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Removable and essential singular sets for higher dimensional
conformal maps
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Abstract. In this article, we prove several results about the extension to the boundary of conformal

immersions from an open subset Q of a Riemannian manifold L into another Riemannian
manifold N of the same dimension. In dimension n > 3, and when the (n — 1)-dimensional
Hausdorff measure of 9£2 is zero, we completely classify the cases when 9£2 contains essential

singular points, showing that L and N are conformally hat and making the link with the theory
of Kleinian groups.
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1. Introduction

The aim of this paper is to make progress toward the understanding of singular sets for
conformal maps between Riemannian manifolds of dimension at least 3. The general
problem we are considering can be stated very easily: assume that (L, g) and (N, h)
are two smooth, connected, Riemannian manifolds of same dimension n > 2, and

assume that we have a smooth immersion s: L\ A -> N, from the complement of
a closed subset A C L, to the manifold N, which is conformal, namely x*/z e^g
for some smooth function cp on L \ A. The set A is called a singular set for the
conformal immersion s, and a data s: L \ A -> TV as above is referred to as a

conformal singularity. A basic question is to understand under which conditions the

singular set A is removable, namely it is possible to extend s "across" A.
The main contribution of the article is an almost complete understanding of the

Situation when the dimension n is at least 3, and the (n — 1)-dimensional Hausdorff
measure of A, denoted J^_1(A), is zero. Under those assumptions, our principal
result is Theorem 1.3, stated in Section 1.2 below, which yields a local Classification
of essential conformal singularities, namely those for which s: L \ A -> N does

not extend to a continuous map from L into the one-point compactification of N.
Theorem 1.3 implies that such essential singular sets can only occur when L and N are

* Partially supported by ANR Aspects Conformes de la Geometrie.
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conformally flat, and moreover TV is a Kleinian manifold. As a consequence, except in

very peculiar situations that are completely classified, Singular sets with Mn~l (A)
0 are removable (maybe adding a point at infinity to N, when N is noncompact),
and the extended map is still a conformal immersion (see Theorem 1.1). Finally,
under the extra assumption that L is compact and the (n — 2)-dimensional Hausdorff
measure of A is zero, we also classify globally essential conformal singularities in
Theorem 1.4: in this case L and N are both Kleinian manifolds.

Since conformal immersions are very peculiar instances in the much larger class

of quasiregular mappings, it is natural, before describing our results into more de-

tails, to mention the existing theorems about removable sets and boundary behavior of
quasiregular maps. Quasiregular mappings (see [IM], [R2], [VI] for comprehensive
introductions to the subject) are usually presented as the "good" higher dimensional

generalization of holomorphic functions of one complex variable. And indeed, clas-
sical theorems of function theory, such as Picard's theorem, or Painleve's theorem

on removable sets, find analogous Statements in the framework of quasiregular
mappings (see for instance [Rl], [R3], [V2]). Most of those results, though, only deal

with quasiregular mappings between domains of the extended space Rn. Although
more recent works (for instance [BH], [HP], [P] and [Zol], among others) aimed at

some generalizations involving broader classes of target manifolds N, they do not
help much for the problem we are considering, except in very peculiar cases. Moreover,

let us stress that the tools used in the theory of quasiregular mappings involve
elaborate analysis, while the very rigid behavior displayed by conformal immersions
in higher dimension allow to settle the problem in the conformal framework by purely
geometric arguments. Actually, we hope that the ideas introduced here will be helpful
to study removable and essential Singular sets for conformal structures which are not
Riemannian, the Lorentz signature being of particular interest, and maybe for other

geometric structures of the same kind, such as Cartan geometries.

1.1. Extension results. Throughout the paper, manifolds and maps between them
are assumed to be smooth.

We consider as above a conformal immersion s: L \ A -> N, where (L, g) and

(N, h) are two connected Riemannian manifolds of dimension n > 3. The conformal
structure on L \ A is that induced by (L,g). We will assume that Mn~l{A) 0,

where Mn~l Stands for the (n — l)-dimensional Hausdorff measure on (M, g) (we
refer to Chapter 4 of [Ma] for basic notions on Hausdorff measures). In particular,
L \ A is connected and dense in L. In the sequel, those sets satisfying the condition
Mn~l (A) 0 will be referred to as thin singular sets. The points of a (thin) singular
set A split naturally into three categories.

- The removable singular points are those Xoo e A at which the map s extends

continuously. In other words, there exists a point y e N so that for every sequence
(xk) of L \ A converging to Xoo, the sequence s(xk) tends to y.
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- The poles are those points Xoo e A such that for every sequence (x^) of L \ A
converging to Xoo, the sequence s(xk) leaves every compact subset of N.

- Finally, the points of A which are neither removable, nor poles are essential

singular points.

One thus gets a partition A Arem U Apoie U Aess into removable singular points,
poles and essential singular points. The results of this article will allow to determine
the structure of those three sets for thin singularities. We begin with Arem.

Theorem 1.1. Let (L,g) and (N, h) be two connected n-dimensional Riemannian
manifolds, n > 3. Let A C L be a closed subset such that Mn~l(A) 0, and

s: L\A -> N a conformal immersion. Then the set Arem is open in A and s extends

to a conformal immersion sf: L\ (Apoie U Aess) -> N.

In view of this result, it will be interesting to find criteria ensuring that Aess is

empty. We will prove in Theorem 3.7 that under the condition Mn~l(A) 0, an

injectivity assumption on the immersion s is enough for that.

1.2. Local Classification of thin essential singularities. Our next step will be to
understand, when it is nonempty, the set Aess of essential singular points. First, we
introduce the following definition.

Definition 1.2 (Essential singular set). Lets: L\A -> N be aconformal singularity.
We will say that A is an essential singular set as soon as Aess ^ 0. When Arem 0

and Aess ^ 0, we will say that A is minimal essential.

The reader might like to see examples of conformal immersions admitting (minimal)

essential singularities. That's what we do quickly now, referring to Section 4.1

for more details on the construction. Let T be an infinite Kleinian group, namely a

discrete subgroup of the Möbius group PO(l, n + 1) acting properly on a nonempty
open subset Q C Sn. We assume that the action of T on Q is free and denote by
N := Q / T the corresponding Kleinian manifold. The conformal covering map
7t: Sn \ A -> N, where A Stands for the complement of Q in Sn, is an instance of
conformal singularity which, under our assumption that T is infinite, turns out to be
essential. Actually (see Section 4.1), A Aess U Apoie, and Aess coincides with the

limit set A(T) of T. Such conformal singularities will be said to be ofKleinian type.
Our main result says basically that locally, all thin conformal singularities which

are minimal essential (see Definition 1.2) are of Kleinian type. In particular, the
existence of essential singular points imposes strong restrictions on the geometry:
the source manifold must be conformally flat, and the target manifold has to be

Kleinian. It is interesting to notice that this geometric restriction does not appear in
dimension two, where all Riemannian manifolds are conformally flat.
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Observe that in view ofTheorem 1.1, studying thin singular sets which are essential
reduces to studying minimal essential ones.

Theorem 1.3. Let (L, g) and (N, h) be two connected n-dimensional Riemannian
manifolds, n > 3. Let A C L be a closed subset such that Mn~l{A) 0. Assume

that s: L \ A ^ N is a conformal immersion for which A is a minimal essential

singular set. Then:

(1) There exist an infinite Kleinian group T C PO(l ,n + 1), a connected open
set Q C Sn on which T acts freely properly discontinuously, and a conformal
diffeomorphism x/f'.N^Q/T.

(2) For each Xqq e A, there exist an open neighborhood U C L containing Xoq,

and a conformal diffeomorphism cp : U V, where V is an open subset of Sn,

which makes thefollowing diagram commute:

U\A - V

S 71

n ^ n / r,

where 7t: Q £2 / T is the covering map. In particular, (p(U n A) FD3^
and (p{U f! Aess) V D A(T), where A(T) denotes the limit set ofthe group T.

In Corollary 5.5, we will derive from Theorem 1.3 precise Information about the
behavior of a conformal immersion near an essential singular point. In particular, we
will get an higher dimensional analogue of Picard's theorem.

1.3. Global Classification of essential singularities. Theorem 1.3 describes com-
pletely the geometry of the target manifold N, for a thin essential conformal singular-
ity s: L \ A N. The local geometry of L is also determined, but in füll generality,
we cannot expect to determine L globally. Now, if we assume that L is compact, and

under the stronger assumption that the singular set has (n — 2)-dimensional Hausdorff

measure zero, the singularity s: L \ A N can be described globally. In the
Statement below, for a Kleinian group T, we will denote by A(T) the limit set of T,
Q(T) Sn \ A(T) its domain of discontinuity, and M(T) the quotient ^(T)/ T (see
Section 4.1 for the definitions).

Theorem 1.4. Let (L, g) and (N, h) be two connected n-dimensional Riemannian
manifolds, n > 3. We assume that L is compact. Let A C L be a closed subset such

that Mn~2(A) 0. Assume that s: L\A^Nisa conformal immersionfor which
A is a minimal essential singular set. Then:
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(1) There exists an infinite Kleinian group T C PO(l ,n + 1), a connected open
subset Q C Sn on which T actsfreelyproperly discontinuously, and a conformal
diffeomorphisM x/f'.N^Q/T.

(2) There exists a subgroup Ff C T with A(Tf) c A(r) such that T' acts freely
properly discontinuously on ^(T'), and a conformal diffeomorphism <p: L ->
M{T').

(3) Let us call sf: Q / T' -> £2 / T the natural covering map, and let us define the

closed subsets A' and Afess in M{T') as the quotients (dQ \ A(r/)) / T' and

(A(r) \ A(r/)) / Tf. Then the conformal diffeomorphism cp can be chosen such

that (p(A) Af, cp(Aess) A^ss, and the following diagram commutes:

L\A —^ M(T') \ A'

s sf

n ^ ^ / r.

We will apply this theorem to get a füll description of punctured essential singu-
larities on compact manifolds in Theorem 7.1.

1.4. Organization of the paper. As we already mentioned it, the tools used in this

paper are of geometric nature. Especially, the proofs heavily rely on the interpretation
of conformal structures (in dimension > 3) in terms of Cartan geometries. The

necessary background on this topic, as well as the first technical results, are introduced
in Section 2. They allow to begin the study of conformal singularities in Section 3. The
main point is to understand the behavior of the 2-jet of a conformal immersion in the

neighborhood of the singular set, as explained in Section 3.1. Theorem 1.1 is proved
in Sections 3.2, and 3.3 contains another extension result for conformal embeddings,
namely Theorem 3.7. In Section 3.4, we show that thin essential singular sets only
occur on conformally flat manifolds, an important Step toward Theorem 1.3.

Section 4 reviews some basic results about conformally flat structures. The reader
familiar with this material may skip it, except maybe for Section 4.1 which gives more
details about essential singularities ofKleinian types, and Section 4.3 which deals with
the notion of Cauchy completion for conformally flat structures. This preparatory
work allows to complete the proofs of Theorems 1.3 and 1.4 in Sections 5 and 6

respectively. We conclude the paper with Section 7, which provides a füll description
of punctured essential singularities on compact Riemannian manifolds.
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2. Conformal structures and Cartan connections

Let (L, g) be a Riemannian manifold of dimension n > 3. Let L be the bündle of
2-jets of orthogonal frames on L, and tvl : L -> L the bündle map. The bündle L
is a P-principal bündle over L, where P is the conformal group of the Euclidean

space Rn. The group P is a semi-direct product (R* x O(n)) x Rw, where the
factor R+ corresponds to homothetic transformations of positive ratio, 0(n) is the

group of linear orthogonal transformations, and Rn is identified with the subgroup of
translations. Let Sn be the /i-dimensional sphere, and G := PO(l, n + 1) the Möbius

group, namely the group of conformal transformations of the sphere. The group P is

realized as the subgroup of G fixing a point v e Sn. We denote by q := o(l ,n + 1)

the Lie algebra of the Möbius group, and by p C o(l, n + 1) the Lie algebra of P.

2.1. Canonical Cartan connection associated to a conformal structure. Good
references for the material presented in this section are Chapter IV of [Ko] and

Chapter 7 of [Sh].
It is a fundamental fact, known since Elie Cartan, that underthe assumption n > 3,

the conformal class [g] defines on the bündle L a unique normal Cartan connection
coL with values in o(l,n + 1). The connection coL is a 1-form on L with values in
the Lie algebra o(l, n + 1), and satisfying the following properties:

(1) For every x e L,co^ : T%L -> o(l,n + 1) is an isomorphism of vector spaces.

(2) For every X e p, the vector field X on L defined by X(x) := jtjt=0 x.etX,

where Y eY denotes the exponential map on PO(l,n + 1), satisfies

coL(X) X.

(3) For every p e P, if Rp denotes the right action by p on L, then (Rp)*(j)L
Ad

The normality condition is put on the curvature of the connection to ensure uniqueness.
The reader will find a precise Statement of this condition in [Ko], Theorem 4.2, p. 135,

or [Sh], Proposition 3.1, p. 285. The triple (L, L, coL) will be referred to as the normal
Cartan bündle associated to the conformal structure (L,g). For the conformally
flat model Sn PO(l ,n + 1 )/P, the normal Cartan bündle is the Möbius group
G PO(l, n + 1), and the Cartan connection is the Maurer-Cartan form coG.

Let us observe that if (L, g) and (N, h) are two connected /i-dimensional Riemannian

manifolds, n > 3, and if s: (L, g) (N, h) is a smooth immersion, then s lifts
to an immersion 5 between the bundles of 2-jets of frames of L and N respectively. If
moreover s is conformal, 5 maps 2-jets of orthogonal frames to 2-jets of orthogonal
frames. This yields a bündle map s: L —N lifting s. The 1-form s*ooN is a Cartan

connection on L, with values in o(l,n + 1). Because coN is the normal Cartan
connection associated to [A], and because the normality condition is tensorial on the

curvature of the connection, we get that s*coN also satisfies the normality condition.
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By uniqueness of the normal Cartan connection, one must have s*coN coL. We

say that the lift s is a geometric immersion from (L,col) to (N,con).

A j2.2. Exponential map. On the bündle L, the Cartan connection cd yields an ex-
ponential map in the following way. The data of u in o(l,n + 1) defines naturally a

o;L-constant vector field U on L by the relation cdl{U) u. We call 0lu the local

flow generated on L by the field U. At each x e L, let 14^ C o(l, n + 1) be the set of
vectors u such that 0*u is defined for t e [0,1] at x. Then one defines the exponential
map at x as follows:

exp(x, u) := </>*.x for all u e 14^.

Using the equivariance properties of the Cartan connection listed above, one shows

easily the following important equivariance property for the exponential map

exp(x,u).p~l exp(x./?_1, (Ad p).u) (1)

for every u G 14^, p G P.

2.3. Injectivity radius. The Lie algebra o(l, n + 1) splits as a sum

tt~ 0 M 0 o(n) 0 tt+

where p R 0 o(n) 0 tt+ is the Lie algebra of P. The algebra corresponding to the
factor R is a Cartan subalgebra. The two abelian /i-dimensional subalgebras tt~ and
tt+ are the root Spaces. They are left invariant by the adjoint action ofR0o(n). A
detailed description of this material can be found in [Sh], Chapter 7. As we saw, the

group P is a semi-direct product P (R* x O(n)) x Rn. We put on o(l,n + 1)

a scalar product which is Ad 0(«)-invariant, and denote by ||. || the norm it
induces on o(l ,n + 1). For every X > 0, we will denote Bn-(X) (resp. 2?n-(A))
the open (resp. closed) ball of center 0 and radius X in tt~, for the norm ||. ||. The

map u \-> exp(x, u) is a diffeomorphism from a sufficiently small neighborhood of
0 G o(l, n + 1) onto its image. Notice also that because (tt~) is transverse to

Tz(7tll(x)) (o;^)_1(p), the map u jvl ° exp(x, u) is a diffeomorphism from
a sufficiently small neighborhood of 0 in tt~ onto its image. We can then define the

injectivity radius at x as

injL(x) := inf{A > 0 \ u ttl o exp(x, u) defines an embedding on Bxt-(X)}.

By the above remarks, injL (x) > 0, and actually injL (x) is bounded from below on

compact subsets of L.
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2.4. Conformal balls, conformal cones. We stick to the notations introduced above.

Let Sn- be the unit sphere of tt~, with respect to the norm ||. ||. Let 3r be a subset of
Sn~. In tt~, we dehne the cone over 3? of radius X > 0 as

A) {v e tt~ | v tw, t e [0, A], w e &}.

For x e L, x e L in the über of x, 0 < X < injL(x), and 3r C Sn-, we can dehne:

- B%(A) := 7tl ° cxp(x, 2?n- (A)), a conformal ball at x;

- C^(3r, X) := 7tl ° exp(x, A)), a conformal cone with Vertex x.

In the model space, namely the Standard n-sphere Sn PO(l, n + l)/P, we will
simply consider conformal cones with vertex v, dehned by

C(3r,X) := Tto ° expG(C(Jr, A)),

where ttg : PO(l, n + 1) -> Sw is the bündle map and expG is the exponential map
inG PO(l, n + 1).

Of course, a conformal immersion s: L -> N maps conformal balls/cones of L
to conformal balls/cones of N. Indeed, it is straightforward to check the relation

s(Cjtk(F,X)) CS(zk)(F,X). (2)

2.5. Dynamics of Möbius maps on conformal cones of Sn

Lemma 2.1. Let (pif) be a sequence of P tending to infinity. Then, considering a
subsequence of(pk) ifnecessary, we are in one of the following cases:

(1) For every ball 33 C Sn- (for the metric induced by ||. ||) with nonzero radius,
there exists 33f C 38 a subball with nonzero radius and a real r > 0 such that

for every 0 < X < r, pk.C(33', X) -> v for the Hausdorff topology ask —> oo.

(2) There exists a sequence (/^) of P converging to such that 1^p^ stays in the

factor of P — (R+ x O(n)) x Rn, and (Ad lkPk)(u) — jpu for every
u G u~, with lim^^oo Xk 0. In particular, for every ball 33 C Sn- with
nonzero radius, pk-C(38, A&) -> l^.C(33,1) for the Hausdorff topology as
k —> oo.

Proof We keep the notation introduced in Section 2, especially Sections 2.2 and 2.4.

In particular, recall the Splitting

o(l,n + l) g tt~0M0 o(n) 0 tt+,

where p corresponds tol0o(«)0tt+.
We introduce the map p: tt~ -> Sn dehned by u i-> expG (w).v. It is a diffeomor-

phism between tt~ and the sphere minus a point o. Precomposing the Stereographic
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projection with vertex v with a suitable element of P, one gets a conformal diffeomor-
phism j : Sn \ {v} -> Rw mapping the point o to the origin. The map j intertwines
the action of P on Sn \ {v} and the affine action of (R+ x 0(n)) x Rw on Rw. In
the following, we will thus write the elements of P in the affine form XA + T, with

XeR%AeO(n)9 andfel".
Let us denote by cp the map j o p. It is a diffeomorphism from tt~ \ {0} to Rn \ {0}.

For a suitable choice of the (Ad 0(n))- invariant scalar product (see Section 2.3),
cp maps Sn- onto the Euclidean unit sphere. It is then not hard to check that every
conformal cone C(<3, A), with v removed, is mapped by j to the set

C(<3,A) {x tu eRn \ t e [x»°°[> u G

Let iGl", and u eRn of Euclidean norm 1. Then we define the half-line [x, u)
as the set

\x,u) \ — {x -\- tu G Rw | t G R + }.

The following lemma, the proof of which is left to the reader, gives a sufficient
condition for a sequence of half-lines to leave every compact subset of Rn. The
notation ||. || Stands for the Euclidean norm on Rw.

Lemma 2.2. Let [xk, vk) be a sequence ofhalf-lines in Rw. Assume that whenever

Voq is a Cluster value of (pk), then —Vqq is not a Cluster value of • Assume

moreover that xk leaves every compact subset ofW1. Then [xk, vk) leaves every
compact subset of Rw.

We can now begin the proof of Lemma 2.1. Let us consider an unbounded

sequence (pk) in P. Thanks to the chart j, we see P as the conformal group of Rn.
Then the sequence (pk) can be written as

pk: x i-> XkAkx + HkUk,

where Xk g R* pLk g R+, Ak g O(n), and \\uk\\ 1. Now, looking at a

subsequence if necessary, we assume that A&, /x&, all have limits in R+ U {+oo},
uk Uoo, and Ak -> A00 in O(n). The conclusions of Lemma 2.1 won't be affected

if we replace pk by {Ak)~l .pk so that we may assume pk A^Id + Pkuk-
• First case: pbk tends to a G R+. Let lk be the translation of vector —ßkuk-

Clearly, lk -> loo in P, where is the translation of vector —au00, and lkPk
is just the homothetic transformation x i-> Xkx, hence is in the factor R+ of
P. It follows immediately that (Ad lkPk)(u) for every u G ti~. Since

(pk) is unbounded, we can assume after taking a subsequence that Xk -> oo or
Xk 0.

If Xk -> oo, then for every X > 0, (Ad lkPk)Q£(<Ott- as k -> oo.

Applying the map p, one gets

lkPk-C(£,X) -> v
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and we are in the first case of Lemma 2.1.

If Xk -> 0, we are in the second case of Lemma 2.1. Applying the map p to the

equality (Ad lkpk)ße{£,Xk)) £(<S, 1), we get

lkPk-G(£, Xk) C(<S, 1) for every k e N,
hence

Second case: ak—> oo and — 0. Let Si' c S be a closed subball1 ßk
with nonzero radius such that —Uoq $ cp(3'). Let us consider X > 0 and a

sequence of half-lines [jvk, vk) in C(<Sr, X). Here (i^) is a sequence of (p(£').
We observe that pk.[\vk,vk)[xk,vk), where xk ^fvk + nkuk. Now,

r v,
iphi —rr^ so that the only Cluster value of -n-A, is u^. We infer thatM \\^ßk+uk\\

3 11**11

if Voo is a Cluster value of (vk), then — cannot be a Cluster value of

Writing xk we check that xk -> oo. Lemma 2.2 ensures

that Pk-[jvk> vk) oo. Since it is true for every sequence [jvk, vk), we get

Pk-C{<S', A) -> oo. Hence pk.C{<&,X) -> v and we are in the first case of
Lemma 2.1.

Third case: ak -> oo and ^ -> &oo, with b0Q G R+. We choose <S' C <8 a
ßk

closed subball with nonzero radius such that ^(<3') H —cp(3f) 0 and ^(<3') D

{^oo; —uQo} 0. For such a choice of <3', there exist an open neighborhood
W of cp(3') in the Euclidean unit sphere and ß, rj two positive reals such that

inf ||i> + w\\ > ß (3)
(u,u;)e<p(S/)xrvy

and
\\x+z\\

G ^ f°revery x G <pm and every z G Rn with ||z|| < rj.

Letusputr ForA < r, let us consider a sequence ofhalf-lines [jvk, vk)
in C(<S/,A), where Vk £ 0- We observe that — [xk>vk)>

tfvk + p,kuk.Now, |jf^ - A<:

< 7XX 5 h so that (3) implies

+ Vfc|| > ß

where -fvk + pkuk. Now, and for k large enough,

Ißk^I < 2A
1

A*
I " *oo

" IM
It follows that if is a Cluster value of then — cannot be a Cluster

value of |fx^|[. Moreover, because —^oo & 0 not a Cluster value of
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(-^Xvk + w k).Writing xkHk(-jjp;Vk + uk), we see that (xk) tends to

infinity. We conclude thanks to Lemma 2.2 that Pk-[jvk> vk) Since it is

true for every sequence (vk) of we get Pk-C(<Sr, X) -> oo, and we are
in the first case of Lemma 2.1.

• Fourth case: pk °° <md -> oo. Let C <S be a closed subball

with nonzero radius such that cp(3f) D —<p{<&) 0. Let us consider X >
0, and [jVk,Vk) a sequence of half-lines in C(<& ,X). For each integer k,

Pk-[jVk,vk) [xk,vk),withxfcIik(j^vk + uk). It is clear that -> oo.

LVk + tLLUk
The Cluster values ofA —; A—- are those of (vf), hence are contained

"xk" \\jvk+xfuk\\
in (p(33f). We use once more Lemma 2.2 and conclude

Pk-C{2', A) oo.

We are again in the first case of Lemma 2.1.

2.6. Degeneration of conformal cones. We consider now a Riemannian manifold
(L, g) of dimension n > 3. Our aim is to understand how the "shape" of a sequence
of conformal cones C$k (^, X) evolves, as leaves every compact subset in L. The

answer is partly contained in the lemma below.

Lemma 2.3. Let (L, g) be a Riemannian manifold of dimension > 3 and (L,col)
the normal Cartan bündle associated to the conformal structure of g. Let (Zk) be

a sequence of L converging to z^ e L. Let (z^) and {zk) be two lifts of (zk) in
A ^ A /V / /VL. We assume that Zk converges in L, while zk Zk-Pk for a sequence (pk) of
P tending to infinity. Assume that inf^e^(injL(z^)) > 0. Thenfor every 0 < X <
inf^e^(injL(z^), injL(z^)), and every 3* C Sn- such that pk-C(!F,X) v, as
k ^ oo, for the Hausdorff topology on Sn, we must have Cg (3s X) z^ for the

Hausdorff topology on L.

Proof This lemma is a particular case of Lemma 7 in [Frl] (see also [Fr2], Corol-
lary 3.3), and the reader will find a complete proof there. The proof involves the

notion of development of curves, that we don't introduce here. The upshot is that
a conformal cone is a union of conformal geodesics, namely curves of the form
t i-^ 7Vl ° exp(x, tu), for u e tt~. A point x in the über of x being chosen, one
can develop any conformal geodesic passing through x into the sphere Sn, and thus

any conformal cone can be developed. For instance, in the Situation of Lemma 2.3,
the developmental of (3s X) with respect to z^ is pk-C(!F, X). Now, the lemma
follows from the fact that conformal geodesics developing on short curves in Sn are
themselves short ([Fr2], Lemma 3.1), and that conformal geodesics of Sn which are
Hausdorff-close to v must be short ([Fr2], Proposition 3.2).
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3. Extension results

We consider (L, g) and (N, h) two connected /i-dimensional Riemannian manifolds,
n > 3. Let A c L be a closed subset such that Mn~l (A) 0, and s: L\A ^ N a.

conformal immersion. We denote by (L,L,col) and (N, N,coN) the normal Cartan
bundles associated to the respective conformal structures, as introduced in Section 2.1.

If A is the inverse image of A in L, then (L \ A,coL) is the normal
Cartan bündle of (L \ A,g). As we saw in 2.1, we can lift s to a bündle map
s: (L \ A, coL) -> (N ,coN) satisfying s*coN coL.

3.1. Holonomy sequences at a boundary point. Let us consider Xoo e A which is

not a pole for s. It means that there exists (x^) a sequence of L \ A which converges to
Xoo, and such that s (x^) converges to y^ e N. We will actually get more Information
working in the bündle L \ A. Let x^ e A in the fiber above x^, and let (x^) be a

sequence of L \ A projecting on (x^) and converging to x^. The point is that s(%k)

may not converge in N, but there always exists a sequence (pk) such that s{xk).p^1
does converge to a point e N in the fiber of y00.

Definition 3.1 (holonomy sequence at Xoo). A sequence (pk) as above will be called
a holonomy sequence at x^ (associated to (x^)).

Let us stress the fact that a holonomy sequence involves the choice of a sequence
{xk) tending to such that s(xk) converges in N. In particular, the concept of
holonomy sequence only makes sense when e Arem U Aess. The holonomy
sequence (pk) just encodes the behavior of the 2-jets of s along the sequence (xk). If
we already know for instance that s is the restriction of a conformal immersion from L
to N, then the sequence (pk) can be chosen constant to the identity. The projection of
(pk) on the factor R* x O(n) C (M* x O(n)) x Rn represents the sequence of tangent
maps DXks, read in local trivializations of the bündle of orthonormal frames. The

study of the holonomy sequence will be, as we shall see, a major tool in understanding
the dynamical behavior of s along (x^). In particular, we will see that for thin singular
sets A, removable singularities are characterized by bounded holonomy sequences,
while essential ones appear together with unbounded holonomy sequences.

3.2. Characterization of removable points by holonomy, and proof of Theorem

1.1. Our aim now is to characterize the removable and essential singular points
in terms of holonomy sequences. This will be done in several steps, leading to
Theorem 3.6 at the end of the section, which clearly implies Theorem 1.1.

We will first need a technical lemma saying that it is possible to include "thick"
conformal cones in the complement of closed sets of (n — l)-dimensional Hausdorff
measure zero.
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Lemma 3.2. Let (L, g) be a Riemannian manifold ofdimension n > 3. Let A C L
be a closed subset such that Mn~l (A) 0. For every x £ L\A, every x £ L in the

fiber of x, and every 0 < A < injL(x), there exists a dense G$-set C Sn- such

that Cz(Uz,X) CL\A.

Proof Let A be the inverse image of A by the bündle map : L -> L. Let us call
F the subset of Bn- (A) such that exp(x, F) exp(x, Bn- (A)) D A. By assumption,
this set F has (n — l)-dimensional Hausdorff measure zero. Let m0 be an integer
such that ^ < A. For every m > mo, we call nm : u i-> the radial projection

from Am Bn-(A) \ Bn-(to Sn~. This is a Lipschitz map, which is moreover
closed. Hence, the set nm (F fl Am) is a closed subset of Sn-, the (n — l)-dimensional
Hausdorff measure of which is zero. In particular, its complement Um is open and
dense in Sn~. Thus Plm>m0 ^a ^ense G$-set of Sn- that we call U%. It is now
clear by construction that Q(W^,A) cL\A.

Let us now give a sufficient condition, in terms of holonomy sequences, for a

singular point to be removable.

Proposition 3.3. Let (L, g) and (N, h) be two connected n-dimensional Riemannian
manifolds, n > 3. Let A C L be a closed subset such that 0, and

s: L\ A N a conformal immersion. Let x^ be a point of Arem U Aess. If there

is a holonomy sequence of s at Xoq which is bounded in P, then here exists UXoo

an open subset of L containing x^ such that s extends to a conformal immersion

sxoo • Uxoo u \ A) N. In particular x^ £ Arem.

Proof Our hypothesis is that there is Xoo G L in the fiber of Xoo, a sequence

{xk) in L \ A converging to Xoo, and a bounded sequence (p^) in P such that

s{xk)-Pkl is converging in N. Considering subsequences, we may assume that

(pk) has a limit p00 £ P. Because s{5ik.Pkl) — s{xk)-Pkl> we can assume, re-
placing Xoo by x^.p^ and xk)by (xk.pp), that yk := s(xk) is converging to

y^ £ N. Because (yk) stays in a compact subset of N, we can find ko > 0, and
0 < A < min(injL(x^0),inj7V(y^0)), such that B%kQ(X) and B$kQ(A) contain Xoo

and yQ0 respectively.
Lemma 3.2 yields a dense G$ set U C Sn- such that CXkQ (U, A) c L\A. Let

us define sfXoG : BXk^ (A) by the formula

s'Xoo (kl ° cxp(xA.(1, Ii)) := nN exp(yfco, u) for all u £ Bn- (A).

This is a smooth diffeomorphism from B%k^ (A) onto its image. On the other hand,

because s is a lift of s satisfying s*coN coL, we get for every u £ G(U, A),

s(jtl o exp(xk0,u)) irjv o exp(s(xko),u) nN o exp(yko,u).
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In other words, s and sfXoo coincide on CXkQ (U, A), which is dense in BXk^ (A) \ A,
hence they coincide on BXk^{X) \ A. But because Mn~l{A) 0, BXk^{X) \ A is

dense in B%k (X). As a consequence s'Xoq is a conformal immersion on BXk^(X).
Finally, the map sXoc : BXk^ (A) U iL \ A) ^ N defined by on BXkn (A), and s

on L \ A is well defined, and is a smooth conformal immersion extending s.

In the same way, we have the following sufficient condition for a Singular point
to be essential.

Proposition 3.4. Let (L, g) and (N, h) be two connected n-dimensional Riemannian
manifolds, n > 3. Let A C L be a closed subset such that Mn~l(A) 0, and

s: L \ A ^ N a conformal immersion. Let Xoq be a point of Arem U Aess. Ifthere
is a holonomy sequence of s at Xqq which is unbounded in P, then Xqq e Aess.

Proof The key Step for proving the proposition will be the following technical lemma,
which will also be useful later on in other proofs. The lemma says that the existence

of an unbounded holonomy sequence at Xoo provides some non-equicontinuity phe-
nomena which forbid Xoo to be in Arem.

Lemma 3.5. Let x^ be a point of Arem U Aess. Assume that (xk) is a sequence
of L \ A converging to x^, such that s(xk) converges to E N. If (pk) is an
unbounded holonomy sequence of s at Xqq associated to (x^), then:

(1) There exists a sequence (lk) of P converging to such that lk Pk stays in the

factor R+ of P — (R+ x O (n)) x Rw, and (Ad lkPk)(u) f°r every
u E n~, with lim^^oo Xk — 0.

(2) lfto>0, and y: [0, to[-+ L \ A is a smooth curve satisfying y(tk) Xk for
some sequence (tk) of [0, to[converging to to. Then, there exists (tk) a sequence
of [0, t0[ tending to to such that y(tk) converges to Xqq, and s(y(tk)) converges
to y'0o N>with y'oo+ Aoo-

Proof. By hypothesis, there exist Xoo E L in the über of x^, y^ e N in the über of

yoo, (xk) a sequence of L \ A converging to x^, and an unbounded sequence (pk)
in P such that s{xk).pkl converges to y^ e N.

To show the first point of the lemma, we have to check that (pk) does not satisfy
the first point of Lemma 2.1. Assume, for a contradiction, that it is the case. We

get a ball & C Sn- with nonzero radius, and X > 0 such that pk-C(B,X) -> v.
We can assume 0 < Ao < inf^o injL(xfc). Lemma 3.2 implies the existence of a

dense G$-set U dB such that for every k > 0, the cone C%k (U, A0) is contained
in L \ A. Because inj^(^(x^)) injL(x^) is bounded from below by a positive
number independent of A, and because pk-C(U, X) -> v, we can apply Lemma 2.3
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for := s{xk), z'k := s(xk), and zk := s(xjc)>pk1> Together with relation (2), this

yields

This is actually impossible. Indeed, because Ao < inf^>o injL(£fc), we get that for
every A > 0, the map u jvl ° exp(xk,u) is a diffeomorphism from Bn-(Ao) onto
its image. We deduce that any conformal cone C%k(3, Ao) has nonempty interior,
and actually, all the sets C%k(3,Xo) contain a common open subset U C L for
k > ko large enough. Then, for every k > 0, Uk := U D C%k(U, Ao) is a dense

G^-set of U \ A, and the same is true for U00 f\>Ä;o From relation (4), we
get ^(Goo) joo, which contradicts the fact that s is an immersion, hence locally
injective on U \ A.

We now prove the second point of the lemma. By assumption Xk yitk) f°r
some smooth y: [0, to[-+ L \ A. The first point of the lemma teils us that replacing
(tk) by a subsequence if necessary (which amounts to consider a subsequence of
(xk), and the corresponding subsequence of (/?&)), and replacing yk by 1 f°r
a sequence Qk) of P tending to l00, we may assume that the sequence (pk) satisfies

(Ad Pk){u) for every u e u~ with lim^-^ Xk 0.

We choose 0 < r0 < \ min^e^U{00}(injL(x^), inj^(y^)) so that for every k e
N U {oo}, the maps cpk'. u i-> jil ° exp(xk,u) and : u i-> o exp(y^, u) are
well defined, and are diffeomorphisms from Bn- (2r0) to open subsets Uk and of
L and A respectively. For every A > 0, we dehne Fk := cpkl(Uk H A).

Lemma 3.2 ensures the existence of a dense G$-set U C Sn- such that for every
k > 0, Cy(tk)(VL, 2r0) CL\A. For A > Ao big enough, we will have 2A^r0 < 2r0,
and then, Lemma 3.2 amounts to say that G(W, 2A^r0) C Fn-(2A^r0) \ Fk- Then,
from relation (1), we infer that for every w e G (W, 2A^r0)

Observing that for each k, G(W,2A£r0) is dense in Bn-{2Xkro) \ F^, we deduce
that formula (5) holds actually for every w e (2A^r0) \ F^.

As A^ -> 0, the sequence of conformal balls Bkk{2Xkro) (pk(Bn-(2Xkro))
tends to Xoo for the Hausdorff topology on L. This means that choosing ko > 0

large enough, we are sure that for k > Ao, y([0, /b[) is not contained in B%k (2Akro)-
In particular, for every k > Ao, there exists Uk G tt~ with ||w^|| r0A^, and

^ G [0, £0[ such that (pkiuk) — yOjp- Considering a subsequence, we may assume
that converges to Voo. Because y([0, /b[) is contained in L \ A, we have Uk £

(2A^r0) \ Ffc for every A > Ao. Formula (5) then holds, and projecting on L and

A, we get

s{Cxk (U, A0)) -> joo as A -> oo. (4)

(5)

V A& /
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Making k -> oo yields
lim s(y(t£)) foo(voo)-

Because || Voq || r0 and xj/oo is a diffeomorphism from Bn- (2r0) onto its image, we
getthaty^ Voodoo) is different from Voo(0). Finally, because y{t'k) tends

to Xoo, and y([0, /h[) C L \ A, we see that the only Cluster value of (tk) in [0, to] is

We can now prove Proposition 3.4. Our hypothesis is that Xoo e Arem U Aess

admits an unbounded holonomy sequence. This holonomy sequence is associated

to some sequence (x^) of L \ A converging to x^. Let y: [0,1[—L \ A be a

smooth curve such that y(l — Xk for every k > 1, where x^ := Tix(xfc). The
second point of Lemma 3.5 ensures the existence of a sequence (tfk) tending to 1 such

that y(tk) tends to Xoo, and s(y(tk)) tends to y^ ^ y0c. This forbids Xoo to be in
Arem, and we deduce that the existence of an unbounded holonomy sequence implies
XQO ^ A-ess« I—I

Let us collect the results of this section into a Single Statement.

Theorem 3.6. Let (L, g) and (N, h) be two connected n-dimensional Riemannian
manifolds, n > 3. Let A C L be a closed subset such that 0, and

s: L \ A ^ N a conformal immersion. Let Xqq be a point of Aess U Arem. Then the

following Statements are equivalent:

(1) The point Xqq is in Arem.

(2) There exists UXoo an open subset of L containing x^ such that s extends to a

conformal immersion sXoo : UXoo U (L \ A) —N.

(3) There is a holonomy sequence ofs at Xqq which is bounded in P.

(4) All the holonomy sequences ofs at Xqq are bounded in P.

Proof It is obvious that point (2) implies point (1), and that point (4) implies point
(3). Proposition 3.3 shows that (3) implies (2). Proposition 3.4 shows that (1) implies

3.3. An extension theorem for conformal embeddings. In view of Theorem 3.6,

we will get interesting extension results when the set Aess is empty. As the following
theorem shows, this is actually the case as soon as the map s is injective (compare
with the result proved in [V2] for quasiconformal maps).

Theorem 3.7. Let (L, g) and (N, h) be two connected n-dimensional Riemannian
manifolds, n > 3. Let Ad L be a closed subset such that Mn~l(A) 0, and

s: L \ A N a conformal embedding. Then:

to. Hence t'k -> to, as desired.

(4).
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(1) The set Aess is empty and s extends to a conformal embedding

S L\ Ap0ie —N.

(2) When L is compact, then sf: L\ Apoie N is a conformal diffeomorphism.

(3) When both L and N are compact, Apoie is empty so that (L,g) and (N, h) are
conformally diffeomorphic.

Assuming that L is a compact manifold, Theorem 3.7 classifies, allpossible
conformal embeddingsof theRiemannianmanifold (L\A,g) intoRiemannianmanifolds
of the same dimension. It also gives a uniqueness result for the conformal compact-
ification of (L \ A, g): the only compact Riemannian manifold in which (L \ A, g)
can be embedded as an open subset is (L, g).

The end of this section is devoted to the proof of Theorem 3.7. The first Step

is to show that near an essential singular point, a conformal immersion is highly
noninjective. To formalize this, it is convenient to use the notion of Cluster set. If Xoo

is a point of the singular set A, the Cluster set of x^ is defined as

Clust^oo) := {y e N \ 3 (x^) a sequence in L \ A, Xk -> x^, and s(xk) -> y}.

The following proposition identifies the Cluster set of an essential singular point.

Proposition 3.8. Let (L, g) and (N, h) be two connected n-dimensional Riemannian
manifolds, n > 3. Let A C L be a closed subset such that Mn~l(A) 0, and

s: L \ A -> N a conformal immersion. Assume that Aess is not empty. Then for
every Xoo E Aess, Clust(xoo) N. In particular, for every neighborhood U of Xqq

in L, s(U \ A) is a dense open subset ofN.

Proposition 3.8 will be improved later, since we will deduce from Theorem 1.3 that

if Xoo £ Aess, and if U is a neighborhood ofx^ in L, we actually have s(U \ A) N
(see Corollary 5.5).

Proof. Let e Clust(xoo). Let us pick x^ in the über of x^, (x^) a sequence
A a A A A 1

of L \ A converging to x^, and (p^) a sequence of P such that yk := s{xk).p~f
tends to a point y^ in the fiber above yoo. By Theorem 3.6, the sequence (pk) is

unbounded, and the first point of Lemma 3.5 ensures that considering subsequences,

we may assume that (pk) is contained in the factor of P (R* x O(n)) x Rn.
Moreover, always by Lemma 3.5, there exists (A&) a sequence of R^ converging to
0 such that for every /x > 0,

(Ad pk).Bn-(ji\k) (6)

If /x is chosen smaller than min^e^U{00}(injL(x^), inj^^^)), the maps u \-> tin o

exp(fk,u) and u \-> jil ° exp(xk,u) are well defined and diffeomorphisms from
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Bn- (jiXk) on their images for every k e NU {oo}. Lemma 3.2 implies the existence

of a dense G$-set U c Sn- such that C%k(U, /iXk) C L\ A for every k > 0.

Relations (1) and (6) then yield

s(Cjck(U,fiXk)) C9k(U,fi).

In particular, one has s(C%k(U, /iXk)) -> C^fU, /x) as k -> oo. We infer that

Cp^CH,//,) C Clust^oo), and finally Byoc(gi) C Clust^oo) because Clust^oo) is

a closed set. Since By^ (/x) is a neighborhood of yoo, we just showed that Clust(xoo)
is an open set. We assumed that N is connected so that we get Clust(xoo) N.
In particular, for every neighborhood U of Xoo in L, we must have s(U \ A) N,
hence s(U \ A) is a dense open subset of N.

We can now prove the first point of Theorem 3.7. Proposition 3.8 above ensures
that if s: L \ A ^ N admits essential Singular points, then s cannot be injective.
We infer that Aess is empty and A Arem U Apoie. By Theorem 1.1, we know
that L \ Ap0ie is an open subset of L, and that s extends to a conformal immersion
sf: L\ Ap0ie -> N. Actually s' is injective, hence an embedding. Indeed, if s' is not
injective, we can find two disjoint open sets U and V in L \ Apoie such that s' maps
U and V diffeomorphically on the same open set W. Because sf(U PI (L \ A)) and

sf(U PI (L \ A)) are two dense open subsets of W, they intersect, contradicting the

injectivity of s on L \ A.
Let us proceed with the second point of Theorem 3.7. Assuming that L is compact,

the definition of poles implies that the immersion s': L\ Apoie —is a proper map.
By connectedness of N, it has to be onto. Finally s' is a conformal diffeomorphism
between (L \ Apoie, g) and (N, h).

If moreover N is also assumed to be compact, then Apoie is empty, and we get
that (L, g) and (N, h) are conformally diffeomorphic. This shows the third point of
the theorem.

3.4. Essential Singular points imply conformal flatness. We are now going to
make an important Step toward Theorem 1.3, proving that the existence of thin essential

Singular sets is only possible on conformally flat manifolds. Thus, generically, by
Theorem 1.1, if a thin singular set contains no poles (for instance if N is compact),
it is always possible to extend a conformal immersion across it. In the following, by
conformal curvature on a Riemannian manifold, we will mean the Weyl curvature
tensor when the dimension is > 4, and the Cotton tensor when the dimension is 3

(see [AG], p. 131).

Proposition 3.9. Let (L, g) and (N, h) be two connected n-dimensional Riemannian
manifolds, n > 3. Let Ad L be a closed subset such that Mn~l(A) 0, and

s: L \ A N a conformal immersion. Assume that Aess is not empty. Then for
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every x^ E Aess, and every y^ in Clust^oo), the conformal curvature vanishes at
yoQ. In particular, the manifolds (L, g) and (N, h) are both conformally flat.

Proof We pick y00 E Clust(xoo), and we consider xoo, yk, fi and

XL as at the begining of the proof of Proposition 3.8. On L, there is, associated

to the normal Cartan connection coL, a curvature function k (we don't give details
here, and refer the reader to [Sh], Chapters 5.3 and 7). This is a map k \ L —>

Hom(A2(o(l, n + 1) / p), p), satisfying the equivariance relation:

Kx(v, w) (Ad P~l)-Kx.p~1 ((Ad P)-v> (Ad (7)

The vanishing of the Cartan curvature k at x implies the vanishing of k on the über of
x. It thus makes sense to say that k vanishes at a point x e L, and this is equivalent
to the vanishing of the conformal curvature at x (see Chapter 7 of [Sh]). Hence, to

get the lemma, it is enough to show that k vanishes at y^.
For convenience, we will see k as a map from L to Hom(A2(tt~), p). Then,

relation (7) still holds, provided p e x O(n) C P. Now, since s satisfies
s*coN coL, we have for every v, w e tt~, and every k e N

Kxk(V,w) Ks(xk)(V,w).

By relation (7), we also getw)(Ad Pk1)-^)t((AdPk)-v, (Ad Pk)-w).

Recall that Ad p(resp. Ad p^) acts trivially on R 0 o(n)9 and by multiplication

by j- on tt+ (resp. tt~). Writing w) and k¥\v, w) for the components of
fc y fc y fc

Kyk (v,w) on R 0 o(n) and tt+ respectively, the last two equalities yield

Kik(v,w)-kicfxv, w) + w).
Ak Ak

Since 0, making k oo gives w) 0, and finally Ky^ 0. The
conformal curvature vanishes on Clust(xoo), and by Proposition 3.8, Clust(xoo) N
so that (N, h) is conformally flat. The manifold (L \ A, g) is mapped into (N, h) by
a conformal immersion, hence (L \ A, g) is itself conformally Hat. Finally, because

Mn~l{A) 0, L \ A is dense in L, and we get that (L,g) is also conformally
flat.

4. Background on conformally flat manifolds

By Proposition 3.9, conformal singularities s: L \ A —N such that Mn~l (A) 0

and Aess ^ 0 only occur when L and N are conformally flat. To go further and
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prove Theorem 1.3, we will need basic notions about conformally flat manifolds that

we gather in this section. Good general references on the subject are [Go], [M],
Section 3, and [Th], Chapter 3, p. 139. All manifolds in the sequel are still assumed

to have dimension > 3.

4.1. Kleinian manifolds and essential singular sets of Kleinian type. One calls
Kleinian group a discrete subgroup T of the Möbius group PO(l, n + 1) which acts

freely properly and discontinuously on some nonempty open subset Q C Sn (we
refer the reader to Chapter 2 of [A], Sections 3.6, 4.6 and 4.7 in [Ka] and Section 5

in [M] for details on the material below).
Given a Kleinian group T, there exists a maximal open set Q(T) C Sn on which

the action of T is proper. This open set £2(T) is called the domain of discontinuity
of T, and its complement in Sn, denoted A(T), is called the limit set ofT. There are
several characterizations of the limit set A (T), but two of them will be of particular
interest for our purpose. Let us consider any point x e £2(T), and denote T.x the
closure of the orbit T.x into Sn. Then the limit set A(T) coincides with T.x \ T.x
(see for instance [A], Lemma 2.2, p. 42).

Another useful characterization is as follows: the limit set A (T) comprises exactly
those points x e Sn at which the family {y}yer fails to be equicontinuous (see [M],
Chapter 5). The group T being assumed to be discrete, we observe that its limit set

is empty if and only if T is finite.
If T C PO(l, n + 1) is a Kleinian group, and Q C Sn is a T-invariant open set on

which the action of T is free and properly discontinuous, then the quotient manifold
N := Q/T is naturally endowed with a conformally flat structure, and the covering
map TT : Q -> N is conformal. Such a quotient Q / T is called a Kleinian manifold.
When the action of T is free on Q (T), the Kleinian manifold Q (T)/ T will be denoted

M(T). It is then the maximal Kleinian manifold that one can build up thanks to the

group T.
Let us now consider T C PO(l ,n + 1) an infinite Kleinian group, and Q an

open subset of Sn on which T acts freely properly discontinuously. Let N := Q / T
be the associated Kleinian manifold. Observe that because we assumed T infinite,
Q is a proper open subset of Sn. Denoting by A the complement of Q in Sn, the

covering map it:Sn\A^N yields a conformal singularity. The set A turns out
to be an essential singular set for it. To see this, we first observe that because T acts

freely properly discontinuously on £2, we have A(T) C A. Actually, A(T) C Aess.

Indeed, let Xoo e A (T), and let y and y' be two distinct points of N. Let z and z'
in Q satisfying tt(z) y and it{z') y'. By the characterization of the limit set

described above, there exist two sequences(yw) and (yfn) in T such that xn := yn.z and

x'n := .zr converge to Xoo (actually, we can choose yn y'n). Because it{xn) y
while it{x'n) y\the point x^ is neither removable, nor a pole, hence is an essential

singular point. On the other hand, let us consider x^ e A which is not a pole. It is

easily checked that there must be a sequence (yn) in T which is not equicontinuous
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at Xqq so that Xoo e A(r). In particular, Xoo is an essential singular point. The

previous discussion shows that Aess A(T) is not empty, and A Aess (J Apoie. In
other words, we have built a conformal singularity tt : Sn \ A -> N with an essential

singular set A, which is minimal essential in the sense of Definition 1.2. We say that
such a conformal singularity is ofKleinian type.

4.2. Holonomy coverings. Among conformally flat manifolds, a nice subset com-
prises those who admit conformal immersions into the Standard sphere. Such im-
mersions are called developing maps. When it exists, a developing map is essentially
unique.

Fact4.1. If(M,g) is a connected conformallyflat manifold ofdimension n > 3, and

tf 81> 82 are two conformal immersions from M to Sn, then there exists an element g
ofthe Möbius group such that 82 g 0 <5i-

The key point to get the fact above is Liouville's theorem (see for instance [Sp],

p. 310): a conformal immersion between two connected open subsets U and V ofSn,

n > 3, is the restriction ofa Möbius transformation.
One thus get a Möbius transformation g such that the set where 82 g o 8\ is

nonempty and has empty boundary.
Fact 4.1 easily implies that if 8: M -> Sn is a developing map, there exists a

group homomorphism

p: Conf(M, [g]) -> PO(l ,n + 1),

called the holonomy morphism associated to 8 such that for every cp e Conf(Af, [g])

8 o cp p(cp) o 8. (8)

Let us now consider a conformally flat structure (Af, [g]). It is a classical result,
which already appears in [Ku] (see also [M], Section 3) that the universal covering
(Af, [g]), endowed with the lift [g] of the conformal structure [g], admits a developing

map 8: M Sn. Let usidentify tti(M) with a discrete subgroup T C Conf(M, [g]),
and call Tp the kernel of the holonomy morphism p: T PO(l,n + 1). The

developing map 8 induces a conformal immersion 8 from the quotient manifold M :=
M / Tp to Sn. This manifold M is called the holonomy covering of M. It is in some

sense the "smallest" conformal covering of M admitting a conformal immersion to
the sphere. This is the meaning of the following lemma.

Lemma 4.2. Let M be a connected n-dimensional conformally flat Riemannian
manifold, n > 3, and M the holonomy covering of M. Assume that M! is another
connected n-dimensional conformally flat Riemannian manifold such that:

(1) There exists a conformal immersion 8f: M! Sn.
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(2) There exists a conformal covering map n : M! -> M.
Then there exists a conformal covering map from M! onto M.

Proofi Let us call M the conformal universal covering of Af, and identify 7t\{M)
with a discrete group T of conformal transformations of M so that M is conformally
diffeomorphic to M / T. Because Mf is a covering of Af, there exists Tf a subgroup
of T such that M! is conformally equivalent to M / T'. The immersion 8' lifts to
a conformal immersion 8': M -> Sn. Let 8: M -> Sn be a developing map, and

p: T -> PO(l, n + 1) the associated holonomy morphism. By Fact 4.1, there exists

g e PO(l, n + 1) such that 8' — g o <5. Now, for every y e T\ one has 8' o y 8' so

that go8oy go8. Finally, we get Tf c Tp Ker p. Hence, there is a conformal

covering map from M' M / T' onto M M / Tp.

Lemma 4.3. Let M and N be two connected n-dimensional conformally flat mani-
folds, n > 3. Let Jsf be the holonomy covering ofN. Assume there exists a conformal
immersion 8: M -> Sn. Then any conformal immersion s: M N can be lifted to

a conformal immersion o : M —> JV*.

Proof Let M and N be the conformal universal coverings of M and N respectively,
and 7tm M Af, ttn : N ^ N the associated covering maps. We denote by Tm
and TTv the fundamental groups of M and N, seen as discrete subgroups of conformal
transformations of M and N. The conformal immersion 8 lifts to a developing map
8m - M Sn, satisfying 8m ° y 8m for every y e Tm- We also introduce 8^
a developing map on N, and denote by pn'- PO(l ,n + 1) the associated

holonomy morphism. The conformal immersion s lifts to a conformal immersion
s: M N, and there is a morphism p: Tm such that for every y e Tm,
s o y p(y) o s. Thanks to Fact 4.1, there exists an element g e PO(l ,n + 1) such

that 8n os g o 8m- For every x e M and every y e Tm, we have on the one hand

SJV(p(y).s(x)) pN(p(y)).8N(s(x))

and on the other hand

8N(p(y).s(x)) 8N(s(y.x)) g.8M(Y-x)) g^Afi*) SN(s(x)).

We thus get that Pn(p(y)) Fxes pointwise an open subset of Sw, hence is the identical
transformation. We conclude that p(Tm) C Ker p#, hence the map s induces a

conformal immersion g : M —> JV", where Jf is the holonomy covering of N. By
construction, g is a lift ofs.

4.3. Cauchy completion of a conformally flat structure. The normal Cartan con-
nection associated to a conformal structure allows to dehne an abstract notion of
"conformal boundary", derived from the ^-boundary construction introduced in [S2].
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We sketch the construction of this boundary below. More details are available in
Sections 2 and 4 of [Fr3]. Fix once for all a basis X\,..., Xs of the Lie alge-
bra q := o(l,n + l). Given a Riemannian manifold (Af, g), with dim M >
3, let us call (Af, M,coM) the normal Cartan bündle associated to the conformal
structure defined by g. Denote by 3i the frame field on M defined by 3l(x)
{{co¥)~l(Xi), (a)¥)~l(Xs)). This determines uniquely a Riemannian metric

pM on M having the property that 3l(x) is p^-orthonormal for every x E M. The

Riemannian metric pM defines a distance (Im on M by the formula

r ~ SM(x,y)
aM(x,y)

1 + &M(x,yY

where

- y) is the infimum of the pM-lengths of piecewise C1 curves joining x
and y if x and y are in the same connected component of M,

- $m(x,y) —2 otherwise.

One can look at the Cauchy completion Mc of the metric space (Af, and

dehne the Cauchy boundary 3CM as 3CM := Mc\ M. Recall that M is a P-
principal bündle over Af, where P is the stabilizer of a point v e Sn in the Möbius

group PO(l, n + 1). Given p e P, the right multiplication Rp is Lipschitz with

respect to (Im and the right action of P extends continuously to Mc. The conformal
Cauchy completion of (Af, g) is dehned as the quotient space Mc := Mc / P.

Let us illustrate the construction in the case of the Standard sphere Sw, where the
conformal Cartan bündle is identihed with the Lie group G PO(l, n + 1), and the
Cartan connection is merely the Maurer-Cartan form coG. The Riemannian metric
pG constructed as above is left-invariant on G so that (G,p°) is a homogeneous
Riemannian manifold, hence complete. We infer that Gc 0, and the conformal
Cauchy boundary of Sn is empty as well.

Generally, the action of P on Mc is very bad behaved near points of dcM so

that the space Mc may not be Hausdorff. It is thus quite remarkable that Mc is

Hausdorff when (Af, g) admits a conformal immersion in the Standard sphere Sn, as

the following proposition shows.

Proposition 4.4. Let M be a n-dimensional conformally flat manifold, n > 3. As-
sume there exists a conformal immersion 8: M Sn. Then:

(1) The conformal Cauchy completion Mc is a Hausdorff space, in which M is a
dense open subset.

(2) The conformal immersion 8 extends to a continuous map 8: Mc Sn.

(3) Every conformal diffeomorphism cp of M extends to a homeomorphism of Mc.
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Proofi We call pM and pG the Riemannian metrics constructed on M and G as

explained above, using a same basis X\,.. ,,XS of o(l,n + 1). The conformal
immersion 8: M -> Sn lifts to an isometric immersion 8: (M, pM) -> (G,p°).
As a consequence, 8: (M,cIm) (G,do) is 1-Lipschitz. Because (G,do) is a

complete metric space, 8 extends to a 1-Lipschitz map 8: (Mc,cIm) -> (G,ö?g)-
This extended map 8 is still P-equivariant for the (extended) action of P on Mc
and on G. Every conformal diffeomorphism cp e Conf(M) lifts to an isometry cp of
(M, pM), hence extends to an isometry, still denoted (p on (Mc, ö?m)- The action of P
is free and proper on Mc because the right action of P on G is free and proper, and 8

maps Mc continuously and P-equivariantly on G. As a consequence, Mc Mc / P
is Hausdorff. The map 8: Mc -> G induces a continuous 8: Mc -> G / P Sw,

extending 8. Finally, for every cp e Conf(M), the homeomorphism cp: Mc Mc
commutes with the right action of P, hence induces a homeomorphism cp: Mc Mc.

5. Proof of the local Classification theorem

In this section, we prove Theorem 1.3. Let s:L\A^Abea conformal immersion,
where A is an essential Singular set satisfying Mn~l (A) 0. We assume also that the

Singular set is essential and minimal in the sense that A ApoieUAess, with Aess ^ 0.
As explained in the introduction, because of Theorem 1.1, this hypothesis Arem 0

is harmless. By Proposition 3.9 we know that both L and N are conformally Hat

manifolds.

5.1. The target manifold N is Kleinian. We call JV* the holonomy covering of
N. There is a discrete subgroup T of conformal transformations of JV", acting freely
properly discontinuously on JV* such that N is conformally diffeomorphic to JV* / T.
Showing that N is Kleinian amounts to show that Jsf is conformally diffeomorphic to
an open subset of Sn. The upshot of the proof is as follows: we are going to construct
a bigger /i-dimensional conformal manifold JV*/, in which JV* embeds conformally
as an open subset, and such that the action of T extends conformally to JV*/. The

point is that the extended action of T on W is no longer proper, what forces W to
be conformally equivalent to Sn or the Euclidean space (see Theorem 5.1 below).
Because JV* embeds conformally into W, it is conformally diffeomorphic to an open
subset of the sphere, as desired.

Theorem 5.1 ([Fe], [Sch], [Frl]). Let (M, g) be a Riemannian manifold ofdimension
n > 2. The three following assertions are equivalent:

(1) The group ofconformal transformations Conf(M) does not act properly on M.
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(2) The group of conformal transformations Conf(M) does not preserve any Rie-
mannian metric gf in the conformal class [g].

(3) The manifold (M, g) is conformally dijfeomorphic to the Standard sphere Sn, or
to the Euclidean space Mw.

A version of the theorem for the identity component of the conformal group, and

for compact manifolds, originally appeared in [Ob].
We are now explaining how one can construct a manifold AP with the properties

listed above.

In the remaining of this section, we pick Xoo e Aess, and U a connected neigh-
borhood of Xoo in L such that there exists a conformal embedding cp: U -> Sn.

Lemma 4.3 ensures that the conformal immersion s: U \ A -> N lifts to a conformal
immersion er: U \ A -> Af. By definition of the holonomy covering, there exists

a conformal immersion 8: Af -> Sn. Then the map 8 o a o cp~x; cp(U \ A) -> Sn

is a conformal immersion from <p(U \ A) to an open subset of the sphere. Because

Mn~l{A) 0, (p{U \ A) is a connected open subset of Sn and Liouville's theorem

ensures that 8 oa o(p~x is the restriction of a Möbius transformation. In particular, it
is injective and so is a. We thus get that er: 1/ \ A ^ JV* is a conformal embedding.

In the following, we denote by (Af,Af, co^) the normal Cartan bündle associated

to the conformal strueture on Af. As in Section 4.3, we dehne the Riemannian metric
p^ on Af, the associated distance djj, Afc the Cauchy completion of (Af, djj), and

Afc the conformal Cauchy completion of Af. The distance on Afc is still denoted djj.

Lemma 5.2. The conformal embedding a: U \ A ^ Af extends to a continuous

map g : U —> Afc, which is a homeomorphism from U onto an open subset W C 4V*C.

The extended map o sends AD U into dcAf := Afc \ Af.

Proof Let us call U and A the inverse images of U and A in L. The conformal
immersion er lifts to an isometric immersion er: (U \ A, pL) (JV*, p^). Call du
(resp. djj\a) the distance induced by the Riemannian metric pL on the open set U

(resp. U\A). Because AHU has (dim(L) — l)-dimensionalHausdorff measurezero,
we get that du du\a (this fact is probably Standard; the reader can find a proof
in [Fr3], Lemma 3.3). As a consequence, the map er: (U \ A,du\A) > dj/),
which is 1-Lipschitz, is also 1-Lipschitz if we put the metric du on U \ A. Hence,
it extends to a 1-Lipschitz map <r: (U, du) This map is P-equivariant
on the dense open subset U \ A, hence on U, and dehnes an extension of er to a

continuous map er: U Jfc-
We are now going to show that the map g: U ^ Jfc is open.
Because o: U \ A Jf is an embedding, it is open on(7\A. It is thus enough

to check that whenever x e AHL, and V C U is an open set containing x, the

image a(V) is a neighborhood of z := a(x). Let x e U be a point in the über of x,
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let z ä(x) e Afc, and let r > 0 be very small so that B(x,r), the closure of the
ball of radius r for pL, is compact and contained in F := nf1 (F). We claim that if
B(z, |) denotes the metric ball centered at z and of radius | in (Sfc,dj/), we have

the inclusion B(z, |) C g(B(x, r)), what will be enough to conclude, because the

projections F -> F and <MC -> Afc are open maps. Let us consider z e <MC such

that djsf(z', z) < Let us consider {xk) a sequence of U \ A converging to x, and

(z^) a sequence of M converging to z We consider indices k large enough so that
the points zk := a(x^) andz^ satisfy

Y

<
2

and
r

du{xk,x) < -.

There is a curve ßk: [0,1] -> M joining zk to zk, and having p^-length smaller

than The key point is that there exist a lift ak : [0,1] -> B{x, r) \ A such that

otk(0) xk and ö o ak ßk. Let us see why it is true. Let ^ := supj/1 G

[0,1], the lift ak exists on [0, t[}. Because ö: (U \ A, pL) -> (JV\ p^) is an iso-
metric immersion, otk\[o,too[ ^as finite length so that y^ := lim^^ a^(7) exists.

Moreover, the pL length of Oik\[o,too[ is smaller than so we get djj(x, < r,
and y^ G B(x, r). If we prove that y^ ^ A D i?(x, r), we will get that ak exists on

[0,1]. As we saw, the immersion er: C/ \ A -> M is an embedding, so Theorem 3.7

ensures that all points of A D U are either removable or poles with respect to er. Since
er is a lift of s, any point of A which is removable for er is removable for s, and the

minimality assumption on A precisely says that there are no such points. We conclude
that every point of A D U is a pole for er. Hence, if we had y^ G A D B(x, r), then

a(ak(t)) should leave every compact subset of Jf as t t0c, a contradiction with
ßk([0,l])cJf.

^ ^The end point xk of ak is mapped to z'k by er. By compactness of B(x, r), we get

a point x e B(x, r) such that a(x) z, what concludes the proof that er: U —> Afc

is open. It remains to check that it is injective to get that er maps U homeomorphically
onto its image W. Let us assume for a contradiction that there are x\ ^ x2 in U such

that cr(xi) cr(x2) y. Because er is open, there are U\ and U2 two disjoint open
subsets ofU such that er (Li) Da (Uf) contains an open set F. Now er (I/i\A) HF and

g(U2 \ A) D F being two dense open subsets of F, they must intersect, contradicting
the injectivity of er on 1/ \ A.

We showed above that all points of A D U are poles for the embedding er: U \A ->
W, which implies cr(A) <zdcJf.

Corollary 5.3. The holonomy covering Jsf is conformally diffeomorphic to an open
subset of Sn, and N is a Kleinian manifold.
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Proofi We saw in Section 4.2 thatassociatedtothe conformal immersion 8: Jsf -> Sn,

there is a group homomorphism p: T -> PO(l ,n + 1) satisfying the equivariance
relation

8 o y p(y) o 8 (9)

for every y e T. Proposition 4.4 shows that the action of T extends to an action by
homeomorphisms on JV*C, and that 8 extends to a continuous map 8: <MC -> Sn. In
particular, by density of JV* in JV*C, the equivariance relation (9) still holds on <MC. Let
us dehne W := JV* U Uyer Y(W). It is an open subset of JV*C, and in particular it is

Hausdorff by Proposition 4.4. By the previous proposition, the map 8 o er: U -> Sn

is continuous and coincides with the restriction of a Möbius transformation on the
dense open set U \ A. Hence it is the restriction of a Möbius transformation. In
particular 8: W -> Sn is a homeomorphism onto its image. By relation (9), for every
y e T, 8: y(W) -> Sn is a homeomorphism onto its image as well. From those

remarks, we infer that W is a second countable Hausdorff space. The topological
immersion 8: Jsf' -> Sn yields an atlas which endows Jsf' with a structure of smooth

conformally hat manifold, the conformal structure G on W extending that of JV*.

The equivariance relation (9), available on W, teils that in the Charts of this atlas,
the action of y e F reads as the restriction of the action of p{y) e PO(l ,n + 1). In
particular, T acts as a group of smooth conformal transformations of (JV*/, C).

We claim that the group Conf(JV"/) cannot preserve any Riemannian metric g' on
M'. Indeed, assuming it is the case, we can consider the function /x: M' R+,
which to each z e N' associates the distance (measured thanks to gf) from z to
the closed set dcM D JV*7. It is continuous and T-invariant. Now, Proposition 3.8

implies that there exists a dense G$-set ^ CiV such that for every y e H, the über
s_1{y} accumulates on our point Xoo e Aess. Because er is a lift of s, we get a

sequence (y^) of T, and a point z0 G JV* such that y^.z0 converges to a(xQO). This is

a contradiction because on the one hand /x(z0) > 0, and on the other hand /x(y^.z0)
tend to jll(<j(xq0)) 0 as k oo.

The previous claim, together with Theorem 5.1 ensures that (JV*/, *6) is conformally

equivalent to the Standard n-sphere or the Euclidean n-space. We infer that
8: thf ^ Sn is injective (Liouville's theorem), and TV is a Kleinian manifold.

Remark 5.4. Actually, because the manifold W is conformally Hat, we just need the
conclusions of Theorem 5.1 for conformally Hat manifolds, and this result is actually
much easier to prove than the general case.

5.2. End of the proofofTheorem 1.3. We keep the notations of Section 5.1. Thanks

to the work done there, we know that the developing map <5: JS/" —> S71 is injective
so that 8 is a conformal diffeomorphism between JV* and a connected open subset
Q C Sn. Identifying T with p(T), we see T as a Kleinian group in PO(l, n + 1) and
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get a commutative diagram

n/r,
where \js is a conformal diffeomorphism. We already noticed that Y does not act

properly on W so that T is infinite.
Let us pick Xoo e A, and a connected neighborhood U of Xoo in L, which is

conformally diffeomorphic to an open subset of the sphere. By Lemma 4.3, the
conformal immersion s: U \ A -> N lifts to a conformal immersion er: U \ A ->
Jsf. Liouville's theorem ensures that cp := 8 o <j extends to a conformal immersion
cp: U -> Sn. Let us call V := cp(U). On U \ A, the relation n o cp \j/ o s holds

so that cp yields a one-to-one correspondence between points of A D U which are
essential (resp. poles) for s to points of Q D V which are essential (resp. poles) for
TT. By the discussion of Section 4.1, cp maps U PlAtoL n 3^, and U PI Aess to
V PI A(r). This completes the proof of Theorem 1.3.

5.3. Consequences of the local Classification theorem. Because Theorem 1.3 clas-
sifies locally all thin conformal singularities admitting essential points, the study of a

conformal immersion near an essential Singular point reduces to understanding what
is going on for singularities of Kleinian type. We can summarize the results in the

following corollary.

Corollary 5.5. Let (L,g) and (N, h) be two connected n-dimensional Riemannian
manifolds, n > 3. Let A C L be a closed subset such that 0. Assume
that s: L \ A ^ N is a conformal immersion. Then:

(1) The set Aess is closed. Ifit is nonempty, it is either discrete, or perfect.

(2) If Ap0ie is nonempty, its closure in A is the set Apoie U Aess.

(3) Assume that A is minimal essential. Then for every x^ E Aess and any neigh¬
borhood U ofxvo in L, s(U \ A) N.

(4) IfA is discrete and contains at least one essential singularpoint, then Apoie 0

and (N, h) is conformally diffeomorphic to a Euclidean manifold, or a general-
ized Hopfmanifold.

We define generalized Hopf manifolds as quotients of Rn \ {0} by an infinite
discrete subgroup of conformal transformations. Topologically, those manifolds are
finite quotients of S1 x Sw_1 (see Section 7.2 for a complete description of those

manifolds).
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When the singular set A is reduced to a point, the third and fourth points of the

corollary can be compared to Picard's theorem about the behavior of a meromorphic
function in the neighborhood of an isolated essential singularity. Let us also mention
that when s: L \ A -> N is merely a quasiconformal immersion, and when A {p}
is an isolated essential singularity, then V. A. Zorich proved in [Zol] and [Zo2]
that s(U \ p) N for every neighborhood U, and that up to finite quotient, N
is homeomorphic to a product Rk x jn-kor S1 x Sn-1_ Its proof does not imply
Corollary 5.5 in the conformal framework, though (see also [R2], Theorem 2.1, p. 81,
and [HP] for other generalizations of Picard's theorem in the quasiregular setting).

Proof of Corollary 5.5

Firstpoint. We first explain why Aess is closed. Let us consider a sequence of Aess

which converges to Xoo e A. From Proposition 3.8, we know that Clust(x^) N
for all k G N. Hence, if we fix y and y' two distinct points of N, one can build two
sequences (y^) and (z^) in L \ A which converge to Xoo such that s(yk) -> y and

s(zk) -> y'. It follows that Xoo e Aess. Now, thanks to Theorem 1.1, we extend s

to a conformal immersion s': L\ (Aess U Apoie) -> N. Theorem 1.3 implies that

N £2/ T, for an infinite Kleinian group T. It is a classical fact that the limit set

A(T) is either a perfect set, or has at most two points ([A], Theorem 2.3, p. 43). If
we are in the former case, Theorem 1.3 ensures that Aess is perfect. If A(T) has one

or two points, then again by Theorem 1.3, all the points of Aess are isolated.

Second point. Assume that Apoie is nonempty, and let us show that the closure Apoie
is Apoie U Aess. By Theorem 1.1, there is no harm assuming that A Apoie U Aess. If
Aess is empty, the claim is clear. Assume now that Aess is nonempty. It is enough to
check that every point of Aess is in the closure of Apoie. Recall that by Theorem 1.3,

for each Xoo, there is a neighborhood U of Xoo and a commutative diagram

U\ A

N

L\3£2

Q/T.

Moreover, <p(U D A) V D 3 £2 and <p(U D Aess) V D A(T). We infer that
3 £2 \ A(T) is nonempty, and we are reduced to show that every point in A (T) is

accumulated by points in 3 £2 \ A(T). But this is clear, because ifz e 3£2\A(T),
we will have T.z C 3£2 \ A(T) and T.z A(T) U T.z.

Third point. We assume now that A is minimal essential. We want to show that if
Xoo G Aess and if U is any neighborhood of Xoo in L, then s(U \ A) N. By
Theorem 1.3, the manifold N is Kleinian, conformally diffeomorphic to £2/ T, for some
infinite discrete T. For any z e £2, the closure of T.z contains A(T). In particular,
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if £ A(T) and if V is a neighborhood of z^ in Sn, then 7t(V \ A(r)) Q/T.
Theorem 1.3 implies directly that s(U \ A) N.

Fourth point. Let us assume that A is a discrete set containing at least one essential

Singular point. Thanks to Theorem 1.1, we can assume that A Apoie U Aess. The
second point of the corollary implies that in the presence of essential Singular points,
Ap0ie is not closed as soon as it is nonempty. Because A is discrete, we infer that

Ap0ie must be empty. If T is the infinite Kleinian group such that N Q/ T, then

A(T) has one or two points (if not, Aess would be perfect), and Theorem 1.3 actually
implies that Q Sn \ A(T), otherwise A would contain poles. We infer that if
A(T) has one point, T is a discrete subgroup of conformal transformations of Rn

acting freely properly discontinuously on Rn. Then, one checks easily that T is a

discrete subgroup of Euclidean motions, and TV is a Euclidean manifold. If A(T)
has two points, then N is conformally diffeomorphic to a quotient of Rn \ {0} by
an infinite discrete group of conformal transformations, namely TV is a generalized
Hopf manifold.

6. Proof of Theorem 1.4

We are now considering thin essential conformal Singular sets on a compact manifold
L. This compactness assumption on L allows us to prove:

Proposition 6.1. Let (L, g) and (N, h) be two connected n-dimensional Riemannian
manifolds, n > 3. Let A C L be a closed subset such that Mn~l(A) 0, and

s: L\A -> N a conformal immersion. IfL is compact, and A Apoie U Aess, then

s: L \ A -> N is a covering map onto N.

Proof Let a: [0,1] -> TV be a continuous path, let xo L \ A such that s(xo)
a(0). We want to show the existence of y: [0,1] -> L \ A, a lift of a satisfying
y(0) x0. If we cannot lift a, there exists t^ e [0,1[, and y: [0, t^-^ L \ A a

lift of a: [0, t00[—N such that y(0) xo and y(t) leaves every compact subset of
L \ A as t tends to By compactness of L, for every sequence (z^) tending to

t^, the set A of Cluster values of y{tk) in L is nonempty and contained in A. Let
Xqq be a point of A. Since s(y(tk)) tends to a(too), we get Xoo $ Apoie. Hence we
should have Xoo e Aess. But this is not possible. Indeed, if Xoo e Aess, we first
assume, considering a subsequence of (t^), that y{tk) tends to Xoo. Then we use the
second point of Lemma 3.5, and get the existence of a sequence (t'k) in [0, t^ [, which

converges to z^ such that y{t'k) converges to Xoo, and such that s{y{t'k)) converges to
y' e N, with y' ^ oifoo). This contradicts the fact that y is a lift of a|[o,*oo[- ^

We are now under the hypotheses of Theorem 1.4: the manifold L is compact
and the Singular set is minimal essential, i.e A Aess U Apoie. Moreover, we do the
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assumption Mn~2{A) 0. Theorem 1.3 ensures that (L, g) and (N, h) are confor-

mally flat, and that N is actually conformally diffeomorphic, via a diffeomorphism
x/z, to a Kleinian manifold Q / T. From Theorem 1.3, we also get that the boundary
dQ satisfies 3(n~2(dQ) 0, hence Q is simply connected as the following lemma
shows.

Lemma 6.2 ([LV], Theorem 6.13). Let M be a connected, simply connected, n-
dimensional Riemannian manifold, n > 3. Assume that E is a closed subset of M
satisfying Mn~2(E) 0. Then M \E is still simply connected.

Let us call L the conformal universal covering of L and denote by jxl : L -> L
the associated covering map. We call A the inverse image of A by Observe
that L \ A is simply connected by Lemma 6.2. By Proposition 6.1, our conformal
immersion s: L \ A ^ TV is a covering, hence it lifts to a conformal diffeomorphism
g : L \ A -> Q. In particular

7to(j foso jtL• (10)

Apply Theorem 3.7 to get that g~x: Q -> L extends to a conformal diffeomorphism

g~x : Qf L, where Qf c Sn is an open subset containing Q. We denote

again by g : L Qf the inverse map. Observe that cr(A) Qf D dQ. The map g
induces a homomorphism p: 7t\ (L) —PO(l, n + 1) such that for every y e it\(L),
the equivariance relation g o y p(y) o g holds. The group Tf := p(tti(L)) is

a discrete subgroup of PO(l ,n + 1) acting freely properly discontinuously on
Let us call Qf/Tf the conformal covering map. There is a conformal
diffeomorphism <p: L Qf rr such that

Jtf o G (p O JtL. (11)

Let us check that ^2 (Tf). If Tf is finite, the compactness of L leads to Qf Sn.

If Tf is infinite, one has Qf C ^(rr), since the action of Tf is proper on Qf. On the
other hand, the compactness of L forces the action of Tf to be nonequicontinuous
at each point of yielding the inclusion C A(T/). In any case, we get that

^(T7), as claimed in Theorem 1.4.

For every y e tti(L), relation (10) leads to the identity tt o p(y) n on Q so

that one has the inclusion V C T. Hence, the identity map of Q induces a covering
map sf: Q/Tf Q/T, satisfying for every y e £2

sf ojtfy) 7t(y). (12)

Observe that if we define Af jtf(Qf D dQ), then Q/Tf is merely M(Tf) \ Af.
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Relations (10), (11) and (12) lead to the commutative diagram

L\A— M(r') \ A'

S sf

N n/r.
The diffeomorphism cp maps A to A' because er maps A to dQ D Qf. Finally, it

is easily checked that the essential Singular points of A' for s' are the jrMmages of
the essential Singular points of dQ D for tt, namely the points of dQ D which
are in A(T). This means A(T) D £2' ^ 0, hence A(Tr) c A(T).

7. Isolated essential singularities on compact manifolds

Our aim in this section is to understand completely the conformal singularities s: L\
A -> N, where TV is a compact manifold and A is a finite number of essential Singular
points. It turns out that very few possibilities arise, and they are listed in Theorem 7.1

below. First of all, let us enumerate some examples.

7.1. Euclidean singularities on the sphere. Let us consider an infinite discrete

subgroup T C (M+ x O(n)) x Rn, acting freely properly discontinuously on Rn.
One checks that for the action to be free, T must actually be a subgroup of O(n) x Rn.
The quotient manifold N Rn / T is then a Euclidean manifold. We see T as acting
conformally on Sn \ {v}, fixing v, and consider the covering map s: Sn \ {v} -> N.
It is a conformal immersion, and because T is infinite, we have A(T) {v}. Hence,
as we already saw, v is an essential Singular point for s. A conformal singularity
s: Sn \ {v} TV as described above will be referred to as Euclidean singularity on
the sphere.

7.2. Singularities of Hopf type on the sphere. Let us now fix o a second point
on the sphere Sn, distinct from the point v. There is a conformal diffeomorphism
mapping S" \ {o; v} onto Rn \ {0}. The group G of conformal transformations of
Rn \ {0} is generated by the inversion i: x i-> — and the group x 0(n)
of linear conformal transformations on Rn. Let us choose an infinite discrete group
T C G acting freely, properly and discontinuously on Rn \ {0}. It is not hard to check
that T has a finite index subgroup generated by a linear conformal contraction. As

previously, the quotient TV (Mw\{0}) / T iscdlied&generalizedHopfmanifold. The

covering map s: Sn \ {o; v} N is conformal, and because T is infinite, both v and

o are essential punctured singularities. Conformal singularities s: Sn \ {o; v} N
constructed as above will be referred to as singularities ofHopf type on the sphere.
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7.3. Singularities of Hopf type on the projective space. Let us go back to the

previous construction, and assume that our infinite discrete subgroup T C G contains
the inversion i. Then, the subgroup T0 C T of transformations fixing individually
the points v and o is normal in T. Let us call N0 the quotient manifold (Rn \
{0}) / T0. Because t normalizes T0, and because T acts freely on Rn \ {0}, t induces

a conformal involution T without fixed points on Na. The quotient N0/(T) is actually
conformally diffeomorphic to N := (Rw \ {0}) / T. The quotient of Sn \ {o; v} by (i)
is conformally diffeomorphic to RPn with a point v removed. The natural covering
map TT : Sn \ {o; v} -> N0 induces a conformal immersion s: RPn \ {v} -> N, for
which v is an essential singular point. Conformal singularities constructed in this

way will be referred to as singularities ofHopf type on the projective space.

7.4. Classification result. We are now investigating essential singular sets on compact

manifolds, comprising only a finite number of points. By Theorem 1.1, and the
fourth point of Corollary 5.5, we just have to focus on the case where all the points
are essential. Then, it turns out that the three kinds of singularities described in the

previous section are the only possible.

Theorem 7.1. Let (L, g) and (N, h) be two connected n-dimensional Riemannian
manifolds, n > 3, with L compact. Let A := {p\,..., pm} be a finite number of
points on L. Assume that s: L \ A ^ N is a conformal immersion such that each

Pi is an essential singular pointfor s. Then m 1 or m 2 and:

(1) lfm 1, either there exists a Euclidean singularity on the sphere sf: Sn \ { v } —>

Nja conformal diffeomorphism <p: L ^ Sn sending p\to v and a conformal
diffeomorphism xf: N Nf making the diagram

commute.

Or there exists a singularity ofHopftype on theprojective space sf: R Pn\{v}
Nja conformal diffeomorphism <p: L —R Pn sending p\tov and a conformal
diffeomorphism xf: N Nf making the diagram

L\{pi}

N

S

L\{p i} RPn\{v}
S

N

commute.
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(2) lfm 2, there exists a singularity ofHopf type on the sphere s': Sn \ {o; v} ->
Nf, a conformal diffeomorphism (p \ L —> Sn sending {pi; P2} to {o\v} and a

conformal diffeomorphism f : N -> Nt making the diagram

L \ {PÜP2}9- S" \ {o; v}

S Sf

llf
N ^N'

commute.

Proof We first apply Theorem 1.3 in a neighborhood of any of the p\ 's. We get that
TV is conformally diffeomorphic to a Kleinian manifold £2/I\ where the limit set

A(T) has one or two points (otherwise Aess would be a perfect set), and Q £2(T)
(otherwise Apoie would be nonempty).

Assume first that A(T) is made of a Single point v. The group T is a discrete

group of conformal transformations of Sn \ {v}, namely Rn, which acts freely prop-
erly discontinuously on Rn. As a consequence, T is a discrete group of Euclidean
motions, and N is conformally diffeomorphic to a Euclidean manifold N' Rn / T.
Theorem 1.4 makes the structure of L and A explicit: there must be a subgroup
rr C T, with A(T/) c A(r), as well as an open subset properly containing
Q such that L is conformally diffeomorphic to and Aess is obtained as the

quotient D A(T))/r/. This implies in particular A(T/) 0, hence T' is finite,
and because Tf acts cocompactly on we must have Qf Sn. Since the action of
Tf on Sn must be free, and Tf fixes v, we infer that Tf is trivial. We get that m 1,

L is conformally diffeomorphic to Sn, and we are in the first case of the theorem.
Assume now that A (T) comprises two points o and v. Applying Theorem 1.4, and

with the same notations as above, we get that T is a discrete group in the conformal

group of Rn \ {0}. The limit set of the subgroup T' has two points or is empty, but
because A(T/) c A(T), we are in the second alternative: Tf is once again finite, and
Qf Sn. Because Tf acts freely on Sn, and leaves {o; v} invariant, it is either trivial,
or generated by a conformal involution of Sn, without fixed point, and switching o

and v.
It is not hard to check that such a fixed-point free involution switching o and v is

conjugated, in the conformal group of Rn \ {0}, to the inversion t: x i-> — ipW, so if
II-*' II

Tf is nontrivial, there is no harm in assuming Tf (1). Then m 1, L conformally
diffeomorphic to RPn, and we are in the second case of the theorem.

Finally, if Tf is trivial, then m 2, L is conformally diffeomorphic to Sn and we
are in the third case of the theorem.

Acknowledgement. I warmly thank the referee for his very valuable suggestions on
this text.



Vol. 89 (2014) Removable and essential singular sets for conformal maps 439

References

[AG] M. Akivis and Y. Goldberg, Conformal differential geometry and its generaliza-
tions. Pure Appl. Math. (New York), John Wiley and Sons, Inc., New York 1996.

Zbl 0863.53002 MR 1406793

[A] B. Apanasov, Conformal geometry ofdiscrete groups and manifolds. De Gruyter Exp.
Math. 32, Walter de Gruyter and Co., Berlin 2000. Zbl 0965.57001 MR 1800993

[BH] M. Bonk and J. Heinonen, Quasiregular mappings and cohomology. Acta Math. 186

(2001), no. 2, 219-238. Zbl 1088.30011 MR 1846030

[CS] A. Cap, H. Schichl, Parabolic geometries and canonical Cartan connections. Hokkaido
Math. J. 29 (2000), no. 3, 453-505. Zbl 0996.53023 MR 1795487

[Car] E. Cartan, Sur les varietes ä connexion projective. Bull. Soc. Math. France 52 (1924),
205-24E JFM 50.0500.02 MR 1504846

[CL] E. F. Collingwood and A. J. Lohwater, The theory ofCluster sets. Cambridge University
Press, Cambridge 1966. Zbl 0149.03003 MR 0231999

[Fe] J. Ferrand, The action of conformal transformations on a Riemannian manifold. Math.
Ann. 304 (1996), no. 2, 277-29F Zbl 0866.53027 MR 1371767

[Frl] C. Frances, Sur le groupe d'automorphismes des geometries paraboliques de rang un.
Ann. Sei. Ecole Norm. Sup. 40 (2007), no. 5, 741-764. Zbl 1135.53016 MR 2382860

[Fr2] C. Frances, Focal dynamics of conformal vector fields. Geom. Dedicata 158, no. 1

(2012), 35-59. Zbl 1246.53096 MR 2922702

[Fr3] C. Frances, About geometrically maximal manifolds. J. Toplogy 5, no. 2 (2012), 293-
322. Zbl 1246.53053 MR 2928078

[Go] W. M. Goldman, Geometrie structures on manifolds and varieties of representations.
In Geometry ofgroup representations (Boulder, CO, 1987), Contemp. Math. 74, Amer.
Math. Soc., Providence, RI, 1988, 169-198. Zbl 0659.57004 MR 0957518

[Gr] M. Gromov, Metrie structures for Riemannian and non-Riemannian spaces. Progr.
Math. 152, Birkhäuser, Boston, Mass., 1999. Zbl 0953.53002 MR 1699320

[HP] I. Holopainen and P. Pankka, A big Picard theorem for quasiregular mappings into
manifolds with many ends. Proc. Amer. Math. Soc. 133 (2005), no. 4, 1143-1150.
Zbl 1068.30010 MR 2117216

[IM] T. Iwaniec and G. Martin, Geometrie function theory and non-linear analysis. Oxford
Math. Monogr., Oxford University Press, Oxford 2001. Zbl 1045.30011 MR 1859913

[Ka] M. Kapovich, Hyperbolic manifolds and discrete groups. Progr. Math. 183, Birkhäuser,
Boston, Mass., 2001. Zbl 0958.57001 MR 1792613

[Ko] S. Kobayashi, Transformation groups in differential geometry. Reprint of the 1972

edition, Classics Math., Springer-Verlag, Berlin 1995. Zbl 0829.53023 MR 1336823

[FV] J. Fuukkainen and J. Väisälä, Elements of Fipschitz topology. Ann. Acad. Sei. Fenn.
Ser. A IMath. 3 (1977), no. 1, 85-122. Zbl 0397.57011 MR 0515647

[MRY] O. Martio, S. Rickman, and J. Väisälä, Definitions for quasiregular mappings. Ann.
Acad. Sei. Fenn. Ser. A 1448 (1969), 40 pp. Zbl 0189.09204 MR 0259114



440 C. Frances CMH

[Ma] P. Mattila, Geometry ofsets and measures in Euclidean spaces. Fractals and rectifia-
bility. Cambridge Stud. Adv. Math. 44, Cambridge University Press, Cambridge 1995.

Zbl 0911.28005 MR 1333890

[M] S. Matsumoto, Foundations of Hat conformal structure. In Aspects of low-
dimensional manifolds, Adv. Stud. Pure Math. 20, Kinokuniya, Tokyo 1992, 167-261.
Zbl 0816.53020 MR 1208312

[Ob] M. Obata, The conjectures on conformal transformations of Riemannian manifolds. J.

Differential Geometry 6 (1971/72), 247-258. Zbl 0236.53042 MR 0303464

[Ku] N. H. Kuiper, On conformally-flat Spaces in the large. Ann. of Math. (2) 50 (1949),
916-924. Zbl 0041.09303 MR 0031310

[P] P Pankka, Quasiregular mappings from a punctured ball into compact manifolds. Coli¬

fo rm. Geom. Dyn. 10 (2006), 41-62. Zbl 1096.30018 MR 2218640

[R1 ] S. Rickman, On the number of omitted values of entire quasiregular mappings. J. Anal¬

yse Math. 37 (1980), 100-117. Zbl 0451.30012 MR 0583633

[R2] S. Rickman, Quasiregular mappings. Ergeb. Math. Grenzgeb. (3) 26, Springer-Verlag,
Berlin 1993. Zbl 0816.30017 MR 1238941

[R3] S. Rickman, Quasiconformal Space mappings. In Picard's theorem and defect relation
for quasiregular mappings. Lecture Notes in Math. 1508, Springer-Verlag, Berlin 1992,
93-103. Zbl 0764.30017 MR 1187091

[51] B. G. Schmidt, Conformal bündle boundaries. In Asymptotic structure of space-time
(Proc. Sympos., Univ. Cincinnati, Cincinnati, Ohio, 1976), Plenum, New York 1977,
429-440. MR 0489685

[52] B. G. Schmidt, A new definition of conformal and projective infinity of space-times.
Comm. Math. Phys. 36 (1974), 73-90. Zbl 0282.53042 MR 0339775

[Seh] R. Schoen, On the conformal and CR automorphism groups. Geom. Funct. Anal. 5

(1995), no. 2, 464-481. Zbl 0835.53015 MR 1334876

[Sh] R. W. Sharpe, Differential geometry: Cartan's generalization ofKlein's Erlangen Pro¬

gram. Grad. Texts in Math. 166, Springer-Verlag, New York 1997. Zbl 0876.53001
MR 1453120

[Sp] M. Spivak, A comprehensive introduction to differential geometry. Vol. III, second edi-
tion, Publish or Perish, Inc., Wilmington, Del., 1979. Zbl 0439.53003 MR 0532832

[Th] W. P Thurston, Three-dimensional geometry and topology. Vol. 1, edited by Sil¬

vio Levy, Princeton Math. Ser. 35, Princeton University Press, Princeton, NJ, 1997.

Zbl 0873.57001 MR 1435975

[VI] J. Väisälä, Lectures on nn-dimensional quasiconformal mappings. Lecture Notes in
Math. 229, Springer-Verlag, Berlin 1971. Zbl 0221.30031 MR 0454009

[V2] J. Väisälä, Removable sets for quasiconformal mappings. J. Math. Mech. 19

(1969/1970), 49-51. Zbl 0201.09702 MR 0243061

[Zol] V. A. Zorich, Quasiconformal immersions of Riemannian manifolds and a Picard type
theorem. Funct. Anal. Appl. 34 (2000), no. 3, 188-196. Zbl 0977.53031 MR 1802317

[Zo2] V. A. Zorich, A non-removable singularity of a quasi-conformal immersion. Russ. Math.
Surveys 64 (2009), 173-174. Zbl 1175.53069 MR 2503102



Vol. 89 (2014) Removable and essential singular sets for conformal maps 441

Received February 12, 2012

Charles Frances, Laboratoire de Mathematiques, Universite Paris Sud 11, 91405 Orsay,
France

E-mail: Charles.Frances@math.u-psud.fr


	Removable and essential singular sets for higher dimensional conformal maps

