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Théoréme des périodes et degrés minimaux d’isogénies

Eric Gaudron et Ga&l Rémond

Résumé. Nous donnons de nouvelles versions effectives du théoreme des périodes de Masser
et Wiistholz. Nos énoncés sont totalement explicites et permettent de raffiner les applications
aux théorémes d’isogenies elliptiques. Celles-ci entrainent a leur tour la résolution du probléeme
d’uniformité de Serre dans le cas des sous-groupes de Cartan déployés, en conjonction avec les
travaux de Bilu, Parent et Rebolledo.

Abstract. We give a new, sharpened version of the period theorem of Masser and Wiistholz,
which is moreover totally explicit. We also present a new formulation involving all archimedean
places. We then derive new bounds for elliptic isogenies, improving those of Pellarin. The small
numerical constants obtained allow an application to Serre’s uniformity problem in the split
Cartan case, thanks to the work of Bilu, Parent and Rebolledo.

Classification mathématique par sujets (2010). 11G10; 11186, 14G40, 14K02.

Mots-clefs. Lemme mairiciel, théoréme des périodes, isogénie minimale elliptique, probléme
d’uniformité de Serre, méthode de la section auxiliaire, pente d’ Arakelov, lemme d’ interpolation
analytique.

1. Introduction

Dans ce texte, nous revisitons le théoréme des périodes de Masser et Wiistholz
et ses applications aux degrés minimaux d’isogénies entre courbes elliptiques. Notre
présentation du théoreme lui-méme différe des versions antérieures et nous expliquons
ci-dessous ce qui nous a conduit a cette formulation, notamment en lien avec le lemme
matriciel, dont nous utilisons une nouvelle version due a Autissier. Nous donnerons
ensuite les énoncés ainsi qu’une application au probleme d’uniformité de Serre qui
repose sur les travaux de Bilu, Parent et Rebolledo.

Dans tout ce texte A est une variété abélienne de dimension g sur un corps de
nombres k. Pour parler de périodes, nous fixons un plongement complexeo: k — C
et considérons la variété abélienne complexe A, obtenue par extension des scalaires,
son espace tangent a I’origine #4, et son réseau des périodes 24, .

En 1985 [Mas], David Masser a démontré une majoration des coefficients d’une
matrice de périodes en fonction de la hauteur d’une variété abélienne principalement
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polarisée. Le paragraphe de son texte consacré a cette estimation portait le nom de
lemme matriciel et cette terminologie est restée pour désigner ce type d’énoncés.
Une nouvelle approche a été introduite par Bost [Bol], [Bo3] en termes de hauteur
de Faltings et des versions effectives ont été données par Graftieaux [Gr], David et
Philippon [DP] et le premier auteur [GaZ2].

Sil’on veut s’affranchir de I’hypothese de polarisation principale, il est préférable
de considérer qu’un lemme matriciel donne une minoration de la plus petite période
non nulle d’une variété abélienne (en une place donnée). Il s’agit donc d’un premier
prototype d’un théoréme des périodes puisqu’il s’agit de relier la norme d’une pé-
riode (en ["occurrence la plus petite) a divers invariants de la variété abélienne (ici
essentiellement la hauteur de Faltings).

Un véritable théoréme des périodes, au sens attach€ a ce terme depuis les travaux
fondateurs de Masser et Wiistholz, doit, lui, faire intervenir de plus de maniere es-
sentielle un terme de degré géométrique. Traditionnellement on I’écrit comme une
majoration du degré de la plus petite sous-variété¢ abélienne 4, de A dont I’espace
tangent contient une période donnée @ en fonction de la norme de @ et de la hauteur
de A.

Nous utilisons dans nos énoncés la hauteur de Faltings stable /15 (A) d’une variété
abélienne sur un corps de nombres. Nous fixons une polarisation L sur A. La forme
de Riemann de L, munit /4, d’une norme hermitienne que nous notons | - ||7.s (les
définitions précises de ces abjets sont données dans la partie suivante). On tire alors
de [MW?2] I’énoncé suivant.

Théoreme (Masser et Wiistholz, 1993). [l existe une constante ¢ > 0, qui ne dépend
que de g, [k : Q] et deg; A, et une constante k > 0, qui ne dépend que de g, telles
que

deg; Ay < cmax (1, hp(A), lw]F ,)"

De plus I’on peut choisirk = (g — 1)48 gV et ¢ = colk : Q] (degy A)!TEX oit ¢y est
une constante qui ne dépend que de g.

En outre, les résultats présentés par Bost au séminaire Bourbaki en 1995 [Bol |
montrent que cq est effectivement calculable (travaux de Bost et David, voir aussi [Pa]).

Nous proposons ici de voir un tel théoréme plutét comme une minoration de la
norme de @ en fonction du degré de A, et de la hauteur. En fait, dans cette approche,
la variété abélienne A, joue le réle principal et la variété A initiale est reléguée au
second plan. Si nous I’oublions complétement, nous sommes en train de dire qu’un
théoreme des périodes n’est autre que la minoration de la norme de la plus petite
période @ de A telle que A, = A. En d’autres termes encore, nous considérons le
minimum des normes des périodes de A qui ne sont périodes d’aucune sous-variété
abélienne stricte de A.

Vu ainsi, le lemme matriciel devient une minoration d’un minimum absolu p du
réseau des périodes (minimum sur tous les éléments non nuls) tandis que le théoreme
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des périodes vise a minorer un minimum essentiel § de ce méme réseau (minimum
sur les éléments transverses ou non dégénérés au sens des sous-variétés abéliennes).
Bien entendu, ici p < § et il ne faut pas perdre de vue que la minoration souhaitée
de § est plus grande que celle de p puisque sa caractéristique principale est de croitre
avec le degré de A. Notons aussi que dans cette approche il est possible que § soit
infini : cela signifie simplement que la variété abélienne A considérée n’est pas de la
forme (A"), pour un couple (A’, @’).

Ce nouvel éclairage sur le théoréme des périodes présente plusieurs avantages.
D’une part, on sait depuis Bost que 1’on peut exprimer naturellement le lemme ma-
triciel en faisant intervenir toutes les places. De maniére précise, on note p(Ag, L)
la valeur minimale de ||w||z.s pour @ € €4, non nul et nous utilisons dans ce texte
la forme suivante du lemme matriciel (qui raffine les versions évoquées plus haut),
tirée du travail d’Autissier [Au].

Théoreme 1.1. Si (A, L) est une variété abélienne polarisée de dimension g sur un
corps de nombres k nous avons

ﬁ Z p(Ag. Lo) % < 14max(L, hr(A), logdeg; A).

o: k—=C

Par ailleurs, le membre de droite peut étre remplacé par 16hp(A) + 49g.

Ainsi il devient naturel de formuler notre théoréme des périodes comme une ma-
joration d’une moyenne de la forme (1/D) >"_ 1/82 (par, répétons-le, une puissance
négative du degré de A) et nous constatons effectivement que c’est une telle quantité
qui apparait dans la preuve. Conformément a ce qui précede, notons 8o( Ay, L) lava-
leur minimale de ||| 7. o pourw € 4, \|_Jg Qg ol ['union porte sur les sous-variétés
abéliennes strictes B de A . Sicetensemble est vide, nous posons §5(Aq, Ls) = +00.
Nous verrons en fait bientdt qu’une quantité 8( Ay, L), toujours finie et plus petite
que 8p( Ay, L), peutintervenir. La formulation suivante, forme simplifiée du résultat
principal de cet article, est valable pour les deux variantes.

Théoréme 1.2. Si (A, L) est une variété abélienne polarisée de dimension g sur un
corps de nombres k nous avons

< 50g%8 S max(1, hr(A4), logdeg; A).

Ly (g e
o (Ao Lo)?

[k : ®] o k—

Un autre avantage, un peu plus technique, de notre présentation, est de mettre
en lumiere le réle des sous-variétés abéliennes auxiliaires qui interviennent dans la
démonstration. On s’ apercoit en effet que la condition sur @ n’est utilisée que pour
une variété en particulier. Ceci nous conduit a affiner la définition en introduisant pour
une sous-variété abélienne B de A, le minimum d’évitement de B noté §(A,, L,.B) :
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la plus petite distance non nulle d’une période de A, a ’espace tangent de B. Nous
écrivons alors la preuve avec cette quantité et le théoréme ci-dessus découle d’un
choix particulier de B en chaque place (techniquement celui qui minimise la quantité
(deg;  B/deg; A)1/codimBy Name si nous n’avons pas d’application pour d’autres
choix de B, il nous semble tout de méme plus intéressant d’écrire la majoration sous
cette forme (voir le théoréme 4.5) : d’une part cela renforce encore les liens avec
le lemme matriciel (dont le minimum absolu correspond maintenant simplement au
choix de B = 0), ensuite nous ne manipulons pas de quantit€ infinie et donc nous
obtenons toujours un résultat méme si A ne s’écrit pas sous la forme (A’),, et enfin
cela affine le théoréme 1.2 : il est valable avec

8(Ag, Lg) = sup8(Ag, Ls,B)
B

ou, comme ci-dessus, B parcourt les sous-variétés abéliennes strictes de A, . Accessoi-
rement la quantité 8( A, L) (toujours finie) est plus facile a majorer que 8o( Ay, L)
(lorsque celle-ci est finie, voir proposition 4.4).

Disons enfin qu’il est un cas ot théoreme des périodes et lemme matriciel de-
viennent identiques : ¢’est celui des courbes elliptiques. En effet on a toujours p = §
(autrement dit seul B = 0 intervient) et comme toute polarisation est puissance de la
polarisation principale le degré n’intervient pas (voir aussi le paragraphe 4.3.1).

Nous pouvons maintenant déduire du théoreme 1.2 un €noncé ayant la forme
de celui de Masser et Wiistholz. Nous revenons pour cela au cadre o @ est une
période, pour un plongement f1x€ oy, de la variété abélienne A et nous appliquons
notre théoréme a la variété abélienne A,. Nous en déduisons alors facilement le
théoréme suivant, ol I’on note k&’ une extension de &k sur laquelle est définie A, ; on
sait que I’on peut choisir [k’ : k] < 2(9g)?¢ (voir [SiA]).

Théoréme 1.3. Si w # 0, nous avons
(degy, Ag)! ™4 <195¢%H9 [k’ Q0|7 g, max (1, hp(A), loglk”: RU@II7 4,)-

Il convient de signaler qu’a I"occasion d’un cours donn€ a une école d’été en
2009 a Rennes [Da2], David a présenté une version de cet énoncé dans le cas d’une
polarisation principale et sans expliciter ladépendance en g. En particulier, on lui doit
le premier résultat avec une constante ¥ optimale (en remplacant L par une puissance
dans le théoreme 1.3 on voit que ¥ < dim A, est impossible).

Comme dernier theme abordé dans cet article, nous nous intéressons a 1’applica-
tion du théoréeme des périodes aux théoremes d’isogénie. Nous nous limitons ici au
cas elliptique. Le probleme consiste alors, étant donné deux courbes elliptiques £
et F, isogénes, toutes deux définies sur un corps de nombres k, & majorer le degré
minimal d’une isogénie entre £ et £,. On peut faire remonter cette question aux
travaux des fréres Chudnovsky [CC] (cas d’un corps réel; on consultera a ce sujet
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I’historique présenté par Pellarin dans [Pel]) mais elle trouve toute son importance
depuis ’article de Masser et Wiistholz [MW1] qui ont donné une borne de la forme
cmax(1,hp(E,))* pour une constante ¢ non explicitée. David [Dal] puis Pella-
rin [Pe2] ont obtenu les premiers résultats explicites. Ce dernier démontre 1’ existence
d’une 1sogénie de degré au plus

1078[k : Q]* max(log[k : @], 1)? max(hr(Eq), 1)

Nous améliorons ici i la fois I’exposant du degré et la constante numérique. Etant
donné un corps k, on note k£ une cléture algébrique de k.

Théoréme 1.4. Soient k un corps de nombres, E1 et E> deux courbes elliptiques
définies sur k. Si Ey et E» sont isogeénes (sur k), il existe une isogénie entre elles
(sur k) de degré au plus

107[k : Q)*( max(hr (E1),985) + 4loglk : Q])°
ce que l’on peut majorer par
103k : Q)? max(hr (E1), log[k : @], 1)

Lorsque Eq (et donc E5) admet des multiplications complexes, la borne ci-dessus
peut étre remplacée par

2
3,4 x 10k : Q] max (hF(El) + %log[k ' @], 1) .

Si Eq et Ey n’ont pas de multiplications complexes et si k a une place réelle, elle
peut étre remplacée par

3583[k : Q)% max (hr (Ey). log[k : @], 1)°.

Dans le cas général, ce théoréme s’obtient en appliquant le théoréeme des pé-
riodes 1.2 4 la variété abélienne E7 x EZ tandis que, pour les deux derniéres bornes,
les hypotheses supplémentaires permettent d’utiliser A = £ x E» : dans ce cas, Ay
est une courbe elliptique et le théoréme des périodes se réduit a un lemme matriciel
(de la forme du théoréme 1.1).

Avec [BiPa], [BPR] le théoreme 1.4 s’applique au probleme d’uniformité de Serre
[Se2] (ci-dessous E[p] désigne le groupe des points de p-torsion de la courbe E).

Corollaire 1.5. Pour tout nombre premier p > py = 3,1 x 10° et toute courbe
elliptique E deéfinie sur Q sans multiplications complexes, 'image de la représenta-
tion galoisienne naturelle pg p: Gal(Q/ Q) — GL(E[p]) n’est pas contenue dans
le normalisateuwr d’un sous-groupe de Cartan déployé.
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Signalons qu’a partir de ce résultat et avec des calculs informatiques pour les
petits premiers (p < pg), Bilu, Parent et Rebolledo [BPR] montrent que 1’énoncé
précédent vaut en fait pour tout p & {2, 3,5,7, 13}. Nous renvoyons a leur texte pour
les détails.

Remerciements. Nous remercions Yuri Bilu, Pierre Parent et Marusia Rebolledo pour
nous avoir signalé I’ application des théoremes d’isogénies au probleéme de Serre. Leur
commande fut notre principale motivation pour obtenir des constantes numériques
aussi petites que possible. Nous remercions Pascal Autissier pour ses remarques sur
une premiere version de ce texte et pour nous avoir communiqué son remarquable
lemme matriciel. Nous remercions aussi Sinnou David pour ses conseils avisés ainsi
que Mathilde Herblot et Guillaume Maurin de nous avoir fourni leurs notes du cours
de Sinnou David [Da2].
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Passons a présent en revue rapidement les ingrédients principaux de notre preuve
et les travaux dont elle s’inspire. Les méthodes que nous employons ont deux ori-
gines, I'une provenant de la théorie des formes linéaires de logarithmes (méthode
de Baker) et 1’autre issue de la géométrie d’ Arakelov (théorie des pentes). Dans le
séminaire Bourbaki [Bol], Bost a jet€ un nouvel éclairage sur le théoréeme des pé-
riodes en introduisant la méthode des pentes. Ce travail, rendu un peu plus explicite
par Viada [Via], apporte |’effectivité de la constante ¢y dans le théoreme de Masser
et Wiistholz. Il a eu également énormément d’impact sur la maniere de présenter la
démonstration en conservant au maximum |’ aspect intrinseque des données. Il a aussi
ouvert un champ d’application naturel a la géométrie d’ Arakelov. Par exemple, les
méthodes de Bost ont permis au premier auteur d’obtenir des minorations de formes
linéaires de logarithmes de variétés abéliennes, totalement explicites, pour des loga-
rithmes qui ne sont pas des périodes (en un sens assez fort) [GaZ]. D’un autre c6té, la
preuve de David est extraite de la démonstration générale pour les formes linéaires
de logarithmes. Rappelons que cette démonstration repose pour une grande part sur
la méthode de Baker (inventée a la fin des années soixante ; pour plus de détails,
on pourra consulter [Wii3]). Les travaux [Ba] de Baker ne concernaient que le cas
d’un groupe algébrique linéaire commutatif. Avec 1’apparition de lemmes de multi-
plicités performants dus a Philippon [Ph] et Wiistholz [Wiil], ces travaux ont pu étre
généralisés a un groupe algébrique commutatif quelconque pour aboutir au célebre
théoréme du sous-groupe analytique de Wiistholz [Wii2]. Ici, ce théoréme stipule que
le plus petit sous-espace vectoriel de £, défini sur @, qui contient le logarithme @ du
point algébrique 04 € A(k) est le sous-espace vectoriel £4,, de £4. Celte information
ne nous sera pas utile mais elle précise le contexte dans lequel s’inscrit ce travail (le
théoréme des périodes apparait alors comme une version effective de cet énoncé). A
’instar de David, nous nous sommes plutdt inspirés de la méthode de Philippon et
Waldschmidt [PW]. Comme @ € #( Aw)oy» NOUS SOMMES dans le « cas dégénéré » ou le
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logarithme appartient au sous-espace. La démonstration de Philippon et Waldschmidt
fonctionne encore dans ce cas mais au lieu de fournir une minoration de la distance
du logarithme au sous-espace, elle montre 1’existence d’une sous-variété abélienne
stricte B de A avec w € Ip, et deg; B major¢ essentiellement comme dans le
théoreme de David (des bornes pour deg; B se trouvent par exemple dans [Dal],
[Gal], [Vil]). Pour assurer B = A, I'idée de David est de travailler avec A, dés le
départ. La sous-variété B ne peut pas exister (par minimalité¢ de A, relativement a
I’hypothese w € £ Am)ao) mais la démonstration donne malgré tout quelque chose, a
savoir une majoration de deg; A,. Cette observation a permis a David d’obtenir en
une seule étape la sous-variété A, sans avoir a faire de récurrence sur g, récurrence
tres coliteuse pour les constantes ¢ et « et qui explique leur caracteére exponentiel en
g chez Masser et Wiistholz.

Si notre borne du degré de A, est proche de celle de David, la démonstration
n’utilise pas les mémes outils. Elle s’inscrit encore dans le schéma général de la
méthode de Philippon et Waldschmidt (cas périodique) mais elle utilise largement le
formalisme des pentes de Bost, comme dans [GaZ2]. Toutefois il n’y a pas de méthode
des pentes proprement dite, ¢’est-a-dire que nous n’utilisons pas de filtration ni d’in-
égalité de pentes. Cette dernicre est remplacée par la méthode de la section auxiliaire
que le premier auteur a introduite dans [Ga4]. 1l s’agit d’une variante intrinséque
de la méthode classique des fonctions auxiliaires en transcendance. Ici ’adjectif in-
trinseque signifie essentiellement que nous n’aurons recours ni a une base explicite
des fonctions théta de H?(A, L®"), ni a une base de Shimura de 1’espace tangent
f4. Outre la clarté apportée par cette approche géométrique, la démonstration met
en évidence I'intégralité des jets de sections qui apparaissent. Cet avantage tactique
autorise un parametre a tendre vers 400 (ce qui est exceptionnel dans une preuve de
transcendance) en €liminant au passage plusieurs quantités parasites. Un autre atout
de ce passage a la limite est la diminution des constantes numériques.

Signalons que nous tirons partie a plusieurs reprises du lemme matriciel d’ Au-
tissier dans nos arguments mais que sa précision n’influe pas beaucoup sur les
constantes : avant de disposer de ce lemme, nous avions mené les calculs a par-
tir d’une version moins fine du théoreme 1.1 ou la constante du membre de droite
dtait multiplide par g&/2%3 et, par exemple, cela ne modifiait le théoréme 1.3 qu’en
remplacant 195 par 254.

En ce qui concerne notre théoréme d’isogénie, 1’aspect intrinseéque du théoréme
des périodes sur lequel il s’appuie évite naturellement le recours a des modeles de
Weierstrass des courbes elliptiques (et donc a la notion d’isogénie normalisée) qui
apparaissaient dans les travaux antérieurs. Dans le méme ordre d’idée, Pellarin de-
vait considérer des sous-variétés abéliennes exceptionnelles et exclure un cas dégé-
néré |Pe2], hypothese 3 page 212. Nous avons simplifié¢ I’analyse en montrant que
ces subtilités n’ont plus lieu d’étre et que la seule considération de A, suffit a extraire
I’information sur le degré d’isogénie (voir théoreme 7.5).
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2. Préliminaires

2.1. Polarisation. Lorsque A est une variété abélienne, nous rappelons qu'une po-
larisation sur A est 'image d’un faisceau inversible ample dans le groupe de Néron-
Severi NS(4) = Pic(A4)/ Pic®(A). C’est cette notion qui intervient la plupart du
temps dans cet article : par exemple le degré deg; A ou la forme de Riemann d’un
faisceau inversible ample 1. ne dépendent que de la polarisation définie par 7. Lorsque
nous souhaitons parler d’un faisceau représentant la polarisation nous en choisissons
towjours un symétrique. Ceci n’induit qu’une indétermination finie car un €lément
symétrique de Pic®(A4) est un élément de 2-torsion. En particulier si 1. symétrique
représente une polarisation alors 1.%2 est uniquement défini. Rappelons aussi que sur
une courbe elliptique il existe une unique polarisation principale et toute polarisation
en est une puissance (car NS(A4) = Z).

2.2. Variété abélienne orthogonale. Soit A une variété abélienne sur un corps
quelconque, munie d’une polarisation L. Soit B une sous-variété abélienne de A.
La sous-variété abélienne orthogonale B L de B dans A est définie de la manicre
suivante soit gr.: A — A Ti 1sogénie dans la variété duale A induite par L. Soit

:A— Ble morphisme dual 4 Iinclusion 7 : B — A. Alors B+ est la composante
neutre du noyau de la composée 'i o ¢z . On montre alors que le morphisme d’addition
B x B+ — A est une isogénie de degré b au plus

ho(B, L)h*(B~, L)
ho(A, L)
(voir par exemple [Be], théoréme 3). De plus, si le corps de base est C, pour toute

période @ € 24, il existe @ € Qp et wy € Qg tels que b = @y + w2 (voir
lemme 1.4 de [MW2]).

<h®(B, L)*

2.3. Hauteur de Faltings. Lorsque A estune variété abélienne définie sur un corps
de nombres k, nous définissons sa hauteur 2(A) de la maniére suivante : soit K une
extension finie de & sur laquelle A est définie et admet réduction semi-abélienne.
Soient 7: A — Spec Ok un modeéle semi-abélien de A et €: Spec O — o sa
section nulle. Notons w4 @, le faisceau inversible e*Qi /Spec O SUT Spec Og. Ce
fibré devient un fibré en droites hermitien @ 4,0, sur Spec Ok lorsqu’on le munit
pour chaque plongement complexe o: K — C de la norme

| _
VS € wa/o, ®U(I:2HO(AU,Q§U), ||s||ww0 = (2n)ng | EA5]-

Définition 2.1. La hauteur 1(A) de A est le degré d’ Arakelov normalisé de @4 /0 -

Cette définition est indépendante des choix de K et de 4. Cette quantité /7(A) est
celle dénommée hauteur de Faltings dans [Bol], [Bo3], [Ga2], [Gr] mais ce n’est
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pas la convention adoptée par tous les auteurs. En particulier la définition originale
hr(A) de Faltings [Fa] ne fait pas apparaitre le 7 dans la définition de la norme
ci-dessus et donc on a

hp(A) = h(A) — % log .

La hauteur 2(A) est donc plus grande que la hauteur de Faltings originale. Dans
la suite, nous employons ~(A) mais nous avons préféré utiliser 2 r(A4) dans I’in-
troduction pour faciliter I’emploi de nos énoncés. Ce choix a I’avantage que les
énoncés (majorations) sont vrais pour les deux hauteurs. D’autres auteurs utilisent
encore une notion différente. Par exemple Colmez [Co] travaille avec la hauteur
h(A) — (g/2)log 2x. Quelle que soit la normalisation, rappelons que cette hauteur
satisfait I’estimation de Raynaud : si ¢ : A — A" est une isogénie alors

1
|A(A") — h(A)] = > logdeg o

(corollaire 2.1.4 de [Ra2]) ainsi qu’aux propriétés 2(Ay x Az) = h(A1) + 7(A42)
et h(A) = h(A) (corollaire 2.1.3 de [Ra2]). De plus la hauteur d’une sous-variété
abélienne B de A est controlée par celle de A :

h(B) < h(A) + logh®(B. L) + (dim B*)log v2x

(pour obtenir cette formule on applique le résultat de Raynaud i 'isogénie B x B~ —
A du paragraphe précédent et I’on minore la hauteur de B~ par le résultat de Bost,
que nous démontrons ci-dessous en appendice, corollaire 8.4). Nous utiliserons en
fait la variante avec &  (-) obtenue en substituant et en majorant log(w~/2) < 3/2

3
hrp(B) < hp(A) +logh®(B, L) + 5 dim B-.

2.4. Forme de Riemann. Soit A une variété abélienne complexe. 1D’ apres le théo-
reme d’ Appell-Humbert (voir [Mu], p. 20, ou [BL], p. 32), le groupe de Picard Pic(A)
s’identifie au groupe des couples (H, y) ot H est une forme hermitienne (linéaire
a droite) sur 74 telle que Im (24, Q4) C Z et y une application Qp — {z € C |
|z| = 1} telle que y(@w; + o) x(w1)~ ! x(w2)™! = exp(im Im H(w;, w,)) pour tous
@1,y € Q2a. Lorsqu'un tel couple correspond a L € Pic(A), nous dirons que (H, x)
estla donnée d’ Appell-Humbert de L et la premiere composante H s’appelle la forme
de Riemann de L. Celle-ci ne dépend que de I'image de L dans NS(A).

La forme de Riemann de L est définie positive si et seulement si L est ample
(autrement dit si L définit une polarisation; certains auteurs réservent I’emploi du
terme forme de Riemann a ce cas). Ainsi une polarisation L permet de munir I’espace
tangent 75 d’une norme hermitienne notée ||. ||, : on pose simplement ||z||? = H(z,z)
pour z € fa lorsque H est la forme de Riemann de L. C’est la norme utilisée dans
’introduction et dans toute la suite de ce texte. Elle permet par exemple de définir
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le minimum du réseau des périodes déja rencontré et qui fera I’objet des lemmes
matriciels de la partie suivante :

p(A.L) = min{llwflL; @ € Qa\ {0}}.

Ce nombre réel se rencontre aussi dans la littérature sous |’appellation diameétre
d’injectivité car ¢’est le diametre de la plus grande boule sur laquelle I’exponentielle
eXpa: Ia — A est injective.

Lorsque (A, 1) est une variété abélienne polarisée sur un corps de nombres k et
o : k — C un plongement, nous noterons || - ||z o la norme induite par 1., (au lieu

de || - lz, ).

2.5. Fonctions théta. Soit L un faisceau inversible sur une variété abélienne com-
plexe A. On définit son facteur d’automorphie canonique a, : 24 X 14 — € al’aide
de sa donnée d’ Appell-Humbert (H, y) : si w € Qp et z € {4 on pose

a(w,z) = y(w)exp (JTH(CU,Z) + %H(a),a))).

Ce facteur permet de définir les fonctions théta associ€es a L : ce sont les fonctions
holomorphes @ : 14 — C qui vérifient ?(z 4+ @) = a|(w, z)P(z) pour tous w € Qp
etz € ta. Elles trouvent leur raison d’étre dans I’ isomorphisme naturel entre HO(A, L)
et I’espace vectoriel des fonctions théta associées a L (voir [Mu], p. 25).

En particulier, lorsque L est tres ample, elles fournissent une écriture explicite
d’un plongement projectif associ¢ aL : si vy, . . . , ¥, est une base des fonctions théta
alors I"application z > (¥p(z) : --- : ¥y (2)) définit un morphisme /a — P qui se
factorise a travers exp, pour donner une immersion A — Pf’.

2.6. Changement de base par la conjugaison complexe. Soit 4 nouveau une va-
riété abélienne complexe A. Notons z la conjugaison complexe. On définit A par le
carré cartésien :

A 5 A

L o]

Spect
SpecC — SpecC.

Nous obtenons une vari€té abélienne complexe mais il faut prendre garde au fait que
le morphisme de schémas f n’est pas un morphisme de C-schémas. C’est en revanche
un morphisme de R-schémas (entre R-schémas de dimension 2 dim A) que [’on peut
€galement voir comme un morphisme de variétés analytiques réelles entre les tores

15/ Q3 et tn/ Qa.

Proposition 2.2. [’isomorphisme { se reléve en un isomorphisme antilinéaire
df: 1z — Ia tel que di(Q3z) = Qa. De plus si 'on métrise les espaces tangents
par les formes de Riemann de L et *L alors df est une isométrie.
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Démonstration. 110’y apas de restriction asupposer que L est trées ample. Notons alors
comme plus haut v, . . ., ¥, une base des fonctions théta associées. Nous désignons
par V I’espace vectoriel complexe conjugué de /4 : le groupe abélien sous-jacent est
V' = {p mais la loi e de V' de multiplication par un scalaire est donnée parz e v = Zv
pour z € Cetv € V (ou, a droite, on utilise la loi usuelle de ¢4). Pour clarifier nous
notons aussi U/ le réseau €24 lorsque nous le voyons comme réseau de V. Ainsi V/U
est un tore complexe. En outre les fonctions t_‘i‘j pour 0 < j < m sont holomorphes
sur V. Laforme H est quant i elle une forme hermitienne définie positive sur V x V
et elle vérifie Im H(U,U) C Z. De méme I’application y: U — {z € C | |z| = 1}
satisfait (11 +uo) f(u) " 7 (u2)"! = exp(im Im H (uy, u»)) pourtousy,u, € U.
Tout ceci nous montre que V/ U est une variété abélienne, que (H, ) est une donnée
d’ Appell-Humbert sur celle-ciet que 73‘0, Ty 1_9m formentune base des fonctions théta
associées a cette donnée. En particulier elles définissent un plongement projectif
p: V/U — [FE. Enfin appelons g application VV/U' — A induite par I’identité
V' — ia (qui est antilinéaire). En suivant les constructions, nous avons alors un
diagramme commutatif :

ViU — PZ — SpecC

N

A — PZ — SpecC.

Comme les fleches verticales sont des isomorphismes, le carré de gauche est auto-
matiquement cartésien et nous pouvons donc identifier V/U A A et g af. Dans cette
identification V' = f3 et df correspond a ’identit€ V' — #4. Le diagramme montre
encore que f*L coincide avec p*©(1) et a donc pour forme de Riemann H . Toutes
les assertions de I’énoncé découlent immédiatement de ces faits. O

A titre d’exemple nous avons donc p(A, 1*L) = p(A, L).

Dans le cas ot (A, L) est une variété abélienne polarisé€e sur un corps de nombres
k et 0: k — C un plongement, nous notons ¢ = 7 ¢ ¢. Alors on a Ay = A5 et
L5 = 1% L. Avec la proposition ceci nous permet de vérifier que les minima associés
aux couples (Ag, Lg) et (Az, L5) coincident.

Bien entendu, tous les faits de ce paragraphe sont faux pour un automorphisme
C — C autre que 7 ouid¢ (et donc non continu) et il n’y a aucune relation en général
entre les minima de (A, L) et (A, Lo) pour deux plongements o et o distincts
et non conjugués.

3. Autour du lemme matriciel

Dans cette partie nous donnons plusieurs versions du lemme matriciel au sens
donné plus haut. Elles découlent toutes d’un nouvel énoncé di a Autissier [Au]. Notre
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motivation est multiple : d"une part elles améliorent les constantes données dans [DP],
[GaZ2], [Gr] ; d’autre part nous écrivons le résultat sans hypothese de polarisation prin-
cipale contrairement a ces textes. Ensuite nous nous intéressons plus particulierement
au cas de la dimension g = 1 : il s’agitici véritablement d’un théoréme des périodes
donc c’est une partie de la démonstration de notre théoréme principal. Par ailleurs,
|’ obtention de bonnes constantes dans ce cas nous permettra aussi d’étre plus efficace
dans I’application aux théorémes d’isogénies de courbes elliptiques. Dans un second
temps, nous €nongons des majorations de pentes maximales dues a Graftieaux, qui
reposent elles-mémes sur des lemmes matriciels.

3.1. Théoréme d’Autissier et conséquences. Commencons par énoncer le lemme
matriciel d’ Autissier [Au] (voir le § 2.4 pour la définition de p(Ay. Ly )).

Théoréme 3.1. Soit (A, L) une variéié abélienne principalement polarisée, définie
sur un corps de nombres k. Pour tout plongement complexe 0: k — {, notons

pe = min (p(Ag, Ls), \/7/3g). Alorson a

g 2m%e

1 T
— +glo g)th + =lo )
[k:Q]g;gc(@g glogp (4) + 5 log—

3.1.1. Donnons une premiere conséquence de ce théoreme pour les courbes ellip-
tiques, qui nous servira plus loin dans les estimations de degrés d’isogénies.

Proposition 3.2. Soit A une courbe elliptique, munie de sa polarisation principale

L. Soit
Z p(AUa LO’)_Z'
o:k—=C

|
T:[k:G]

Alors pour tout nombre réel § dans Uintervalle [3/m, max (T,3/7)|, on a
7é < 3logd + 6h(A) + 8, 66.
En particulieron aT < 6,45max (h(A),1) et T < 1,92max(h(A), 1000).
Démonstration. Appliquons le théoréme 3.1 a (A, L). En écrivant
log po = —(1/2) log(1/p?)

et en utilisant la concavité du logarithme, on a

T 1 1 272e 1
—T' —=logT' < h(4A)+ —1lo avec 1’ := —2
g TploeT =hA)+7log = [k:@]g_écp"

Lapremiere inégalité de la proposition 3.2 découle alors de la croissance de la fonction
X+ (r/6)x — (1/2)logx pour x > 3/m, de I'encadrement 77 > max (7,3/x) >
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§ = 3/m etdu calcul 3log(2m2e/3) < §, 66. En ce qui concerne la premiére majora-
tionde 7', on proceéde de la maniere suivante. Posons ¥ = 6,45et Z =1.8517 <Y,
I’inégalité est démontrée. Sinon, comme ¥ > e,onalogT < T(logY)/Y et donc,
par la premiére partie de la proposition avec § = T,

Y 6Z + 8,66

<2 22T Lax (h(A), Z).
S T — gy et 2

On vérifie numériquement que 67 + 8,66 < 7Y —3log Y et ceci donne le résultat.
Pour la derniére majoration, on utilise le couple (Y, Z) = (1920, 1000). L

Remarque 3.3. Soit 7, I'élément du domaine fondamental de Siegel pour lequel la
courbe elliptique A, est isomorphe & C/(Z + 15Z). La métrique sur 74, définie
par la polarisation L, correspond & la norme ||z]|? = |z|?/Im t, pour z € C. Pour
(a.b) € Z*>\ {(0,0)} ona ||a + bz |?> = |a + bt|*/Im1; > 1/Im 1, avec égalité
si (a,b) = (1,0). On trouve ainsi p(A,, Ly)~? = Imt,. Par suite la proposition 3.2

peut étre utilisée pour donner des estimations de 7 = [k : Q71> Imz,.

3.1.2. Nous allons maintenant nous affranchir de I"hypothese de polarisation princi-
pale du théoreme 3.1 et en donner une forme plus maniable. Nous étudions dans un
premier temps la variation de p par isogénie.

Lemme 3.4. Soient f: A — B une isogénie entre variétés abéliennes complexes et
L une polarisation sur B. Alors p(B,L) < p(A, f*L) < (deg f)p(B,L).

Démonstration. 1’ application f se reléve en un isomorphisme df: tp — 15 tel
que d f(24) C Q2p. Comme le conoyau de cette inclusion est de cardinal deg f
on a aussi Qg C (deg f)~'df(Qa). Par ailleurs la forme de Riemann de f*L
s’obtient en composant la forme de Riemann de L avec d f donc pour tout x € /

nous avons || x| s+, = [|d f(x)| L. Nous en déduisons p(A, f*L) = min{||x||.; x €
d f(Q2a)\{0}}. L’énoncé découle alors immédiatement des deux inclusions de réseaux
ci-dessus. O

Rappelons un lemme classique.

Lemme 3.5. Soit (A, L) une variété abélienne polarisée sur un corps algébrique-
ment clos. 1l existe une isogénie f: A — B et une polarisation principale M sur B
telles que I = f*M etdeg f = h%(4, L).

Démonstration. Onfaitle quotient par un sous-groupe lagrangien de K (L), voir [Mu],
pages 233-234. (]

Ces lemmes permettent de donner la forme suivante du théoréme d’ Autissier.
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Proposition 3.6. Soit (A, L) une variété abélienne polarisée de dimension g sur un
corps de nombres k. On a

1
k- Q] Z p(As. Lc)_2 < 11 max(l, h(A),logdeg; A).
) c:k—C

Démonstration. Notons T le membre de gauche. Si (A, L) est principalement pola-
risée, alors le corollaire 1.4 de [Au] (conséquence directe du théoréme 3.1 ci-dessus)

fournit ’ 3¢ 2
T

pour tout £ avec 0 < £ < 1 (nous avons remplacé i g (A) par h(A) et donc 272 par 27
dans la formule d’ Autissier). Nous choisissons ici € = 0, 174 de sorte que la borne
devient 7 < 2,32h(A)+4, 15g. Le passage aune polarisation quelconque s’ effectue
via les deux lemmes précédents. En effet, la moyenne qui définit 7' est invariante par
extension finie du corps de base k. Ceci nous permet de supposer que I’ isogénie donnée
par le lemme 3.5 est définie sur k. On a alors 2(B) < h(A) + (1/2)logh®(A, L) et
p(Ag. Ls) ™2 < p(By, M;)™2 par le lemme 3.4, pour tout plongement o de k dans
C. Ainsi de la majoration ci-dessus appliquée a (B, M) découlent les estimations

1
T < 2,32(h(A) + EloghO(A,L)) +4,15¢

1 1
=2.32(h(4) + S logdeg; A — S loggl) + 4. 15g

— !
< (3.48 + max(4,15¢g — 1, l6logg!,0)
max(l,logg!)

) max(1, 2(A),logdeg; A).

Pour conclure, on vérifie4, 15g—1, 16log g! < 7,52 max(1, log g!) pourtoutg > 1 :
on procede par calcul direct si g < 5;sinon max(1, log g!) = logg! = glog(g/e) =
g/ 2 suffit. 0

La premiere assertion du théoréme 1.1 se démontre exactement comme ci-dessus
en choisissant ¢ = 0, 14 dans la formule d’Autissier (avec Ap(A)). Ceci donne
T < 2,3hp(A) + 5,5g dans le cas d’une polarisation principale et ’on conclut
ensuite de méme avec 5,5¢ — 1, 15log g! < 10, 55 max(1, log g!).

Pour la deuxiéme assertion du théoréme 1.1, nous nous ramenons encore au cas
principalement polaris€ mais au lieu d’une isogénie nous utilisons I’astuce de Za-
rhin : pour toute variété abélienne polarisée (A, L) il existe une polarisation prin-
cipale M sur A% x A* telle que si t: A — A* x A* est U'injection sur 'un des 4
premiers facteurs alors (*M = L (voir par exemple la construction dans [MvdG],
(11.29), page 171). Comme nous 1’a fait remarquer Pascal Autissier, cecl entraine
oAy, Ly) 2 < p((A* x A, M,) 2 pour tout 6: k — C (puisque nous avons
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une injection isométrique de £24,, dans €2 (A%x 54)0). Nous appliquons alors le corol-
laire 1.4 de [Au] avec ¢ = 1 — 3/7 qui fournit la borne 22 (A) + 6, 1g si A est
principalement polarisée et nous la multiplions simplement par 8 pour passer au cas
général.

Cette seconde fagon de procéder présente le grand avantage de faire disparaitre
la dépendance en la polarisation dans le majorant. Toutefois, dans la suite du texte,
nous utiliserons la premiére approche ou les constantes sont un peu meilleures (dans
la mesure ou deg; A intervient de toute facon par ailleurs).

3.2. Pente maximale. Nous introduisons ici la pente maximale qui jouera un rdle
essentiel dans la preuve du théoréme-clef ci-dessous (théoréme 4.5) et dont I’estima-
tion repose sur une version du lemme matriciel.

Lorsque (A, L) estune variét€ abélienne polarisée sur un corps de nombres k, on
munit I’espace tangent /4 d’une structure de k-fibré vectoriel hermitien notée I(4 )
ou, la plupart du temps, 74, lorsque la polarisation sous-entendue est claire d’aprés le
contexte. Pour ce faire, nous utilisons la structure entiere donnée par I’espace tangent
du modele de Néron de A (qui donne donc, dans le langage des fibrés adéliques de
[Ga3], des normes en toutes les places finies de k). En une place infinie v, nous
utilisons la métrique induite par la forme de Riemann, décrite au paragraphe 2.4. 1l
n’y a pas d’ambiguité car si o et ¢ sont deux plongements complexes correspondant
tous deux a v alors les normes || - ||z,+ et || - ||z.5 coincident comme nous 1’avons
rappelé au § 2.6.

Lorsque I’on dispose d’un fibré adélique £ sur k nous pouvons lui associer i la
suite de Bost deux pentes : d’une part sa pente (toujours normalisée) f(E) définie
page 62 de [Ga3] et d’autre part sa pente maximale fima () qui est le maximum
des pentes des sous-fibrés non nuls de £. Nous utiliserons aussi ponctuellement les
autres pentes fi; (E) de E pouri € {1,...,dim E} (voir la définition 5.9 de [Ga3]).

Nous souhaitons donc évaluer la pente et la pente maximale de 74 mais il faut
faire attention que ces quantités ne sont pas préservées a priori par extension des
scalaires. Au confraire, nous souhaitons ne manipuler que des quantités invariantes
par une telle extension. Nous résolvons ce probleme comme dans le paragraphe 5.1.1
de [Bol] : pour calculer ces quantités, nous ferons toujours d’abord une extension
de corps de sorte que A ait réduction semi-stable. Sous cette condition, nos pentes
ne dépendent plus du corps choisi (c’est la méme convention que pour la hauteur de
Faltings stable).

Chaque fois que nous parlerons de la pente ou de la pente maximale de 74 (ou
de son dual, de leurs puissances symétriques,...) nous ferons donc référence aux
pentes de 74, pour une extension finie K de k telle que Ag admette un modéle
semi-stable. En pratique, ce léger abus d’écriture n’engendrera pas de confusions car,
lorsque nous ferons appel explicitement a la structure hermitienne sur £4, nous aurons
toujours au préalable fait une extension des scalaires assurant la condition de semi-
stabilit€. Surtout, cette convention nous permettra de donner des énoncés invariants
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sans modifier notre corps de base (et donc nous n’aurons pas a estimer le degré d’une
extension sur laquelle A acquiere réduction semi-stable).
Rappelons le fait suivant.

Lemme 3.7. Soit (A, L) une variété abélienne polarisée sur un corps de nombres.

Ona .
" — g
gilica,n)) = —h(4) — > loghO(A, L)+ 3 log 7.

Demonstration. Ceci suit facilement des définitions : voir I’énoncé (D.1) de [Bol]
et une preuve page 715 de [Ga2]. (]

On peut tirer d"un lemme matriciel une estimation de la pente maximale du dual
de 74. Un énoncé explicite est donné par Graftieaux comme suit :

Lemme 3.8. Si L est une polarisation principale on a
fimax (53) < (g + Dh(A) + 2¢° log2.
Démonstration. Voir la proposition 2.14 de [Gr]. U

Nous passons au cas général par isogénie comme ci-dessus.

Lemme 3.9. Soient f: A — B une isogénie entre variétés abéliennes sur k et M
une polarisation sur B. Alors, pourtouti € {1,..., g}, ona

Qi lkca, rmy) < fille an)-

Démonstration. Aprés nous étre placés surune extension de corps convenable ou A et
B ont des modeles semi-stables, nous considérons I’isomorphisme d’espaces vecto-
rielsd f : t4 — tp. Pour chaque plongement o, I’application (d f ), est une isométrie
avec les normes relatives a (f* M), et My (voir la démonstration du lemme 3.4).
D’autre part, d f préserve les structures entiéres puisque f s’étend en un morphisme
entre les modeles de Néron de A et B. Par suite la norme de d f en une place ultra-
métrique quelconque est inférieure a 1. Le résultat suit alors par inégalité de pentes
(voir par exemple la proposition 6.7 de [Ga3]). L

Nous en déduisons 1’énoncé suivant.

Proposition 3.10. Si (A, L) est une variété abélienne polarisée on a

R — 1
Fimax (14, 1)) < (2 + DO(A) + 5 logh®(4, L)) + 2¢° log 2.
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Démonstration. La moyenne des pentes d’un fibré adélique est égale a sa pente. Ce
fait et la relation de dualité fi; (IE’ 1 L)) = —fig—i+1(l(a,1)) conduisent alors &

g—1

P (y.1) = @ 1) = (X li@n) ) — ehlan)-
i=1

Considérons la variété abélienne principalement polarisée (B, M) donnée par le
lemme 3.5. Par le résultat précédent, la somme ci-dessus est majorée par

g—1
> A EBa0) = fma(({p00y) + 8AGEEMD)-
i=1

Le lemme 3.8 donne une bome pour le premier terme et le second se calcule avec le
lemme 3.7. On obtient

. — 1
froa(Ta 1)) = gh(B) + 2g° log 2 + h(A) + = logh(4. L).

Il ne reste plus qu’a utiliser I’estimation de Raynaud A(B) < h(A) + % logh®(A, L)
pour conclure. (]

4. Minimum essentiel

Nous énongons le théoréme principal qui entraine les théorémes cités dans I’in-
troduction.

4.1. Minimum d’évitement. Soient A une variété abélienne complexe et L une
polarisation sur A. Soient |.||. la norme sur I’espace tangent 7 induite par L (voir
§ 2.4) et d_ la distance associée.

Définition 4.1, Soit B une sous-variété abélienne de A. Le minimum d’évitement de
B, relatif a (A, L), est le nombre réel

S(A, L,B) ‘= min {dL(Ct),IB); a € QA \ QB}

Le minimum essentiel de (A, L) est §(A,L) := supg 8(A,L,B) (la borne supérieure
est prise sur toutes les sous-variétés abéliennes B de A, différentes de A).

SiB = {0}, onretrouve le minimum absolu (A, L, {0}) = p(A, L). Voici quelques
relations élémentaires auxquelles satisfont ces minima.

Propriétés 4.2. Soient B, C des sous-variétés abéliennes de A.
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(1) SiC # {0} etsi BN C est fini alors on a §(A,L,B) < p(C,L).

(2) Onab(A,L; ®L,,B)? > §(A,Ly,B)?> +8(A, Ly, B)? et, pour tout entier N > 1,
on a

(A, L®Y B) = +/N§(A,L,B).
(3) Pouri € {1,2}, soit (A;, L;, B;) comme ci-dessus. On a

S(Al X A2,L1 2 Lz,Bl X Bz) = min S(Ai,Li,Bi).
i€{1,2}

Nous avons toujours p(A,L) < §(A,L) mais il n’est pas vrai en général que
p(A,L) < 38(A,L,B) (prendre A = E x E pour une courbe elliptique E avec une

polarisation produit L = Ly X Ly puis B la diagonale; on a alors §(A,L,B) =
p(A.L)/2).

Proposition 4.3. Soit B une sous-variété abélienne stricte de A. Soit b le degré de
Uisogénie d’addition BxB~ — A.Alorsona p(B+,L)/b < §(A,L,B). En particulier

onda
p(A, L)

(deg,Byz = YALB).

Démonstration. Soit @ une période de A qui n’appartient pas a fg. Considérons wy, w;
comme au § 2.2 attachés a w et a B. On ad (w, fg) = ||aa||L/b car les espaces /g
et f51 sont orthogonaux. Par hypothése, on a w, # 0 et donc |ws| L > p(B—,L) >
p(A,L). La deuxieme inégalité de la proposition découle alors de la majoration b <
(deg, B). O

Etant donn€ une sous-variété abélienne B de A, de codimensiont > 1, on pose

1/t
X(B) = (degLB) .

Proposition 4.4. Pour toute sous-variété abélienne stricte B de A, on a

x(B)§(A,L,B)? <2/43
(si dim A > 2 on peut remplacer 2/\/§par D).

Démonstration. Notons t la codimension de B dans A. La quantité 8(A, L, B) est la
plus petite norme d’un élément non nul du réseau Q,/ Qg de 15/7z (vu comme R-
espace vectoriel), muni de la norme quotient. Par conséquent, le premier théoréme
de Minkowski donne I’estimation

§(A.L.B)? < yycovol(Ra/2p) /!
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(vt est la constante d’Hermite). Le covolume du réseau quotient est le quotient des
covolumes et, d’aprés [BePh], 1’on sait que covol(Q4) est égal 2 h®(A, L) (idem pour
B). En revenant aux degrés, la borne de Minkowski donne donc

_ ! 1/t
@A LB =y (E)
g!
Sit = 1, la valeur y» = % donne la majoration voulue. Si t > 2, on majore

(g —1)!/g!par 1/t Sit € {2, 3}, on connait la valeur explicite de y,, :

2
ya=+~2 ye= 3176

avec laquelle on vérifie aisément que 1!~ '/t < 1. En général, on dispose de la borne
de Blichfeldt ([GL], théoréme 2, p. 387) :

pat < 2 g
i
L’on peut alors conclure en observant que, sit > 4,ona (1 + t)l/t < /2. O

4.2. Théoréme-clef. Soit (A, ) une variété abélienne polarisée sur un corps de
nombres k. Pour un plongement complexe ¢ : k& — C et une sous-variété abélienne
stricte B de A+, nous avons défini ci-dessus une quantité x(B). Nous posons a présent

x:=min{x(B); B < As}

qui ne dépend pas du choix du plongement ¢ mais seulement du couple (A, L).
Notons d’ores et déja

(degy A)™" < x < (degy, A)7'/¢
comme on le voit avec deg; B > 1 et x = x({0}).

Théoréme 4.5. Considérons pour chaque plongement complexe o: k — C une
sous-variété abélienne B|o| de Ag, différente de Agz. On suppose que Blo| et B[0]
se correspondent via l'isomorphisme 1. Ay =~ Az du § 2.6. Soient

X ) codim B[o]

8 :=8(As, Lo, Blo]) e &= (x(B[o])

Alors on a

ra 2 ()

o: k—=C

L
< 131¢26 10y max (1, h(A),logdeg; A, a Z logdeg; B[O’]).
’ o: k=T




Vol. 89 (2014) Théoréme des périodes et degrés minimaux d’isogénies 363

De plus, si g = L ousi x < 1/2141 alors on peut remplacer la constante numérique
131 par 23.

Notons que la condition sur les B|o| entraine 8, = 85 et §; = £5. L.a constante
1/2141 qui apparait provient de la démonstration de la conséquence suivante.

Corollaire 4.6. Etant donné une variété abélienne polarisée (A, L) sur un corps de
nombres k, on a

V3 1
x <
27 T k@]

Y 8(As. L) 2 < 23g% T x max (1. h(A),log deg; A).
o:k—=C

Démonstration. La minoration de la moyenne des 8§(A,, L,)™2 est une simple ap-
plication de la proposition 4.4 (en minorant x(B[c]) par x). Pour la majoration,
observons que I’on a toujours

1
lk: Q]

> 8(Ag.Le) % =

= - p(Aq. Lcr)_2
i kT LEle 2

o k—=C

car p(Ag, Ls) < 8(As, L) Par conséquent, si x > 11/(23g2g+6), le lemme matri-
ciel de la proposition 3.6 permet de conclure immédiatement. Dans le cas contraire,
onaoubieng = 1 oux < 11/(23g261%) < 1/2141. Pour tout plongement &
nous choisissons une sous-variété abélienne Blo| de A, telle que x(B[o]) = x
(et donc §; = 1). Dans ce cas on a deg; Blo|] = deg; A et, par définition,
8(Ay, L)% < 8(Ay, Ly, Blo])™2. Le théoréme 4.5 donne alors le résultat voulu.

(]

4.3. Premiéres réductions. Nous montrons ici que, pour établir le théoréme 4.5,
nous pouvons supposer g > 2 et faire une extension finie du corps k.

4.3.1. Courbeselliptiques. Lorsque g = 1, nous avonsautomatiquement B[c| = 0
et x = x(0) = (deg; A)~!.Parsuite £, = 1 tandis que §; = p(Ay, Ly). Enoutre, la
polarisation 1. est une puissance de l'unique polarisation principale de A, disons L.
Ainsi L = LZ %L 4 et donc p(Ay, Ly)? = (deg; A)p(Ay,(Lo)s)?. Finalement la
formule & démontrer se simplifie donc en

1
[k : @]

> p(Ag. (Lo)o) > < 23 max(l, h(A), logdeg; A)
0. k=T

et elle découle alors facilement du lemme matriciel pour (A, Lg) (par exemple la
proposition 3.6 suffit). Nous supposons désormais g > 2.
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4.3.2. Variation du corps. Les données (A, L, (B[0])s: r—¢) admettent une no-
tion naturelle d’extension des scalaires : si K est une extension finie de & alors on
définit (Ag, Lk, (B|o'])e’: k—c) en posant simplement Blo'| := Blo’|¢]. Alors le
théoréme est invariant par extension des scalaires. Ainsi dans la suite nous pourrons
faire librement une extension finie du corps k.

4.4. Stratégie, La démonstration du théoréeme 4.5 repose sur une construction de
transcendance, qui s’inspire du cas périodique de la théorie des formes linéaires de
logarithmes. Plus précisément, nous utilisons la variante de la méthode de Gel’fond-
Baker proposée par Philippon et Waldschmidt [PW], variante qui permet d’extrapoler
sur les dérivations (dans une direction bien choisie) plutdt que sur les points.

Schématiquement, cette méthode consiste a construire une fonction auxiliaire qui
est petite en ’origine de 4, dans toutes les directions (jusqu’a un certain ordre g7')
sauf une (en substance celle donnée par un élément qui réalise le minimum 84 ) pour
laquelle 1’ordre est bloqué a 7, <« T&,. Par le biais d’un lemme d’interpolation
analytique (en une variable), on montre alors que 1’on peut s’affranchir de cette
demiere restriction, quitte a remplacer g7" par T, ce qui fournit des bornes (dites
fines) de la « premiére » dérivée non nulle de la fonction auxiliaire en I’ origine. Apres
renormalisation éventuelle, cette dérivée est un nombre algébrique et un lemme de
multiplicités assure qu’il est non nul. Ce nombre satisfait alors ala formule du produit.
La majoration de ses valeurs absolues en les places p-adiques du corps de nombres
ambiant k£ conduit par comparaison avec les estimations archimédiennes fines a une
inégalité brute de laquelle est extraite I'information voulue (ici la majoration de la
moyenne des (£5/8,)?). Considérer toutes les places de k au lieu d’une seule avec,
en outre, des £, non nécessairement égaux a 1 est une des caractéristiques originales
de notre démonstration.

Nous avons perfectionné ce canevas sous trois angles : (1) nous avons introduit la
méthode de la section auxiliaire, €laborée dans [Ga4], qui remplace celle des fonc-
tions auxiliaires, avec les avantages déja évoqués a la fin de I'introduction, (ii) nous
apportons un nouveau lemme d’interpolation analytique, d’intérét indépendant, qui
fera I’objet de la partie suivante, (iii) nous évaluons de manicre quasi-optimale les
rangs asymptotiques des systemes linéaires avec lesquels est batie la section auxi-
liaire. Ces évolutions permettent de travailler dans un cadre plus agréable qui élimine
naturellement certaines difficultés techniques (par exemple, il n’y a plus « d’astuce
d’ Anderson—Baker—Coates »), tout en conduisant & de bien meilleures constantes
numériques qu’auparavant.

5. Prélude a I’extrapolation analytique

Dans cette partie, nous €tablissons le résultat crucial pour extrapoler sur les déri-
vées dans la démonstration du théoréme 4.5. Il s’agit d’un lemme de Schwarz appro-
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ché, de facture assez classique. On en trouvera par exemple une formulation plus gé-
nérale dans ’article de Cijsouw et Waldschmidt [CW]. Nous avons cependant besoin
d’une version significativement plus fine en vue des calculs explicites de constantes.
Pour cela, nous modifions la trame de la preuve de [CW] de trois facons : en premier
lieu, puisque nous ne souhaitons extrapoler qu’en 0, nous ne majorons le module de
notre fonction analytique que sur un petit disque (de rayon 1 au lieu de 2§, dans
les notations ci-dessous) ; ensuite, nous remplacons en fait ce disque par un domaine
plus compliqué le contenant (voir figure), pour €viter au mieux les contours d’inté-
gration, légérement contractés, qui apparaissent dans nos calculs de résidus (formule
d’interpolation d’Hermite) ; enfin nous estimons de maniere tres précise les extrema
du polynéme auxiliaire de la dite formule (voir lemme 5.2).

Voici notre résultat, décliné en une forme brute et une forme légerement plus faible
que nous utiliserons plus bas. Si R est un nombre réel positif et si D(0, R) désigne
le disque fermé {z € C; |z| < R}, on note | f | g la borne supérieure des | f(z)| pour
z € D(0, R).

Proposition 5.1. Soient S et T deux entiers naturels non nuls, & un nombre réel tel
que O < e < 1/2et f: C — C une fonction holomorphe. Alors on a :

(S — DPshz ST ( shw \" i
<4
it ( (25 — ! |f|S COS TE JeglallJKS 2f£rf ()
En particulier, on a aussi
i ' 125T(12 ©
Flis4(gs) 1fls +125TADT  max | O]
£, €<T

On comparera avec [CW], p. 179-180, en prenant § = |, k =25 — 1, £ =
f1-8,...,8 -1}, r = 8§, R = 85 qui donne la mé&me puissance 2=25T dans le
premier terme mais au prix de remplacer | f|s par | f|ss ; dans le second terme la
puissance de ’ordre de 81°7 devient 127 ; bien s, rappelons que nous majorons
seulement | f | et non | f |25 mais cela ne fait que peu de ditférence lorsqu’il s’ agit
d’estimer les dérivées en 0.

Commengons par un lemme préliminaire.

Lemme 3.2. Soient § un entier naturel non nul et P = l_[f;ll_S(X —j) e Z|X].
(L) P(S) =25 - DI =-P(=S5).
(2) Sit € Ret|t| < S alors |P()| = (§ — )Pz~ sin(m1)|.
(3) Siz € Cetmin(|z|,2|z—1|,2|z+1]) < lalors|P(z)| < (S—1)1?z~ ! sh(x).
(4) Sik € Z et p € R alors

min{|P(2)|: z € C et |z — k| = p} = min(| Pk + p)I.| P(k — p))).
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Démonstration. 1’assertion (1) se passe de commentaires. Pour (2) et (3) écrivons
P(X) = XTI321 (X2 = /%) = (S — DX [];Z] (X2/j2 — 1). On rappelle aussi

que
= 12 e 1
sinnt:ntn(l—_—z) et shn:nn(1+_—2).
; J z J
i=1 ji=1

La relation (2) se réduit donc a H S |1 —12/j?| <1 qui découle bien de |t|<S.

Pour (3) nous devons montrer |z| HJ: —z2/j?| = [T7Z, (1 + 1/j?). Cette for-
mule étant claire pour |z| < | et invariante SOuUs z > —z, NOUS pouvons supposer
|z —1| = 1/2. Nous avens alors |z||l —z2| < B3/ |1 +z| <15/8 <2=1+1/12
et il suffit donc de vérifier |1 —z2/j%| <1+ 1/j2 pour j > 2. En élevant au carré
et en simplifiant, ceci équivaut 4 |z|* — 1 < 2j2(1 + Re(z?)). Enfin nous avons
|z|* < (3/2)* <8 < 2j? et Re(z?) = O car, par exemple, |[Arg(z)| < /4. Passons
a(4).Si|z —k| = petx = Re(z — k) alors

k+S5-1

PO =[] G2+ +2/x).
j=k—8+1

Scindons E = {k—-S+1,....k+S-1}enF={jeE; —jeEletG=E\F
(chacun pouvant étre vide). On remarque que tous les éléments de ¢ ont le méme
signe donc la fonction x — [] jeG (j2 + p? + 2jx) est monotone (tous les facteurs

sont positifs car —p < x < p) et elle atteint son minimum en p ou —p. D’autre part,
siFF#£@,onale et

[[G>+2+2i0)=p> ] G+ —4j%x7).

jer JEF, j=1
Nous obtenons donc une fonction paire minimale en x = peten x = —p. En faisant
le produit, nous voyons que | P(z)| est minimal en ’un des deux points donnés par
|x| = p. C’est le résultat. 0

Démonstration de la proposition 5.1. 51§ = 1, 1’énoncé est tautologique donc nous
supposons § > 2. Notons ' = {{ € C; |{| = S}tetl; ={{ e C; |{—j| =
(1/2)—e}pour|j| < S ainsique @ = PT aveclanotation P dulemme 5.2. Comme
dans [CW], nous partons de la formule d’interpolation d’Hermite

f& _ L[ f© d 1 SZI Zf%) (¢ - i)° dt
0(z) 2w Jr 0 T—2z 2im A= = & Jr, Q) (-:

valable pour z € C vérifiant |z| < Set|z—j| > (1/2) —epour | - § < j <= § —1.
Nous I"appliquons pour z tel que min(|z|, 2|1 —z[,2|1 + z|) =L :
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oy
N

L
2/

o
¢
Q)

Tracé approximatif de la courbe min(|z],2|1 —z[,2[1 + z|) = 1.

Elle est toujours distante d’au moins & des petits cercles.

Dans U'intégrale le long de I, nous avons [{ —z| = § —(3/2) = S§/4. De plus, les
assertions (1) et (4)dulemme 5.2aveck = Oet p = S donnent |Q(£)| = 2S—-1)T;
comme I est de longueur 27§, il vient

1 f f(Q dg
2im Jr QO § -z
Dans I'intégrale le long de T';, nous estimons | — j| = (1/2) —e < 1/2 et |{ —

z| = e tandis que [Q(0)| = min(|Q(/ — (1/2) + o), |Q( + (1/2) —9)]) =
(S — DPT 7 T (coswe)T par le lemme 5.2, (2) et (4). Comme I'; est de longueur
T — 2mwe < 7, nous trouvons

= @5 - 1)!T|f|5

o An 3 TGS O (L
7 2 r, 00 -z
- ST( T )T

(S — )12 cosme) jez, |j|<S EeN e<T

zgg,f“)(J)‘

Pour obtenir la premiére majoration de ’énoncé il reste a utiliser |Q(z)| < (§ —
12T =T sh(z)T d’apréslelemme 5.2, (3), et A rappeler que le principe du maximum
donne

1 < supf| £(2)]; z € C et min(z],2/1 — 2], 2|1 + z]) = L},

Afin de passer i la seconde formulation, nous écrivons ug = 45 (S —1)12(2S - DI~
Uncalcul immédiat fournitus /usy+1 = 1+1/(25)doncu s décroitpuisus < u, =
8/3. Nous avons donc

(S —DPshw _ 8shw
725 - 1! — 3=

45

Parallélement nous utilisons £ = 1/12 et nous terminons par les estimations numé-
riques

8shm sh
<10 et —— <12. O
3 cos(m/12)
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Remarques 5.3. Nous pourrions, comme dans [CW], supprimer a la fois le T de
ST/e et le 2¢ en utilisant Zg:ol 27¢ < 2. Ceci n’a aucune influence pour notre
application car 7' tendra vers I’infini et seule importera la limite de (1/7) log | f |1-
Pour cette méme raison, nous pourrions garder ¢ dans la formule et le faire tendre
vers 0 in fine.

En supposant § > 175 le premier terme pourrait étre remplacé par 4757 | f|s.
Alternativement nous pourrions écrire 4(155~1/24=5)7| f|¢ en majorant ug plus
finement.

6. Démonstration du théoréme-clef

6.1. Choix des métriques. Soit (A, L) la variété abélienne polarisée du théoréme-
clef4.5. Pour chaque plongement complexe o : k£ — C, il existe une unique métrique
sur L, dite métrique cubiste, de forme de courbure invariante par translation et
rigidifiée a 1’origine : OZULG ~ OSpecC est une isométrie (avec la métrique triviale
sur Ogpec ¢)- Quitte a faire une extension finie (voir 4.3.2), I’on peut supposer que le
couple (A, L) posseéde un modéle de Moret-Bailly (4, £) sur k, au sens suivant :

* il existe un schéma en groupes A — Spec ¢y semi-stable (donc lisse), de fibré

générique isomorphe a A (ce schéma en groupes est un ouvert du modele de
Néron de A),

« il existe un fibré hermitien cubiste £ 1= (£, (|- lcub.o )o: k=) Sur A, de fibre
générique L (le terme cubiste signifie que la métrique ||.||cup.o sUr £ R, C est
cubiste pour tout o: k — C).

L’existence d’un tel modele est démontrée au § 4.3 de [Bo2]. Soulignons que la
définition de fibré cubiste implique que £ est rigidifi€ 2 I’origine. Pour tout entier
n > 1, le k-espace vectoriel H,, = HO(A, L®") des sections globales posséde une
structure de fibré adélique hermitien H, = (H,, (||.| H,.»Jv) sur k ; la structure
entiere est donnée par H? (A, £%") : pour toute place ultramétrique v de k, pour tout
s € H(A, L®") @ ky,ona

Isll 7, » = min {|Aly: A € ky \ {0} ets/A € HO(A, £27) @0, Oy} (1)

(ky est le complété de & en la place v et @, son anneau de valuation). La structure

archimédienne de H, est donnée par intégration des normes cubistes : pour tout
o:k — C,pourtouts € HO(A4, L®") ®4 C,

1/2
Isl 7, = ( [A ||s(x>||§ub,gdx)

ou dx est la mesure de Haar normalisée sur A,. Muni de ces normes, H, a une
structure de fibré adélique hermitien et sa pente d’ Arakelov normalisée a été calculée
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par Bost (voir le théoréme 4.10, (v), de [Bo2]) :

1 (nghO(A,L))

am
) = =3h(d) + Jlog ( —5 =2 2)

Par ailleurs, comme nous I’avons vu au § 3.2, I’espace tangent /4 de A possede
lui-méme une structure de fibré adélique hermitien £4 = (24, (||.||2..6)0: k—¢) (dont
nous pourrons utiliser la pente sans risque en vertu de I’hypotheése de semi-stabilité
faite ci-dessus). 1l existe un lien entre la métrique cubiste et la métrique |.||r,s. Si &
est la fonction théta (voir § 2.5) associée a s € H%(A, L®") ®, C alors, pour tout
x = expy, (z) € Ag,ona

s lanr = 19 exp (= Znllz 17, )- 3)

6.2. Choix des parameétres. Soit n un nombre réel > 1 tel que # := xn soit un
entier. Onpose 7 := [n]+ 1. Nous introduisons aussi le nombre réel 0 = (log 2)/7 et,
pour chaque plongement complexe 6 : k < C, leréel £, = (64/2—8)g 8 &,. Nous
signalons toutefois que ces valeurs exactes ne seront utilisées qu’au paragraphe 6.8.
D’ici la, nous n’aurons besoin que de & > 0et < &5 < 1 pour tout 0.

Notre derniére famille de paramétres (entiers) est définie par 7, := [egn| pour
tout plongement o. Notons 7, < 7. Le parametre n va tendre vers +oc en fin de
démonstration. En particulier I’on peut supposer que 7', n et les 7,; ne sont pas nuls.
Le choix de x assure le résultat suivant.

Proposition 6.1. 71 n’existe aucune section non nulle de H(A, L®") qui s’ annule &
Uordre gT le long de (4 en 04.

Démonstration. Dans le cas contraire, le lemme de multiplicités de Nakamaye [Na]
assure I’existence d’une sous-variété abélienne A" de A, avec A" # A et A" définie
sur k, telle que 78~4m 4" deg, A’ < (deg; A)n8~4m4’ En &erivant cette inégalité
au moyen de x(A’) on trouve

[n]—|—1-x(A’) g
n x

qui est impossible puisque x(A") > x. 0

Soient 0 : k < C un plongement complexe de k et ws € (24, + [B[s]) \ B[o]
de norme égale a §,. Cette condition implique que w,, appartient a I’orthogonal de
IB[o] dans (24, . ||-||£,0)- Il est donc possible de fixer une base orthonormée f, =
(fi.0:---. fa.0) de iy, ayant les propriétés suivantes :

(i) (fios---» faim B[s],0) €St une base de /p[4],

(i1) fg,cr = wU/”wU“L,U'
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6.3. Fibré adélique des sections auxiliaires. Au § 6.1, nous avons muni le k-
espace vectoriel I, = H%(A, L®") d’une structure adélique hermitienne 77, =
(. (|-l 7, ,)v)- L objectif de ce paragraphe est de munir #7, d’une structure her-
mitienne différente en certaines places archimédiennes de &, structure obtenue par
déformation de ||| g - Une lois ce fibré adélique tordu défini, nous estimerons sa
pente d’ Arakelov.

On pose v = dimy H,, = n?h%(A4, L). Soit V I’ensemble des plongements
complexes ¢ de k tels que 82 /e, < @/x. On notera que V est stable par conjugaison
complexe. A chaque plongement complexe o : k — C quiappartienti V, ’on associe
I’entier S, > 1, qui ne dépend pas de n, défini par

Oes
8s = | —
=[5

et le nombre réel «, := 47737, Ce nombre «, ne dépend que de la place v de k sous-

jacente a ¢. Soit (s1,...,8y,) une base orthonormée de (H, ®, C, ””ﬁn - ). Pour
tout i € {1,...,v},s0it ¥ : £4, — C la fonction théta associ€e a s; (voir § 2.5).
Etant donné une base e = (eq,...,¢g) de f4,, un multiplet 7 = (11,...,175) € N¥

et un vecteur z = zyey + --- + Zge, € f4,, ON NOLE %Dgﬁ(z) la dérivée divisée
i 3 \T1 d \z '

n!u-rgz(m) (E) D(zier + -+ Zgeg).
Soit Ty 'ensemble des couples (m, t) € Z xN# vérifiant les propriétés suivantes :

i) mei{l—3S8g,...,8 — 1},
(i) sit séerit (r1,... 1) alors |t :=11 4+ -+ 1 =gT + 715 — 1,
(iil) 1 = T5 — L.
Soit vs le cardinal de T,;. On a U'estimation triviale vy, < (42557 )%. Rappelons

que fo = (fi.0:--.. fg.0) désigne la base orthonormée de 74, introduite au § 6.2 et
considérons la matrice complexe a, de taille v, x v, de coefficients :

. L, 4
ay[(m,1),i] = (;Dfa O (mwc)) exp {—5””””@0”%,0}

pour tous (m, ) € Ty eti € {1,...,v}. Dans la suite, on notera g, le rang de la
matrice a,.

Définition 6.2. Posons o := (&, )sev. Le fibré€ adélique hermitien ﬁn,a sur k estle
fibré vectoriel adélique d’espace vectoriel sous-jacent f1, et dont les normes sont les
suivantes : en une place v de & qui n’induit aucun plongement k — C appartenant
aV,onpose .| g, ,» = Il-lz,,y: sivestune place archimédienne de & tel qu’un
plongement complexe ¢ : & — C associ€ appartienne a V, la norme ||. || Hy v ESL
définie par

1/2
181 + -« + %8, ”ﬁnﬂm = (|X|§ + |acracr(x)|%)
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pour tout x = *(xq,...,x%,) € C" (la norme |.|, est la norme hermitienne usuelle
sur CY ou CYo).

Aux places archimédiennes, la norme ainsi définie ne dépend pas du choix de ¢
associé a v. L’estimation de la pente de H,, , requiert le lemme suivant, variante de
I’inégalité de Cauchy pour les fonctions holomorphes.

Lemme 6.3. Soit 0: k — C un plongement complexe de k. Soit e = (eq, ..., eg)
une base orthonormée de (14, , ||.||L.o)- Soient s € H(A, L®") @, C et # la fonction
théta associée. Alors, pour tout z € Ceg, pourtout 1 = (11,....7g) € N¥, on a

1
=Di9(2)
!

T T
exp {~Znlzl} o} = Islloos exp {508 + 20 100}
0t [sllso.s = sup {lls ()l * € Ao},

Démonstration. L’inégalité de Cauchy pour la fonction holomorphe # se traduit par
la majoration

1 g -
= WSUP{W(Z +y)|: y = Zy,-e,- €14, etVvi, |}’;| =}

1
‘—D;ﬁ(z)
7! i
i=

valide pour tout nombre réel r > 0. L'hypothése sur z donne ||z + |2 < |z||* +
27| z|| + gr?. La relation (3) entre s et ¥ fournit alors I’ estimation

T T
196 + n)lexp {~Znlzl} o < Islloo.o exp {Sn(gr® +2rlzlL0)}.
ce qui démontre le lemme, en choisissant 7 = 1. U

Un lemme de Gromov assure |’existence d’une constante ¢ > 0, qui ne dépend que
de (A4, L), telle que, pour tout s € i, ®; L, on a [|${oc,o = n°[|$] g, , (voir [GS],

lemme 30). De ces résultats découle la proposition suivante (rappelons que g, désigne
le rang de la matrice a5 ).

Proposition 6.4. I existe une constante ¢ > 0, qui ne dépend pas de n, telle que la
pente d’Arakelov normalisée i(H, o) de Hy o est minorée par

Oo T
_; wap (logag + En(g + 25080)) —clogn.

Démonstration. En vertu de [Ga4], § 4.2, la différence des pentes j1(H, o) — fi(H,)
est minorée par

_ Z s -QEQ]U (10g(1 +0a2)'/? + logmax {1, ”aaHOp})

ceV
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ol [|ay ||op désigne la norme d’opérateur de a, : (CV, |.|2) — (€7, |.|;). La compa-
raison de cette norme avec celle de Hilbert—Schmidt conduit a la majoration

las [lop = (vvg)l/2 max {|as[(m,1),i]|; (m, 1) € Y5, | <i <v}.

D’apres le lemme 6.3 et via la majoration de Gromov, le maximum qui apparait
ci-dessus est plus petit que exp{ n{g + 25584 )}nc (¢’ constante qui ne dépend

pas de n). La partie (vu,)'/2n ¢’ entre dans le ¢ log n de la proposition, ainsi que la
différence entre log{1 + oaf,)l/ 2 et log oty Quant 2 la pente (), la formule (2)
montre qu’elle fait partie elle aussi de ¢ logn. 0

6.4. Estimation de rangs. Dans la proposition 6.4 du paragraphe précédent est
apparu le rang o, de la matrice a,. Pour que cette proposition soit utilisable dans
la suite, il est important d’avoir une estimation soigneuse de g, plus précise que
O¢ < min {v, vgs}. Comme I’ont montré Philippon et Waldschmidt [PW], le choix de
x et son incorporation dans le parametre 7 = xn vont permettre de faire en sorte que
oc/v < 1. Etant donné un nombre réel £, on note

r(g.e) == (g +2)% —g%.

Si & < 1, nous avons facilement 7(g, &) < g8e(1 — &)~

Proposition 6.5. Pour tout plongement o: k — C appartenant a V, le quotient
0 /v du rang o de la matrice a5 par la dimension v de HY(A, L") est plus petit
que 1(g,e,)/E; + o(l) ou o(l) désigne une fonction qui tend vers 0 lorsque n tend
vers oc.

Démonstration. Soit g; = dim B|o|. L’idée de Philippon et Waldschmidt est de
majorer g, par dim £ — dim I ou £ est I’espace des fonctions théta associ€es a
L®" et F le sous-espace formé des fonctions dont toutes les dérivées D% ¥ sont
identiquement nulles sur /g[;] pour T = (8 s v o 50y Doty o v iy Tt U longueur <
gT + Ty —1lavec,deplus, 7, < 7T; —1.Pour—1 <{ < gT + T; — 1 on note
aussi Fy le sous-espace de /2 défini de méme en limitant la condition aux indices
de longueur au plus £. Nous avons donc F = Feryr,—1 C Feryr,—2 C - C
o € F_y = E.D’un autre cbté, g = dim £ — dim G ou G est le sous-espace
formé des fonctions telles que D} tHmawgs) = O pour tous (m, t) € Y,. L'inégalité
0 < dim E —dim F découle donc de I C G :sith € Fet(m,t) € Yy, on éerit
Mws € @ + Ig[y] pour @ € 24, et 'on applique la dérivation Dr a la formule
Hz + w) = ap,(z,0)"¥(z). Maintenant si T est un indice intervenant dans la
définition de F; et si v+ € Fy_ alors la dérivée D}U ¥ définit une fonction théta sur
Ig[s] : en effet, comme précédemment, lorsque I’on dérive par la formule de Leibniz
Iégalité #(z + @) = ar,(z,w)"P(z) pour @ € Qp[s] €L Z € Ip[s] alors toutes les
autres dérivées apparaissant sont nulles par définition de Fy_y. Par suite on définit une
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injection de Fy_y / Fy dans une somme de copies de HO(B o], L2"). En sommant sur
£ et en calculant le nombre total X de copies, nous trouvons g, < dim £ —dim F <
xhO(Blo], L&") = X(deg; , Blo])n®/g,! ol

X = card{r’:(rg0+1,...,rg)e NET8 ;|| < gT + Ty —let g ETg—l}
B (gT+Tg—1+g—gg)_(gT+g—gg)
£~ & g — &

Siy € N alors le coefficient binomial (X+y) est équivalent a x¥/y! lorsque x tend
vers oc. En divisant g, par v = n¥(deg; A)/g! et grice au choix des parameétres

T =[n]+1,7Ts; = [gsn] et n = xn, nous obtenons alors
0o g - - deg;, Blo]
el £—80 _ 4880 o 1
2 < (5 ) x (e + eorrre - grmee ) x B P o)

lorsque n — +o00. Dans ce majorant, le dernier quotient vaut exactement £, ! tandis

que le facteur qui le précéde est majoré par r(g, &5) (en utilisant (gg ) <gfo). O
o

6.5. Construction d’une section auxiliaire. Si £ = (E, (Il £ v place de &) €St UN

fibré vectoriel adélique sur k, la hauteur Az (x) d’un élément x € £ \ {0} est le

nombre réel :

1
hp(x) = WZ ko : Qu]log | x]| 5 ,-

En notant Ag,q le discriminant absolu de &, le lemme de Siegel de Bombieri-
Vaaler [BV] affirme qu’il existe x € E \ {0} tel que

NP | :
hg(x) = —p(E) + 510gd1mE + log |A/ql-

1
2|k - Q|

En appliquant ce lemme & E = H, , et en utilisant les propositions 6.4 et 6.5, on a
le résultat suivant.

Proposition 6.6. I existe une section s € H*(A, L®") non nulle telle que

1 r(g.85) i3

6.6. Extrapolation analytique. A partir de maintenant, la section s qui apparait
est celle construite dans la proposition 6.6 du paragraphe précédent. Soit £ I’ordre
d’annulationde s en 0 (le long de £4). La proposition 6.1 fournit I’estimation £ < g7

Soit v une place archimédienne de & telle qu’un plongement o : kK — C induit
par cette place appartienne a V. Soit ¢ : 14, — C la fonction théta associée 4 s dans
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H, ®, C. Dans ce paragraphe, nous €tablissons une majoration fine de la v-norme du
jetde s d’ordre £ en 0. Ceci est rendu possible par la construction de s et de la norme
tordue sur H, , qui implique que les dérivées 1 Dr ﬁ(ma}g) sont « petites » pour

(m,T) € To. A cette fin, nous allons utiliser le lemme d’interpolation analytique du
§ 5.

Soitt = (r1,...,7g) € IN® delongueur |t| = £etposonst’ := (11,...,Tg—1.0).
Pour z € C, considérons la fonction entiére

£(2) = =D P(zo)

ol fi estlabase orthonormée de 14, introduite au § 6.2 (avec laquelle a i€ construite
lamatrice a, ). Notons D, = §,D /. o ladérivée dans la direction de w, . Pour heNlN,
la dérivée divisée h®™ de £ s’écrit

£

1
ngUﬁ(za)g):Eig-r(h)! Y (zwe)

1
Loy
@ = o

h!
o™ := ¢4 (0,...,0,h). Lorsque h < Ty, lalongueur de ™ est plus petite que
|t| + T — 1 < gT + T, — 1 et laderniere coordonnée de ce multiplet est plus petite
que Ty — 1. Par conséquent, si i < T, les nombres

1 ) T
— D} " Hmawe) exp {—EnﬂmwgﬂLc} (4)

avec m € {1l — S5,...,Ss — 1} sont des coordonnées du vecteur a,(x) ol x est le

vecteur des coordonnées de s (voir définition 6.2). La norme hermitienne du vecteur
» . —1 o yn

formé par les nombres (4) est donc plus petite que a " [[s|| gz, , ,- En utilisant la

définition de oy = 47059 on trouve ainsi

r( )
(1)}

B} (mawg)

f(h)(m)‘ ‘

o T
— =47 sl g, .0 XD {3180 80)} (5)

a

valide pourtous m € {1 — S;.,..., 85, —l}eth € {0,..., T, — 1}. Par ailleurs, le
lemme 6.3 donne la majoration

£l = lslloo.o oxp {Sn(S282 + 2885 + 8-

Comme nous 1’avons vu avant la proposition 6.4, lanorme ||§|| o s peut étre remplacée
parn®|sll g, , = n°lsl g, ., o0c > Oestuneconstante quine dépendquede (A, L).

La proposition 5.1 apphque’e a f£ et aux parametres S, et 7, et I'inégalité de
Cauchy

1
—f“g)(m\ < g
rg!
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montrent alors que §.° |%!D}U79(O)| est au plus

12\ -
(E) 0% N5l 7, .0 max {1,877 exp {2 (5282 + 2508, + 2.

Cette estimation est valide pour tout 7 = (7/,7,) € N¥~! x N de longueur £. En
l'utilisant si 7, > 75, mais en prenant plutot (5) (avecm = 0)si 1, = A < T, on
obtient dans tous les cas la borne

1 T
‘;Dfat?(())

12\ (A @
< (2) Pt () e (2 250 .
g

Nous allons la traduire en termes d’une majoration de la norme du jet de s d’ordre
£ en 0. Commencgons par rappeler la définition algébrique d’un jet de section dans
un cadre général. Soient m un entier naturel, A un schéma sur & et £ un faisceau
inversible sur A. On suppose qu’il existe une immersion fermée €: § — A. Notons
J le faisceau d’idéaux sur A défini par € et Q 4,5 le @ 4-module des différentielles
relatives. Lorsque A — 8 est lisse le long de € (J régulier), le quotient e*(J7 /7 +1)
est isomorphe a la puissance symétrique S™(e*Q 1/5). Une section s € HO(A, L)
s’annule 4 I’ordre m le long de € si s € HY(A,J™ ® L). Dans ce cas, le jet d’ordre m
de s en €, noté jet™ s(e), est 'image de s par ’application composée

H° (A.9" @ L) — H (8, e*(I" /Tty @ e*L)
— H° (8, 8" (" Quays) @ €°L).

Nous notons exp,: fa, — Ao D'application exponenticlle de A,. L’élément
% de HO(z4,, , exp’ LE™) aun jet d’ordre £ en 0. En considérant la base duale (ortho-

nommeée) (f1'y.. ... fgo)de (fio. ... feo),0na

1
jetfﬁ(O) = Z (;D}Uﬁ(())) (fl\':a')rl p— (fg""a_)rg e S‘e(),‘)i) Qo C

lz]=£ "
(dans cette somme, T = (71,...,7¢)). La norme de ce jet est €gale a celle du jet
de s car I, est rigidifié isométriquement en [’ origine. Les normes sur la puissance

—
symétrique S g(l){) sont les normes quotient de t§® (voir [Ga3], p. 45). En notant
S E(a ) le fibré adélique hermitien obtenu, on a alors

- q . g—14+¢

De plus, grace a la proposition 4.3, on a

max (1, SL) < (deg; B[o])? max (1 ;)

Lpe 79(0)‘- (7)

! e

o ’ P(Acr, LO’)
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De cette observation et des majorations (6) et (7) découle 1’énoncé suivant.

Proposition 6.7. Il existe une constante ¢ > 0, qui ne dépend pas de n, avant
la propriété suivante. Soit v une place archimédienne de k telle qu’un plongement
0 : k — U induit par v soit dans V. Le premier jet non nul jetES(O) de s en 0 est de
v-norme inférieure a

12T e ((degLU B|o])? max {1, m})g

w
x sl z, . » XP {En(sgsg + 25085 + g) — T So 1og4}_

(8)

6.7. Estimation de la hauteur du premier jet non nul. Le paragraphe précédent a
été consacré a majorer la norme du premier jet non nul jetES (0) de s en O en certaines
places archimédiennes de k. Ces normes ne sont qu'une partie de la hauteur du jet :

- 1 1
hse et s@) = g—gg D ks : Qullog jet’s Ol g,
u

k:Q
Ici nous estimons les normes restantes en distinguant selon leur caractere archimédien
ou ultramétrique.

6.7.1. Majoration dela norme en une place ultramétrique. Soit v une place ultra-
métrique de k. D’apres la formule (1) donnant [|s]| 7 . lasections € HO(4, L®") —
H(A, L®") @4 k, s’écrit As” avec s’ € HO(A, £%") ®p, O, de norme 1 (O, est
I’anneau de valuation de k). Notons 4, = A X Spec O, €, sa section nulle et £,
le faisceau inversible sur #, induit par &£. Vu la définition du jet de s" appliquée au
quadruplet (A, §, €, L) = (A, Spec Oy, €y, £y), I'élément jetg s(0) vu dans SE(IX)
est égal 4 A jet’ §'(e,) avec jet s'(e,) € Sﬂ(t:’%) (par lissité de A, — Spec O, ;
nous avons omis € &£, car &£ est rigidifi¢ en I’origine). L.a norme v-adique de jetts(0)
est calculée relativement au modele entier .S E(Iu‘:%) de S E(l){) et on a I’estimation

liet*s O lseqry, < Ao = lsll 7, = 57, .00 )

On peut reformuler cette majoration en disant que la taille du sous-schéma formel
induit par 4, vaut 1 (car 4, estlisse le long de I’ origine), ce qui entraine |’ intégralité
des jets (voir [Bo4], lemme 3.3).

6.7.2. Majoration de la norme en une place archimédienne. Soient v une place
archimédienne de k et o: k — C un plongement complexe associé. Au moyen de
I’estimation (7) du jet de s en 0 a I'ordre £ et via le lemme 6.3, on a

.8 g— 1 + gT 2
[ljet S(O)”Sg(a)m < ( e 1 )efrng/ 15 lloo.c-
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Le lemme de Gromov fournit alors I’existence d’une constante ¢ > 0, ne dépendant
que de (A, L), telle que
Jrng/znc ||S ”ﬁ

LoV "

liet*s @)l segry,, < e (10)

6.7.3. Hauteur du jet. En regroupant les estimations (8), (9) et (10), la hauteur du
premier jet non nul vérifie

hige iy et s (0))
<hg, (s)+clogn+ [kz & C;logdegL Blo]
e @] Zk’g e Ui S "
n ﬂ(g e @1 Z 5680 (Sobs + 2)) ;;’?g} ;Tg

pour une certaine constante ¢ > 0 qui ne dépend pas de n.

6.8. Conclusion. Rappelons que la pente maximale ;lma_x(E ) d’un k-fibré adélique
E estle maximum des pentes des sous-fibrés non nuls de . En considérant, pour e €
E {0}, la droite k.e munie des métriques de £,ona—hz(e) = ji(k.e, (||.|z )v) =

fimax (£). En appliquant ce principed £ = S E(ﬂ) ete = jetES(O) on trouve
hse gy (et's(0)) 2 ~fima (SE))- (12)

En outre, on connait une borne pour la pente maximale de la puissance symétrique
£ d’un fibré adélique hermitien, qui ici s"écrit

fmax(SED) < €(fmax(2]) + 2log g)

(voir [GR]). Dans la suite on utilisera le majorant g7 (max {0, fimax (ﬁ)} + 2log g).
On compare cette majoration a I’estimation (11) de la hauteur de jets(0). On fait
intervenir la majorationde i (s) de la proposition 6.6 dans laquelle est intégrée la
valeur de o, = 47757 On obtient ainsi la version « dépliée » de I’inégalité (12), que
I’on divise par n. Puis on fait tendre n vers 4+oc. De plus nous utilisons a présent la
valeurde r (g, £) définie avant la proposition 6.5. Le choix explicite de &, (§ 6.2) est fait
pourdonnerlaborme r (g, £5)6, 1 < 1/2:onvérifie eneffet (g+(6 V2—8)g8E,)8 <
g% + £5/2 par calcul direct si ¢ = 2 eten utilisant 7 (g, ) < g8e(1 —&)"!sig = 3.
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Nous pouvons alors écrire le résultat brut de la maniere suivante. Posons

) _ 1
N1 i=gmax {0, A} + 2¢log g + o5 3 togmax f1, ————|
eV

[k Q] - (Ao Lo)
2g log 12
+ logdeg; Blo] + Eo
[k : @] ; v [k : Q] ;
(13)
et
N P > 8a80(Seads +2) + ! Zl(+2sa)
=g c0g{Ddg0g —\g o0g ).
R P Q] 552
Alors on a loe2
og T
g o foSe SRt Sk (14)
oeV
Posons

M= g 2 (%)

Enutilisant [a] > @ — 1 poura € R etau moyen de la définition de Sy = [feq/(x62)]
et de la borne 25, < g7%, ona

(15)

log 2 (eM 1)
oSe > (log2)( — — — ).
[k:@];'ss > (e =~ e

En utilisant I’'inégalité de Cauchy-Schwarz, on obtient une majoration simple de X,

3 30/ M 032
=g (5
X

En reportant ces estimations dans (14), on trouve

oM 9 3 log2\ 376
—(log2—%)§(&1+—ngx+ = )+ M,
X

X

4 2g¢ 2
puis, avec le choix de § = (log2)/m,ona
3mx 27 x 3z log 2)
M — VM < N+ — . 16
(logZ) - (log2)2( LE T K 2g8 (16)

Fait : Soient o, B des nombres réels positifs. Si M —a~vM < B alorson a

2

o o’
M<p|—+,/1+—

2/B 4p
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Le majorant de M est le carré de la racine positive du trindme X2 — aX — 8, ce
qui justifie le fait. Ici, ce résultat fournit la majoration

2
M < 2mx ( {105 R + 37 N log2}) 3mx n \/1 n 3mx
max —gx — —
= (og2)? P BT e 230 280
Nous nous plagons tout d’abord dans le cas ot x < 1/2141 (le cas restant sera étudié
a la fin de ce paragraphe). La borne ci-dessus devient

3 log 2
M513,2xmax{105,z~:1+—”gx+ of }
4 2g8

Par ailleurs, en revenant a la définition de V (§ 6.3),sic € V, on a
( &g )2 < XEo xm
8/ — 6 T 2log2)g®
Cette majoration couplée avec la borne obtenue précédemment pour M donne

5 = ()

[k : ®] o:k—=C

3zgx log2 big
< 13,2x| max 105, Ry + +
2¢g8 26(log2)g®
< 13,2x max (106,81 + 1/7 4+ 3w gx/4).

On en déduit

2
T -1@] Y (‘g_“) < 56, 1g* x max{106, 8y + 1/7 + 3zgx/4}.  (17)
) o: k—C g

Il ne reste plus qu’a estimer Ny pour conclure.

Proposition 6.8. On a

2g
lk : @

N; < 0,34¢° max {1, h(4),log deg; A} + Z logdeg; Blo].

o k—=C

Démonstration. La majoration de X repose sur la définition (13). Le premier terme
avec la pente maximale du cotangent est estimé par la proposition 3.10 et I’on utilise
la majoration h®(A4, L) < deg; A. En posant & = max(1l,h(4),logdeg; A), ona

1 =,
o g;;ClogmaX(l,p(Ac, Lo)™)
< max (1, log Q) Z p(Ag, LU)_Z)

o:k—C
< log(11h)
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grace a la proposition 3.6. On aboutit alors a la majoration

- 3g(g+ Dh + glogh 2g

ot 2 [k Q]

Z logdeg;  Blo]
o:k—=C
log12

+2g610g2+2glogg+§logll-|— !
) 2g8

La derniére constante est majorée par 1, 48g%. De plus (3g(g + )i + glogh)/2
est plus petit que 0, 147g%h (les coefficients numériques sont obtenus avec g = 2
et logh < h/fe). Lorsque x < 1/2141, on note que 7 > logdeg; A > —logx >
log 2141 puis 0,147 4 1,48/ log 2141 < 0, 34 qui donne la proposition. 0

Le majorant dans cette proposition est toujours supérieur 2 0, 34 x 2% log 2141 >
106 —1/7. Via I’inégalité (17) et laborne 0, 34g% 4+ 2g + 1/7 4 3mgx/4 < 0, 405g°
pour g > 2, on endéduit le théoréme 4.5 (sous '’hypothése x < 1/2141) en observant
que 0,405 x 56,1 < 23.

Dans le cas ol x > 1/2141, nous utilisons x < (deg; A)~/¢ < 1/+/2. Nous
menons les calculs de la méme manicre, seules les constantes numériques €voluent
selon le tableau suivant :

x < 1/2141 | 13,2 56,1 | 0,34 | 0,405 | 23
x<1//2 | 17,8756 1,613 1,73 | 131

6.9. Casdela dimension deux. Dans ce paragraphe, nous établissons une variante
du théoréeme 4.5, dans le cas particulier utile pour I’application aux théoréemes d’iso-
génies elliptiques.

Proposition 6.9. Supposons que g = 2 et que deg; A > 100, Pour chaque plonge-
ment 0. k — C, soit B|o| une sous-variété abélienne de A, telle que x(B|o]) = x
et rappelons que 8, désigne min{d, (@, p[s]); @ € Qa, \ Ip[o]} Alorsona

1 1 _
Y == 1778x(max{1000, fmas(E)} 4 1,61 + logdeg; A

k@], 4= %
1
cT:I(:z:‘_)([:logmax (1, —,O(Ag, Lg)))'

1

TEq

Démonstration. Nous reprenons ladémonstration duthéoreme 4.5. Nous n’ apportons
aucun changement aux paragraphes 6.1 4 6.7. L’invariance de 1’énoncé par extension
de corps utilisée au paragraphe 6.1 reste valable pour la présente proposition en raison
de notre convention sur la pente maximale.

Nous pouvons alors modifier les estimations du paragraphe 6.8 a partir de I’in-
¢galité principale (14). Comme x(B[c]) = x, tous les &, valent | et en particulier
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gs est indépendant de o. Nous notons ici simplement & cette valeur commune :
e = (3v/2—4)/2.12égalité x (B|o]) = x fournit aussi deg; Blo] = /deg; A.Ces
considérations permettent de voir que

- _ 1
Ny < Ry = 2max {1000, fimac (1)} + > logmax {1, m}
a» a

o k—=C

[k : Q]
+ 2logdeg; A + 3,08
(ol nous employons 4 log 2 + £ log 12 < 3,08). Notons m := (>, oy §5°) /[k : Q.

Nous avons alors la majoration

N, <34

30e/m (98)2
+|—] m.
X X
Le pendantde (15) est (3 v So)/[k : @] = (Gem)/x —1 et ’inégalité (16) devient
3x 2x
<
fe ~ w(fe)?

~ 3
(Nl + Oem + ﬂ)
2
Le fait qui suit I'inégalité (16) et la minoration R; > 2000 conduisent 2 la borne
2
- 2x (SE n +3er) 3 Ex-l-\/l-l- O9xm
m em + — | x| =/ —

= (@2 ! 2 2V 4000 16000

Pour passer de m a la somme sur tous les plongements o: & — C, nous devons

ajouter les termes 8§52, o ¢ V, qui sont plus petits que x/(f¢). On obtient donc
finalement

1 Z 1< 2% (§ +398n+37rx)
k@ 2 = w@e2\ ' 2 2

k—
2
9 3 [ nx 4 \/ 1+ O9xm
2 ¥ 4000 16000 |
Pour conclure, il reste alors 4 observer que x est plus petit que (deg; 4)~'/2 < 1075

et a remplacer les parameétres 6 et & par leurs valeurs. Aprés estimations numériques,
nous aboutissons a la formule de I"énoncé. (]

6.10. Démonstrations des théorémes 1.2 et 1.3 de I’introduction

6.10.1. En premier lieu, le théoréme 1.2 découle du corollaire 4.6 et de ’es-
timation g < 2max(1,logg!) qui montre que 2(4) = hp(A) + glog /7 <
log(me) max(1, hr(A),logdeg; A). Nous pouvons ainsi remplacer la constante nu-
mérique 23 par 50 et 1(A) parh r (A) etil ne reste plus qu’a majorer x par (deg; A)~'/&
pour conclure.
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6.10.2. Déduisons maintenant le théoréme 1.3 du théoréme 1.2 que nous venons
d’établir.

Dans le cas ou ¢ = 1, le lemme matriciel donne (comme au § 4.3.1) bien
mieux. Par exemple avec le théoréme 1.1 nous avons deg; A, = deg; A < 14[k :
Q]”“’”i,ao max(1, 21p(A)). Pour la suite, supposons g > 2, notons d = deg; A, et
montrons dans un premier temps :

dl/dimAw < 50428 +6[) . ®]||a)||12”00 max(l, hr(A4),logd).

Il s’agit d’appliquer le théoréme 1.2 4 (A, L) 4,,) en remarquant 8((Aw)06, Lgé) <
|@||L,00- Lorsque A = A, cela nous donne exactement la formule ci-dessus. Si-
non nous utilisons la derniére inégalité du § 2.3 pour écrire hp(Ay) < hp(A) +
logh®(A,. L) + 3g/2 < (3g/2 + 2)ymax(l,hr(A),logd) et ’on conclut avec
(dim Aw)ZdimA‘”+6(3g/2 A 2) < g2g+6.

Pour passer a1’ énoncé de notre théoréme, écrivons pour alléger C = 50g28 5[k’ :
®]||a)||%’00. Sid!/dmAe < 3 9¢3C alors le théoréme est acquis par 3, 9x 50 = 195.
Sinon

1/dim Ag 1/dim A,
logd = (dim A4,,) log C 4+ (dim A,) log C < 0,221T + glogC

ou ’on utilise log(3, 9¢~°) < 0, %X 3,9¢<). Nous en déduisons donc
(oul’ ilise log(3, 9¢%) < 0,221 x 3,9¢%). N dédui d

0,779d"/ 4 4o < € max(1, hr(A), glog C)
< 3g°C max(L, hp (A), log(lk" : Q][wllf 4,))

et ’on conclut par (3/0, 779) x 50 < 195.

7. Degrés minimaux d’isogénies elliptiques
Dans cette partie, nous établissons le théoréme 1.4 et son corollaire.

7.1. Rappels sur les isogénies de courbes elliptiques. Soient F; et F, deux
courbes elliptiques sur un méme corps de nombres k. On note Hom( £, £2) ’en-
semble des morphismes de groupes algébriques ¢: £1 — £ sur une cloture algé-
brique k de k. Un élément non nul de ce groupe est une isogénie. Le degré d’une
isogénie est le cardinal de son noyau. On pose aussi deg(®) = 0. Pour n € Z on
note [7] € Hom(E;, £;) (1 =i < 2) le morphisme de multiplication par #. On a
deg[n] = n>.

Lemme 7.1. Il existe une unique bijection Hom(E,, E;) — Hom(E,, E1), ¢ > ¢
telle que



S8
oo
[F8]

Vol. 89 (2014) Théoreme des périodes et degrés minimaux d’isogénies

(1) @ o = [deg ¢]
(2) degg = degy

(3) @ et ¢ sont définis sur les mémes extensions de k.

Démonstration. On pose 0 = 0. Si ¢ est une isogénie, le groupe fini Ker ¢ est de
cardinal deg ¢ donc son exposant divise deg ¢ donc Ker¢ C Ker[deg ¢|. Par suite il
existe une unique factorisation de [deg ¢] a travers ¢ que ’on écrit ¢ o ¢ = [deg ¢].
Si ¢ est défini sur une extension k” de & alors il en va de méme de ¢ puisque ses
conjugués au-dessus de k' réalisent la méme factorisation. De plus on a (deg ¢)? =
deg[deg ¢] = deg@ o ¢ = (deg ¢)(deg¢) qui donne (2). Par ailleurs, ¢ o ¢ o ¢ =
@ o [degp] = [degg] o ¢ donc, par surjectivité de ¢, I’on trouve ¢ o ¢ = [deg ¢]
(dans Hom(£>, E1)). Ceci montre é = @ et donc que I’on a une bijection. De plus
@ est également défini sur toute extension ol ¢ est défini, ce qui donne (3). L' unicité
est assurée par (1) si ¢ # 0 et par (2) sinon. ]

Dans la suite, nous supposerons toujours que £ et £ sont isogénes c’est-a-dire
que Hom( £, £;) # {0}. Dans ce cas, ’ensemble {degg; ¢ € Hom(E, £;) \
{0}t € N\ {0} admet un élément minimal A (qui est aussi min{degyr; ¥ €
Hom(F,, E) \ {01}). Une isogénie ¢ € Hom(FE, F,) de degré A sera dite mi-
nimale. Une 1sogénie est dite cyclique s1 son noyau est un groupe cyclique.

Lemme 7.2. Une isogénie minimale est cyclique.

Démonstration. Soit ¢ une isogénie minimale. Le groupe Ker ¢ est un sous-groupe
de Ker[degp| ~ (Z/deg@Z)? donc isomorphe 4 Z/aZ x Z/bZ avec a | b |
deg ¢. Il contient donc un sous-groupe isomorphe a (Z /aZ)? qui est nécessairement
Ker[a]. Ainsi Ker[a] C Kerg donc il existe une factorisation ¢ = ¢’ o [a] avec
¢’ € Hom(Ey, E;). On a degg = a”deg¢’ donc, par minimalité, @ = 1. Ceci
montre bien que Ker ¢ est cyclique d’ordre 5. L

Pour la suite, nous distinguons deux cas :

(1) E£, et E, sont sans multiplications complexes. Ici Hom(F%,, £,) est un Z-
module libre de rang 1.

(2) EqetE,sontamultiplications complexes. Ici Hom( £, £5) estun Z-module
libre de rang 2.

Proposition 7.3. Dans le cas (1), toute isogénie cyclique est minimale. Il n’y a que
deux isogénies minimales ¢ et —@. Il existe une extension k' de k de degré 1 ou 2
telle que : toute isogénie ¢: E1 — E; est définie sur k' ; si k' # k aucune isogénie
n’est définie sur k. Dans le cas (2) il existe une extension k' de k de degré dans
{1,2,3,4,6,8,12} telle que toute isogénie ¢ : E1 — E; est définie sur k’.
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Démonstration. Dans le cas (1) soit ¢ minimale. On a Hom(Eq, E,) = Zg et
degng = n? deg ¢ pour n € Z donc ¢ et —gp sont les seules isogénies minimales. Si
|n| > 1, Ker(ng) contient Ker[n] ~ (Z/nZ)? qui n’est pas cyclique donc n¢g n’est
pas cyclique. En général, le groupe de Galois Gal(k / k) agit sur Hom(E, , E;) ~ Z™
dans le cas (m), m € {1,2}. Ceci donne un morphisme o : Gal(k/k) — GL,,(Z)
dont le noyau est de la forme Gal(k/k') avec k' extension galoisienne finie de k.
Le groupe Gal(k’/ k) est isomorphe a I'image de «. On sait qu’un sous-groupe de
GL{(Z) =~ Z* est de cardinal 1 ou 2 tandis qu’un sous-groupe fini de GL(Z) est de
cardinal dans {1,2, 3,4, 6,8, 12} (voir [Sel]*). Ceci donne ’assertion sur le degré
de k'. Dans le cas (1), si & # k, alors 'élément o € Gal(k’'/k) \ {id} agit par
o{p) = —¢ sur Hom(£E,, E;). Par suite, si ¢ # 0, ona o(g) # ¢ donc ¢ n’est pas
défini sur k. O

Remarque 7.4. Pellarin (voir remarque fondamentale, p. 211 de [Pe2]) affirme que
dans le cas (1) I'on a toujours k' = k. C’est faux car en fait sur tout corps de
nombres £ il existe deux courbes elliptiques sans multiplications complexes qui ne
sont pas isogenes sur k& mais le sont sur k. Pour le voir, choisir £ sans multiplications
complexes donnée par une équation de Weierstrass y* = x> + ax + b ; choisir
¢ € k\ k2 etdéfinir E, parey? = x3 +ax + b. Lapplication (x, y) — (x,c"V2y)
décrit un isomorphisme E; — F, défini surk’ = k(c'/?) mais pas sur k (il differe de
son conjugué (x, ¥) — (x, —c¢~/2y)) donc d’aprés la proposition aucune isogénie
E{ — E;n’estdéfinie surk. Sil’on veut des exemples ol le degré minimal d’isogénie
A soit arbitraire, on étend & pour que £ aitun point de torsion £ d’ordre A rationnel
(et I’on choisit ¢ ensuite). Alors { = E/ZP et E; sont définies sur k, isogénes
sur k. Le degré minimal est A car £, — Ey — E| est cyclique de degré A mais
elles ne sont pas isogénes sur k car sinon £ et E; le seraient aussi (car £ et E
sont isogénes sur k).

7.2. Cas non CM : lien avec les périodes. Dans la situation précédente, on choi-

sit un plongement gp: k — C. On abrége Q; = 2(E;)g, POUI T € {1,2}. Nous
— 2 2 2 LR P _

posons A = E x E5. L'espace tangent de Agy 8’Cerit Ly, = l(E))o, P U(E))o, P

HEp)oy P U(Es)q, €t contient le réseau des périodes Q4,, = QP2 g QP Siw =

(w11, w12, w21, w22) € Q4 ap ON note A, la plus petite sous-vari€t€ abélienne de Aq,

dont I’espace tangent contient w. Cette variété abélienne complexe est définie sur un

*Si G C GL2{Z) estfini alors H = G N SL2{Z) estd’indice 1 ou 2 dans G ; il suffit donc de voir que H
est cyclique d’ordre 1,2,3,4 ou 6 et méme, en considérant les valeurs propres (racines de 1’unité de degré 1 ou 2
sur Q) qu’il esteyclique; onpose A =Y gy "BB:si B € H alors’ BAB = A;onéerit A = ' CC avec
C € GL2{R) donc CBC~! € 80,(R) pour B € H ; ceci montre que H est isomorphe 2 un sous-groupe fini
de SO2(R) = R/2x Z donc il est cyclique. On vérifie que les valeurs de card G sont toutes atteintes 41"aide de

0 1 1 0
sous-groupes des groupes suivants : Gy de cardinal 8 est engendré par ( ) et ( ) et Gz de cardinal

1 0 0o -1
. 0 1 1 1
12 est engendré par (1 0) et (_1 0).
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corps de nombres : si nous notons &’ le plus petit sous-corps de C contenant oy (k)
sur lequel A, est définie alors nous voyons A, comme une variété abélienne sur k&’
et la variété abélienne complexe de départ (sous-varicté de A, ) s’€crit (Am)gé si oy,
désigne le plongement de k” dans C donné par la définition (il étend oy lorsque 1’on
voit k' comme une extension de k).

Rappelons que A désigne le degré minimal d’isogénie entre £ et 5. Si nous
supposons que f7q et £, sont sans multiplications complexes (cas (1) du paragraphe
précédent), alors le lien entre A et A,, est donné par I’énoncé suivant.

Théoréme 7.5. On suppose que (w11, w12) est une base de Qq et (way, wy7) une
base de 2,. Alors il existe une extension k' de k de degré 1 ou 2 telle que :

(1) Ay est définie sur k',

(2) A, est isomorphe sur k' a Eq x E;.

(3) Ay N ({0} x E2) est fini de cardinal A.

Démonstration. On choisit pour k" I’extension sur laquelle sont définies toutes les
isogénies £y — I, et F, — 4. La sous-variété abélienne A, est I'image d’un
endomorphisme de A. Celui-ci est donné par 16 morphismes E; — FE; avec 1 <
i,j < 2 donc est défini sur k&’ et, par suite, il en va de méme de A,. Ceci assure
(1). En ce qui concerne (2) et (3) voyons d’abord qu’il suffit de les établir pour une
seule période w. En effet, si @ et o’ satisfont les hypothéses du théoréme, il existe
deux isomorphismes f;: E? — E? (1 < i < 2)tels que 'application tangente d f
f = fix faenvoic w sur @' :d f(w) = o (Uisomorphisme f; réalise simplement
le changement de base de (w1, @;2) a (@, @,)). Ainsi I’espace tangent & une sous-
variété abélienne B de A contient w si et seulement si I’espace tangent de f(5)
contient @’. Ceci montre f(A,) = Ay et, en particulier, A, et A, sontisomorphes
sur leur corps de définition commun k& ( f € End(A) est lui défini sur k). D’ autre part
on a évidemment f({0}* x E2) = {0} x EZ donc les ensembles 4, N {0}* x E2
et Ay N{0¥2 x E g sont en bijection. Tout ceci montre bien que (2) et (3) sont vraies
pour @ si et seulement si elles le sont pour @’. Nous allons donc les établir pour
un w particulier de facon a ce que A, admette une description trés simple. Soient
pour cela ¢ Ey — FE5 une isogénie minimale (sur k&) donc avec A = deg g et
¢: E2 — E; telle que ¢ o ¢ = [A]. Soit ¥ le morphisme £y x E; — A décrit
par ¥ (x, y) = (@(v), x, y, (x)). Il est patent que I"image Im i est une sous-variété
abélienne de A isomorphe & Ey x E, et que Uintersection Im ¢ N ({0} x E3) est
en bijection avec le groupe Ker ¢ de cardinal A. Il nous suffit donc seulement pour
conclure de trouver w tel que A, = Imyr. En fait, il suffit méme de trouver @
comme dans 1’énoncé dans 1’espace tangent de Im v (ce qui assure A, C Im Y par
minimalité) car nous avons toujours dim A, > 2 : dans le cas contraire, la projection
B de A, sur E7 serait une sous-variété abélienne de dimension 0 ou 1 dont I’espace
tangent contiendrait (w;1,®12). Or, en I’absence de multiplications complexes, un
tel B est contenu dans un sous-groupe de la forme {(x,y) € E?: nx = my} pour



386 E. Gaudron et G. Rémond CMH

(n,m) € Z2\ {(0,0)}. En passant a ’espace tangent, on aurait 7wy, = My, qui
contredirait la liberté de (w11, w12). Finalement il reste a trouver @ dans |’espace
tangent de Imyr ¢’est-a-dire tel que w1 = d@(wyq) et wyy = de(wiz). Puisque
dg od¢ = Aid, la premiére condition s’écrit w1 = Adg(w;1). L'existence des deux
bases adaptées (wq1, w12) et (w1, w,;) découle donc du fait que Q,/de(2y) estun
groupe cyclique de cardinal A car ¢ est cyclique. L

Cet énoncé est plus ou moins classique (voir [MW1], [Pe2]) a part peut-€tre
’assertion (2) qui ne semble pas avoir €t€ notée explicitement.

7.3. Cas non CM : estimations. Nous démontrons la premiere assertion du théo-
réme 1.4. Comme nous traitons plus loin différemment le cas ol k posséde une place
réelle, nous pouvons supposer ici que toutes les places de & sont complexes. Il en va
alors bien stir de méme des places de I’extension &’.

Avec les notations ci-dessus, nous imposons maintenant que (wi1, wiz) forme
une base minimale de €. Ceci signifie que ||w11|7, 60 = P{{E 1) og, (L1)oy) 00 Ly
est 1’unique polarisation principale sur £ et que w12 = twj1 OU T appartient au
domaine fondamental de Siegel : |[t| > let|Rez| < 1/2. On écrit y = Im 7. On
sait alors que y = p((E1)ay. (L1)g,) 2 (voir remarque 3.3).

Nous fixons a présent le choix de oy jusqu’ici arbitraire, en demandant que y soit
minimal pour ce choix. En vertu de la proposition 3.2, cela nous fournit y < 1, 92H
ol nous notons, ici et dans toute la suite, H = max(h(E+), 1000). Ce petitraffinement
allege quelque peu les calculs qui suivent mais ne modifie que le terme logarithmique
de ’estimation finale.

Soient pj et p les deux projections £ — Eq. Posons n = [|7]?] € N\ {0} et
considérons la polarisation 1. = pi“Li@” ® p3 Ly sur E7 et p la composée A, —
A — E3. D’aprés I'assertion (3) du théoréme 7.5, p est une isogénie (de degré A)
donc L. = p* L' estample sur A, et

deg; A, = (deg p)deg;, Ef = 2nA.

Ceci nous permet d’appliquer la proposition 6.9 au couple (A, L) sur le corps de
nombres k’. En effet, si deg; A, < 1019 alors A < 100 et la majoration (18)
que nous allons démontrer plus bas est treés largement vraie. Nous majorons x <
(deg; A,)"'? = (2nA)~'/? tandis que nous avons 8“6 < ||w”L=Ué puisque @ €
I(Aw)oé mais @ ¢ Ip[o) Par minimalité. Comme 806 = 8;6 BLidiy o= o_(’,, la proposi-

tion 6.9 donne donc

24/ 2nA

R el 1778(max(1000, fimax (7)) + log(2nA) + 1,61
DlelZ,

1
_|_5 Z logmax(l,p((Aw)gf,Lc’)_l))

o' k'—=C
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ou D = [k’ : Q]. Nous allons maintenant estimer les termes qui apparaissent dans
cette majoration. En premier lieu, on a

2 2 2 2
”w”L,Ué = ”(a)llswlZ)”L’,O'O = n”a)ll”Ll,O'o + ”wlanl,O'O

= (]’[ + |’C|2)”(x)11”i1100 = (]’[ + |T|2)p((E1)Goa (LI)O'D)2

rz—|—|r|2< n+|t)? 2

1 1
g TP-3 yrn—3

(la derniére inégalité vient de ce que la fonction f — (n + 1)/ /f — 1/4 décroit sur
[, n + 1/2], croit sur [#n + 1/2,n 4 1] et d’une comparaison entre les valeurs en »
et 7 4+ 1). Par un calcul analogue, si @ = (wj,.®},, 5. @5,) est une période de
(Ay)or pour o' : k' — € quelconque, nous avons

|/ 117 o = nlloy 17, o + @i ]Z, o = max(ller L, o logs )z, .0)*
Siw’ # 0onaw), # 0ouwy, # 0 (toujours car p est une isogénie) donc
p(Aw)ors Lor) = p((E1)s, (L1)o’)-
Ainsi
1 _
= 2 legmax(l p((As)er Lor)™")
o’ k'—=C
1 -
<55 2 logmax(l p((Eng, (L1)e) ™)

o' k'—=C

<smax(Llog Y p(E)on (L)o)™?)

o' k'—=C

1 1
< 5 max(1, log(l,92H)) = 5 log(1,92H)
a nouveau avec la proposition 3.2 (appliquée a (%1)x/). Nous avons a ce stade

1 —-1/2
VA < 1778D(2 — 2—)

n
— 1
X (max(lOOO,;lmax(I){m)) + log(2nA) + 1,61 4+ > log(1, 92H))
et il nous reste a estimer la pente maximale.

Lemme 7.6. Nous avons

R —_— 1 7]
Ju'max(t)zim) = h(El) + lOgA + 5 IOg ;
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Démonstration. Comme on a L = p*L’ pour 'isogénie p, le lemme 3.9 donne
Pmax(fa, 1)) = llmax(l(Elz, L’)) et, par propriété des pentes maximales, ce majo-

rant vaut ﬁmaX(I(El,L?”) BlE,.L)) = max(ﬁ(l(El,L?”))’ f(lg,.L)))- Par ailleurs,

comme dim A, = 2, nous avons aussi fima(fy ) = fmax(fa,) — 2/1(f4,,)- Nous
€valuons les différentes pentes par le lemme 3.7. En particulier

max(i( g, pon). AlE L)) = MiE 1) = —hE) + (1/2) logn

ct
20(a,) = —h(Aw) — (1/2) logh®(4y, L) + log 7.

Nous obtenons donc

. 1 deg; A,
max(£y ) < h(Ay) — h{E —log ————.
fimas () = h(Aa) = h(E1) + 5 log =2&
Onconclutalors avecdeg; A, = 2nA, h(Ay,) = h(E1)+h(E;) (d apres ’assertion
(2) du théoréme 7.5) et h(FE,) < h(FE1) + (1/2) log A. O

Avec max (1000, ftyax (% ) < H4+logA + %log = et quelques calculs numé-
riques nous aboutissons a

1 \~1/2 3
\/A§1778D(2—2—) (H+§logH—|-§logn+210gA+2,l).
n
Sin =1 ceci s’écrit

7 1
VA < 1778D\/;(H—|—§logH+210gA+2, 1). (18)

Voyons que cette formule vaut aussi si # > 2. Dans ce cas, on majore n < |7|* <
y2+1/4 <(1,92H)?> + 1/4 < 4H? donc

4
VA < 1778D\/;(H +3,5log H +2log A + 4,2).

Avec H > 10000na3,5log H +4,2 < 0,03 H etestimation 1,03 /4/7 < /2/3
montre que (18) est encore valable (largement).

Nous utiliserons (18) plus bas. Ici nous pouvons encore simplifier cette forme
brute. Toujours avec 4 > 1000 nous écrivons 0, 5log H 4 2,1 < 0,006 H et donc,
en employant 1, 006 x 1778@ < 1461, nous trouvons

VA < 1461D(H + 2log A).
Ceci entraine a son tour

VA < 1545D(H + 4log D).
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En effet, c’est clair si +/A < 1,545.10°D. Sinon

2log(l, 545.10%) VA
1,545.106 D

A
<2log D + 1, 85.10_5§

A
logA =2log D +210g§ <2log D +

et I’on conclut par 1461/(1 — 1461 x 3,7.107>) < 1545. Maintenant nous pouvons
encore utiliser H + 4log D < 1,02(H + 4log D — 19) et éventuellement H +
4log D —19 < 1000 max(h(E1)—1,log(D/2), 1) et,comme 1545x 1,02 < (2,5%
10%)1/2 nous aboutissons 2

A <2,5%x10°D*(H + 4log D — 19)?

au

D 2,
A <2,5x1012D? max (h(El) = 1,1og7, 1) .

Ceci donne (dans le cas sans multiplications complexes et sans place réelle) les deux
premieres assertions du théoréeme 1.4 avec A(E) — 1 < hp(Ey) et D < 2]k : Q]
(théoréeme 7.5).

7.4. Cas CM. Soient /77 et F, deux courbes elliptiques a multiplications complexes
isogénes. On les suppose définies sur un corps de nombres k, on choisit un plongement
oo de k dans C. On considére les extensions a C via og de Eq et F5 et ay, wr des
périodes minimales. On forme A = Eyx Eyetw = (wy, wp) et'ons’intéressea Ay, .
Comme plus haut A, est définie sur une extension &’ de & munie d’un plongement
oy étendant 0p. Icion a [k’ : k] < 12 par la proposition 7.3. Soient Ay = card A, N
{0} x Epet Ay = card Ay, N Ep x {03,

Lemme 7.7. La variété abélienne A, est de dimension 1 et Ay et Ay sont finis.

Démonstration. 11 suffit de vérifier que A, n’est ni {0}, ni £; x {0}, ni {0} x E>,
ni £y x E,. Les trois premiéres ne contiennent pas @ dans leur espace tangent. Si
¢: FE1 — F> estune isogénie alors dg(£21) C Q3 et donc End(E>) - dp(wy) C 22
est de conoyau fini donc il existe N € N \ {0} avec NQ; C End(F;) - dg(w;) donc
il existe ¥ € End(E>) tel que Nw, = dyy odg(w;) ce qui montre A, C {(Py, P2) €
E1XE2|WO@(P1):[N]P2}7£E1XE2. U

Lemme 7.8. Il existe des isogénies Ay, = Ey, Ay = Eret £\ = E; de degrés
respectifs A1, Az et AjAs.

Démonstration. La projection pyj4,: Ae — Ei est de degré Ay et m aussi
(voir lemme 7.1). Il en va de méme pour 4,, = E, puis ’on compose. L
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Nous nous intéressons a p((Aw)cé, (Lw)gé) ou L, est la polarisation principale
sur la courbe elliptique A,,. Par définitionw € Q4,,) , .Evaluons ||o|| Lisoly: Comme
: _

Lf A pi L1 (ou Ly estla polarisation principale sur £;) ona
1 | |
2 _ 2 _ 2 _ 2
||(U||Lm,gé = _Al ||w||p?=L1,gé = _Al ||dP1(a))||L1,gé = AL [ ||L1,00'

De la mé&me facon, on a aussi | = %2 |2 ”iz 5, Par suile, on a

@z, 0

1 1
p((AﬂJ)O'é! (L(JJ)O'E,)Z S A_p((El)Goa (Ll)O'o)z = A_p((EZ)O-O’ (LZ)O'O)z'
1 2

Comme 1/p? > +/3/2 sur une courbe elliptique (remarque 3.3), nous trouvons

2
Aﬂ) 0"5 Lﬂ) 0"' a S
P((Aw)gss (Lo)oy) B max(A. o)
et donc, en posant D = [k' : Q] et 6 = max(Aq, Az)/ D,
L 1
CT R Q]

34
Z p((Aw)o’, (Lm)c’)_z = \/_T

o' k'—=C

Notons H = max(1, A(F£)+(1/2) log(D/12m)) et montrons que § < /233 H . Pour
cela, on peut supposer § > +/233 et 1’on sait alors par la proposition 3.2 appliquée
avec +/38/2 que

7w/38/2 < 3log(~/38/2) + 6h(Ay) + 8, 66.

Icionah(Ay) < A(E1) + (1/2) log Ay en utilisant ’isogénie entre A, et £y (voir
lemme 7.8). Par suite il vient

3 3
”T.s < 3log %52 + 6 + 19,55 < 6log§ + 25, 12H.

L’inégalité€ 6 < /233 H s’obtient alors en remarquant que

log /233 25;12
< ——4§ et A/233.
/233 © z+/3 _ 6log/233 <
2 233
On en déduit A; Ay < D?8? < 233D2 H? et nous avons donc bien prouvé qu’il
existe une isogénie entre £; et £, de degré au plus

log

[k’1:2®] )2'

Avec [k' : Q] < 12[k : Q] et 233 x 144 < 3,4 x 10*, ceci montre ’assertion du
théoreme 1.4 dans le cas avec multiplications complexes.

1
233[k" : Q]* max (1,hF(E1) + 5 log
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7.5. Cas non CM avec une place réelle. Soit & un corps de nombres qui possede
au moins une place réelle. On note oy : & — € un plongement complexe induit par
cette place. Soient £ et £, deux courbes elliptiques sans multiplications complexes,
définies sur k et isogeénes. Pour chaque j € {1, 2} le réseau des périodes de (£ )q,
est de la forme Q; = Zw; & Z1;w; avec 1; €lément du domaine fondamental de
Siegel (on notera y; sa partie imaginaire). Le caractere réel de la place attachée a

oo se traduit par I'égalité (E;)q, = (Ej)ay = (£/)ay, €t en particulier les réseaux

des périodes sont identiques. Soitf; : (£;)s, — (£;)q, I’application de conjugaison
complexe du § 2.6. D’aprés la proposition 2.2, la base (df;(w;), df; (7;w;)) est une
base minimale de ;. Par antilinéarité, on adf; (r;w;) = 7;df; (w;). Ainsi 7; et 7; sont
conjugués par SL>(Z). En utilisant que 7; appartient au domaine fondamental, on
trouve |[Re(z;)| € {0, 1/2} etle réseau QJ’, = Zw; BZQ21jw;) = Zw; HZ(2iy;jw;)
estun sous-réseau de £2; d’indice 2. Ainsi, en considérantune isogénie ¢ : F£y — F,
onal’inclusion 2d@(Q]) C 2dp(R21) C 22, C Q) quientraine I’existence d’entiers
a, b tels que

do(wy) = awy /2 + biysw;. (19)

Le fait que 4iy;de(w;) appartienne aussi a 2, se traduit par les conditions 4hy1 y; €
Zetayyy, ! € Z,quiinduisent par produit 4aby? € Z.Orl’onne peut avoir y2 € Q
car sinon 71 serait quadratique et la courbe £ aurait de la multiplication complexe.
Ainsi, on a nécessairement ab = 0 et la relation (19) montre que, pour au moins une
période @ dans ’ensemble {{(w1, w2), (w1, 2iy2m3)}, la sous-variété abélienne A,
de A = E{ X E, est de dimension 1. Par un raisonnement similaire en permutant
Q7 et 5, on peut remplacer (w1, 2iy,@;) dans cette paire par (2iyjw;,wz). Pour
une période o idoine, la courbe elliptique A, est définie sur une extension k&’ de k
de degré D = [k’ : Q] < 2[k : @] (théoréme 7.5) et I’on note o) un plongement
complexe de k' prolongeant oy. Posons Ay = card 4, N{0} x E; et Ay = card A, N
E1 x {0}. Comme dans le cas CM, nous disposons des lemmes 7.7 (choix de w)
et 7.8 (démonstration inchangée). 1.’obtention d’une borne pour le degré minimal
d’isogénie A repose alors sur une majoration du produit Ay A, a partir de notre
lemme matriciel pour les courbes elliptiques, analogue au cas CM. Pour I’analyse,
nous allons distinguer deux cas selon la valeur prise par dim A, o,)-

7.5.1. Premier cas : dim A, »,) = 1. C’est le cas le plus simple. 1l suffit de
reprendre la démonstration du cas CM (qui suit le lemme 7.8), avec (@1, ®3), en
changeant le 12 au dénominateur dans la définition de H par2 (car D = [k : Q] <
2[k : @]). La constante 19,55 peut étre remplacée par 14, 18, la valeur 25, 12 par
19,75 et 233 par 167. On trouve alors Ay A, < 167D2H?. Dans ce cas, on a

2
A < 668[k : Q]* max (1,kF(E1) + %log[k : @])
< 1503k : Q)? max (1, hr (Eq), loglk : Q])°.
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7.5.2. Deuxiéme cas : dim A, »,) = 2. Nous avons vu ci-dessus que si @ €
{(w1, 2iy207), (2iy1 @1, wy)} alors dim A, = 1. Ewdions les deux possibilités.

*w = (w1,2iyw2). Ona

1 4y2
2 2 _ _
Soient§ = A1y1/D = Ay/(4Dy;) et

D
H' := max (1,hF(E1),log 5)

Nous allons montrer que § < 12,31H’, ce qui permettra d’obtenir une premiére
majoration de AjAj, car AjA; = (2D8)?y2/y1. On peut supposer § > 12, 31.
Considérons T, la moyenne des p((Ay)o. (Lo )o) 2. On dispose de I'inégalité T, >
8, qui découle du calcul de la norme de @ en la place ;. Grice a la proposition 3.2
et a ’isogénie entre A, et £y de degré Ay (voir lemme 7.8), qui donne A(A,) <
h(E1) + (1/2)log Ay, ona

7d <3logd + 6h(E ) + 3log Ay + 8, 66. 20)

En observant que A; < (2/+/3)D8 (car y1 > +/3/2) et en se rappelant que
hp(Ey) = h(E) — (logm)/2, on en déduit 75 < 6logd + 23,61 H’. Comme
6 >12,3lonalogé < (log(12,31)/12,31)é puis

§ < e R < 12,31H’
= log(12,31) — =<7 :
T —6X Og12,31

qui est le résultat voulu. On en déduit

VA < /Db, <24.62DH' |22 1)

Y1
*w = (2iy1@1,®2). Ona

Al Asys

Soient 8" = Ay/(4Dyq) = Ayy,/D, H = max(l,hp(Eq),log(D/2)) et T,
comme ci-dessus. Nous allons montrer que 8" < 18, 19H en procédant comme dans
le cas précédent. On part de I’inégalité (20) qui reste valide ici avec 4" (que I’on peut
supposer > 18,19). On majore Ay = 4y, D§ par 25,8 D% max (1, h(£1))8’ grice
a la proposition 3.2 et a la remarque 3.3. En remplacant dans (20) et en utilisant
loga < a — 1 poura > 0, on déduit alors

4y1 1
P(Aw)g- (La)op)? < ll@ll7,, o = ==

w8 < 6logs’ + 6log D + 6h(E ) + 3max (1, h(E;)) + 15,42.
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En distinguant les cas A(£y) < 1 et h(£y) > |, cette majoration implique 7§’ <
6logé 4+ 39,74H’. Comme § > 18,19 0nalogd’ < (log(18,19)/18, 19)8" puis

39, 74H’
§ = log(18,19) < 18, 19H".
7= 06X =535

On a alors

VA < JA A, < 36.38DH 2L

Y2
Pour conclure, on multiplie cette inégalité par (21) :

‘. 2
A < 8957 x [k’ : Q]* max (1,kF(E1),log Lk '2®])

etlonutilise [k" : Q] < 2[k : Q] et 895,7 x4 < 3583. Ceci termine la démonstration
du théoreme 1.4.

7.6. Hauteur et invariant modulaire. Le lemme suivant se trouve dans [SiJ] sans
explicitation de la constante. C’est aussi une version plus fine de I’une des inégalités

de I’encadrement (51) de [Pe2].

Lemme 7.9. Pour toute courbe elliptique I d’invariant j nous avons
1.
W(E) < —h(j)—0.72.
12
Démonstration. Les deux membres sont invariants par extension de corps, donc nous

pouvons supposer £/k semi-stable. Si nous appliquons la formule (10) donnée par
Silverman [SiJ] dans le cas semi-stable, nous avons :

h(j) = > logmax(L, |j(zo)|)

0. k—=C

1
log [N/ -+
g|Ne/oAE/k| e Q

1
[k : Q]
ou nous notons 7 1’élément du domaine fondamental de Siegel correspondant a 2,
(et dans le premier terme apparait la norme du discriminant minimal de £/ k). Par
ailleurs, en posant v, = Imt,, la proposition 1.1 de [SiJ] fournit

hr(E) =

log | Ni/@ Ar/k| — > log(|AGe)[¥S).

12[k : ®] 0. k—=C

12[k : @]

En combinant et en rappelant que 2r (E£) = h(E) — (1/2) log 7, nous avons

L 1 1
WE) = 73h()) = 3 log 7 — o G.kz% log (max (1. | (ze) | A(zo)|5)-
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D’apres ’estimation situ€e au bas de la page 256 de [SiJ] en corrigeant la puissance
de 27 dans la définition de A(-), nous pouvons écrire

|Az)] 2 eV (2012,

Par ailleurs Faisant et Philibert donnent la minoration |j(zs)| > e*™7 — 1193
(lemme 1 (ii1) de [FP2], p. 187; la preuve est dans le texte [FP1], (3) p. 2.6). Par
suite, nous avons

Uy, = max (1, | j (o)) Aze)|¥E = max(l, 2o — 1193)e™1/972mya (277)12 6

> e P 2m)" f(yo)

ou f estla fonction donnée par
F() = max (Y572 y5(1 — 1193¢727)),

Une rapide étude de fonction montre que f est croissante sur [+/3/2,3/x] et sur
[(log 1194) /27, +00| tandis qu’elle est décroissante sur [3/7, (log1194)/2x|.
Comme de plus le calcul montre que f((log1194)/27) < f(+/3/2) nous avons
pour tout y > +/3/2 la minoration f(y) > f((log 1194)/27) et donc pour tout o la
quantité U; est minorée par 1/ B ou B est la constante

2w

B=1194| ———
? (log(1194)

6
) 61/9(27()_12.
En revenant au calcul de hauteur nous avons

1 1 i
WME) — —h(i) < =1 —log B <—0.72
(E) 12(J)_20gﬂ+120g < —0,

apres estimation numérique. (]

7.7. Cas non CM : application. Nous démontrons le corollaire 1.5. Soient p et
E comme dans I"énoncé. Nous raisonnons par 1’absurde en supposant que 1'image
de la représentation galoisienne est contenue dans le normalisateur d’un sous-groupe
de Cartan déployé. Ceci entraine notamment que ’invariant modulaire j de F est
entier : j € Z (voir appendice de [BiPa]). Alors le théoreme 3.1 de [BPR] (version
explicite du résultat principal de [BiPa]) montre

(log p)? .

VP

De plus, dans la partie 5 de [BiPa] (voir aussi la partie 4 de [BPR]), on construit deux
courbes £ et £ de sorte que d’une part £ et £ sontreliées par une isogénie de degré
p donc A(Eq) < h(E) + (1/2)log p et d’autre part £, et £, sont reliées par une

log|j| <2m./p+ 6log p + 21
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isogénie cyclique de degré p2. Ceci fait que dans les notations des paragraphes 7.2
et 7.3,ona /A = p (nos courbes sont toutes sans multiplications complexes comme
I7). En outre la construction montre que frq et £, ainsi que 'isogénie cyclique sont
définies sur un corps k quadratique. Ceci assure que toutes les isogénies entre E et
E5 sont définies sur k et donc il en va de méme de A,,. Parsuite k' = ket D = 2.
Si & est imaginaire, nous avons d’apres la majoration (18) (qui suit le lemme 7.6)

2
p < 2\/;1778(11r +4logp +0,5log H +2,1)

ot H = max(h(E;),10%) < max(h(E) + (1/2)log p.10%). Dans le cas réel, cette
estimation est tres largement vraie (le théoreme 1.4 montre p < 2+4/3583H). En
combinant le lemme 7.9 et la majoration de log|j| = A(j) donnée ci-dessus, nous
trouvons

yig 7(lo
H < max | 1000, Eﬁ—i_ log p + W
puis

T(log p)?

p<2,/—21778 (1000 ZJP+logp+
max o

—0,72) +4logp+2,1

4+ 0,5log (1000 —\/_p-l-lgp—l——l —0?2)
0g max QO .
H H 6 gl\/— 3

Sil’on divise par p de chaque c6té on obtient une majoration de la forme 1 < f(p)
pour une fonction f décroissante sur [1, +ocl. Le calcul montre que (3093 153) <
1 < f(3093152) et nous en déduisons que 'on a p < 3093 151.

8. Appendice

L’ objectif de cet appendice est de démontrer le théoréme de Bost utilisé dans le
travail d’ Autissier [Au]. Il est €énoncé dans les notes [Bo3], p. 5, et repris dans [Gr],
p- 100, (voir I'inégalité (13) et la derniere égalité de la page o I’on corrige I’exposant
g/4 en 1/4) mais aucune démonstration ne semble avoir été publiée a ce jour.

Soit donc une variété abélienne A définie sur un corps de nombres k et munie
d’une polarisation principale L. Pour tout plongemento : & — C, la variété abélienne
complexe A, obtenue par extension des scalaires est principalement polarisée et donc
isomorphe a un unique C# /(Z% + 1,Z?%) avec 1, dans le domaine fondamental de
Siegel.

Notons ys := Im 14. Soit F;: C¥ — C définie par, siz = 1o p + g € C# avec
p.q € R,

F(2) = det(2y,)'/* Z exp(im'(n + p)re(n+ p) +2in'ng).

nezZg



396 E. Gaudron et G. Rémond CMH

Le théoréme de Bost s’écrit alors sous la forme suivante.

Théoréme 8.1. Soit a := —(h(A4) + (g/2)log(27))/2. On a

1
log|F, dpdg.
T g-kz;,cf("%g/zg)z og |Fo (e p + @) dpdg

a =

Nous commencons par quelques propriétés de la fonction F;. Elles font intervenir
la donnée d’ Appell-Humbert (H,, yo) sur C8 /Z% + 1, 7% définie par

Ho(z,2') ='2y;'7 et y(zzm+n) = (=)™
ouz,z eC8etm,neZ8.

Lemme 8.2. Soit ¢ un plongement complexe de k.

(1) Nous avons

/;mg/zg)z |Fa(fap + Q)|2 dpdq =1

(2) Sinousposons ¥45(z) = Fy(z)exp((n/2)'zy; lz—in'pty p) pourz = 15 p+q
avec p,q € R® alors ¥5: C8 — C est une fonction théta associée a la donnée
d’Appell-Humbert (Hs, xs).

(3) Nous avons |04(z)| = |Fo(z)| exp({n/2)Hs(z,2)) pour tout z € C5.

Démonstration. Pour (1), en évaluant | F;|?, I’intégrale 2 calculer est égale au produit
de det(2y,)'/? par

f Z ezirr‘(n—m)q+irrt(n+p)rg (n+p)—int(m+p)r71(m+p)dp dq
(R%/Z5)>

nmeZs

= ¥ f o pYio (e p)—im' (m+ p)ea (m+p) (/ ezmt(n—m)qdq) dp
e Rs/Z& R8/Z8

= Z/ _ZII(T’E‘FP)J’U(T’E-FP)dp
neZs RE/Z#

:/ P PYaPdp
RE

(pour démontrer la derniére égalité, on peut remplacer 2y, par 'identité via un

changement de variables linéaire ; elle se réduit alors a [p e dx = A/7). Pour
(2), un premier calcul donne pour z = t,p + g et @ = 1,m + n la relation



Vol. 89 (2014) Théorgme des périodes et degrés minimaux d’isogénies 397

Fy(z + @) = Fy(z)exp(—2in'mg) obm,n € Z% et p,g € RE. Avec les mémes
notations ceci montre que %, (z + @)%, (z) ™! estl’exponentielle du nombre complexe

T
3 (t(z + a))ygl(z + w) — 1"Zyglz) —iz (p+m)ts(p+m)+in'prep—2in'mg.

Apres un calcul élémentaire, cette quantité se transforme en

Ea)yg @+ wy, z+immn.

Ceci nous fournit la relation
T
Volz + @) = ¥5(2) yo(w) exp (T[HO-(U),Z) + EHg(a), a)))

qui montre bien que 1, est une fonction théta pour le facteur d’automorphie introduit
au § 2.5 (voir aussi le lemme 3.2.4 de [BL] pour un résultat semblable). Le caractére
holomorphe de ¥, se lit sur la relation

e—i.n’tptgp Z exp (in’t(n kil p)to_(n + p) + 2§ TE’tWQ)
neZfg
— Z exp (in'nton + 2in'nz).

neZs

Enfin pour (3) il s"agit de voir que le nombre (77/2)tzy L z—i n' pry p—(/2) Hy (2, 2)
est un imaginaire pur. On constate alors simplement qu’il vaut i 7' pq. (|

Nous en venons maintenant au lemme-clef en vue de la démonstration du théo-
réme 8.1 quirelie la hauteur de Néron—Tate aux fonctions F,;. Pour pouvoir I’exprimer,
nous avons besoin de préciser le choix d’isomorphisme entre A, et T8 /Z% + 1575 .
Il est li€ & un choix de représentant pour la polarisation L. Tout d”abord nous pouvons
faire, dans 1’énoncé du théoréme 8.1, une extension finie du corps de base de maniére
transparente. Pour ne pas alourdir les notations, ici et ci-dessous, nous conservons les
notations Fg, 75 et Yo pour un plongement ¢ d’un sur-corps de & : il est entendu que
I'on parle en fait de Fg, et ainsi de suite.

Nous profitons de cette liberté pour supposer que L admet sur k£ un représentant
symétrique et nous le fixons une fois pour toutes. Nous notons aussi £ le diviseur
effectif de A associé. Nous pouvons alors fixer de maniére unique 1’isomorphisme
entre A, et C8 /7% 4 1, 7% en exigeant que L, corresponde au faisceau inversible
symétrique de donnée d’ Appell-Humbert (H,, y) introduite plus haut. Pour alléger
les notations, nous identifions les variétés abéliennes A, et C#/Z% + 1;Z%. En
particulier 74, estidentifié a C# etla fonction 5 dulemme précédent estune fonction
théta associée a L.
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Lemme 8.3. Soient K une extension finie de k et x € A(K). Notons hy (x) la hauteur
de Néron—Tate de x relative a 1. Pour tout plongement 6: K — C, considérons un
logarithme zq de x dans ta, : x = expy_(Zq). Supposons que x ne soit pas dans le
support du diviseur E associé a L. Alors on a

a < hp(x)+ Y log|Fy(zo)l.

g: K—C

K : Q]

Démonstration. Considérons un modéle de Moret-Bailly (A, £,€,) de (A, L, x) sur
une extension finie K’ de K (voir § 6.1 et [Bo2], § 4.3) :

(i) & — Spec Ok est un schéma en groupes lisse, de fibre générique Ak,
(ii) & est un faisceau inversible hermitien cubiste sur +, de fibre générique L,
(ili) €5: Spec @k — A estune section qui reléve x € A(K').

Comme dans le paragraphe 6.1, ce modele confere al’espace #H = H%(Ag, Lg/)une
structure de fibré hermitien adélique H sur K'. Par hypothese, une section s € H \ {0}
ne s’annule pas en x et, puisque h®(A4, L) = 1, on dispose de la formule

1
K" : Q]

o Is() =z,
AU = ((E2) + — e

D IK")y : Q) log

Isll .

(dans la somme, v parcourt les places de K”). La pente [ (eﬁﬂ) estégalea h L{x)[Bo2],
théoreme 4.10 (ii), tandis que L(H) = a (voir (2)). Dans la somme, on sépare les
places ultramétriques des places archimédiennes. Si v est ultramétrique, considérons
une base s, du @,-module libre (de rang 1) HO (A, £) ®@,, Oy (Oy estI’anneau de
valuation du complété de K’ en la place v). On a alors

SX) ==
PO ez, <1
51l 7, =
Si v est archimédienne et si 0: K’ < C est un plongement complexe associé, la
fonction théta ¢4 : 4, — C dulemme 8.2 (2) correspond aun élément s, € H @, C
avec lequel nous pouvons calculer le quotient des normes, en utilisant la relation (3)
du § 6.1 puis le lemme 8.2 (3) :

2o JE 2
Iso )z, = [P0 (zo) e 215t = |Fy(20)].

Le calcul de lanorme ||s5 || 5 , se fait en élevant cette derniere formule au carré et en
intégrant. On trouve donc (lemme 8.2 (1)) [|s¢ || g ,, = 1 puis [|s(x) ||€;—£’U/||S lg..=
|| s5(x) ”e;_:t,v = |Fs(zs)|. En regroupant toutes ces informations, nous avons la
formule voulue car F,;(zg) ne dépend que de la restriction de o a K. L
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Démonstration du théoréme 8.1. Soit X € R. Sur le compact (R /Z#)?, la fonction
fx .o définie par fy s (p.q) = max {—X, log|Fs;(zo p + ¢)|} est continue (a valeurs
réelles). Etant donné un entier N > 1, posons I = {0,1,..., N — 1}% et, pour
i € In,notons p; 'image de i/ N dans R® /Z% . Alors, pour tout nombre réel & > 0,
il existe Nog(X, &) € N tel que, pour tout entier N > Ny (X, £), pour tout plongement
o:k — C,’onait

Z Jxolpi.pj) =& +f Jx.o(p.q)dpdg.

2
" Nel? (B9

Faisons alors la moyenne sur les plongements o :

> ( > fX,a(Pf,Pj))

o: k—C (i j)elz

11
N2 [k Q]

# 1B

Jx.o(p.q)dpdqg.
(RE/Z5)2

Wz ®]
Dans le membre de gauche I’on peut librement remplacer & par une extension finie.
Nous considérons ainsi le corps Ky ou sont rationnels tous les points de N-torsion
de A, notés A[N]. Pour x € A[N] et o un plongement de Ky nous notons u, 4 le
couple (p, g) correspondant a un logarithme de x dans A,. Lorsque x parcourt A[N],
a o ixé, u, » parcourt exactement / f, Par suite, nous avons

1 ( 1 Z
Z - fX,O'(ux,a))
Nz x€A[N] k- @ o: Ky—C
<eg o(p.qg)dpdg.
[k @1 A Jx.o(p.q)dpdg

Le lemme 8.3 montre que, si x € A[N| n’appartient pas au diviseur 7, la parenthése
du membre de gauche est plus grande que a. Elle est par ailleurs toujours plus grande
que —X . Notre membre de gauche est donc supérieurd a(l — iy /N?8)— Xty /N8
ou iy = card(A[N] N E). Par le théoréme de Raynaud (ex-conjecture de Manin-
Mumford, voir [Ral]) les points de torsion de /£ sont contenus dans un nombre fini de
translatés de sous-variétés abéliennes strictes de A. Comme dans chaque tel translaté
il y a au plus N2¢~2 points de N -torsion, nous avons 1y = O(N?¢72). En faisant
alors tendre N vers ’infini puis ¢ vers 0, on obtient

: f
a < fx.o(p.q)dpdg.
% :Q]a:;c ®e/z52

Pour chaque o, la suite décroissante ( fy s)xen de fonctions mesurables converge
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vers (p, q) — log | Fy (7, p + q)|. Par convergence monotone, on a

lim Fralpaydpdg = [ log|Fatrap + @)l dpda.
X—o (Rg/zg)z (IRg/Zg)Z
d’ot le résultat. O

Pour conclure, rappelons que ce résultat a permis a Bost de démontrer une minora-
tion uniforme de la hauteur d’une variété abélienne (sans hypothése de polarisation).

Corollaire 8.4. Pour toute variété abélienne A définie sur un corps de nombres, on

ah(A) = —(1/2)(dim A) log(27).

Démonstration. Dans le cas principalement polarisé, il suffit de voir dans les notations
ci-dessus ¢ < 0 ou méme, par le théoreme,

/ log|Fy| = 0.
(RE/Z5)2

Or, par concavité du logarithme, on a

1 1
f log|Fg|=—f 10g|FU|2§—log/ |Fs]*> =0
(R/Z5)? 2 Jirz/z2)2 2 " Jwezey2

par le lemme 8.2. Dans le cas général on applique la minoration 4 la variété A% x (A)*
qui est principalement polarisée de hauteur 8/(4) et de dimension 8 dim A (astuce
de Zarhin). ]
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