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Theoreme des periodes et degres minimaux d'isogenies

Eric Gaudron et Gael Remond

Resume. Nous donnons de nouvelles versions effectives du theoreme des periodes de Masser
et Wüstholz. Nos enonces sont totalement explicites et permettent de raffiner les applications
aux theoremes d'isogenies elliptiques. Celles-ci entrainent ä leur tour la resolution du probleme
d'uniformite de Serre dans le cas des sous-groupes de Cartan deployes, en conjonction avec les

travaux de Bilu, Parent et Rebolledo.

Abstract. We give a new, sharpened version of the period theorem of Masser and Wüstholz,
which is moreover totally explicit. We also present a new formulation involving all archimedean

places. We then derive new bounds for elliptic isogenies, improving those of Pellarin. The small
numerical constants obtained allow an application to Serre's uniformity problem in the split
Cartan case, thanks to the work of Bilu, Parent and Rebolledo.

Classification mathematique par sujets (2010). 11G10; 11J86, 14G40, 14K02.

Mots-clefs. Lemme matriciel, theoreme des periodes, isogenie minimale elliptique, probleme
d'uniformite de Serre, methode de la section auxiliaire, pente d'Arakelov, lemme d'interpolation
analytique.

1. Introduction

Dans ce texte, nous revisitons le theoreme des periodes de Masser et Wüstholz
et ses applications aux degres minimaux d'isogenies entre courbes elliptiques. Notre
presentation du theoreme lui-meme differe des versions anterieures et nous expliquons
ci-dessous ce qui nous a conduit ä cette formulation, notamment en lien avec le lemme
matriciel, dont nous utilisons une nouvelle version due ä Autissier. Nous donnerons
ensuite les enonces ainsi qu'une application au probleme d'uniformite de Serre qui
repose sur les travaux de Bilu, Parent et Rebolledo.

Dans tout ce texte A est une variete abelienne de dimension g sur un corps de

nombres k. Pour parier de periodes, nous fixons un plongement complexe er: k C
et considerons la variete abelienne complexe A0 obtenue par extension des scalaires,

son espace tangent ä l'origine tAa et son reseau des periodes QAa •

En 1985 [Mas], David Masser a demontre une majoration des coefficients d'une
matrice de periodes en fonction de la hauteur d'une variete abelienne principalement
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polarisee. Le paragraphe de son texte consacre ä cette estimation portait le nom de

lemme matriciel et cette terminologie est restee pour designer ce type d'enonces.
Une nouvelle approche a ete introduite par Bost [Bol], [Bo3] en termes de hauteur
de Faltings et des versions effectives ont ete donnees par Graftieaux [Gr], David et

Philippon [DP] et le premier auteur [Ga2].
Si l'on veut s'affranchir de l'hypothese de Polarisation principale, il est preferable

de considerer qu'un lemme matriciel donne une minoration de la plus petite periode
non nulle d'une variete abelienne (en une place donnee). II s'agit donc d'un premier
prototype d'un theoreme des periodes puisqu'il s'agit de relier la norme d'une
periode (en l'occurrence la plus petite) ä divers invariants de la variete abelienne (ici
essentiellement la hauteur de Faltings).

Un veritable theoreme des periodes, au sens attache ä ce terme depuis les travaux
fondateurs de Masser et Wüstholz, doit, lui, faire intervenir de plus de maniere
essentielle un terme de degre geometrique. Traditionnellement on l'ecrit comme une
majoration du degre de la plus petite sous-variete abelienne de A dont l'espace
tangent contient une periode donnee co en fonction de la norme de co et de la hauteur
de A.

Nous utilisons dans nos enonces la hauteur de Faltings stable hf (A) d'une variete
abelienne sur un corps de nombres. Nous fixons une Polarisation L sur A. La forme
de Riemann de L0 munit tAa d'une norme hermitienne que nous notons || • ||l,o (les
defmitions precises de ces objets sont donnees dans la partie suivante). On tire alors
de [MW2] l'enonce suivant.

Theoreme (Masser et Wüstholz, 1993). II existe une constante c > 0, qui ne depend

que de g, [k : Q] et degL A, et une constante k > 0, qui ne depend que de g, teiles

que
degL An < cmax(l,hF(A), |M||a)\

De plus Vonpeut choisir k (g — i)48g!etc Co[k : Q]/c(degL A)1+gK oü Co est

une constante qui ne depend que de g.

En outre, les resultats presentes par Bost au seminaire Bourbaki en 1995 [Bol]
montrent que Co est effectivement calculable (travaux de Bost et David, voir aussi [Pa]).

Nous proposons ici de voir un tel theoreme plutöt comme une minoration de la

norme de co en fonction du degre de AM et de la hauteur. En fait, dans cette approche,
la variete abelienne AM joue le röle principal et la variete A initiale est releguee au

second plan. Si nous l'oublions completement, nous sommes en train de dire qu'un
theoreme des periodes n'est autre que la minoration de la norme de la plus petite
periode co de A teile que A& A. En d'autres termes encore, nous considerons le
minimum des normes des periodes de A qui ne sont periodes d'aucune sous-variete
abelienne stricte de A.

Vu ainsi, le lemme matriciel devient une minoration d'un minimum absolu p du

reseau des periodes (minimum sur tous les elements non nuls) tandis que le theoreme



Vol. 89 (2014) Theoreme des periodes et degres minimaux d'isogenies 345

des periodes vise ä minorer un minimum essentiel 8 de ce meme reseau (minimum
sur les elements transverses ou non degeneres au sens des sous-varietes abeliennes).
Bien entendu, ici p < 8 et il ne faut pas perdre de vue que la minoration souhaitee
de 8 est plus grande que celle de p puisque sa caracteristique principale est de croitre
avec le degre de A. Notons aussi que dans cette approche il est possible que 8 soit
infini: cela signifie simplement que la variete abelienne A consideree n'est pas de la
forme (Af)(ür pour un couple (Af, cd').

Ce nouvel eclairage sur le theoreme des periodes presente plusieurs avantages.
D'une part, on sait depuis Bost que Ton peut exprimer naturellement le lemme ma-
triciel en faisant intervenir toutes les places. De maniere precise, on note p{A0,L0)
la valeur minimale de ||&>||l,ct pour co e Qa# non nul et nous utilisons dans ce texte
la forme suivante du lemme matriciel (qui raffine les versions evoquees plus haut),
tiree du travail d'Autissier [Au].

Theoreme 1.1. Si (A, L) est une variete abelienne polarisee de dimension g sur un

corps de nombres k nous avons

77^—- piAa.LA'2< 14max(l,Af (X), logdegL ,4).

Par ailleurs, le membre de droite peut etre remplace par 16hf (A) + 49g.

Ainsi il devient naturel de formuler notre theoreme des periodes comme une ma-
joration d'une moyenne de la forme (1 /D) 1/8^ (par, repetons-le, une puissance
negative du degre de A) et nous constatons effectivement que c'est une teile quantite
qui apparait dans la preuve. Conformement ä ce qui precede, notons 8o {A0, L0) la
valeur minimale de \\co\\L,a pour co e £Ua\Uß ^Boül'union porte sur les sous-varietes
abeliennes strictes B de Aa. Si cet ensemble est vide, nous posons 80 {A0, L0) +oo.
Nous verrons en fait bientöt qu'une quantite 8(AG,LG), toujours finie et plus petite
que 8o (Aa peut intervenir. La formulation suivante, forme simplifiee du resultat

principal de cet article, est valable pour les deux variantes.

Theoreme 1.2. Si (A, L) est une variete abelienne polarisee de dimension g sur un

corps de nombres k nous avons

- 50g2s+6 max(l, kf(A), log degL A).

Un autre avantage, un peu plus technique, de notre presentation, est de mettre
en lumiere le röle des sous-varietes abeliennes auxiliaires qui interviennent dans la
demonstration. On s'aperqoit en effet que la condition sur co n'est utilisee que pour
une variete en particulier. Ceci nous conduit ä affiner la definition en introduisant pour
une sous-variete abelienne B de Aa le minimum d'evitement de B note 8(Aa, L0, B) :
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la plus petite distance non nulle d'une periode de Aa ä l'espace tangent de B. Nous
ecrivons alors la preuve avec cette quantite et le theoreme ci-dessus decoule d'un
choix particulier de B en chaque place (techniquement celui qui minimise la quantite
(degLa B/ degL ^jVcodimB^ Mgme sj nous n'avons pas d'application pour d'autres
choix de B, il nous semble tout de meme plus interessant d'ecrire la majoration sous

cette forme (voir le theoreme 4.5) : d'une part cela renforce encore les liens avec
le lemme matriciel (dont le minimum absolu correspond maintenant simplement au
choix de B 0), ensuite nous ne manipulons pas de quantite infinie et donc nous
obtenons toujours un resultat meme si A ne s'ecrit pas sous la forme (Af)^ et enfin
cela affine le theoreme 1.2 : il est valable avec

8 {A0,L0) sup8(i4a,La,B)
B

oü, comme ci-dessus, B parcourt les sous-varietes abeliennes strictes de Aa. Accessoi-
rement la quantite 8(Aa, L0) (toujours finie) est plus facile ä majorer que 8o {A0, L0)
(lorsque celle-ci est finie, voir proposition 4.4).

Disons enfin qu'il est un cas oü theoreme des periodes et lemme matriciel de-

viennent identiques : c'est celui des courbes elliptiques. En effet on a toujours p — 8

(autrement dit seul B 0 intervient) et comme toute Polarisation est puissance de la

Polarisation principale le degre n'intervient pas (voir aussi le paragraphe 4.3.1).
Nous pouvons maintenant deduire du theoreme 1.2 un enonce ayant la forme

de celui de Masser et Wüstholz. Nous revenons pour cela au cadre oü co est une
periode, pour un plongement fixe <t0, de la variete abelienne A et nous appliquons
notre theoreme ä la variete abelienne A^. Nous en deduisons alors facilement le
theoreme suivant, oü l'on note k' une extension de k sur laquelle est definie A& ; on
sait que l'on peut choisir [k/ : k\ < 2(9g)2g (voir [SiA]).

Theoreme 1.3. Si co ^ 0, nous avons

(degi 5 \95g2g+9[k': Q]\\w\\\ a^mdx(\,hF(Ä),\og[k': <Q]||ft>|||;ao)-

II convient de signaler qu'ä l'occasion d'un cours donne ä une ecole d'ete en
2009 ä Rennes [Da2], David a presente une version de cet enonce dans le cas d'une
Polarisation principale et sans expliciter la dependance en g. En particulier, on lui doit
le premier resultat avec une constante k optimale (en remplaqant L par une puissance
dans le theoreme 1.3 on voit que k < dim AM est impossible).

Comme dernier theme aborde dans cet article, nous nous interessons ä l'applica-
tion du theoreme des periodes aux theoremes d'isogenie. Nous nous limitons ici au

cas elliptique. Le probleme consiste alors, etant donne deux courbes elliptiques E\
et E2 isogenes, toutes deux definies sur un corps de nombres k, ä majorer le degre
minimal d'une isogenie entre E\ et E2. On peut faire remonter cette question aux
travaux des freres Chudnovsky [CC] (cas d'un corps reel; on consultera ä ce sujet
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l'historique presente par Pellarin dans [Pel]) mais eile trouve toute son importance
depuis Tarticle de Masser et Wüstholz [MW1] qui ont donne une borne de la forme
c max(l, Iif(Ei))4 pour une constante c non explicitee. David [Dal] puis Pellarin

[Pe2] ont obtenu les premiers resultats explicites. Ce dernier demontre l'existence
d'une isogenie de degre au plus

10ls[k : Q]4 max(log[/: : Q], l)2 max^^^i), l)2.

Nous ameliorons ici ä la fois l'exposant du degre et la constante numerique. Etant
donne un corps k, on note k une clöture algebrique de k.

Theoreme 1.4. Soient k un corps de nombres, E\ et E2 deux courbes elliptiques
definies sur k. Si E\ et E2 sont isogenes (sur k), il existe une isogenie entre elles

{sur k) de degre au plus

107[k : Q]2(max(/z77(Ed), 985) + 41og[k : Q])2

ce que Von peut majorer par

1013[k : Q]2max(/z77(£'i),log[k : Q],l)2.

Lorsque E\ {et donc E2) admet des multiplications complexes, la borne ci-dessus

peut etre remplacee par

3,4 x 104[k : Q]2 max if(E\) + ^ log[k : Q],

Si E1 et E2 nont pas de multiplications complexes et si k a une place reelle, eile

peut etre remplacee par

3583[£ : Q]2 max (Iif{E\), log[k : Q], l)2.

Dans le cas general, ce theoreme s'obtient en appliquant le theoreme des

periodes 1.2 ä la variete abelienne Ef x £"1 tandis que, pour les deux dernieres bornes,
les hypotheses supplementaires permettent d'utiliser A E\ x E2 : dans ce cas, Aw
est une courbe elliptique et le theoreme des periodes se reduit ä un lemme matriciel
(de la forme du theoreme 1.1).

Avec [BiPa], [BPR] le theoreme 1.4 s'applique au probleme d'uniformite de Serre

[Se2] (ci-dessous E[p] designe le groupe des points de p-torsion de la courbe E).

Corollaire 1.5. Pour tout nombre premier p > po 3,1 x 106 et toute courbe

elliptique E definie sur Q sans multiplications complexes, l 'image de la representa-
tion galoisienne naturelle pe,p : Gal(Q/Q) —GL{E[p]) nestpas contenue dans
le normalisateur d'un sous-groupe de Cartan deploye.
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Signaions qu'ä partir de ce resultat et avec des calculs informatiques pour les

petits premiers (p < p$), Bilu, Parent et Rebolledo [BPR] montrent que l'enonce
precedent vaut en fait pour tout p $ {2, 3, 5,7,13}. Nous renvoyons ä leur texte pour
les details.

Remerciements. Nous remercions Yuri Bilu, Pierre Parent et Marusia Rebolledo pour
nous avoir Signale l'application des theoremes d'isogenies au probleme de Serre. Leur
commande fut notre principale motivation pour obtenir des constantes numeriques
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une premiere version de ce texte et pour nous avoir communique son remarquable
lemme matriciel. Nous remercions aussi Sinnou David pour ses conseils avises ainsi
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Passons ä present en revue rapidement les ingredients principaux de notre preuve
et les travaux dont eile s'inspire. Les methodes que nous employons ont deux ori-
gines, l'une provenant de la theorie des formes lineaires de logarithmes (methode
de Baker) et l'autre issue de la geometrie d'Arakelov (theorie des pentes). Dans le
seminaire Bourbaki [Bol], Bost a jete un nouvel eclairage sur le theoreme des
periodes en introduisant la methode des pentes. Ce travail, rendu un peu plus explicite
par Viada [Via], apporte l'effectivite de la constante c0 dans le theoreme de Masser
et Wüstholz. II a eu egalement enormement d'impact sur la maniere de presenter la
demonstration en conservant au maximum l'aspect intrinseque des donnees. II a aussi

ouvert un champ d'application naturel ä la geometrie d'Arakelov. Par exemple, les

methodes de Bost ont permis au premier auteur d'obtenir des minorations de formes
lineaires de logarithmes de varietes abeliennes, totalement explicites, pour des
logarithmes qui ne sont pas des periodes (en un sens assez fort) [Ga2]. D'un autre cöte, la

preuve de David est extraite de la demonstration generale pour les formes lineaires
de logarithmes. Rappeions que cette demonstration repose pour une grande part sur
la methode de Baker (inventee ä la fin des annees soixante ; pour plus de details,
on pourra consulter [Wü3]). Les travaux [Ba] de Baker ne concernaient que le cas

d'un groupe algebrique lineaire commutatif. Avec l'apparition de lemmes de multi-
plicites performants dus ä Philippon [Ph] et Wüstholz [Wül], ces travaux ont pu etre

generalises ä un groupe algebrique commutatif quelconque pour aboutir au celebre
theoreme du sous-groupe analytique de Wüstholz [Wü2]. Ici, ce theoreme stipule que
le plus petit sous-espace vectoriel de 74, defini sur Q, qui contient le logarithme co du

point algebrique 0a e A(k) est le sous-espace vectoriel tA^ de /U. Cette Information
ne nous sera pas utile mais eile precise le contexte dans lequel s'inscrit ce travail (le
theoreme des periodes apparait alors comme une version effective de cet enonce). Ä
1'instar de David, nous nous sommes plutöt inspires de la methode de Philippon et
Waldschmidt [PW]. Comme co e t(AM)ao, nous sommes dans le « cas degenere » oü le
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logarithme appartient au sous-espace. La demonstration de Philippon et Waldschmidt
fonctionne encore dans ce cas mais au lieu de fournir une minoration de la distance
du logarithme au sous-espace, eile montre l'existence d'une sous-variete abelienne
stricte B de A avec co e tßao et degL B majore essentiellement comme dans le
theoreme de David (des bornes pour degL B se trouvent par exemple dans [Dal],
[Gal], [Vil]). Pour assurer B Al'idee de David est de travailler avec des le

depart. La sous-variete B ne peut pas exister (par minimalite de AM relativement ä

l'hypothese co e t(a^)^) mais la demonstration donne malgre tout quelque chose, ä

savoir une majoration de degL A&. Cette Observation a permis ä David d'obtenir en

une seule etape la sous-variete A&, sans avoir ä faire de recurrence sur g, recurrence
tres coüteuse pour les constantes c et k et qui explique leur caractere exponentiel en

g chez Masser et Wüstholz.
Si notre borne du degre de AM est proche de celle de David, la demonstration

n'utilise pas les memes outils. Elle s'inscrit encore dans le Schema general de la
methode de Philippon et Waldschmidt (cas periodique) mais eile utilise largement le
formalisme des pentes de Bost, comme dans [Ga2]. Toutefois il n'y a pas de methode
des pentes proprement dite, c'est-ä-dire que nous n'utilisons pas de filtration ni d'in-
egalite de pentes. Cette derniere est remplacee par la methode de la section auxiliaire

que le premier auteur a introduite dans [Ga4]. II s'agit d'une Variante intrinseque
de la methode classique des fonctions auxiliaires en transcendance. Ici l'adjectif
intrinseque signifie essentiellement que nous n'aurons recours ni ä une base explicite
des fonctions theta de H°(A, Lm), ni ä une base de Shimura de l'espace tangent
tA- Outre la clarte apportee par cette approche geometrique, la demonstration met
en evidence l'integralite des jets de sections qui apparaissent. Cet avantage tactique
autorise un parametre ä tendre vers +00 (ce qui est exceptionnel dans une preuve de

transcendance) en eliminant au passage plusieurs quantites parasites. Un autre atout
de ce passage ä la limite est la diminution des constantes numeriques.

Signaions que nous tirons partie ä plusieurs reprises du lemme matriciel d'Au-
tissier dans nos arguments mais que sa precision n'influe pas beaucoup sur les

constantes : avant de disposer de ce lemme, nous avions mene les calculs ä par-
tir d'une version moins fine du theoreme 1.1 oü la constante du membre de droite
etait multipliee par g^/2+3 et, par exemple, cela ne modifiait le theoreme 1.3 qu'en
remplaqant 195 par 254.

En ce qui concerne notre theoreme d'isogenie, l'aspect intrinseque du theoreme
des periodes sur lequel il s'appuie evite naturellement le recours ä des modeles de

Weierstrass des courbes elliptiques (et donc ä la notion d'isogenie normalisee) qui
apparaissaient dans les travaux anterieurs. Dans le meme ordre d'idee, Pellarin de-

vait considerer des sous-varietes abeliennes exceptionnelles et exclure un cas dege-

nere [Pe2], hypothese 3 page 212. Nous avons simplifie l'analyse en montrant que
ces subtilites n'ont plus lieu d'etre et que la seule consideration de Atö suffit ä extraire
l'information sur le degre d'isogenie (voir theoreme 7.5).
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2. Preliminaires

2.1. Polarisation. Lorsque A est une variete abelienne, nous rappelons qu'une
Polarisation sur A est l'image d'un faisceau inversible ample dans le groupe de Neron-
Severi NS(A) Pic(A)/Pic°(A). C'est cette notion qui intervient la plupart du

temps dans cet article : par exemple le degre degL A ou la forme de Riemann d'un
faisceau inversible ample L ne dependent que de la Polarisation definie par L. Lorsque
nous souhaitons parier d'un faisceau representant la Polarisation nous en choisissons

toujours un symetrique. Ceci n'induit qu'une indetermination finie car un element

symetrique de Pic°(A) est un element de 2-torsion. En particulier si L symetrique
represente une Polarisation alors L®2 est uniquement defini. Rappeions aussi que sur

une courbe elliptique il existe une unique Polarisation principale et toute Polarisation
en est une puissance (car NS(A) Z).

2.2. Variete abelienne orthogonale. Soit A une variete abelienne sur un corps
quelconque, munie d'une Polarisation L. Soit B une sous-variete abelienne de A.
La sous-variete abelienne orthogonale B^~ de B dans A est definie de la maniere
suivante : soit cpL : A -> A l'isogenie dans la variete duale A induite par L. Soit

li: A -> B le morphisme dual ä l'inclusion i: B ^ A. Alors BL est la composante
neutre du noyau de la composee H o <pL. On montre alors que le morphisme d' addition
B x B^~ A est une isogenie de degre b au plus

h°(B, L)h°(Jß-L, L) 0/
- h (S.

(voir par exemple [Be], theoreme 3). De plus, si le corps de base est C, pour toute
periode co e Qa, ü existe co\ e Qß et co2 g tels que bco co\ + co2 (voir
lemme 1.4 de [MW2]).

2.3. Hauteur de Faltings. Lorsque A est une variete abelienne definie sur un corps
de nombres k, nous definissons sa hauteur h{Ä) de la maniere suivante : soit K une
extension finie de k sur laquelle A est definie et admet reduction semi-abelienne.
Soient tt : A Spec Ök un modele semi-abelien de A et : Spec Ök A> sa

section nulle. Notons üoa/ok faisceau inversible ^^A/SpecOK sur ^pec(9jv. Ce

fibre devient un fibre en droites hermitien ö)a/(9k sur Specöjv lorsqu'on le munit

pour chaque plongement complexe a: ^ ^ C de la norme

Vs e o)a/ok C ~ H°(Aa, O-Aa)' l5A^l-

Definition 2.1. La hauteur h(A) de A est le degre d'Arakelov normalise de cüa/oK'

Cette definition est independante des choix de K et de A. Cette quantite h{A) est

celle denommee hauteur de Faltings dans [Bol], [Bo3], [Ga2], [Gr] mais ce n'est
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pas la Convention adoptee par tous les auteurs. En particulier la definition originale
hf (A) de Faltings [Fa] ne fait pas apparaitre le tt dans la definition de la norme
ci-dessus et donc on a

hp 04) h(A) — ^ log tt.

Fa hauteur h(Ä) est donc plus grande que la hauteur de Faltings originale. Dans
la suite, nous employons h(Ä) mais nous avons prefere utiliser hp(A) dans l'in-
troduction pour faciliter l'emploi de nos enonces. Ce choix a 1'avantage que les

enonces (majorations) sont vrais pour les deux hauteurs. D'autres auteurs utilisent
encore une notion differente. Par exemple Colmez [Co] travaille avec la hauteur

h(A) — (g/2) log2jr. Quelle que soit la normalisation, rappelons que cette hauteur
satisfait 1'estimation de Raynaud : si cp: A -> Af est une isogenie alors

\h{Ä)-h{Ä)\ < ^ logdegcp

(corollaire 2.1.4 de [Ra2]) ainsi qu'aux proprietes h(A\ x A2) h(A\) + h(A2)
et h(A) h(Ä) (corollaire 2.1.3 de [Ra2]). De plus la hauteur d'une sous-variete
abelienne B de A est contrölee par celle de A :

h(B) < h(A) + logh°(i?, L) + (dim B^) log \fltt

(pour obtenir cette formule on applique le resultat de Raynaud ä 1'isogenie BxB^- ^
A du paragraphe precedent et l'on minore la hauteur de B^- par le resultat de Bost,

que nous demontrons ci-dessous en appendice, corollaire 8.4). Nous utiliserons en

fait la Variante avec hp (•) obtenue en substituant et en majorant log(jr Vi) < 3/2 :

hF{B) < hF(A)+logh°(ß,L) + ^dim

2.4. Forme de Riemann. Soit A une variete abelienne complexe. D'apres le theo-

reme d'Appell-Humbert (voir [Mu], p. 20, ou [BF], p. 32), le groupe de Picard Pic(A)
s'identifie au groupe des couples (//, /) oü H est une forme hermitienne (lineaire
ä droite) sur tA teile que Im H(QA, £2A) C / et / une application ^ {z G |

|z| 1} teile que/(&>i + co^xicoi)-1 expO'jr Im H(co\, co2)) pour tous

coi,co2 e Q&. Forsqu'un telcouplecorrespond ä L e Pic(A), nous dirons que (H, /)
est la donnee d'Appell-Humbert de L et la premiere composante H s'appelle laforme
de Riemann de L. Celle-ci ne depend que de l'image de L dans NS(A).

Fa forme de Riemann de L est definie positive si et seulement si L est ample
(autrement dit si L definit une Polarisation; certains auteurs reservent l'emploi du

terme forme de Riemann ä ce cas). Ainsi une Polarisation L permet de munir l'espace
tangent tA d'une norme hermitienne notee ||. || L : on pose simplement \\z ||\ — H{z, z)
pour z e t/s, lorsque H est la forme de Riemann de L. C'est la norme utilisee dans

l'introduction et dans toute la suite de ce texte. Elle permet par exemple de definir



Vol. 89 (2014) Theoreme des periodes et degres minimaux d'isogenies 353

le minimum du reseau des periodes dejä rencontre et qui fera l'objet des lemmes
matriciels de la partie suivante :

p(A, L) min{||£ü||i_; tu £2a \ {0}}.

Ce nombre reel se rencontre aussi dans la litterature sous Tappellation diametre

d'injectivite car c'est le diametre de la plus grande boule sur laquelle Texponentielle
expA: -> A est injective.

Lorsque (A, L) est une variete abelienne polarisee sur un corps de nombres k et

a: W Cun plongement, nous noterons || • ||l,g la norme induite par L0 (au lieu
de || • ||Lct)-

2.5. Fonctions theta. Soit L un faisceau inversible sur une variete abelienne com-
plexe A. On definit son facteur d'automorphie canonique ci\_: £2a x —> C ä l'aide
de sa donnee d' Appell-Humbert (H, /) : si o) e £2a et z e tA on pose

a\_(co,z) /(o;)exp tH(co,z) +

Ce facteur permet de definir les fonctions theta associees ä L : ce sont les fonctions
holomorphes d: t& C qui verifient d(z + cd) a\_(co,z)&(z) pour tous co e Q&

et z e t/\. Elles trouvent leur raison d' etre dans 1' isomorphisme naturel entre H° (A, L)
et 1'espace vectoriel des fonctions theta associees ä L (voir [Mu], p. 25).

En particulier, lorsque L est tres ample, elles fournissent une ecriture explicite
d'un plongement projectif associe ä L : si • • • > est une base des fonctions theta
alors Tapplication z i-^ (d0(z) : • • • : dm{z)) definit un morphisme tA (P^ qui se

factorise ä travers expA pour donner une immersion A ^
2.6. Changement de base par la conjugaison complexe. Soit ä nouveau une
variete abelienne complexe A. Notons r la conjugaison complexe. On definit Ä par le

carre cartesien :

Ä —U A

Spec r
Spec C —> Spec C

Nous obtenons une variete abelienne complexe mais il faut prendre garde au fait que
le morphisme de Schemas f n'est pas un morphisme de (C-schemas. C'est en revanche

un morphisme de P-schemas (entre P-schemas de dimension 2dim A) que Ton peut
egalement voir comme un morphisme de varietes analytiques reelles entre les tores

t\! W ^a-

Proposition 2.2. L'isomorphisme f se releve en un isomorphisme antilineaire
df: ^A —t/\ tel que df(£2A) De plus si Von metrise les espaces tangents

par les formes de Riemann de L et f*L alors df est une isometrie.
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Demonstration. II n'y a pas de restriction ä supposer que L est tres ample. Notons alors

comme plus haut ,ftm une base des fonctions theta associees. Nous designons

par V l'espace vectoriel complexe conjugue de : le groupe abelien sous-jacent est

V tA mais la loi • de V de multiplication par un scalaire est donnee par z • i> zv
pour z e C et v e V (oü, ä droite, on utilise la loi usuelle de tA). Pour clarifier nous
notons aussi U le reseau £2A lorsque nous le voyons comme reseau de V. Ainsi V/U
est un tore complexe. En outre les fonctions pour 0 < j < m sont holomorphes
sur V. La forme H est quant ä eile une forme hermitienne definie positive sur V x V
et eile verifie Im H(U, U) C Z. De meme l'application / : U ^ {z e C \ \z\ 1}
salisfailx(ui+U2)x(ui)~1 x(u2)~1 exp(7jr ImH(u\, w2))pourtousu\, U2 £ U.
Tout ceci nous montre que V/U est une variete abelienne, que (H, /) est une donnee

d'Appell-Humbertsurcelle-cietque forment une base des fonctions theta
associees ä cette donnee. En particulier elles definissent un plongement projectif
p: V/U [P^. Enfin appelons q l'application V/U A induite par l'identite
V tA (qui est antilineaire). En suivant les constructions, nous avons alors un
diagramme commutatif:

V/U -A —> SpecC

Q DtA SpecC.

Comme les fleches verticales sont des isomorphismes, le carre de gauche est auto-

matiquement cartesien et nous pouvons donc identifier E/C/äÄet^äf. Dans cette
identification V t~k et df correspond ä l'identite V t&. Le diagramme montre
encore que f*L coincide avec p*&(1) et a donc pour forme de Riemann H. Toutes
les assertions de l'enonce decoulent immediatement de ces faits.

Ä titre d'exemple nous avons donc p(Ä, f*L) p(A, L).
Dans le cas oü (A, L) est une variete abelienne polarisee sur un corps de nombres

^ et a: ^ ^ C un plongement, nous notons ö r o o. Alors onaiff A& et

Lä f* L0. Avec la proposition ceci nous permet de verifier que les minima associes

aux couples (.Aa,La) et (A&, L^) coincident.
Bien entendu, tous les faits de ce paragraphe sont faux pour un automorphisme

C —y C autre que r ou idc (et donc non continu) et il n'y a aucune relation en general
entre les minima de (Aa, L0) et (AG',LG') pour deux plongements er et g' distinets
et non conjugues.

3. Autour du lemme matriciel

Dans cette partie nous donnons plusieurs versions du lemme matriciel au sens

donne plus haut. Elles decoulent toutes d'un nouvel enonce dü ä Autissier [Au]. Notre
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motivation est multiple: d'une part elles ameliorent les constantes donnees dans [DP],
[Ga2], [Gr]; d'autre part nous ecrivons le resultat sans hypothese de Polarisation prin-
cipale contrairement ä ces textes. Ensuite nous nous interessons plus particulierement
au cas de la dimension g 1 : il s'agit ici veritablement d'un theoreme des periodes
donc c'est une partie de la demonstration de notre theoreme principal. Par ailleurs,
l'obtention de bonnes constantes dans ce cas nous permettra aussi d'etre plus efficace
dans Tapplication aux theoremes d'isogenies de courbes elliptiques. Dans un second

temps, nous enonqons des majorations de pentes maximales dues ä Graftieaux, qui
reposent elles-memes sur des lemmes matriciels.

3.1. Theoreme d'Autissier et consequences. Commenqons par enoncer le lemme
matriciel d'Autissier [Au] (voir le § 2.4 pour la definition de p(AG,LG)).

Theoreme 3.1. Soit (A, L) une variete abelienne principalement polarisee, definie
sur un corps de nombres k. Pour tout plongement complexe cr\k C, notons

pG := min (p(AG, LG), yjr/3g). Alors on a

1 /tt \ x 2 2it2e

v^K^,M + g l0SP") - + *log "5T"

3.1.1. Donnons une premiere consequence de ce theoreme pour les courbes
elliptiques, qui nous servira plus loin dans les estimations de degres d'isogenies.

Proposition 3.2. Soit A une courbe elliptique, munie de sa Polarisation principale
L. Soit

* 1*701 Y. *A°-L°r1-
er: k^C

Alors pour tout nombre reel 8 dans Vintervalle [3/tt, max (T, 3/tt)], on a

ix8 <3 log 8 + 6h(A) + 8, 66.

En particulier on aT < 6,45 max (h(A), 1) et T < 1, 92max(/z(A), 1000).

Demonstration. Appliquons le theoreme 3.1 ä (A, L). En ecrivant

log Po—(1/2) log(l

et en utilisant la concavite du logarithme, on a

— T' — - log < h(A) + - log avec := p~2.
6 2 — v j 2 3 [k : Q ^ °

er: k^C
La premiere inegalite de la proposition 3.2 decoule alors de la croissance de la fonetion

x i-^ (jx/6)x — (1/2) logx pour x > 3/tt, de l'encadrement T' > max (T, 3/tt) >
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8 > 3/tt et du calcul 3 log(2jr2^/3) < 8, 66. En ce qui concerne la premiere majora-
tion de T, on procede de la maniere suivante. Posons Y 6,45 et Z 1. Si T <Y,
l'inegalite est demontree. Sinon, comme Y > e, on a log T < T(log Y)/Y et donc,

par la premiere partie de la proposition avec 8 T,

Y 6Z + 8,66
T < — max (h(A), Z)." Z 7tY — 3 log Y v v 7 7

On verifie numeriquement que 6Z + 8,66<tt7 — 3 log Y et ceci donne le resultat.
Pour la derniere majoration, on utilise le couple (7, Z) (1920,1000).

Remarque 3.3. Soit x0 l'element du domaine fondamental de Siegel pour lequel la
courbe elliptique A0 est isomorphe ä C/(Z + raZ). La metrique sur tAa definie

par la Polarisation L0 correspond ä la norme ||z||2 |z|2/ Im x0 pour z e C. Pour

(a,b) g/2\ {(0,0)} on a ||a + br ||2 \a + bx\2/ Imrff > 1/ Im x0 avec egalite
si (a,b) (1,0). On trouve ainsi p(Aa, La)~2 lmX(j. Par suite la proposition 3.2

peut etre utilisee pour donner des estimations de T [k : Q]_1 Imrcr-

3.1.2. Nous allons maintenant nous affranchir de l'hypothese de Polarisation princi-
pale du theoreme 3.1 et en donner une forme plus maniable. Nous etudions dans un
premier temps la Variation de p par isogenie.

Lemme 3.4. Soient f : A —B une isogenie entre varietes abeliennes complexes et
L une polarisation sur B. Alors p(B, L) < KA.rO <(deg/)p(B,L).

Demonstration. L'application / se releve en un isomorphisme d/: tA tB tel

que d/(fiA) C ßB. Comme le conoyau de cette inclusion est de cardinal deg /
on a aussi C (deg/)_1d/(^A). Par ailleurs la forme de Riemann de /*L
s'obtient en composant la forme de Riemann de L avec d/ donc pour tout x E t&

nous avons ||v||/*L ||d/(x)||i_. Nous en deduisons p(A, /*L) min{ ||a: || l ; x ^
d/(^A)\{0}}. L'enonce decoule alors immediatement des deux inclusions de reseaux
ci-dessus.

Rappeions un lemme classique.

Lemme 3.5. Soit (A, L) une variete abelienne polarisee sur un corps algebrique-
ment clos. II existe une isogenie f : A —B et une polarisation principale M sur B
telles que L f*M et deg / h°(i4, L).

Demonstration. On fait le quotient par un sous-groupe lagrangien de K(L), voir [Mu],
pages 233-234.

Ces lemmes permettent de donner la forme suivante du theoreme d'Autissier.
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Proposition 3.6. Soit (A, L) une variete abelienne polarisee de dimension g sur un

corps de nombres k. On a

77p(Aa,La)~2 < llmax(l,h(
^ *cr:k^C

Demonstration. Notons T le membre de gauche. Si (A, L) est principalement
polarisee, alors le corollaire 1.4 de [Au] (consequence directe du theoreme 3.1 ci-dessus)
fournit

T < — 7p—tKÄ)+
3g

log (—)
TT (1 — £) 7t (1 — £) V £

pour tout £ avec 0 < £ < 1 (nous avons remplace hf (Ä) par h(A) et donc 2it2 par 2it
dans la formule d'Autissier). Nous choisissons ici £ 0,174 de sorte que la borne
devientr < 2,32/z(A) + 4,15g. Le passage ä une Polarisation quelconques'effectue
via les deux lemmes precedents. En effet, la moyenne qui definit T est invariante par
extension finie du corps de base k. Ceci nous permet de supposer que 1' isogenie donnee

par le lemme 3.5 est definie sur k. On a alors h{B) < h{Ä) + (1/2) logh°(A, L) et

p(AG, L0)~2 < p(Ba, Ma)~2 par le lemme 3.4, pour tout plongement o de k dans

Ainsi de la majoration ci-dessus appliquee ä (B, M) decoulent les estimations

T <2, 32(h(A)+ 1 \ogh°(A, L)) + 4,15g

< 2,32 (h(A)+ 1
logdegL A —Logg!) + 4,15g

f max(4,15g — 1,16logg!,0)\ / 7/ x< (3,48 + — )max(l,Ä(+),logdegL+).
V max(l,logg!)

Pour conclure, onverifie4,15g —1,161ogg! < 7, 52max(l, logg!) pour tout g > 1:
onprocedeparcalculdirect sig < 5 ; sinonmax(l,logg!) logg! > glog(g/e) >
g/2suffit.

La premiere assertion du theoreme 1.1 se demontre exactement comme ci-dessus

en choisissant £ 0,14 dans la formule d'Autissier (avec hp{Ä)). Ceci donne

T < 2,3hp{Ä) + 5,5g dans le cas d'une Polarisation principale et Ton conclut
ensuite de meme avec 5, 5g — 1,15logg! < 10,55max(l, logg!).

Pour la deuxieme assertion du theoreme 1.1, nous nous ramenons encore au cas

principalement polarise mais au lieu d'une isogenie nous utilisons l'astuce de
Zarhin : pour toute variete abelienne polarisee (A, L) il existe une Polarisation
principale M sur A4 x A4 teile que si i: A ^ A4 x A4 est l'injection sur Tun des 4

Premiers facteurs alors i*M L (voir par exemple la construction dans [MvdG],
(11.29), page 171). Comme nous l'a fait remarquer Pascal Autissier, ceci entraine

p(Aa, La)~2 < p((A4 x A4)G, Ma)~2 pour tout er: k C (puisque nous avons
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une injection isometrique de Qa^ dans ^(^4x^4)a)- Nous appliquons alors le corol-
laire 1.4 de [Au] avec s 1 — 3/tt qui fournit la borne 2hp{Ä) + 6, lg si A est

principalement polarisee et nous la multiplions simplement par 8 pour passer au cas

general.
Cette seconde faqon de proceder presente le grand avantage de faire disparaitre

la dependance en la Polarisation dans le majorant. Toutefois, dans la suite du texte,
nous utiliserons la premiere approche oü les constantes sont un peu meilleures (dans
la mesure oü degL A intervient de toute faqon par ailleurs).

3.2. Pente maximale. Nous introduisons ici la pente maximale qui jouera un röle
essentiel dans la preuve du theoreme-clef ci-dessous (theoreme 4.5) et dont l'estima-
tion repose sur une version du lemme matriciel.

Lorsque (A, L) est une variete abelienne polarisee sur un corps de nombres k, on
munit l'espace tangent tA d'une structure de k-übv6 vectoriel hermitien notee t^L)
ou, la plupart du temps, *4, lorsque la Polarisation sous-entendue est claire d'apres le
contexte. Pour ce faire, nous utilisons la structure entiere donnee par l'espace tangent
du modele de Neron de A (qui donne donc, dans le langage des fibres adeliques de

[Ga3], des normes en toutes les places finies de k). En une place infinie v, nous
utilisons la metrique induite par la forme de Riemann, decrite au paragraphe 2.4. II
n'y a pas d'ambigui'te car si er et ö sont deux plongements complexes correspondant
tous deux ä v alors les normes || • \\l,o et || • \\l,ö coincident comme nous l'avons
rappele au § 2.6.

Lorsque l'on dispose d'un fibre adelique E sur k nous pouvons lui associer ä la
suite de Bost deux pentes : d'une part sa pente (toujours normalisee) ß(E) definie

page 62 de [Ga3] et d'autre part sa pente maximale /xmaX(E) qui est le maximum
des pentes des sous-fibres non nuls de E. Nous utiliserons aussi ponctuellement les

autres pentes ß\ (E) de E pour i e {1,..., dim E} (voir la definition 5.9 de [Ga3]).
Nous souhaitons donc evaluer la pente et la pente maximale de tÄ mais il faut

faire attention que ces quantites ne sont pas preservees a priori par extension des

scalaires. Au contraire, nous souhaitons ne manipuler que des quantites invariantes

par une teile extension. Nous resolvons ce probleme comme dans le paragraphe 5.1.1

de [Bol] : pour calculer ces quantites, nous ferons toujours d'abord une extension
de corps de sorte que A ait reduction semi-stable. Sous cette condition, nos pentes
ne dependent plus du corps choisi (c'est la meme Convention que pour la hauteur de

Faltings stable).
Chaque fois que nous parlerons de la pente ou de la pente maximale de tÄ (ou

de son dual, de leurs puissances symetriques,...) nous ferons donc reference aux

pentes de tAK pour une extension finie K de k teile que Ak admette un modele
semi-stable. En pratique, ce leger abus d'ecriture n'engendrera pas de confusions car,

lorsque nous ferons appel explicitement ä la structure hermitienne sur z^, nous aurons

toujours au prealable fait une extension des scalaires assurant la condition de semi-
stabilite. Surtout, cette Convention nous permettra de donner des enonces invariants
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sans modifier notre corps de base (et donc nous n'aurons pas ä estimer le degre d'une
extension sur laquelle A acquiere reduction semi-stable).

Rappeions le fait suivant.

Lemme 3.7. Soit (A, L) une variete abelienne polarisee sur un corps de nombres.
On a

gß(kA,L)) ~h(A) - ^logh°(A,L) + | log TT.

Demonstration. Ceci suit facilement des definitions : voir l'enonce (D.l) de [Bol]
et une preuve page 715 de [Ga2].

On peut tirer d'un lemme matriciel une estimation de la pente maximale du dual
de Ta. Un enonce explicite est donne par Graftieaux comme suit:

Lemme 3.8. Si L est une Polarisation principale on a

Amax(^) <(g + l)h(Ä) + log 2.

Demonstration. Voir la proposition 2.14 de [Gr].

Nous passons au cas general par isogenie comme ci-dessus.

Lemme 3.9. Soient f: A B une isogenie entre varietes abeliennes sur k et M
une Polarisation sur B. Alors, pour tout i £ {1,..., g}, on a

Demonstration. Apres nous etre places sur une extension de corps convenable oü A et
B ont des modeles semi-stables, nous considerons Tisomorphisme d'espaces vecto-
riels d/ : tA tß- Pour chaque plongement er, l'application (d f)G est une isometrie
avec les normes relatives ä r et Ma (voir la demonstration du lemme 3.4).
D'autrepart, d/ preserve les struetures entieres puisque / s'etendenun morphisme
entre les modeles de Neron de A et B. Par suite la norme de d/ en une place ultra-
metrique quelconque est inferieure ä 1. Le resultat suit alors par inegalite de pentes
(voir par exemple la proposition 6.7 de [Ga3]).

Nous en deduisons l'enonce suivant.

Proposition 3.10. Si (A, L) est une variete abelienne polarisee on a

Amax(l(^,L)) < (g +r>{h{Ä) + 1
log h°(^4, L)) + 2g5 log 2.
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Demonstration. La moyenne des pentes d'un fibre adelique est egale ä sa pente. Ce

fait et la relation de dualite fii (t^A Ly) —fig-i + i(t(A,L)) conduisent alors ä

s-i
Amax(t(A,L)) Al (^,L)) L & ~ SKHA,L))-

i 1

Considerons la variete abelienne principalement polarisee (B,M) donnee par le
lemme 3.5. Par le resultat precedent, la somme ci-dessus est majoree par

s-i
^ßi(t(B,M)) Amax(ß(BiM)) + gß(ß(B,M))'
i 1

Le lemme 3.8 donne une borne pour le premier terme et le second se calcule avec le
lemme 3.7. On obtient

/W0(\L)) < gh(B) + 2g5log2+ h(A) + Logh

II ne reste plus qu'ä utiliser l'estimation de Raynaud < h(A) + j log h°(,4, L)
pour conclure.

4. Minimum essentiel

Nous enonqons le theoreme principal qui entraine les theoremes cites dans l'in-
troduction.

4.1. Minimum d'evitement. Soient A une variete abelienne complexe et L une
Polarisation sur A. Soient ||.|| i_ la norme sur l'espace tangent t& induite par L (voir
§ 2.4) et dL la distance associee.

Definition 4.1. Soit B une sous-variete abelienne de A. Le minimum d'evitement de

B, relatif ä (A, L), est le nombre reel

8(A, L, B) min {dl-» ^b) > tu G \ ^2b}-

Le minimum essentiel de (A, L) est 8(A, L) := supB 8(A, L, B) (la borne superieure
est prise sur toutes les sous-varietes abeliennes B de A, differentes de A).

SiB {0}, onretrouveleminimumabsolu8(A, L, {0}) p(A, L).Voici quelques
relations elementaires auxquelles satisfont ces minima.

Proprietes 4.2. Soient B, C des sous-varietes abeliennes de A.
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(1) Si C 7^ {0} et si B D C est fini alors on a 8(A, L, B) < p(C, L).

(2) On a 8(A, Li (g) L2, B)2 > 8(A, Li, B)2 + 8(A, L2, B)2 et, pour tout entier TV > 1,

on a

8(A, L0iV, B) Vr/V8(A, L, B).

(3) Pour i e {1,2}, soit (A;, L;, B;) comme ci-dessus. On a

8(Ai x A2, Li K L2, Bi x B2) min 8(A/, L/, B/).
1,2}

Nous avons toujours p(A, L) < 8(A, L) mais il n'est pas vrai en general que
P(A,L) < 8(A, L, B) (prendre A E x E pour une courbe elliptique E avec une
Polarisation produit L L0 K L0 puis B la diagonale; on a alors 8(A, L, B)
p(A,L)/V2).

Proposition 4.3. Soit B une sous-variete abelienne stricte de A. Soit b le degre de

Visogenie d'addition B x B1- -> A. Alors on a P(Bx,L)/b < 8(A, L, B). Enparticulier
on a

P(A, L)

(degL B)5
< 8(A, L, B).

Demonstration. Soit o) une periode de A qui n' appartient pas ä ts. Considerons 0)1,0)2
comme au § 2.2 attaches ä co et ä B. On a d|_(coJb) L/b car les espaces ts
et tB± sont orthogonaux. Par hypothese, on a co2 ^ 0 et donc ||tw2|| L > p(B-1, L) >
p(A, L). La deuxieme inegalite de la proposition decoule alors de la majoration b <
(degL B)2.

Etant donne une sous-variete abelienne B de A, de codimension t > 1, on pose

x(B) :=
degLB\
degL Ay

i/t

Proposition 4.4. Pour toute sous-variete abelienne stricte B de A, on a

x(B)8(A, L, B)2 < 2/V3

(si dim A > 2 onpeutremplacer 2/ \/3 par 1).

Demonstration. Notons t la codimension de B dans A. La quantite 8(A, L, B) est la

plus petite norme d'un element non nul du reseau £2A/ de tA/ts (vu comme \R-

espace vectoriel), muni de la norme quotient. Par consequent, le premier theoreme
de Minkowski donne Testimation

8(A, L, B)2 < y2tcovol(^A/^b)1^
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(y21 est la constante d'Hermite). Le covolume du reseau quotient est le quotient des

covolumes et, d'apres [BePh], l'on sait que covol(£2A) est egal ä h°(A, L) (idem pour
B). En revenant aux degres, la borne de Minkowski donne donc

x(B)8(A,L,B)2<y2t^-^
'

Si t 1, la valeur y2 donne la majoration voulue. Si t > 2, on majore

(g — t)!/g! par 1/t!. Si t e {2, 3}, on connait la valeur explicite de y2t :

y4 V2, 76 ^,
avec laquelle on verifie aisement que £ 1. En general, on dispose de la borne
de Blichfeldt ([GL], theoreme 2, p. 387) :

K2tt!_1/t £ —(t + !)i/t
TT

L'on peut alors conclure en observant que, si t > 4,ona(l+t)1/l < tt/2.

4.2. Theoreme-clef. Soit 04, L) une variete abelienne polarisee sur un corps de

nombres k. Pour un plongement complexe a: k ^ C et une sous-variete abelienne
stricte B de Aa, nous avons defini ci-dessus une quantite x(B). Nous posons ä present

x := min{x(B); B c A0}

qui ne depend pas du choix du plongement er mais seulement du couple (A,L).
Notons d'ores et dejä

(degL Ä)~l < x<(degL A)~lls

comme on le voit avec degLa B > 1 et x < x({0}).

Theoreme 4.5. Considerons pour chaque plongement complexe a: k ^ C une
sous-variete abelienne B[a] de A0, differente de Aa. On suppose que B[a] et B[ä]
se correspondent via Visomorphisme f: Aa ~ A& du § 2.6. Soient

\ codim B [a]

jc(5[ct])J

Alors on a

—— E f-0
<l3lg2g+6xmax(y,h(A),logdegLA,-A— ^ log degL(j ß [er] j.

er: k^C
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De plus, si g 1 ousix < 1/2141 alors on peut remplacer la constante numerique
131 par 23.

Notons que la condition sur les B[a] entraine 8^ 85- et La constante

1/2141 qui apparait provient de la demonstration de la consequence suivante.

Corollaire 4.6. Etant donne une variete abelienne polarisee (A, L) sur un corps de

nombres k, on a

—X< —^2 &(Aa,Lay2<23g2^+6xmax(l,/;04),logdegL
er: k^C

Demonstration. La minoration de la moyenne des ü(Aa, La)~2 est une simple ap-
plication de la proposition 4.4 (en minorant x(B[a]) par x). Pour la majoration,
observons que Ton a toujours

[FTöT ^ [FTÖ] p i°)"2
a:k^C a:k^C

car p(Aa, L0) < 8(^4^, L0). Par consequent, six > ll/(23g2g+6), le lemme matri-
ciel de la proposition 3.6 permet de conclure immediatement. Dans le cas contraire,
on a ou bien g 1 ou x < ll/(23g2g+6) < 1/2141. Pour tout plongement er

nous choisissons une sous-variete abelienne B[o] de A0 teile que x(B[cj]) x
(et donc 1). Dans ce cas on a degLa B[o] < degL A et, par definition,
§{A0, L0)~2 < 8(Ag,Lg, B[(j])~2. Le theoreme 4.5 donne alors le resultat voulu.

4.3. Premieres reduetions. Nous montrons ici que, pour etablir le theoreme 4.5,
nous pouvons supposer g > 2 et faire une extension finie du corps k.

4.3.1. Courbeselliptiques. Lorsqueg l,nousavonsautomatiquementB[a] 0

etx x(0) (degL A)_1. Par suite ^ 1 tandisque 8er p(Aa, L0). En outre,la
Polarisation L est une puissance de l'unique Polarisation principale de A, disons L0.
Ainsi L p®deg^A et donc p{A(J,L(J)2 (degL Ä)p(A0, (L0)cr)2. Finalement la
formule ä demontrer se simplifie donc en

77—77 Tp(A„,(U)ar2<23max(l,A(/l).logdegi

et eile decoule alors facilement du lemme matriciel pour (A, L0) (par exemple la

proposition 3.6 suffit). Nous supposons desormais g > 2.
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4.3.2. Variation du corps. Les donnees (A,L, (B[a])a: k^c) admettent une no-
tion naturelle d'extension des scalaires : si K est une extension finie de k alors on
definit (Ak, Lk, {B[o'])0r: k^c) en posant simplement B[o'] := B[nrf\k]. Alors le
theoreme est invariant par extension des scalaires. Ainsi dans la suite nous pourrons
faire librement une extension finie du corps k.

4.4. Strategie. La demonstration du theoreme 4.5 repose sur une construction de

transcendance, qui s'inspire du cas periodique de la theorie des formes lineaires de

logarithmes. Plus precisement, nous utilisons la Variante de la methode de Gel'fond-
Baker proposee par Philippon et Waldschmidt [PW], Variante qui permet d'extrapoler
sur les derivations (dans une direction bien choisie) plutöt que sur les points.

Schematiquement, cette methode consiste ä construire une fonction auxiliaire qui
est petite en Eorigine de tAa dans toutes les directions (jusqu'ä un certain ordre gT)
sauf une (en substance celle donnee par un element qui realise le minimum 8er) pour
laquelle l'ordre est bloque ä Ta T%0. Par le biais d'un lemme d'interpolation
analytique (en une variable), on montre alors que l'on peut s'affranchir de cette
derniere restriction, quitte ä remplacer gT par 7\ ce qui fournit des bornes (dites
fines) de la « premiere » derivee non nulle de la fonction auxiliaire en Eorigine. Apres
renormalisation eventuelle, cette derivee est un nombre algebrique et un lemme de

multiplicites assure qu'il est non nul. Ce nombre satisfait alors ä la formule du produit.
La majoration de ses valeurs absolues en les places /7-adiques du corps de nombres
ambiant k conduit par comparaison avec les estimations archimediennes fines ä une
inegalite brüte de laquelle est extraite l'information voulue (ici la majoration de la

moyenne des {^0ß0)2). Considerer toutes les places de k au lieu d'une seule avec,
en outre, des non necessairement egaux ä 1 est une des caracteristiques originales
de notre demonstration.

Nous avons perfectionne ce canevas sous trois angles : (i) nous avons introduit la
methode de la section auxiliaire, elaboree dans [Ga4], qui remplace celle des fonc-
tions auxiliaires, avec les avantages dejä evoques ä la fin de l'introduction, (ii) nous

apportons un nouveau lemme d'interpolation analytique, d'interet independant, qui
fera l'objet de la partie suivante, (iii) nous evaluons de maniere quasi-optimale les

rangs asymptotiques des systemes lineaires avec lesquels est bätie la section
auxiliaire. Ces evolutions permettent de travailler dans un cadre plus agreable qui elimine
naturellement certaines difficultes techniques (par exemple, il n'y a plus « d'astuce
d'Anderson-Baker-Coates »), tout en conduisant ä de bien meilleures constantes

numeriques qu'auparavant.

5. Prelude ä l'extrapolation analytique

Dans cette partie, nous etablissons le resultat crucial pour extrapoler sur les deri-
vees dans la demonstration du theoreme 4.5. II s'agit d'un lemme de Schwarz appro-
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che, de facture assez classique. On en trouvera par exemple une formulation plus
generale dans Tarticle de Cijsouw et Waldschmidt [CW]. Nous avons cependant besoin
d'une version significativement plus fine en vue des calculs explicites de constantes.
Pour cela, nous modifions la trame de la preuve de [CW] de trois faqons : en premier
lieu, puisque nous ne souhaitons extrapoler qu'en 0, nous ne majorons le module de

notre fonction analytique que sur un petit disque (de rayon 1 au lieu de 2S, dans

les notations ci-dessous); ensuite, nous remplaqons en fait ce disque par un domaine

plus complique le contenant (voir figure), pour eviter au mieux les contours d'inte-
gration, legerement contractes, qui apparaissent dans nos calculs de residus (formule
d'interpolation d'Hermite); enfin nous estimons de maniere tres precise les extrema
du polynöme auxiliaire de la dite formule (voir lemme 5.2).

Voici notre resultat, decline en une forme brüte et une forme legerement plus faible

que nous utiliserons plus bas. Si R est un nombre reel positif et si D(0, R) designe
le disque ferme {z e C; \z\ < R}, on note |/1r la borne superieure des \f(z) \ pour
z g D(0,R).

Proposition 5.1. Soient S et T deux entiers naturels non nuls, s un nombre reel tel

que 0 < £ < 1/2 et / : (C ^ C une fonction holomorphe. Alors on a :

i/b <4(
(S - l)!2 sh

- 1)!

En particulier, on a aussi

I f\s +
ST / shTT V

£ yCOS 7t £ J
max

yez. |j\<S
£<T

1

2

l/li < |/|s + 12Smax
V 4^ / jeZ, \j\<SV 7 1<T

2ll\ f{l\i)

On comparera avec [CW], p. 179-180, en prenant 8 l, k 2S — l, E
{1 — S,..., S — 1}, r S, R 8iS qui donne la meme puissance 2~2ST dans le

premier terme mais au prix de remplacer \f\s par |/|s5 ; dans le second terme la

puissance de l'ordre de 81^ devient 12r ; bien sür, rappelons que nous majorons
seulement |/|i et non \f\2s mais cela ne fait que peu de difference lorsqu'il s'agit
d'estimer les derivees en 0.

Commenqons par un lemme preliminaire.

Lemme 5.2. Soient S un entier naturel non nul et P n;=i-s(x -./) e ?in
(1) P(S) (2 S-1)! -P(-S).
(2) Si t e \k et \t \ < S alors \P(t)\ > (S — 1)!2tt_1 | sin(7r^)|.
(3) Siz G C^min(|z|,2|z—l|,2|z + l|) < 1 alors \P(z)| < (S—1)!2tt_1 sh(jr).
(4) 5/ k G Z et p G [R+ alors

min{|P(z)|; z g C et \z — k\ p} min(|P{k + p)|, \P(k — p)|).
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Demonstration. L'assertion (1) se passe de commentaires. Pour (2) et (3) ecrivons

P(X) X UjZl(X2- j2) (.S -1 y.2X(X2/j2 - 1). On rappeile aussi

que
°° / t2 \ °° 1

sinjr^ tG 1—— J et sh7r 7r|~~[(l + —J.
7 1

J
7=1 J

La relation (2) se reduit donc ä nr=5ii-^2/72i<i qui decoule bien de 11 | < S.

Pour (3) nous devons montrer |z | E[y=1 11 — ^2/7 21 5 YlJL\ (1 + 1 /j2)• Cette for-
mule etant claire pour |z| < 1 et invariante sous z i-> —z, nous pouvons supposer
|z — 1| < 1/2. Nous avons alors |z||l — z2| < (3/4)|l + z| < 15/8 <2=1 + l/l2
et il suffit donc de verifier |1 — z2/j2\ < l + l/j2 pour j > 2. En elevant au carre
et en simplifiant, ceci equivaut ä |z|4 — 1 < 2/2(l + Re(z2)). Enfin nous avons
|z|4 < (3/2)4 < 8 < 2j2 et Re(z2) > 0 car, par exemple, |Arg(z)| < tt/4. Passons

ä (4). Si |z — k\ p et x Re(z — k) alors

k-\- S—1

\p(z)\2 n t/2 + vx)-
j=k—S+1

Scindons E {k — S + 1,..., k + S — 1} en F {j e E ; —j e E} et G E\F
(chacun pouvant etre vide). On remarque que tous les elements de G ont le meme
signe donc la fonction x i-^ YljeG U2 + P2 + 2yx) est monotone (tous les facteurs

sont positifs car —p < x < p) et eile atteint son minimum en p ou —p. D'autre part,
si F ^ 0, on a 0 E F et

Y\U2 + p2 + 2jx) p2 P[ + p2)2 - 4

j£F jeF, j> 1

Nous obtenons donc une fonction paire minimale en x p et en x — p. En faisant
le produit, nous voyons que \P(z) \ est minimal en l'un des deux points donnes par
|x| p. C'est le resultat.

Demonstration de la proposition 5.1. Si S 1, l'enonce est tautologique donc nous

supposons S > 2. Notons T E C ; |£| S} et Tj E C ; |£ — j \

(1 /2) — s} pour | j | < S ainsi que Q PT avec la notation P du lemme 5.2. Comme
dans [CW], nous partons de la formule d'interpolation d'Hermite

IF12_ [+23. L v v f u~j)t
Q(z) 2inJrQ(t;)S-z 2in .^_s^ i\ JTj X) <z

valable pour z e C verifiant |z | < S et |z — j \ > (1/2) — sr pour 1 — S < j < S — 1.

Nous l'appliquons pour z tel que min(|z|, 2|1 — z|, 2|1 + z|) 1 :
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Trace approximatif de la courbe min(|z |, 2| 1 — z|, 2| 1 + z|) 1.

Elle est toujours distante d'au moins s des petits cercles.

Dans 1'integrale le long de T, nous avons |£ — z| > aS — (3/2) > S/4. De plus, les

assertions (1) et (4) du lemme 5.2 avec k 0 et p S donnent | Q(£) | > (2S — 1)\T ;

comme T est de longueur 2ttS, il vient

1 f f(0 dC

2in Jr Q(S)S-z
<

(2S — l)!r
I f\s.

Dans 1'integrale le long de Ty, nous estimons |£ — 7 | (1/2) — s < 1/2 et |£ —

z\ > s tandis que \Q(0\ > min(| QU~(1/2) + s)\,\Q(j + (1/2) - g)|) >
S — l)\2Tn~T(cos ns)Tparle lemme 5.2, (2) et (4). Comme Ty est de longueur

7t — 2tt £ < tt, nous trouvons

S-1 T-1J_ y- fwÜ) [
V- Jl

f(l\j) [ (t-j?

<

7 1-5 1=0

ST

r, Q(D K-z

s ((5 — l)!2cosjre,
max

jeZ, |y|<5, teN, 1<T 2H\

Pour obtenir la premiere majoration de l'enonce il reste ä utiliser \Q(z)\ <(S-
T sh(7r)r d'apres le lemme 5.2, (3), et ä rappeler que le principe du maximum

donne

l/li < sup{|/(z)| ; z g et min(|z|,2|l — z|, 2| 1 +z|) 1}.

Afin de passer ä la seconde formulation, nous ecrivons us 4^ (S — 1) !2 (2S — 1) !_1.

Uncalculimmediatfournit ws/us+i — 1 + 1/(2S) donc us decroitpuis us < 1(2 —

8/3. Nous avons donc

(S — 1) !2 sh tt 8shjr
tt(2S - 1)!

< i-S
3 7t

Parallelement nous utilisons s 1/12 et nous terminons par les estimations nume-
riques

> shjr
3 7t

< 10 et
shjr

cos(tt/12)
< 12.
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Remarques 5.3. Nous pourrions, comme dans [CW], supprimer ä la fois le T de

ST/s et le 2l en utilisant o ^ < 2- Ceci n'a aucune influence pour notre
application car T tendra vers l'infini et seule importera la limite de (1/T) log |/|i.
Pour cette meme raison, nous pourrions garder s dans la formule et le faire tendre

vers 0 infine.
En supposant S > 175 le premier terme pourrait etre remplace par 4-~ST\f\s.

Alternativement nous pourrions ecrire A{\5S~l^2A~s)T\f\s en majorant us plus
finement.

6. Demonstration du theoreme-clef

6.1. Choix des metriques. Soit (A, L) la variete abelienne polarisee du theoreme-
clef 4.5. Pour chaque plongement complexe a: k C, il existe une unique metrique
sur L(j, dite metrique cubiste, de forme de courbure invariante par translation et

rigidifiee ä l'origine : 0^ L0 ~ 0specC est une isometrie (avec la metrique triviale
sur 0specc)- Quitte ä faire une extension finie (voir 4.3.2), l'on peut supposer que le

couple (A, L) possede un modele de Moret-Bailly (A, X) sur k, au sens suivant:

• il existe un Schema en groupes A Spec 0^ semi-stable (donc lisse), de fibre
generique isomorphe ä A (ce Schema en groupes est un ouvert du modele de

Neron de A),

• il existe un fibre hermitien cubiste X := (X, (||.||Cub,o)o\ c) sur A de fibre
generique L (le terme cubiste signifie que la metrique ||.||Cub,o sur X (8)a C est

cubiste pour tout g : k C).

L'existence d'un tel modele est demontree au § 4.3 de [Bo2]. Soulignons que la
definition de fibre cubiste implique que X est rigidifie ä l'origine. Pour tout entier
n > 1, le k-Qspace vectoriel Hn := H°(A,L®n) des sections globales possede une
structure de fibre adelique hermitien Hn (Hn, (||.||^ v)v) sur k ; la structure

entiere est donnee par H0^, X®n) : pour toute place ultrametrique v de k, pour tout
s e H°(A, L®n) <g)k kv, on a

:= min {|A|„; A e \ {0} et s/X eH°(=A,(1)

(kv est le complete de k en la place v et 0V son anneau de valuation). La structure
archimedienne de Hn est donnee par Integration des normes cubistes : pour tout

a:k^C, pour tout s e H°(A, Lm)

m\jT-a := {JA ll^(^)ll?ub,ad^)

oü dx est la mesure de Haar normalisee sur Aa. Muni de ces normes, Hn a une
structure de fibre adelique hermitien et sa pente d'Arakelov normalisee a ete calculee
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par Bost (voir le theoreme 4.10, (v), de [Bo2]) :

-w—, 1 1 fngh°(A,L)\

Par ailleurs, comme nous Tavons vu au § 3.2, l'espace tangent tA de A possede
lui-meme une structure de fibre adelique hermitien tA {tA, (II-IIl,g)g: k^c) (dont
nous pourrons utiliser la pente sans risque en vertu de l'hypothese de semi-stabilite
faite ci-dessus). II existe un lien entre la metrique cubiste et la metrique ||.\\l,g- Si d
est la fonction theta (voir § 2.5) associee äs e H°(4,L0") (giff alors, pour tout
x exp^a (z) e Aa, on a

lk(x)||cub)ff |#(z)|exp(-^«||z||^CT)- (3)

6.2. Choix des parametres. Soit n un nombre reel > 1 tel que n xn soit un
entier. On pose T := [n] + l. Nous introduisons aussi le nombre reel 6 (log 2) / tt et,

pour chaque plongement complexe er: k C, le reel s0 (6^2 — 8)g_g^o-. Nous

signalons toutefois que ces valeurs exactes ne seront utilisees qu'au paragraphe 6.8.

D'ici lä, nous n'aurons besoin que de 6 > 0 et 0 < s0 < 1 pour tout er.

Notre derniere famille de parametres (entiers) est definie par Ta := [s0 n] pour
tout plongement er. Notons Ta < T. Le parametre n va tendre vers +oo en fin de

demonstration. En particulier Ton peut supposer que T, n et les Ta ne sont pas nuls.
Le choix de x assure le resultat suivant.

Proposition 6.1. II n existe aueune section non nulle de H°(A, L®n) qui s'annule ä

Vordre gT le long de tA en 0a-

Demonstration. Dans le cas contraire, le lemme de multiplicites de Nakamaye [Na]
assure Texistence d'une sous-variete abelienne Af de A, avec Af ^ A et Af definie
sur k, teile que T8~dimA' degL A' < (degL A)n8~dimÄ/. En ecrivant cette inegalite
au moyen de x (Af) on trouve

N + 1
^

x{Af) ^ ^

n x ~

qui est impossible puisque x(A') > x.

Soient a: k ^ C un plongement complexe de k et coG e {^Aa + tß[o]) \ lß[o]
de norme egale ä 8^. Cette condition implique que a)G appartient ä 1'orthogonal de

tß[o] dans (tAa, 1\\l,*). H est donc possible de fixer une base orthonormee fG :=
(/i,<7> • • • > fg,a) de tAa ayant les proprietes suivantes :

(i) (fhG,..., fdimß[a],a) est une base de tB[a],
(d) fg,a -= &V/ H&V\\l,g•
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6.3. Fibre adelique des sections auxiliaires. Au § 6.1, nous avons muni le k-
espace vectoriel Hn H°(A,L(g)w) d'une structure adelique hermitienne Hn
(Hn, (||.||HniV)v)- L'objectif de ce paragraphe est de munir Hn d'une structure
hermitienne differente en certaines places archimediennes de k, structure obtenue par
deformation de ||.||^ v. Une fois ce fibre adelique tordu defini, nous estimerons sa

pente d'Arakelov.
On pose v : dimk Hn n8h°(A, L). Soit V l'ensemble des plongements

complexes er de k tels que $^/eG < 9/x. On notera que V est stable par conjugaison
complexe. Ä chaque plongement complexe er: k C qui appartient ä V, l'onassocie
l'entier SG > 1, qui ne depend pas de n, defini par

S„ :=
'9 Sp

et le nombre reel aG := AT°Sa. Ce nombre aG ne depend que de la place v de k sous-

jacente ä er. Soit (si,... ,sv) une base orthonormee de (Hn <g)G C, ||.||^w G). Pour
tout i e {1,..., v}, soit : tAa C la fonetion theta associee ä S( (voir § 2.5).
Etant donne une base e (ei,..., eg) de tAa, un multiplet r (r\,..., xg) e Mg

et un vecteur z z\e\ + • • • + zgeg e tAa, on note ^Dg^(z) la derivee divisee•"^ r zses)-
Soit Ter 1'ensemble des couples (m, r) e TL x N8 verifiant les proprietes suivantes:

(i) m e {1 - SG,..., SG - 1},

(ii) si r s'ecrit (ri,..., xg) alors |r | := x\ + • • • + xg < gT + TG — 1,

(iii) xg <Tg- 1.

Soit vG le cardinal de Tff. On a l'estimation triviale vG < (4gSGT)8. Rappeions

que fG (/i,cr,..., fg,o) designe la base orthonormee de tAa introduite au § 6.2 et
considerons la matrice complexe aG de taille vG x v, de coefficients :

aa[(m,r),i] := ^D^i(mcoa)^ exp

pour tous (m, r) e Ta et i e {1,..., v}. Dans la suite, on notera qg le rang de la
matrice aG.

Definition 6.2. Posons a := (aG)Gev- Le fibre adelique hermitien Hn^a sur k est le
fibre vectoriel adelique d'espace vectoriel sous-jacent Hn et dont les normes sont les

suivantes : en une place v de k qui n'induit aueun plongement k C appartenant
ä V, on pose ||. ||^ v := ||. ||^ v

; si v est une place archimedienne de k tel qu'un
plongement complexe er: k (C associe appartienne ä V, la norme ||. \\jj v

est

definie par

||xDl + * * * + xv^v II
Hnt0[,v := (IX12 10^0"U(j (x) I2)
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pour tout x l(xi,..., xv) G Cv (la norme |.|2 est la norme hermitienne usuelle

sur Cv ou CUa).

Aux places archimediennes, la norme ainsi definie ne depend pas du choix de o
associe ä v. L'estimation de la pente de Hn^a requiert le lemme suivant, Variante de

l'inegalite de Cauchy pour les fonctions holomorphes.

Lemme 6.3. Soit o: k C un plongement complexe de k. Soit e {e\,..., eg)
une base orthonormee de (tAa, ||. ||L,a)- Soients G H°(34, L®n) <g)a C et & lafonction
theta associee. Alors, pour tout z G Ceg, pour tout r (ti,... ,rg) G M8, on a

~yDe^(z) exp{-jn||z|li,ff} < lklloo,aexp{|-«(g+ 2||z||L)ff)J

OÜ |k||oo,(7 := sup{||x(x)||cub,(j; x G Aa}.

Demonstration. L'inegalite de Cauchy pour la fonction holomorphe d se traduit par
la majoration

7iD^(z) — r\x\

1 _ A

sup{|;Hz + y)\\ y J2yiei e tA° et v }
i \

valide pour tout nombre reel r > 0. L'hypothese sur z donne ||z + JVII2 < ||z||2 +
2r||z|| + gr2.La relation (3) entre set üfournit alors l'estimation

\Hz + >')|exp{~«||z||i(ffJ < Iblloo.o- exp + 2r||z||l;CT)|,

ce qui demontre le lemme, en choisissant r — 1.

Un lemme de Gromov assure l'existence d'une constante c > 0, qui ne depend que
de (A, L), teile que, pour tout s e Hn <g>a C, on a ||s||oo,a < n° ||x|| fjn (J (voir [GS],
lemme 30). De ces resultats decoule la proposition suivante (rappelons que qg designe
le rang de la matrice aa).

Proposition 6.4. II existe une constante c > 0, qui ne depend pas de n, teile que la

pente d'Arakelov normalisee ß(Hn^a) de Hn 0L estminoree par

~ 22 n(lo§a^+ -gn(g + 2SM) -clogn.^v[k:Q]v\ 2

Demonstration. En vertu de [Ga4], § 4.2, la difference des pentes ß{Hnjtt) — ß(Hn)
est minoree par

~ 23 n- (log^ + °£)1/2 + Mop})
[K <UJV \ /
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oü 11aG11op designe la norme d'Operateur de : ((Cv, |.|2) -> (CUa, |.|2). Lacompa-
raison de cette norme avec celle de Hilbert-Schmidt conduit ä la majoration

||a<r||op < (vua)1/2max{|aCT[(m,r),/]|; r) e 1 < i < v}.

D'apres le lemme 6.3 et via la majoration de Gromov, le maximum qui apparait
ci-dessus est plus petit que exp {§«(g + 2S0§0)}nc {c' constante qui ne depend

pas de n). La partie {vv0)l/2ncf entre dans le c log n de la proposition, ainsi que la
difference entre log(l + c^)1/2 et loga^. Quant ä la pente ß(Hn), la formule (2)
montre qu'elle fait partie eile aussi de c log n.

6.4. Estimation de rangs. Dans la proposition 6.4 du paragraphe precedent est

apparu le rang qg de la matrice aG. Pour que cette proposition soit utilisable dans

la suite, il est important d'avoir une estimation soigneuse de qcr, plus precise que
Qg < min {v, v0}. Comme l'ont montre Philippon et Waldschmidt [PW], le choix de

x et son incorporation dans le parametre n — x n vont permettre de faire en sorte que
Qcf / v < 1. Etant donne un nombre reel e, on note

r(g,s) := g+ s)g -g8.

Si s< 1, nous avons facilement r(g, s) < g8e(l — e)_1-

Proposition 6.5. Pour tout plongement er: k C appartenant ä V, le quotient
QG/v du rang q0 de la matrice aa par la dimension v de H°(A, L®n) est plus petit
que r{g, e0)/^0 + o(l) oü o(l) designe unefonetion qui tend vers 0 lorsque n tend

vers oo.

Demonstration. Soit gG := dim B[a]. L'idee de Philippon et Waldschmidt est de

majorer qg par dim E — dimE oü E est l'espace des fonetions theta associees ä

L®n et F le sous-espace forme des fonetions dont toutes les derivees sont

identiquement nulles sur tß[o] pour r (0,..., 0, rga + i,..., xg) de longueur <
gT + 7^ — 1 avec, de plus, xg < Ta — 1. Pour — 1 < £ < gT + Ta — 1 on note
aussi Fi le sous-espace de E defini de meme en limitant la condition aux indices
de longueur au plus l. Nous avons donc F FgT+TG-\ C FgT+Ta-2 C ••• C
Fq C F-1 E. D'un autre cöte, qg dim E — dimG oü G est le sous-espace
forme des fonetions telles que Dz^d(ma)cj) — 0 pour tous (m, r) e Ta. L'inegalite
qg < dim E — dim F decoule donc de F c G : si d e F et (m, r) e Ta, on ecrit
mcocT e co + tß\G] pour co e Qag ot l'on applique la derivation Z)j^ ä la formule
d(z + co) aLa(z,co)nd(z). Maintenant si r est un indice intervenant dans la
definition de Fi et si d e Fi-\ alors la derivee Dl d definit une fonetion theta sur

Ja
tß[o] • on effet, comme precedemment, lorsque l'on derive par la formule de Leibniz
1'egalite d(z + co) aLa(z,co)nd(z) pour co e Qb[g] ot z g tß[o] alors toutes les

autres derivees apparaissant sont nulles par definition de Fi-\. Par suite on definit une
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injection de Fi-1 /Fi dans une somme de copies de H° (B [er], Lfn). En sommant sur

i et en calculant le nombre total X de copies, nous trouvons qg < dim E — dim F <
Xh °(B[o],L®n) X(degLa B[a])n8(T /ga\oü
X := card {xf (rga+i,..., xg) E tN^-^ ; \xf\ < gT + Ta — 1 et xg < Ta — 1}

/ + tg — l + g — gcA /gT + g — gcA

v g-gtj v g-go y
Si y G N alors le coefficient binomial (XyV) est equivalent ä xy/y! lorsque x tend

vers oo. En divisant q0 par v n8 (degL ^4)/g! et gräce au choix des parametres
T [n] + 1, Ta [^ern] et« in, nous obtenons alors

^ g) x ((* + ea)*-*° - x + 0(1)
V \g0) v J X8 80 degL A

lorsque n -> +00. Dans ce majorant, le dernier quotient vaut exaetement £~1 tandis

que le facteur qui le precede est majore par r(g, ecr) (en utilisant (^) < g8a).

6.5. Construction d'une section auxiliaire. Si E (E,(\\.\\^ v)v piacedek) est un
fibre vectoriel adelique sur k, la hauteur h^{x) d'un element x e E \ {0} est le
nombre reel:

^e(x) := ^ qj ^2 ^v ' ^
En notant A^/q le discriminant absolu de k, le lemme de Siegel de Bombieri-
Vaaler [BV] affirme qu'il existe x e E \ {0} tel que

hE(x) < -fi(E) + ^ log dim E +
1

log|A^/Q|.

En appliquant ce lemme ä E Hn^a et en utilisant les propositions 6.4 et 6.5, on a

le resultat suivant.

Proposition 6.6. II existe une section s E H°(^4, L®n) non nulle teile que

hHn,a(s) < E r(g^£g) (iog^a + jn(g + 2Sa8a)) + o(n).

6.6. Extrapolation analytique. Ä partir de maintenant, la section s qui apparait
est celle construite dans la proposition 6.6 du paragraphe precedent. Soit l 1'ordre
d'annulation de s en 0 (le long de ZU). La proposition 6.1 fournit Testimation t<gT.

Soit v une place archimedienne de k teile qu'un plongement er: k C induit
par cette place appartienne ä V. Soit $ : tAa -> C la fonetion theta associee ä s dans
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Hn<g>aC. Dans ce paragraphe, nous etablissons une majoration fine de la u-norme du

jet de s d'ordre i en 0. Ceci est rendu possible par la construction de s et de la norme
tordue sur Hn a qui implique que les derivees 4-Dl $(mcocr) sont « petites » pour' 4 J(7

(m, r) G Ter. Ä cette fin, nous allons utiliser le lemme d'interpolation analytique du

§5.
Soitr (ti,..., rg) e M8 delongueur |r| 7etposonsx' := (ti,..., rg_i, 0).

Pour zg C, considerons la fonetion entiere

1

f(z) := —pTfa&(zcoa)

oü fcT est la base orthonormee de tAa introduite au § 6.2 (avec laquelle a ete construite
la matrice aG). Notons DWa 8erDfgo la derivee dans la direction de ooa. Pour h e N,
la derivee divisee /zeme de f s'ecrit

1 1

7-f(/°(z)
hl

1 (/!)

D/ffDa,/K) 8(7-^D}(r &(za>a)

oü := r' + (0,..., 0, h). Lorsque h < Ta, la longueur de est plus petite que
|r | + Ta — 1 < gT + Ta — 1 et la derniere coordonnee de ce multiplet est plus petite

que 7^ — 1. Par consequent, si h < T0, les nombres

2jyD£W#(7Wüv) exp [-^n\\mcoa\\l ^ (4)

avec m e {1 — SG,..., SG — 1} sont des coordonnees du vecteur a^x) oü x est le
vecteur des coordonnees de s (voir definition 6.2). La norme hermitienne du vecteur
forme par les nombres (4) est donc plus petite que a~ „.En utilisant la

definition de aa ATn Sn, on trouve ainsi

1

8*A!
t{h\m)

1
Q/ \

TwjD/ct H*ncoa) <4 IMIexp 8a)2} (5)

valide pour tous m e {1 — Sa,..., Sa — 1} et h e {0,..., Ta — 1}. Par ailleurs, le
lemme 6.3 donne la majoration

|f\sa < PI exp + 25^8(7 + g)|.

Comme nous 1' avons vu avant la proposition 6.4, la norme || s ||
oo,cr peut etre remplacee

oü c > 0 est une constante qui ne depend que de (A,L).par rf \Hn,v -< nc ' Hn ,a->v

La proposition 5.1 appliquee ä f et aux parametres S0 et T0 et l'inegalite de

Cauchy
^

ffe)
Tg!

(0) < if ii



Vol. 89 (2014) Theoreme des periodes et degres minimaux d'isogenies 375

montrent alors que 8^ | -7DI d(0)\ est au plust • J(J

T

(i^") n2CMHn,a,vm{l^°}T°+ 2^a8a +g)}.

Cette estimation est valide pour tout r (V, xg) e Ng_1 x N de longueur i. En
l'utilisant si rg > T0, mais en prenant plutöt (5) (avec m — 0) si rg h < Ta, on
obtient dans tous les cas la borne

Id^O)
12

4S(J J
11 " Hnt0l,v '<1-^-1 n2c||x||f? max I 1

1 \l
'8~j exp{fw^8^ + 2Sa8<7 +^)}'

(6)

Nous allons la traduire en termes d'une majoration de la norme du jet de s d'ordre

l en 0. Commenqons par rappeler la definition algebrique d'un jet de section dans

un cadre general. Soient m un entier naturel, A un Schema sur S et £ un faisceau
inversible sur A. On suppose qu'il existe une immersion fermee e: S A. Notons
J le faisceau d'ideaux sur A defini par e et £2a/s le öyi-module des differentielles
relatives. Lorsque A S est lisse le long de e (J regulier), le quotient Jm+1)

est isomorphe ä la puissance symetrique Sm(*QA/§). Une section s e H°(A, L)
s'annule ä l'ordre m le long de e si s e H°(A, 3m ® £). Dans ce cas, le jet d'ordre m
de s en e, note jetm s(e), est l'image de s par l'application composee

H° (A, Jm <8> L) —» H° (S, *(3m/3m+1) ®

—> H° (S,Sm (*QA/S)®*JI).
Nous notons expa: tAa -> Aa l'application exponentielle de Aa. L'element
d de H°(tAa, exp* L®n) a un jet d'ordre i en 0. En considerant la base duale (ortho-
normee) f£a) de fgt<T), on a

jet^(0) £ f-7D/^(°)) (/iV,a)Tl •••(/;,e Sl(t\) ®a C

Ir|= Vr" J

(dans cette somme, r (74,..., xg)). La norme de ce jet est egale ä celle du jet
de s car L0 est rigidifie isometriquement en l'origine. Les normes sur la puissance

f —
symetrique Sl(tsont les normes quotient de t\ (voir [Ga3], p. 45). En notant

Si(tyA) le fibre adelique hermitien obtenu, on a alors

lljetV0)lls*(£)(„ < (g^j^max ^0(0)
De plus, gräce ä la proposition 4.3, on a

(7)

max
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De cette Observation et des majorations (6) et (7) decoule l'enonce suivant.

Proposition 6.7. II existe une constante c > 0, qui ne depend pas de n, ayant
la propriete suivante. Soit v une place archimedienne de k teile quun plongement
a: k ^ C induit par v soit dans V. Le premier jet non nul jet^(0) de s en 0 est de

v-norme inferieure ä

12r<Tnc((degL(j B[o})2 maxjl,
1

1)
V pyAfjjLfj) )J

X \\S\\Hn,a,veXv{-^n(S^l+ 2<Sa8a + g) - 7^log 4j.

6.7. Estimation de la hauteur du premier jet non nul. Le paragraphe precedent a

ete consacre ä majorer la norme du premier jet non nul jet^(0) de s en 0 en certaines

places archimediennes de k. Ces normes ne sont qu'une partie de la hauteur du jet:

iet^(0))
| Y~Q~]L[kv ' ^»1 lo§

Ici nous estimons les normes restantes en distinguant selon leur caractere archimedien

ou ultrametrique.

6.7.1. Majoration de la norme en une place ultrametrique. Soit v une place
ultrametrique dek. D'apres laformule (1) donnant \\s\\fp v, la section s £ H°(A, L®n)
H°(A, L®n) <g>k kv s'ecrit Xs' avec s' e H0^, X®n) <g>&k 0V de norme 1 (0V est

l'anneau de valuation de kv). Notons Av A x Spec 0V, cv sa section nulle et Xv
le faisceau inversible sur Av induit par X. Vu la definition du jet de s' appliquee au

quadruplet (A, S, c, L) (Av, Spec 0v,cv, Xv), l'element jet^ s(0) vu dans Sl(t^)
est egal ä A.jet1 sf(^v) avec jet1 sf(cv) e Sl(t^) (par lissite de Av -> Spec0v ;

nous avons omis *XV car X est rigidifie en Eorigine). La norme u-adique de jet£s(0)
est calculee relativement au modele entier Sl(t^) de Sl(t^) et on a 1'estimation

||jetfs(0)||^^>i; < |A|„ II^HHnt0liv

On peut reformuler cette majoration en disant que la taille du sous-schema formel
induit par Av vaut 1 (car Av est lisse le long de l'origine), ce qui entraine l'integralite
des jets (voir [Bo4], lemme 3.3).

6.7.2. Majoration de la norme en une place archimedienne. Soient v une place
archimedienne de et a: ^ C un plongement complexe associe. Au moyen de

Eestimation (7) du jet de s en 0 ä l'ordre l et via le lemme 6.3, on a

||jetfs(0)||^(^r)>v < ^
^ j

^enng/2\\s\|oo,ö-.
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Le lemme de Gromov fournit alors l'existence d'une constante c > 0, ne dependant

que de (A,L), teile que

HjetVo)!!^^ <e*ngl2r\c\\s\\SnjatV. (10)

6.7.3. Hauteur du jet. En regroupant les estimations (8), (9) et (10), la hauteur du

premier jet non nul verifie

Vdp<Jet^(°))

E hHn,a (s) + c log n + J2 log degL<7 B [a]

+
<U)

pour une certaine constante c > 0 qui ne depend pas de n.

6.8. Conclusion. Rappeions que la pente maximale /xmaX(E) d'un k-übv6 adelique
E est le maximum des pentes des sous-fibres non nuls de E. En considerant, pour e e

£'\{0},ladroite/:.emuniedesmetriquesde£,,ona—h^(e) fr(k.e, (||.||^ v)v) <

Amax(^). En appliquant ce principe ä E et e jet^x(O) on trouve

hSHl^)(iet^(0))> -Amax(St(t^)). (12)

En outre, on connait une borne pour la pente maximale de la puissance symetrique
£eme a(jelique hermitien, qui ici s'ecrit

Amax max Qa) + 2 logg)

(voir [GR]). Dans la suite on utilisera le majorant gT(max {0, Amax(^)} + 2 log g).
On compare cette majoration ä Testimation (11) de la hauteur de jet^x(O). On fait
intervenir la majoration de h fjn a

(x) de la proposition 6.6 dans laquelle est integree la

valeur de aG AT(jS(J On obtient ainsi la version « depliee » de l'inegalite (12), que
Ton divise par n. Puis on fait tendre n vers +oo. De plus nous utilisons ä present la
valeur de r (g, s) definie avant la proposition 6.5. Le choix explicite de s0 (§ 6.2) est fait
pour donner la borne r (g, Sa)!;'1 < 1/2: on verifie eneffet (g+(6^2—8)g~g£a)g <
g8 + ^cr/2 par calcul direct si g 2 et en utilisant r(g, s) < g8s( 1 — s)_1 si g > 3.
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Nous pouvons alors ecrire le resultat brut de la maniere suivante. Posons

S V-, 1

Ki :=gmax {0, ßmax(t\)} + 2glog g + g ^ log max J1,
\h • Q] aey

{ p(A0,L(J))

(13)

et

'-g + X MaCSA + 2) + £ \ig + 2Sff8ff).

Alors on a

*2' ° ' [k:' [£ ; Q] 2'
L J creV L J aeV

log 2 x—> TT

[FTo] E e<^ ^ (14)

Posons

"-ra.?,©1
En utilisant [a] > a — lpoura e [R et au moyen de la definition de SG [6s0/{x8^)]
et de la borne 2s0 < g~8, on a

log 2 „ 1 \
(15)

En utilisant l'inegalite de Cauchy-Schwarz, on obtient une majoration simple de K2

(!)'3g 3 QsfM,
«2 < y + + 1 - M.

V, „ /Y 3tt log2\ 3tt0 /—"(los2" T) s (" + Tgx + 1F) +

En reportant ces estimations dans (14), on trouve

9M
I log 2 I < I Ni -I px 4-

2g*

puis, avec le choix de 6 (\og2)/n,on a

(3nx\r— log2\M — I K/M < —I Ki H gx H

Vlog2/ (log2)2V 4 2g£ /
Fait: Soient a, ß desnombres reelspositifs. Si M —a\[~M < ß alors on a

2

(16)
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Le majorant de M est le carre de la racine positive du trinöme X1 — aX — ß, ce

qui justifie le fait. Ici, ce resultat fournit la majoration

2nx f ^ 3TT log2)\ / IStvx /" 3nx \M < ——^T^-^max 1105, Ni + —gx +
^ jj \lttxt + \l 1 +

(log2)2 V { 4° 2gSj/\V280 V 280 J

Nous nous plaqons tout d'abord dans le cas oü x < 1/2141 (le cas restant sera etudie
ä la fin de ce paragraphe). La borne ci-dessus devient

3 TT log 2)
M < 13, 2x max \ 105, Ni H gx + ^

4 * 2g* V

Par ailleurs, en revenant ä la definition de V (§ 6.3), si o $ V, on a

(er XS(J XIX

2(log2)gS

Cette majoration couplee avec la borne obtenue precedemment pour M donne

— E f-j2

(17)

[k'^o:k^C
< 13, 2x(maxj 105, ^- V l 4 2g8 I 26 (log 2)g8)
< 13,2x max (106, Ni + 1/7 + 3jrgx/4).

On en deduit

TiAtT E (1r) < 56, lg2^max{106,»1 +1/7 + 3^/4}.lk:QK:7^CUJ
II ne reste plus qu'ä estimer Ni pour conclure.

Proposition 6.8. On a

Kl £ 0, M-/' m„: I /|M I, lug Jcg, A: +
2"'' V logdegL ß[o],

l* : Q1 „Tic
Demonstration. La majoration de Ni repose sur la definition (13). Le premier terme
avec la pente maximale du cotangent est estime par la proposition 3.10 et Ton utilise
la majoration h°(^4, L) < degL A. En posant h max(l, h(A), log degL A), on a

-E_ logmax(l ,p(Aa,L
er: k^C

<max(l,log-E— J2 P(Aa,La) 2)
er: k^C

< log(llh)
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gräce ä la proposition 3.6. On aboutit alors ä la majoration

^ ^ 3g(g + \)h +g\ogh2g^Rl- 2
+ \kTQ] ^

er:

g log 12
+ 2g6 log 2 + 2g log g + | log 11 +

La derniere constante est majoree par 1, 48g6. De plus (3g (g + 1 )h + glog/z)/2
est plus petit que 0,147g6/z (les coefficients numeriques sont obtenus avec g 2

et log/z < A/e). Lorsque x < 1/2141, on note que h > logdegL A > — logx >
log 2141 puis 0,147 + 1,48/ log 2141 < 0, 34 qui donne la proposition.

Le majorant dans cette proposition est toujours superieur ä 0, 34 x 26 log 2141 >
106— 1/7. Via l'inegalite (17) et laborne 0, 34g6 + 2g + 1/7 + 3jrgx/4 < 0,405g6

pourg > 2, onendeduitle theoreme 4.5 (sousl'hypothesex < 1/2141) enobservant

que 0,405 x 56,1 < 23.

Dans le cas oüx > 1/2141, nous utilisons x < (degL Ä)~llg < 1/s/l. Nous

menons les calculs de la meme maniere, seules les constantes numeriques evoluent
selon le tableau suivant:

x < 1/2141 13,2 56,1 0,34 0,405 23

x < 1/V2 17,8 75,6 1,613 1,73 131

6.9. Cas de la dimension deux. Dans ce paragraphe, nous etablissons une Variante
du theoreme 4.5, dans le cas particulier utile pour l'application aux theoremes d'iso-
genies elliptiques.

Proposition 6.9. Supposons que g 2 et que degL A > 1010. Pour chaque plonge-
ment a: k ^ (C, soit B[a] une sous-variete abelienne de Aa teile que x(B[a]) x
et rappelons que designe min {da(co, tß[o]) \ ^ &Aa \ Ib[o]}- Alors on a

—3— ^ _L < I778x(max{1000,/tmax(^)} + 1,61 + logdegL
L ^

a:k^C a

+ rT

^ V logmaxfl,—— -V\.
[fc:<QL:Jfc^ p(Aa,La)))

Demonstration. Nous reprenons la demonstration du theoreme 4.5. Nous n' apportons
aucun changement aux paragraphes 6.1 ä 6.7. L'invariance de l'enonce par extension
de corps utilisee au paragraphe 6.1 reste valable pour la presente proposition en raison
de notre Convention sur la pente maximale.

Nous pouvons alors modifier les estimations du paragraphe 6.8 ä partir de

l'inegalite principale (14). Comme x(B[a]) x, tous les valent 1 et en particulier
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s0 est independant de er. Nous notons ici simplement s cette valeur commune :

s (3^2 — 4)/2. L'egalite x(i? [er]) x fournit aussi degLa B[o] < ^degL A. Ces

considerations permettent de voir que

Ki < Kx := 2max{1000,/xmax(^)} +
2 ^ logmaxjl,——-

[*:Qh:fcc 1

+ 2 log degL A + 3, 08

(oünousemployons41og2 + £logl2 < 3,08). Notons m := (J^v^cr2) /[^ :

Nous avons alors la majoration

3 Os^/m (6sx2
N2 < 3 H M — m.

x (t)'
Lependant de (15) est (^aeV SG)/[k : Q] > {6sm)/x — 1 etl'inegalite (16) devient

3x ,— 2x ^ 3ttx\

Le fait qui suit l'inegalite (16) et la minoration Ni > 2000 conduisent ä la borne

2x /- _ 3tTX\ / 3 / 7TX /~ 9X7T \
/77 < ———— 1^1 H- $£7T + X — */ —|— -%/ 1 —|— I

— 7t(0e)2 V 2 7 y2 V 4000 V 16000 j
Pour passer de m ä la somme sur tous les plongements er: k C, nous devons

ajouter les termes 8~2, er g V, qui sont plus petits que x/{6e). On obtient donc
finalement

2* ^ 30 sie 3jtx\
: <Qi "

o:k^C G

(3 / 7TX / 9X7T
x 71/ "77~^7" + t/1 +

2 V 4000 V 16000 J

Pour conclure, il reste alors ä observer que x est plus petit que (degL A)~1^2 < 10~5

et ä remplacer les parametres 6 et s par leurs valeurs. Apres estimations numeriques,
nous aboutissons ä la formule de l'enonce.

6.10. Demonstrations des theoremes 1.2 et 1.3 de Pintroduction

6.10.1. En premier lieu, le theoreme 1.2 decoule du corollaire 4.6 et de l'es-
timation g < 2max(l,logg!) qui montre que h{Ä) hp{A) + glog^jr <
log(7T£) max(l, hp (A), log degL Ä). Nous pouvons ainsi remplacer la constante nu-
merique 23 par 50 et h (A) par hp (A) et il ne reste plus qu' ä majorer x par (degL A)~1^8

pour conclure.
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6.10.2. Deduisons maintenant le theoreme 1.3 du theoreme 1.2 que nous venons
d'etablir.

Dans le cas oü g 1, le lemme matriciel donne (comme au § 4.3.1) bien
mieux. Par exemple avec le theoreme 1.1 nous avons degL degL A < 14[k :

Q]|M|£ a max(l,hp(Ä)). Pour la suite, supposons g > 2, notons d degL A& et

montrons dans un premier temps :

di/dimAa) < S0g2g+6[kf : Q]||ty||£}(7omax(l,Ajp(i4),logd).

II s'agit d'appliquer le theoreme 1.2 ä (A^, L\am) en remarquant 8(^4^)^/, LaA) <
IMIl,<70- Lorsque A AM cela nous donne exactement la formule ci-dessus. Si-

non nous utilisons la derniere inegalite du § 2.3 pour ecrire Iif(A(0) < hp{Ä) +
logh°(^4w,L) + 3g/2 < (3g/2 + 2) max(l, hp(Ä), logd) et l'on conclut avec

(dirn^)2dim^+6(3g/2 + 2) < g2g+6.
Pour passer äl'enonce de notre theoreme, ecrivons pour allegerC 50g2g+6[k' :

Q]|M|2 ^.Sid1/^- < 3,9g3C alors le theoreme est acquis par 3, 9x50 195.

Sinon

jjl/dim Am ^1/dim AM

log d (dim Aa) log h (dim A^) log C < 0,221 h g log C

(oü l'on utilise log(3, 9g3) < 0, 221 x 3, 9g2). Nous en deduisons donc

0, 779d1^dim"4a> < C max(l,/z77(^4),glogC)

< 3g3 Cmax(l,hF(A),log([k' : <Q]|Mll,ao))

et l'on conclut par (3/0, 779) x 50 < 195.

7. Degres minimaux d'isogenies elliptiques

Dans cette partie, nous etablissons le theoreme 1.4 et son corollaire.

7.1. Rappels sur les isogenies de courbes elliptiques. Soient E\ et E2 deux
courbes elliptiques sur un meme corps de nombres k. On note Hom(Ei, E2) l'en-
semble des morphismes de groupes algebriques <p: Ei -> E2 sur une clöture alge-
brique k de k. Un element non nul de ce groupe est une isogenie. Le degre d'une
isogenie est le cardinal de son noyau. On pose aussi deg(0) 0. Pour n e TL on
note [n\ e Hom(£'/, Ei) (1 < i < 2) le morphisme de multiplication par Ona
deg[n] n2.

Lemme 7.1. II existe une unique bijection Hom(Ei, E2) -> Hom(E2, E\),(p i-> cp

teile que
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(1) (po <p [deg q>\

(2) deg <p deg cp

(3) cp et cp sont definis sur les meines extensions de k.

Demonstration. On pose Ö 0. Si (p est une isogenie, le groupe fini Ker (p est de

cardinal deg cp donc son exposant divise deg cp donc Ker cp C Ker [deg cp], Par suite il
existe une unique factorisation de [deg cp] ä travers cp que Ton ecrit (p o <p [deg cp],

Si (p est defini sur une extension kf de k alors il en va de meme de (p puisque ses

conjugues au-dessus de kf realisent la meme factorisation. De plus on a (deg<^)2

deg[deg<^] deg<£ o cp (deg tp)(deg cp) qui donne (2). Par ailleurs, cp o (p o (p

(p o [deg<^] [deg 99] o cp donc, par surjectivite de cp, Ton trouve cp o (p [deg 99]

(dans Horn(E2, E1)). Ceci montre (p — <p et donc que Ton a une bijection. De plus
(p est egalement defini sur toute extension oü (p est defini, ce qui donne (3). L'unicite
est assuree par (1) si cp / 0 et par (2) sinon.

Dans la suite, nous supposerons toujours que E\ et E2 sont isogenes c'est-ä-dire

que Hom(iii, £2) 7^ {0}. Dans ce cas, l'ensemble {degcp ; cp e Hom(Ei, E2) \
{0}} C N \ {0} admet un element minimal A (qui est aussi minjdeg \j/ ; \j/ e

Horn(E2, E\) \ {0}}). Une isogenie cp e Hom(£'i, E2) de degre A sera dite
minimale. Une isogenie est dite cyclique si son noyau est un groupe cyclique.

Lemme 7.2. Une isogenie minimale est cyclique.

Demonstration. Soit cp une isogenie minimale. Le groupe Ker cp est un sous-groupe
de Ker [deg cp] — (Z/ deg^Z)2 donc isomorphe ä Z/aZ x Z/Z?Z avec a \ b \

deg cp. II contient donc un sous-groupe isomorphe ä (Z/aZ)2 qui est necessairement

Ker[a]. Ainsi Ker[a\ C Ker^? donc il existe une factorisation cp cp' o [a\ avec
cpf e Hornel, E2). On a deg cp a2deg^9/ donc, par minimalite, a 1. Ceci
montre bien que Ker cp est cyclique d'ordre b.

Pour la suite, nous distinguons deux cas :

(1) E\ et E2 sont sans multiplications complexes. Ici Hom(£'i, E2) est un Z-
module libre de rang 1.

(2) Ei QtE2 sont ä multiplications complexes. IciHom(£'i, E2) estunZ-module
libre de rang 2.

Proposition 7.3. Dans le cas (1), toute isogenie cyclique est minimale. II ny a que
deux isogenies minimales <p et —<p. II existe une extension kf de k de degre 1 ou 2

teile que : toute isogenie cp: Ei —> E2 est definie sur k'; si kf ^ k aucune isogenie
n'est definie sur k. Dans le cas (2) il existe une extension k' de k de degre dans

{1,2,3,4,6,8,12} teile que toute isogenie cp: Ei —> E2 est definie sur k'.
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Demonstration. Dans le cas (1) soit cp minimale. On a Hom(i?i,i?2) Z.cp et

deg ncp n2 deg cp pour «eZ donc cp et —cp sont les seules isogenies minimales. Si

\n\ > 1, Ker(ncp) contient Ker[n] ~ (Z//iZ)2 qui n'est pas cyclique donc ncp n'est

pas cyclique. En general, le groupe de Galois Gal(k/ k) agit sur Hom(Ei, E2) — ~%-m

dans le cas (m), m e {1,2}. Ceci donne un morphisme a: Gal(k/k) -> GLm(Z)
dont le noyau est de la forme Gal{k/k') avec k' extension galoisienne finie de k.
Le groupe Gal(kf /k) est isomorphe ä l'image de a. On sait qu'un sous-groupe de

GLi (Z) ~ Zx est de cardinal 1 ou 2 tandis qu'un sous-groupe fini de GL2(Z) est de

cardinal dans {1,2, 3, 4, 6, 8,12} (voir [Sei]*). Ceci donne l'assertion sur le degre
de k'. Dans le cas (1), si k' ^ k, alors l'element o e Gal(k'/k) \ {id} agit par
o(cp) —cp sur Hom(Ei, E2). Par suite, si cp ^ 0, on a o(cp) ^ cp donc cp n'est pas
definisur/:.

Remarque 7.4. Pellarin (voir remarque fondamentale, p. 211 de [Pe2]) affirme que
dans le cas (1) l'on a toujours k' — k. C'est faux car en fait sur tout corps de

nombres k il existe deux courbes elliptiques sans multiplications complexes qui ne
sont pas isogenes sur k mais le sont sur k. Pour le voir, choisir E\ sans multiplications
complexes donnee par une equation de Weierstrass y2 x3 + ax + b; choisir
c e k \k2 et definir E2 par cy2 x3 + ax + b. L'application (x, y) (x, c~l^2y)
decrit un isomorphisme E\ E2 defini sur kf k(c^2) mais pas sur k (il differe de

son conjugue (x, y) i-^ (x, —c~1^2y)) donc d'apres la proposition aucune isogenie
Ei E2 n'est definie suvk. Si l'on veut des exemplesoüle degre minimal d'isogenie
A soit arbitraire, on etend k pour que E\ ait un point de torsion P d'ordre A rationnel
(et l'on choisit c ensuite). Alors E[ E\/ZP et E2 sont definies sur k, isogenes

sur k. Le degre minimal est A car E2 E\ —> E[ est cyclique de degre A mais
elles ne sont pas isogenes sur k car sinon E\ et E2 le seraient aussi (car E\ et E[
sont isogenes sur k).

7.2. Cas non CM : lien avec les periodes. Dans la Situation precedente, on choisit

un plongement öo: k C. On abrege £2/ £2(^.) pour i e {1,2}. Nous

posons A El x E2. L'espace tangent de Aao s'ecrit tA(Jo t(Ei)ao © t(Ei)ao ©

kE2)ao © kE2)a0 et contient le reseau des periodes &Aao ^f2 © &2 2- Si co

(coii, co\2, o)2\, co22) ^ on note A^ la plus petite sous-variete abelienne de AOQ

dont l'espace tangent contient co. Cette variete abelienne complexe est definie sur un

*Si G C GL2(Z) est fini alors H G C1 SL2(^) est d'indice 1 ou 2 dans G ; il suffit donc de voir que H
est cyclique d'ordre 1,2,3,4 ou 6 et meme, en considerant les valeurs propres (racines de l'unite de degre 1 ou 2

sur Q) qu'il est cyclique; on pose A E,b<eH r ;si B e H alors r BAB A ; on ecrit A rCC avec
C G GL2(R) donc CBC~l G S02([R) pour B G H ; ceci montre que H est isomorphe ä un sous-groupe fini
de S02(R) ~ [R/27rZ donc il est cyclique. On verifie que les valeurs de card G sont toutes atteintes ä l'aide de

sous-groupes des groupes suivants : Gi de cardinal 8 est engendre par K 0 et 0 ^ et G2 de cardinal

12 est engendre par ^
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corps de nombres : si nous notons kf le plus petit sous-corps de C contenant c>o(k)

sur lequel Atö est definie alors nous voyons Atö comme une variete abelienne sur kf
et la variete abelienne complexe de depart (sous-variete de Aao) s'ecrit (A^)^ si <Tq

designe le plongement de kf dans donne par la definition (il etend <t0 lorsque Ton
voit k' comme une extension de k).

Rappeions que A designe le degre minimal d'isogenie entre E\ et E2. Si nous

supposons que E\ et E2 sont sans multiplications complexes (cas (1) du paragraphe
precedent), alors le lien entre A et AM est donne par l'enonce suivant.

Theoreme 7.5. On suppose que (oon,oo i2) est une base de et (0021,0022) une
base de Q2. Alors il existe une extension kf de k de degre 1 ou 2 teile que :

(1) Afy) est definie sur k'.
(2) Afy) est isomorphe sur k' a E\ x E2.

(3) A& f! ({0}2 x E%) estfini de cardinal A.

Demonstration. On choisit pour k' 1'extension sur laquelle sont definies toutes les

isogenies E\ —> E2 et E2 -> E\. La sous-variete abelienne A& est l'image d'un
endomorphisme de A. Celui-ci est donne par 16 morphismes Et -> Ej avec 1 <

i,j < 2 donc est defini sur kf et, par suite, il en va de meme de Atö. Ceci assure

(1). En ce qui concerne (2) et (3) voyons d'abord qu'il suffit de les etablir pour une
seule periode 00. En effet, si 00 et oo' satisfont les hypotheses du theoreme, il existe
deux isomorphismes fi : Ef Ef (1 < i < 2) tels que l'application tangente d/ ä

/ /1 x f2 envoie 00 sur 00' : d f(oo) 00' (l'isomorphisme fi realise simplement
le changement de base de (oot 1, ool2) ä (oo'lX, oo'l2)). Ainsi l'espace tangent ä une sous-
variete abelienne B de A contient 00 si et seulement si l'espace tangent de f(B)
contient 00'. Ceci montre /(Aw) A^ et, en particulier, AM et A^ sont isomorphes
sur leur corps de definition commun kf (/ G End(A) est lui defini sur k). D'autre part
on a evidemment /({0}2 x Ef) {0}2 x E\ donc les ensembles Atö D {0}2 x E\
et Atöf fl {0}2 x E\ sont en bijection. Tout ceci montre bien que (2) et (3) sont vraies

pour 00 si et seulement si elles le sont pour 00'. Nous allons donc les etablir pour
un 00 particulier de faqon ä ce que Aw admette une description tres simple. Soient

pour cela cp: E\ —> E2 une isogenie minimale (sur k') donc avec A deg</9 et
(p \ E2 —> E\ teile que 0 o cp [A]. Soit xfi le morphisme E\ x E2 A decrit

par \f/(x,y) (<p(y),x, y, cp(x)). II est patent que l'image Im xj/ est une sous-variete
abelienne de A isomorphe ä E\ x E2 et que l'intersection Im xfi D ({0}2 x Ef) est

en bijection avec le groupe Ker 0 de cardinal A. II nous suffit donc seulement pour
conclure de trouver 00 tel que Atö Im^. En fait, il suffit meme de trouver 00

comme dans l'enonce dans l'espace tangent de Im (ce qui assure Atö C Im par
minimalite) car nous avons toujours dim Aa> 2 : dans le cas contraire, la projection
B de Am sur E\ serait une sous-variete abelienne de dimension 0 ou 1 dont l'espace
tangent contiendrait (oo\i,ooi2). Or, en l'absence de multiplications complexes, un
tel B est contenu dans un sous-groupe de la forme {(v,y) e E\\ nx — my} pour
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(n,m) e 1?\ {(0,0)}. En passant ä l'espace tangent, on aurait nco\\ mcoi2 qui
contredirait la liberte de (con,co i2). Finalement il reste ä trouver co dans l'espace
tangent de Im^ c'est-ä-dire tel que co\\ &(p(oo2\) et co22 d(p(co 12)- Puisque
dcpody Aid, la premiere condition s'ecrito^i Ad^(tün). L'existence des deux
bases adaptees (con, coi2) et (0)21, CO22) decoule donc du fait que £22/d^(£2i) est un

groupe cyclique de cardinal A car cp est cyclique.

Cet enonce est plus ou moins classique (voir [MW1], [Pe2]) ä part peut-etre
l'assertion (2) qui ne semble pas avoir ete notee explicitement.

7.3. Cas non CM : estimations. Nous demontrons la premiere assertion du theo-

reme 1.4. Comme nous traitons plus loin differemment le cas oü k possede une place
reelle, nous pouvons supposer ici que toutes les places de k sont complexes. II en va
alors bien sür de meme des places de l'extension k'.

Avec les notations ci-dessus, nous imposons maintenant que (co\ i,aq2) forme
unebase minimale de Q\. Ceci signifie que \\con \\li,g0 p((Ei)g0, (Li)ao) °u L\
est l'unique Polarisation principale sur E\ et que a)\2 xco\\ oü r appartient au

domaine fondamental de Siegel : |r| > 1 et | Rer| < 1/2. On ecrit y Imr. On
sait alors que y p((Ei)ao, (Li)a0)~2 (voir remarque 3.3).

Nous fixons ä present le choix de <to jusqu'ici arbitraire, en demandant que y soit
minimal pour ce choix. En vertu de la proposition 3.2, cela nous fournit y < 1, 92H
oü nous notons, ici et dans toutela suite, H max(A(i?i), 1000). Ce petit raffinement
allege quelque peu les calculs qui suivent mais ne modifie que le terme logarithmique
de l'estimation finale.

Soient p\ et p2 les deux projections E\ -> E\. Posons n — [|r|2] e N \ {0} et
considerons la Polarisation Lf p\L®n ® p^L\ sur E\ et p la composee Aw ->
A -> E\. D'apres l'assertion (3) du theoreme 7.5, p est une isogenie (de degre A)
donc L p*Lf est ample sur AM et

degL Aw (deg p) degL,

Ceci nous permet d'appliquer la proposition 6.9 au couple (A^, L) sur le corps de

nombres k'. En effet, si degL A^ < 1010 alors A < 1010 et la majoration (18)

que nous allons demontrer plus bas est tres largement vraie. Nous majorons x <
(degL Aw)-1/2 (2nA)~1/2 tandis que nous avons 8a/ < puisque co e

t(AM)a! uiais co $ tß[ok\ Par minimalite. Comme 8a/ 8^7 et <Tq 7^ <Tq, la proposition

6.9 donne donc

Z^Zn/x / ^

n|| „2
< 17781 max(1000, /xmax(^)) + log (2/7 A) + 1,61

D\\coh^

2^2~nK

a'ik'^C
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oü D [jk' : Q]. Nous allons maintenant estimer les termes qui apparaissent dans

cette majoration. En premier lieu, on a

IHI 2L,<j'0IK^ll'^^lli'.o-o "ll^llllij.ao + ll^llii-ao
in + |T|2)||ft>n|ll1;ao (Li)ff0)2

n + Irl2 n + Irl2 2«
— < ———L2_ <

(la derniere inegalite vient de ce que la fonction t i-> (n + t)/— 1/4 decroit sur

« + 1/2], croit sur [« + 1/2, n + 1] et d'une comparaison entre les valeurs en n

et n + 1). Par un calcul analogue, si cd' co[2^ cof21, cof22) est une periode de

(A(o)a' pour er': k' C quelconque, nous avons

"iKillii,*' + Nhllii.a' - max(lKilUi,tf',

Si oo' 7^ 0 on a o/n 7^ 0 ou co[2 7^ 0 (toujours car p est une isogenie) donc

P((^w)cr/ > La'*) > p((E'i)cr/, (Li)^/).

Ainsi

2 ^ log max(l, p(04®)ct' > ACT') 9
ct':

-777 52 logmax(l,p((£i)a/,(LiV)-2)
a':k'^C

<lmax(uog-/ p((E1)a>,(L1)a>y2'\

< ^ max(l, log(l, 92//)) ^log(l,92ff)

ä nouveau avec la proposition 3.2 (appliquee ä (E\)^/). Nous avons ä ce Stade

VX < 1778D^2-

x (max(1000,/xraax(?X)) + log(2«A) + 1,61 + 1 log(l, 92//))

et il nous reste ä estimer la pente maximale.

Lemme 7.6. Nous avons

1 n
Amax(X) A h(El) + log A + - log
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Demonstration. Comme on a L p*Lf pour l'isogenie p, le lemme 3.9 donne

Amax(t(Aco,L)) < Amax(^2 L/y) et, par propriete des pentes maximales, ce majo-

rant vaut ßnaAt{E] Jjd'i) © He^m)) max(/x(f(£,i)L®,})), Par ailleurs,

comme dim^^ 2, nous avons aussi /imax(^ fimax(tAa>) ~ 2ß(tAw). Nous
evaluons les differentes pentes par le lemme 3.7. En particulier

max(/t(?(£i L®„)), /t(?(£l)Ll))) /r(?(£l)Ll)) -A(£i) + (1/2) logjr

et

~h(Aw) - (1/2) logh + log7T.

Nous obtenons donc

Amax(AL) — ^ ^ —^jr *

Onconclutalors avecdegL 2nA,h(Aü)) h{E\) +h(E2) (d'apresl'assertion
(2) du theoreme 7.5) et h(E2) < h(Ex) + (1 /2) log A.

Avec max(1000, AmaxO^ < H + log A + \ log ^ et quelques calculs nume-
riques nous aboutissons ä

/ i \—1/2 Y 3
a/Ä < 1778Z) 2 (77 + - log H + - logw + 21og A + 2,1).

V 2nJ 2 2

Si n 1 ceci s'ecrit

VX < mSDyj^(H + llog + 2log A + 2,1). (18)

Voyons que cette formule vaut aussi si w >2. Dans ce cas, on majore n < M2 <
j2 + 1/4 < (1,92 H)2+ 1/4 < 4//2 donc

VÄ< 1778D^"(7/ + 3,51og7/ + 21ogA + 4,2).

Avec H > 1000 on a 3,5 log H+4,2 < 0,037/ et l'estimation 1,03-^4/7 < ^2/3
montre que (18) est encore valable (largement).

Nous utiliserons (18) plus bas. Ici nous pouvons encore simplifier cette forme
brüte. Toujours avec H > 1000 nous ecrivons 0, 5 log H + 2,1 < 0,006// et donc,
en employant 1, 006 x 1778^2/3 < 1461, nous trouvons

VÄ < 1461Z>(// + 2 log A).

Ceci entraine ä son tour

VX < 1545D(7/ + 4log D).
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En effet, c'est clair si ^/Ä < 1, 545A06D. Sinon

VX 21og(l, 545.106) a/Ä
log A 2 log D +2log—— < 2 log — ' v

5 6 D ~1,545.106 D

,-5VÄ
< 2 log D +1,85.10"

D

et l'on conclut par 1461 /(I — 1461 x 3,7.10 5) < 1545. Maintenant nous pouvons
encore utiliser H + 4 log D<1,02 (H+ 4 log — 19) et eventuellement H +
4log D-19 < 1000 max(Ä(£i) — 1, log(D/2), 1) et, comme 1545 x 1,02 < (2,5 x
106)1/2 nous aboutissons ä

A < 2,5 x 10 6D2(H41og 19)2

OU
2

A < 2, 5 x 1012D2 max (h(E\) — 1, log 1 ^

Ceci donne (dans le cas sans multiplications complexes et sans place reelle) les deux

premieres assertions du theoreme 1.4 avec h{E\) — 1 < hp(Ei) et D < 2[k : Q]
(theoreme 7.5).

7.4. Cas CM. Soient E\QiE2 deux courbes elliptiques ä multiplications complexes
isogenes. On les suppose definies sur un corps de nombres k, on choisit un plongement
c70 de k dans C. On considere les extensions ä C via <t0 de E\ et E2 et coi, co2 des

periodes minimales. On forme A EixE2etco (co 1,0)2) etTons'interesseä^.
Comme plus haut A& est definie sur une extension k' de k munie d'un plongement
<Tq etendant op. Ici on a [kf : k] < 12 par la proposition 7.3. Soient Ai card A& D

{0} x E2 et A2 cavdAco D E\ x {0}.

Lemme 7.7. La variete abelienne Aw est de dimension 1 et A\ et A2 sontfinis.

Demonstration. II suffit de verifier que Atö n'est ni {0}, ni E\ x {0}, ni {0} x E2,
ni E\ x E2. Les trois premieres ne contiennent pas co dans leur espace tangent. Si

(p\ E\ —> E2 est une isogenie alors d(p(Q\) C Q2 et donc End(E2) • d(p{co\) C Q2
est de conoyau fini donc il existe N e N \ {0} avec NQ2 c End(E2) • d(p{a)\) donc

il existe \j/ e End(E2) tel que Nco2 d\/ro dcp(cox) ce qui montre AM c {(P1, P2) e
Ex x E2 | f o (p{Px) [N]P2} /^ix E2.

Lemme 7.8. II existe des isogenies Aw ^ E\, Aw ^ E2 et E\ ^ E2 de degres

respectifs A\, A2 et A\A2.

Demonstration. La projection Pi\am : AM -> E\ est de degre Ai et P\\am aussi

(voir lemme 7.1). II en va de meme pour AM E2 puis l'on compose.
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Nous nous interessons ä p{{A(j0)o^, {L(j0)o^ oü Lw est la Polarisation principale

surlacourbeelliptique A^.Pardefinitiono; G £1^)^ .Evaluons • Comme

L®Al p\L\ (oü Li est la Polarisation principale sur E\) on a

Mw0
De la meme fagon, on a aussi ||tw||? -r-||tw2II?

n- • Par suite, on a
^W)ö"q ^2 -Li2>(J0

p((A^,(L^)2 < -^p((E2)ao,(LiVo)2.

Comme l/p2 > V3/2 sur une courbe elliptique (remarque 3.3), nous trouvons

P((/4<y)crG (^w)crA) —J° v V3max(Ai,A2)

et donc, en posant Z) [£' : Q] et 5 max(Ai, A2)/Z),

Tü) '= [£' ' Ql ^ P((^Ö))otG 2 > —.
L Jor,:fc,^C

Notons// max(l,/z(£'i) + (l/2)log(D/127r))etmontronsque^ < V233//.Pour
cela, on peut supposer 5 > V233 et 1' on sait alors par la proposition 3.2 appliquee
avec V3<5/2 que

7tV38/2 < 31og(V3<5/2) + 6h(A0)) + 8,66.

Ici on a h(AC0) < h{E\) + (1/2) log Ai en utilisant l'isogenie entre AM et E\ (voir
lemme 7.8). Par suite il vient

F\ F\
8 < 31og^-82 + 6H + 19,55 < 6log5 + 25, \2H.

L'inegalite 8 < V233H s'obtient alors en remarquant que

e,
25~12

< \/233.
V233 ttV3 6 log V233

2 V233

On en deduit Ai A2 < D282 < 233D2H2 et nous avons donc bien prouve qu'il
existe une isogenie entre E\ et E2 de degre au plus

233 [A7 : Q]2max (^l,hF(Ei) + ^log ^ 12^) *

Avec [k' : Q] < 12[k : Q] et 233 x 144 < 3,4 x 104, ceci montre l'assertion du
theoreme 1.4 dans le cas avec multiplications complexes.
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7.5. Cas non CM avec une place reelle. Soit k un corps de nombres qui possede

au moins une place reelle. On note <to : k C un plongement complexe induit par
cette place. Soient E\QtE2 deux courbes elliptiques sans multiplications complexes,
defmies sur k et isogenes. Pour chaque j e {1,2} le reseau des periodes de (Ej)a0
est de la forme Qj := J-Oj 0 ZtjCOj avec zy element du domaine fondamental de

Siegel (on notera yj sa partie imaginaire). Le caractere reel de la place attachee ä

<t0 se traduit par l'egalite (Ej)a0 (Ej)ä~0 {Ej)O0, et en particulier les reseaux
des periodes sont identiques. Soitfy : {Ej)00 -> (Ej)Go Tapplicationdeconjugaison
complexe du § 2.6. D'apres la proposition 2.2, la base {d\j{ü0j),d\j{zjü0j)) est une
base minimale de Qj. Par antilinearite, on a dfy (ty o)j) fj dfj (<ooj). Ainsi fj et zj sont

conjugues par SL2(Z). En utilisant que Zj appartient au domaine fondamental, on
trouve |Re(r/)| e {0,1/2} et le reseau Q'. := Zcoj ®~Z(2zjCOj) ®J.(2iyj(Oj)
est un sous-reseau de Qj d'indice2. Ainsi, en considerant une isogenie ^9 : E\ —> E2,

onarinclusion2d^(f2/1) C 2d^(f2i) C 2Q2 C £2f2 quientraineTexistenced'entiers
a, b tels que

dcp((Oi) aco2/2 + biy2co2. (19)

Lefaitque4/jid^(o;i) appartienne aussi ä se traduit par les conditions Aby\y2 e
J-Qtay\y2x e Z,quiinduisentparproduit4a/7jj e Z.OrTonnepeutavoirj^ e Q
car sinon z\ serait quadratique et la courbe E\ aurait de la multiplication complexe.
Ainsi, on a necessairement ab — 0 et la relation (19) montre que, pour au moins une
periode co dans l'ensemble {(coi,co2), (coi,2iy2co2)}, la sous-variete abelienne

deA E! x E2 est de dimension 1. Par un raisonnement similaire en permutant
et Q2, on peut remplacer (oq, 2iy2002) dans cette paire par (2iy\0)\, co2). Pour

une periode co idoine, la courbe elliptique Atö est definie sur une extension k' de k
de degre D [kf : Q] < 2[k : Q] (theoreme 7.5) et Ton note <Tq un plongement
complexe de k' prolongeant öo. Posons Ai card AM D {0} x E2 et A2 card AM D

Ei x {0}. Comme dans le cas CM, nous disposons des lemmes 7.7 (choix de co)

et 7.8 (demonstration inchangee). L'obtention d'une borne pour le degre minimal
d'isogenie A repose alors sur une majoration du produit AiA2 ä partir de notre
lemme matriciel pour les courbes elliptiques, analogue au cas CM. Pour l'analyse,
nous allons distinguer deux cas selon la valeur prise par dim A^^y
7.5.1. Premier cas : dim 1. C'est le cas le plus simple. II suffit de

reprendre la demonstration du cas CM (qui suit le lemme 7.8), avec (aq,a;2), en

changeant le 12 au denominateur dans la definition de H par 2 (car D [kf : Q] <
2[k : Q]). La constante 19,55 peut etre remplacee par 14,18, la valeur 25,12 par
19,75 et 233 par 167. On trouve alors Ai A2 < 167Z)2//2. Dans ce cas, on a

A < 668 [Ä: : Q]2 max {^\,hp{Ei) + ^ log[k : Q]^

< 1503[ä; : Q]2 max (1, }if{E\), log[k : Q])2.
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7.5.2. Deuxieme cas : dim^4(ft)l9ft)2) 2. Nous avons vu ci-dessus que si oo G

{(coi, 2iy2co2), (2iyicoi, o;2)} alors dim A& 1. Etudions les deux possibilites.

• cu (6>i, 2iy2(o2). On a

P(04*ö)<7n ' —
11^

2 ^ „2
1 4.V2

l""cto Aiji A2'
Soient<5 Aijq/Z) A2/(4Z)y2) et

Hf := max (l.MWögy).
Nous allons montrer que <5 < 12, 31 Hf, ce qui permettra d'obtenir une premiere
majoration de AiA2 car AiA2 (2D8)2y2/yi. On peut supposer 8 > 12,31.
Considerons Ttö la moyenne des p(04w)cr, (L^)^)-2. On dispose de l'inegalite Ttö >
8, qui decoule du calcul de la norme de co en la place <Tq. Gräce ä la proposition 3.2

et ä l'isogenie entre Aw et E\ de degre Ai (voir lemme 7.8), qui donne h(AC0) <
h(E\) + (1/2) log Ai, on a

7t8 < 3 log 8 + 6h(E\) + 3 log Ax + 8, 66. (20)

En observant que Ai < (2/V3)D8 (car yi > V3/2) et en se rappelant que
Af(£i) A(£i) — (logjr)/2, on en deduit 7t8 < 6 log <5 + 23,61 H'. Comme
8 > 12, 31 on a log 8 < (log(12, 31)/12, 31)5 puis

23,61 Hf
<5 < < 12,3lHf,- jr _6x l0g(12;31) ~

71 0 X 12,31

qui est le resultat voulu. On en deduit

vX < V^iA2 < 24,62DH'J—. (21)

• cu (liyi&i, (02)» On a

p{{Aw)a'o,{Lm)olo)2 < inii^ -^ ~^y2

Soient 8' Ai/(4Dji) A lyi/D,H'max (1, log(D/2)) et

comme ci-dessus. Nous allons montrer que <57 < 18,19//' en procedant comme dans

le cas precedent. On part de l'inegalite (20) qui reste valide ici avec 8' (que l'on peut
supposer > 18,19). On majore Ai 4y\D8f par 25, 8D2 max (1, h(E\))8' gräce
ä la proposition 3.2 et ä la remarque 3.3. En remplaqant dans (20) et en utilisant
log a < a — 1 pour a > 0, on deduit alors

7t8' < 6 log 8' -\- 6log D + 6h(E\) + 3 max (1, h(E\)) + 15,42.
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En distinguant les cas h(E\) < 1 et h(E\) > 1, cette majoration implique <
6 log 8' + 39, IAH'.Comme 8'> 18,19 on a log 5' < (log(18,19)/18,19)5' puis

39 74 H'
8' < '

miQ, < 18,1TT_6x 108(18,19) - 71
18,19

On a alors

VÄ < VÄ7ÄI < 36,38

Pour conclure, on multiplie cette inegalite par (21) :

A < 895,7 x [kf : Q]2 max ^1, hp{E\), log
^ 2^)

etl'onutilise [kf : Q] < 2[k : Q] et 895,7x4 < 3583. Ceci termine la demonstration
du theoreme 1.4.

7.6. Hauteur et invariant modulaire. Le lemme suivant se trouve dans [SiJ] sans

explicitation de la constante. C'est aussi une version plus fine de l'une des inegalites
de l'encadrement (51) de [Pe2].

Lemme 7.9. Pour toute courbe elliptique E d'invariant j nous avons

h(E) <Eh(j) -0,72.

Demonstration. Les deux membres sont invariants par extension de corps, donc nous

pouvons supposer E/k semi-stable. Si nous appliquons la formule (10) donnee par
Silverman [SiJ] dans le cas semi-stable, nous avons :

Vi^1 log\Nk/lAE/k\+
1 V logmax(l, \j(x„)\)[*:Q]

oü nous notons x0 l'element du domaine fondamental de Siegel correspondant ä E0
(et dans le premier terme apparait la norme du discriminant minimal de E/k). Par

ailleurs, en posant ya Imr^, la proposition 1.1 de [SiJ] fournit

M£) l2^l08|A,t'«A^|-T2FÖI £ '°s<l4<r«>W7
er: k^C

En combinant et en rappelant que hp{E) h(E) — (1/2) log tt, nous avons

HE) - pogjv - —
1

— log(max(l,|7(ra)|)|A(rff)|j^).
er: k^C
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D'apres l'estimation situee au bas de la page 256 de [SiJ] en corrigeant la puissance
de 2TT dans la definition de A(-), nous pouvons ecrire

\A(to)\>e-1/9-27iy°(2n)12.

Par ailleurs Faisant et Philibert donnent la minoration \j{xa)\ > e2nya — 1193

(lemme 1 (iii) de [FP2], p. 187; la preuve est dans le texte [FP1], (3) p. 2.6). Par

suite, nous avons

Ua max (1,\j(Ta)\)\A(xa)\y6G > max(l,e2^ - 1193)e-1/9-2^(27r)12^

> e~1^9 (2n)12 f{y
oü / est la fonction donnee par

f(y) max (y6e~2ny,y6(l-Une rapide etude de fonction montre que / est croissante sur [x/3/2, 3/n] et sur

[(log 1194)/2tt,+oo[ tandis qu'elle est decroissante sur [3/tt, (log 1194)/2tt].
Comme de plus le calcul montre que /((log 1194)/2tt) < /(V3/2) nous avons

pour tout y > V3/2 la minoration f(y)>f((log 1194)/2it) et donc pour tout o la

quantite U0 est minoree par 1 /B oü B est la constante

B=1194 (— p—:)e1/9(27T)-12.
Vlog(l 194)7

En revenant au calcul de hauteur nous avons

KE) - Y2h(j"> E
1

log TT + j2_0'72

apres estimation numerique.

7.7. Cas non CM : application. Nous demontrons le corollaire 1.5. Soient p et

E comme dans l'enonce. Nous raisonnons par 1'absurde en supposant que 1'image
de la representation galoisienne est contenue dans le normalisateur d'un sous-groupe
de Cartan deploye. Ceci entraine notamment que 1'invariant modulaire j de E est

entier : j e Z (voir appendice de [BiPa]). Alors le theoreme 3.1 de [BPR] (version
explicite du resultat principal de [BiPa]) montre

log I y I < 2:ij~p+ 6 log + 21 ^log/
Vp

De plus, dans la partie 5 de [BiPa] (voir aussi la partie 4 de [BPR]), on construit deux
courbes E\ ei E2 de sorte que d'une part E et E\ sont reliees par une isogenie de degre

p donc h{E\) < h(E) + (1/2) logp et d'autre part E\ et E2 sont reliees par une
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isogenie cyclique de degre p2. Ceci fait que dans les notations des paragraphes 7.2
et 7.3, on a Vä p (nos courbes sont toutes sans multiplications complexes comme
E). En outre la construction montre que E\ et E2 ainsi que l'isogenie cyclique sont
definies sur un corps k quadratique. Ceci assure que toutes les isogenies entre E\ et

E2 sont definies sur k et donc il en va de meme de APar suite k' k et D 2.

Si k est imaginaire, nous avons d'apres la majoration (18) (qui suit le lemme 7.6)

P < 2^1778(7/ + 4log + 0,5log +2,1)

oü H max(/z(£'i), 103) < max(h(E) + (1/2) log p, 103). Dans le cas reel, cette
estimation est tres largement vraie (le theoreme 1.4 montre p < 2+3583 H).En

combinant le lemme 7.9 et la majoration de log | | /;( /') donnee ci-dessus, nous
trouvons

^
H < max (1000, — J~p + logp + 0, Ii]

V 6 4 ^fp

puis

P <2y|l778^max ^1000, |Vp +log/? + 7(^) - 0,72) + + 2,1

+ 0,5 log max ^1000, ^ Vp + l°g P +

Si Ton divise par p de chaque cöte on obtient une majoration de la forme 1 </(p)
pour une fonction / decroissante sur [1, +oo[. Le calcul montre que /(3 093 153) <
1 < /(3 093 152) et nous en deduisons que Ton a p < 3 093 151.

8. Appendice

L'objectif de cet appendice est de demontrer le theoreme de Bost utilise dans le
travail d'Autissier [Au]. II est enonce dans les notes [Bo3], p. 5, et repris dans [Gr],
p. 100, (voir Tinegalite (13) et la derniere egalite de la page oü Ton corrige l'exposant
g/4 en 1/4) mais aucune demonstration ne semble avoir ete publiee ä ce jour.

Soit donc une variete abelienne A definie sur un corps de nombres k et munie
d'une Polarisation principaleL. Pour tout plongement er: k C, lavariete abelienne

complexe Aa obtenue par extension des scalaires est principalement polarisee et donc

isomorphe ä un unique Cg/(Zg + xGJ-g) avec x0 dans le domaine fondamental de

Siegel.
Notons yG := Im xG. Soit F0: C8 C definie par, si z xGp + q e C8 avec

p,q e [Rg,

F0{z) det(2ycr)1^4 ^ exp + p)x0{n + p) + li^nq).
neJ.S
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Le theoreme de Bost s'ecrit alors sous la forme suivante.

Theoreme 8.1. Soita := ~{h{A) + (g/2) log(2jr))/2. Ona

a < 77-3— V f log \Fo(joP + ?)l dpd^.

Nous commenqons par quelques proprietes de la fonction FG. Elles font intervenir
la donnee d'Appell-Humbert (HG, Xa) sur Cg/Zg + xGZ8 definie par

H<j(z, z') tzy~1z' et /(ram + n)

oüz,z' E Cg et m,n e TL8.

Lemme 8.2. Soit er un plongement complexe de k.

(1) Nous avons

\Fa(rap + q)\2dpdq 1.L/(Rs/Zs)2

(2) SinousposonsdG(z) FG(z) exp((jr/2)lzy~l z—in1pxGp)pourz xGp-\-q
avec p,q E \kg alors dG: C8 C est une fonction theta associee a la donnee

dyAppell-Humbert (HG, Xo)-
(3) Nous avons \dG(z)\ \FG(z)\exp((7r/2)//cr(z, z)) pour tout z E C8.

Demonstration. Pour (1), en evaluant | FG |2, l'integrale ä calculer est egale au produit
de det(2yG)1^2 par

/ eli7Zi{n-m)q+i7Zi{n+p)xa{n+p)-i7Zi{m+p)x^{m+p)^p ^

/ ^?7rtG+jp)raG+jp)-?7rt(m+jp)f^(m+jp) / / e2utt(n-m)q^ j ^
_ j e-2jtt(n+p)yG(n+p)^p

nezz

f e-2ntpy*pdp
JlRS

det(2jCT)_1/2

(pour demontrer la derniere egalite, on peut remplacer 2yG par l'identite via un

changement de variables lineaire; eile se reduit alors ä fRe~x dx ^fn). Pour
(2), un premier calcul donne pour z xGp + q et co xGm + n la relation
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Fa(z + cd) F0{z) exp(—2ijttmq) oum,n e Iß et p,q e [Rg. Avec les memes
notations ceci montre que da(z + oo)da (z) ~1 est 1' exponentielle du nombre complexe

— (l(z + co)y~1(z + co) — tzy~1z} — in^ip + m)x0{p + m) + in1px0p — 2ijttmq.

Apres un calcul elementaire, cette quantite se transforme en

—iä)y~la) + 7ttä)y~1z + i^mn.

Ceci nous fournit la relation

#a(z +co)i&<T(z)x<r((o)exp (jt + ^Ha(co,co)j

qui montre bien que est une fonction theta pour le facteur d'automorphie introduit
au § 2.5 (voir aussi le lemme 3.2.4 de [BL] pour un resultat semblable). Le caractere

holomorphe de §0 se lit sur la relation

g-iTz^pxap exp {in1 {n + p)x0{n + p) + li^nq)
neJ.S

^ exp (i^nXfjn + 2i7tlnz).

Enfin pour (3) il s' agit de voir que le nombre (tt/2)lzy~1z—ijttpxGp—(7t/2) H0 (z, z)
est un imaginaire pur. On constate alors simplement qu'il vaut in1pq.

Nous en venons maintenant au lemme-clef en vue de la demonstration du theo-

reme 8.1 qui relie la hauteur de Neron-Tate aux fonctions F0. Pour pouvoir 1' exprimer,
nous avons besoin de preciser le choix d'isomorphisme entre A0 et C8/Z8 + xaZ8.
II est lie ä un choix de representant pour la Polarisation L. Tout d'abord nous pouvons
faire, dans l'enonce du theoreme 8.1, une extension finie du corps de base de maniere

transparente. Pour ne pas alourdir les notations, ici et ci-dessous, nous conservons les

notations Fa, xG et ya pour un plongement a d'un sur-corps de k : il est entendu que
Ton parle en fait de F<r\k et ainsi de suite.

Nous profitons de cette liberte pour supposer que L admet sur k un representant
symetrique et nous le fixons une fois pour toutes. Nous notons aussi E le diviseur
effectif de A associe. Nous pouvons alors fixer de maniere unique Tisomorphisme
entre A0 et C8/Z8 + x0Z8 en exigeant que L0 corresponde au faisceau inversible
symetrique de donnee d'Appell-Humbert (.H0, Xo) introduite plus haut. Pour alleger
les notations, nous identifions les varietes abeliennes Aa et C8/Z8 + x0Z8. En

particulier tAa est identifie ä C8 et la fonction du lemme precedent est une fonction
theta associee ä Lcr.
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Lemme 8.3. Soient K une extensionfinie dek etx E A(K). Notons Hl(x) la hauteur
de Neron-Tate de x relative ä L. Pour tout plongement er: K (C, considerons un
logarithme z0 de x dans tAa - x expA (za). Supposons que x ne soit pas dans le

support du diviseur E associe ä L. Alors on a

a < hL(x)+
1

lo§\F°Vo)\-
[K:Q]o:K^C

Demonstration. Considerons un modele de Moret-Bailly («A, X, cx) de (A, L, x) sur

une extension finie K' de K (voir § 6.1 et [Bo2], § 4.3) :

(i) A -> Spec Ok' est un Schema en groupes lisse, de fibre generique Ak',

(ii) X est un faisceau inversible hermitien cubiste sur A, de fibre generique L^/,
(iii) ex : Spec Ök' A> est une section qui releve x e A(K').

Commedansleparagraphe6.l,cemodeleconfereäl'espace// := H°(Ak', L^/)une
structure de fibre hermitien adelique H sur K'. Par hypothese, une section s E H\ {0}
ne s'annule pas en x et, puisque h°(A,L) 1, on dispose de la formule

m=^:z)+—]z l(jo.: QJ iog

(dans la somme, v parcourt les places de K'). La pente fi(e* X) est egale ä Jil (x) [Bo2],
theoreme 4.10 (ii), tandis que fr(H) a (voir (2)). Dans la somme, on separe les

places ultrametriques des places archimediennes. Si v est ultrametrique, considerons

une base sv du 0v-module libre (de rang 1) H°(A, <56) ®oK/ ißv est l'anneau de

valuation du complete de K' en la place v). On a alors

—^r:— < i.
\\S\\H,v

Si v est archimedienne et si er : K' C est un plongement complexe associe, la
fonction theta : tAa ^ C du lemme 8.2 (2) correspond ä un element sa e H C
avec lequel nous pouvons calculer le quotient des normes, en utilisant la relation (3)
du § 6.1 puis le lemme 8.2 (3) :

I $o(.za)\e-!i]{z<r\Fa(za)\.

Le calcul de la norme || ^ v se fait en elevant cette derniere formule au carre et en

integrant. On trouve donc (lemme 8.2(1)) ll^cr II ^ ^
1 puis \\s(x)\\-^^ v/\\s\\jj v

\\s<t(x)\\-^t£ v
\F0{z(J)\. En regroupant toutes ces informations, nous avons la

formule voulue car F0{z0) ne depend que de la restriction de er ä K.
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Demonstration du theoreme 8.1. Soit X e [R. Sur le compact ([Rg/Zg)2, la fonction
fx,ar definie par fx,o(p, q) max {—X, log \F0{x0p + q)|} est continue (ä valeurs

reelles). Etant donne un entier N > l9 posons In := {0,1,..., TV — l}8 et, pour
i e 7/v,notons p\ l'image de z/Af dans [Rg/Zg. Alors, pour tout nombre reel £ > 0,

il existe No(X, e) G N tel que, pour tout entier TV > No(X, s), pour tout plongement
a: k C, Ton ait

ir Y] fx,u{Pi,Pj) <£ +[fx,a(p,q)dpdq.
g

-o JpRg/ZS)2N28
(ij)el2 I(RS/ZS)2

Faisons alors la moyenne sur les plongements o :

sWrF^öi £ £ AAP!.PI))
(ij)el2

< g + r,
E. V] f

Dans le membre de gauche Ton peut librement remplacer k par une extension finie.
Nous considerons ainsi le corps Kn oü sont rationnels tous les points de TV-torsion
de A, notes A[N], Pour x e A[N] et a un plongement de Kn nous notons ux^0 le

couple (p, q) correspondant ä un logarithme de x dans A0. Lorsque x parcourt A[N],
I2N'ä g fixe, ux^G parcourt exactement /£. Par suite, nous avons

N2g ^ fx,aiux^Yj
xeT[A/"] er: 7

E f fx,a(p,q)dpdq.
' J(Rs/zn2

< e +
[k:Qh:k^CJWs'ZS*'

Le lemme 8.3 montre que, si x e A[N] n'appartient pas au diviseur E, la parenthese
du membre de gauche est plus grande que a. Elle est par ailleurs toujours plus grande

que —X. Notre membre de gauche est donc superieur äa(l— t^r /N2g) — Xtn /N2g
oü tN card(A [Af] D E). Par le theoreme de Raynaud (ex-conjecture de Manin-
Mumford, voir [Rai]) les points de torsion de E sont contenus dans un nombre fini de

translates de sous-varietes abeliennes strictes de A. Comme dans chaque tel translate

il y a au plus N2g~2 points de -torsion, nous avons t^ 0(N2g~2). En faisant
alors tendre N vers l'infini puis e vers 0, on obtient

a <r,* V)f fx,<j{p,q)dpdq.
:QK-.iX>cJ^g/zg)2

Pour chaque er, la suite decroissante {fx,o)xen de fonetions mesurables converge
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vers (p, q) i-> log |F(J{x(Jp + q)\. Par convergence monotone, on a

lim / fx,a(p,q)dpdq= log \Fa(rap +
X^oo J(^g/J_g)2 J(RZ/Zg)2

d'oü le resultat.

Pour conclure, rappelons que ce resultat a permis ä Bost de demontrer une minora-
tion uniforme de la hauteur d'une variete abelienne (sans hypothese de Polarisation).

Corollaire 8.4. Pour toute variete abelienne A definie sur un corps de nombres, on
ah{Ä) > —(l/2)(dim^4) log(2jr).

Demonstration. Dans le cas principalement polarise, il suffit de voir dans les notations
ci-dessus a < 0 ou meme, par le theoreme,

f log|7v|<0.
J(Rs/zs)2

Or, par concavite du logarithme, on a

f log IFa\ lf log livl2 < 2
log /" livl2 0

J(\RS/ZS)2 1 J(RS/ZS)2 z J(\RS/ZS)2

par le lemme 8.2. Dans le cas general on applique la minoration ä la variete ,44 x (^l)4
qui est principalement polarisee de hauteur 8h (A) et de dimension 8dim^4 (astuce
de Zarhin).
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