ,a)N).

2.2. Exponential map. On the bundle f, the Cartan connection o’ yields an ex-
ponential map in the following way. The data of u in o(1, 7 + 1) defines naturally a
wL-constant vector field & on L by the relation a)L(U ) = u. We call ¢/ the local
flow generated on L by the field U. Ateach £ € L,let Wy C o(1, n+ 1) be the set of
vectors u such that ¢}, is defined for ¢ € [0, 1] at . Then one defines the exponential
map at X as follows:

exp(%,u) 1= @)% forallu € W;.
Using the equivariance properties of the Cartan connection listed above, one shows
easily the following important equivariance property for the exponential map

-1

exp(X,u).p7" = exp(X.p7", (Ad p).u) (1)

foreveryu € Wy, pe P.

2.3. Imjectivity radius. The Lic algebra o(1,n + 1) splits as a sum
3R Bokn) put

where p = R @ o(n) & u™ is the Lie algebra of P. The algebra corresponding to the
factor R is a Cartan subalgebra. The two abelian n-dimensional subalgebras n™ and
n™ are the root spaces. They are left invariant by the adjoint action of R & o(n). A
detailed description of this material can be found in [Sh], Chapter 7. As we saw, the
group P is a semi-direct product P = (R} x O(n)) x R". We put on o(1,n + 1)

a scalar product (, ) which is Ad O(n)-invariant, and denote by ||.|| the norm it
induces on o(l,n 4+ 1). For every A > 0, we will denote B,,—(A) (resp. By—(4))
the open (resp. closed) ball of center 0 and radius A in ™, for the norm ||.|. The

map u# > exp(X,u) is a diffeomorphism from a sufficiently small neighborhood of
(0 € o(1, 7 + 1) onto its image. Notice also that because (a)L) 1(n™) is transverse to
T; (Jrfl(x)) = (a)i‘) 1(p), the map u > my o exp(X, u) is a diffeomorphism from
a sufficiently small neighborhood of 0 in ™ onto its image. We can then define the
injectivity radius at X as

inj; (x) ;= inf{A > 0| u > 7z o exp(X, u) defines an embedding on By—(4)}.

By the above remarks, inj; (X) > 0, and actually inj; (X) is bounded from below on
compact subsets of L
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2.4. Conformal balls, conformal cones. We stick to the notations introduced above.
Let Sy— be the unit sphere of n™, with respect to the norm ||.|. Let F be a subset of
Sp—. In ™, we define the cone over F of radius A > 0 as

C(F,A)={ven |v=1ftw, t€[0,A], we F}.

Forxel,x e L in the fiber of x,0 < A <inj; (X),and F C Sp—, we can define:
— By(A) == 7y cexp(X, Bu—(A)), a conformal ball at x;
—Ci(F,A) := mp oexp(X, €(F, A)), a conformal cone with vertex Xx.

In the model space, namely the standard n-sphere S* = PO(1,n+ 1)/ P, we will
simply consider conformal cones with vertex v, defined by

C(F,A) 1= ng o expa (€(F, ),

where 7 : PO(1,n + 1) — S§”" is the bundle map and expy; is the exponential map
inG =PO(1,n + 1).

Of course, a conformal immersion s: L — N maps conformal balls/cones of L
to conformal balls/cones of N. Indeed, it is straightforward to check the relation

$(Ce (F,A) = Ci)(F L A). (2)
2.5. Dynamics of Mébius maps on conformal cones of S

Lemma 2.1. Let (pr) be a sequence of P tending to infinity. Then, considering a
subsequence of (pr.) if necessary, we are in one of the following cases:

(1) Forevery ball B C Sq— (for the metric induced by ||.||) with nonzero radius,
there exists B' C B a subball with nonzero radius and a real v > 0 such that
forevery0 < A <r, pp.C(B',A) — v for the Hausdorff topology as k — oc.

(2) There exists a sequence (Iy) of P converging to I such that Iy py stays in the
factor R% of P = (R3 x O(n)) x R", and (Ad I pr)(u) = ﬁu for every
u € T, with limg_, oo A = 0. In particular, for every ball B C S,— with
nonzero radius, pp.C(B,Ar) — IZ1.C(B,1) for the Hausdorff topology as
k — .

Proof. We keep the notation introduced in Section 2, especially Sections 2.2 and 2.4.
In particular, recall the splitting

o(l,n+ D) =g=n" dRPo(n)dn™,

where p corresponds to R @ o(n) & nt.
We introduce the map p: n~ — S” defined by u — expg(u).v. Itis a diffeomor-
phism between 1~ and the sphere minus a point o. Precomposing the stereographic



Vol. 89 (2014) Removable and essential singular sets for conformal maps 413

projection with vertex v with a suitable element of P, one gets a conformal diffeomor-
phism j: §” \ {v} — R” mapping the point o to the origin. The map j intertwines
the action of P on §" \ {v} and the affine action of (R} x O(xn)) x R” on R”. In
the following, we will thus write the elements of P in the affine form AA + T, with
AE R*Jr, AeOn),and T € R",

Let us denote by ¢ the map j o p. Itis adiffeomorphism from u™\ {0} to R \ {0}.
For a suitable choice of the (Ad O(n))- invariant scalar product {, ) (see Section 2.3),
@ maps Sy— onto the Euclidean unit sphere. It is then not hard to check that every
conformal cone C(8, A), with v removed, is mapped by j to the set

CB.A)={x=rueR"|te[too, uecpB)

Let x € R”, and u € R" of Euclidean norm 1. Then we define the half-line [x, 1)
as the set
[x,u) :={x+rueR" |t e Ry}
The following lemma, the proof of which is left to the reader, gives a sufficient
condition for a sequence of half-lines to leave every compact subset of R". The
notation ||.| stands for the Euclidean norm on R”.

Lemma 2.2. Let [xg, v;) be a sequence of half-lines in R". Assume that whenever
Voo Is a cluster value of (vr), then —vs is not a cluster value of ”ﬁﬁ Assume

moreover that xy leaves every compact subset of R". Then |xy,v;) leaves every
compact subset of R”".

We can now begin the proof of Lemma 2.1. Let us consider an unbounded se-
quence (pg) in P. Thanks to the chart j, we see P as the conformal group of R”.
Then the sequence ( pr) can be written as

Pkt X > ApApx + prug,

where A € RY, pr € Ry, Ay € O(n), and ||uz|| = 1. Now, looking at a
subsequence if necessary, we assume that Ag, jir, i—‘; all have limits in R} U {+oc},
Up —> Upgo, and Az — Ay in O(n2). The conclusions of Lemma 2.1 won’t be affected
if we replace py by (A;)~'. pi so that we may assume pp = Azld + pyuy.

« First case: iy tends to a € Ry. Let [ be the translation of vector —pi;uy.

Clearly, /z — [ in P, where /o, is the translation of vector —au o, and /i py
is just the homothetic transformation x — Az x, hence is in the factor R} of
P . 1t follows immediately that (Ad /; pi)(u) = ﬁu for every # € nu™. Since
( i) is unbounded, we can assume after taking a subsequence that Ay — oo or
lk — 0.

If Ax — oo, then for every A > 0, (Ad {1z pr)(€(B, 1)) — Oyp— as k — oc.
Applying the map p, one gets

lipr C(B.A) = v
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and we are in the first case of Lemma 2.1.

It Ax — 0, we are in the second case of Lemma 2.1. Applying the map p to the
equality (Ad Iy pp )(E(B, Ar)) = C(B, 1), we get

Lepr C(B,Ap) = C(B,1) foreveryk € N,
hence

2. C(B. Ap) — 171.C(8B, ).

Second case: up — oo and i—’; — 0. Let 8" C B be a closed subball
with nonzero radius such that —us & @(8’). Let us consider A > 0 and a
sequence of half-lines [%vk, vg)in C(B', A). Here (vy) is a sequence of ¢(B’).
We observe that pk.[%vk, vg) = |xg,vx), where x; = %vk + priuy. Now,

Ak
Uk Tk
”xk ” X so that the only cluster value of £ is ... We infer that
%l Y2 Lo g el

if v 18 @ Cluster value of (vg), then —v,, cannot be a cluster value of ”x -

Writing x; = Mk(luk v + uy), we check that x; — oo. Lemma 2.2 ensures
that pk.[ka, vx) — oo. Since it is true for every sequence [%vk, Uy ), we get

pk.é(fb”, A) — oo. Hence py.C(B’,A) — v and we are in the first case of
Lemma 2.1.

Third case: wy — o0 and i—‘; — boo, with bo, € RY. We choose B' C B a
closed subball with nonzero radius such that ¢ (B') N —@(B’') = Band ¢(B)N
{Uoo; —Uno} = @. For such a choice of B’, there exist an open neighborhood
W of @(B’) in the Euclidean unit sphere and S, 1 two positive reals such that

inf [v+w| =48 (3)
(v.w)ep(BI)x'W

_x+z

and 77

e W forevery x € ¢(8B’) andevery z € R" with ||z|| < n.

Letusputr = bo‘% For A < r,letus consider a sequence of half-lines [Ivk, Ug)
in C(B', 1), where vy € @(B’). We observe that pk.[%vk, V) =[xk, vr),
plE
where x;, = ka + ppuy. Now, o = o —rk o , and for k large enough,
1l o+ B2 ug

|ukf1| < 24 < p 5o that (3) implics

|| + vkl = 8.

It follows that if v4 is a cluster value of (v ), then —vo, cannot be a cluster

value of =4 ”x r- Moreover, because —uo, & @(B'), 0 is not a cluster value of
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jk/l”k + ug). Writing xg “k(ukkvk + uy), we see that (xz) tends to
infinity. We conclude thanks to Lemma 2.2 that pk.[%vk, V) — 00. Sinceitis
true for every sequence (vi) of ¢(B'), we get pr.C(B’,1) — o0, and we are
in the first case of Lemma 2.1.

» Fourth case: py — oo and A’; — oo. Let 8’ C B be a closed subball
with nonzero radius such that ¢(B') N —¢(B’) = @. Let us consider A >
0, and [ TVk,Vx) a sequence of half-lines in C(8’,1). For each integer k,
pk.[lvk,vk) = [xg, vg), with x; = Mk(mvk‘l'uk)- Itis clear that x; — o0.

%vk+1% i

||x ” Hka‘i‘ o

in ¢(B"). We use once more Lemma 2.2 and conclude

The cluster values of =

are those of (v ), hence are contained

2e.C(B', M) = 0.
We are again in the first case of Lemma 2.1. L

2.6. Degeneration of conformal cones. We consider now a Riemannian manifold
(L, g) of dimension #» > 3. Our aim is to understand how the “shape” of a sequence
of conformal cones C;, (F, A) evolves, as Zj leaves every compact subset in L. The
answer 1s partly contained in the lemma below.

Lemma 2.3. Let (L, g) be a Riemannian manifold of dimension > 3 and (I:, w’)
the normal Cartan bundle associated to the conformal structure of g. Let (zy) be
a sequence of L converging to zo € L. lLet (Zk) and (£}) be two lifis of (zx) in
L. We assume that 3 converges i L, while 2% = Zp.pr for a sequence (py) of
P tending to infinity. Assume that infycn(inj; (23)) > 0. Then for every 0 < A <
infgen (inj; (2x).1nj; (2})), and every F C Sy~ such that py.C(F. 1) — v, as
k — oo, for the Hausdor{f topology on S8, we must have Cé;( (F,A) = zs forthe
Hausdorff topology on L.

Proof. This lemma is a particular case of Lemma 7 in [Frl] (see also [Fr2], Corol-
lary 3.3), and the reader will find a complete proof there. The proof involves the
notion of development of curves, that we don’t introduce here. The upshot is that
a conformal cone is a union of conformal geodesics, namely curves of the form
[+ 7y oexp(X,fu), foru € n~. A point X in the fiber of x being chosen, one
can develop any conformal geodesic passing through x into the sphere S”, and thus
any conformal cone can be developed. For instance, in the situation of Lemma 2.3,
the developmental of C 3, (¥, A) with respect to 2y is pr.C(F, ). Now, the lemma
follows from the fact that conformal geodesics developing on short curves in S” are
themselves short ([Fr2], Lemma 3.1), and that conformal geodesics of S” which are
Hausdorff-close to v must be short ([Fr2], Proposition 3.2). [
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3. Extension results

We consider (L, g) and (N, &) two connected n-dimensional Riemannian manifolds,
n > 3. Let A € L be aclosed subset such that #"7'(A) = 0,ands: L\A — N a
conformal immersion. We denote by (L, L.o" ) and (N, N,V ) the normal Cartan
bundles associated to the respective conformal structures, as introduced in Section 2.1.
IfA = JTL_I(A) is the inverse image of A in L, then (ﬁ \ A, w’) is the normal
Cartan bundle of (L \ A, g). As we saw in 2.1, we can lift s to a bundle map
§: (L\ A, o) » (N, V) satistying §* oV = o’.

3.1. Holonomy sequences at a boundary point. Let us consider x,, € A whichis
not a pole for s. It means that there exists (x; ) a sequence of L \ A which converges to
X o0, and such that s(xy ) converges to v, € N. We will actually get more information
working in the bundle I \ A. Let Xoo € A in the fiber above Xoo, and let (X3 ) be a
sequence of L \ A projecting on (xz) and converging to £o. The point is that §(ij)
may not converge in N, but there always exists a sequence ( py) such that §(Xz). p;l

does converge to a point y _ € N in the fiber of Voo-

Definition 3.1 (holonomy sequence at x,). A sequence ( py ) as above will be called
a holonomy sequence at x o, (associated to (xz)).

Let us stress the fact that a holonomy sequence involves the choice of a sequence
{xz) tending to x such that s{x;) converges in N. In particular, the concept of
holonomy sequence only makes sense when xo, € A, U Ae. The holonomy
sequence ( px ) just encodes the behavior of the 2-jets of s along the sequence (xz). It
we already know for instance that s is the restriction of a conformal immersion from L
to N, then the sequence ( px) can be chosen constant to the identity. The projection of
(pr) onthe factor R% xOfn) C (R xO(n)) x R” represents the sequence of tangent
maps Dy, s, read in local trivializations of the bundle of orthonormal frames. The
study of the holonomy sequence will be, as we shall see, a major tool in understanding
the dynamical behavior of s along (xz). In particular, we will see that for thin singular
sets A, removable singularities are characterized by bounded holonomy sequences,
while essential ones appear together with unbounded holonomy sequences.

3.2. Characterization of removable points by holonomy, and proof of Theo-
rem 1.1. Our aim now is to characterize the removable and essential singular points
in terms of holonomy sequences. This will be done in several steps, leading to The-
orem 3.6 at the end of the section, which clearly implies Theorem 1.1.

We will first need a technical lemma saying that it is possible to include “thick”
conformal cones in the complement of closed sets of (n — 1)-dimensional Hausdorff
measure zero.
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Lemma 3.2. Let (L., g) be a Riemannian manifold of dimensionn > 3. Let A C L
be a closed subset such that #7~1(A) = 0. Foreveryx € L\ A, every X € L inthe
Jiber of x, and every 0 < A < inj; (X), there exists a dense Gg-set Uy C Sy~ such
that Ci(Uz, A) C L\ AL

Proof. Let A be the inverse image of A by the bundle map 7, : I — L. Letus call
F the subset of By,—(A) such that exp(%, F) = exp(%, Bu—-(A)) N A. By assumption,
this set F has (n — 1)-dimensional Hausdorff measure zero. Let n1y be an integer
such that mLo < A. For every m = myg, we call mpy,: 4 — ﬂ%[[ the radial projection
from A,, = By— (A)\ Bn— (%) to Sy—. This is a Lipschitz map, which is moreover
closed. Hence, the set ,,, (F N A,,) is aclosed subset of S;,—, the (n — 1)-dimensional
Hausdorff measure of which is zero. In particular, its complement U, is open and
dense in Sy—. Thus (),,,~,,,, Usm is a dense Gz-set of Sy~ that we call U;. It is now
clear by construction that C3(Uz, A) C L\ A. O

Let us now give a sufficient condition, in terms of holonomy sequences, for a
singular point to be removable.

Proposition 3.3. Let (1., g) and (N, h) be two connected n-dimensional Riemannian
manifolds, n > 3. Let A C L be a closed subset such that "~ 1(A) = 0, and
s: LN AN — N a conformal immersion. Let X be a point of Arery U Aegs. If there
is a holonomy sequence of s at X, which is bounded in P, then here exists Uy
an open subset of L containing X such that s extends to a conformal immersion
Sx00 - Uxeo UL \A) = N. In particular Xo, € Apeny-
Proof. Our hypothesis is that there is X € L in the fiber of Xoo, a sequence
(%) in L \ A converging to %, and a bounded sequence (py) in P such that
$(X). p;l is converging in N. Considering subsequences, we may assume that
( pr) has a limit p,, € P. Because §(5€k.p,:1) = §(5€k).p,:1, we can assume, re-
placing oo by Roc. pot and (X) by (Xg.pi 1), that J, = §(3x) is converging to
Yoo € N. Because (¥;) stays in a compact subset of N, we can find ko > 0, and
0 < A < min(inj; (Xg,), injy(V4,)). such that B,gko (A) and Bﬁko (A) contain x4,
and vy respectively.

Lemma 3.2 yields a dense Gg set U C S,— such that kao (U, A) C L\ A. Let
us define 57 _ ngo (A) — N by the formula

s;m (1 o exp(Xg,, u)) = N oexp(y“ko,u) forall u € By—(A).

This is a smooth diffeomorphism from B ” (A) onto its image. On the other hand,

because § is a lift of s satisfying §* @V = w’, we get for every u € €(U, A),

(g o exp(Xgg. 1)) = Ty © exXp(§(Xg, ). u) = 7y 0 eXP(Vgq. 1)
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In other words, s and s7__ coincide on kao (U, A), which is dense in Bj&ko (A) VA,
hence they coincide on B;Cko (L) \ A. But because "~ 1(A) = 0, B;Cko (A)\ Ais
dense in B; ‘o (A). As a consequence s;__ is a conlormal immersion on B3 ko (A).
Finally, the map sy : B;’&ko (A) U(L\ A) — N defined by s;,__ on B’Eko (A), and s
on L \ A is well defined, and is a smooth conformal immersion extending s. U

In the same way, we have the following sufficient condition for a singular point
to be essential.

Proposition 3.4. et (1., g) and (N, h) be two connected n-dimensional Riemannian
manifolds, n > 3. Let A C L be a closed subset such that #"~1(A) = 0, and
s: LN AN — N a conformal immersion. Let X be a point of Arery U Aegs. If there
is a holonomy sequence of s at X« which is unbounded in P, then xoc € Aggs.

Proof. The key step for proving the proposition will be the following technical lemma,
which will also be useful later on in other proofs. The lemma says that the existence
of an unbounded holonomy sequence at xo, provides some non-equicontinuity phe-
nomena which forbid x4 tobe in Ao,

Lemma 3.5. Let Xoo be a point of Aiem U Aes. Assume that (xi) is a sequence
of L \ A converging 10 Xoo, such that s(xy) converges to yoo € N. If (pr) is an
unbounded holonomy sequence of s at X associated to (xy), then:

(1) There exists a sequence (Iy) of P converging to I, such that Iy py stays in the
factor R% of P = (RY x O(n)) x R", and (Ad l; pi)(u) = ﬁu for every
uen, withlimg_,oo Ay =0

(2) Iftyg > O, and y: |0, 19| — L \ A is a smooth curve satisfying v(fy) = xy for
some sequence (i) of [0, fo| converging to ty. Then, there exists (f,) a sequence
of [0, to] tending to 1o such that y (i} ) converges to Xo0, and s(y (1)) converges

toyl, € N, with y. # Voo

Proof. By hypothesis, there exist £, € L in the fiber of x5, ¥, € N in the fiber of
Yoo (£%) a sequence of L \ A converging to %, and an unbounded sequence ( px)
in P such that §(%;).p; ! convergesto y, € N.

To show the first point of the lemma, we have to check that (pr ) does not satisfy
the first point of Lemma 2.1. Assume, for a contradiction, that it is the case. We
get a ball 8 C S,— with nonzero radius, and A > 0 such that p; . C(B,A) — v.
We can assume 0 < Ay < infg.qinj; (Xz). Lemma 3.2 implies the existence of a
dense Gs-set U C B such that for every k > 0, the cone C; (U, Ap) is contained
in L \ A. Because injy (§(Xr)) = inj; (¥) is bounded from below by a positive
number independent of &, and because pr.C(U,A) — v, we can apply Lemma 2.3
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for z; := s(xy), 2} 1= §(Xx), and 2 := §(5ék).p,:1. Together with relation (2), this
yields

$(Csz, (U, X)) = Yoo ask — o0 (4)

This is actually impossible. Indeed, because Ao < infy-ginj; (Xx), we get that for
every k > 0, the map u — mp o exp(Xg, 1) is a diffeomorphism from By—(Ag) onto
its image. We deduce that any conformal cone C;, (8, Ao) has nonempty interior,
and actually, all the sets Cg, (8, Ap) contain a common open subset U/ C L for
k > ko large enough. Then, for every k > 0, Uy := U N C;, (U, Ap) is a dense
Gg-set of U \ A, and the same is true for Uy, = mkzko Uy. From relation (4), we
get $(Usx) = Voo, Which contradicts the fact that s is an immersion, hence locally
injective on U \ A.

We now prove the second point of the lemma. By assumption x; = y(#) for
some smooth y: [0, fo[— L \ A. The first point of the lemma tells us that replacing
(1) by a subsequence if necessary (which amounts to consider a subsequence of
(%), and the corresponding subsequence of (py)), and replacing J by 7;.07 ! for
a sequence (/i) of P tending to /., we may assume that the sequence (py) satisfies
(Ad pr)(u) = Lku forevery u € n~ with limg_, o, Ay = 0.

We choose 0 < ry < %minkeNU{oo}(injL (X% ), 1nj(¥;)) so that for every k €
N U {co}, the maps @i : ¥ = wp o exp(Xr, u) and Y¥g: u = 7wy o exp(¥y,u) are
well defined, and are diffeomorphisms from B,—(2rg) to open subsets U and Vj of
L and N respectively. For every k > 0, we define F; := (p,:l (Ur NA).

Lemma 3.2 ensures the existence of a dense Gs-set U C Sy— such that for every
k= 0,C (U, 2rg) C L\ A. Fork > kg big enough, we will have 2Azry < 27y,
and then, Lemma 3.2 amounts to say that €(U,2A,7rg) C Bn—(2Ax70) \ Fi. Then,
from relation (1), we infer that for every u € €(U, 2A,70)

Sexp(ie )07 = exp (Fi. 7). )
Observing that for each k, €(U, 2A;7p) is dense in By—(2Ax7g) \ Fy, we deduce
that formula (5) holds actually for every u € By—(2A;r0) \ F-

As A — 0, the sequence of conformal balls Bz (2Ar70) = ¢x(Bu—(2A%70))
tends to xo for the Hausdortf topology on L. This means that choosing ko > 0
large enough, we are sure that for k& > kg, y([0. fo[) is not contained in By, (2Ax79).
In particular, for every k& > kp, there exists up € u~ with ||ug|| = roAz, and
1y €10, fo[ such that gy (uy) = y(z;,). Considering a subsequence, we may assume
that (Z—i) converges to vos. Because y([0, fp[) is contained in L \ A, we have uy €
Bu—(2Agro) \ Fy forevery k = ko. Formula (5) then holds, and projecting on L and
N, we get

S(gr ) = wk(z—’;)
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Making k — oo yields
lim S(y(‘t}:;)) = Yoo(Veo)-
k—oo

Because ||veo|| = 7o and ¥ is a diffeomorphism from By, (2ry) onto its image, we
getthat ¥y, = Weo(Vso) is different from yoo = ¥0(0). Finally, because y (7, ) tends
to Xoo, and y ([0, fp[) C L \ A, we see that the only cluster value of (I];) in [0, 1p] is
to- Hence t; — g, as desired. O

We can now prove Proposition 3.4. Our hypothesis is that Xoo € A U Aegs
admits an unbounded holonomy sequence. This holonomy sequence is associated
to some sequence (xi) of L. \ A converging to xo. Let y:[0,1]— L \ A bea
smooth curve such that y(1 — %) = xj forevery k > 1, where xj := 77 (Xz). The
second point of Lemma 3.5 ensures the existence of a sequence (7} ) tending to 1 such
that y(7;) tends to xo, and s(y(f;)) tends to ¥, # Voo. This forbids x, to be in
Atem, and we deduce that the existence of an unbounded holonomy sequence implies
Xoo € Aegs- L

Let us collect the results of this section into a single statement.

Theorem 3.6. Let (1., g) and (N, h) be two connected n-dimensional Riemannian
manifolds, n = 3. Let A C L be a closed subset such that JHA) = 0, and
s: L\ A — N aconformal immersion. Let Xo0o be a point of Aege U Arem. Then the
following statements are equivalent:

(1) The point Xeo is in Ager.

(2) There exists U, an open subset of L containing X such that s extends to a
conformal immersion sy Uy U(L\A) = N.

(3) There is a holonomy sequence of § at Xoc Which is bounded in P.

(4) All the holonomy sequences of s at X are bounded in P.

Proof. 1t is obvious that point (2) implies point (1), and that point (4) implies point
(3). Proposition 3.3 shows that (3) implies (2). Proposition 3.4 shows that (1) implies
(4). O

3.3. An extension theorem for conformal embeddings. In view of Theorem 3.6,
we will get interesting extension results when the set A 1s empty. As the following
theorem shows, this is actually the case as soon as the map s is injective (compare
with the result proved in [V2] for quasiconformal maps).

Theorem 3.7. Let (1., g) and (N, h) be two connected n-dimensional Riemannian
manifolds, n = 3. Let A C L be a closed subset such that JHA) = 0, and
s: L\ A — N aconformal embedding. Then:
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(1) The set A5 is empty and s extends to a conformal embedding

st L\ Apgie = N.

(2) When L is compact, then s': L\ Apoe — N is a conformal diffeomorphism.

(3) When both L and N are compact, Ao is empty so that (L, g) and (N, h) are
conformally diffeomorphic.

Assuming that L 1s a compact manifold, Theorem 3.7 classifies, all possible con-
formal embeddings of the Riemannian manifold (1.\ A, g) into Riemannian manifolds
of the same dimension. It also gives a uniqueness result for the conformal compact-
ification of (L \ A, g): the only compact Riemannian manifold in which (L \ A, g)
can be embedded as an open subset is (L, g).

The end of this section is devoted to the proof of Theorem 3.7. The first step
is to show that near an essential singular point, a conformal immersion is highly
noninjective. To formalize this, it is convenient to use the notion of cluster set. If xo
is a point of the singular set A, the cluster set of x 1s defined as

Clust(xo) :={y € N | I(xy) asequencein L \ A, Xy — X, and s(xz) — y}.
The following proposition identifies the cluster set of an essential singular point.

Proposition 3.8. Let (L., g) and (N, h) be two connected n-dimensional Riemannian
manifolds, n = 3. Let A C L be a closed subset such that JHA) = 0, and
s: L\ A — N a conformal immersion. Assume that A is not empty. Then for
every Xoo € Aegs, Clust(xoo) = N. In particular, for every neighborhood U of xo
in L, s(U \ A) is a dense open subset of N.

Proposition 3.8 will be improved later, since we will deduce from Theorem 1.3 that
if Xoo € Ao, andif U is aneighborhood of x . in 1., we actually have s(U \A) = N
(see Corollary 5.5).

Proof. Let yo € Clust(xs). Let us pick X in the fiber of X0, (Xz) a sequence
of L\ A converging to 0, and (pg) a sequence of P such that ; := $GR)-pit
tends to a point ¥ in the fiber above ys. By Theorem 3.6, the sequence (py) is
unbounded, and the first point of Lemma 3.5 ensures that considering subsequences,
we may assume that (py ) is contained in the factor R% of P = (IR} x O(n)) x R”.
Moreover, always by Lemma 3.5, there exists (Az) a sequence of R} converging to
(} such that for every p > 0,

(Ad pr).Bu—(ptAr) = Bn—(1). (6)

If o is chosen smaller than mingenuoo (injz (Xz), injx (¥ )), the maps u — 7y o
exp(¥Vy,u) and 4 — mwp o exp(Xy,u) are well defined and diffeomorphisms from
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B~ (A ) ontheir images for every £ € N U{oc}. Lemma 3.2 implies the existence
of a dense Gg-set U C Sy— such that C; (U, pAr) C L\ A forevery £ > 0.
Relations (1) and (6) then yield

$(Cx (U, pAr)) = Cy (U, ).

In particular, one has s(Cs, (U, pAg)) — C;_ (U, ) as k — oo. We infer that
C; (U, u) C Clust(xeg), and finally By (1) C Clust(xy) because Clust(xy,) is
aclosed set. Since B;__ (i) is a neighborhood of yo,, we just showed that Clust(x)
is an open set. We assumed that N is connected so that we get Clust(x,) = N.
In particular, for every neighborhood U of x4 in L, we must have s(U \ A) = N,
hence s(U \ A) is a dense open subset of V. O

We can now prove the first point of Theorem 3.7. Proposition 3.8 above ensures
that if s: L \ A — N admits essential singular points, then s cannot be injective.
We infer that Aeg is empty and A = Ay U Apge. By Theorem 1.1, we know
that L. \ Al is an open subset of L, and that s extends to a conformal immersion
s't L\ Apoe — N. Actually s’ is injective, hence an embedding. Indeed, if s is not
injective, we can find two disjoint open sets U and V in L \ Apq. such that s” maps
U and V diffeomorphically on the same open set W. Because s'(U N (L \ A)) and
s"(U N (L \ A)) are two dense open subsets of W, they intersect, contradicting the
injectivity of s on L \ A.

Let us proceed with the second point of Theorem 3.7. Assuming that /. is compact,
the definition of poles implies that the immersion s”: L\ Apge — N is a proper map.
By connectedness of N, it has to be onto. Finally s’ is a conformal diffeomorphism
between (L \ Apge. ) and (N, h).

If moreover N is also assumed to be compact, then A g is empty, and we get
that (1., g) and (N, /) are conformally diffeomorphic. This shows the third point of
the theorem.

3.4. Essential singular points imply conformal flatness. We are now going to
make an important step toward Theorem 1.3, proving that the existence of thin essen-
tial singular sets is only possible on conformally flat manifolds. Thus, generically, by
Theorem 1.1, if a thin singular set contains no poles (for instance if N is compact),
it is always possible to extend a conformal immersion across it. In the following, by
conformal curvature on a Riemannian manifold, we will mean the Weyl curvature
tensor when the dimension is > 4, and the Cotton tensor when the dimension is 3
(see [AG], p. 131).

Proposition 3.9. let (1., g) and (N, h) be two connected n-dimensional Riemannian
manifolds, n = 3. Let A C L be a closed subset such that JHA) = 0, and
s: L\ A — N a conformal immersion. Assume that Ay is not empty. Then for
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every Xoo € Negs, and every Vo, in Clust(xy,), the conformal curvature vanishes at
Voo- In particular, the manifolds (1., g) and (N, h) are both conformally flat.

Proof. We pick yoo € Clust{xs), and we consider X oo, Xg, Vi» Voor Pk» M4 and
U as at the begining of the proof of Proposition 3.8. On L, there is, associated
to the normal Cartan connection w’, a curvature function k (we don’t give details
here, and refer the reader to [Sh], Chapters 5.3 and 7). This is a map «: I —
Hom(A?(o(Ll,n + 1) / p), p), satisfying the equivariance relation:

ks (v, w) = (Ad p~")ieg 1 (A p).v, (Ad p).w). (7

The vanishing of the Cartan curvature « at X implies the vanishing of ¥ on the fiber of
x. It thus makes sense to say that « vanishes at a point x € L, and this is equivalent
to the vanishing of the conformal curvature at x (see Chapter 7 of [Sh]). Hence, to
get the lemma, it is enough to show that « vanishes at y.
For convenience, we will see x as a map from L to Hom(AZ%(n™), :p) Then,
relation (7) still holds, provided p € RY x O(n) C P. Now, since § satisfies
N L

$*w” = w*, we have for every v, w € n_, and every k € N

K (U, W) = kg5, (v, w).

By relation (7), we also get

K5z (V. w) = (Ad pp ).ks, ((Ad p).v, (Ad pr).w).

Recall that Ad p;l (resp. Ad pi) acts trivially on IR{ % o(n), and by multiplication
by 77 on nt (resp. 7). ertmg € )(v w) and € )(v w) for the components of

5, (v, w)onR & o(n) and n respectlvely, the last two equalities yield

1
Kx, (v, w) = Az K (0, w) + % w).

Since A — 0, making k — oo gives x3__(v, w) = 0, and finally x3__ = 0. The
conformal curvature vanishes on Clust(x, ), and by Proposition 3.8, Clust(x,,) = N
so that (¥, ) is conformally flat. The manifold (L \ A, g) is mapped into (¥, ) by
a conformal immersion, hence (L \ A, g) is itself conformally flat. Finally, because

H"Y(A) = 0, L \ A is dense in L, and we get that (L, g) is also conformally
flat. (]

4. Background on conformally flat manifolds

By Proposition 3.9, conformal singularities s: L \ A — N such that #"~1(A) = 0
and A # @ only occur when L and N are conformally flat. To go further and



424 C. Frances CMH

prove Theorem 1.3, we will need basic notions about conformally flat manifolds that
we gather in this section. Good general references on the subject are [Go], [M],
Section 3, and [Th], Chapter 3, p. 139. All manifolds in the sequel are still assumed
to have dimension > 3.

4.1. Kleinian manifolds and essential singular sets of Kleinian type. One calls
Kleinian group a discrete subgroup I' of the Mdbius group PO(1,#n + 1) which acts
freely properly and discontinuously on some nonempty open subset 2 C S" (we
refer the reader to Chapter 2 of [A], Sections 3.6, 4.6 and 4.7 in [Ka] and Section 5
in [M] for details on the material below).

Given a Kleinian group T, there exists a maximal open set Q(I") C S” on which
the action of T is proper. This open set (I") is called the domain of discontinuity
of I, and its complement in S”, denoted A(I"), is called the limit set of I'. There are
several characterizations of the limit set A(I"), but two of them will be of particular
interest for our purpose. Let us consider any point x € Q(T), and denote I".x the
closure of the orbit T.x into $”. Then the limit set A(T") coincides with T.x \ T.x
(see for instance [A], Lemma 2.2, p. 42).

Anotheruseful characterization is as follows: the limit set A(I") comprises exactly
those points x € S" at which the family {y},er fails to be equicontinuous (see [M],
Chapter 5). The group I' being assumed to be discrete, we observe that its limit set
is empty if and only if I" 1s finite.

If T C PO(1,n + 1) is a Kleinian group, and  C S” is a I'-invariant open set on
which the action of I' is free and properly discontinuous, then the quotient manifold
N := Q/T is naturally endowed with a conformally flat structure, and the covering
map 7 : £ — N is conformal. Such a quotient Q/ T is called a Kleinian manifold.
When the action of I is free on Q(I"), the Kleinian manifold Q(I")/ " will be denoted
M(T). It is then the maximal Kleinian manifold that one can build up thanks to the
group [

Let us now consider I' C PO(l,n + 1) an infinite Kleinian group, and Q2 an
open subset of S” on which I' acts freely properly discontinuously. Let N := Q2 /T
be the associated Kleinian manifold. Observe that because we assumed I' infinite,
Q2 is a proper open subset of S”. Denoting by A the complement of 2 in §”, the
covering map 7: S" \ A — N yields a conformal singularity. The set A turns out
to be an essential singular set for . To see this, we first observe that because I" acts
freely properly discontinuously on 2, we have A(I") C A. Actually, A(T") C Acss-
Indeed, let xoo € A(T), and let y and y’ be two distinct points of N. Let z and 2’
in Q satisfying 7(z) = y and 7#(z") = y’. By the characterization of the limit set
described above, there existtwo sequences (), ) and (y,,) in I" suchthat x,, := y,.z and

x5, = y,.z' converge to X (actually, we can choose y, = y,,). Because 7(x,) = y

i
while w(x;) = ', the point x is neither removable, nor a pole, hence is an essential
singular point. On the other hand, let us consider xo € A which is not a pole. It1is

easily checked that there must be a sequence ();,) in I which is not equicontinuous
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at Xoo S0 that xo, € A(I'). In particular, x., is an essential singular point. The
previous discussion shows that Aee = A(I") is not empty, and A = Acgs | Apote- In
other words, we have built a conformal singularity 7 : S \ A — N with an essential
singular set A, which is minimal essential in the sense of Definition 1.2. We say that
such a conformal singularity is of Kleinian type.

4.2. Holonomy coverings. Among conformally flat manifolds, a nice subset com-
prises those who admit conformal immersions into the standard sphere. Such im-
mersions are called developing maps. When it exists, a developing map is essentially
unique.

Factd.1. If (M, g) is a connected conformally flat manifold of dimension n > 3, and
if 81, 82 are two conformal immersions from M to S", then there exists an element g
of the Mébius group such that §; = g o §y.

The key point to get the fact above is Liouville’s theorem (see for instance [Sp],
p- 310): a conformal immersion between two connected open subsets U and V of §",
n = 3, is the restriction of a Mébius transformation.

One thus get a Mdbius transformation g such that the set where §, = g ¢ §; is
nonempty and has empty boundary.

Fact 4.1 easily implies that if §: M — S” is a developing map, there exists a
group homomorphism

p: Conf(M, [g]) — PO(l,n + 1),
called the holonomy morphism associated to § such that for every ¢ € Conf(M, [g])

Sog = plg)od. (8)

Let us now consider a conformally flat structure (M, [g]). It is a classical result,
which already appears in [Ku] (see also [M], Section 3) that the universal covering
(M, [g]). endowed with the lift [g] of the conformal structure [g], admits a developing
map §: M — S". Letus identify 7y (M) with adiscrete subgroup I C Conf(M, [£]),
and call I'; the kemnel of the holonomy morphism p: I' — PO(l,n + 1). The
developing map § induces a conformal immersion & from the quotient manifold M :=
M / T’z to §”. This manifold .M is called the holonomy covering of M. Itis in some
sense the “smallest” conformal covering of M admitting a conformal immersion to
the sphere. This is the meaning of the following lemma.

Lemma 4.2. Let M be a connected n-dimensional conformally flat Riemannian
manifold, n > 3, and M the holonomy covering of M. Assume that M’ is another
connected n-dimensional conformally flat Riemannian manifold such that:

(1) There exists a conformal immersion §': M" — S".
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(2) There exists a conformal covering map w: M' — M.

Then there exists a conformal covering map from M’ onto M.

Proof. Let us call M the conformal universal covering of M, and identify 7 (M)
with a discrete group I' of conformal transformations of M so that M is conformally
diffeomorphic to M / T'. Because M’ is a covering of M, there exists I a subgroup
of T' such that M’ is conformally equivalent to A /T”. The immersion §’ lifts to
a conformal immersion §': M — S". Let§: M — S" be a developing map, and
p: I' = PO(1,n + 1) the associated holonomy morphism. By Fact 4.1, there exists
g € PO(1,n + 1) such that §' = go8. Now, for every y € TV, one has §oy=148so0
that gofoy = go 5. Finally, we get I'" C I'; = Ker p. Hence, there is a conformal
covering map from M’ = M /T’ onto M = ]lZf £ I'p. O

Lemma 4.3. Let M and N be two connected n-dimensional conformally flat mani-
folds, n = 3. Let N be the holonomy covering of N. Assume there exists a conformal
immersion §: M — S". Then any conformal immersions: M — N can be lifted to
a conformal immersiono: M — N.

Proof. Let ] M and N be the conformal universal coverings of M and N respectively,
andwp: M — M,y N — N the associated covering maps. We denote by I'ps
and I'y the fundamental groups of M and ¥, seen as discrete subgroups of conformal
transformations of M and N. The conformal immersion § lifts to a developing map
M- M — S, satisfying éps ©c y = da for every y € T'py. We also introduce §y
a developing map on N, and denote by py: Ty — PO(L,n + 1) the associated
holonomy morphism. The conformal immersion s lifts to a conformal immersion
5 M — ]V, and there is a morphism p: I'yy — 'y such that for every y € 'y,
§ oy = p{v) e §. Thanks to Fact 4.1, there exists an element ¢ € PO(1,n + 1) such
that 5 0§ = godp. Forevery x € M and every ¥ € 'y, we have on the one hand

Sn (p(y).5(x)) = pn (p(¥)).6n (5(x))

and on the other hand

6n (p(y).5(x)) = Sn(S(y.x)) = g.0m(y.x)) = g.0m (x) = Sn (5(x)).

We thus get that py (p(y)) fixes pointwise an open subset of S”, hence is the identical
transformation. We conclude that p(T"3r) C Ker py, hence the map § induces a
conformal immersion 0 : M — N, where N is the holonomy covering of N. By
construction, o is a lift of s. U

4.3. Cauchy completion of a conformally flat structure. The normal Cartan con-
nection associated to a conformal structure allows to define an abstract notion of
“conformal boundary”, derived from the ~-boundary construction introduced in [S2].
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We sketch the construction of this boundary below. More details are available in
Sections 2 and 4 of [Fr3]. Fix once for all a basis Xy, ..., X of the Lie alge-
bra g := of{l,n + 1). Given a Riemannian manifold (M, g), with dim M >
3, let us call (M, M , wM ) the normal Cartan bundle associated to the conformal
structure defined by g. Denote by R the frame field on M defined by R(%) =
((a)j.cw Yy LX), .. (a)M )~1(X;)). This determines uniquely a Riemannian metric
oM on M having the property that R(X) is pg"' -orthonormal for every X € M. The

Riemannian metric p™ defines a distance dps on M by the formula

dy(x,y) = ———~
M(X, ) (T 6w 2.3)

where

— 8p(%, ¥) is the infimum of the p™ -lengths of piecewise C! curves joining %
and y if X and ¥ are in the same connected component of M,

—8p (X, ¥) = —2 otherwise.

One can look at the Cauchy completion M, of the metric space (M, dyr), and
define the Cauchy boundary 9. M as 3.M = M, & M. Recall that M is a P-
principal bundle over M, where P is the stabilizer of a point v € S" in the Mdbius
group PO(1,n + 1). Given p € P, the right multiplication R, is Lipschitz with
respect to dps, and the right action of P extends continuously to M,. The conformal
Cauchy completion of (M, g) is defined as the quotient space M, := M. Py

Let us illustrate the construction in the case of the standard sphere S”, where the
conformal Cartan bundle is identified with the Lie group G = PO(1,n + 1), and the
Cartan connection is merely the Maurer—Cartan form @Y. The Riemannian metric
p¢ constructed as above is left-invariant on G so that (G, p¥) is a homogeneous
Riemannian manifold, hence complete. We infer that &G, = @, and the conformal
Cauchy boundary of S” is empty as well.

Generally, the action of P on M, is very bad behaved near points of 9, M so
that the space M, may not be Hausdorff. It is thus quite remarkable that M. is
Hausdorff when (M, g) admits a conformal immersion in the standard sphere S, as
the following proposition shows.

Proposition 4.4. Let M be a n-dimensional conformally flat manifold, n > 3. As-
sume there exists a conformal immersion §: M — S*. Then:

(1) The conformal Cauchy completion M, is a Hausdorff space, in which M is a
dense open subset.

(2) The conformal immersion § extends to a continuous map : M, — S".

(3) Every conformal diffeomorphism ¢ of M extends to a homeomorphism of M.
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Proof. We call pM and p® the Riemannian metrics constructed on M and G as
explained above, using a same basis X1, ..., Xs of o(1,n 4+ 1). The conformal
immersion §: M — S" lifts to an isometric immersion & (]\2 oMy = (G, p%).
As a consequence, 5 (M dy) — (G,dg) is 1- L1psch1tz Because ((7,dg) is a
complete metric space, § extends to a 1- -Lipschitz map 5: (M., dy) — (G, d(;)
This extended map § is still P- -equivariant for the (extended) action of £ on M,
and on G. Every conformal diffeomorphism ¢ € Conf(M) lifts to an isometry ¢ of
(M, pM), hence extends to an isometry, still denoted ¢ on (M., dp). The action of P
is free and proper on M, because the right action of £ on G is free and proper, and §
maps M. continuously and P -equivariantly on G. As a consequence, M, = M, P
is Hausdorff. The map §: M. — G induces a continuous §: M, — G [P =5",
extending §. Finally, for every ¢ € Conf(M), the homeomorphism ¢: M, — M,
commutes with the right action of P, hence induces ahomeomorphismg: M, — M,.
L

5. Proof of the local classification theorem

In this section, we prove Theorem 1.3. Lets: L\ A — N be aconformal immersion,
where A is an essential singular set satisfying #"~!(A) = 0. We assume also that the
singular setis essential and minimal in the sense that A = A pgle U Aegg, with Aegg # 0.
As explained in the introduction, because of Theorem 1.1, this hypothesis Ay = @
is harmless. By Proposition 3.9 we know that both L and N are conformally flat
manifolds.

5.1. The target manifold N is Kleinian. We call & the holonomy covering of
N . There is a discrete subgroup I" of conformal transformations of .V, acting freely
properly discontinuously on & such that N is conformally diffeomorphic to & /T
Showing that N is Kleinian amounts to show that A is conformally diffeomorphic to
an open subset of S”. The upshot of the proof is as follows: we are going to construct
a bigger n-dimensional conformal manifold &', in which & embeds conformally
as an open subset, and such that the action of ' extends conformally to A'. The
point is that the extended action of I" on N’ is no longer proper, what forces N’ to
be conformally equivalent to S” or the Euclidean space (see Theorem 5.1 below).
Because & embeds conformally into A, it is conformally diffeomorphic to an open
subset of the sphere, as desired.

Theorem 5.1 ([Fe], [Sch], [Frl]). Let (M, g) be a Riemannian manifold of dimension
n = 2. The three following assertions are equivalent:

(1) The group of conformal transformations Conf(M) does not act properly on M.
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(2) The group of conformal transformations ConfiM ) does not preserve any Rie-
mannian metric g’ in the conformal class |g|.

(3) The manifold (M, g) is conformally diffeomorphic to the standard sphere S", or
to the Euclidean space R".

A version of the theorem for the identity component of the conformal group, and
for compact manifolds, originally appeared in [Ob].

We are now explaining how one can construct a manifold N’ with the properties
listed above.

In the remaining of this section, we pick xo € Ay, and U a connected neigh-
borhood of x in L such that there exists a conformal embedding ¢: U — §".
Lemma 4.3 ensures that the conformal immersions: U\ A — N lifts toa conformal
immersion ¢: U \ A — N. By definition of the holonomy covering, there exists
a conformal immersion §: & — S”. Thenthe mapSoocog™': (U \ A) — §"
is a conformal immersion from ¢(U/ \ A) to an open subset of the sphere. Because
FH"Y(A) = 0, ¢(U \ A) is a connected open subset of $” and Liouville’s theorem
ensures that § o o o ¢~ ! is the restriction of a Mabius transformation. In particular, it
is injective and so is o. We thus get thato: U \ A — N is a conformal embedding.

In the following, we denote by (N, N \ a)‘N) the normal Cartan bundle associated
to the conformal structure on .&. As in Section 4.3, we define the Riemannian metric
p"v on N , the associated distance d 4, J\Afc the Cauchy completion of (J\Af ,dy), and
N, the conformal Cauchy completion of & . The distance on ﬁc is still denoted d 4 .

Lemma 35.2. The conformal embedding o: U\ A — N extends to a continuous

map o : U — N, which is a homeomorphism from U onto an open subset W C N.
The extended map ¢ sends A N U into d. N 1= N, \ N.

Proof. Let us call U and A the inverse 1mages of U and A in L. The conformal
immersion o lifts to an isometric immersion & : (U \ N —> (JV oY), Call dU
(resp. dU\ A) the distance induced by the Riemannian metric p on the open set U
(resp. U \A). Because ANU has (dlm(U )—1)-dimensional Hausdorff measure zero,
we get that dy = dy\ 4 (this fact is probably standard; the reader can find a proof
in [Fr3], Lemma 3.3). As a consequence, the map ¢': (0 \ /’i, diyn) —~ (J\Af, dy),
which is 1-Lipschitz, is also 1-Lipschitz if we put the metric dyy on U \ A. Hence,
it extends to a 1-Lipschitz map 6 : (U, dyy) — (N, d ). This map is P-equivariant
on the dense open subset U \ A, hence on U, and defines an extension of ¢ to a
continuous map o : U — AN,.

We are now going to show that the map o: U — N is open.

Because o: U \ A — N is an embedding, it is open on I/ \ A. Itis thus enough
to check that whenever x € A N U, and V C U is an open set containing x, the
image o (1) is a neighborhood of z := o(x). Let X € Ubea point in the fiber of x,
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let z = 6(x) € N, and let 7 > 0 be very small so that B(X, ), the closure of the
ball of radius r for p”, is compact and contained in Vi=n I ~1(V). We claim that if

B(z, ) denotes the metric ball centered at Z and of radius z in (JVC, d ), we have
the inclusion B(Z, £) C 6(B (X, r)), what will be enough to conclude, because the

pI‘O_]eCtIOIlS V — Vand N, — N, arc open maps. Let us consider Z 2" € N, such
that d 4 (2, 2) < - Letus consider (xk) a sequence of U \ A converging to X, and

() a sequence of N Convergmg to 2’. We consider indices k large enough so that
the points Z; := 6 (%) and 2 satisfy

dyCGr,2p) <
and

dy (G, %) < %

There is acurve Bi: [0,1] — N joining Z; to 2}, and having p —length smaller
than . The key pomt is that there exist a lift oz : [0, 1] — B(X,r) \ A such that

oak(()) = X and 6 o ap = PBy. Let us see why it 1s true. Let foo 1= supi{s €
[0, 1], the lift o exists on [0, £[}. Because &: (U \ A pf) — (JV oY) is an iso-
metric 1mmer310n Ok |[0,10[ DaS finite length so that yoo = limy—;. og (¢) exists.

Moreover, the p” length of O [[0,100[ 18 STaller than ,sowe get dpy (X, Yoo) < 7,

and y , € B(X,r). If we prove that y __ ¢ AN B(x, r), we will get that o, exists on
[0, 1]. As we saw, the immersion o : U \ A — N is an embedding, so Theorem 3.7
ensures that all points of A N are either removable or poles with respect to . Since
o is a lift of s, any point of A which is removable for ¢ is removable for s, and the
minimality assumption on A precisely says that there are no such points. We conclude
that every point of A N U is a pole for o Hence, if we had §__ € A N B(%, r), then

o (o (1)) should leave every compact subset of N asf — fs0, a contradiction with
Bi([0.1]) C N.
The end point X}, of oy is mapped to 2}, by 6. By compactness of B(X, r), we get

apoint £ € B(%,r) suchthat 6(1") = Z’, what concludes the proof that o : U — N,
is open. Itremains to check thatitis injective to get that o maps I/ homeomorphically
onto its image W . Letus assume for a contradiction that there are x1 # x, in U/ such
that 6(x1) = o(x2) = y. Because o is open, there are U; and U, two disjoint open
subsets of U such that o(U;)No (U,) contains an open set V. Now o (U1 \A)NV and
o (U2 \ A) NV being two dense open subsets of ¥V, they must intersect, contradicting
the injectivity of o on U \ A.

We showed above that all points of ANU are poles for the embeddingo : U\A —
N, which implies o (A) C 9,.N. O

Corollary 5.3. The holonomy covering N is conformally diffeomorphic to an open
subset of S", and N is a Kleinian manifold.
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Proof. We sawin Section 4.2 that associated to the conformal immersiond: N — S7,
there is a group homomorphism p: T' — PO(1,n + 1) satisfying the equivariance
relation

oy =p(y)od 9)

for every y € I'. Proposition 4.4 shows that the action of I" extends to an action by
homeomorphisms on ., and that § extends to a continuous map §: N, — S". In
particular, by density of N in N, the equivariance relation (9) still holds on N,. Let
us define N := N U Uyer y(W). It is an open subset of N, and in particular it is
Hausdorff by Proposition 4.4. By the previous proposition, the map oo : U — §"
is continuous and coincides with the restriction of a Mdbius transformation on the
dense open set U \ A. Hence it is the restriction of a Mdbius transformation. In
particular § : W — S§”" is ahomeomorphism onto its image. By relation (9), for every
y eI, §: y(W) — S" is a homeomorphism onto its image as well. From those
remarks, we infer that A is a second countable Hausdorff space. The topological
immersion § : &' — S" yields an atlas which endows N’ with a structure of smooth
conformally flat manifold, the conformal structure € on N’ extending that of N .
The equivariance relation (9), available on A, tells that in the charts of this atlas,
the action of y € T reads as the restriction of the action of p(y) € PO(1,n + 1). In
particular, I" acts as a group of smooth conformal transformations of (N, €).

We claim that the group Conf(A’) cannot preserve any Riemannian metric ¢" on
N, Indeed, assuming it is the case, we can consider the function p: N — Ry,
which to each z € N’ associates the distance (measured thanks to ¢’) from z to
the closed set d..N N N'. It is continuous and I'-invariant. Now, Proposition 3.8
implies that there exists a dense Gg-set § C N such that for every y € §, the fiber
s~1{y} accumulates on our point xo, € A.s. Because o is a lift of s, we get a
sequence () ) of T', and a point zg € N such that ) .zy converges to 6(Xx). This is
a contradiction because on the one hand pt(zg) > 0, and on the other hand p(y%.zo)
tend to n(o(xe)) = 0as k — oo.

The previous claim, together with Theorem 5.1 ensures that (N, €) is confor-
mally equivalent to the standard n-sphere or the Euclidean n-space. We infer that
5: N — §" is injective (Liouville’s theorem), and N is a Kleinian manifold. ]

Remark 5.4. Actually, because the manifold .V’ is conformally flat, we just need the
conclusions of Theorem 5.1 for conformally flat manifolds, and this result is actually
much easier to prove than the general case.

5.2. End of the proof of Theorem 1.3. Wekeep the notations of Section 5.1. Thanks
to the work done there, we know that the developing map §: &N — S” is injective
so that § is a conformal diffeomorphism between & and a connected open subset
Q C S”. Identifying " with p(I"), we see I" as a Kleinian group in PO(1, 7 4 1) and
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get a commutative diagram

8

N Q
Lk
N ¥ Q/T,

where ¢ is a conformal diffeomorphism. We already noticed that I' does not act
properly on AN’ so that I is infinite.

Let us pick xo € A, and a connected neighborhood U of x in L, which is
conformally diffeomorphic to an open subset of the sphere. By Lemma 4.3, the
conformal immersion s: U \ A — N lifts to a conformal immersion o: U \ A —
N . Liouville’s theorem ensures that ¢ := § ¢ ¢ extends to a conformal immersion
g: U — S§" Letuscall V := @(U). On U \ A, the relation 7 o ¢ = 3 o s holds
so that ¢ yields a one-to-one correspondence between points of A M U which are
essential (resp. poles) for s to points of Q NV which are essential (resp. poles) for
7. By the discussion of Section 4.1, ¢ maps U N A to V N a2, and U N A to
V N A(I"). This completes the proof of Theorem 1.3.

5.3. Consequences of the local classification theorem. Because Theorem 1.3 clas-
sifies locally all thin conformal singularities admitting essential points, the study of a
conformal immersion near an essential singular point reduces to understanding what
is going on for singularities of Kleinian type. We can summarize the results in the
following corollary.

Corollary 5.5. Let (L, g) and (N, h) be two connected n-dimensional Riemannian
manifolds, n > 3. Let A C L be a closed subset such that "~ 1(A) = 0. Assume
that s: L.\ A — N is a conformal immersion. Then:

(1) The set A5 is closed. If it is nonempty, it is either discrete, or perfect.
(2) If Apgle is nonempty, its closure in A is the set Ajge U Aegs.

(3) Assume that A is minimal essential. Then for every Xoo € A5 and any neigh-

borhood U of Xoo in L, s(U \ A) = N.

(4) If A is discrete and contains at least one essential singular point, then Apgl. = 9
and (N, h) is conformally diffeomorphic to a Euclidean manifold, or a general-
ized Hopf manifold.

We define generalized Hopf manifolds as quotients of R” \ {0} by an infinite
discrete subgroup of conformal transformations. Topologically, those manifolds are
finite quotients of S! x §”~! (see Section 7.2 for a complete description of those
manifolds).



Vol. 89 (2014) Removable and essential singular sets for conformal maps 433

When the singular set A 1s reduced to a point, the third and fourth points of the
corollary can be compared to Picard’s theorem about the behavior of a meromorphic
function in the neighborhood of an isolated essential singularity. Let us also mention
that when s: L\ A — N is merely a quasiconformal immersion, and when A = {p}
is an isolated essential singularity, then V. A. Zorich proved in [Zol] and [Zo2]
that s(U/ \ p) = N for every neighborhood U, and that up to finite quotient, N
is homeomorphic to a product R¥ x T#=% or §1 x §"*~1_ Its proof does not imply
Corollary 5.5 in the conformal framework, though (see also [R2], Theorem 2.1, p. 81,
and [HP] for other generalizations of Picard’s theorem in the quasiregular setting).

Proof of Corollary 5.5

First point. We firstexplain why A . isclosed. Letus consider (xg) asequence of A .
which converges to xo € A. From Proposition 3.8, we know that Clust(xz) = N
forall £ € N. Hence, if we fix y and y’ two distinct points of N, one can build two
sequences (vg) and (zz) in L \ A which converge to x, such that s(y;) — v and
s(zg) — y'. It follows that X € Agg. Now, thanks to Theorem 1.1, we extend s
to a conformal immersion §": L \ (Aess U Apgie) — N. Theorem 1.3 implies that
N = Q/T, for an infinite Kleinian group I". It is a classical fact that the limit set
A(D") is either a perfect set, or has at most two points ([A], Theorem 2.3, p. 43). If
we are in the former case, Theorem 1.3 ensures that Ay is perfect. If A(T") has one
or two points, then again by Theorem 1.3, all the points of A are isolated.

Second point. Assume that A . 1s nonempty, and let us show that the closure m
i8 Apole U Agss. By Theorem 1.1, there is no harm assuming that A = Apge U Aggg. If
Agss 18 empty, the claim is clear. Assume now that A 1s nonempty. It is enough to
check that every point of A is in the closure of A .. Recall that by Theorem 1.3,
for each x4, there is a neighborhood U of xo and a commutative diagram

UNA—2 v\ 9Q

o,k

N Q/T.

Moreover, (U N A) = VN aQ and o(UU N As) = V N A(T). We infer that
a2 \ A(T') is nonempty, and we are reduced to show that every point in A(T") is
accumulated by points in 92 \ A(I"). But this is clear, because if z € 9Q \ A(I'),
wewillhave Tz C 3Q \A(M) and T.z = A(TYUT.z.

Third point. We assume now that A is minimal essential. We want to show that if
Xoo € Aess and if U is any neighborhood of x in L., then s(/ \ A) = N. By The-
orem 1.3, the manifold N is Kleinian, conformally diffeomorphic to 2/ T, for some
infinite discrete I". For any z € 2, the closure of I'.z contains A(I"). In particular,
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if zoo € A(T") and if V is a neighborhood of z, in S?, then #(V \ A(I")) = Q/T".
Theorem 1.3 implies directly that s(I/ \ A) = M.

Fourth point. Let us assume that A 1s a discrete set containing at least one essential
singular point. Thanks to Theorem 1.1, we can assume that A = Apge U Aggs. The
second point of the corollary implies that in the presence of essential singular points,
Apole 18 not closed as soon as it is nonempty. Because A is discrete, we infer that
Apgle must be empty. If T" is the infinite Kleinian group such that N = Q/T, then
A(T) has one or two points (if not, Ay would be perfect), and Theorem 1.3 actually
implies that Q@ = §" \ A(T"), otherwise A would contain poles. We infer that if
A(T") has one point, I" is a discrete subgroup of conformal transformations of R”
acting freely properly discontinuously on R”. Then, one checks easily that I" is a
discrete subgroup of Euclidean motions, and N is a Euclidean manifold. If A(T")
has two points, then N is conformally diffeomorphic to a quotient of R” \ {0} by
an infinite discrete group of conformal transformations, namely N is a generalized
Hopt manifold. (]

6. Proof of Theorem 1.4

We are now considering thin essential conformal singular sets on a compact manifold
L. This compactness assumption on L allows us to prove:

Proposition 6.1. et (1., g) and (N, h) be two connected n-dimensional Riemannian
manifolds, n = 3. Let A C L be a closed subset such that JHA) = 0, and
s: L\N — N aconformal immersion. If L is compact, and A = Apole U Ay, then
s: L\ A — N isacovering map onto N.

Proof. Letw: [0,1] — N be a continuous path, let xo € L \ A such that s(xp) =
a(0). We want to show the existence of y: [0,1] — L \ A, a lift of o satisfying
v(0) = xo. If we cannot lift «, there exists fo, € [0, 1], and y: [0, feo[— L\ A a
lift of a: |0, foo|— N such that y(0) = xy and y(¢) leaves every compact subset of
L.\ A as f tends to /. By compactness of 1, for every sequence (#) tending to
I, the set A of cluster values of y(#) in L is nonempty and contained in A. Let
Xoo be a point of A. Since s(y (1)) tends 0 w(loo), We get Xoo & Apoe. Hence we
should have xo, € A.s. But this is not possible. Indeed, if xoo € Acss, we first
assume, considering a subsequence of (#; ), that y(#;) tends to xo.. Then we use the
second point of Lemma 3.5, and get the existence of a sequence (£;) in [0, /[, which
converges (0 /o such that y (¢; ) converges (o Xoo, and such that s(y(#;)) converges to
y' € N, with y" # a(ts). This contradicts the fact that y is a lift of a[g .. [- O

We are now under the hypotheses of Theorem 1.4: the manifold L is compact
and the singular set is minimal essential, i.e A = Ay U Apge. Moreover, we do the
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assumption " 2(A) = 0. Theorem 1.3 ensures that (L, g) and (N, h) are confor-
mally flat, and that N is actually conformally diffeomorphic, via a diffeomorphism
Y, to a Kleinian manifold €2 / T'. From Theorem 1.3, we also get that the boundary
0Q satisfies #"72(dQ) = 0, hence 2 is simply connected as the following lemma
shows.

Lemma 6.2 ([LV], Theorem 6.13). Let M be a connected, simply connected, n-
dimensional Riemannian manifold, n > 3. Assume that E is a closed subset of M

satisfying H"~2(E) = 0. Then M \ E is still simply connected.

Let us call . the conformal universal covering of L and denote by 77 : L. — L
the associated covering map. We call A the inverse image of A by mz. Observe
that . \ A is simply connected by Lemma 6.2. By Proposition 6.1, our conformal
immersion s: .\ A — N is acovering, hence it lifts to a conformal diffeomorphism
o: L\ A — Q. In particular

moo =Yosomy. (10)

Apply Theorem 3.7 to get that 0~ !: Q — L extends to a conformal diffeomor-
phism ¢~': Q' — L, where Q' C S” is an open subset containing Q. We denote
again by o: L — ' the inverse map. Observe that o(A) = Q' NIQ. The map o
induces a homomorphism p: 71(L.) — PO(l,n + 1) such that forevery vy € w1(L),
the equivariance relation o © y = p(y) o ¢ holds. The group I'' := p(m(L)) is
a discrete subgroup of PO(1,n + 1) acting freely properly discontinuously on Q.
Let us call #’: Q" — Q'/T the conformal covering map. There is a conformal
diffeomorphism ¢ : L. — Q'/T" such that

206 = gomny. (11)

Letus check that Q' = Q(T"). If TV is finite, the compactness of I. leads to ' = §”.
If I is infinite, one has Q" C Q(I"), since the action of I'” is proper on ’. On the
other hand, the compactness of L forces the action of I' to be nonequicontinuous
at each point of 9€2’, yielding the inclusion 3Q" C A(T). In any case, we get that
Q" = Q(I'), as claimed in Theorem 1.4.

For every vy € my(L), relation (10) leads to the identity 7 o p(y) = = on Q so
that one has the inclusion I'" C T". Hence, the identity map of  induces a covering
map s’: Q/I"" — Q/T, satisfying for every y € Q

s'om'(y) = m(y). (12)

Observe that if we define A’ = #'(Q" N 9Q), then Q/ T is merely M(I'') \ A’
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Relations (10), (11) and (12) lead to the commutative diagram

IANA—2 S~ MTH\ A

T

N Q/T.

The diffeomorphism ¢ maps A to A’ because ¢ maps A to Q2 N Q'. Finally, it
is easily checked that the essential singular points of A’ for s” are the 7'-images of
the essential singular points of 3Q2 N Q for 7, namely the points of 32 M Q' which
are in A(I"). This means A(I") N Q" # @, hence A(I'") € A(T).

7. Isolated essential singularities on compact manifolds

Our aim in this section is to understand completely the conformal singularities s: L\
A — N,where N is acompact manifold and A is a {inite number of essential singular
points. It turns out that very few possibilities arise, and they are listed in Theorem 7.1
below. First of all, let us enumerate some examples.

7.1. Euclidean singularities on the sphere. lLect us consider an infinite discrete
subgroup I' C (R% x O(n)) x R”, acting freely properly discontinuously on R".
One checks that for the action to be free, I' must actually be a subgroup of O(rn) x R”.
The quotient manifold N = R” / T" is then a Euclidean manifold. We see T as acting
conformally on S” \ {v}, fixing v, and consider the covering map s: S" \ {v} — N.
It is a conformal immersion, and because I” is infinite, we have A(I") = {v}. Hence,
as we already saw, v is an essential singular point for s. A conformal singularity
s: 8"\ {v} — N as described above will be referred to as Euclidean singularity on
the sphere.

7.2. Singularities of Hopf type on the sphere. Let us now fix o0 a second point
on the sphere 5", distinct from the point v. There is a conformal diffeomorphism
mapping S” \ {o; v} onto R" \ {0}. The group G of conformal transformations of
R™ \ {0} is generated by the inversion t: x — —#, and the group R x O(n)
of linear conformal transformations on R”. Let us choose an infinite discrete group
I' C G acting freely, properly and discontinuously on R” \ {0}. Itis not hard to check
that I" has a finite index subgroup generated by a linear conformal contraction. As
previously, the quotient N = (R”\{0}) / T is called ageneralized Hopf manifold. The
covering map s: 8"\ {o; v} — N is conformal, and because I" is infinite, both v and
o are essential punctured singularities. Conformal singularities s: S" \ {o; v} - N
constructed as above will be referred to as singularities of Hopf type on the sphere.
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7.3. Singularities of Hopf type on the projective space. Let us go back to the
previous construction, and assume that our infinite discrete subgroup I' C G contains
the inversion ¢. Then, the subgroup I', C I' of transformations fixing individually
the points v and o is normal in . Let us call N, the quotient manifold (R" \
{0}) / T',. Because ¢ normalizes I',, and because I acts freely on R” \ {0}, ¢ induces
a conformal involution ¢ without fixed points on N,. The quotient N, /(1) is actually
conformally diffeomorphic to N := (R” \ {0}) / T'. The quotient of S\ {o; v} by (1)
is conformally diffeomorphic to R P" with a point v removed. The natural covering
map 7 : S" \ {0; v} — N, induces a conformal immersion s: RP" \ {v} — N, for
which v is an essential singular point. Conformal singularities constructed in this
way will be referred to as singularities of Hopf type on the projective space.

7.4. Classification result. We are now investigating essential singular sets on com-
pact manifolds, comprising only a finite number of points. By Theorem 1.1, and the
fourth point of Corollary 5.5, we just have to focus on the case where all the points
are essential. Then, it turns out that the three kinds of singularities described in the
previous section are the only possible.

Theorem 7.1. Let (1., g) and (N, h) be two connected n-dimensional Riemannian
manifolds, n = 3, with L. compact. Let A == {py,..., pm} be a finite number of
points on L. Assume that s: L\ A — N is a conformal immersion such that each
pi is an essential singular point for s. Thenm = 1 orm = 2 and:

(1) Ifm = 1, either there exists a Euclidean singularity on the sphere s’ S"\{v} —
N', a conformal diffeomorphism ¢ : . — S" sending py to v and a conformal
diffeomorphism r: N — N' making the diagram

L\ {p1} ———S"\ {1}
R
N N’

commute.

Orthere exists asingularity of Hopftype on the projective space s’ : RP"\{v} —
N', a conformal diffeomorphism ¢ : L — RP" sending py to v and a conformal
diffeomorphism & © N — N' making the diagram

L\{pi}—"—=RP"\ {1}

L,k

N N’

commute.
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(2) Ifm = 2, there exists a singularity of Hopf type on the spheve s': §" \ {o;v} —
N', a conformal diffeomorphism ¢: L. — S" sending {p1; p2} to {o; v} and a
conformal diffeomorphism \r: N — N’ making the diagram

L\{T;pz} - SH\IM}
N L4 N’

commute.

Proof. We first apply Theorem 1.3 in a neighborhood of any of the p;’s. We get that
N is conformally diffeomorphic to a Kleinian manifold Q/I", where the limit set
A(T) has one or two points (otherwise Ay would be a perfect set), and &2 = Q(T)
(otherwise A g would be nonempty).

Assume first that A(I") is made of a single point v. The group I" is a discrete
group of conformal transformations of S” \ {v}, namely R", which acts freely prop-
erly discontinuously on R". As a consequence, I' is a discrete group of Euclidean
motions, and N is conformally diffeomorphic to a Euclidean manifold N' = R" /T,
Theorem 1.4 makes the structure of L and A explicit: there must be a subgroup
I'" ¢ T, with A(T") € A(I"), as well as an open subset Q' properly containing
Q such that 1. is conformally diffeomorphic to Q'/ T, and A is obtained as the
quotient (' N A(T))/T". This implies in particular A(T'") = @, hence I' is finite,
and because T'" acts cocompactly on ', we must have Q' = §”. Since the action of
I on 8" must be free, and T fixes v, we infer that T is trivial. We get that m = 1,
L is conformally diffeomorphic to S”, and we are in the first case of the theorem.

Assume now that A(I") comprises two points 0 and v. Applying Theorem 1.4, and
with the same notations as above, we get that I' is a discrete group in the conformal
group of R” \ {0}. The limit set of the subgroup T’ has two peints or is empty, but
because A(I'") € A(T"), we are in the second alternative: '’ is once again finite, and
Q" = §". Because [/ acts freely on S”, and leaves {o; v} invariant, it is either trivial,
or generated by a conformal involution of §”, without fixed point, and switching o
and v.

It is not hard to check that such a fixed-point free involution switching o and v 1s
conjugated, in the conformal group of R \ {0}, to the inversion ¢: x —ﬁ, soif
I'" is nontrivial, there is no harm in assuming I'" = {¢). Then m = 1, L conformally
diffeomorphic to R P”, and we are in the second case of the theorem.

Finally, if T is trivial, then m = 2, L is conformally diffeomorphic to S” and we
are in the third case of the theorem. L
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